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Magnetocaloric effect and critical behavior of the Mn-rich itinerant
material Mn3GaC with enhanced ferromagnetic interaction∗
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We revisit the reversible magnetocaloric effect of itinerant ferromagnet Mn3GaC near the ferromagnetic to paramag-
netic phase transition by adopting the experimental and theoretical methods and critical behavior of Mn-rich Mn3GaC with
an enhanced FM interaction. Landau theory model cannot account for temperature dependent magnetic entropy change
which is estimated from thermal magnetic methods only considering magnetoelastic coupling and the electron–electron
interaction, apart from molecular mean-field model. Critical behavior is studied by adopting the modified Arrott plot,
Kouvel–Fisher plot, and critical isotherm analysis. With these critical exponents, experimental data below and above Tc
collapse into two universal branches, fulfilling the single scaling equation m = f±(h), where m and h are renormalized
magnetization and field. Critical exponents are confirmed by Widom scaling law and just between mean-field model and
three-dimensional Heisenberg model, as the evidence for the existence of long-range ferromagnetic interaction. With in-
creasing the Mn content, Tc increases monotonously and critical exponents increases accordingly. The exchange distance
changes from J(r) ∼ r−4.68 for x = 0 to J(r) ∼ r−4.71 for x = 0.08, respectively, which suggests the competition of the
Mn–Mn direct interaction and the itinerant Mn–C–Mn hybridization. The possible mechanism is proposed.
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1. Introduction
Itinerant electronic materials are excellent candidates to

explore functional materials. Among them, Mn-based itin-
erant materials are such examples that have attracted more
attention due to the important findings including giant mag-
netoresistance (GMR),[1,2] magnetocaloric effect (MCE),[3–6]

negative thermal expansion (NTE),[7–13] and magnetostriction
(MS),[14–16] etc. Mn3GaC exhibits various magnetic/structural
phase transitions and has been widely investigated.[1–5,17–19]

With decreasing temperature, it transits from paramagnetic
(PM) to ferromagnetic (FM) phases at 250 K, to an inter-
mediate canted ferromagnetic (IFM) phase at 158 K, and to
an antiferromagnetic ground state with discontinuous expan-
sion in lattice parameter near 155 K.[17,19] Accompanied by
magnetic/structural phase transitions, GMR can reach nearly
80% at 5 T and larger “trapeziform”-like negative magnetic
entropy changes exists.[1–5] Meanwhile, giant isotropic MS
(1700 ppm) is found near the AFM–IFM phase transition.[15]

In addition to important experimental findings, some basic sci-
entific issues remain controversial on these FM materials after
many years of exploration.

The first controversial point is Mn–Mn interaction of
this system although different models have been proposed,
such as the Ruderman–Kittel–Kasuya–Yosida (RKKY) inter-

action, the direct-coupling model, and the mean field models.
No systematic and in-depth theoretical calculations were per-
formed to reveal the internal mechanism of magnetic interac-
tions although similar tries were carried out in other itiner-
ant FM materials. Another point is why FM–PM transition is
so sensitive to Mn-doping only considering lattice changes.
In other words, its Fermi surface structure nesting and en-
ergy band filling effect can play a key role. For Mn-rich
Mn3GaC, a reversible MCE with large temperature spans at
Tc is reported,[20] while the origin of quickly enhanced Tc with
Mn-doping and the studies of MCE based on various theoret-
ical models are lacking. Previous investigations have proved
that critical exponent analysis in the vicinity of magnetic tran-
sition is a powerful to single out the relevant microscopic
interaction.[21–27] According to the reports,[17,20] Mn3GaC is
an itinerant electronic material and electron-electron interac-
tion is important to carrier transporting and mainly comes
from Mn-3d band electrons. Its ground state can be well-
described by Fermi-liquid behavior. Meanwhile, electron-
phonon interaction may be important in contributing mag-
netic entropy change near phase transitions. In this respect,
more theoretical and experimental investigations are required
to deepen our understanding of magnetic properties of this
system.[21,22] In this work, we present a detailed study on

∗Project supported by National Key Research and Development Program of China (Grant Nos. 2018YFA0305700 and 2018YFA0305800), One Hundred-Talent
Program in Institute of Physics (Grant No. Y7K5031X61), Youth Promotion Association of CAS (Grant No. 2018010).

