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We propose a joint exponential function and Woods–Saxon stochastic resonance (EWSSR) model. Because change
of a single parameter in the classical stochastic resonance model may cause a great change in the shape of the potential
function, it is difficult to obtain the optimal output signal-to-noise ratio by adjusting one parameter. In the novel system,
the influence of different parameters on the shape of the potential function has its own emphasis, making it easier for us
to adjust the shape of the potential function. The system can obtain different widths of the potential well or barrier height
by adjusting one of these parameters, so that the system can match different types of input signals adaptively. By adjusting
the system parameters, the potential function model can be transformed between the bistable model and the monostable
model. The potential function of EWSSR has richer shapes and geometric characteristics. The effects of parameters,
such as the height of the barrier and the width of the potential well, on SNR are studied, and a set of relatively optimal
parameters are determined. Moreover, the EWSSR model is compared with other classical stochastic resonance models.
Numerical experiments show that the proposed EWSSR model has higher SNR and better noise immunity than other
classical stochastic resonance models. Simultaneously, the EWSSR model is applied to the detection of actual bearing fault
signals, and the detection effect is also superior to other models.
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1. Introduction

Eliminating noise interference has become the key to
weak signal detection owing to the problem that weak signals
are often submerged in strong background noise. Compared
to the traditional detection methods of noise suppression,[1–9]

researchers found another detection method. The theory of
stochastic resonance (SR) was first proposed by Benzi and
Nicolis et al., when they conducted research on the ancient
meteorological glaciers.[10] SR is different from the general
methods of weak signal detection. Instead of suppressing
noise, it couples noise with the signal to enhance signal trans-
mission performance, which means that the noise is beneficial
for the detection of weak signals in SR systems. We can use
the energy of noise to achieve the purpose of enhancing weak
signals. Since SR has unique advantages in detecting weak
signals in the background of strong noise, the theory was pro-
posed, it has received great attention from scholars at home
and abroad.[11–16]

As an effective weak signal detection method, SR has
been studied by many scholars around the world. For ex-
ample, Asdi et al. studied the use of adaptive SR to detect
weak signals in 1995.[17] In 1998, Galdi et al. studied the
use of SR to detect weak signals under additive white Gaus-

sian noise.[18] Lutz applied SR for nonlinear signal detection
in 2001.[19] On the basis of in-depth study of the mechanism
of SR, Leng et al. proposed re-scaling SR to solve the small
parameter problem.[20] Jin studied the Stochastic resonance in
an under-damped bistable system driven by harmonic mixing
signal in 2018.[21] In the same year, Wang and Wang applied
the adaptive stochastic resonance system to the terahertz radar
signal detection.[22] Subsequently, Xu et al. have made some
progress in the random non-smooth system.[23] Also, there are
many researchers to obtain advances in SR.[24–29] In addition,
the researchers also proposed many new SR models such as
the Woods–Saxon model.[30–32]

However, for most domestic and foreign research on SR,
the classic bistable SR model based on four-time reflection
symmetry potential is mostly studied. In this system, the
change of single parameter may cause a great change in the
shape of the potential function, so it is difficult to obtain the
optimal output signal-to-noise ratio by adjusting the system
parameters, and the detection effect is still not satisfactory.
Therefore, it is necessary to find new SR models to further
enhance the performance of the output SNR. Based on pre-
vious studies, a new stochastic resonance (EWSSR) model is
proposed based on the exponential function and the Woods–
Saxon potential function to improve the output signal-to-noise
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ratio and detection performance of the SR system. Compared
with the classical SR model, the EWSSR model has three dis-
tinct merits: (1) The EWSSR model has more parameters and
the system is more complicated, so the dynamic characteris-
tics are richer. (2) The EWSSR potential can be designed ac-
curately due to the system which can obtain different widths
of the potential well or barrier height by adjusting one of these
parameters, so the EWSSR can match to different types of in-
put signals adaptively. (3) The proposed EWSSR model has
higher SNR and better noise immunity than other classical SR
models.

The rest of the paper is organized as follows: Section 2
introduces the principle of Woods–Saxon stochastic resonance
(WS), presents a new model of joint exponential function, and
analyzes the effect of system parameters on the output signal-
to-noise ratio. In Section 3, we confirm that EWSSR is better
than the traditional SR models by comparing the new model
with other existing SR models in the aspects of SNR and the
detection effect in time-frequency domain. In Section 4, the
EWSSR system is applied to detect the fault characteristics of
the outer rings of the bearing. The final section is devoted to
the conclusion.

