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The finite-time Mittag—Leffler synchronization is investigated for fractional-order delayed memristive neural networks
(FDMNN) with parameters uncertainty and discontinuous activation functions. The relevant results are obtained under
the framework of Filippov for such systems. Firstly, the novel feedback controller, which includes the discontinuous
functions and time delays, is proposed to investigate such systems. Secondly, the conditions on finite-time Mittag—Leffler
synchronization of FDMNN are established according to the properties of fractional-order calculus and inequality analysis
technique. At the same time, the upper bound of the settling time for Mittag—Leffler synchronization is accurately estimated.
In addition, by selecting the appropriate parameters of the designed controller and utilizing the comparison theorem for
fractional-order systems, the global asymptotic synchronization is achieved as a corollary. Finally, a numerical example is

given to indicate the correctness of the obtained conclusions.
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1. Introduction

Over the past decade, the integer-order memristive neural
networks (IMNN) have been developed in an unprecedented
way and widely used in various fields, such as signal and

(1.2 algorithm optimization,®! classification

image processing,
and automatic control,* and so on. At the same time, the rel-
evant dynamic behaviors have also attracted the attention of

s.0-81 As a generalization of integer-order cal-

many scholar
culus (IC), fractional-order calculus (FC) can be dated back
to the 17th century. Compared with IC operators, FC opera-
tors not only have hereditary and memory characteristics, but
also can increase the degree of freedom to improve the perfor-
mance of the system. So far, FC has been generally applied in

(9101 recognition systems,!! ') communica-

neural networks,
tion systems, 13! viscoelasticity of the material,!'*! and so on.
What is more important, it is necessary to introduce FC op-
erators into memrisitve neural networks to construct a novel
fractional-order memristive neural networks (FMNN), which
more accurately describe the dynamic performance of the net-
works. Some interesting results about FMNN have been in-
vestigated, such as Refs. [15-17].

Undeniably, time delays are unavoidable in electronic and
electric circuits due to finite switching speed of the amplifiers
in electronic components. Moreover, time delays are one of
the important reasons producing instability or oscillation of the
systems. [!8] Taking such facts into account, time delays should

DOI: 10.1088/1674-1056/ab7803

be considered in the FMNN. In the published papers,[!7-1%-20]
time delays have been studied as the main considering ob-
ject. In fact, neurons may have different communication
delays, therefore the study on multiple time delays FMNN
has more profound theoretical meanings and applications. >!]
It is well known that the system parameters may fluctuate
within a certain range due to inaccuracy of the model, en-
vironmental noise, external disturbances, and other factors.
Meanwhile, parameters uncertainty can produce poor dynamic
performance for the systems, such as instability, oscillation,
chaos, large steady-state error, and so on.

In addition, to the best of our knowledge, the activation

functions of many literature!!7-22-24]

were assumed to be Lip-
schitz, continuous or continuously differentiable. However,
the activation functions of FMNN are usually discontinuous.
The main reason is that signal output of neuron and informa-
tion transmission are discontinuous in actual models.>>2%! Tn
Ref. [25], Forti and Nistri pointed out that the model with dis-
continuous activation functions can highlight some crucial dy-
namical behaviors, such as the phenomenon of convergence in
finite-time toward the equilibrium point, the presence of slid-
ing modes along discontinuity surfaces, and so on. Consider-
ing the fact that various influencing factors could appear when
FMNN are applied to the engineering fields such as classifi-
cation and pattern recognition, it is desirable to explore the

dynamical performance about fractional-order delayed mem-
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ristive neural networks (FDMNN) with parameters uncertainty
and discontinuous activation functions.

Synchronization can be regarded as a typical collective
behavior, which refers to the coordination of events in a sys-
tem, and the phenomenon of consistency and unification in
time. At noted, synchronization not only can be found in
many physical systems, such as power converters and biologi-
cal systems,?”! but also has been applied to a wide variety of
engineering applications like image encryption and informa-
tion processing.[?8! In order to achieve the synchronization,
most of the results are obtained to ensure the asymptotic sta-
bility of error systems.>=3!l However, asymptotic synchro-
nization denotes that it takes infinite time from the trajectories
of the response to the trajectory of the drive system.[?>2332.33]
In fact, it is more desirable for networks to reach synchroniza-
tion in a finite-time and achieve optimization in convergence
time in physical and engineering.?*3% Hence, it is necessary
to investigate the finite-time synchronization of FMNN.

Up to now, the finite-time synchronization of FMNN
has been studied in previous literature.37-#11 In Ref. [37],
by designing a simple linear feedback controller, the finite-
time synchronization of FMNN was derived according to
Gronwall-Bellmaan inequality. The finite-time synchroniza-
tion of FDMNN was achieved by utilizing Lyapunov theory,
norm properties, and linear feedback controller in Ref. [38].
In Ref. [39], the authors dealt with the finite-time synchroniza-
tion for a class of FMNN by considering discontinuous activa-
tion functions, employing the Young inequality, and applying
the fractional-order Lyapunov stability theory. Some sufficient
criteria were obtained to ensure the finite-time projective syn-
chronization of FDMNN by utilizing the linear feedback con-
troller and employing Gronwall-Bellman integral inequality
and Volterra-integral equation in Ref. [40]. By using Laplace
transform, the generalized Gronwalls inequality and linear
feedback control technique, the finite-time Mittag—Leffler syn-
chronization of FMNN was achieved in Ref. [41]. However,
it is noteworthy that there are few results on the finite-time
Mittag—Leffler synchronizations for a class of FDMNN with
parameters uncertainty and discontinuous activation functions.