†Corresponding author. E-mail: bswang@iphy.ac.cn
© 2020 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

047503-1

http://dx.doi.org/10.1088/1674-1056/ab7da1
mailto:bswang@iphy.ac.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 29, No. 4 (2020) 047503

the MCE near the FM–PM transition based on Landau theory
of the transition model and the molecular mean-field model
and on the specific heat. We find that the simple Landau the-
ory model can not account for the temperature dependence of
magnetic entropy in Mn3GaC if only considering magnetoe-
lastic coupling and electron-electron interaction. The scaling
plots confirm that critical exponents are reliable and all the
critical exponents are just between the mean-field model and
the three-dimensional (3D) Heisenberg model, as the evidence
for the existence of long-range FM interaction. The exchange
distance changes from J(r) ∼ r−4.68 for x = 0 to r−4.71 for
x = 0.08, respectively, which suggests the competition of Mn–
Mn direct interaction (180◦) and the itinerant Mn–C–Mn (90◦)
hybridization.

2. Experimental details
Polycrystalline samples Mn-rich Mn3GaC was prepared

as reported previously,[1,2] and structural parameters were
collected by x-ray diffraction (Cu Kα , λ = 0.15406 nm).
Magnetic properties were measured on a Quantum Design
superconducting quantum interference device magnetometer
(1.8 K≤ T ≤ 400 K, 0≤ H ≤ 50 kOe). The sample for
magnetic measurements can be considered as ellipsoids and
the applied field is parallel to its longest semiaxis. Thus,
a uniform field exists throughout the sample and sharp de-
magnetizing fields could be reduced. Thermopower coeffi-
cient was measured by using standard four-probe technique
in the Quantum Design physical property measurement sys-
tem (1.8 K≤ T ≤ 400 K, 0 ≤ H ≤ 90 kOe). The Rietveld
refinement of XRD pattern indicates that all the samples are
single-phase (SG: Pm3̄m) with lower Rp and Rwp. Refined lat-
tice constant of Mn3GaC is about 0.3897(3) nm, close to the
reported value (0.3896 nm).[1,3,17] With increasing the substi-
tution of Ga by the excess Mn, the lattice parameter decreases
linearly.

3. Results and discussion
3.1. Direct-current magnetization

Figure 1 shows the temperature dependence of M(T )
curves for Mn3+xGa1−xC under the zero-field-cooled (ZFC)
process. In Fig. 1(a), M(T ) is measured at different fields
for Mn3GaC under the ZFC process and the temperature de-
pendence of dM/dT is used to search the corresponding
transition temperature. The inset describes magnetic struc-
tures of the FM phase. We find that its peak temperature
shifts to higher temperature with increasing the field from
0.1 kOe to 10 kOe, which indicates enhanced FM interaction
at higher fields.[1,17] Inverse susceptibility is plotted and well-
described by the modified Curie–Weiss law: χ(T ) = C/(T −
θ)+ χ0(1+AT 2), where the first term C/(T − θ) represents
the Curie–Weiss contribution, the second term χ0(1 + AT 2)

is the Pauli PM contribution from enhanced exchanges with
the χ0AT 2 being the modified term, and A reflects electronic
energy state shape at the Fermi level. In an external field,
a small amount of energy is transmitted near the Fermi sur-
face owing to different energies between spin-up and spin-
down conduction electrons: χ0 = 3.56(8) emu·K/mol, A =

−2.99(4)× 10−6 emu/(mol·K2). Effective moment is given
by µeff = 2.83(C/η)0.5µB = 3.086µB, where η is the number
of magnetic atoms in a unit cell. Similarly, both the M(T )
and dM/dT of Mn3+xGa1−xC are shown in Fig. 1(b). We
find that, with the increase of Mn-doping content, the peak
height decreases and the peak width increases, and it Tc shifts
to high temperature. The derivatives are found to be 250 K,
281.5 K, 296.5 K, and 323.5 K for x = 0, 0.06, 0.07, and 0.08,
respectively. The enhancement of the Tc can be attributed to
lattice contraction, which leads to an enhanced FM exchange
interactions. However, this enhancement cannot be explained
if ignoring band filling as a function of Mn-doping accord-
ing to the compressibility of Mn3GaC under pressure. In this
work, we discuss the MCE by experimental/theoretical meth-
ods and the critical behaviors of Mn-rich Mn3GaC based on
the thermo-dynamical theory.[20] Different theoretical models
are adopted to quantify entropy change of this system, such as
the Landau theory model and the mean-field model.[28–32]
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Fig. 1. (a) Temperature dependent M(T ) in zero-field-cooled (ZFC)
process. Inset: magnetic structures and dM/dT . Inverse susceptibility
on the right of Fig. 2(a); (b) M(T ) for Mn3+xGa1−xC at 1 T.

