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Lump, lumpoff and predictable rogue wave solutions to
a dimensionally reduced Hirota bilinear equation*
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We study a simplified (3+1)-dimensional model equation and construct a lump solution for the special case of z = y
using the Hirota bilinear method. Then, a more general form of lump solution is constructed, which contains more arbitrary
autocephalous parameters. In addition, a lumpoff solution is also derived based on the general lump solutions and a stripe
soliton. Furthermore, we figure out instanton/rogue wave solutions via introducing two stripe solitons. Finally, one can
better illustrate these propagation phenomena of these solutions by analyzing images.
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1. Introduction

In recent years, the theme of lump waves in nonlin-
ear science has attracted great interests because it was re-
garded as suitable prototypes to model rogue wave dy-
namics in both nonlinear optics[1] and oceanography.[2]

In Ref. [3] the author proposed an effective method
for constructing the lump solutions to the Kadomtsev–
Petviashvili equation, and then all second-order lump so-
lutions were systematically presented in Ref. [4] by Ma
and Zhou. Henceforth, many nonlinear partial differen-
tial equations also admit lump solutions, such as the gen-
eralized Kadomtsev–Petviashvili–Boussinesq equation,[5] the
Boussinesq–Kadomtsev–Petviashvili equation,[6] the (2+1)-
dimensional Ito equation,[7] and the (2+1)-dimensional Burg-
ers equation.[8] etc.[8–19] Many methods can help us study
lump solutions, such as the multiple variable separation
method[20] and the common expression method.[21] Among
them the Hirota bilinear method is recognized as an effec-
tive approach to find lump solutions to nonlinear partial dif-
ferential equations. The large amplitude wave related to the
rogue wave is an extreme event that appears on the surface of
the ocean. Such waves can be accompanied by deep grooves
(holes) that appear before and/or after the maximum peak.
Recently, special attention to theories and experiments has
spread from oceanography into several other areas of research,
such as nonlinear optical systems,[22,23] fluid dynamics and
atmosphere.[24–31] These developments help to understand the
physical mechanisms of the flow phenomenon.

Jia and Lou[32] gave one special case of the lump solu-
tions to the (2+1)-dimensional KP equation based on the gen-
eral mathematical results established in Refs. [3,4] After that,

the lumpoff solution and the instantan/rogue wave solution
were derived. Based on the completed study, a series of related
work was carried out.[33–36] In this paper, we mainly consider
a new (3+1)-dimensional model equation introduced by using
a multivariate polynomial in Ref. [37] and then discuss the
lump dynamics related to the new Hirota bilinear equation.[38]

The form of the Hirota bilinear equation is

(DtDy −Dx
3Dy −3Dx

2 +3Dz
2) f · f = 0, (1)

which is equivalent to

f fty − ft fy + fxxx fy +3 fxxy fx −3 fxx fxy − f fxxxy

−3( f fxx − f 2
x )+3( f fzz − f 2

z ) = 0, (2)

where f = f (x,y,z, t), and the D-operator is defined by[39,40]

Dα
x Dβ

y Dγ

t ( f ·g) =
(

∂

∂x
− ∂

∂x′

)α(
∂

∂y
− ∂

∂y′

)β(
∂

∂ t
− ∂

∂ t ′

)γ

× f (x,y, t) ·g(x′,y′, t ′)
∣∣∣x=x′,y=y′,t=t ′.

Based on the theories of the binary Bell polynomials and the
bilinear operator, one can introduce a variable transformation

u = 2[ln f (x,y,z, t)]x = 2
fx(x,y,z, t)
f (x,y,z, t)

,

then equation (2) is transformed into a (3+1)-dimensional
model as follows:

uty −uxxxy −3(uxuy)x −3uxx +3uzz = 0. (3)

The solution u of Eq. (3) will be analytical when the solution
f of Eq. (2) is positive.
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This paper is arranged as follows: In Section 2, we
construct a general lump solution to the reduced (3+1)-
dimensional model equation. On the basis of the general lump
solution, a lumpoff solution is also derived with a stripe soliton
in Section 3. In Section 4, we find that the lump will become
a rough wave when a pair of solitons was determined by the
lump and can only visible at a specific point in time.

