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Non-Born-Oppenheimer study of the muonic molecule ion “He pn™*

Hang Yang(#1)!%, Meng-Shan Wu(Z & 1INLT,  Yi Zhang(5KIZ)!2,
Ting-Yun Shi(32 £ z)!, Kalman Varga®, and Jun-Yi Zhang(7K{% X)!

1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics,
Chinese Academy of Sciences, Wuhan 430071, China

2 University of Chinese Academy of Sciences, Beijing 100049, China

3Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

(Received 2 January 2020; revised manuscript received 5 February 2020; accepted manuscript online 24 February 2020)

Accurate non-Born—Oppenheimer variational calculations of all bound states of the positive muon molecular ion
4He ™ have been performed using explicitly correlated Gaussian functions in conjunction with the global vectors. All the
energies obtained are accurate in the order of 10~° Hartree (1 Hartree = 27.2114 eV). Compared with the binding energies

obtained from calculations based on the Born—Oppenheimer potential with the mass-weighted adiabatic corrections (Chem.
Phys. Lett. 110 487 (1984)), the largest relative deviation is up to 15%. By analyzing the average interparticle distances and
possibility distributions of interparticle distances of this system, it is confirmed that the Born—-Oppenheimer approximation
is reasonable for this system and that “He u* can be regarded as a system of positive muon bound to a slightly distorted

helium atom.
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1. Introduction

Positive muon p*, the antiparticle of muon, has at-
tracted considerable attention and has been extensively stud-
ied. As a lepton, it plays an important role for testing the
theory of quantum electrodynamics.!!'=3! Moreover, it has also
been used in searches for new physics beyond the Standard
Model[%-191 As required by these applications, put should be
trapped and cooled down to low temperature (around 10 eV)
since the typical p™ beams have relatively high energies and
poor phase space qualities.!'!! Some high-precision and high-
sensitivity u* experiments are in progress, such as the muo-
nium (Mu) spectroscopy experiment using microwave project
(MuSEUM) at Japan Proton Accelerator Research Complex
(JPARC)®! and the Mu-MASS project at Paul Scherrer Insti-
tute (PSI).['>13] Among these experiments, the helium buff
gas is usually used in the precooling process due to its effi-
ciency.

“Heu't was first observed by Fleming ef al. in the ther-
malization process of p' in the low-pressure He gas in
1981.11*] Interestingly, no muonium atom (p+e) was observed
in the same thermalization process. Later, using the model
of charge exchange collisions, Senbal!>l well explained the
experimental observation of Fleming et al. In addition, the
slowing-down process of pu* in gas mixtures He—Ar and He—

H,, the process during which u* is slowed from its initial
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MeV kinetic energy down to ~ 10 eV by collisions with gas
atoms, was also studied by Senba.[10]

The calculation!!”! of “He u* was performed by Fournier
and Lassier-Govers in 1982 using the Born—-Oppenheimer
(BO) potential for HeH™ reported by Kolos and Peek!!8]
and combining with the appropriately mass-weighted adia-
batic corrections calculated by Bishop and Cheung.!'®! In
1984, Fournier and Le Roy improved their calculations for
all bound levels of “Heu" using a new interpolation proce-
dure for the BO potential.[*’l Because the positive muon is
much like proton chemically (with the same charge and about
1/9 of proton’s mass), it is acceptable to use the BO poten-
tial for He H* in the calculations for “Hepu™. The BO po-
tential for He H* was further improved by Cencek et al.!*!]
who expanded the wavefunctions at an internuclear distance
of R = 1.46 a.u. (atomic unit) in terms of 600 explicitly cor-
related Gaussian (ECG) functions in 1995. Recently, using an
expansion of 20000 generalized Heitler—London basis func-
tions, Pachucki!??! obtained a very accurate BO potential with
the precision of about 2 x 10~/ cm™!. Later, new accurate
potential curves for “He H*, “He D*, 3He H, *He D" were
generated by Tung et al.!>’! using an expansion of 600 shifted
centers ECG functions and including the adiabatic correc-
tions. The accurate non-Born—Oppenheimer (non-BO) vari-

ational energies for bound states of “He H" with zero orbital
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angular momentum have been reported by Stanke et al.?*%]

However, for ‘He ut, there is no ab initio calculation until
now.

