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It is generally accepted that herding behavior and overconfidence behavior are unrelated or even mutually exclusive.
However, these behaviors can both lead to some similar market anomalies, such as excessive trading volume and volatility
in the stock market. Due to the limitation of traditional time series analysis, we try to study whether there exists network
relevance between the investor’s herding behavior and overconfidence behavior based on the complex network method.
Since the investor’s herding behavior is based on market trends and overconfidence behavior is based on past performance,
we convert the time series data of market trends into a market network and the time series data of the investor’s past
judgments into an investor network. Then, we update these networks as new information arrives at the market and show the
weighted in-degrees of the nodes in the market network and the investor network can represent the herding degree and the
confidence degree of the investor, respectively. Using stock transaction data of Microsoft, US S&P 500 stock index, and
China Hushen 300 stock index, we update the two networks and find that there exists a high similarity of network topological
properties and a significant correlation of node parameter sequences between the market network and the investor network.
Finally, we theoretically derive and conclude that the investor’s herding degree and confidence degree are highly related to
each other when there is a clear market trend.
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1. Introduction
The study of complexity science has been a research

hotspot in recent years, and complex networks and time series
provide two theoretical ways to describe the complex system.
As we gradually have a more in-depth understanding of the
complex systems, we start to study time series from the per-
spective of network science, which not only riches the means
of characterizing time series but alsoconduces to understand-
ing the internal evolutionary mechanism of time series.[1]

Zhang et al. first pointed out that white noise sequences
can be transferred into random networks which exhibit the
small world and scale-free characteristics.[2] After that, differ-
ent approaches have been put forward to studying the funda-
mental properties of time series in the view of complex net-
works. According to various definitions of network nodes
and edges, current conversion methods can be roughly divided
into phase space reconstruction,[3–7] visibility graph,[8–13] and
probabilistic transfer method.[14,15] However, these methods
only re-examine the time series on the surface, which lacks
strong theoretical foundations as their support. Also, they do
not retain time information in the network structure. To solve
these problems, Zhao et al. presented a dynamically equiv-
alent transformation method based on the coarse geometry
theory and proved the equivalence property between complex
networks and time series under the perspective of topologi-

cal structure, geometrical characteristic, dynamic characteris-
tic, and correlation dimension.[16]

In addition to the significant theoretical progress, com-
plex networks have also been used to describe and char-
acterize nonlinear systems in the real world, such as stock
prices,[17] exchange rates,[18] traffic flows,[19] power,[20] so-
cial system,[21] macroeconomics,[22] etc. However, no one has
studied the decision-making behavior of irrational investors in
the stock market by using complex networks.

Herding behavior and overconfidence behavior are two
kinds of irrational behaviors that kept attracting attention from
academic researchers in behavioral finance in recent years. We
can find the literature about the herding behavior in differ-
ent investment bodies, the market conditions that may lead
to herding, and the influence of herding behavior on finan-
cial markets. People tend to imitate others because they as-
sume that others have information that can justify their ac-
tions. Sias found that institutional investors follow each other
into and out of the same securities.[23] Barber et al. studied
the trading of individual investors by using transaction data
and documented the result that individual investors’ herd.[24]

Gontis et al. suggested that human herding is so strong that
it persists even when other evolving fluctuations perturb the
financial system.[25] There is also some literature studying
the conditions that lead to herding behavior. Kremer and

∗Project supported by the Youth Program of the National Social Science Foundation of China (Grant No. 18CJY057).
†Corresponding author. E-mail: zhangmao@pku.edu.cn
© 2020 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

048901-1

http://dx.doi.org/10.1088/1674-1056/ab7740
mailto:zhangmao@pku.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 29, No. 4 (2020) 048901

Nautz showed that herding intensity of institutions depends on
stock characteristics, including past returns and volatility.[26]

Galariotis et al. found that US investors tend to herd dur-
ing days when important macro data are released.[27] The in-
fluence of herding has also attracted much attention. Chi-
ang and Zheng argued that crisis triggers herding activity in
the crisis country of origin and then produces a contagion
effect, which spreads the crisis to neighboring countries.[28]

Bikhchandani and Sharma,[29] Gervais and Odean,[30] Park
and Sabourian,[31] Blasco et al.[32] all held the view that herd-
ing generates more volatile prices.

Overconfidence is a psychological phenomenon that peo-
ple overestimate the accuracy of their information and their in-
vestment analysis. Studies related to overconfidence behavior
mainly focus on manifestations of overconfidence, the com-
parison of overconfidence extent among various groups, and
the impact of overconfidence on financial markets. Hoelzl
and Rustichini observed that people may be overconfident in
many ways.[33] For example, they may perceive themselves
more favorably than others, or they may perceive themselves
more favorably than they perceive others. Benoı̂ t and Dubra
found that it is common for most of people to rank themselves
as better than the median.[34] Some studies focused on the
performance differences among different investment groups.
Barber and Odean proved that men trade more excessively
than women.[35] Chuang and Susmel showed that individual
investors are more confident than institutional investors.[36]

Overconfidence behavior may play a role in excessive market
volume and volatilities.[37–39]

Above all, as is well known, the herding investors tend
not to value their private information, while the overconfident
investors always overemphasize their own information. How-
ever, these two seemingly opposite behaviors can both lead to
some common market phenomena, such as excessive trading
volume and price volatility. Recent studies tended to examine
herding behavior or overconfidence behavior alone. Because
the traditional time series method mainly focuses on trends,
fluctuations, and periodic characteristics of data, in this paper
we try to explore whether there exist any network connections
between these two kinds of behaviors based on the method of
complex networks, which may provide us with a more com-
prehensive perspective to understand investors’ behaviors.