2. Lump solution to reduction with z = y

We first take a special reduction z = y to construct the
lump solutions to the (3+1)-dimensional model equation (3).
Then equation (2) turns out to be

f fty − ft fy + fxxx fy +3 fxxy fx −3 fxx fxy − f fxxxy

−3( f fxx − f 2
x )+3( f fyy − f 2

y ) = 0. (4)

It follows that equation (3) is converted to

uty −uxxxy −3(uxuy)x −3uxx +3uyy = 0. (5)

2.1. Lump solutions

To get the single lump solution of the equivalent equation
(4), we take a general quadratic function as follows:

f =
3

∑
i, j=0

ai jxix j + f0, (6)

where x1 = x, x2 = y, x3 = t, x0 = 1, and ai j, i ≤ j and f0 are
constants to be determined. In Eq. (6), f has an expansion
form as follows:

f = a11x2 +2a12xy+2a13xt +a22y2 +2a23yt +a33t2

+2a01x+2a02y+2a03t +a00 + f0, (7)

which contains eleven parameters to be determined. Substitut-
ing Eq. (7) into Eq. (4) and collecting the coefficients of x, y,
t, we obtain ten equations as follows:

6a2
11 +6a11a22 +2a11a23 −12a2

12 −4a12a13 = 0, (8)

−6a11a22 +12a2
12 −6a2

22 −2a22a23 = 0, (9)

−6a11a33 +12a2
13 +6a22a33 −12a2

23 −2a23a33 = 0, (10)

12a11a13 −24a12a23 −4a12a33 +12a13a22 = 0, (11)

12a11a12 −12a12a22 −4a13a22 = 0, (12)

12a01a11 +12a01a22 +4a01a23 −24a02a12

−4a02a13 −4a03a12 = 0, (13)

−12a11a23 +24a12a13 −12a22a23 −4a22a33 = 0, (14)

24a01a12 −12a02a11 −12a02a22 −4a03a22 = 0, (15)

24a01a13 −24a02a23 −4a02a33

−12a03a11 +12a03a22 = 0, (16)

−6a00a11 +6a00a22 +2a00a23 +12a2
01 −12a2

02 −4a02a03

−12a12a11 −6a11 f0 +6a22 f0 +2a23 f0 = 0, (17)

which can be used to determine the parameters of ai j and f0.
Solving Eqs. (8)–(17), one can get the following five con-
straints of ai3 (i = 0,1,2,3) and f0 as

a03 =−3(−2a01a12 +a02a11 +a02a22)

a22
, (18)

a13 =−3a12(a22 −a11)

a22
, (19)

a23 =−3(a11a22 −2a2
12 +a2

22)

a22
, (20)

a33 =
9(a2

11 +2a22a11 −4a2
12 +a2

22)

a22
, (21)

f0 =−a00+
a2

01a22−2a01a02a12+a2
02a11−a11a12a22

a11a22 −a2
12

, (22)

where a01, a02, a11, a12, a22 are arbitrary constants, and a00 is
canceled out by Eq. (22).

According to Eqs. (18)–(22), two nonzero conditions for
a22 ̸= 0 and a11a22 − a2

12 ̸= 0 should be satisfied to find the
solution to Eqs. (8)–(17).

Substituting the result Eqs. (18)–(22) into Eq. (7), one
finds

f1 = a11x2 +2a12xy− 6a12(a22 −a11)

a22
xt +a22y2

− 6(a11a22 −2a2
12 +a2

22)

a22
yt

+
9(a2

11 +2a22a11 −4a2
12 +a2

22)

a22
t2 +2a01x+2a02y

− 6(−2a01a12 +a02a11 +a02a22)

a22
t

+
a2

01a22 −2a01a02a12 +a2
02a11 −a11a12a22

a11a22 −a2
12

. (23)

Further, we get the lump solution u of Eq. (5) as follows:

u = 2
2a11x2 +2a12y− 6a12(a22−a11)

a22
t +2a01

f1
, (24)

where a01, a02, a11, a12, a22 are arbitrary constants.
Thus, the solution to Eqs. (23) and (24) containing ten pa-

rameters with five constraints and two nonzero conditions rep-
resents the general lump solutions to Eq. (3) with z = y. Next
we will explore whether fewer constraints can get the similar
lump solutions.

2.2. Lump solutions with more freedom

To contain more free parameters in the lump solution, we
take the general quadratic function

f = 𝑥T𝐴𝑥+ f0, (25)

where

𝑥T = (1,x,y, t), 𝐴=


a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

 ,
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with 𝑥 being a column vector matrix, 𝐴 ∈ R4×4 a symmetric
matrix, and f0 a positive real parameter to be determined. Here
f can be rewritten as

f =
3

∑
i, j=0

ai jxix j + f0

= a11x2 +2a12xy+2a13xt +a22y2 +2a23yt +a33t2

+2a01x+2a02y+2a03t +a00 + f0. (26)