3.2. The MCE — Landau theory model

In Fig. 2(a), M(H) data are plotted for Mn3GaC (192–
288 K) Arrott plots derived from M(H) covering a broad tem-
perature. The Gibbs free energy G is expressed as

G(T,M) = G0 +
1
2

AM2 +
1
4

BM4−MH, (1)
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where A and B are the temperature-dependent parameters con-
taining the magneto-elastic coupling and the electron interac-
tion. From the equilibrium condition ∂G/∂M = 0, the mag-
netic equation of state is

H/M = A+BM2. (2)

The H/M vs. M2 plot has positive slopes, indicating second-
order transition by Banerjee criterion.[33] From the differential
Gibbs free energy, magnetic entropy is

SM (T,H) =−1
2

∂A
∂T

M2− 1
4

∂B
∂T

M4. (3)

The temperature dependences of A and B are obtained by lin-
ear fitting (Fig. 2(b)). It is found that A varies from negative to
positive with increasing the temperature, and the temperature
is corresponding to A = 0 and is basically consistent with the
Tc. As shown in Fig. 2(c), B keeps positive and is the feature of
ferromagnic materials.[28,34] As we know, A can describe the
electron interaction part of Gibbs free energy, and B represents

the magneto-elastic part, which plays an important role in de-
termining entropy changes −∆SM.[29,35] From Eq. (3), −∆SM

is calculated with different ∆H.
Figure 2(d) displays the calculated and experimental

−∆SM. We find that −∆SM from Eq. (3) is about four times
larger than the experimental value and the peak is 35 K
lower. Theoretical/experimental results are of great discrep-
ancy, which is mainly originated from the degradation linear-
ity in the H/M vs. M2 plot below Tc. This is related to the
sign change of thermopower coefficient S(T ) as indicated in
the previous investigations.[28,36] In inset of Fig. 2(b), temper-
ature dependence of S(T ) for Mn3GaC has two characteris-
tics: a slope change of S(T ) exists at 250 K closely associated
with the FM–PM transition; its sign changes from negative to
positive around 215 K, matching with the peak of calculated
−∆SM. Lastly, we may conclude that larger differences be-
tween the experimental and theoretical entropy changes are
attributed to some ignored and critical factors such as the
phonon-electron interaction.
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Fig. 2. (a) Isothermal magnetization curves M(H); (b) Arrott plots derived from M(H). Inset: temperature-dependent thermopower coefficient.
(c) A (on the left) and B (on the right), where A and B are magneto-elastic coupling part and electron interaction part of the Gibbs free energy,
respectively. (d) The calculated and experimental ∆SM under ∆H = 20 kOe and 45 kOe, respectively.

3.3. The MCE — mean-field scaling method

Another approach was adopted to apply the mean-
field scenario to isothermal curves and calculate entropy
changes.[31,32] It does not depend on the numerical integra-
tion of Maxwell relation and is a complementary approach to
Landau theory.[29,31] Magnetic equation of state is expressed
as

M(H,T ) = f [(H +Hexch)/T ], Hexch = λM, (4)

where f is the mean-field state function, Hexch is the exchange
field, and λ is the exchange parameter. Generally, Hexch

could be obtained by a series of odd powers of M. In this
work, Hexch is taken as Hexch = λ1M + λ3M3, where λ3 de-
scribes the magneto-volume effects as the Bean and Rodbell
formulation.[37] The inverse f−1(M) function is

H
T

= f−1(M)− Hexch

T
, or

H
MT

=
f−1(M)

M
− 1

T
× Hexch

M
.