Inspired by the aforementioned discussions, the finite-
time Mittag—Leffler synchronization is investigated for
fractional-order delayed memristive neural networks with pa-
rameters uncertainty and discontinuous activation functions in
this paper. Based on non-smooth analysis theory and the prop-
erties of fractional-order Lyapunov functions, the synchro-
nization conditions are put forward under the framework of
Filippov. The crucial contributions of this paper are at the fol-
lowing aspects:

(i) Compared with previous results, our model considers
the parameters uncertainty and discontinuous activation func-
tions. So, our system is more general.

(ii) By designing a new type of discontinuous feedback
controller, some sufficient criteria for the synchronization in
finite-time are obtained. Meanwhile, the upper bound of the
setting time is explicitly evaluated.

(iii) By simplifying the designed controller, the asymp-
totic synchronization of FDMNN with parameters uncertain-
ties and discontinuous activation functions is realized as a
corollary.

(iv) In this paper, the assumptions about activation func-
tions are more general. Moreover, our results extend the exist-
ing results in Refs. [19,32,39].

The organization of this paper is summarized as follows.
In Section 2, the system models and some preliminaries are
introduced. In Section 3, some sufficient criteria of the finite-
time Mittag—Leffler synchronization are established by using
the theory of fractional-order differential equations with dis-
continuous right-hand sides. Subsequently, numerical simu-
lations are given to describe the effectiveness of the obtained
conclusions in Section 4. Finally, conclusions are drawn in
Section 5.

2. Preliminaries and system description
2.1. Caputo fractional-order derivative

Definition 1*?! The fractional-order integral of order o
for an integrable function g(7) : [0,+e0) — R is denoted by

o1%g(1) = ﬁ [0,

where o > 0, and I'(+) is the Gamma function which is defined
by
I'(x) :/ e ' ldr, (Re(x) >0),
0
where Re(x) denotes the real part of x.
Definition 24?1 The Caputo fractional-order derivative
of order o for a function g(r) € C"([0,+),R) is denoted by

1 1 (n)
G,
L(n—a)o (t—g)ent!

where t > 0 and n— 1 < @ < n, n € Ny. Specifically, when
O<a<l,

6D g(t) =

oy L * g(6)

The relevant properties of Caputo fractional-order deriva-

tive are as follows.

Property 114!

C"(]0,4),R), then

Forn—1<a<n neNy, if g(t) €

n—1 (k) 0
DR e = ()~ X S
k=0 '

particularly, 0 < o < 1, one have

ol GDfg(t) = g(t) — g(0).
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Property 2[*?! For any constants w; and ws, if g(t),
f(@) € C"(]0,4),R), and o > 0, the linearity of Caputo
fractional-order derivative can be written as

§Df (w1g(r) +waf (1)) = wiGD'g() +waG DY £ (1)

Property 3“2 For g(t) € C"(]0,+),R), the Laplace
transform of the Caputo fractional-order derivative is

n—1
(S) _ Z socfkflg(k)
k=0

wheren—1 < a <n,neN;, G(s)=ZL{g(r)}, and s is the
variable in Laplace domain. In particular, when 0 < o < 1,
then

Z{GDg(t):s} = s

ZL{§D%g(t);5} = s*G(s) — 5%~

Lemma 13! If g(¢) € C'([0,
equality holds almost everywhere

'2(0).

+00),R), the following in-

6D |g(t)] <sign(g(r))§Dg(t), 0<a<l.

Lemma 2144

following linear fractional-order differential inequality with

(comparison principle) Considering the
time delays

SDYf(r) < 0<a<l,

+Zlf 7)) 0

€ [-7,0],

where f(¢) is continuous and nonnegative in (0,+eo), and

B(r) >0, 1€ [—1,0], 7= sup {r;}, Tj > 0 is the transmis-
1<j<n

sion delay. And the linear fractional-order systems with time

delays
6D g(t) = —ng() +Zl,gr—r,) O<a<l,
Jj=1 2)
8(1) = 9, e[-1,0],

where g(¢) is continuous and nonegative in (0,
and /; > 0, then

+o0). If n >0

f() <g(t), Vi€ (0,4).

2.2. System description

In this subsection, a class of FDMNN with the parameters
uncertainty and discontinuous activation functions as the drive
system is defined by

n

§D%xi(t) = —(di+Adi()xi(2) + Y (aij(x;(t
j=1
n
+Aa,j f] x] )+ Z ij xj )
Jj=1
+Ab;j(t))g)(x;(t — ;) +1i, 3)

where o € (0,1),r >0andi,j=1,2,...,n

(x1(2),x2(), -, xu(t))T

states; d; > 0 is the self-regulation parameters neuron; fj(-)

(i,j €Ny )s x(r) =
€ R" denotes the vector of neuron

and g;(-) denote the discontinuous activation functions; 7; > 0
is the transmission delay; J; denotes the external input; x;(s) =
0:i(s) € C([-7,0],R) is the initial condition of system (3),
where T = sup {7;}; Adi(t), Aa;(t), and Ab;;(t) are the pa-

1<j<n
rameter uncertainties and bounded, defined by

|Ad;(t)| < @,
|Aa
|Ab,]

| < oy,
0| < pijs
where @; > 0, @;; > 0, and p;; > 0. Meanwhile, d; > ;.

a;j(x;(t)) and b;;(x;(t
weights, defined as

aij(xj(1)) = { iy, (0| > 75,

dij7 |xj(t)| < T/a

(
(

— 7;)) are the connection memristive

ot ey = L by it =T)| > T
Pl =) = { bij, |xj(t—1)| <Tj,
a,-j(:I:Tj) = dij or dij and b,j(:tT]) = l;ij or l;ij for i,j =
1,2,...,n, where T; > 0 is switching jump of memristion; d;;,
dij, Z;,'j, and Z;,'j are any constants. The activation functions
fi(+) and g;(-) satisfy the following assumption.

Assumption H1 Fori € N, the activation functions f;(7)
(and g;(¢)) have at most a finite number of jump discontinuities
pr (and ¢). Moreover, there are finite right and left limits,
fi(pi) (and gi(g)) and f(p; ) (and gi(G; ) respectively.