In this paper, we first introduce the improved mapping
approach to transform a time series into a network, which is
suitable for the transaction data in the stock market. Then, we
briefly describe the financial background of stock market equi-
librium. Next, we construct a static market network represent-
ing the market trends in the eyes of a representative investor
and a static investor network reflecting the past performance
of the investor. As the stock market equilibrium moves with
the arrival of new information, we make rules for the evolution

of complex networks. After that, we find that the weighted
in-degrees of nodes in the market network and the investor
network can represent the herding degree and the confidence
degree of the investor, respectively. Using the transaction data
of Microsoft, we present the images of the market network
and the investor network before and after updating. Finally,
we compare the network topological properties and the node
parametric properties between the two networks, finding that
there do exist correlations between them at the same moment.
For further discussion, we theoretically derive the conditions
for the convergence between the investor’s herding degree and
confidence degree, that is, the coefficient of variation of price
changes has to be low.

This paper has made the following three main con-
tributions. Firstly, existing researches on investor behav-
ior usually use traditional econometric methods[26,36] or
simulations.[30,40] To the best of our knowledge, we are the
first to analyze the behaviors of investors based on complex
networks and conclude their evolution patterns, which cannot
be obtained by the traditional methods. Secondly, the common
mapping method is to convert an unchangeable time series into
a static network or do comparative static analysis of multiple
networks in chronological order. We design the rules that al-
low networks to evolve dynamically with the update of time
series. Finally, existing researches on market anomalies are
single and isolated. When it comes to herding behavior and
overconfidence behavior, no one has theoretically or empiri-
cally studied their possible connections. Some people tend to
believe that they are mutually exclusive due to their seemingly
contradictory definitions. To fill this void in the literature, we
transform time series to networks and find a high similarity
for the indicators of network betweenness centralization, net-
work clustering degree and modularity and significant correla-
tions for the node parameter sequences of weighted in-degree,
weighted out-degree and weighted degree between the market
network which is the basis of the investor’s herding behavior
and the investor network which is the foundation of the in-
vestor’s overconfidence behavior. Moreover, we derive and
obtain the convergence conditions of the herding degree and
confidence degree of the investor.

The remainder of the paper is organized as follows. In
Section 2, the construction of the market network and the in-
vestor network are introduced from the perspective of a rep-
resentative investor. In Section 3, the dynamic evolution of
networks with the arrival of new information is developed and
the economic meaning of weighted in-degree is pointed out. In
Section 4, the statistical properties between the two networks
at the network level and node level are compared. In Section 5,
some conclusions are drawn from the present study.. All the
variables are defined in Appendix A, and all the proofs are
contained in Appendices B and C.
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2. Transformation
2.1. Complexity analysis of time series

The key to studying time series from the perspective of
complex network theory is to choose an effective conversion
method. As mentioned before, Zhao et al. presented a practical
transformation approach between time series and complex net-
works based on the amplitude difference of data points.[16] Let
{pt |t = 1,2, . . . ,N} be a scalar time series of N observations
and ε be a threshold. The adjacency matrix of the transformed
network is defined as A = {ast |s = 1,2, . . . ,N; t = 1,2, . . . ,N},
where ast = 1 if |ps− pt |< ε , otherwise ast = 0. That is, there
exists a link from node s to node t if the distance between the
nodes is less than the threshold. The basis of the equivalence
theorem of dual characterization between time series and com-
plex networks is the topological homeomorphism theorem and
quasi-isometric theorem. They found that the waveform of
the reconstructed time series and the original time series are
exactly the same, which means that this conversion method
implements an equivalently mathematical description of time
series under network representation.

2.2. Brief introduction to stock market equilibrium

Suppose that there is only one financial asset in the stock
market. The market consists of I heterogeneous active traders
who take long position or short position in this security. The
movement from the (t−1)-th to the t-th Walrasian equilib-
rium is driven due to the arrival of new information. Let Pt

denote the current market price, and Pti the i-th trader’s reser-
vation price which is his belief about the stock price in the
future at time t, where i = 1,2, . . . , I. Assume that there are no
transaction costs and the I traders differ only in their beliefs
(Since different traders only differ in their beliefs, we only
study the investment behavior of the i-th active trader for con-
venience), then the inter-trader differences in their beliefs will
arise from different expectations about the future and from dif-
ferent needs to transfer risk through the market.

Consequently, all price risk is viewed as falling on ter-
minal wealth. The agent is assumed to choose position Qti to
maximize the expected utility of terminal wealth. The gain
attributable to this speculative position and hence its contribu-
tion to terminal wealth is

π = Qti(Pti−Pt). (1)

Then, we obtain the desired position function for the
risky security based on the criteria proposed by Tauchen and
Pitts[41]

Qti = αti(Pti−Pt), (2)

where αti is the risk preference coefficient of the i-th trader at
time t. A positive value for Qti represents a desired long posi-
tion in the contract, while a negative value represents a desired
short position.

Equilibrium requires ∑
I
i=1 Qti = 0, which indicates that

the weighted average of the reservation prices

Pt = ∑
I
i=1 αtiPti/∑

I
i=1 αti (3)

clears the market.
Now, we consider the movement from the (t−1)-th to

the t-th equilibrium. A piece of news arrives at the market and
changes the individuals’ reservation prices. Since in equilib-
rium, the total number of buy orders matches the total number
of sell orders, we have

∑
I
i=1 Qti−∑

I
i=1 Q(t−1)i = 0. (4)

The resulting change in the market price is the weighted
average of the increments with respect to the traders’ reserva-
tion prices, which implies

∆Pt = ∑
I
i=1 αti∆Pti/∑

I
i=1 αti, (5)

where ∆Pt =Pt−Pt−1 and ∆Pti =Pti−P(t−1)i. The proof is pre-
sented in Appendix B. From Eq. (5), we know that the market
price change is consistent with the reservation price changes
of most of position holders in the market.