(5)
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For a constant M, the Hexch, f−1(M), and f−1(M)/M are con-
stant if Hexch only depends on M. Accordingly, the plots of
H/T vs. 1/T and H/MT vs. 1/T should be linear. Accord-
ing to M(H) in Fig. 2(a), numerical interpolations on H (in
1 emu/g step) are carried out. Figure 3(a) presents the plots
of H/T vs. 1/T for isometric M up to 50 emu/g (in 5 emu/g
step), Hexch is obtained by linear fitting of H/T vs. 1/T . Ob-
viously, the lines with different M are parallel, indicating that
the value of λ is weakly dependent on M and T . The Hexch is
fitted according to Hexch = λ1M +λ3M3 and the fittings give
λ3 ≈ 0, indicating that the Hexch linearly depends on M.[38]

Figure 3(b) illustrates the plot of M vs. (H +Hexch)/T based
on M(H). Obviously, almost all the data lie in the same curve
which is corresponding to the mean-field state function, indi-
cating reliable fittings. From an odd polynomial fitting of M,
the function f is obtained in Fig. 3(b). During this fitting, only
those points with higher H are used. In Fig. 3(c), the calcu-
lated and experimental M(H) data are compared. Obviously,

the calculated results match well with the experimental data
except for the magnetic domain regime at the lower magnetic
field. From Eq. (5) and using the classical thermo-dynamical
theory and Maxwell’s relation,[39] −∆SM induced by the vari-
ation from H1 to H2 is given as follows:[31]

∆SM(T )∆H =
∫ H2

H1

(
∂M
∂T

)
H

dH

=
∫ M|H2

M|H1

[
f−1(M)−

(
∂λ

∂T

)
M

M
]

dM. (6)

Generally, the first part of the integral is larger than the second
one and the contribution from the second part is smaller. Thus
the integral is transformed into an integration of f function.
In Fig. 3(d), −∆SM is calculated for Mn3GaC by Eq. (6) and
compared with numerical integration of a Maxwell relation. It
is found that both the results are in good agreement with each
other. Therefore, it is concluded that the mean-field theory can
well account for the entropy changes of this system.[40,41]
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3.4. The MCE — heat capacity measurement

Another method used to estimate entropy change is based
on heat capacity.[42,43] In inset of Fig. 4, the Cp vs. T is plot-
ted under H = 0 Oe and 20 kOe. A broad peak can be found
nearly at 250 K, corresponding to the FM–PM transition.
Meanwhile, the peak broadens with increasing the magnetic
field. All these characteristics are consistent with the above
results. Magnetic entropy change can be ∆S(T )∆H=|H2−H1| =

∫ T
0 (C(T )H2 −C(T )H1)dT/T from the second thermodynam-

ics law.[42,43] As shown in Fig. 4, temperature-dependent en-

tropy change −∆SM curves for ∆H = 20 kOe with three dif-

ferent methods are compared. It is found that the value of the

−∆SM exhibits the temperature dependence similar to those

of magnetic measurements and the calculations based on the

mean-field model except for some differences in details.
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3.5. Direct-current magnetization-critical behavior

According to the scaling hypothesis, a second-order tran-
sition near Tc is characterized by critical exponents β (sponta-
neous magnetization), γ (initial magnetic susceptibility), and
δ (critical magnetization isotherm) as follows:[44,45]

MS(T ) = M0|ε|−β , ε < 0, T < Tc, (7)

χ
−1
0 (T ) = (h/M0)ε

γ , ε > 0, T > Tc, (8)

M = DH1/δ , ε = 0, T = Tc, (9)

ε = (T − Tc)/Tc is the reduced temperature, M0, h/M0, and
D are the critical amplitudes. Figure 5(a) shows M(H) with
Tc± 22 K. The FM behavior near Tc is investigated by Arrott
plots which cover 228–272 K with positive intercepts.[43,46]

According to the mean-field theory, M2 vs. H/M should be
parallel lines and the line at T = Tc passes through the origin.
In this work, the curves of Arrott plots are flexural, β and γ

could not be obtained from M(H) directly. From the Arrott
plots in Fig. 5(b), the curves above T > Tc can be extended
smoothly into the H/M axis, yielding the 1/χ0(T ). The poly-
nomial fitting and extrapolation for T < Tc give the reliable
MS(T,0). For this extrapolation, M2 vs. H/M is fitted with a
fourth-order polynomial from 4 kOe to 45 kOe, then extrapo-
lated to H = 0 to obtain MS(T,0).[21,22,27]

MS(T,0) vs. T and 1/χ0(T ) vs. T are given in Fig. 6(a).
They denote the power law fitting of MS(T,0) vs. T and
1/χ0(T ) vs. T according to Eqs. (7) and (8), respectively.
For x = 0, β = 0.462± 0.02 with Tc = 247.29± 0.11 K
and γ = 1.096± 0.01 with Tc = 247.91± 0.17 K. For x =

