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The nonlocal symmetries are derived for the Korteweg–de Vries–negative-order Korteweg–de Vries equation from
the Painlevé truncation method. The nonlocal symmetries are localized to the classical Lie point symmetries for the en-
larged system by introducing new dependent variables. The corresponding similarity reduction equations are obtained
with different constant selections. Many explicit solutions for the integrable equation can be presented from the similarity
reduction.
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1. Introduction
The well-known KdV equation is one of the most impor-

tant integrable systems in the soliton theory and has been stud-
ied extensively since it is proposed to describe the shallow
water wave propagation with small but finite amplitudes.[1]

The classical Lie symmetry and nonclassical Lie symme-
try methods are very effective to find the exact solutions
of a given nonlinear system. But these classical symmetry
methods can only involve the independent, dependent vari-
ables and their derivatives.[2] In order to find much more
interaction solutions among solitons and other complicated
wave solutions for the nonlinear systems, many authors pro-
posed the nonlocal symmetry by the Bäcklund transforma-
tion, the Möbius invariant form, the Painlevé truncation ex-
pansion, and the Darboux transformation. Many new inter-
action solutions among different types of nonlinear excita-
tions including the solitons, cnoidal waves, Airy waves, and
Bessel waves for a number of integrable systems, such as the
Kadomtsev–Petviashvili equation, the Burgers equation, the
modified Kadomtsev–Petviashvili equation, and the coupled
integrable dispersionless equation, are constructed by means
of the nonlocal symmetry.[3–19] We should point out that these
new interaction excitations have not been yet obtained by other
traditional methods, such as the inverse scattering transforma-
tion, the Hirota bilinear method, and the separation variable
approach.

Recently, many integrable negative-order nonlinear sys-
tems have been studied in the field of soliton theory and some
relevant branches of physical phenomena.[20–22] The author
proposed and constructed the exact solutions of a special inte-
grable equation combining the well-known KdV equation and
the negative-order KdV (KdV–nKdV) equation in Ref. [23].

The KdV–nKdV equation is given in the form

ut = vx, (1)

ut +6uux +uxxx +uxxt +4uut +2uxv = 0, (2)

where u = u(x, t) and v = v(x, t). The author aimed to ob-
tain a sequence of equations of increasing negative orders by
the negative order recursion operators based on the results of
Olver.[24,25] Wazwaz derived the multiple soliton solutions and
periodic solutions for the KdV–nKdV equations (1) and (2) by
the Hirota bilinear form and showed that it is integrable in the
sense of admitting the Painlevé property. The N-th Bäcklund
transformation and soliton-cnoidal wave interaction solutions
for the KdV–nKdV equation has been studied in Ref. [26].

In this paper, we focus on the nonlocal symmetry and
similarity reduction equation for the integrable KdV–nKdV
equation by the Painlevé truncation method and the classical
Lie symmetry method. The nonlocal symmetry for the KdV–
nKdV equations (1) and (2) is localized to Lie point symmetry
by introducing four dependent variables. The finite symmetry
transformations related to the nonlocal symmetry are obtained
for the enlarged system.

This paper is organized as follows. In Section 2, the non-
local symmetries related to the truncated Painlevé expansion
are obtained and the corresponding finite transformation is de-
rived by solving the initial value problem of the enlarged sys-
tem. In Section 3, the different symmetry reductions for the
enlarged system are studied according to the Lie point sym-
metry method. Summary and discussion are given in the last
section.
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2. Nonlocal symmetries and their localization
for the KdV–nKdV equations (1) and (2)
In this section, we give the nonlocal symmetry and corre-

sponding finite symmetry transformation for the KdV–nKdV
equations (1) and (2). Based on the truncated Painlevé analy-
sis of the KdV–nKdV equation, the Laurent series form reads

u(x, t) =
u0

φ 2 +
u1

φ
+u2, (3)

v(x, t) =
v0

φ 2 +
v1

φ
+ v2, (4)