Similarly, the response system is defined as

n

Z a;ij(yj(t

=1

n

Z ij(vi(t—15))

=
+Ab;(1))g; (vt = 1) + i+ ui(t), @)

(yl(t)7y2(t)7"~ayn(t))T; u(t) =
denotes the control input; y;(s) =

§DMyi(t) = —(di+Ady(t

JFAaz]( f] y]

where i € Ny and y(r) =

(1 (1), u2(t), -, un (1))T

¢i(s) € C([—7,0],R) is the initial condition of system (4);
aij(v;(t)) and b,/ (yj(r—

ooy = G (0> T,
Clzj(yj(t)) = { dij, ij(t)| <Tj,

7;)) are denoted by

bij |yj(t—1))|>T;
b"y't—T' :{V’/ J J Jo
OB = b it — o) < 75
aij(:I:Tj) = dij or dij and blj(ﬂ:T]) = i),‘j or I;ij for i,j =
1,2,---,n, where switching jumps 7; > 0, weights d;;, dj, Bij,

and b; ; are any constants.

The drive system (3) and response system (4) are discon-
tinuous due to the existence of discontinuous activation func-
tions and memristors. Hence, we introduce the concept of Fil-
ippov solution to analyze the above systems.
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Definition 3% If there exists a neighborhood N of xg
such that F(N) C M for any open set M containing F(xp), a
set-valued map F with nonempty values is said to be upper-
semi-continuous at xo € E C R". F(x) is said to have a closed
(convex, compact) image if for each x € E, F(x) is closed (con-
vex, compact).

Let the set-valued maps be as follows:

aij, lx; () > Tj,
Klajj(xj(t))] = § colaij, dij}, |xj(t)|=Tj,
dij, lx; (1) < Tj,
bij, xj(t — )| > Tj,
Klbij(x;(t = 7)) = q co{bij.bij},  |x;(t =) =T,
bij, it = )| <Tj,

where i, j € N, and co denotes the convex closure of a set.
Klaij(x;(t))] and K [b;j(x;(t —T;))] are all closed, con-
vex, and compact in x;(¢) and x;(r — ;) respectively.

Clearly,

From Assumption H1, f;(-) and g;(-) possess only iso-
lated jump discontinuities. Hence, for all x € R",

K[f(x)] = (K[fi(en)]. K[ @)], - K[ fula)])
Klg(0)] = (Klg1(x1)]: Klg2(x2)]; -, K[gn (en)])T,
where  K[fi(x;)] = co{min{f;(x),fi(x; )}, max{fi(x]),

fit)}} and - Klgi(xi)] =
max{g;(x;). &i(x; )}}-

Definition 4(*>4° If the following conditions are valid

co{min{g;(x;"),  &i(x;)},

(i) x;(z) is continuous on [—7,T) and absolutely continuous
on [0,7). (ii) x;(z) satisfies

ED%x(1) € —(di+ Adj(t Zn: Klaij(xj(t
+Aa;j(1))K[fj(x;( i bij(x;(t — 7;))]
=
+Ab;j(t))K|g(x;(t — ;)] + 1, ®)

then, a function x(¢) = (x1(t),x2(¢), - ,x,(¢))T: [~7,T] —
R", T € (0,4o0) is a solution of the drive system (3) on

[—7,T], t= sup {7;}, 7; > 0is the transmission delay.
1<j<n

Based on the measurable selection theorem, ! if x;(¢)
and y;(r) are a solution of the systems (3) and (4) respectively,
then there exist the measurable functions €;(¢) € K[fj(x;(1))],
gj(1) € K[fi(y;(0)]. &1) € Klg;(x;(t — 7)))]. €(t) €
Klg;j(vj(t —1;))], di;(t) € Klaij(x;(1))], di;(r) € Klaij(v;(1))],

b;(t) € Kbij(x;(t — 7)), and bij(t) € K[byj (y;(t — 7;))], such
that
SDEx;(1) = —(d;+Ady( i (1) + Aayj (1)) (1)
Y (B 0) + by (1))elo) + ®)
j=1

and
6D yi(t) = —(di+Adi(t))y1'(f)+i}(&ij(t)JrAaij(t))ej(t)
=
i (£) 4 Abij(1))€}(t) + i + ui(t). 7

In order to obtain our results, it is necessary to give the
following assumption for the discontinuous activation func-
tions.

Assumption H2 For any i = 1,2,...,n, suppose that
there exist constants F; > 0, G; > 0, L; > 0, and M; > 0, such
that

|&i(1) — &(0)] < Filyi(t) —xi(t) |+ Li,
|&(t) = & (1) < Gilyi(t — @) = xi(t = 73) [ + M;,

where €(1) € K[fi(x(t)]. &(t) € KIfiGi(1). &) €
Klgi(xi(t — )], and £(t) € K[gi(yi(t — 7:))]-

Remark 1 The relevant dynamic behaviors of fractional-
order memristive neural networks have been investigated
in Refs. [22-24]. However, the activation functions are
Lipschitz-continuous and satisfy f;(£7;) = g;(£7;) =0. In
our paper, the activation functions are discontinuous and
Fi(&T;) = g;(£T;)
about activation functions are more general and reasonable in

= 0 are removed. Hence, our assumptions

practical application.
Lemma 3 Under the conditions that Assumptions H1 and
H2 hold, then

|diij(1)€j(r) — di;(t)€;(1)]

Fily;(t) —x;(1)] +aiL;
+aij — dij|(FiT; + L; + €5), ®)
|bij(t)ej (1) — bl ()€ (1)]

< bijGjly;(t — ;) = x;(t — 7)) + biM;
+|13,»j—13,»j|(G,-T,»+M,-+s;f), )

