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Kerr nonlinearity is an important resource for creating squeezing and entanglement in quantum technology. Here we
propose a scheme for generating Kerr nonlinearity originated from an engineered non-Markovian environment, which is
different from the previous efforts using nonlinear media or quantum systems with special energy structures. In the present
work, the generation of Kerr nonlinearity depends on the system–environment interaction time, the energy spectrum of the
environment, and the system–environment coupling strength, regardless of the environmental initial state. The scheme can
be realized in systems originally containing no Kerr interaction, such as superconducting circuit systems, optomechanical
systems, and cavity arrays connected by transmission lines.
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1. Introduction
As one of the typical nonlinear effects, Kerr effect[1] is

related to several important physical concepts, such as optical
solitons,[2,3] self-focusing,[4] and also to some implementa-
tions, e.g., all-optical switching[5] and frequency combs.[6,7]

Recently, the Kerr effect has also been employed in quan-
tum information processing for performing continuous vari-
ables operations,[8] building controlled-NOT gates,[9–11] gen-
erating non-classical states,[12–15] and realizing quantum non-
demolition measurements.[16,17]

Conventional approaches for obtaining Kerr nonlinearity
use the nonlinear media,[18] or combine with strong coher-
ent states.[19,20] In Refs. [21,22], the authors have proposed
schemes for generating Kerr nonlinearity and the Schrödinger-
cat-like state using the well-known optomechanical interac-
tion. Other methods include employing the technology of
electromagnetically induced transparency,[23,24] or using the
unique N-type level-structure of quantum systems, e.g., the su-
perconducting qubit system,[25,26] and the diamond nitrogen-
vacancy-center spin ensembles.[27]

In this paper, we aim to generate Kerr nonlinearity
in a new way, i.e., with the assistance of an engineered
non-Markovian environment. Although a quantum system
coupled to its environment usually leads to the decoher-
ence effect,[28,29] a non-Markovian environment could in-
duce recoherence due to the information flowing back to the
system.[28–31] Such an available feature can be exploited to

generate entanglement,[32–36] build quantum memory,[36] ac-
complish quantum simulation,[37] and preserve quantum co-
herence for open systems.[38,39] Inspired by these progresses,
in the present work, we aim at generating Kerr nonlinear-
ity by coupling the system of interest to an engineered non-
Markovian environment.

The system under our consideration is a bosonic mode
coupled to an engineered environment composed of several
noninteracting bosonic modes. The Hamiltonian of the total
system is written, in units of h̄ = 1, as follows:[40]

Htot = ωa†a+∑
k

ωka†
kak +∑

k
λka†a(ak +a†

k), (1)

where HS = ωa†a is the system Hamiltonian; HE = ∑k ωka†
kak

and HI = ∑k λka†a(ak +a†
k) represent the environment and the

system–environment interaction, respectively. Parameters ω

and ωk are single-particle energies of the system and the k-th
environmental mode, respectively, a (a†) is the annihilation
(creation) operator of the system, and ak (a†

k) stands for the
annihilation (creation) operator of the k-th mode in the en-
vironment. The real parameter λk is the coupling strength
between the system and the k-th environmental mode. The
model is a multimode extension of the well-known optome-
chanical interaction in Refs. [21,22] and we will show later
that the dynamics of the system reveals strong non-Markovian
nature when every ωk is a multiple of the frequency ω0. In
this case, the map of the system’s state from t = 0 to 2 jπ/ω0
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( j is a positive integer) is unitary, indicating that the struc-
tured environment and the selected evolution time could re-
alize complete information backflow[40] and preserve coher-
ence of the system. In the interaction picture, the unitary
map equals exp{−iHKerr(2 jπ/ω0)}, where HKerr = χ(a†a)2

denotes the Kerr Hamiltonian with χ characterizing the non-
linearity strength.[13] Therefore, by taking advantage of the
non-Markovian effects, our scheme can generate Kerr nonlin-
earity stroboscopically.

This paper is organized as follows. We solve the model
exactly in Section 2, and then we demonstrate in Section 3
how to reach Kerr nonlinearity utilizing the engineered envi-
ronment. In Section 4, we explore the experimental conditions
that should be satisfied in fulfilling our task. A brief conclu-
sion is given in Section 5. Some deduction details can be found
in the Appendix A.

