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Magnetocardiography (MCG) measurement is important for investigating the cardiac biological activities. Tradition-
ally, the extremely weak MCG signal was detected by using superconducting quantum interference devices (SQUIDs). As
a room-temperature magnetic-field sensor, optically pumped magnetometer (OPM) has shown to have comparable sen-
sitivity to that of SQUIDs, which is very suitable for biomagnetic measurements. In this paper, a synthetic gradiometer
was constructed by using two OPMs under spin-exchange relaxation-free (SERF) conditions within a moderate magneti-
cally shielded room (MSR). The magnetic noise of the OPM was measured to less than 70 fT. /Hz!/2. Under a baseline of
100 mm, noise cancellation of about 30 dB was achieved. MCG was successfully measured with a signal to noise ratio
(SNR) of about 37 dB. The synthetic gradiometer technique was very effective to suppress the residual environmental fields,
demonstrating the OPM gradiometer technique for highly cost-effective biomagnetic measurements.
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1. Introduction

Magnetocardiography (MCG) is a contactless, non-
invasive imaging technique to record the magnetic fields gen-
erated by the human heart.!! It can visualize the myocardium
activities by mapping the magnetic fields over the thorax area.
The clinical trials have reported that MCG can provide a high
diagnostic accuracy for many heart diseases, such as coronary
artery disease (CAD), ischemic heart disease (IHD), arrhyth-

.’ Especially, it was proved to be very valuable for

mia, et
the rapid screening of IHD. 561

The MCG signal is extremely weak. As a highly sen-
sitive magnetic sensor, superconducting quantum interference
devices (SQUIDs) are commonly used.!”) Currently, several
SQUID-based MCG systems have been commercialized and
put into clinics worldwide. Despite the high sensitivity of
SQUID sensors, they require liquid helium to maintain the
working temperature of 4.2 K. This expensive running cost
makes SQUID-based MCG systems less attractive for clinical
applications. During the past few years, the optically pumped
magnetometers (OPMs) have emerged to be the most attractive
room-temperature magnetic sensors. 3%l Under spin-exchange
relaxation-free (SERF) conditions, OPMs can achieve a high
sensitivity comparable to that of SQUIDs.[10-11]

In order to preserve a higher sensitivity, OPMs under
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SERF conditions must be operated under a well shielded en-
vironment. Within a magnetically shielded room (MSR) or
tube, biomagnetic measurements were successfully conducted
by using OPMs, such as MCG, magnetoencephyalography
(MEG), etc.l'2"15] However, there is still environmental dis-
turbance although using a moderate MSR. Considering the
expensive shielding costs, the popular used gradiometer tech-
niques like SQUID systems will be a compromise method.
Therefore, it will be very valuable to evaluate the gradient op-
tically pumped measurements for the residual noise cancella-
tion.

In this paper, a synthetic gradiometer method was con-
ducted for MCG measurements. It was performed by using
two individual OPMs under the SERF conditions, which were
regarded as signal sensor and reference respectively. The OPM
output was synthesized by using a least square algorithm with
a constant subtraction coefficient. Within a moderate MSR,
the gradiometer method is shown to be very effective for noise
cancellation and MCG measurements, which will be applica-

ble for developing low-cost OPM-based MCG systems.

2. Experimental setup

The schematic diagram of the experimental setup is
shown in Fig. 1. The experiments are performed within a mod-
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erate MSR with two-layer permalloy. Two OPMs were used
to synthesize a gradiometer. The lower one was configured as
a sensor to detect MCG signal, and the upper one was the ref-
erence. The baseline was set to be 100 mm, which was longer

enough for MCG measurements.
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Fig. 1. Schematic diagram of the experimental setup.

We employed commercial OPMs under SERF conditions
(QuSpin Inc., Louisville, CO, USA) to make the measure-
ments. It has a configuration of a typical noise level of
10 fT/Hz'/2, a bandwidth larger than 100 Hz, a dynamic range
of about 50 nT, and a size of 12.4 mmx16.6 mmx 24.4 mm.
The basic configuration of the OPM is shown in Fig. 2. The
OPM head contains all the necessary optical components, in-
cluding a semiconductor laser for optical pumping, optics for
laser beam conditioning, a vapour cell, and a silicon photodi-
ode. The sensor head connects to the electronic readouts via a
5-m cable, which is placed outside the MSR to minimize mag-
netic interferences. The scaling of output voltage to magnetic
field is set to 0.89 V/nT.
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Fig. 2. The basic configuration of the OPM.