< @

|"fj(o+)|}, and 8]’.k =

where i,j = 1,2,...,n, a;; = ma
max{|b;;|,|bij|}, € = max{|f;(0"
max{lg;(07)]; g (07}

Proof In order to proof Lemma 3, there are four cases to

be considered.
Case 1 |x;(t)| < Tjand |y;(r)| < T}, one has
|dijj(t)e;(t) —ai;(t)e;(t)]
= |dije;(t) —dije;(t)]
< laij|Fjly;(r) —x; ()| + |dij|L;
aijFilyj(t) —x; ()| + ai;L;
-|-|a,-j—aij (F}'Y}"FL]‘-FS;); (10)

VARVAN

Case 2 |x;(t)| > Tjand |y;(r)| > T}, then

|dijj(t)e;(t) —ai;(t)e;(t)]

= |aije;(t) —dije;(t)]

040202-4
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IN

|aij|Fily; () — x; ()] + |ai;|L;
< @Fjly;(t) —x;(t)| +ai;L;
+dij — dij| (FiTj + Lj + € ); an

A

Case 3 |x;(t)| < Tj and |y;(t)| > T}, one has

|dij(1)€;(t) — i (1) (1)]
= |dije;(t) — dijej(t)]
|ij|Fjly (1) —x;(0) |+ |aij | L;
+aij — dij| Fjlx;(1)| 4 |dij — dij| (L
a;ijFjly;(t) —x; ()| +aiL;
+|di — i | (F T+ L+ €1); (12)

IN

jTE)

IN

Case 4 |x;(t)| > T; and |y;(t)| < T}, then

|dij(t)e;(r) —dj; ()€ (1)
= |dije;(t) — dije;(t)|
< |aij|Fjly;(t) —x;(t)| + |ai;|L;
+aij —dij| Fjly;(1)| 4 |dij — dij|(

A

LjJrS;)

IN

aijFjly;(t) — x;(t)| +ai;L;

+laij — aij| (F;Tj+ L+ €f); (13)
from expressions (10)—(13), inequality (8) holds. Similarly,
we can prove that inequality (9) holds. This completes the
proof of Lemma 3.

Definition 533! If the equilibrium point of the system (3)
is global Mittag—Leffler stable, the system (3) is said to be
global Mittag—Leffler stable.

Lemma 4147431 If the system (3) has an equilibrium point
x* and there exists a Lyapunov function V (z,x(z)) : [0, 4o0) X
D — R" and class-k functions v; (j = 1,2,3) satisfying

vi([x@)[]) <V (e,x(1)) < wa(llx@)I]), (14)
DRV (1,x(1)) < —v3(llx(n)1]), (15)

where o € (0,1) and the origin is included in a domain of
D C R™
asymptotically stable.

Lemma 5834

[0,+00) and the following inequality holds

So, the equilibrium point x* of the system (3) is

Let V(¢) be a continuous function on

DXV (1) < yV (1),
where 0 < a < 1 and 7 is a constant. Then
V(1) <V(0)Ea(7%),

where Eq(-) denotes the one-parameter Mittag—Leffler func-
tion.

3. Main results

The synchronization error is defined as e(7) = y(¢) — x(¢)

from the drive system (6) and response system (7), the error
system can be written as

§DYe;(t)
—(di+ Ad)er(e) + Y. (1)1 (1) — 1) 1)
j=1
; 21 Ay (6)(&5(6) — &5(0)) + ilAbfjm(e;(r) —e)

AM= o

+ Y (bij(1)€(£) — B ()€} (1)) + ui(t). (16)

1

J

Next, the Mittag—Leffler synchronization of FDMNN
with the parameters uncertainty and discontinuous activation
functions are obtained by designing a new type of discontin-
uous feedback controller. In addition, the upper bound of the
setting time of the global Mittag—Leffler synchronization in
finite-time is explicitly evaluated.

The discontinuous feedback controller ;(z) is defined as

Lt,'(l) =

wherei=1,2,...

—k;ei(t) — q;sign(e;(r)) — usign(e;(t))|ei(r — )|, (17)

., ki > 0,7 >0,and 1; > 0.

Remark 2 Since our system is discontinuous system with
parameters uncertainty and discontinuous activation functions,
a new discontinuous delayed feedback controller is proposed
to deal with such system. On the one hand, it can be applied
to solve the parameters uncertainty because of the significant
changes of the environment, on the other hand, by analyzing
such controller, the reliability and safety of system can be ob-
tained.

Theorem 1 Suppose that the Assumptions H1 and H2
hold, if the following inequalities hold
A* >0,

B*>0,
o7 >0,

where i = 1,2,....n, 0 < o < 1,

n

Y (aL; + laij —
=1

n n - A v

,Zl piiM; — _)Zl(bijM/ + |bij — bij|(GiMj + M + €]))}, A" =
J= J=

ri >0, 0f = ri{q; —
n

dij|(FiL; + Lj + €)) — _Zl ;L —
j:

minlgign{r,-(d,- + kl* — CL),) Z r]a], i

j=1
Z rib;iGi— Z rjp;iGi}. Then the drive

‘): ri®@;iFi},

B* =minj<j<,{riti—
system (3) and response system (4) are global Mittag—Leffler
synchronization in finite-time based on the controller (17), and
the time upper bound 7* is evaluated by

/o

é riles(0)T(c+1)

T* < _
X o
i=1

040202-5
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Proof Constructing the following Lyapunov function
n
V() =Y rilei(t)], (18)
i=1

where r; > 0.
Based on Lemma 1, one has

DYV (1) < Zr,s1gn ei(t))5D%e;(t). (19)

From expressions (16) and (17), inequality (19) can be
written as

6DV (1)

< Zn: risign(e;(1)){—(d; + Ad;(t))e;(t)

+
.M:

<
Il
R
\.
I

aij(1)g; (1) — dj;(t)g; (1)) + Z, Aaij(1)(j(1) — &;(1))