2. Exact dynamics of the system
Our purpose is to find a specific transformation imposed

on the system due to coupling to the environment. To this end,
we should first solve the dynamics of the system.

Without loss of generality, we assume that the total sys-
tem is initially prepared in ρtot(0) = ρ(0)⊗ ρE with ρ(0) =
∑

∞
m,n=0 cmn |m⟩⟨n| and ρE denoting the initial state of the envi-

ronment (without specific mention, we suppose ρtot(0) falls
into this category in the following text). In the interaction
picture, the density operator of the total system evolves as
ρ̂tot(t) = Ûtot(t,0)ρtot(0)Û

†
tot(t,0), where Ûtot(t,0) is the time-

evolution operator in the interaction picture (see Appendix A
for more details). By tracing over the environmental state
in ρ̂tot(t), we obtain the system’s density operator as ρ̂(t) =
Tre [ ρ̂tot(t)] with the form

ρ̂(t) =
∞

∑
m,n=0

cmn e−i(m2−n2)φ(t)⟨D̂E[(m−n)α(t)]⟩|m⟩⟨n|, (2)

where

φ(t) =−∑
k

λ 2
k

ω2
k
[ωkt − sin(ωkt)] , (3)

⟨D̂E[(m−n)α(t)]⟩= Tr
{

ρE
⊗

k

e(m−n)[αk(t)a
†
k−α*

k (t)ak]

}
(4)

with

αk(t) =
λk

ωk
(1− e iωkt).

Note that for m = n, D̂E[(m− n)α(t)] = IE is the identity op-
erator of the environmental Hilbert space, and thereby the fac-
tor e−i(m2−n2)φ(t)⟨D̂E[(m−n)α(t)]⟩ reduces to 1 when m = n.
That is to say, the diagonal elements of ρ̂(t) do not evolve
with time, which implies that the system simply undergoes a
pure-dephasing process.

To give an explicit example of the solution, we assume
that the environment is initially in thermal state with tempera-
ture T . In this case,

⟨D̂E[(m−n)α(t)]⟩= e−(m−n)2γ(t) (5)

with

γ(t) = ∑
k

λ 2
k

ω2
k

coth
(

ωk

2T

)
[1− cos(ωkt)] (6)

characterizing the phase damping dynamics. Hereafter, we set
the Boltzmann constant kB ≡ 1 for simplicity. Note that the
phase damping exponent γ(t) considered here is quite similar
to that in the spin-boson pure-dephasing model.[28] Therefore,
when the environment spectrum is continuous, the decoher-
ence dynamics considered here is similar to that discussed in
Ref. [28]. When the spectrum of the environment is discrete,
γ(t) could be highly oscillatory. As a result, the off-diagonal
elements of ρ̂(t) evolve non-monotonically, which is a signa-
ture of quantum non-Markovianity.[41] As shown in the next
section, for structured environment, γ(t) may even reach back
to γ(0) = 0. In this case, the phase damping vanishes at some
time points, and the system state keeps its purity.

3. Generation of Kerr nonlinearity
In this section, we present our scheme of generating Kerr

nonlinearity based on the system-environment interaction de-
scribed by Eq. (1). Our scheme is independent of the initial
state of the environment, but only requires precise control of
the system-environment interaction time, the desired architec-
ture of the environmental Hamiltonian, and the fine architec-
ture of the system-environment interaction.

To show how to generate Kerr nonlinearity by taking ad-
vantage of quantum non-Markovianity, we employ the dy-
namical map ℰ(t,0), which is defined by the relation ρ̂(t) ≡
ℰ(t,0)ρ̂(0), to analyze the system dynamics. Following
Eq. (2), ℰ(t,0) can be decomposed into the product of two
maps, i.e.,

ℰ(t,0) =𝒟(t,0)∘𝒰(t,0) = 𝒰(t,0)∘𝒟(t,0), (7)

where

𝒰(t,0)X : =
∞

∑
m,n=0

Xmn e−i(m2−n2)φ(t) |m⟩⟨n| , (8)

𝒟(t,0)X : =
∞

∑
m,n=0

Xmn⟨D̂E[(m−n)α(t)]⟩ |m⟩⟨n| , (9)

characterize the additional phase evolution and the phase
damping effect, respectively. Here, X = ∑

∞
m,n=0 Xmn |m⟩⟨n| de-

notes an arbitrary system operator with |n⟩ standing for the
Fock state.