We have introduced the decision-making behavior of ra-
tional investors above, where market prices and investor’s
reservation prices are both exogenous. However, we know
that investors cannot be rational all the time in real life, so
their investment decisions may be affected by their sentiment.
For example, if the market trend is particularly apparent, the
trader will be sure of his belief, and hence increasing his po-
sitions. That is what we see as the “buying the winners” strat-
egy. Moreover, a trader will become more optimistic when he
tends to judge correctly for the market price changes recently
or after a high level of return,[42] which will lead to excessive
transactions.

We can see that investors’ seemingly opposite behaviors,
such as following others and believing in themselves, can both
lead their desired positions to increase. This raises the ques-
tion whether an investor can behave both herding and confi-
dence at the same time. If so, does any connection exist be-
tween them? Moreover, what is their combined effect on the
investor’s position? To answer these questions, we construct
a market network that represents the market trend and an in-
vestor network that represents the past judgments from the
perspective of a representative investor in the following sub-
section.

2.3. Construction of market network and investor network

Following the work of Zhao et al.,[16] we will build com-
plex networks based on the time series of price changes (Due
to the relatively large fluctuations in the time series of stock
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prices, which will interfere with the study of statistical prop-
erties of the data, used in this paper are the differenced stock
prices, that is, the time series of price changes) and past judg-
ments for the representative i-th investor.

Firstly, in the market network, we define node t as the
market price change at time t and the edge from node (t−m)

to node t as the influence of the market price change at time
(t−m) on the market price change at time t. Considering that
the current market price change cannot have an influence on
the past market price changes, and the memory length of the
trader is limited (assuming the i-th investor’s memory length is
M) (Although each one observes the same market prices, their
herding behavior may be different due to the various memory
lengths), we give definitions below.

Definition 1 In the market network,
(i) a′(t−m)t = 1 if |∆Pt−m−∆Pt | < ε and 1 6 m 6 M; oth-

erwise, a′(t−m)t = 0, t = 1,2, . . . ,N (Since there are only N
nodes in the network, the in-degree of the first M nodes (i.e.,
t = 1,. . . , M) is t-1, the same as that in Definition 2).

(ii) The size of node t is the market price change at time
t, that is, ∆Pt .

(iii) The weight of the edge from node (t−m) to node t
is the product of the transition probability ϕtm and the size of
node ∆Pt−m, that is, ϕtm∆Pt−m.

Similarly, we can construct an investor network based on
the past judgments of the i-th investor.

Every time when a piece of new information arrives at the
market, each trader will update his reservation price and then
obtain the market clearing price. If the directions of the two
price changes are the same, the trader will make the right in-
vestment decision because his judgment is consistent with the
judgment of the majority. Therefore, for the investor network,
we employ node t to represent the product of the market price
change and the trader’s reservation price change at time t and
the edge from node (t−m) to node t to represent the effect of
the trader’s judgment at time (t−m) on the judgment at time
t. Being the same as the market network, the trader’s current
judgment cannot influence the past judgment, and the memory
lengths of different traders are different (assuming that the i-
th investor’s memory length is M), we give another definition
below.

Definition 2 In the investor network,
(I) a′′(t−m)t = 1 if

∣∣∆Pt−m∆P(t−m)i−∆Pt∆Pti
∣∣ < ε and 1 6

m 6 M; otherwise, a′′(t−m)t = 0. t = 1,2, . . . ,N.
(II) The size of node t is the product of the market price

change and the trader’s reservation price change at time t, that
is, ∆Pt∆Pti.

(III) The weight of the edge from node (t−m) to node t
is the product of the transition probability φtm and the size of
node ∆Pt−m∆P(t−m)i, that is, φtm∆Pt−m∆P(t−m)i.

To have an intuitive understanding of the mapping from

time series to complex networks, we present the network struc-
tures of the stock price series (P0), the price change series and
the investor judgment series together based on the sample of
Microsoft’s stock prices during the first 20 trading days in July
2009. Specifically, we transfer the price change series into
the market network (M0) according to Definition 1, which is
shown as the right sub-network in Fig. 1. Meanwhile, we map
the investor judgment series into the investor network (I0) by
Definition 2 in the left sub-network of Fig. 1. The 20 ver-
tical nodes (P0) in the center of Fig. 1 correspond to the 20
observations of the stock price series, which are connected to
the nodes at the same time point in the market sub-network
and investor sub-network, respectively. That is to say, there
are 20 nodes in each sub-network. It is supposed that the in-
vestor’s memory length is 5 trading days and the threshold is
big enough so that each node has 5 directed edges from its pre-
vious 5 nodes. The nodes in gray represent the stock prices.
The other nodes are in green if their sizes are above 0, other-
wise in red. Since we define the edges as the influence of past
nodes on future nodes, the color of the edge is the same as that
of its leaving node.

I0 P0 M0

Fig. 1. Network mapping of time series of stock prices, price changes, and
investor’s past judgments.

3. Dynamic evolution of networks
In this section, we will first describe how the market net-

work and the investor network evolve with the change of re-
cent market fluctuation and the trader’s past performance, re-
spectively. Also, we will intuitively present the evolution pat-
terns of these networks to have a more in-depth understanding
of the changing process.