=+

1=
>
Sy

)= bi;(0)ej(1)

ei(t) —g;sign(ei(r)) — liSIgn(ei( Dlei(t =)}
ri(—di — ki + @) ei(1)]

~.
<%

IN
M= |

=

Il
-
~.
Il
—_

M:

aij(1)e; (1) — diy (1) (1)]

=

+
M:

rilAaij(1)||(&;(t) — & (1))

i=1j=1
+ )Y rilAbi(1)||€j(t) — (1)
i=1j=1
+ Y Y rilbij(0)€)(e) — by (1) € (1)
i=1j=1
i"zq, Zrlll|el 1 (20)
i=1

According to Lemma 3, one has

DV (1)

IA
+ ’ =
- J:j
(agE

Il
—_
~.
Il
—_

i(—di — ki + ;) |ei(t)

Zrllllel l

ri(aji+ @i)Filei(t)|

=

_|_
D=

rj(bji+ pji)Gilei(r — )|

I
—_
~.

Il
—_

4
M:

—q; +Zar,,L +Zpu

Jj=

_|_
'MS

(@;jLj +1aij — dij|(FiLj+ Lj +€}))

~
SR

Z(bz,M + |bij —
j:

bij|(GiMj+M;+¢))].  (21)

According to Theorem 1, one has

n
A* = min {r,(d +k* Z rja_j,-E
=

1<z<

n
— Z rjwjiFi} >0,
j=1 (22)

B* = min {r,l, Z rib;iGi — Z ripjiGi} >0,
Jj=1 J=1

1<i<

Q; >0,

where O = ri{q] — | l(ale + |ai; —
j_

n n - PN v
= X piiMj— X (bijM; +[bij = bij|(G;M; + M, +
J= J=

dij|(FjLj +Lj+€j)) —

Zl (D.lj

€;))}-

From expressions (21) and (22), one has

6DV (1) < =A*V (1) =BV (i —17) — ZQl
< —AV(1). (23)
Based on Lemma 5, we have
V() SV(0)Eq(-2"1%). (24)

Hence, inequality (24) can be concluded as

n
Zri|e,
i=1

From inequality (25), we can obtain

)l <Z"z|(Pz 0)|Eq(—A71%). (25)

maxlgign{l",'}
minlgign{r,’}

eI = 19(0) — 9(0)]ls Eo(~271%),
which implies that the equilibrium point ¢* = 0 is Mittag—
Leffler stable. Based on the Definition 5, the system (16) is
Mittag—Leffler stable, which means that it completes the proof
of global Mittag—Leffler synchronization. In the following, the
upper bound of the setting time of the global Mittag—Leffler
synchronization in finite-time will be given.
From expressions (21) and (22), one also has

(ngE

oDV <-Y 0. (26)

i=1

There exists a function A (¢) > 0 such that

DMV () +A() ==Y 0. 27)

-

i=1

Using Property 2, expression (27) can be written as

V(t)=V(0)+oIZA(t) = —OI“ZQ,. (28)

From Definition 1, one has

1

AW = Fg h =0T AL )
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Since A(t) > 0for £ € [0,1], (¢
Then

—8)* ' >0and () > 0.

of“A(r) > 0. (30)

Combining expression (30) and V() > 0, we can obtain
n
—V(0) < —ol* ) O;. (31)
i=1

Similarly, based on Definition 1, one has

o < * 1 ! _ ~a—1 C *
7OIt ,:ZIQI - F((X)/O(t C) (;Qz)dg
_éQ;

Combining expressions (31) and (32), one also has

—V(0) < ==L, (33)

n /o
Y rilei(0)|T(o+1)
i< | E— , (34)
Yo
i=1
where QF = ri{q; — (auL + |aij — dij|(F;Lj + Lj + €})) —

j=

n
Z w;;L; — Z pijM; — Z (b”M + |bz/ U‘(GM+M+
j:
&

1
7))} And 1t 1mphes that the upper bound of the setting time
of the global Mittag—Leffler synchronization in finite-time is
denoted as
n /o
;] rile;(0)|T(a+1)
T < | = - . (35)
L0
i=

Therefore, the state trajectories of error system (16) will con-
verge to the origin in finite-time. This completes proof.

When the parametric uncertainties Ad;(r) = 0, Aa;;(t) =
0, and Ab;;(r) = 0. As a special case of Theorem 1, the fol-
lowing result can be obtained.

Corollary 1 Under the Assumptions H1 and H2, if the
following inequalities hold

A* >0,
B* >0,
Q7 >0,

wherei—12 L 0<a< 1,

r > O, or =r{q —
): (aiLj + |dij _au|(FL +Lj+E€; ) — Zl(Eiij + \i?ij —

J
= mini<j<,{r;i (di +k}) —

v

b I(Gij +M; + g))} AT

n n —

Y I‘jﬁjiFi} and ﬁ* = minlgign{rili - Y I"jbjiGi}. Then
j=1 j=1

the drive system (3) and response system (4) are global
Mittag—Leffler synchronization in finite-time based on the
controller (17), and the time upper bound 7* is evaluated as

n l/o
L rilei(0)[C(a+1)

T* < i=1

Y O
i=1

Remark 3 Compared with Theorem 1 of FDMNN in
Ref. [19], Corollary 1 not only does not require boundedness
for discontinuous activation functions, but also gives the time
upper bound of synchronization. Hence, the results (see The-
orem 1) of FDMNN!!"I can be directly obtained from Corol-
lary 1.

When the parametric uncertainties Ad;(t) = 0, Aa;;(t) =
0, and Ab;;(t) = 0, and the transmission delays 7; = 0. Based
on the controller (17), the following result can be obtained.