We find that 𝒰(t,0) is actually a unitary transformation,
whose action on an operator X has the form

𝒰(t,0)X = Û(t,0)XÛ†(t,0), (10)
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with Û(t,0) = e−i n̂2φ(t). Note that

Û(t,0) = 𝒯 exp
[
−i
∫ t

0
dτ Ĥeff(τ)

]
,

where Ĥeff(t) = φ̇(t)n̂2 is the Kerr Hamiltonian and 𝒯 is the
time-ordering operator. That is, the unitary part of the system
dynamics can be seen as being generated by the Kerr Hamil-
tonian Ĥeff(t) = φ̇(t)n̂2.

Following Eq. (7), one can see that generally the system–
environment interaction induces both the unitary transforma-
tion and the decoherence to the system state. In order to gener-
ate the Kerr nonlinearity, one should find a scheme that elimi-
nates the decoherence but keeps the unitary transformation at
the same time.

The above task can be fulfilled by taking advantage of
the facts that φ(t) is a monotonic function of t and ⟨D̂E[(m−
n)α(t)]⟩ is a product of periodic functions. With engineered
environment and precise control of the interaction time, one
can keep φ(t) increasing while ⟨D̂E[(m−n)α(t)]⟩ vanishing at
particular instances. To clarify this point, we consider the case
that the environment is initially prepared in a thermal state.
Under the condition ωk = Mkω0 with Mk being a positive inte-
ger, following Eq. (6), one can find that for arbitrary integer j,

γ(2 jπ/ω0) = γ(0) = 0, thus〈
D̂E

[
(m−n)α

(2 jπ
ω0

)]〉
= exp

[
−(m−n)2

γ

(
2 jπ
ω0

)]
= 1. (11)

With the definition in Eq. (9), we obtain 𝒟(2 jπ/ω0,0) = ℐ,
which implies that the decoherence effect vanishes. In this
case, ℰ(2 jπ/ω0,0) reduces to the unitary transformation de-
scribed by

Û
(

2 jπ
ω0

,0
)
= exp

{
i
2 jπ
ω0

∑
k

λ 2
k

ωk
n̂2

}
, (12)

which is only relevant to the structure of the environment and
the evolution time.

In the above example, the facts that 𝒟(2 jπ/ω0,0) = ℐ
and ℰ(2 jπ/ω0,0) = 𝒰(2 jπ/ω0,0) do not depend on the sys-
tem’s initial state, or in another word, they are robust to the
change of the environmental initial state. That is to say, what-
ever the system’s initial state is, thermal state or non-thermal
state, if ωk = Mkω0, from t = 0 to t = 2 jπ/ω0, the dynamical
map is always unitary. The property can be understood with
the time-evolution operator of the total system, which reads
(see the detailed derivation in Appendix A)

Ûtot(t,0) = exp

{
in̂2

∑
k

λ 2
k

ω2
k
[ωkt − sin(ωkt)]

}
exp

{
n̂∑

k

λk

ωk

[
(1− e iωkt)a†

k − (1− e−iωkt)ak

]}
. (13)

For ωk = Mkω0, we obtain

Ûtot

(
2 jπ
ω0

,0
)
= Û

(
2 jπ
ω0

,0
)
⊗ IE, (14)

which indicates clearly that

ρtot(2 jπ/ω0) = Û
(

2 jπ
ω0

,0
)

ρ(0)Û†
(

2 jπ
ω0

,0
)
⊗ρE. (15)

As such, from t = 0 to 2 jπ/ω0, the system state is transformed
by the unitary operation Û (2 jπ/ω0,0), and the environment
state is transformed by an identity operation.

Note that Û(2 jπ/ω0,0) = exp{−iHKerr(2 jπ/ω0)},
where HKerr = χ n̂2 with χ = −∑k λ 2

k /Mkω0. This implies
that, from t = 0 to 2 jπ/ω0, the environment in our model in-
troduces an operation equivalent to that induced by a medium
with Kerr nonlinearity

χ =−∑
k

λ 2
k

ωk
. (16)

Therefore, with the structured environment interacting with
the system mode through HI = ∑k λka†a(ak + a†

k), we could
generate Kerr nonlinearity at the moments t = 2 jπ/ω0. From
Eq. (14), we see that this generation of Kerr nonlinearity is

independent of the environmental initial state, which greatly
reduces the experimental challenge under the current technol-
ogy. How well our scheme works relies on the precision of the
fabrication of the environment (satisfying ωk = Mkω0 and the
λk’s being the desired values) and the control of the interaction
time. In Section 4, we analyze the factors of imperfection, and
estimate the experimental conditions required for the case that
the environment is initially in a thermal state.

