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Bauer recently presented a formula for the ionization rate of a hydrogen atom in a strong linearly polarized laser field
[J. Phys. B 49 145601 (2016)]. He started from the Keldysh probability amplitude in the length gauge and utilized Reiss’s
method in the velocity gauge. Instead, according to the Reiss probability amplitude in the velocity gauge and Keldysh’s
derivation for the length gauge, we derive a formula for the ionization rate of a ground-state hydrogen atom or a hydrogen-
like atom in a strong linearly polarized laser field. We compare the numerical results of the total ionization rate and the
photoelectron energy distribution calculated from our formula with the results from Keldysh, Reiss, and Bauer. We find
that the apparent discrepancies in the ionization rate are caused not only by different gauges, but also by different analytical

methods used to derive the ionization rate.
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1. Introduction

Keldysh—Faisal-Reiss (KFR) theory!!~3! describes non-
resonant multiphoton processes such as the above-threshold
detachment of ions and the above-threshold ionization of
atoms in an intense electromagnetic (laser) field. The the-
ory has provided fruitful insights into a wide range of highly
nonperturbative processes in intense laser—atom physics. The
two commonly used versions of KFR theory describe the same
physical problem, and the main difference between them is
the form of the laser—atom interaction in which the d- E
form, sometimes called the length gauge (LG), was used by
Keldysh!!*3 and the p- A form, or velocity gauge (VG), was
used by Reiss and Faisal.[>3:67]

KFR theory utilizes S-matrix theory, which is exact in
principle. However, since there is no general analytical so-
lution to the Schrodinger equation for a charged particle in-
teracting with both the field of an attractive Coulomb center
and the field of an electromagnetic plane-wave, we used an-
alytical approximations to evaluate the S-matrix element for
bound-free transitions. Therefore, various approximate theo-
ries could lead to different expressions of the ionization rate.
The main approximations of the three versions of KFR the-
ory are the single-active-electron (SAE) approximation, [8-10]
electric dipole approximation (EDA),!'1?] and a version that
neglects the interaction of the escaping electron with the long-
range Coulomb potential!'~"! in the case of a neutral atom

DOI: 10.1088/1674-1056/ab75ce

ionization. In addition to the above approximations, Keldysh
applied two simplifications to the derivation of the ioniza-
tion rate: (i) the saddle-point method (SPM) of approxima-
tion to perform the contour integral, and (ii) the small ki-
netic momentum assumption. Reiss did not face the above
two limitations, and his formula for the ionization rate was
expressed by generalized Bessel functions (GBFs). The de-
scription of any dynamic process in atomic physics should be
gauge-invariant,[!3-15] meaning that calculations by two mod-
els must yield the same results. However, apparent discrepan-
cies have been observed between the predictions from strong
field approximations in the velocity and length gauges. As
is well known, the two models can yield very different and
occasionally contradictory results in strong electromagnetic
fields.[1%23] Recently, Bauer!>*! proposed a formula for the
ionization rate of a hydrogen atom in a strong linearly polar-
ized laser field. It began from the LG, but used a GBF analyti-
cal method. The numerical results calculated with his formula
were compared with the results from other models. However,
it remains unclear what will happen if we derive a formula by
starting from S-matrix theory in velocity gauges and using the
analytical SPM at the same time. In this paper, we intend to
answer this question.

This remainder of this paper is organized as follows. In
Section 2, we derive a formula by using the VG and SPM.
In Section 3, we present numerical results calculated from
our formula, including the total ionization rates and photo-
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electron energy spectra. We then compare our results with
the results from the Bauer’s theory, the original theory pro-
posed by Keldysh,!!l and the results of Reiss.!”! Finally, we
draw some conclusions in Section 4. Used in this work are the
atomic units (a.u.), explicitly substituting —1 for the electronic
charge, and the nuclear charge Z denoting the hydrogen atom

in our numerical calculations, unless otherwise stated.