Corollary 2 If the Assumptions H1, H2, and the follow-

ing inequalities hold
A* >0,
Q; >0,

where i = 1,2,...,n, 0 < a <1, r; >0, QF = ri{q] —

L (@l + lay — ay|(FLy + Lj + €7))}, and A" =
j:

n
min;<j<,{ri(d;i + k) — ¥ r;a;iF;}. Then the drive system (3)
j=1

and response (4) can be achieved to global Mittag—Leffler syn-
chronization in finite-time. Meanwhile, the time upper bound
T* is evaluated as

n /o
X rilei(0)|T(a+1)
T* < i=1

Lo

Remark 4 When neglecting the effects of time delays
and parameters uncertainty, the finite-time synchronization re-
sults (see Theorem 1) of FMNNI[*! are the special case of
Corollary 2.

Corollary 3 Under the Assumptions H1 and H2, the
drive system (3) is synchronized in finite-time with the re-
sponse system (4) under the delayed feedback controller (17),
if the following inequalities hold

A* >0,
B* >0,
Q; >0,
where i =1,2,...

n
M, 0<a< I,Q?Zq;‘— Z(éiij+|ﬁij_
=1

=
dij|(FjLj + L;j + €7)) —

n n
Z wijL] — 'leiij Z (b,jM +
j: j_

| l] ,J|(GM +M +8 )), )L*:minlgign{dl+k;ﬁf ;i —

n _
_ZlajiFi - ‘lejiFi}, and B* = minj<;<,{t; — _ZlbjiGi -
J= J= J=
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n

Y. p;jiGi}. Moreover, the settling time for synchronization of
Jj=1
FDMNN with parameters uncertainty and discontinuous acti-

vation functions is obtained as

n /o
L lei(0) (e +1)
* i=
T < .
L o7
i=1
n
Proof Letr;=1inV(¢t) = ¥ rile;(t)], one has
i=1

- Zl i)

Hence, we can obtain Corollary 3 by utilizing a similar ap-
proach in the proof of Theorem 1.

Remark 5 Note that the existence of the term sign(-)
in controller (17) can produce chartering phenomenon, espe-
cially when the errors of system (16) vary around zero. In
order to deal with the problem of the harmful chattering, the
symbolic function sign(-) can be replaced by the following sat-

uration function!*! in numerical simulation or practical appli-
cation:
iU
Lo A0y,
\%
t e;(t
sat(e;(t),v) = il ), -1< 19 <1,
\4 v
et
_17 l( ) S _17
\4

,nand v > 0 is a small constant.
— ;) in expression (17),
the following controller is designed to achieve the global

wherei=1,2,...
When neglecting the effect of e;(z

asymptotic synchronization with the corresponding FDMNN:

M,’([) = —kje; (l)

,n, ki >0, g; > 0, and sign(-) denotes sym-

—qisign(e;(t)), (36)

where i = 1,2,...
bolic function.

Corollary 4 Under the Assumptions H1 and H2, choos-
ing proper parameters k; and g;, the following relationships
hold

Qi >0,
n
0< Y Bi<Asin(arm/2),
i=1
where i =1,2,...

n
n0<a<l, Q=gq— Zl(di,fL.i+ |ij —

]:
n n noo_
- X oL — X piiMj— X (bijM; +
Jj= Jj= Jj=
‘l;ij — l;ij|(G 'M' +M' + 8*)) ), = minlgign{di + ki — ; —
_ n
Z ClﬂFl Z CD'],F} and ﬁ, = Z bjiG,'-f— Yy pj,'Gi. Then, the
=1 =

j=1
drive system (3) and the response system (4) will achieve the

global asymptotic synchronization.

dij|(FiLj + Lj + €7))

CDOCV

Proof Constructing the following Lyapunov function
n
V(i)=Y le(t)|- 37
i=1
Similar to the above method, one has

()5D7 ei(t)

/\
[ ngb
Z.
ag
=8
i‘

(—di — ki + ;) ei(t)]

IN
M:

+
‘M: —_

Il
—_

~

Il
—_

a;j(t)e;(t) —

(e 1)

+
&
M= TP

Il
-

~.

Il
_

|Aaij(1)][(€;(r) —&;(1))]

|
[;ﬂ:
7
s
(ngE

T
[
~.
I

|Abij (1)1 (1) — & (1)]

(D) (1) =B (1€} (1))

+
0=
1=
=

Il
—_
~.

Il
-

non
(—di —ki+ ;)|ei(t H—ZZ a]z"’wle‘et()l
i=1j=1

IA
M= -

+ —
-
M=

Il
—_

~.

Il
—_

(bji+pji)Gilei(t — )]

n

—qi+ Z sz +szj

j=1 j=1

+
M:

I
R

n

(@ijLj+ |aij — dij|(F;L;j + L; +E; )
1

+
J

=

Z(b,,M +|bij — bij | (GiM; + M+ €7)) | . (38)

According to Corollary 4, we obtain that
n n
=qi— Y @Li— Y pijM
= =

(@ijLj+aij —

[v]:

dij|(FiLj+L;j+ 7))

~.

=

Z (bijM; + |bij —
=

> 0. (39)

bij|(GiM;+M; +€7))

From expressions (38) and (39), one has

DAV (1) < —AV(1 +Zﬁ] (t—1), (40)

where A = min;<;<,{d; + ki — @; — Z ajiF; — ): ®;;Fi} and
=1 =1

n _ n
Bi = ‘Zl bjiGi+ '):1 pjiGi
Jj= Jj=
Considering the following system

SDOW (1) = —AW (¢ +Zﬁ, (t—1)), 41)

where W () > 0 and the initial value condition of W (¢) is con-
sistent with V(¢).
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According to Lemma 2, one has

0< V() <W(r), Vrel0,4o).