The dynamics considered in this paper falls into the cate-
gory of boson-boson pure-dephasing dynamics, whose mem-
ory effect is studied in Refs. [40,41]. For perfect experi-
mental conditions, the transformation of the system’s state
from t = 0 to t = 2 jπ/ω0 is unitary. Consequently, for two
different initial states, their distinguishability at t = 0 and
t = 2 jπ/ω0 are the same. In the dynamics of open systems,
there must be some periods during which the distinguisha-
bility between quantum states decreases, so in the case that
the experimental setup is perfect, the distinguishability must
evolve nonmonotonically, which is a signature of quantum
non-Markovianity.[42] For imperfect experimental setup, in or-
der to make the scheme still work well, it is required that
𝒟(t,0) in Eq. (9) evolves back to near identity at specific
moments. To guarantee this condition, the off-diagonal den-
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sity matrix elements must evolve non-monotonically. Refer-
ence [41] has shown that this non-monotonicity is a signature
of quantum non-Markovianity,[29,31] in terms of divisibility[42]

and quantumness.[43]

To summarize, we take advantage of φ(t) in 𝒰(t,0) to
generate the Kerr nonlinearity and the periodicity of 𝒟(t,0)
to cancel out the phase damping effects. The lose/revival of
the phase information due to the property of 𝒟(t,0) is a sig-
nature of quantum non-Markovianity.[40,41] In other words, we
take advantage of quantum non-Markovianity to generate Kerr
nonlinearity stroboscopically without the decoherence effect.

4. Experimental conditions
The high-quality generation of Kerr nonlinearity relies

on the suppression of imperfection. Here we assess the op-
erational precision by the fidelity[44] and discuss its depen-
dence on the imperfection of the interaction time, the envi-
ronmental energy spectrum, and the system-environment cou-
pling strength. Finally, we discuss the experimental conditions
that should be satisfied in order to guarantee our scheme works
well.

Generating Kerr nonlinearity means introducing the tar-
get map ℰtar,

ℰtarX : = e−iφtarn̂2
X e iφtarn̂2

, (17)

where X is an arbitrary operator in the system Hilbert space,
and φtar is a real parameter, to the system of interest. For the
system considered in our paper, the dynamical map in the in-
teraction picture is ℰ(t,0). By manufacturing the experimental
system with appropriate values of ωk and λk, and controlling
the interaction time between the system of interest and its en-
vironment, the experimentalists may construct the map ℰ(tf,0)
that satisfies ℰ(tf,0)≈ ℰtar.

For an initial state ρ̂(0), how well the scheme works
depends on the similarity between the final state obtained
with our scheme, i.e., ρ̂(tf) = ℰ(tf,0)ρ̂(0), and the target
state ρ̂tar = ℰtarρ̂(0). Such similarity is usually quantified
with the fidelity,[44] which we denote as F(ρ̂(tf), ρ̂tar). To
find out the necessary experimental conditions, from Subsec-
tion 4.1 to Subsection 4.3, we consider the explicit case that
initially the system is in a coherent state ρ̂(0) = |α⟩⟨α| and
the environment is prepared to be in a thermal state ρE =

e−HE/T/Tr[e−HE/T ]. More general cases, i.e., ρ̂(0) is an arbi-
trary physical state instead of a coherent state, are discussed in
Subsection 4.4.