2. Derivation of formula with VG and SPM

In this section, we derive a formula for the ionization rate
of an atom. We use the VG and SPM to perform the contour in-
tegral, in the way that Keldysh used the LG. Then, we present
a formula for the energy spectrum of a photoelectron. There
ae two conditions necessary for deriving the final expressions
of the ionization rate as noted by Keldysh!!*3! and others.[>*]
The first is adiabatic approximation, which is necessary to per-
form the integral with the SPM. The second is the small final
kinetic momentum approximation.

Considering hydrogen atoms in the bound state in a lin-
early polarized laser field, the S-matrix element describing the
probability of direct transition from a bound state to a free state
can be expressed as

(5= 1a=—i [ de(ys. Higy). (1)

where ¢;(r) is a stationary, initial bound state wave function
and vy is the Volkov state.

The Hamiltonian interaction between the laser field and
the outgoing electron in the VG can be written as

Hi(t)=A-(—iV)+ %AZ, 2)

where A is the vector potential and A = A(¢) in the dipole
approximation.

According to the strong field approximation, the influence
of the interaction of the remaining atom in the final state with
the escaping electron is entirely neglected. This approxima-
tion is supposed to be valid for a very intense field, when the
oscillation energy of the detached electron in the laser field
dominates the atomic binding energy. The Volkov state can be
written as

1 i i, ,/f }
= —explip-r—=-pit—i dtHi(p,t?) ¢, 3
Vi p{ P 5P - deHi(p1) 3)

where V represents a normalization constant. In the dipole
approximation, Yr is an eigenfunction of the Hy operator, and

thus

Hiy; = Hy(p,1) ;. 4)

Using an approach similar to that of Reiss,?! substituting the
initial state ¢;(r), the final state wave function Y, and the in-
teraction Hamilton Hi into Eq. (1), and then partially integrat-

ing the resulting equation over ¢, the S-matrix can be expressed

as follows:

i - 2
5-i= 8w (5 4B Lm0 O

where Ej, is the binding energy and Ey, = —E;, ¢(p) is the
Fourier transform of

d(p) = (P, i(r)), (6)

- [amnfi(5 5
+i/0 <A~p+“;> dr}. )

The vector potential for a monochromatic linearly polarized
plane wave is

A(t) = Aecos ot )

where € represents the unit vector in the direction of polariza-
tion,  is the frequency of the laser field, and A is the ampli-
tude of the vector potential. The corresponding electric field
is

F(t):f%A:Fesina)t, ©)

where F' = A is the amplitude of the electric field.
An integration can now be carried out over 7 in Eq. (7),

= e {i[(Z )

—Csina)t+;sin2wt} } (10)

where z=A%/40 =U, and { =A(p-€)/w = Apcos 6/ o.
Using GBFs,
exp{iCsinthri;sinZwt}
v z —inwt
= ¥ a(—3) e an
n=—oo 2

and the inverse function
z
h(&-3)
1/nd i Csinxt S sin2xt (12)
= — expsi| — sin —sin n .
7). xexp X > X+ nx

Utilizing the method of Keldysh in the LG and substituting
Egs. (11) and (12) into Eq. (10), we obtain

_Z_ dxexp [iSp(x)]

2
><6< +Eb+Upnco) (13)

where Sp,(x) = nx — {sinx + (z/2) sin2x.
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The saddle point integral method is used to integrate over
x = ot, and the position of the saddle point is determined
by dS,/dx = 0. Equations (6) and (13) are substituted into
Eq. (5).
probability amplitude of ionization can be written as follows:

The approximate S-matrix element describing the

(=1

2w [ 2 (1—u?)"1/4
— W kAaﬁZ g (1

p*sin® 6 ~l2
2k?

2

x exp[iSp(u1)]0 [Eb—i— L (z—n)a)} ) (14)

2

vV 2Ep,

cosO . 2sin% 0
ulzy[pk —1(14—])2,(2)],

and ¥ = @+/2E, /F is the Keldysh parameter, 0 is the angle
between the momentum and the polarization direction of the
field.