3.1. Dynamic evolution of networks

The networks constantly evolve as the stock market
moves from one equilibrium to the next one. Due to the simi-
lar structure between the market network and the investor net-
work, we take the market network for example to explain the
dynamic evolution of the network structure in detail.
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It is supposed that there are always N nodes in chrono-
logical order of a network. When a piece of news arrives at
the stock market, we obtain a new market clearing price, thus
a new market price change. At this time, we add a new node
to this network and meanwhile delete the first node of the net-
work, so there are still N nodes. Since the memory of investors
is limited, we assume that only the previous M nodes can af-
fect the t-th node in the eyes of investors. That is, there will be
M directed edges from the previous M nodes to the new t-th
node. Then, how is the influence of former nodes on the t-th
node judged?

Assuming that every time when a node k is added to the
network, the investor will compare the size of the k-th node
∆Pk with the sizes of the previous M nodes ∆Pk−1, ∆Pk−2, . . . ,
∆Pk−M . If the difference between ∆Pk and ∆Pk−m is smallest,
then xk = m, where x is defined as a discrete variable taken on
values 1, 2, . . . , M. This means that the (k−m)-th node has
the most significant influence on the k-th node. In other words,
the status of node k is more likely to be transformed from the
status of node (k−m) than the other previous M nodes. Let
k traverse from (t−N) to (t−1), then ∑

t−1
k=t−N δ (xk = m) will

represent the number of times for the status of node k to be
transformed from the status of node (k−m) for the previous N
nodes of node t. Therefore, we can use the frequency of x = m
to represent the transition probability from the (t−m)-th node
to the t-th node, which can be expressed as

ϕtm =
∑

t−1
k=t−N δ (xk = m)

N
, (6)

where δ (xk = m) = 1 if xk = m, otherwise δ (xk = m) = 0.
Meanwhile, the i-th investor compares the size of the

k-th node ∆Pk∆Pki with the sizes of the previous M nodes
∆Pk−1∆P(k−1)i, ∆Pk−2∆P(k−2)i, . . . , ∆Pk−M∆P(k−M)i in the in-
vestor network. If the difference between ∆Pk∆Pki and
∆Pk−m∆P(k−m)i is smallest, then yk = m, where y is defined
as a discrete variable taken on values 1, 2, . . . , M. Therefore,
the transition probability from the the (t−m)-th node to the
t-th node in the investor network can be expressed as

φtm =
∑

t−1
k=t−N δ (yk = m)

N
, (7)

where δ (yk = m) = 1 if yk = m, otherwise δ (yk = m) = 0.

3.2. Investor’s herding extent

The weighted degree is a critical statistical index in the
complex network. The higher the weighted in-degree or out-
degree of the node, the more critical the node is in the com-
plex network.[43] We explore the economic implications of
weighted in-degree of the market network in this subsection
and weighted in-degree of the investor network in the next sub-
section.

Based on the dynamic evolution process described above,
the weighted in-degree of node t in the market network can
be expressed as the sum of the influence of nodes which have
direct links to node t on node t, that is,

trendt = ϕt1∆Pt−1 + · · ·+ϕtM∆Pt−M = ∑
M
m=1 ϕtm∆Pt−m. (8)

We can see from Eq. (8) that the magnitude of the
weighted in-degree is larger when there is a considerable rise
or fall with duration increasing. However, if the prices fluctu-
ate, the magnitude of the weighted in-degree will be smaller.
Meanwhile, the herding extent of investors has a similar pat-
tern. When the market is in a booming stage, the herding in-
vestors will continue to be bullish because individuals holding
most positions are bulls. However, in a recession, herding in-
vestors will continue to be bearish because individuals holding
most positions are bears.[44] In a word, the herding extent of
investors will accelerate if there is an evident market trend.[45]

Considering the consistency between the size of the
weighted in-degree and the investor’s herding degree with the
change of market trend, we can use the absolute value of the
weighted in-degree to indicate the investor’s herding extent,
that is,

ht = |ϕt1∆Pt−1 + · · ·+ϕtM∆Pt−M|=
∣∣∣∑M

m=1 ϕtm∆Pt−m

∣∣∣ . (9)

At the beginning of each period t, the i-th trader forms
his herding degree based on the past market trend. The higher
the absolute value of the weighted in-degree, the stronger the
investor’s herding degree will be.
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Fig. 2. Market network before being updated.

To clearly show the changes of the market network before
and after being updated, we construct the market network by
using the Microsoft’s transaction data spanning from July 1,
2009 to June 30, 2019 which consists of 2517 observations.
Suppose that there are always 20 nodes in a static network,
i.e., N = 20, and the memory length of a typical investor is
one week, that is, M = 5, then we will update the network by
using the method described above. Figure 2 shows the market
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network before being updated, which is the same as the right
half part of Fig. 1, while figure 3 shows the market network
after being updated for 10 years. Being the same as Fig. 1, the
node is in green if its size is above 0, otherwise in red. The
color depth is correlated to the magnitude of the node.
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Fig. 3. Updated market network.