2. The EWSSR model
2.1. The Woods–Saxon potential function model

The WS well is nonlinear symmetric, which can be illus-
trated as follows:

UWS(x) =−
v0

1+ exp[(|x|− r)/c]
, (1)

where v0 is used to change the depth of the well, r is used to
determine the width of the well, and c is the steepness of the
wall. The potential function of the WS potential well is shown
in Fig. 1. We set the parameters v0 = 2 and r = 1, and c varies
from 0.01 to 0.25. It can be seen from Fig. 1 that the potential
well is a square well when c = 0, and as c increases, the wall
slope of the WS potential well becomes more and more gently.
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Fig. 1. WS potential function.

2.2. Exponential function model

The exponential function model is

Ue(x) =
a
b
· exp(|bx|), (2)

where a and b are the system parameters. The potential func-
tion has no barrier, only one well, which is shown in Fig. 2.
The width and depth of the well are adjusted by changing the
values of a and b.
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Fig. 2. Exponential function model. (a) Different system parameter a
and fixed parameters with b = 2.0. (b) Different system parameter b
and fixed parameters with a = 0.20.

2.3. Characteristics of the EWSSR model

Combining the exponential function and the Woods–
Saxon potential function model, we put forward a new bistable
potential well model, which is named as the EWSSR double
potential well model. The potential function is expressed as

U(x) = Ue(x)−UWS(x) =
a
b

exp(|bx|)+ v0

1+ exp( |x|−r
c )

. (3)

It can be seen from Eq. (3) that the potential function has five
system parameters: a, b, v0, c, r. They determine the shape
of the potential function together. By adjusting the system
parameters, the potential function model can be transformed
between the bistable model and the monostable model. There-
fore, the potential function model proposed in this paper con-
tains the advantages of the traditional single potential well and
double potential well models. Moreover, the influence of dif-
ferent parameters on the shape of the potential function has
its own emphasis, making it easier for us to adjust the shape
of the potential function, which can enable the system adap-
tively match with different input signals to generate an SR
phenomenon. Thereby the system can be applied to detect dif-
ferent signals. The potential function of the EWSSR model is
shown in Fig. 3. The system parameter is a = 0.25, b = 1.5,
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c = 0.25, v0 = 5, r = 0.8. By transforming the original single-
well model and the WS model into the double-well model of
EWSSR, particles would transition back and forth between the
two potential wells, instead of oscillating within a single WS
well. Therefore, the utilization of noise is improved and the
output signal-to-noise ratio is enhanced.

Moreover, it can be seen from Figs. 4(a)–4(e) that the
changes of different parameters have different influences on
the shape of the potential function. Here a and b play a cru-
cial role in the slope of the potential wall. As a or b increases,
the slope of the potential well will be greater at the same time.
With the increasing v, the barrier height will increase simulta-
neously. Because c decides the slope of the barrier, if the value
of c becomes larger, the barrier will become smoother. Since r

decides the width of the well, if r becomes larger, the potential
well will become wider too. Therefore, by adjusting the pa-
rameters, the dynamic characteristics of the system could be
more abundant.
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Fig. 3. EWSSR potential function.
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Fig. 4. The effect of varieties in individual parameter on the EWSSR potential function for (a) different system parameter a, (b) different b, (c)
different v0, (d) different c, and (e) different r.

Compared with the EWSSR model in Fig. 4, it can be
seen from Figs. 5 and 6 that in the SR and TSR models, when
a single parameter changes, the shape of the potential function
changes significantly, and the potential well and the barrier si-
multaneously change. This indicates that the parameters of the
SR and TSR models are more difficult to adjust.

The SR system equation is obtained as follows:

dx
dt

=−U ′(x)+ s(t)+n(t), (4)

where x(t) denotes the output signal, s(t) denotes the input sig-
nal, U(x) is the potential function, and n(t) =

√
2Dξ (t) repre-

sents the Gaussian white noise with E [n(t)n(t + τ)] = 2Dδ (t),
where D is the noise intensity and ξ (t) is the Gaussian white
noise with the mean of zero and the variance of unit.
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Fig. 5. The effect of varieties in individual parameter on the SR poten-
tial function for (a) different a and (b) for different b.