where φ = φ(x, t) is an arbitrary singularity manifold and the
functions {u0,u1,u2,v0,v1,v2} are functions to be determined
later. Substituting the expansion (4) into Eqs. (1) and (2) and
vanishing all the coefficients of different powers of φ = φ(x, t)
independently, we have

u0 =−2φ
2
x , v0 =−2φxφt , u1 = 2φxx, v1 = 2φxt , (5)

u2 =
φ 2

xx

4φ 2
x
− φxxx

2φx
− 1

4
, (6)

v2 =
4φxxφxt +3φ 2

xx

4φ 2
x

− 2φxxt +φxxx

2φx
+

3
4
, (7)

Sx +St = 0, (8)

where

S =
φxxx

φx
− 3φ 2

xx

2φ 2
x

is the usual Schwarzian variable. We can find that the residual
{u1,v1} are the nonlocal symmetry corresponding to the solu-
tions {u2,v2} based on the definition of residual symmetry.[27]

The expression of Eqs. (3) and (4) is just an auto-Bäcklund
transformation between the solutions {u2,v2} and {u,v} if the
function φ satisfies the consistent condition (8). Then the non-
local symmetry of Eqs. (1) and (2) can be read out directly
from the truncated Painlevé expansion of Eqs. (3) and (4) with
Eq. (5)

σ
u = 2φxx, σ

v = 2φxt , (9)

and the corresponding initial value problem of Eq. (9) is

dū
dε

= 2φ̄xx, ū|ε=0 = u,

dv̄
dε

= 2φ̄xt , v̄|ε=0 = v, (10)

with ε being an infinitesimal parameter. It is difficult to solve
the initial value problem of the Lie’s first principle due to the
intrusion of the arbitrary function φ and its derivatives. In or-
der to solve the initial value problem (10), we can introduce
four dependent variables by requiring

φx = g, φt = h, gx = p, hx = q. (11)

It is not difficult to find that the solution of the linearized equa-
tions of Eqs. (1), (2), (6), (7), and (11) has the form

σ
u = 2p, σ

v = 2q, σ
φ =−φ

2, σ
g =−2gφ ,

σ
h =−2hφ , σ

p =−2(pφ +g2), σ
q =−2(qφ +gh), (12)

and the corresponding initial value problem becomes

dū
dε

= 2p̄,
dv̄
dε

= 2q̄,
dφ̄

dε
=−φ̄

2,

dḡ
dε

=−2ḡφ̄ ,
dh̄
dε

=−2h̄φ̄ ,
dp̄
dε

=−2(p̄φ̄ + ḡ2),

dq̄
dε

=−2(q̄φ̄ + h̄ḡ), ū|ε=0 = u, v̄|ε=0 = v, φ̄ |ε=0 = φ ,

ḡ|ε=0 = g, h̄|ε=0 = h, p̄|ε=0 = p, q̄|ε=0 = q. (13)

The solution of the initial value problem Eq. (13) for the en-
larged system of Eqs. (1), (2), (6), (7), and (11) can be written
as

ū = u+
2pε

(1+ εφ)
− 2g2ε2

(1+ εφ)2 ,

v̄ = v+
2qε

(1+ εφ)
− 2ghε2

(1+ εφ)2 ,

φ̄ =
φ

(1+ εφ)
, ḡ =

g
(1+ εφ)2 , h̄ =

h
(1+ εφ)2 ,

p̄ =
p

(1+ εφ)2 −
2εg2

(1+ εφ)3 ,

q̄ =
q

(1+ εφ)2 −
2ghε

(1+ εφ)3 . (14)

Using the finite symmetry transformation, one can obtain soli-
tary wave solution for Eqs. (1) and (2) with the trivial solution
u2 = v2 = 0. If selecting the nontrivial seed solution and dif-
ferent types of the function φ in Eq. (8), one can obtain much
more exact solutions of Eqs. (1) and (2).