When ρ̂(0) = |α⟩⟨α|, the fidelity between the obtained

state and the target state can be reduced to

F(ρ̂(tf), ρ̂tar) = ⟨α|ℰ−1
tar ∘ℰ(tf,0)[|α⟩⟨α|] |α⟩ , (18)

where ℰ−1
tar X : = e iφtarn̂2

X e−iφtarn̂2
is the inverse of ℰtar. In or-

der to analyze the experimental conditions, in the following,
we assume

φtar =−t̄f ∑
k

λ̄ 2
k

ω̄k
, (19)

where t̄f = 2 jπ/ω0, ω̄k = Mkω0, and λ̄k are the desired inter-
action time, environmental energy spectrum, and interaction
strength, respectively. That is, if one can control the interac-
tion time tf exactly equaling t̄f, manufacture the environment
satisfying exactly ωk = ω̄k and its coupling with the system λk

is exactly λ̄k, then F(ρ̂(tf), ρ̂tar) = 1, i.e., the task is perfectly
fulfilled.

However, experimental conditions cannot be perfect.
Namely, the equations tf = t̄f, ωk = ω̄k and λk = λ̄k cannot
be exactly satisfied. In order to make our scheme work well,
i.e., F(ρ̂(tf), ρ̂tar) ≈ 1, the errors of tf, ωk and λk should not
be large. Assume that the precision of time control, the pre-
cision of engineering on the environment energy level and the
precision of tuning the interaction strength are σt , σω , and σλ ,
respectively. In the following three subsections, we will esti-
mate the requirements on σt , σω , and σλ in fulfilling the task
of generating ℰtar.

4.1. Precision of time control

In this subsection, we investigate the precision of time
control required in making our scheme work well.

Assume that the conditions ωk = ω̄k and λk = λ̄k have
been perfectly satisfied, then the imperfection can only orig-
inate from the imprecision of time control. To estimate
the precision required, we assume tf = t̄f + δ t, where δ t
is a stochastic variable satisfying the Gaussian distribution
ft(δ t) = e−δ t2

/(2
√

2πσt), with σt characterizing the error
of the interaction time and satisfying ω0σt ≪ 1. Following
Eqs. (3), (6), and (9), γ(tf) and φ(tf) can be transformed to

γ(tf) = γ(δ t), (20)

φ(tf) = φtar +φ(δ t). (21)

Together with Eqs. (7) and (8), we obtain

ℰ(tf,0) = 𝒰(t̄f,0)∘ℰ(δ t,0) = ℰtar ∘ℰ(δ t,0), (22)

for which F(ρ̂(tf), ρ̂tar) is reduced to

F(ρ̂(tf), ρ̂tar) = ⟨α|ℰ(δ t,0) [|α⟩⟨α|] |α⟩= e−2|α|2
∞

∑
m,n=0

|α|2m+2n

m!n!
e−(m−n)2γ(δ t)−i(m2−n2)φ(δ t). (23)
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Note that δ t is a stochastic variable, the fidelity should take the average, reading

⟨F(ρ̂(tf), ρ̂tar)⟩=
∫

∞

−∞

dδ t ft(δ t)F(ρ̂(tf), ρ̂tar)≈ 1−σ
2
t |α|2 ∑

k
λ̄

2
k coth

(
ω̄k

2T

)
(24)

for small σt . In order to make the scheme work well, i.e.,
F(ρ̂(tf), ρ̂tar)≈ 1, the precision of time control should satisfy

σ
2
t ≪ 1

|α|2
1

∑k λ̄ 2
k coth(ω̄k/2T )

. (25)

4.2. Precision of the environment energy spectrum

Another kind of error originates from the imperfect archi-
tecture of the environment, that is, not all the single-particle

energies are exactly multiples of ω0. Suppose that the con-
trol of interaction time and the architecture of the coupling
strengths are perfect, i.e., tf = t̄f and λk = λ̄k; while ωk satis-
fies ωk = ω̄k+δωk, where δωk are stochastic variables satisfy-
ing the Guassian distribution fω(δω) = e−(δω)2/2/(

√
2πσω),

with σω characterizing the experimentalists’ ability of archi-
tecturing the environment energy level. Under the condition
σω tf ≪ 1,

γ(tf) = ∑
k

λ̄ 2
k

ω̄2
k

coth
(

ω̄k +δωk

2T

)
1− cos(δωkt̄f)
(1+δωk/ω̄k)2 ≈

t̄2
f
2 ∑

k

λ̄ 2
k

ω̄2
k

coth
(

ω̄k

2T

)
(δωk)

2, (26)