According to the method of Lin ef al.,[?]

where k =

pre-exponent
factors can be represented approximatively in the exponent
forms. Equation (14) is then expressed as follows:

2 | 20 > exp{lS (u1) +ASp}
(S— 1) 5 —1/4 Z p
\/7 kAa n=n Z)
»
x 8 {Eb+2+(zn)w} , (15)
where AS, can be written as
2,2
AS, = —i pcos@)/z2 Y .
2k(1+792)  2k(147?)
p?cos’0(4—7?) Lz+p200529 16)

82(1+92)2 42 42

Then, the square of the complex modulus of the S-matrix that
is the probability amplitude of ionization is written as

oo

472 20 n:znoeXp(*ﬂm[Sp(ul)] +2Re[AS])

(S— 15> = —
V. kAa® V1472 (Ep +p*/2)
2
) Eb+%+(z—n)a) , 17
where
m(Sp(u1)] = Ay + B p* — Cip*c? (18)
Re(AS,) = AB; p* — AC1 p*c?, (19)
with
2\@E3/2 YZ
=== (1-L 2
1 AP ( 10), (20)
1
Blz—%sh b, (21)

Y
= —F, (22)
204/1+ 2
143y
AB| = ———"—— 23
1 4k2(1 T ,)/2) 9 ( )
1 4—
4k 8k2(1+92)?
The differential ionization rate w can be found from
. Vv 2
=1 —1)g 2
w=lim 7 s (5= il (25)

where w represents the transition probability per unit of time
in canonical momentum space.
The total photoionization rate can be derived from the in-

s ff s

Performing the integration of momentum p, we obtain

tegral of w as follows:

W= (26)

t~>oo t

Wfﬂ'ziwex ,@ 1,% 27)
7\@(15ES/ZC 3F 5
with
co1s @ 24872+ 9

AEyy (1+77)¥2°
The energy distribution of photoelectrons can be written
as

- :/de\/ZTp
e *texp[4(—B) +AB; +Cy — AC))Ey)]
T 2V2ra5 AR 1+ P (Cr — AC)) By + o)+ /By

Equations (27) and (28) are the main results of this paper.

(28)

3. Results and discussion

In this section, we present the numerical results calculated
with our formula, and compare them with the results from the
formulae given by Keldysh, Reiss, and Bauer,!>?*! which
are obtained by using different combinations of gauges (LG
or VG) and analytical methods (SPM or GBF). The formula
derived by Keldysh!!*>24] utilizes the LG and the analytical
SPM is expressed as

Keldysh _ V3TF 2|, ey
v = %P ~3p | 10(F> - (29

Reiss’ ionization rate formula is derived by using the VG and
the GBF analytic method?!

Reiss \/
=2 —_— d6O(sinf
v nzno (Eb + En / SlIl )

x J? (\/&EHCOSG,Z).
() 2

Finally, Bauer’s formula is derived in LG with the help of
GBFs.

(30)

The derivation of Bauer’s formula can be seen from
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that of Eq. (15) in Ref. [24] and the obtained formula is as
follows:

yy/Baver _ 225@/0” desine(Z(—1>kAkJ<avb>)7 G

where Z is the nuclear charge and Ay, is the Fourier coefficient.

In order to reveal the apparent discrepancies among the
results of the four formulae, we calculate and compare the ra-
tios of the ionization rates by using different formulae and the
static field ionization rate Wy = 41/327 /nF exp(—2Z3 /3 F)
of a hydrogen atom. % The results are shown in Figs. 1 and 2.
Since our formula and Keldysh’s formula are both applicable
to the case of tunneling ionization, the calculations are lim-
ited to low-frequency high-intensity region, i.e., ® < 1 and
271> 1

101} - ~- Bauer -
——this work T
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-
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Fig. 1. Ratios of total ionization rate of H atoms versus Reiss intensity
parameter z;, calculated with four different models, where static-field ion-
ization rate varies with the Reiss intensity parameter z; in linearly polarized
laser field.
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Fig. 2. Ratios of total ionization rate of H atoms versus frequency o, cal-
culated with four different models, where static-field ionization rate varies
with frequency  in linearly polarized laser field.