In this work, high-accuracy wavefunctions and energies
for “He 1 have been obtained by ab-initio calculations using
ECG basis functions. To avoid the complicated one-by-one
coupling of the orbital angular momenta, the global vector
representation!?®! is used. Convergence tests for the ground
state energy and virial factor are given for examining the re-
liability of our calculations. The probability distributions and
average values of interparticle distances are calculated in order

to analyze the structure of *He ut.

2. Theory

The total non-relativistic Hamiltonian for “He u* in the

laboratory coordinate has the following form

4 .2 4
A b; qiq;j
A=Y oy T4 (M
° l; 2m; i,jZ:I ri =7}l
J>i

where r;, m;, and g; represent the position vector, the mass,
and the charge of the i-th particle, respectively. Particle 1 and
2 refer to the He nucleus (&) and ut while the last two stand
for electrons.

To describe the intrinsic excitations of this system, the
center-of-mass motion is subtracted from the total Hamilto-
nian, and the internal Hamiltonian has the following form
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x; = riy1 — 71 is the relative coordinate, and
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is the momentum conjugate to x;. U refers to the transforma-
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tion matrix defined by
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where x4 is the center-of-mass coordinate.

ijxj, (i=1,2,3,4), (3)

The total wavefunction is expanded as

N
D =Y ce(d+Psad), “4)

k=1

where P34 means the permutation of two electrons and ¢y, is
the ECG basis function. ECG basis functions were first intro-
duced to quantum-chemical calculations by Boys and Singer
in 1960.127-28] Their matrix elements are analytically calcu-
lable and can be easily generalized for any N-body systems.
Moreover, they are easily adaptable to the permutational sym-
metry of the interesting systems. Due to these major advan-
tages, they are now widely used in the calculations of various

few-body problems. In the present work, ¢ has the form

¢k _ "U|2K+L

1
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where = (21,3, x3) and Ay, is the k-th parameter matrix,

v=uTz with uT =

(u1,u2,u3) is the global vector. Yy (D)
is the spherical harmonics while ) is the spin function. The
global vector representation!?®! simplifies the calculation of
matrix elements by avoiding the complicated one-by-one cou-

pling of the orbital angular momenta.
2K+L

Compared with the
spherical ECG basis, the factor |v plays an important
role in describing the increasing number of nodes for excited
rovibrational states.

The energy and wavefunction for each state are obtained
by minimizing the eigenvalue E through optimizing A, and

by solving the general eigenvalue equation
Hc=EOc. (6)

The optimization was carried out by the stochastic variational
method (SVM) which has been proved to be efficient and ac-
curate by various applications,?=3!l such as the calculation
of the scattering length for the scattering between two ground
state positronium atoms. 3% For simplicity, the values of w are
set manually instead of being optimized automatically.

In the present study, the mass used for a and p* are
mg = 7294.29954142 m and m+ = 206.7682830 m., which
are the CODATA 2018 recommended values.

(a.u.) are used throughout the paper unless stated otherwise.

Atomic units

3. Calculations, results, and discussion
3.1. Convergence test

The convergence of the ground state energy for “He ™
as a function of the basis-set size is shown in Table 1. As
the reference for the binding energies of *“He ', the ground
state energy of “He obtained is —2.9033045577 a.u. by us-
ing 700 spherical ECG functions. In order to accurately de-
scribe the rovibration and orbital angular momentum cou-
pling of “He ', three sets of u” are used, i.e., uT = (1,0,0),
(0.5,0.5,0), and (0.33,0.33,0.33). The energy obtained be-

comes lower as the basis-set size increases. Using 2800 ECGs,
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we get the ground state energy accurate in the order of
10~8 Hartree. Usually, the convergences of the wavefunctions
are slower than those of energies. In order to check the qual-
ity of the ground state wavefunction, the virial factor 7 is also
calculated and shown in Table 1. The virial factor is defined
as

v)

=l

27) (7

where (T') and (V) are the expectation values of the kinetic
energy operator and potential energy operator, respectively.
The closer to zero that 7 is, the better quality the ground state
wavefunction has. From Table 1 we can see that both (T') and
(V) have eight significant digits and the smallest 7 is in the
order of 107°.

Table 1. The convergences of the total energy, the expectation values of
kinetic energy operator and potential energy operator, and the virial factor
for the ground state “Hep ™.