3.3. Investor’s confidence extent

Similarly, we can express the weighted in-degree of node
t in the investor network as

ct = φt1∆Pt−1∆P(t−1)i + · · ·+φtM∆Pt−M∆P(t−M)i

= ∑
M
m=1 φtm∆Pt−m∆P(t−m)i. (10)

If the i-th investor judges correctly at time (t−m),
then ∆pt−m∆p(t−m)i > 0, otherwise ∆pt−m∆p(t−m)i 6 0. The
weighted in-degree will increase with the right extent of judg-
ment increasing and decrease with the wrong extent of judg-
ment increasing. Meanwhile, the confidence extent of in-
vestors also has a similar change pattern to the weighted in-
degree in the investor network. Odean argued that investors’
degree of overconfidence can be measured by their early ex-
cess net return.[37] Many researchers believed that in the stock
market, most of investors tended to take too much credit for the
excess profits they had obtained, which would produce more
trading and volatility.[30,36,46] In a word, the key to overconfi-
dence is that investors have made the correct judgments many
times, and they believe that it is their own abilities that help
them make the right judgments. Therefore, we can use the
value of the weighted in-degree in the investor network to in-
dicate the confidence extent of investors. At the beginning of
each period t, the i-th trader forms his confidence extent based
on past judgments. The higher the weighted in-degree, the
stronger the investor’s confidence degree will be.

We still use Microsoft’s stock prices to calculate market
price changes. However, the data of the traders’ reservation
prices are not available, so we simulate the i-th trader’s reser-
vation prices as follows:

∆Pti = θi∆Pt +(1−θi)∑
M
m=1 φtm∆Pt−m, (11)

where θi takes the value of 0.5 (We get similar results when
θi takes the value of 0.2 and 0.8). Still supposing N = 20 and
M = 5, we present the investor network as follows. Being the
same as the left half part of Fig. 1, figure 4 shows the investor
network before being updated, and Fig. 5 illustrates the net-
work after 10-year update.
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Fig. 4. Investor network before being updated.
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Fig. 5. Updated investor network.

4. Comparison between market network and in-
vestor network
To explore the potential correlations between the market

network and the investor network, we will analyze the prop-
erties of the two networks at the network level and the node
level in this section.

4.1. Topological index at network level

The common practice of comparing two networks at net-
work level is to compare some main topological indicators, in-
cluding the network betweenness centralization, network clus-
tering coefficient, and modularity degree.

To verify the generality of the experimental results, apart
from employing Microsoft’s transaction data spanning from
July 1, 2009 to June 30, 2019 in the previous article, we
present the corresponding results of Microsoft’s transaction
data from July 1, 2009, respectively, to September 30, 2015,
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December 31, 2016, and March 31, 2018. We choose differ-
ent months as the cut-off time so as to exclude the interference
of quarterly effects in the stock market. Also, we show the
network topological indexes and the correlation coefficients
between the node parameter sequences based on the data of

the US S&P 500 stock index and the China Hushen 300 stock
index. We use M0 and I0 to denote the market network and the
investor network before being updated, M1 and I1 to represent
the two networks after being updated. The results are shown
in Table 1.

Table 1. Network topological indexes.

Network betweenness centralization Network clustering coefficient Modularity

Panel A: Microsoft transaction data spanning from July 1, 2009 to June 30, 2019

M0 0.023 0.382 0.510
I0 0.023 0.382 0.523

M1 0.023 0.382 0.413
I1 0.023 0.382 0.371

Panel B: Microsoft transaction data spanning from July 1, 2009 to September 30, 2015

M1 0.023 0.382 0.362
I1 0.023 0.382 0.351

Panel C: Microsoft transaction data spanning from July 1, 2009 to December 31, 2016

M1 0.023 0.378 0.329
I1 0.023 0.378 0.404

Panel D: Microsoft transaction data spanning from July 1, 2009 to March 31, 2018

M1 0.023 0.382 0.416
I1 0.023 0.382 0.336

Panel E: Hushen 300 transaction data spanning from July 1, 2009 to June 30, 2019

M0 0.023 0.382 0.448
I0 0.023 0.382 0.484

M1 0.023 0.382 0.418
I1 0.023 0.382 0.406

Panel F: S&P 500 transaction data spanning from July 1, 2009 to June 30, 2019

M0 0.023 0.382 0.435
I0 0.023 0.382 0.491

M1 0.023 0.382 0.434
I1 0.023 0.382 0.483

Network betweenness centralization is the average of
the ratios of the number of paths that pass through each node
to the total number of shortest paths, which can be used to
measure the average bridge intermediation of network nodes.
Table 1 shows that the values of the network betweenness cen-
tralization remain constant after being updated for all the three
types of stocks. Besides, the values of the indicator for the
market network are the same as those for the investor network
at a single point, indicating that the average financial informa-
tion transfer effects of the two networks are similar to each
other.

Network clustering coefficient is a measure of the de-
gree to which the nodes in a graph tend to cluster together. We
can see from Table 1 that the value of the network clustering
coefficient declines only for the Microsoft data spanning from
July 1, 2009 to December 31, 2016. For the three kinds of
stocks, the aggregation characteristics in the market network
and the investor network are still similar, whether they are up-

dated or not.
Modularity is used to measure the strength of the divi-

sion of a network into modules that are also called groups,
clusters, or communities. Networks with high modularity
have dense connections between the nodes within modules but
sparse connections between nodes in different modules. From
Table 1 it may follow that the values of the modularity of both
networks all decline, whether for different updated intervals or
classes of stocks. At the same point, there is no much differ-
ence in the value between the market network and the investor
network.

4.2. Correlation analysis at node level

In this part, we focus on the parameters related to the
nodes such as the weighted in-degree, weighted out-degree,
and weighted degree (The weighted in-degree in the market
network is taken as its absolute value in the following calcula-
tion due to its significant economic meaning discussed in Sub-
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section 3.2). The detailed interpretations of each parameter
used here are presented as follows.

Weighted in-degree is the sum of the weights of the
edges entering a node.

Weighted out-degree is the sum of the weights of the
edges leaving a vertex.

Weighted degree is the sum of weighted in-degree and
weighted out-degree.