Different from Eq. (6), ai j is redefined as

ai j = ⟨Mi|M j⟩=
n

∑
k=1

MikM jk, (27)

where

|M1⟩=
−→
M1 = (m11,m21,m31, . . . ,mn1),

|M2⟩=
−→
M2 = (m12,m22,m32, . . . ,mn2),

|M3⟩=
−→
M3 = (m13,m23,m33, . . . ,mn3),

|M4⟩=
−→
M4 = (m14,m24,m34, . . . ,mn4) (28)

are n-dimensional vectors, and mλ ,k (λ = 1,2, . . . ,n and k =

1,2,3,4) are real scalar parameters to realize.
Substituting Eqs. (26)–(28) into Eq. (4) and eliminating

the coefficients of x, y, t yield two constraints as follows:

mn4 =
3(−mn3a22 −mn3a11 +2mn2a12)

a22
, (29)

f0 =−a00 +
a2

01a22 −2a01a02a12 +a2
02a11 −a11a12a22

a11a22 −a2
12

. (30)

According to the above results, it is not hard to find that
Eqs. (26)–(28) include infinitely many parameters. Based on
the results of Refs. [3,4], n = 3 is a more right choice for gen-
eral lump solutions to Eq. (3). Therefore, one can rewrite con-
straint conditions by taking n = 3 as

m14 =
3[−m13(−m2

12 +m2
13 +m2

22 +m2
23 +m2

32 +m2
33)+2m12(m22m23 +m32m33)]

m2
13 +m2

23 +m2
33

, (31)

m24 =
3[−m13(−m2

22 +m2
13 +m2

12 +m2
23 +m2

32 +m2
33)+2m22(m12m13 +m32m33)]

m2
13 +m2

23 +m2
33

, (32)

m34 =
3[−m33(−m2

32 +m2
13 +m2

12 +m2
23 +m2

22 +m2
33)+2m32(m12m13 +m22m23)]

m2
13 +m2

23 +m2
33

, (33)

f0 = − [(m22m33 −m23m32)m11 +(m13m32 −m12m33)m21 +(m12m23 −m13m22)m31]
2

(m23m13 −m12m33)2 +(m12m32 −m13m22)2 +(m22m33 −m23m32)2

−
(m2

12 +m2
22 +m2

32)(m
2
13 +m2

23 +m2
33)(m12m13 +m22m23 +m32m33)

(m23m13 −m12m33)2 +(m12m32 −m13m22)2 +(m22m33 −m23m32)2 , (34)

where mλ ,1, mλ ,2 and mλ ,3, λ = 1,2,3 are real constants.
Thus, we obtain the general lump solution u of Eq. (5) as fol-
lows:

ulump=
2

flump

(
2a11x+2a12y− 6a12(a22−a11)

a22
t+2a01

)
, (35)

with

flump = a11x2 +2a12xy+2a13xt +a22y2 +2a23yt

+a33t2 +2a01x+2a02y+2a03t

+
a2

01a22 −2a01a02a12 +a2
02a11 −a11a12a22

a11a22 −a2
12

. (36)

To precisely explore the moving path of lump waves ex-
pressed by Eq. (26), we give the critical point of the lump
waves. Taking fx = fy = 0, the positions of the general sin-
gle lump solution is

x = −6a12

a22
t − a01a22 −a02a12

a11a22 −a2
12

,

y =
3(a11 +a22)

a22
t +

a01a12 −a02a11

a11a22 −a2
12

. (37)

This means the lump waves move along the straight line

y = −a11 +a22

2a12
x

+
2a01a2

12−a01a2
22−a02a11a12−a01a11a22+a02a12a22

2a12(a11a22−a2
12)

.

(38)

To further explore the propagation characteristics of lump
wave (35) in detail, we present Fig. 1 shown with the arbitrary
parameters chosen as

m11 = m21 = m31 = m22 = m23 =
1
2
,

m12 = m32 =−1
2
, m13 = m33 = 1. (39)

Figure 1(a) describes the spatial structure of lump solu-
tion (35) with Eq. (39). Figure 1(b) presents the density plot of
lump solution at t = 0. Figure 1(c) shows the relevant contour
map of the lump solution when t = 0, t = 15 and t = 30, and
the blue line expresses the propagation path (38), i.e. y = 2x.
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Fig. 1. Plots of the lump solution (35) for Eq. (5) with the parameters (39): (a) three-dimensional plot at time t = 0, (b) density plot, (b) the
contour plot about the moving path described by the straight line (38).