Obviously, W* = 0 is an equilibrium point of the sys-
tem (41). Next, we will prove that the equilibrium point of sys-
lim W(t) =0.

t—r+oo0

Based on Property 3, the Laplace transformation of the

tem (41) is the global asymptotic stable, i.e.,

system (41) can be written as

sOW (s) —s* 1w (0)
Joo N
— 2w+ |

ZBJ

W (r—1;)dr. (42)

The characteristic equation of the system (42) can be writ-
ten as

s+ A=Y Bje U =0. (43)
j=1

Assuming that equation (43) has pure imaginary root
s=o0i=|o|(cos(mw/2)+isin(+m/2)), where o is areal num-
ber. Substituting it into Eq. (43), one has

T T
lo| [cosz—&—isin(izﬂ +A

n
= Y Bjlcos(a7;) —isin(aT;)]. (44)
j=1
Discussing the real part and imaginary part of Eq. (44)
respectively, we have

(XTC n
|o|cos - +A= ‘Zl Bjcos(oT)),
j=

or ”
|G|sin(i—) —
2 =t

g Bjsin(o7T;),

(45)

By utilizing the properties of trigonometric functions, we
have

2

(§ pentony) (£ o)

BiﬁjCOS(G(Ti—T]‘)). (46)

I
1= ¢
M=

i 1

1j

Then, combining the real part and imaginary part, one has

2 2
(Gcosan —4—)») + (|O'|sin (:I: Oc;))

Z iBjcos(o(ti—1))). 47

HM:

Considering |6|® as variable of Eq. (47), the discriminant
of Eq. (47) can be written as
- TJ)))

A= (27Lc0sm> —4<7L2
2 i=1j=1

Xn: anﬁlﬁ]cos

(Z“Z BiB;cos(a(Ti— ;) — lzsin2<j: O‘;))

(o o)

Since 0 < o < 1 and 0 < Z[Bl<lsmom/2) A<O

\ /\

which implies that equation (47) has no solution, i.e., the char-
acteristic equation of Eq. (41) has no pure imaginary roots for
any 7; > 0.

Based on Lemma 4, the zero solution of system (41) is
Lyapunov-global asymptotic stable. According to Lemma 2,
the zero solution of error system (16) is Lyapunov-global
asymptotic stable. Hence, the global asymptotic stable of error
system (16) can be achieved. This completes the proof.

Remark 6 In Ref. [32], while the activation functions are
Lipshits-continuous and f;(£7;) = g;(£7T;) = 0, the asymp-
totic synchronization results (see Theorem 3) of FDMNN can
be obtained. Hence, Corollary 4 can be regarded as a gen-
eralization of the synchronization results (see Theorem 3) of
FDMNN. 32

Remark 7 It is well known that time delays are unavoid-
able in practice engineering due to finite switching speeds of
the amplifiers. However, in most papers, 3> the dynamic
performances of FMNN have been studied without consider-
ing time delays. In our paper, the synchronization of FMNN
with multiple time delays is investigated. At the same time,
we also give a scheme to deal with the problems about FMNN
with multiple time delays.

Remark 8 Obviously, the controller (36) is a special
case of the controller (17). Based on controller (17), both
finite-time Mittag—Leffler synchronization criterion (i.e., The-
orem 1) and global asymptotic synchronization criteria (i.e.,
Corollary 4) are established. Apparently, three groups of
adjustable parameters (], ¢;, and 1;) are involved in con-
troller (17), which implies that the desired performance (finite-
time Mittag—Leffler synchronization and asymptotic synchro-
nization) can be achieved by selecting the appropriate parame-
ters to satisfy the proposed conditions in Theorem 1 or Corol-
lary 4. However, considering the ease of implementation of
the designed controller in actual engineering, both the con-
trollers (17) and (36) are necessary to study according to dif-
ferent engineering requirements.

4. Numerical examples

In this section, an examples is provided to illustrate the
validity of results obtained in this paper.

Example 1 Consider the three-dimensional fractional-
order delayed memristive neural networks with the parameters
uncertainty and discontinuous activation functions as the drive
system, which is defined as

ED%xi(t) = —(di + Adi(t

3
Z a;j(x;(t
j=1
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3
+Aaij (1)) £(x; (1)) + X, (b (xj(t = 77)
j=1
+Abl}( ))g]('x]( T])) (49)
where o = 0.98, i = 1,2,3; The activation functions

ﬁ(x,-(t)) = sin(xi(t)) + 0.0SSign(x,-(t)), g,-(x,-(t — Ti)) =
sin(x;(t — 7;)) + 0.05sign(x;(t — 7;)); The parameters of the
system (49) are selected as dj = dr, = d3 = 2.5;

antao)={ 1 Oz 0
anta() ={ 25 P20
ante) = { 5 Iiig%{igﬁﬁ
) ={ 13 o200
enta)={ 15 [0 200
ax(x3(1)) = { e
) ={ O3 [OIZ0
) ={ _, 3 20 201
a33<x3<r>>={3§7 Iiiﬁ%l;gi

-2 |X1(I—Tl)|>0.1,

1 |X1(Z‘—T1)|SO.1,
%2 (t — 1) > 0.1,
‘XQ(I—T2)| <0.1,
x3(t —13)| > 0.1,
‘X3(Z—T3)| <0.1,

=5.5, |xi(t—11)] > 0.1,

3, |X1(I—Tl)| <0.1,
-2 ‘XQ(I—T2)| > 0.1,
1.5, ‘xz(t7T2)| <0.1,
-2 |)C3(I—T3>| > 0.1,

|X3(l‘—’l?3)| <0.1,

—2.5, |X1(I—T1)| > 0.1,

|)C1(t—171>|§0.1,

727 ‘XZ(I7T2)| >01,

1.8, ‘xZ(t—T2)| <0.1,

3, |x(t—m)[>0.1,
2, |u(t—m)

, s )] <0.1.