Using the updated networks, we first compute the corre-

sponding parameters of each node. Then, we obtain two pa-
rameters series, and thus we can calculate their correlation co-
efficients. To confirm that the correlation coefficient is only
significant between the two networks at the same time, we
also calculate the correlation coefficients between the updated
market network (M1) and the investor network before being
updated (I0), and the updated investor network (I1) and the
market network before being updated (M0) for each node pa-
rameter. The results are shown in Table 2.

Table 2. Correlation coefficients for node parameter sequences.

Correlation coefficients Weighted in-degree Weighted out-degree Weighted degree

Panel A: Microsoft transaction data spanning from July 1, 2009 to June 30, 2019

M1 ∼ I1 0.662 0.919 0.837
M1 ∼ I0 −0.054 0.243 −0.041
I1 ∼M0 −0.100 0.040 −0.103

Panel B: Microsoft transaction data spanning from July 1, 2009 to September 30, 2015

M1 ∼ I1 0.602 0.942 0.927
M1 ∼ I0 −0.233 −0.086 −0.359
I1 ∼M0 −0.096 0.165 −0.105

Panel C: Microsoft transaction data spanning from July 1, 2009 to December 31, 2016

M1 ∼ I1 0.733 0.950 0.957
M1 ∼ I0 −0.355 −0.236 −0.323
I1 ∼M0 0.122 −0.360 −0.150

Panel D: Microsoft transaction data spanning from July 1, 2009 to March 31, 2018

M1 ∼ I1 0.402 0.746 0.503
M1 ∼ I0 0.556 0.110 0.282
I1 ∼M0 0.226 −0.066 −0.150

Panel E: Hushen 300 transaction data spanning from July 1, 2009 to June 30, 2019

M1 ∼ I1 0.828 0.958 0.926
M1 ∼ I0 0.182 0.155 0.101
I1 ∼M0 0.077 0.221 0.250

Panel F: S&P 500 transaction data spanning from July 1, 2009 to June 30, 2019

M1 ∼ I1 0.754 0.922 0.852
M1 ∼ I0 0.118 −0.348 −0.226
I1 ∼M0 0.078 −0.297 −0.170

From Table 2, we can see that the correlation coefficient
of the weighted in-degree series, weighted out-degree series,
and weighted degree series between the updated market net-
work and investor network are all around 0.6 in these cases,
which indicates a high correlation of the node parameters be-
tween the two networks. Correspondingly, we cannot find dis-
tinct patterns between the updated market network and the in-
vestor network before being updated, nor the updated investor
network and the market network before being updated, which
further illustrates that the correlation relationship only exists
between the market network and the investor network at the
same time point.

As demonstrated in Section 3, the weighted in-degrees of
the nodes in the market network and the investor network can

represent the investor’s herding degree and confidence degree.
Due to their critical economic meanings, we focus on the cor-
relation of the weighted in-degree series of the two networks
and theoretically derive the conditions for their convergence,
which helps us analyze the internal mechanisms behind our
conclusions. Then, we obtain

lim
CV→0

ρ = 1, (12)

lim
CV→∞

ρ = 0, (13)

where CV is the coefficient of variation of price change. Their
proof is presented in Appendix C.

We finish this section by analyzing the internal mech-
anisms behind our conclusions. We suggest that these two
kinds of behaviors that seem to be mutually contradictory are

048901-8



Chin. Phys. B Vol. 29, No. 4 (2020) 048901

in fact consistent when their variations with the mean of the
price changing are low. In particular, when their variations
with the market price changing is small, which means that the
market price changes are stationary, the market will show a
clear trend. According to Eq. (9), the investor’s herding de-
gree will go up because it is easy for him to seize the market
trend. Equation (5) shows that the direction of the market price
change is the same as that of the reservation price change for
most of position holders in the market. Therefore, seizing the
market trend means that the investor knows what the majority
will do. At this time, it is easy for the investor to make the
same decisions as most of position holders do, making him
more likely to make the right judgments. Based on Eq. (10),
the investor’s confidence degree will increase with the right
extent of judgments increasing. Finally, the overconfidence
goes up with the accumulation of continuously growing con-
fidence levels. For example, if the price of some stock rises
steadily over a period of time, that is, there is a clear upward
trend, the investors are more likely to enter into the market or
increase their positions, showing herding effects. The herding
behavior of investors will push the price to go up further, and
investors will obtain positive return, which will enhance their
confidence degrees.

However, when the coefficient of variation is large, in-
vestors do not have the chance to follow the crowd. At this
time, whether investors have made their right judgments is en-
tirely accidental, so a trader’s herding degree is almost not cor-
related with his confidence degree. For example, if the price
of a stock goes up and down like a seesaw for some time, then
investors will not have any trends to follow. At this time, some
investors will increase their positions, and others will reduce
their positions. The irregular behaviors of investors will have
an uncertain influence on the direction of price change, so in-
vestors cannot continuously obtain positive returns, and their
confidence degrees cannot accumulate.

5. Conclusions
Since it is difficult to study the relationship between in-

vestors’ herding behavior and overconfidence behavior by us-
ing traditional approaches, in this paper we propose a frame-
work to study the mechanism between herding behavior and
overconfidence behavior from the perspective of the complex
network. In this framework, we transform a time series into
a complex network based on the amplitude difference of data
points. The nodes represent the market price change in the
market network and the investor’s past performance in the in-
vestor network, respectively. The stock market moves from
one equilibrium to another with time, so we characterize the
transition probability with the transition frequency of node sta-
tus in the past, and then present the dynamic evolution pro-

cesses of the two networks. Since the investor’s herding de-
gree depends on the market trend and the investor’s confidence
degree depends on his past performance, we use the weighted
in-degrees of the nodes in the market network and those in the
investor network to represent the investor’s herding degree and
confidence degree, respectively. To reflect the change of the
investor’s herding degree and confidence degree with the ar-
rival of new information, we design the rules that the network
can evolve dynamically as new information reaches the mar-
ket. Finally, we find that the market network and the investor
network at the same point are not only highly similar in the
topological nature, but also their node parameter sequences
have a certain correlation. Due to the economic significance
of the weighted in-degree, we focus on it and find that an in-
vestor’s herding degree is highly related to his confidence de-
gree if there exists a clear market trend.