For the EWSSR potential function model, substituting
Eq. (3) into Eq. (4), we can obtain the system equation of the
EWSSR model as follows:
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Fig. 6. The effect of varieties in individual parameter on the EWSSR potential function for (a) different a, (b) different b, and (c) different c.

dx
dt

= −aexp(|bx|)sgn(bx)+
v0

c
sgn(x)

× exp
(
|x|− r

c

)(
1+ exp

(
|x|− r

c

))−2

+s(t)+n(t), (5)

where sgn(x) is a symbol function. Its expression is

sgn(x) =

 1, x > 0,
0, x = 0,
−1, x < 0.

(6)

2.4. Numerical implementation of EWSSR

Equation (5) is a first-order differential equation, which
can be discretized using the fourth-order Runge–Kutta algo-
rithm. The solution is as follows:

x′ = f (t,x), x(t[0]) = x[0],

k1 = −abexp(|bx(i)|)sgn(bx(i))

+
v0

c
sgn(x(i))exp

(
|x(i)|− r

c

)
×
(

1+ exp
(
|x(i)|− r

c

))−α−1

+ s(i)+n(i),

k2 = −abexp
(∣∣∣∣b(x(i)+

hk1

2

)∣∣∣∣)sgn
(

b
(

x(i)+
hk1

2

))
+

v0

c
sgn(x(i)+

hk1

2
)exp

(
|x(i)+hk1/2|− r

c

)
×
(

1+ exp
(
|x(i)+hk1/2|− r

c

))−α−1

+ s(i)+n(i),

k3 = −abexp(
∣∣∣∣b(x(i)+ hk2

2
)

∣∣∣∣)sgn(b(x(i)+
hk2

2
))

+
v0

c
sgn(x(i)+hk2/2)exp

(
|x(i)+hk2/2|− r

c

)
×
(

1+ exp
(
|x(i)+hk2/2|− r

c

))−α−1

+s(i+1)+n(i+1),

k4 = −abexp(|b(x(i)+hk3)|)sgn(b(x(i)+hk3))

+
v0

c
sgn(x(i)+hk3)exp

(
|x(i)+hk3|− r

c

)

×
(

1+ exp
(
|x(i)+hk3|− r

c

))−α−1

+s(i+1)+n(i+1),

x(i + 1) = x(i)+
h
6
(k1 +2k2 +2k3 + k4), (7)

where f (t,x) is the right side of the equal sign of Eq. (5) and
h is the step size of calculation.

The signal-to-noise ratio gain (SNRgain) can be used to
measure the signal enhancement effect of SR systems. The
greater the SNRgain, the better the signal enhancement effect
of the system. The definition is as follows:[14]

SNRgain = SNRout−SNRin, (8)

where the positive or negative of SNRgain can represent the
occurrence or absence of SR. In addition, the larger the value,
the better the effect of SR.

2.5. The effects of the system parameters on SNRgain of the
output signal

In this section, we can evaluate the performance of the SR
model from the definition of SNRgain and study the SNRgain as
a function of SNRin. There are five parameters in the EWSSR
system, and the parameters can vary at the same time. There-
fore, we use the single variable method to research the influ-
ence of different parameters on SNRgain, so that we can choose
a set of relatively optimal systematic parameters. In the ex-
periment, we set the amplitude A of sinusoidal signal to be
0.6 V, the driving frequency f = 0.01 Hz, the initial phase 0◦,
the sampling frequency fs = 10 Hz, and the step size h = 0.1.
At the same time, in order to ensure the accuracy of the re-
sults, the values of SNRgain are the averages of the repeated
100 calculations.

Firstly, in order to discuss the influence of parameter a on
the system, Fig. 7 shows the SNRgain as a function of SNR of
the input signal with noise for different a and fixed b = 1.5,
c = 0.25, v0 = 5, r = 0.8. It can be seen that the peak value
of SNRgain increases firstly and then decreases with the in-
creasing a, and the peak gradually shifts to the right. When
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a = 0.25, the SNRgain is relatively high, so we set a = 0.25 for
the next study.
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Fig. 7. SNRgain as a function of SNRin with different a and fixed
b = 1.5, c = 0.25, v0 = 5, r = 0.8.

Then, we discuss the parameter b. As shown in Fig. 8,
it is not difficult to conclude that the detection effect is better
in terms of the position of the peak and the value of SNRgain

when b= 2.0. Therefore, we choose b= 2 to continue to study
other parameters.
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Fig. 8. SNRgain as a function of SNRin with different b and fixed
a = 0.25, c = 0.25, v0 = 5, r = 0.8.
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Fig. 9. SNRgain as a function of SNRin with different c and fixed
a = 0.25, b = 2, v0 = 5, r = 0.8.