The analog outputs of OPMs along the vertical direction
were digitized by a 24-bit 4-channel data acquisition (DAQ)
system at a sample rate of 2 kHz. The raw data were pre-
processed by using a 45-Hz low-pass filter to eliminate the
powerline interference, which was sufficient to observe the
main components of the cardiac activities. Afterwards, a syn-
thetic gradiometer was constructed by

Gsyn:Bs_k'Bh 9]

where Ggyn, Bs, and B, are the outputs of the synthetic gra-
diometer, signal OPM, and reference OPM respectively. k is
the subtraction coefficient. It was obtained by using a least

square algorithm and given by

N
Z Bsi : Bri
k==l , )

N
'Zl Bri 'Bri
=

where Bgi and B, are the digital data with a total length of N.
Based on the above process, the gradient MCG signal can be
obtained.

3. Results and discussion

Before the MCG experiments, the power spectral density
noise of the OPMs was measured firstly by using a dynamic
signal analyzer, as shown in Fig. 3. The magnetic field noise
was measured to be 65 fT/Hz'/2 and 54 fT/Hz'/? for the signal
and reference OPMs respectively. It was 5 times larger than
the given noise level by QuSpin. The reason may be attribute
to the non-ideal working environments, such as magnetic field,

temperature, and so on.
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Fig. 3. Magnetic field noise of the OPMs: reference OPM (black line), sig-
nal OPM (red line).
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Fig. 4. Raw output of the reference (black line) and signal (red line) OPM
of an adult volunteer within a moderate MSR.
Figure 4 shows the raw MCG measurements of an adult
volunteer. In order to enhance the detected MCG signal, the

distance between the signal OPM and the volunteer is kept to
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20 mm, which is adequate for the thermal insulation and non-
contact measurements. Within a moderate MSR, the fluctua-
tion of the residual environmental fields along the z direction
was about 1.5 nT. The outputs of the two OPMs aligned well
with the time. The MCG signal can be sensed by the reference
OPM even with a 100-mm baseline.

After the low-pass filter and synthetic gradiometer pro-
cess, powerline and low-frequency interferences were effec-
tively suppressed, as shown in Fig. 5(a). The low-frequency
fluctuation was measured to be about 50 pT with a noise can-
cellation of 30 dB. The MCG signal can be clearly recognized.
The detailed signal of about two cardiac cycle between 2.5 s
to 4.5 s is shown in Fig. 5(b). The amplitude of the R peak was
about 120 pT with an SNR of about 37 dB, which was good
enough for real-time MCG measurements.
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Fig. 5. (a) Real-time output of the synthetic gradiometer; (b) two cardiac
MCQG cycle between 2.5 s and 4.5 s.
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Fig. 6. Real-time recordings of the OPMs and gradiometer under a time
period of 100 s: reference OPM (black line), signal OPM (red line), and
synthetic gradiometer (blue line).

In order to monitor the stability of the gradiometer output,
figure 6 shows a longer MCG recording of 100 s. The fluctu-
ation of the environmental fields was measured to be about
2.2 nT. Most of the low-frequency distortion was suppressed
by using the gradiometer technique. However, the residual
noise was increased to be more than 100 pT. The reason may
be due to the imperfect installation of the OPMs, which brings
extra responses along the horizonal components of the envi-
ronmental noise. Additionally, the consistency of the OPM
working conditions is also an important factor. For a practical
MCG system, deep studies need to be done in the near future.

4. Conclusion

In this study, we employed two OPMs to synthesize
and evaluate a gradiometer technique. Under a baseline of
100 mm, noise cancelation of about 30 dB was achieved within
a moderate MSR. High quality MCG signal was measured
with an SNR of about 37 dB. The synthetic gradiometer tech-
nique shows to be very effective for low-frequency noise can-
cellation, which will be helpful to enhance the environmental
field immunity. However, low-frequency distortions still exist.
The next studies will be directed to improve the system stabil-
ity, such as three-axial reference compensation, detailed OPM

sensor characteristics, and so on.
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