Our conclusions provide the support for explaining the
price-volume relation. Karpoff reviewed previous empirical
and theoretical research and proposed a model that further
verifies the positive correlation between volume and the ab-
solute value of the price change or the price change per se
in stock markets.[47] As we introduced in Section 1, there ex-
ists evidence that overconfidence behavior has an influence on
the market trading volume and volatility, and herding behavior
can affect market volatility. In this paper, we prove the con-
sistency between confidence and herding under certain condi-
tions, which explains the same increase or decrease in trading
volume and volatility to some extent. Therefore, the inter-
action between the two phenomena may also be an intrinsic
mechanism of the price-volume relation.

Our findings also have some policy implications. Firstly,
the investment decisions made by investors are inevitably af-
fected by the global market environment, such as market price
changing over a period of time. When the market conditions
are good, investors should realize that the seemingly favor-
able market environment may be a kind of “illusion”, that is,
the result of malicious manipulation by investors with domi-
nant capital. Otherwise, uninformed investors would believe
that they have seized the market trend, thereby accumulating
the excessive confidence in a short time. It may cause huge
losses when market manipulators decide to harvest. Secondly,
regulators should establish a perfect investor protection mech-
anism. Both professional investment institutions and individ-
ual investors should receive educations on securities law and
risk warning. It is also necessary to popularize the investment
techniques and investment strategies and encourage investors
to learn psychological knowledge. In other words, regulators
should guide investors in avoiding short-term overconfidence
and establishing a sense of rational investment.
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Appendix A

Table 1. Variable definitions.

Variables Definitions

pt The t-th observation of a random scalar time series.
ε The threshold used when transforming a time series into a com-

plex network, and its value may be greater than or equal 0.
ast The element of the adjacency matrix, which equals 1 if there

exists an edge from node s to node t, otherwise equals 0.
I There are I heterogeneous active traders in the market in total.
i We use the subscript i to represent the i-th active investor who

takes long or short positions in the market, where i = 1, 2, . . . ,
I.

Pt The market price at time t.
∆Pt The market price change at time t.
Pti The i-th trader’s belief in the stock price in the future at time t.

∆Pti The change of the i-th trader’s belief in the stock price in the
future at time t.

Qti The desired position of the i-th trader at time t.
π The contribution of the i-th trader’s speculative position to his

terminal wealth at time t.
αti The risk preference coefficient of the i-th trader at time t.

a′(t−m)t The element of the adjacency matrix of the market network,
which equals 1 if there exists an edge from node (t −m) to
node t, otherwise equals 0.

ϕtm The transition probability from node (t −m) to node t of the
market network.

a′′(t−m)t The element of the adjacency matrix of the investor network,
which equals 1 if there exists an edge from node (t−m) to node
t, otherwise equals 0.

φtm The transition probability from node (t −m) to node t of the
investor network.

P0 The network structure of the stock price series before being
updated.

M0 The market network before being updated.
I0 The investor network before being updated.

M1 The market network after being updated.
I1 The investor network after being updated.

δ (xk = m) An indicator variable which equals 1 if xk = m, otherwise
equals 0.

δ (yk = m) An indicator variable which equals 1 if yk = m, otherwise
equals 0.

trendt The weighted in-degree of node t in the market network.
ht The investor’s herding extent.
ct The weighted in-degree of node t in the investor network, that

is, the investor’s confidence extent.
θi The weight parameter when simulating reservation prices of

the i-th trader.
CV The coefficient of variation of price changes.
ρ The correlation coefficient between the weighted in-degree se-

ries of the market network and the investor network.

Appendix B: Proof of Eq. (5)
The requirement for the i-th equilibrium, in which the to-

tal number of buy orders must match the total number of sell
orders, is given by Eq. (4).

Inserting Eq. (2) into Eq. (4), we obtain

∑
I
i=1 αti(Pti−Pt) = ∑

I
i=1 α(t−1)i(P(t−1)i−Pt−1).

It can be rewritten as follows:

∑
I
i=1 αtiPti−∑

I
i=1 α(t−1)iP(t−1)i

= ∑
I
i=1 αtiPt −∑

I
i=1 α(t−1)iPt−1.

We subtract and add ∑
I
i=1 αtiP(t−1)i on the left-hand side of the

equation and ∑
I
i=1 αtiPt−1 on the right-hand side of the equa-

tion, and obtain

∑
I
i=1 αtiPti−∑

I
i=1 αtiP(t−1)i

+∑
I
i=1 αtiP(t−1)i−∑

I
i=1 α(t−1)iP(t−1)i

= ∑
I
i=1 αtiPt −∑

I
i=1 αtiPt−1

+∑
I
i=1 αtiPt−1−∑

I
i=1 α(t−1)iPt−1.

Define ∆Pt = Pt − Pt−1,∆Pti = Pti − P(t−1)i, and ∆αti =

αti−α(t−1)i, then we will have

∑
I
i=1 αti∆Pti +∑

I
i=1 ∆αtiP(t−1)i = ∑

I
i=1 αti∆Pt +∑

I
i=1 ∆αtiPt−1.