Figure 9 shows the influence of parameter c on the sys-
tem. Through analysis, it can be seen that under strong noise,
it can be seen that when c is changed, the position of the peak
is basically unchanged. However, we can determine the rela-
tively suitable c value from a relatively weak noise environ-
ment. As seen from Fig. 9, in a relatively weak noise en-
vironment, the system has a higher SNRgain when c = 0.15.
Therefore, we choose c=0.15.

Similarly, figure 10 shows the effect on SNRgain when the
system parameter v0 is changed. By analyzing Fig. 10, un-
der strong noise, the peak of v0 is higher than other situations
when v0 = 10. However, under low noise, the detection effect
is almost the same under the conditions of v0 = 10 and v0 = 15.
Thus, for comprehensive consideration, we set v0 = 10.
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Fig. 10. SNRgain as a function of SNRin with different v0 and fixed
a = 0.25, b = 2, c = 0.15, r = 0.8.

Finally, we consider different parameters r. From Fig. 11,
we can see that under strong noise condition, r = 0.2 is indeed
better than other sets of parameters, but there is still a prob-
lem that, in the case of weak noise, the detection effect of the
system will drop rapidly. Hence, from the overall considera-
tion, we choose r = 0.4 as the system parameter. Finally, we
identify a set of relatively optimal parameters to establish the
system for weak signal detection.
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Fig. 11. SNRgain as a function of SNRin with different r and fixed
a = 0.25, b = 2, c = 0.15, v0 = 10.

3. Comparison with other SR models
In order to verify the performance of the EWSSR model,

we set the previous parameters for simulation experiments,
and compare the EWSSR model with other existing SR mod-
els, including bistable SR (BSR), tri-stable SR (TSR) and pre-
joint models (the WS model and the exponential function (E
function)). We set the parameters of SR as a= 1 and b= 1, the
parameters of TSR as a = 25, b = 5, c = 0.5, the parameters
of WS as c = 0.15, v0 = 10, r = 0.4 and the parameters of the
E function as a = 0.25, b = 2. Firstly, we compare SNRgain.
The result is shown in Fig. 12.
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Fig. 12. Five different systems of SNRgain.

Compared to other SR models, the performance of the
EWSSR model is obvious and outstanding. The SNRgain of
EWSSR is the highest in almost all ranges of SNRin. This
demonstrates that the EWSSR model has not only superior
performance of improving the SNR in weak signal detection,
especially under strong noise environment, but also better per-
formance in terms of detection range. In other words, the SNR
of the EWSSR system can keep high over a wider range. In ad-

dition, we can find that the ranking of performance from high
to low in SNR is: EWSSR, TSR, SR, WS, E function.

In terms of SNR, we have verified that the EWSSR model
is better than the other four models. In addition, we can also
study the detection in time domain and frequency domain to
compare the performance of the systems. In order to verify
that the EWSSR model not only has better performance un-
der relatively weak noise conditions, but also has good perfor-
mance under strong noise. We select the different noise inten-
sities D for simulation experiments in both the time domain
and frequency domain.

Firstly, we set D = 2.0. Figures 13(a) and 13(b) show the
original signal without noise and the original signal with Gaus-
sian white noise and their spectra. It can be seen that it is dif-
ficult to make a distinction to the original signal in Fig. 13(b).
Figures 13(c)–13(g) show that the output signals processed by
the E function, WS, SR, TSR, EWSSR and their spectra, re-
spectively. By comparing the peaks in the spectra, it is easy to
see that under strong noise conditions, the performance of the
EWSSR model is better than the other four models.
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Fig. 13. (a) The original sinusoidal signal and its spectrum. (b) The noise signal and its spectrum. (c)–(g) The output signals with their spectra
processed by the E function, WS, SR, TSR, and EWSSR, respectively, for D = 2.0.
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Then, we set D = 8.0. From Fig. 14(b), we can ob-
serve that the original signal has been completely submerged
by noise. Analyzing Figs. 14(c)–14(f), we find that there are
multiple numerically approximate peaks in the spectra so that
it will be difficult to determine them if the peak at F = 0.01 is

the highest, which can lead to erroneous results. However, the
frequency of the signal can still be seen in Fig. 14(g). There-
fore, we once again prove the superiority of the EWSSR sys-
tem. Finally, we prove the advantages of our proposing system
from both SNR and the detection in time-frequency domain.
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Fig. 14. (a) The original sinusoidal signal and its spectrum. (b) The noise signal and its spectrum. (c)–(g) The output signals with their spectra
processed by the E function, WS, SR, TSR, and EWSSR, respectively, when D is equal to 8.0.