3. Similarity reduction related to the nonlocal
symmetry (9)
The nonlocal symmetry for the KdV–nKdV equation can-

not be used to construct explicit solution directly because of
the difficulty to find the nontrivial solutions of the consis-
tent condition (8). It is fortunate that the nonlocal symme-
try will become the usual Lie point symmetry for the pro-
longed system of Eqs. (1), (2), (6), (7), and (11) by intro-
ducing the potential fields (11). We can thus use the sym-
metry reduction related to the nonlocal symmetries to study
the prolonged system.[28–30] The Lie point symmetries σn

(n = u,v,φ ,g,h, p,q) for the prolonged system are the solu-
tions of the symmetry equations for Eqs. (1), (2), (6), (7), and
(11) below

σ
u
t −σ

v
x = 0, (15)

4σ
u
t u+4utσ

u +6σ
u
x u+6uxσ

u +2σ
u
x v
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+2uxσ
v +σ

u
t +σ

u
xxx +σ

u
xxt = 0, (16)

σ
u +

σ
φ
xxx

2φx
− φxxσ

φ
xx +φxxxσ

φ
x

2φ 2
x

+
φ 2

xxσ
φ
x

2φ 3
x

= 0, (17)

σ
v +

2σ
φ

xxt +σ
φ
xxx

2φx
+

4φxxφxtσ
φ
x +3φ 2

xxσ
φ
x

2φ 3
x

−2φxxσ
φ

xt +2σ
φ
xxφxt +3σ

φ
xxφxx +2φxxtσ

φ
x +φxxxσ

φ
x

2φ 2
x

= 0,

(18)

σ
φ
x −σ

g = 0, (19)

σ
φ

t −σ
h = 0, (20)

σ
φ
xx−σ

p = 0, (21)

σ
φ

xt −σ
q = 0. (22)

As the standard steps of the Lie symmetry method, the
symmetry components σn (n = u,v,φ ,g,h, p,q) can be sup-
posed to have the form

σu

σ v

σφ

σg

σh

σ p

σq


= X



ux
vx
φx
gx
hx
px
qx


+T



ut
vt
φt
gt
ht
pt
qt


−



U
V
Φ

G
H
P
Q


, (23)

where {X ,T,U,Φ ,V,G,H,P,Q} are undetermined functions
of {x, t,u,v,φ ,g,h, p,q} and the enlarged symmetry equa-
tions (15)–(22) are invariant under the transformation

u→ u+ εσ
u, v→ v+ εσ

v, φ → φ + εσ
φ , g→ g+ εσ

g,

h→ h+ εσ
h, p→ p+ εσ

p, q→ q+ εσ
q. (24)

Substituting the symmetry expression (23) into
the linearized system of Eqs. (15)–(22) and requiring
{u,v,φ ,g,h, p,q} to satisfy the prolonged system of Eqs. (1),
(2), (6), (7), and (11), we can obtain the over-determined equa-
tions by collecting the coefficients of {u,v,φ ,g,h, p,q} and
their derivatives. The infinitesimals {X ,T,U,Φ ,V,G,H,P,Q}
are given out for simplicity by complicated calculations

X = c1x+ c3, T = c1t + c2,

U =−2c1u+2c4 p− c1

2
,

V =−2c1v+2c4q+
3c1

2
, Φ =−c4φ

2 + c5φ + c6,

G =−2c4φg+ c5g− c1g, H =−2c4φh+ c5h− c1h,

P =−2c4φ p+ c5 p−2c4g2−2c1 p,

Q =−2c4φq+ c5q−2c4gh−2c1q, (25)

where ci, (i = 1,2, . . . ,6) are arbitrary constants. In the follow-
ing section, the standard Lie symmetry method will be used to
find the similarity variables and similarity reduction equations
for the KdV–nKdV equations (1) and (2). In order to find the
similarity variables and the corresponding reduction equation,

we should solve the characteristic equation with the expres-
sions in Eqs. (25). Because of the existence of six arbitrary
constants in Eqs. (25), we consider two cases respectively.