Although we assume that each trader’s risk preference co-
efficient changes over time, it cannot change all of a sudden,
which means ∆αti = 0. Then, we have

∆Pt = ∑
I
i=1 αti∆Pti/∑

I
i=1 αti.

Appendix C: Proof of Eqs. (12) and (13)
We first consider the relationship between market price

change and traders’ reservation price change. From Eq. (5),
we have

lim
Var(∆Pt )→0

Var(∆Pti) = 0,∀i = 1,2, . . . , I.

From the above equation, we know that both market price
change and each individual’s reservation price change can be
derived from the same distribution. Supposing that the market
price change is independently normally distributed, we have

∆Pt = µ +σZt ,Zt ∼ N(0,1), that is, ∆Pt ∼ N(µ,σ),

∆Pti = miµ +niσZt , that is, ∆Pti ∼ N(miµ,niσ).

Then, we obtain

E(Z) = 0, E(Z3) = 0, D(Z) = 1, E(Z2) = 1, D(Z2) = 2.

Next, we calculate the covariance of ht and ct as follows.
If ∑

M
m=1 ϕtm∆Pt−m > 0, then ht = ∑

M
m=1 ϕtm∆Pt−m and

µ > 0.

cov(ht ,ct)

= cov
(
∑

M
m=1 ϕtm∆Pt−m,∑

M
m=1 φtm∆Pt−m∆P(t−m)i

)
= ∑

M
m1=m2=1 cov(ϕtm2∆Pt−m2 ,φtm1 ∆Pt−m1∆P(t−m1)i)

+∑
M
m1 6=m2=1 cov(ϕtm2∆Pt−m2 ,φtm1∆Pt−m1∆P(t−m1)i)

= ∑
M
m1=m2=1 cov(ϕtm2∆Pt−m2 ,φtm1∆Pt−m1∆P(t−m1)i)

= ∑
M
m=1 φtmϕtmcov{(µ +σZt−m)

× [miµ +niσZt−m],µ +σZt−m}
= ∑

M
m=1 φtmϕtm[(mi +ni)µσ

2cov(Zt−m,Zt−m)

+niσ
3cov(Z2

t−m,Zt−m)]
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= (mi +ni)µσ
2
∑

M
m=1 φtmφtm.

The third equation holds true because ∆Pt−m2 is indepen-
dent of ∆Pt−m1 or ∆P(t−m1)i when m1 6= m2.

If ∑
M
m=1 ϕtm∆Pt−m < 0, then ht = −∑

M
m=1 ϕtm∆Pt−m and

µ 6 0. So, we can obtain the covariance of ht and ct similar to
previous values. Combining the above two situations, we have

cov(ht ,ct) = (mi +ni) |µ|σ2
∑

M
m=1 φtmϕtm.

We have already calculated the covariance of ht and ct

under different conditions above; now we deduce the variance
of ht and ct , respectively.

D(ht) = cov
(
∑

M
m=1 ϕtm∆Pt−m,∑

M
m=1 ϕtm∆Pt−m

)
= ∑

M
m1=m2=1 cov(ϕtm1∆Pt−m1 ,ϕtm2∆Pt−m2)

+∑
M
m1 6=m2=1 cov(ϕtm1∆Pt−m1 ,ϕtm2∆Pt−m2)

= ∑
M
m=1 cov(ϕtm∆Pt−m,ϕtm∆Pt−m)

= σ
2
∑

M
m=1 ϕ

2
tm.

The third equation holds true as well because ∆Pt−m1 and
∆Pt−m2 are mutually independent when m1 6= m2.

D(ct)

= cov
(
∑

M
m=1 φtm∆Pt−m∆P(t−m)i,∑

M
m=1 φtm∆Pt−m∆P(t−m)i

)
= ∑

M
m1=m2=1 cov(φtm1∆Pt−m1∆P(t−m1)i,φtm2∆Pt−m2∆P(t−m2)i)

+∑
M
m1 6=m2=1 cov(φtm1∆Pt−m1∆P(t−m1)i,φtm2∆Pt−m2∆P(t−m2)i)

= ∑
M
m=1 D(φtm∆Pt−m∆P(t−m)i)

= ∑
M
m=1 φ

2
tm{[D[(mi +ni)µσZt−m]+D(niσ

2Z2
t−m)

+2cov[(mi +ni)µσZt−m,niσ
2Z2

t−m]}

= [(mi +ni)
2
µ

2
σ

2 +2n2
i σ

4]∑
M
m=1 φ

2
tm.

The third equation holds true because ∆Pt−m1 , ∆P(t−m1)i,
∆Pt−m2 , and ∆P(t−m2)i are mutually independent when m1 6=
m2.

we can calculate the correlation coefficient of the i-th
trader’s confidence degree and herding degree at time t

ρ(ht ,ct)

= cov(ht ,ct)/
√

D(ht)D(ct)

=
∑

M
m=1 ϕtmφtm√

{1+2[ni/(mi +ni)]2(CV )2}
(
∑

M
m=1 φ 2

tm ∑
M
m=1 ϕ2

tm
) ,

where CV = σ/ |µ| is the coefficient of variation of the price
change. When CV → 0, the distributions of x and y tend to be
the same, so we have ϕtm = φtm.

Then,

lim
CV→0

ρ = 1.

When the coefficient of variation of market prices ap-
proaches to zero, a trader’s herding degree is highly related
to his confidence degree.

lim
CV→∞

ρ = 0.

When the coefficient of variation of market prices ap-
proaches to infinity, a trader’s herding degree is almost un-
related to his confidence degree.
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