φ(tf) = φtar − t̄f ∑
k

λ̄ 2
k

ω̄k

[
1

(1+δωk/ω̄k)2 −1
]
+∑

k

λ̄ 2
k

ω̄2
k

δωkt̄f − sin(δωkt̄f)
(1+δωk/ω̄k)2 ≈ φtar +2t̄f ∑

k

λ̄ 2
k

ω̄2
k

δωk. (27)

Similar to the procedure in the previous subsection, by substituting γ(δ t) and φ(δ t) in Eq. (23) with γ(tf) and φ(tf)− φtar,
respectively, and taking the ensemble average, one obtains the average fidelity in this case, reading

⟨F(ρ̂(tf), ρ̂tar)⟩=
[
∏

k

∫
∞

−∞

(.δωk) fω(δωk)

]
F(ρ̂(tf), ρ̂tar)

≈ 1−2|α|2⟨γ(t̄f)⟩− |α|2(1+6|α|2 +4|α|4)⟨[φ(t̄f)−φtar]
2⟩

≈ 1−σ
2
ω t̄2

f |α|2 ∑
k

λ̄ 2
k

ω̄2
k

coth
(

ω̄k

2T

)
−4σ

2
ω t̄2

f |α|2
(
1+6|α|2 +4|α|4

)
∑
k

(
λ̄ 2

k

ω̄2
k

)2

≈ 1−σ
2
ω t̄2

f |α|2 ∑
k

λ̄ 2
k

ω̄2
k

coth
(

ω̄k

2T

)
, (28)

where we leave the terms whose orders are not higher than
σ2

ω , and the third approximation is made because the coupling
between the system and environment is usually weak, namely,
λ̄ 2

k /ω̄2
k ≪ 1. According to Eq. (28), in order to reach a high

fidelity, it is required that

σ
2
ω ≪ 1

|α|2t̄2
f

1

∑k
(
λ̄ 2

k /ω̄2
k

)
coth(ω̄k/2T )

. (29)

4.3. Precision of the interaction strength

Suppose tf = t̄f, ωk = ω̄k, but the coupling strengths λk

are not the desired values. We assume that for every λk,
λk = λ̄k+δλk, where δλk is a stochastic variable satisfying the
Gaussian distribution fλ (δλ ) = e−(δλ )2/2/(

√
2πσλ ), with σλ

characterizing the error of the coupling strengths and σλ ≪ λk.
In this case, following Eqs. (3), (6), and (19),

γ(tf) = ∑
k

λ 2
k

ω̄2
k

coth
(

ω̄k

2T

)
[1− cos(ω̄kt̄f)] = 0, (30)

φ(tf) = −∑
k

(λ̄k +δλk)
2

ω̄2
k

[ω̄kt̄f − sin(ω̄kt̄f)]

= φtar −2t̄f ∑
k

λ̄k

ω̄k
δλk − t̄f ∑

k

1
ω̄k

(δλk)
2. (31)

Similar to the procedure in Subsection 4.1, by substituting
γ(δ t) and φ(δ t) in Eq. (23) with 0 and φ(tf)− φtar, respec-
tively, and taking the ensemble average, one obtains the aver-
age fidelity in this case, reading

⟨F(ρ̂(tf), ρ̂tar)⟩=
[
∏

k

∫
∞

−∞

d(δλk) fλ (δλk)

]
F(ρ̂(tf), ρ̂tar)

≈ 1−|α|2(1+6|α|2 +4|α|4)⟨[φ(t̄f)−φtar]
2⟩ ≈ 1−4σ

2
λ

t̄2
f |α|2

(
1+6|α|2 +4|α|4

)
∑
k

λ̄ 2
k

ω̄2
k
, (32)
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where we leave only the terms whose orders are not higher
than σ2

λ
. In order to reach a high fidelity, the error of the inter-

action strength should satisfy

σ
2
λ
≪ 1

4|α|2 (1+6|α|2 +4|α|4)
1

∑k
(
λ̄ 2

k /ω̄2
k

) . (33)

In the expression, for small |α|, 4|α|2
(
1+6|α|2 +4|α|4

)
can

be approximated as 4|α|2; while for large |α|, it can be approx-
imated as 16|α|6; for intermediate value of |α|, i.e., |α| ≈ 1, it
can be approximated as the latter of the above expressions. To
summarize, σλ should satisfy

σ
2
λ
≪

{
1/(4|α|2∑k λ̄ 2

k /ω̄2
k ), |α|< 1;

1/(16|α|6∑k λ̄ 2
k /ω̄2

k ), |α| ≥ 1.
(34)

4.4. Discussion

The above three subsections set the experimental condi-
tions that should be satisfied in fulfilling the task of generating
Kerr nonlinearity with our scheme. Generally, the three ori-
gins of error coexist. In order to make the scheme work well,
all the conditions: equations (25), (29), and (34) should be
satisfied.