Case 1 We redefine the constant ∆ =
√

4c4c6 + c2
5 for

simplicity and two situations with ∆ 6= 0 and ∆ = 0 are given
in detail. When ∆ 6= 0, it is easy to find the similarity variables
from the characteristic equation

dt
T

=
dx
X

=
du
U

=
dv
V

=
dφ

Φ
=

dg
G

=
dh
H

=
dp
P

=
dq
Q
, (26)

and the concrete expressions are shown directly

φ =
∆ tanh(η)+ c5

2c4
, g =

−G
(c1t + c2)cosh2(η)

,

h =
−H

(c1t + c2)cosh2(η)
, p =− 4c4G2 tanh(η)+∆P

∆(c1t + c2)2 cosh2(η)
,

q =− 4c4GH tanh(η)+∆Q
∆(c1t + c2)2 cosh2(η)

,

u =
8c2

4G2

∆ 2(c1t + c2)2 cosh2(η)
+

U
(c1t + c2)2

−4c4P tanh(η)

∆(c1t + c2)2 −
1
4
,

v =
8c2

4GH
∆ 2(c1t + c2)2 cosh2(η)

+
V

(c1t + c2)2

−4c4Q tanh(η)

∆(c1t + c2)2 +
3
4
, (27)

where η =(∆/2c1)[c1Φ+ln(c1t+c2)] and {U,V,Φ ,G,H,P,Q}
are seven invariant functions with the independent similarity
variable

ξ =
c1x+ c3

c1(c1t + c2)
. (28)

Substituting Eqs. (27) into Eqs. (6), (7), (8), and (11), we can
obtain the invariant functions {U,V,Φ,G,H,P,Q} in the form

G =− ∆ 2

4c4
Φξ , H =−

∆ 2(1− c1ξ Φξ )

4c4
,

P =− ∆ 2

4c4
Φξ ξ , Q =−∆ 2c1ξ

4c4
Φξ ξ ,

U =
Φ2

ξ ξ

4Φ2
ξ

−
Φξ ξ ξ

2Φξ

+
∆ 2Φ2

ξ

4
,

V =
(2c1ξ −1)Φξ ξ ξ

2Φξ

+
(3−4c1ξ )Φ2

ξ ξ

4Φ2
ξ

+
∆ 2Φ2

ξ

4
,

where the function Φ should satisfy the following equation

4Φξ ξ ξ Φξ ξ Φξ −Φξ ξ ξ ξ Φξ −3Φ
3
ξ ξ

+∆
2
Φξ ξ Φ

4
ξ
= 0. (29)

If the solution of Eq. (29) is known, then the solution of
the KdV–nKdV equations (1) and (2) can be expressed as fol-
lows:
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u =
∆ 2Φ2

ξ

2(c1t + c2)2 cosh2(η)
+

1
(c1t + c2)2

(
−

Φξ ξ ξ

2Φξ

+
Φ2

ξ ξ

4Φ2
ξ

+
∆ 2Φ2

ξ

4

)
+

∆Φξ ξ tanh(η)

(c1t + c2)2 − 1
4
,

v =
1

(c1t + c2)2

(
(2c1ξ −1)Φξ ξ ξ

2Φξ

+
(3−4c1ξ )Φ2

ξ ξ

4Φ2
ξ

+
∆ 2Φ2

ξ

4

)
+

∆ 2Φξ (1− c1ξ Φξ )

2(c1t + c2)2 cosh2(η)
−

∆Φξ ξ tanh(η)

(c1t + c2)2 +
3
4
.