First, we fix the frequency @ = 0.01 a.u. and the ioniza-
tion rate as a function of the Reiss intensity parameter z;. The
results are shown in Fig. 1. The dashed line represents the
ratio of the ionization rate according to Keldysh’s formula.!]
The dash—dotted line represents the ratio of the ionization rate
according to Reiss’ formula.[?! The ratio of the ionization rate
calculated from Eq. (27) is denoted by the solid line. The dot-
ted line represents the ratio of the ionization rate according

a.?! Second, we fix the Reiss parameter at

to Bauer’s formul
z1 = 100 and calculate the atomic ionization rate by changing
the frequency @. The results are shown in Fig. 2. In Fig. 2,
these four ratios of ionization rate are shown as a function of
the laser frequency m, but where z; is fixed at 100, with the
same denotation as before. Referring to Fig. 1, when increas-
ing the Reiss intensity parameter z;, the ratio derived with our
formula tends to vary in a manner similar to the result from
Reiss’ formula. This is likely to be because the same gauge is
used. However, these two ratios have different orders of mag-
nitude in quantity. This is likely to be the consequence of dif-
ferent analytical methods. The ratios calculated by Keldysh’s
and Bauer’s formula have different tendencies of change with
z1, but they both have similar magnitudes, and they use the
same LG. Except for the results in Fig. 2, our results approach
to Bauer’s. However, we use a different gauge and analytical
method. The complexity of the ionization rate changing with
frequency shows an apparent discrepancy in ionization rates,
due to not only the different gauges but also the different ana-
Iytical methods used in the derivation of the formula.

Next, we calculate and compare the photoelectron energy
distributions of the different models. The results are shown
in Fig. 3. As stated above, our formula and that of Keldysh’s
formula are both applicable to the case of tunneling ioniza-
tion. The calculations are thus limited to low-frequency high-
intensity region, i.e., @ < 1 and z; > 1. Figure 3 show pho-
toelectron energy distribution curves. The dashed line repre-
sents the results given by Keldysh’s theory, the solid line refers
to the results of the proposed formula, the dashed—dotted line
denotes the results of Reiss’ theory, and the results given by
Bauer theory are shown with the dotted line. As the laser fre-
quency increases, the differences among these curves become
more pronounced. The smaller the ®, the closer to the @ from
Bauer’s theory the curve obtained by us will be. Because the
small final kinetic momentum approximation is utilized, only
electrons with sufficiently small final kinetic energy contribute
to the total ionization rate. Our results and those from Bauer
theory match to each other only at lower photoelectron energy.
The higher the energy, the greater the difference will be. The
results from Reiss’ theory are one or more orders of magni-
tude smaller than the results from the other three curves. As
o and F increase, discrepancies between the results from our
formula and those from Keldysh’s and Bauer’s theory become
more obvious, which come from different gauges. As the pho-
toelectron energy increases, discrepancies between the curves
of our formula and Bauer’s theory become more obvious. This
is obviously caused by the different analytical methods and
gauges used to derive these formulae.
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Fig. 3. Photoelectron energy spectra from Keldysh’s theory, proposed formula, Reiss’ theory, and Bauer’s theory at (a) @ = 0.0l a.u., F =
0.05 a.u., and y=0.2; (b) @ = 0.01 a.u,, F =0.03 a.u., and Yy = 0.33; (¢c) ® = 0.02 a.u., F = 0.06 a.u., and y = 0.33; (d) ® = 0.25 a.u.,

F =0.75a.u., and y=0.33.

4. Conclusions

We derived the formula for the ionization rate and photo-
electron energy distribution of a ground-state hydrogen atom
exposed in a linearly polarized laser field by using the VG and
the analytical SPM. In our numeric calculations, the laser pa-
rameters are limited in the tunnel region w < 1 and z; > 1
to satisfy the applicable condition of our formula and that of
Keldysh, and the final kinetic momentum is small. The com-
parisons of our calculated results with the original results ob-
tained by the Bauer, Keldysh, and Reiss theories show that our
derived formula is simple and easy to understand, and that the
calculated results are closer to the results of Keldysh. More
importantly, our results reduce the discrepancies between the
LG and the VG. This study fills a gap in the literature regard-
ing the combination of gauges with analytical method in KFR-
like theory. Discrepancies in the ionization rate are caused not
only by the different gauges, but also by the different analyti-
cal methods used to derive the ionization rate. We expect that
our study will help to further study the ionization mechanism
of hydrogen-like atoms.
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