The parametric uncertainties Ad;(t) = Aa;;(t) = Ab;j(t) =
0.1sin(z); The external input I} = I, = I3 = 0, and the trans-
mission delays 7; = 0.1, 7, = 0.08, and 73 = 0.11; The initial
condition of the system (49) is x(0) = (—0.2,0.15,—0.1)T.
Under the above parameters, the dynamical behavior of the

drive system (49) is depicted in Fig. 1.

Considering the following system as the response system,
which is defined by

e

SD%yi(t) = —(di+Adi(1))yi(t)+ Y (ai;(v; (1))

~
Il
-

Mu

+A8aij (1) £;(0(0)) + ) (i (vj(r = 7))

+ 1 +u(1), (50)

~.
I
-

~
~—

+Abij(1))g (vt —7;

where the initial condition of the system (50) is y(0) =
(0.5,—0.5,0.5)T.
tories of response system (50) without controller is shown in
Fig. 2.

Under these parameters, the phase trajec-

0.4
0.2

0

273(15)

—0.2

—-0.4
0.2

Fig. 1. Phase plot of drive system (49) with initial condition x(0) =
(—0.2,0.15,—0.1)T.

—y(t)

Yoy, — 0
(Z() _o—1 ’91@\

Fig. 2. Phase plot of response system (50) with initial condition y(0) =

(0.5,—0.5,0.5) and without the controller.

< o5l 0w ] — (1) |

y 0 02 04 — yi(t)

ool L

8 0 1 2 3 4 5
t/s

o e -

3 05 o ~—1 — @a(t)

- 0 02 04 — ya(t)

a

& 0)2

% 05 .

" 0 1 2 3 4 5
t/s

Nk T T _ It)

2 05 01 303(

< 15 0.1 0.2 — ya(t)

g0

§ 055 1 2 3 4 5
t/s

Fig. 3. State trajectories of drive-response system with the initial condi-
tions x(0) = (—0.2,0.15,—0.1)T and y(0) = (0.5, —0.5,0.5)T under the con-
troller (17).
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In controller (17), the parameters can be choose as k} =5,
ky=41,k3=173,9] =q5=¢q5=8,11 =7.3, 1, =10.8, and
13 = 8.3. It is easy to verify that these values satisfy the condi-
tions of Theorem 1. The drive—response systems (49) and (50)
can achieve global finite-time Mittag—Leffler synchronization
under the controller (17), which is shown in Figs. 3 and 4.
Meanwhile, the time bound 7% = 0.2433 is evaluated based
on Theorem 1.

0.8 T T
—ei(t)
0.6 — eg(t)
eg(t)

A |
\

‘ /\’“""' /

0.2 0 0.1 02 03 04

0.4 0

< 0
—0.2}
—-0.4

—0.6

08—
0 1 2 3 4 5

t/s
Fig. 4. State trajectories of synchronization errors e;(¢), ex(t), and e3(r)
under the controller (17).

= 05— L

= I — ] — xy(t) |

5 05F 0 — ~ ot

g 0 0.1 Y1

=0 :

§ =055 1 2 3 4 5
t/s

3 os| i—— —o(t)

o —055 0.1 — y2(t)

3 0 MWM

8 =055 1 2 3 4 5
t/s

= 0.5 < i i ' ' '

= i — x3(t) |

R R — — it

o] 0 0.1 y3( )

§ 0

€05 1 2 3 4 5
t/s

Fig. 5. State trajectories of drive-response system with the initial condi-
tions x(0) = (—0.2,0.15,—0.1)T and y(0) = (0.5, —0.5,0.5)T under the con-
troller (36).

Remark 9 To the best of our knowledge, there exist
some interesting results about finite-time synchronization for
fractional-order neural networks with discontinuous activation
functions.[35-36:39:51.521 1n Ref. [52], the authors had inves-
tigated the global Mittag—Leffler synchronization and finite-
time synchronization for such systems by utilizing the discon-
tinuous delayed feedback controller. It is worth noting that the
main results in Ref. [52] can also deal with our system. Un-
der the same initial values and control gains k¥, ¢*, and 1, the

settling time 7;" = 0.3059 can be evaluated by using the ob-
tained criteria in Ref. [52]. But the settling time 7* = 0.2433
by using our criteria. It is obvious that the upper bound of the
settling time 7" = 0.2433 < 0.3059, the results of this paper
are less conservative.

In controller (36), the parameters can be designed as
k1 = k2 = k3 = 20, q1 = 2.48, q> = 6.63, and q3 = 7.17.
Obviously, these values satisfy the conditions of Corollary 4.
The drive system (49) and response system (50) can achieve
global asymptotic synchronization, which is demonstrated in
Figs. 5 and 6. In Fig. 6, the synchronization errors converge to
zero, which denote that the drive-response systems (49) and
(50) are global asymptotic synchronization based on the con-
troller (36).

0.8

— El(t)
—ex(t) |
— es(t)

0.6 0.1

0af O o

|
015

0.2 0.3 04
0.2

L. S

e(t)

0

—-0.2

—-0.4

—0.6f

—-0.8

o 1 2 3 4 5
t/s

Fig. 6. State trajectories of synchronization errors e (¢), e2(t), and e3(r)
under the controller (36).

5. Conclusion

The finite-time Mittag—Leffler synchronization for a class
of FDMNN with parameters uncertainty and discontinuous
activation functions has been considered. A series of suffi-
cient conditions ensuring finite-time Mittag—Leffler synchro-
nization of such systems are shown by designing a discontin-
uous feedback controller. In addition, the asymptotic synchro-
nization has been achieved by using comparison theorem and
selecting the appropriate parameters of designed controller.
Compared with existing results, the obtained results of this
paper are less conservative. It would be interesting to focus
on the application of finite-time Mittag—Leffler synchroniza-
tion of such discontinuous systems in image encryption. This
topic goes beyond the scope of this paper and will be a chal-
lenging issue for future research.
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