0.06, β = 0.556± 0.03 with Tc = 284.52± 0.04 K and γ =

1.068± 0.02 with Tc = 284.87± 0.20 K. For x = 0.07, β =

0.578±0.01 with Tc = 296.74±0.13 K and γ = 1.099±0.04
with Tc = 297.16± 0.20 K. For x = 0.08, β = 0.657± 0.01
with Tc = 328.26± 0.15 K and γ = 1.122± 0.03 with Tc =

328.70± 0.26 K. Tc shifts to high temperature with the in-
crease of x. MS(T,0) and 1/χ0(T ) decreases, and reaches the
maximum at x = 0. Here β keeps increasing as x increases but
γ starts to decrease and then increases.
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The exponents are obtained by the Kouvel–Fisher (KF)
method,[26,47]

MS(T )[dMS(T )/dT ]−1 = (T −Tc)/β , (10)

χ
−1
0 (T )[dχ

−1
0 (T )/dT ]−1 = (T −Tc)/γ, (11)

MS(T )[dMS(T )/dT ]−1 and χ
−1
0 (T )[dχ

−1
0 (T )/dT ]−1 yield

the straight lines with slopes of 1/β and 1/γ , respectively,
and the intercept on the T axis is equal to the value of Tc.
For x = 0, β = 0.460±0.004 with Tc = 247.56±0.09 K and
γ = 1.103± 0.005 with Tc = 247.69± 0.07 K. For x = 0.06,
β = 0.561±0.003 with Tc = 284.54±0.06 K and γ = 1.061±
0.05 with Tc = 284.94± 0.06 K. For x = 0.07, β = 0.579±
0.001 with Tc = 296.74 ± 0.02 K and γ = 1.091 ± 0.007
with Tc = 297.27± 0.08 K. For x = 0.08, β = 0.663± 0.001
with Tc = 328.60± 0.05 K and γ = 1.128± 0.01 with Tc =

328.65± 0.10 K. The β keeps increasing as x increases but γ

starts to decrease and then increases at x = 0.07. The value
of MS(T )[dMS(T )/dT ]−1 reaches the maximum nearly 55 K
at x = 0.06 while χ

−1
0 (T )[dχ

−1
0 (T )/dT ]−1 with the maxi-

mum 22.5 K at x = 0.0. As shown in Fig. 8, the critical
isotherms M vs. H can be correlated by Eq. (9). The reliable
fittings are 3.133± 0.05 K, 2.950± 0.06 K, 2.988± 0.05 K,
2.893±0.05 K, respectively. The exponents derived from the
scaling analysis are related by the Widom relations.[48,49] We
have δ = 1+ γ/β from the KF method, δ is close to the value
from critical isotherms at Tc, implying that β and γ are reli-
able.
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Fig. 6. Temperature dependence of the spontaneous magnetization MS(T,0) and the inverse initial susceptibility 1/χ0(T ) for Mn3+xGa1−xC.

M
S
↼T
↽↼

d
M
/
d
T
↽-

1
/
K

M
S
↼T
↽↼

d
M
/
d
T
↽-

1
/
K

χ
-

1
↼d
χ

-
1
/
d
T
↽-

1
/
K

M
S
↼T
↽↼

d
M
/
d
T
↽-

1
/
K

M
S
↼T
↽↼

d
M
/
d
T
↽-

1
/
K

T/K

T/K T/K

T/K

γ=1.091+0.007
Tc=297.27+0.08

β=0.579+0.001
Tc=296.7+0.02

β=0.663+0.001
Tc=328.60+0.05

γ=1.128+0.01
Tc=328.65+0.10

γ=1.061+0.005
Tc=284.94+0.06

β=0.561+0.003
Tc=284.54+0.06

β=0.460+0.004
Tc=247.56+0.09

γ=1.103+0.005
Tc=247.69+0.07

230 240 250 260 270
-50

-40

-30

-20

-10

0

0

5

10

15

20

25

250 260 270 280 290 300 310
-60

-50

-40

-30

-20

-10

0

-5

0

5

10

15

20

25

260 270 280 290 300 310 320
-60

-50

-40

-30

-20

-10

0

-5

0

5

10

15

20

25

290 300 310 320 330 340 350

-50

-40

-30

-20

-10

0

0

5

10

15

20

(a) x=0 (b) x=0.06

(c) x=0.07 (d) x=0.08

0
0

χ
-

1
↼d
χ

-
1
/
d
T
↽-

1
/
K

0
0

χ
-

1
↼d
χ

-
1
/
d
T
↽-

1
/
K

0
0

χ
-

1
↼d
χ

-
1
/
d
T
↽-

1
/
K

0
0

Fig. 7. The Kouvel–Fisher plots for the MS(T,0) and 1/χ0(T ).