Basis size Energy (T) (V) n
2000 —2.95914547  2.95914558 —5.91829105 1.77x1078
2400 —2.95914548  2.95914553 —5.91829102 8.23x107°
2800 —2.95914549  2.95914555 —5.91829105 9.55x107°

3.2. Expectation values of energies

For each of the rovibrational excited states, the largest
basis-set size and the global vectors used are the same as the
corresponding for the ground state. Compared with the ground
state, larger values of K in Eq. (5) are used for higher rovibra-
tional states. For the v-th vibrational state, 0 < K < v is used.
Consequently, it is more difficult and time-consuming for the
calculations of high excited states. Due to the slower conver-
gences, seven significant digits are obtained for the energies of
some high excited states. Comparison of our results for bind-
ing energies (E®) and those of Fournier and Le Roy®"! (Ef, )
is shown in Table 2. The parameter A = |(E® —E}; )/E®| rep-
resents the relative deviation. The rovibrational bound levels
are denoted as (j, V) with j and v being the rotational and vi-
brational quantum numbers, respectively. All our non-BO val-
ues for the binding energies are larger than the previous BO
results of Fournier and Le Roy as the relative deviations in-
crease along with the increase of j and v. The most weakly
bound state is the (j = 4, v = 2) state with the binding energy
14.576 cm™! for which the two approaches have the largest
relative deviation, i.e., about 15%.

Table 2. Comparisons of the binding energies we obtained (E®, in units of cm~!) with those of Fournier and Le Roy?’! (EEL) for *Hep". The parameter

A = |(E® — EY )/EP| represents the relative deviation.

i v=o0 Ep, 120 A v=1  Ej 120 A v=2  Ej 10 A v=3 Ej 10 A

0 12255670 122555 1.38x1075 | 5849.424 5849.0 7.25x1075 | 1768.258 1766.7 8.81x10~* | 134752 1342  4.10x1073
1 11805442 118049 4.59x1075 | 5509.037 5508.4 1.16x107* | 1553.094 15514 1.09x1073 | 69.972  69.6 531x1073
2 10924.802 10923.6 1.10x10~* | 4848.101 4847.1 2.07x10~* | 1146.993 11450 1.74x1073

39652028  9650.0  2.10x107* | 3905.776 3904.3 3.78x10~* | 601.933  599.6  3.88x1073

4 8041521  8038.7  3.51x107* | 2740.099 27382 6.93x107* | 14.576 12.4 1.49x107!

5 6161.176  6157.6  5.80x107* | 1430.195 14279 1.61x1073

6 4090486  4086.5  9.74x107* | 89.827 87.2 2.93x1072

7 1921391 19173 2.13x1073

3.3. Expectation values of interparticle distances

The expectation values of interparticle distances and the
virial factors for all the bound states of *Hept are shown
in Table 3. In order to provide a direct-viewing feeling, the
expectation values of interparticle distances are illustrated in
Fig. 1. For simplicity, we number all bound states in sequence.
From Fig. 1(a) we can see that the average distances between
o and pt ({rg—yu+)) increase quickly with the vibrational
excitations and slowly with the rotational excitations. The
(j =1,v = 3) state has the longest distance for (r,_,+). It can
be seen from Fig. 1(b) that the distances between ™ and the

electron ({r,+_)) have the same trend as (r,_,,+). Moreover,

the values of (r+_) are very close to those of (ry_,,+), i.e.,
(rut—e) = (rg_yu+) as shown in Table 3. Figure 1(c) shows that
the distances between o and the electron ({rq_)) first slightly
increase and then decrease as Vv increase for 0 < j < 4. Gen-
erally, (rq_e) changes slightly around 0.95 a.u. The distances
between two electrons ({re_e)) show the same trend as (rg_e),
see Fig. 1(d). To make a comparison, (rg_e) = 0.9296 a.u. and
(Fe—e) = 1.4222 a.u. are also calculated for the ground state of
“He atom. Consequently, the deviations for (rg_e) and (re_)
between *“He and *He 1t are small, i.e., (Fa—e)Hept ~ (Fa—e)He
and (ree)pep+ = (Fe-e)He. Therefore, it is reasonable to con-
clude that “Hep" can be treated as a u* particle weakly bound
to a slightly distorted “He.