4. The experiment of rolling bearing fault signal
detection
In this section, we test the EWSSR system, SR system

and TSR system using rolling bearing fault signals from the
bearing data center of the western reserve universities and
compared the three systems. The bearing related information
is shown in Table 1. The diameter of the slight peeling fault is
0.007 inches and the depth of the fault is 0.011 inches. CNS
bearing center uses accelerometer to collect signals, the sam-
pling time is 4 s, and the sampling frequency is 12000 Hz.

Table 1. Information about 6205–2RS JEM SKF, deep groove ball bear-
ing size/inches.

Inside diameter Outside diameter Thickness Ball diameter Pitch diameter
0.9843 2.0472 0.5906 0.3126 1.537

The motor speed is 1772 rpm, and the bearing outer ring
fault frequency is 3.5848 times the motor rotation frequency.

The motor rotation frequency is fg ≈ 29.53 Hz, and the fault

frequency is fb = 3.5848× fg = 105.871093 Hz.

When detecting the signal to be tested, the pre-processing

is first performed. The envelope spectrum is obtained by

Hilbert transform, and then sub-sampling is performed. Af-

ter the pre-processing is completed, the optimal parameters of

the stochastic resonance system are adaptively acquired by the

genetic algorithm. Finally, according to the optimal parame-

ters, the stochastic resonance is used to detect the signal to be

tested.

Figure 15(a) shows the time domain waveform and fre-

quency domain of the acquired signal. Obviously, the time

domain waveform is disorderly, the frequency components in

the spectrum are concentrated in 2000–4000 Hz, and fb of the

outer ring of the bearing is not detected.
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Fig. 15. Processing of bearing outer ring fault signal, time domain diagram and spectrum: (a) input signal, (b) output signal of SR
system, (c) output signal of TSR system, and (d) output signal of EWSSR system.

Figures 15(b)–15(d) show that the time domain waveform
and spectrum of the output signal processed by the SR sys-
tem, TSR system and EWSSR system respectively. The fre-
quency at the peak of the spectrum is 106.3 Hz, which is very
close to the theoretically calculated fault frequency. Within
the allowable range of error, the fault frequency is success-
fully detected. The optimized stochastic resonance system pa-
rameters of SR are a = 0.02, b = 95.42, fs2 = 49.93 ( fs2 is
frequency of sub-sampling). The optimized stochastic reso-
nance system parameters of TSR are a = 34.39, b = 42.35,
c= 1.72, fs2 = 42.63. The optimized stochastic resonance sys-
tem parameters of EWSSR are a = 0.22, b = 0.16, v0 = 3.12,
c = 2.41, r = 4.94, fs2 = 42.1. In the spectrum of the output
signal of the SR system, the peak value of fb2 is 0.1369, and
the SNRgain is 28.43 dB. In the spectrum of the output signal
of the TSR system, the peak value of fb2 is 0.1755, and the
SNRgain is 28.52 dB. In the spectrum of the output signal of
the EWSSR system, the peak value of fb2 is 5.303, and the
SNRgain is 29.84 dB. Both the peak value and SNRgain of the
EWSSR system are higher than those of the SR and the TSR
systems. It can be seen that the proposed EWWSR system can
effectively improve the SNRgain in detecting the slight peeling
of the outer ring of the rolling bearing.

5. Conclusion
In this paper, a new SR model EWSSR has been pro-

posed. We firstly investigate the influence of system param-
eters on its characteristics. Then, a set of relatively optimal
system parameters are selected based on its performance in
the SNR. Moreover, EWSSR and other SR models are com-
pared in terms of SNR and detection effect in time-frequency
domain. The experimental results on SNR indicate that the
SNRgain of EWSSR is higher than the SR TSR and pre-joint
models. The experimental results in the time-frequency do-
main show that the EWSSR system is better than the other
four models in detecting weak signals, especially in the envi-
ronment of strong noise. Therefore, it is proved theoretically
that the proposed model is better at detecting weak signals un-
der strong noise. Finally, we apply the EWSSR model to the
detection of actual bearing fault signals. The test results are
also superior to the SR and TSR models, which proves the
feasibility of this system in actual detection.
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