Even though the conditions are obtained for the case
that the initial state is a coherent state, they can be gen-
eralized to more general cases. The initial state ρ̂(0)
can be expressed with the P representation, i.e., ρ̂(0) =∫
C d2αP(α) |α⟩⟨α|.[13,45,46] Because the particle number in

an experimentally feasible state ρ̂(0) is always finite, there
must exists a bound R such that

ρ̂(0)≈
∫
|α|<R

d2
αP(α) |α⟩⟨α| ,

i.e., the contribution of |α⟩⟨α| to ρ̂(0) with |α| > R is negli-
gible. To guarantee that our scheme works well for such ρ̂(0),
it is required that it works well for all the coherent states |α⟩
with |α| ≤ R. Therefore, for a general ρ̂(0), σt , σω , and σλ

should satisfy

σ
2
t ≪ 1

R2
1

∑k λ̄ 2
k coth(ω̄k/2T )

, (35)

σ
2
ω ≪ 1

R2t2
f

1

∑k λ̄ 2
k /ω̄2

k coth(ω̄k/2T )
, (36)

σ
2
λ
≪

{
1/(4R2

∑k λ̄ 2
k /ω̄2

k ), |α|< 1;

1/(16R6
∑k λ̄ 2

k /ω̄2
k ), |α| ≥ 1.

(37)

The physical meaning of R2 can be seen more clearly in the
particle number basis. Note in the P representation, R2 is de-
termined with the condition ρ̂(0) ≈

∫
|α|<R d2αP(α) |α⟩⟨α|.

In the particle number basis, the condition can be equiva-
lently written as ρ̂(0) ≈ ∑m,n<R2 cmn |m⟩⟨n|, i.e., the compo-
nents with particle number larger than R2 can be neglected.
Therefore, R2 is the physical upper bound of the particle num-
ber initially in the system. Mathematically, the condition can
be simplified, reading

∑
n>R2

⟨n|ρ̂(0) |n⟩ ≪ 1. (38)

To summarize this section, by assuming that the preci-
sion of time control is σt , the precision of environment en-
ergy spectrum is σω , and the precision of tuning the coupling
strength is σλ , we estimate that in achieving the goal of ap-
proximately generating ℰtar, the constraints over σt , σω , and
σλ can be expressed as Eqs. (35)–(37). The constraints are
dependent on the system’s initial particle distribution, i.e., the
R in Eqs. (35)–(37) satisfies Eq. (38). The more particles the
system contains initially, the tighter the bounds on σt , σω , and
σλ become. That is, our scheme is more demanding on the
experimental conditions if the system initially contains more
particles.

5. Summary
Our scheme can be implemented in the superconducting

circuit system.[47,48] Since such devices have been employed
to engineer strongly-correlated quantum matter, the interac-
tion strength λk in Eq. (1) can be relatively large. As such, us-
ing our scheme, these devices could be excellent platforms for
generating Kerr nonlinearity. In addition, our scheme can also
be extended to both optomechanical systems[49] with suitably
arranged structure and cavity arrays connected by transmis-
sion lines,[50] which have the potential to achieve the model
Hamiltonian.

To summarize, we have presented a scheme for generat-
ing Kerr nonlinearity with an engineered environment, which
is insensitive to the initial environmental state. Our scheme
is practical for some systems without Kerr interaction or with
difficulty in creating Kerr interaction directly.

Appendix A: Derivation of the solution of the sys-
tem dynamics

In this appendix, we shall derive the general state evolu-
tion of the open system, i.e., Eq. (2), and the dynamics in the
case that the environment is initially in a thermal state.