043102-3



Chin. Phys. B Vol. 29, No. 4 (2020) 043102

Table 3. The average interparticle distances (in units of a.u.) and the virial factors for all bound states of “Hep™".

No. (V) (rg-u+)  (rae)  (ruy=—) (Fee) (o) (rae) (o) (ree) n
1 (0,0) 1.6221 0.9416 1.6616 1.4184 2.7091 1.2043 3.1581 2.4654 9.55%x107°
2 0,1) 2.0236 0.9547 2.0531 1.4495 4.3648 1.2623 4.8340 2.6050 5.12%x107°
3 0,2) 2.7387 0.9529 2.7730 1.4545 8.1219 1.2714 8.7005 2.6465 1.54 %1077
4 0,3) 5.0912 0.9354 5.1370 1.4308 28.3601 1.2151 29.2245 2.5545 2.05%x 1077
5 (1,0) 1.6343 0.9427 1.6727 1.4205 2.7499 1.2078 3.1984 2.4734 3.47%x107°
6 (1,1 2.0439 0.9553 2.0729 1.4508 4.4526 1.2646 4.9235 2.6107 1.96 x 1078
7 (1,2) 2.7916 0.9525 2.8263 1.4543 8.4378 1.2707 9.0251 2.6462 2.50% 1077
8 (1,3) 5.6295 0.9341 5.6744 1.4289 35.0737 1.2103 35.9701 2.5462 2.55%x 1077
9 2,0) 1.6589 0.9449 1.6954 1.4247 2.8334 1.2148 3.2810 2.4891 1.41x 1077
10 2,1 2.0860 0.9564 2.1142 1.4533 4.6382 1.2691 5.1130 2.6215 3.99 x 108
11 2,2) 29115 0.9516 2.9472 1.4535 9.1787 1.2684 9.7858 2.6440 297 %1077
12 3,0) 1.6967 0.9480 1.7304 1.4308 2.9644 1.2251 3.4108 2.5122 4.36x 10710
13 3,1 2.1539 0.9579 2.1811 1.4568 4.9463 1.2751 5.4280 2.6366 2.66x 1078
14 3,2) 3.1459 0.9496 3.1836 1.4512 10.7296 1.2625 11.3743 2.6361 9.01 x107°
15 4,0) 1.7491 0.9518 1.7794 1.4385 3.1513 1.2383 3.5968 2.5422 7.10 x 107°
16 4,1) 2.2562 0.9592 2.2826 1.4605 5.4307 1.2817 5.9246 2.6540 5.58x 1078
17 4,2) 3.7775 0.9443 3.8191 1.4442 15.7829 1.2458 16.5121 2.6094 2.11%x1077
18 (5,0) 1.8187 0.9563 1.8452 1.4476 3.4090 1.2541 3.8544 2.5782 1.06 x 1078
19 5,1 2.4141 0.9599 2.4405 1.4636 6.2274 1.2872 6.7434 2.6704 1.48 x 1078
20 (6,0) 1.9106 0.9609 1.9331 1.4575 3.7662 1.2716 4.2136 2.6189 3.54x107°
21 6,1) 2.7078 0.9584 2.7366 1.4637 7.8913 1.2865 8.4541 2.6770 4.99 %1078
22 (7,0) 2.0359 0.9653 2.0550 1.4675 4.2865 1.2898 4.7405 2.6624 1.00x 1078
6 - - 6
— =0 =6 —j=0
(a) —j=1 —j=1 (b) ==
i= mv=0 j=2
5 —j=3 o v= 5 —i= i
j=4 Av=2 - i s
/}E —_G= vv=3 N J —6
[ L4 et
& £ o =1
A =2
3 / 3 / v ou=3
P / /]
[
2 ] d / " / -
S/ / 2 VAR
5 10 15 20 5 10 15 20
Number of states Number of states
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(c) . (d) .
1.46 f
L]
0.96 ° / \
/o 1.45} / f * —j=0
o —_j=0 . g
~ N " —i=1 S —i=1
* 0.95 J=2 & 144} i=2
& U —_ . —j5=3
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Furthermore, the comparison of average interparticle distances between “He 1" and “He H™ is shown in Table 4. Due to the
lighter mass of u*, for the case of the zero total angular momentum, ‘He w has only four bound states. However, there exist
twelve bound states of “He HT for the same case. Though the average interparticle distances of the ground state *He u* are close
to those of “He H™ the average interparticle distances for “He u* are much larger for the excited states. In other words, “He H