A simple solution of Eq. (29) has the form

Φ1 = kξ +b, (30)

Then the solitary solutions of the KdV–nKdV equations (1)
and (2) are obtained easily by selecting proper arbitrary con-
stants

u =−1
4
+

k2∆ 2

4(c1t + c2)2

+
k2∆ 2

2(c1t + c2)2 cosh2[(∆/2c1)(c1Φ1 + ln(c1t + c2))]
, (31)

v =
3
4
+

k2∆ 2

4(c1t + c2)2

+
(k− c1k2ξ )∆ 2

2(c1t + c2)2 cosh2[(∆/2c1)(c1Φ1 + ln(c1t + c2))]
. (32)

The similarity solution expressed by Eq. (31) is given in Fig. 1
with proper constant selection and it should be pointed that
this solution has singularity point when t→−1.









↩.

↩.

↩.

↩.

↩.



t



↩

↩

↩

↩

x

u

Fig. 1. The quasi-solitary wave solution u expressed by Eq. (31) of the KdV–
nKdV equation with Eqs. (28) and (30) and the constants selection k = 0.7,
b = 2, ∆ = 4, c1 = c2 = 2, c3 = 8.

When ∆ =
√

4c4c6 + c2
5 = 0, following the similar steps

of the above case ∆ 6= 0, the similarity solutions are calculated
as follows:

φ =
c1

c4(ln(c1t + c2)+ c1Φ)
+

c5

2c4
, g =

G
(c1t + c2)(ln(c1t + c2)+ c1Φ)2 , h =

H
(c1t + c2)(ln(c1t + c2)+ c1Φ)2 ,

p =
2c4G2 + c1[ln(c1t + c2)+ c1Φ ]P

c1(c1t + c2)2[ln(c1t + c2)+ c1Φ ]3
, q =

2c4GH + c1[ln(c1t + c2)+ c1Φ ]Q
c1(c1t + c2)2[ln(c1t + c2)+ c1Φ ]3

,

u =
U

(c1t + c2)2 −
2c4

c1(c1t + c2)2[ln(c1t + c2)+ c1Φ ]

(
P+

c4G2

c1[ln(c1t + c2)+ c1Φ ]

)
− c1t(c1t +2c2)

4(c1t + c2)2 ,

v =
V

(c1t + c2)2 −
2c4

c1(c1t + c2)2[ln(c1t + c2)+ c1Φ ]

(
Q+

c4GH
c1[ln(c1t + c2)+ c1Φ ]

)
+

3c1t(c1t +2c2)

4(c1t + c2)2 , (33)

with the same similarity variable as given in Eq. (28). Substituting the expressions (33) into Eqs. (6), (7), (8), and (11), the
invariant functions {U,Φ ,V,G,H,P,Q} should satisfy the following relations

G =−c2
1

c4
Φξ , H =

c2
1(c1ξ Φξ −1)

c4
, Q =

c3
1ξ Φξ ξ

c4
, P =−c2

1
c4

Φξ ξ ,

U =
Φ2

ξ ξ

4Φ2
ξ

−
Φξ ξ ξ

2Φξ

− c2
2

4
, V =

(2c1ξ −1)Φξ ξ ξ

2Φξ

+
(3−4c1ξ )Φ2

ξ ξ

4Φ2
ξ

+
3c2

2
4

,

and the function Φ satisfies the similarity equation

4Φξ ξ ξ Φξ ξ Φξ −Φξ ξ ξ ξ Φξ −3Φ
3
ξ ξ

= 0. (34)

When the solutions of the similarity reduction equation (34) are known, the corresponding exact solutions of the KdV–nKdV
equations (1) and (2) are simply obtained

u =
1

(c1t + c2)2

(
Φ2

ξ ξ

4Φ2
ξ

−
Φξ ξ ξ

2Φξ

)
+

2c1Φξ ξ

(c1t + c2)2[ln(c1t + c2)+ c1Φ ]
−

2c2
1Φ2

ξ

(c1t + c2)2(ln(c1t + c2)+ c1Φ)2 , (35)

v =
2(2c1ξ −1)Φξ ξ ξ Φξ +(3−4c1ξ )Φ2

ξ ξ

4(c1t + c2)2Φ2
ξ

−
2c2

1ξ Φξ ξ

(c1t + c2)2[ln(c1t + c2)+ c1Φ ]
−

2c2
1Φξ (1− c1ξ Φξ )