3. Lumpoff solutions
The interaction between lump waves and stripe soliton

waves formed the lumpoff solution which is also called a cut-
off lump. It means that the lump solitons can be cut by stripe
solitons before or after a specific time. Therefore, we consider
the lumpoff solution to the reduced (3+1)-dimensional model
(3) in this section. The lumpoff solution of the reduced (3+1)-
dimensional model (3) has the form as follows:

flumpoff = flump + k exp(m01 +m02x+m03y+m04t), (40)

where flump is given by Eq. (36), and the k, m01, m02, m03 and
m04 are undetermined parameters.

Sulution (40) exhibits that the cutoff solutions composed
of the lump solution and the exponential solutions. When
m01+m02x+m03y+m04t > 0, the exponentiation part will be-
come the dominant position. For this reason, the lump solution
will only appear at m01 +m02x+m03y+m04t < 0.

Inserting Eq. (40) into Eq. (4), we have

m2
02 =

2a12 +2
√

a12a22

a22
, m03 =−

m02
√

a12a22

a11
,

m04 =−
(m02m03 +3)m2

02
m03

, (41)

where a11, a12 and a22 are defined in Eq. (27), with k and m01

being arbitrary constants.
The above results show that the parameters of the soliton

parts m02, m03 and m04 are related to the parameters of the
bulk solution (36), i.e., a11, a12 and a22. This means that the
existence of the solitons is determined by the existence of a
lump. Thus, the appearance of stripe soliton coincides with
lump soliton. Once the soliton is induced, the lump will be
invisible until the exponential part dominates. It implies that
the lump is cut off by the solitons induced by itself. We further
obtain the following lumpoff solution u of Eq. (3) with z = y
by the transformation u = 2(ln f )x,

ulumpoff =
2

flumpoff

(
2a11x+2a12y− 6a12(a22 −a11)

a22
t +2a01 +m02k exp(m01 +m02x+m03y+m04t)

)
. (42)

Then, a set of parameters are provided to better see the
corresponding motion characteristics to lumpoff solutions to
the dispersive relations in Eq. (41),

m11 = m21 = m31 = m22 = m23 =
1
2
,

m12 = m32 =−1
2
, m01 = m13 = m33 = 1, k =

1
2
, (43)

and the parameters of stripe soliton part can be given by

m02 =∓1
3

√
−6+6

√
3, m03 =±

√
3

3

√
−6+6

√
3,

m04 =± (−24+2
√

3)
√
−2+2

√
3

9
. (44)

According to Eq. (40), we can find that the lump part is
unchanged, thus the moving path of lump waves for Eq. (42)
is invariable to expression in Eq. (38), one has y = 2x.

From Fig. 2, one can find the process of propagation

in the space for lumpoff waves at t = −2, t = 0, t = 5,

t = 20 with the selection of Eq. (44) {m02 =− 1
3

√
−6+6

√
3,

m03 =
√

3
3

√
−6+6

√
3, m04 = (−24+2

√
3)
√

−2+2
√

3
9 }. Addi-

tionally, Fig. 2 illustrates that the lumpoff wave is cut by

the produced soliton. The lump wave appears when m01 +

m02x + m03y + m04t < 0, soon afterwards the lump is cut-

off by the induced soliton and eventually disappears. Fig-

ures 3(a)–3(c) display the contour plots at t =−2, t = 0, t = 5

and t = 20. Figures 3(d) and 3(e) show the relevant density

plots. Moreover, the similar phenomena can be analyzed when

we choose {m02 = 1
3

√
−6+6

√
3, m03 = −

√
3

3

√
−6+6

√
3,

m04 =− (−24+2
√

3)
√

−2+2
√

3
9 }.
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Fig. 2. Profiles of the lumpoff waves (42) for Eq. (3) with the parameters (43) and the selection of Eq. (44) {m02 = − 1
3

√
−6+6

√
3, m03 =

√
3

3

√
−6+6

√
3, m04 =

(−24+2
√

3)
√

−2+2
√

3
9 } at different times: (a) t =−2, (b) t = 0, (c) t = 5, (d) t = 20.
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Fig. 3. Relevant contour plots of the lumpoff waves (42) for Eq. (3) with the parameters (43) at different times: (a) t =−2, (b) t = 0, (c) t = 5,
(d) t = 20; and density plots of lumpoff waves (42) for Eq. (3) with the parameters (43) at times: (e) t =−2, (f) t = 0, (g) t = 5, (h) t = 20.