In the critical region, magnetic equation of state is given
by[50]

M(H,ε) = |ε|β f±(H/ |ε|β+γ), (12)

where f+ for T > Tc and f− for T < Tc are regular analytical
functions. Equation (12) implies that the plot of M |ε|−β and
H |ε|−(β+γ) produces two universal curves: one for tempera-
tures below Tc and the other for temperatures above Tc. All
the data points lie in two curves, one for T < Tc and the other

for T > Tc, indicating that exponents and Tc are reliable. In

Fig. 9, the plots are shown in log–log scale. We can find that

the M |ε|−β increases with the Mn-doping content and the field

increases sharply at lower magnetic fields, and flattens out at

higher magnetic fields. Obviously, the scaling is reliable, β ,

γ and δ are close to those of the mean-field model, indicating

the appearance of long-range FM interaction in this system.

We also find that both the values of β and γ increase with in-

creasing the Mn-doping and are slightly larger than those of
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the theoretical model. For clarify, the effective exponents βeff

and γeff are compared in Fig. 10.[50] Here we define the nor-

malized ε = (T −Tc)/Tc to be the reduced temperature. It is

noticed that the value of βeff increases from 0.460 to 0.663

monotonously with the increase of the Mn-doping, while the

γeff value decreases from 1.103 for x = 0 to 1.061 for x = 0.06
firstly and increases again at x = 0.07.

By comparison, we can find that critical exponents
of this system are apart from those of theoretical mod-
els, e.g., 3D Heisenberg and/or 3D Ising models, and
mean-field theory.[44,51,52] However, both the values of β
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and γ from the magnetic measurements are just between the
predicted mean-field model and the 3D Heisenberg model,
and somewhat close to the mean-field model. Usually, the
3D Heisenberg model and the Ising model represent short-
range FM interaction and the mean-field model is correspond-
ing to long-range FM coupling.[44,51] Thus, it may be thought
that FM interaction is dominant and mainly comes from long-
range Mn–C–Mn. Generally, critical exponents depend on lat-
tice dimension, order parameter and the range of interaction
(short range, long range or infinite).[53] For magnets, the uni-
versality class of transition depends on the exchange interac-
tion J(r) = 1/rd+σ , where d represents the spatial dimensions
and σ is range of interaction and a positive constant.[53] For
3D materials (d = 3), there is a relation J(r) = r−(3+σ). When
σ = 2, the Heisenberg model is valid for a 3D isotropic ferro-
magnet, where J(r) decreases faster than r−5. When σ = 3/2,
the mean-field model is satisfied, which indicates that J(r) de-
creases slower than r−4.5. In this work, σ = 1.681±0.005 for
x = 0, σ = 1.634±0.002 for x = 0.06, σ = 1.671±0.006 for
x = 0.07, σ = 1.714± 0.004 for x = 0.08, implying that J(r)
changes from r−4.68, r−4.63, r−4.67, r−4.71 for x= 0, 0.06, 0.07,
0.08, respectively. It indicates that J(r) of Mn3+xGa1−xC is
close to the mean-field model (r−4.5) and trends to the Heisen-
berg model (r−5) with increasing the Mn-doping. This means
that Mn–Mn FM interaction is dominant and the enhanced
Mn–C–Mn hybridization derives short-range FM interaction
with increasing the Mn doping. Some short-range FM interac-
tions become stronger. The detailed mechanism requires more
investigations.

4. Conclusions
MCE near FM–PM transition in Mn3GaC has been inves-

tigated. Molecular mean-field model can well describe−∆SM,
while the Landau theory model does not. In addition, critical
behavior is investigated by magnetization measurements us-
ing three different techniques. Critical exponents of Mn-rich
Mn3GaC are between the mean-field model and the Heisen-
berg model. Mn–Mn FM interaction is dominant and the en-
hanced Mn–C–Mn hybridization derives short-range FM in-
teraction with increasing the Mn doping.
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