(c1t + c2)2[ln(c1t + c2)+ c1Φ ]2
. (36)
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Case 2 In this case, we choose the constant c1 =

0 and two situations with ∆ =
√

4c4c6 + c2
5 = 0 and ∆ =√

4c4c6 + c2
5 6= 0 are also studied respectively. When ∆ 6= 0,

following the similar procedures in Case 1, we can easily find
that the similarity variable is just a travelling wave transforma-
tion

ζ = x− c3

c2
t, (37)

and the exact solutions of the characteristic equation (26) with
c1 = 0 are solved in the following

φ =
∆

2c4
tanh

[
∆

2c2
(Φ̃ + t)

]
+

c5

2c4
,

g =− G̃
cosh2[(∆/2c2)(Φ̃+ t)]

,

h =− H̃
cosh2[(∆/2c2)(Φ̃ + t)]

,

p =−
4c4G̃2 tanh[ ∆

2c2
(Φ̃ + t)]+∆ P̃

∆ cosh2[(∆/2c2)(Φ̃ + t)]
,

q =−4c4G̃H̃ tanh[(∆/2c2)(Φ̃ + t)]+∆ Q̃
∆ cosh2[(∆/2c2)(Φ̃ + t)]

,

u = Ũ− 8c2
4G̃2 tanh2[(∆/2c2)(Φ̃ + t)]

∆ 2

− 4c4P̃ tanh[(∆/2c2)(Φ̃ + t)]
∆

,

v = Ṽ − 8c2
4G̃H̃ tanh2[(∆/2c2)(Φ̃ + t)]

∆ 2

− 4c4Q̃ tanh[(∆/2c2)(Φ̃ + t)]
∆

, (38)

where {Φ̃ ,Ũ ,Ṽ , G̃, H̃, P̃, Q̃} are seven group invariant func-
tions of the similarity variable ζ . Then substituting Eqs. (38)
into Eqs. (6), (8), and (11), the functions {Ũ ,Φ̃ ,Ṽ , G̃, H̃, P̃, Q̃}
should satisfy the following equations

G̃ =− ∆ 2

4c2c4
Φ̃ζ , H̃ =

∆ 2(c3Φ̃ζ − c2)

4c4c2
2

,

P̃ =− ∆ 2

4c2c4
Φ̃ζ ζ , Q̃ =

c3∆ 2

4c2
2c4

Φ̃ζ ζ ,

Ũ =
Φ̃2

ζ ζ

4Φ̃2
ζ

−
Φ̃ζ ζ ζ

2Φ̃ζ

+
∆ 2Φ̃2

ζ

4c2
2
− 1

4
,

Ṽ =
(2c3− c2)Φ̃ζ ζ ζ

2c2Φ̃ζ

+
(3c2−4c3)Φ̃

2
ζ ζ

4c2Φ̃2
ζ

+
∆ 2Φ̃2

ζ

4c2
2

+
3
4
,

where the similarity function Φ̃ should be a solution of the
similarity equation

4Φ̃ζ ζ ζ Φ̃ζ ζ Φ̃ζ − Φ̃ζ ζ ζ ζ Φ̃ζ −3Φ̃
3
ζ ζ

+
∆ 2Φ̃ζ ζ Φ̃4

ζ

c2
2

= 0. (39)

It is easy to see that equation (39) has the simple travelling
wave solution

Φ̃ = kζ +b, (40)

and the solutions of the KdV–nKdV equations (1) and (2) can
be obtained from the last two equations in Eq. (38)

u =
Φ̃2

ζ ζ

4Φ̃2
ζ

−
Φ̃ζ ζ ζ

2Φ̃ζ

+
∆ 2Φ̃2

ζ
−2∆ 2Φ̃2

ζ
tanh2((∆/2c2)(Φ̃ + t))