4. Instanton/rogue wave solution
An instanton/rogue wave is a localized wave decayed in

all space and time directions. The motivation of studying pre-
dictable rogue wave is that the emerging time and place of
this special rogue wave can be predicted. Thus, we focus on
the instanton wave solutions to the reduced (3+1)-dimensional
model (3) in this section. The instanton wave solutions of the
reduced (3+1)-dimensional model (3) has the form as follows:

frogue = flump +
h
2

exp(m01 +m02x+m03y+m04t)

+
h
2

exp(−m01 −m02x−m03y−m04t)+ l

= flump +hcosh(m01 +m02x+m03y+m04t)+ l, (45)

where flump is given by Eq. (36), the parameters m02, m03 and
m04 are provided by Eq. (41), h and m01 are arbitrary constants,

and l is another restricted condition that will be identified by
later. Based on the previous analysis, one can find that the
lumpoff soliton only appears at m01+m02x+m03y+m04t < 0,
and becomes invisible for m01 + m02x + m03y + m04t > 0.
However, the lump waves are both invisible for m01 +m02x+
m03y+m04t < 0 and m01 +m02x+m03y+m04t > 0 due to the
existence of a pair of exponential solutions. The particular
rogue waves will appear only when the lump waves move to
the line m01 +m02x+m03y+m04t ∼ 0. Substituting Eq. (45)
into Eq. (4), collecting the coefficients and considering the re-
stricted conditions (41), one has

l =
h2[(

√
a11a22 +2a12)a11a22 +a2

12
√

a11a22]

a11a22(a11a22 −a2
12)

. (46)

It follows that we obtain the particular rogue solution u of
Eq. (3) with z = y as

urogue = 2
2a11x+2a12y+2a13t +2a01 +m02hsinh(m01 +m02x+m03y+m04t)

frough
. (47)

Our results show that a pair of solitons are caused by block waves. The lump wave always disappears because the cosh part
being predominant, which results in the lump visible only when it moves to the line m01 +m02x+m03y+m04t ∼ 0. Then, the
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lump continue to move until achieve the peak at the center line m01+m02x+m03y+m04t = 0 of a pair of resonance stripe soliton,
the lump soliton becomes rogue soliton. We therefore find that the time roughly appears to read

T =−
a22[

√
a11a22(a01a22m02 −a02a12m02 −a11a22m01 +a2

12m01)+a01a12a22m02 −a02a11a22m02]

m02[
√

a11a22(a11a2
22m2

02 −a22a2
12m2

02 +6a11a12a22 −6a3
12)+3a11a3

22 −3a2
12a3

22]
, (48)

and the position

x =−6a12

a22
T − a01a22 −a02a12

a11a22 −a2
12

, y =
3(a11 +a22)

a22
T +

a01a12 −a02a11

a11a22 −a2
12

. (49)
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Fig. 4. Profiles of the special instanton (47) for Eq. (3) with the parameters (50) at times: (a) t =−5, (b) t =−3, (c) t = 0, (d) t = 2, (e) t = 10;
(f) the relevant wave height of predictable rogue waves in y = 0 plane at t =−3 (blue), t = 0 (red) and t = 2 (black).
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A set of parameters is selected to explain the phenomenon
of predictable rogue wave (47) as

m11 = m21 = m31 = m22 = m23 =
1
2
, m12 = m32 =−1

2
,

m01 = m13 = m33 = 1, h =
1

1024
. (50)

Substituting it into Eq. (44) yields the moving path

x =
(

27
16

)2(9
2

t − 3
4

)
, y =

(
27
16

)2(
9t − 3

2

)
, (51)

and the travelling direction

y = 2x. (52)

Thus, the time of the rogue waves arise at approximately
t = −0.17 in (x = −4.31, y = −8.62) with arriving its peak
based on Eqs. (48) and (49).

Figures 4(a)–4(e) indicate the process of propagation in
the special rogue wave at different times t =−5, t =−3, t = 0,
t = 2, t = 10, respectively, and panel (f) is the wave propaga-
tion along the y-axis at t = −5, t = −3, t = 0, t = 2, t = 10.
Figure 5 shows the corresponding density maps of the pre-
dictable rogue wave at t =−5, t =−3, t = 0, t = 2, t = 10.

5. Conclusion
In summary, we have studied the (3+1)-dimensional

model (3) with z = y, and constructed the lump solution (6)
by solving the bilinear equation (4) with z = y. It follows
that the more general form of lump solution is also found to
contain seven arbitrary independent parameters and four con-
straint conditions. On the basis of the general lump solution,
we find the lumpoff and instanton/rogue wave solutions. The
soliton is induced by the lump as a result of lump determines
a soliton, which leads to the fact that the lump will be cut and
then become lumpoff. Additionally, the lump becomes a rough
wave when a pair of solitons are determined by the lump, and
can only be visible at a specific point of time. It is possible
for us to predict the exitance of the rogue wave thanks to the
existence of the visible soliton.
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