Number of states

Number of states

Fig. 1. The average interparticle distances (in units of a.u.) for all bound states of *He .t

are more tightly bounded than “He "
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Table 4. Comparison of the average interparticle distances (in units of a.u.) between *He u* and “He H.[33

4Hepn* 4HeH*
UV | (reus)  (rae)  (rue)  (ree) (rgn+)  (rae)  (rut_e) (Tee)
(0,0) 1.6221 0.9416 1.6616 1.4184 1.5177 0.9356 1.5619 1.4052
(0,1) 2.0236 0.9547 2.0531 1.4495 1.6339 0.9430 1.6718 1.4210
(0,2) 2.7387 0.9529 2.7730 1.4545 1.7650 0.9491 1.7981 1.4346
(0,3) 5.0912 0.9354 5.1370 1.4308 1.9164 0.9535 1.9463 1.4455

3.4. Probability density distribution of interparticle distances

Compared with the average interparticle distances, the probability density distribution of interparticle distances will give

more information about the structure of “Heu™. The probability density of distance between particle i and j is given by

3
p(r,'_j):/dQn.i<¢‘5(chiL‘k—Ti_j)
k=1

<1>>r?_j, ®)

where @ is the wavefunction of a bound state, ri_; = r; — 7}, (--+) means the integration of relative coordinates (1,2, x3) and

S d£2,, ; means the integration over the angle of r;_;. p(ri_j) can be obtained easily since the matrix elements for Dirac delta

function § can be analytically calculated.

1.6

(a) - (07 0)

- (07 1)

1.2 0, 2)
E 08¢

QU
04r
LS

r Ja.u.

a—p

1.00
(b) 0.87 — (0, 0), Hep
) ——(0, 1), Hey
0.86F (0, 2), Hep
0.75 | 0.85¢ _
7
3
£ 050 /\
QU
0.4 0.5 0.6 0.7 0.8
r, Jau.
0.25 1 —— (0, 0), Hep
—— (0, 1), Hep
(0, 2), Hep*
— He
or L
0 1 2 3 4 0

r, Ja.u.

Fig. 2. Probability density distributions of p(r_,,+) and p(rq_c) for the (j = 0,v =0,1,2) states. In panel (b), p(rg—) for “4He is also shown.

Figures 2(a) and 2(b) plot the probability densities
p(ro-p+) and p(rg) for (j =0,v =0,1,2) as functions of
Tg+ and ro_, respectively. p(rq_,,+) of excited bound states
have the larger spatial extension than that of the ground state
while the number of nodes for p(r,_,,+) is equal to the vibra-
tional quantum number v. As shown in Fig. 2(b), the electrons
are centered around ¢ and their probability distributions are al-
most the same for different states. In addition, p(rq_¢) of “He
is also shown in Fig. 2(b) to make a comparison. Generally,
P (ro) of *He ™ is only little different from p(rq_c) of “He.
Interestingly, for Hep® with j =0 and 0 < v <2, p(rge)
becomes larger along with the increase of v for ro_ < 1 a.u.
while they are all smaller than p(rg_) of He in the same re-
gion of ry_.. This can be explained with two reasons: Firstly,
the electrons are attracted by wt and hence slightly deviate
from o. Secondly, the attraction of u™ becomes weaker for
higher excited states as the distances between pu* and elec-

trons are larger.

4. Summary

For the first time, non-BO calculations are carried out for
the structural properties of “He u* using ECGs with the global
vector representation together. Overall, the non-BO energies
for the rovibrational bound states are accurate in the order of
10~® Hartree. Compared with the BO values of binding ener-
gies obtained by Fournier and Le Roy, all the corresponding
non-BO values are larger. The largest relative deviation be-
tween them is about 15% for the most weakly bound state with
j=4and v = 2. In addition, the expectations and probability
density distributions of interparticle distances are discussed in
detail to confirm that “Heu™ can be regarded as a system of
1" bound to a slightly distorted “He and hence that the BO
approximation is reasonable for this system.
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