Using the unitary transformation e i(HS+HE)t , we can
transform the total system to the interaction picture, yielding a
new Hamiltonian as

ĤI(t) = e i(HS+HE)t ∑
k

λka†a(ak +a†
k)e−i(HS+HE)t = n̂∑

k
λk

(
e−iωktak + e iωkta†

k

)
, (A1)
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where n̂ = a†a stands for the number operator of the system. Note that

[
ĤI(τ2), ĤI(τ1)

]
=

[
n̂∑

k2

λk2

(
e iωk2 τ2a†

k2
+ e−iωk2 τ2ak2

)
, n̂∑

k1

λk1

(
e iωk1 τ1a†

k1
+ e−iωk1 τ1ak1

)]
= −2in̂2

∑
k

λ
2
k sin[ωk(τ2 − τ1)] (A2)

commutes with both ĤI(τ2) and ĤI(τ1), one has[28]

Ûtot(t,0) = 𝒯 exp
[
−i
∫ t

0
dτ ĤI(τ)

]
= exp

{
−i
∫ t

0
dτ ĤI(τ)

}
exp
{
−1

2

∫ t

0
dτ2

∫ t

0
dτ1
[
ĤI(τ2), ĤI(τ1)

]}
= exp

{
in̂2

∑
k

(
λk

ωk

)2 [
ωkt − sin(ωkt)

]}
exp

{
n̂∑

k

(
λk

ωk

)[
(1− e iωkt)a†

k − (1− e−iωkt)ak

]}
. (A3)

The first factor is a unitary operator acting only on the system’s state, corresponding to the system’s additional self-energy
induced by the system–environment interaction. The second factor acts upon both the system and the environment. Generally,
the operators (1− e iωkt)a†

k − (1− e−iωkt)ak have fluctuations, which would contaminate the system’s evolution. As a result,
quantum noise is introduced into the dynamics, yielding decoherence.[29]

For the initial state ρtot(0) = ρ(0)⊗ρE, where ρ(0) = ∑
∞
m,n=0 cmn |m⟩⟨n| and ρE is the environmental initial state, the system

at a certain time t evolves to

ρ̂(t) = TrE

{
Ûtot(t,0)ρtot(0)Û

†
tot(t,0)

}
=

∞

∑
m,n=0

cmn e−i(m2−n2)φ(t) Tr
{

ρE
⊗

k

e(m−n)[αk(t)a
†
k−α*

k (t)ak]

}
|m⟩⟨n| , (A4)

where φ(t) and αk(t) satisfy the conditions in Eq. (2).
When the environment is in a thermal state with temperature T ,

Tr
{

ρE
⊗

k

e(m−n)[αk(t)a
†
k−α*

k (t)ak]

}
= ∏

k
Trk {ρkDk [(m−n)αk(t)]} , (A5)

where Trk is the trace over the state space of the kth mode; ρk = e−ωka†
kak/T/Tr{e−ωka†

kak/T}; Dk[(·)] = e(·)a
†
k−(·)*ak stands for the

displacement operator of the kth mode.[28] For thermal states, Trk {ρkDk [(m−n)αk(t)]} can be exactly derived, reading

Trk {ρkDk [(m−n)αk(t)]}= exp
{
−(m−n)2

(
n̄k +

1
2

)
|αk(t)|2

}
= exp

{
−(m−n)2 λ 2

k

ω2
k

coth
(

ωk

2T

)
[1− cos(ωkt)]

}
, (A6)

where n̄k = 1/(eωk/T −1) is the average particle number ini-
tially in the k-th mode. Following Eqs. (A4)–(A6), one obtains

ρ̂(t) =
∞

∑
m,n=0

cmn e−(m−n)2γ(t)−i(m2−n2)φ(t)|m⟩⟨n| (A7)

with

γ(t) = ∑
k

λ 2
k

ω2
k

coth
(

ωk

2T

)
[1− cos(ωkt)], (A8)

φ(t) =−∑
k

λ 2
k

ω2
k
[ωkt − sin(ωkt)] . (A9)

Therefore, we have obtained the general dynamics, read-
ing Eq. (A4), and the system’s dynamics for the environment
initially in a thermal state, which appears in Eq. (A7).
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Note added Recently, we became aware of a published
work[40] which treated a time-local master equation, based
on Floquet theory, for a model identical to Eq. (1) of the
present paper. However, our motivation is different from that
in Ref. [40]. Besides, our solution to Eq. (1) is more general.
For example, equation (13) is an operator applied to the total
system including the system and reservoir, based on which our
scheme is designed.
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