4c2
2

+
∆Φ̃ζ ζ tanh((∆/2c2)(Φ̃ + t))

c2
− 1

4
, (41)

v =
(2c3− c2)Φ̃ζ ζ ζ

2c2Φ̃ζ

+
(3c2−4c3)Φ̃

2
ζ ζ

4c2Φ̃2
ζ

+
∆ 2Φ̃2

ζ
−2∆ 2Φ̃ζ (1− (c3Φ̃ζ/c2)) tanh2((∆/2c2)(Φ̃ + t))

4c2
2

−
c3∆Φ̃ζ ζ tanh((∆/2c2)(Φ̃ + t))

c2
2

+
3
4
. (42)

The detailed structure of the similarity solution of u in Eq. (41)
is shown in Fig. 2 with proper constant selection and the struc-
ture for v in Eq. (41) is similar to u which is omitted here for
simplicity.

↩.

↩.

↩.



.

.
u

     ↩↩↩
x






↩

↩

t

Fig. 2. The solitary wave solution u expressed by Eq. (41) of the KdV–nKdV
equation with Eq. (40) and the constants selection k = b = c3 = 1, c2 = 3,
∆ = 7.

In the similar way, the symmetry reduction of the KdV–
nKdV equations (1) and (2) can be obtained directly when the
constant ∆ = 0 and we omit the tedious calculations for sim-
plicity and just give the final result below

u =
Φ̄2

ζ ζ

4Φ̄2
ζ

−
Φ̄ζ ζ ζ

2Φ̄ζ

−
2c2

2Φ̄2
ζ

(c2Φ̄ + t)2 +
2c2Φ̄ζ ζ

(c2Φ̄ + t)
− 1

4
, (43)

v =
2(2c3− c2)Φ̄ζ ζ ζ Φ̄ζ +(3c2−4c3)Φ̄

2
ζ ζ

4c2Φ̄2
ζ

−
2c2Φ̄ζ (1− c3Φ̄ζ )

(c2Φ̄ + t)2 −
2c3Φ̄ζ ζ

(c2Φ̄ + t)
+

3
4
, (44)

where the similarity function Φ̄ satisfies the reduction equa-
tion with the same similarity variable in Eq. (37)

4Φ̄ζ ζ ζ Φ̄ζ ζ Φ̄ζ − Φ̄ζ ζ ζ ζ Φ̄ζ −3Φ̄
3
ζ ζ

= 0. (45)

It is noted that the reduction equation (39) can degenerate to
Eq. (45) when ∆ = 0. But the similarity solutions for u and
v are different because there exists a hyperbolic function in
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Eqs. (41) and (42). When we select the simple travelling wave
solution as Eq. (40) for the similarity equations (39) and (45),
the similarity solutions for u and v are the periodic solitary
wave solutions and the rational function solutions respectively.

In the both two cases, the main parts of the reduction
equations are the same except the nonlinear term with the con-
stant ∆ . It is difficult to find the exact solutions of the reduc-
tion equations because of the transcendental function solutions
in equations (29), (34), (39), and (45).

4. Summary and discussion
In summary, the nonlocal symmetries for the KdV–nKdV

equations (1) and (2) related to the Painlevé truncation method
are obtained. The nonlocal symmetries are localized to the
classical Lie point symmetry for the prolonged system by in-
troducing new dependent variables. For the prolonged system,
the classical Lie point symmetry group and the correspond-
ing similarity reductions are studied according to the different
constant selections. From the exact solutions of the reduction
equations, we can construct new similarity solutions for the
KdV–nKdV equation from the reduction equation for Φ . The
periodic solitary wave solutions and the rational function so-
lution for the KdV–nKdV equation are obtained by selecting
the simple travelling wave solution of the similarity equation
in Eqs. (39) and (45). Furthermore, other integrable proper-
ties such as the Darboux transformation, variable separation
solutions and lump solutions for the KdV–nKdV equation are
worthy of further study.
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