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In order to further study the dynamical behavior of nonconservative systems, we study the conserved quantities and
the adiabatic invariants of fractional Brikhoffian systems with four kinds of different fractional derivatives based on Her-
glotz differential variational principle. Firstly, the conserved quantities of Herglotz type for the fractional Brikhoffian
systems based on Riemann-Liouville derivatives and their existence conditions are established by using the fractional
Pfaff-Birkhoff-d’ Alembert principle of Herglotz type. Secondly, the effects of small perturbations on fractional Birkhof-
fian systems are studied, the conditions for the existence of adiabatic invariants for the Birkhoffian systems of Herglotz
type based on Riemann-Liouville derivatives are established, and the adiabatic invariants of Herglotz type are obtained.
Thirdly, the conserved quantities and adiabatic invariants for the fractional Birkhoffian systems of Herglotz type under
other three kinds of fractional derivatives are established, namely Caputo derivative, Riesz—Riemann—Liouville derivative
and Riesz—Caputo derivative. Finally, an example is given to illustrate the application of the results.
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1. Introduction

The problem of fractional calculus was first raised in the
correspondence between Leibniz and L'Hospital in 1693, it
was not until 1970 that many examples of fractional calcu-
lus were found in nature, which attracted great attention.!!l In
1974, Oldham et al. published the first monograph in the world
“the fractional calculus”.!?! Subsequently, fractional calculus
was widely applied in the fields of full cycle mechanics, intelli-
gent control, chaos dynamics, and other fields. 3-71 In order to
model the dynamics of nonconservative forces such as friction,
Riewe!®! introduced the fractional calculus into nonconserva-
tive mechanics. On this basis, the Noether theorems with frac-
tional Lagrangian or fractional Hamiltonian were studied and
proved, see Refs. [10—13] and therein. Since Birkhoffian me-
chanics is the generalization of Hamiltonian mechanics, so it
is more general to study Birkhoffian system with the fractional
calculus. In recent years, a series of studies have been con-
ducted on fractional Birkhoffian systems and its symmetry and

[14-18] Recently, Tian and Zhang studied

conserved quantities.
the Noether’s theorem of the fractional Birkhoffian system of
Herglotz type (FBSH).[!”]

Herglotz generalized variational principle was proposed

201 in which the function of Herglotz ac-

by Gustav Herglotz,!
tion is defined by a differential equation, which is the gen-

eralization of classical variational principle and can solve

DOI: 10.1088/1674-1056/ab6d51

the problems that cannot be solved by the classical varia-
tional principle, for example, nonconservative and dissipa-
tive systems.[?!??] Georgieva et al. studied Herglotz general-
ized variational principle and Noether’s theorem. >3] Recently,
the Herglotz generalized variational principle and its Noether
theory were extended to Birkhoffian system,?*>3 fractional

19.2627] time-delay dynamics, 8! nonconservative

dynamics,[
Hamilton system, ] etc. However, to the authors’ knowledge,
there are few studies on adiabatic invariants of FBSH.

The so-called adiabatic invariant is a physical quantity
in a mechanical system that changes when small parameters
changes. In 1961, Kruskal®"! studied the adiabatic invariants
of dynamic systems. Subsequently, adiabatic invariants have
attracted the attention of many scholars and obtained some im-

31-34] 1n 1996, the exact invariants and adia-

portant results. !
batic invariants of general holonomic and nonholonomic sys-
tems are studied by Zhao and Mei,!?>! they believe that the
adiabatic invariants were not only unique to Hamiltonian sys-
tem. Recently, the theory of adiabatic invariants of dynamical
systems have been studied, such as Non-material volumes. (6]
Lagrangian systems, 37! generalized Hamiltonian systems, [3%]

40,41] and

Birkhoffian systems,*”! nonholonomic systems,|
fractional Birkhoffian systems.[4>#3]
In this paper, the adiabatic invariants of FBSH under four

kinds of different fractional derivatives based on the differen-
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tial variational principle are studied. The rest of this paper is
arranged as follows. The definitions of four kinds of fractional
derivatives are given in Second 2. In Section 3, based on the
Pfaff-Birkhoff—d’ Alembert principle of Herglotz type (PB-
DPH), the exact invariants and adiabatic invariants and their
existence conditions of FBSH based on Riemann-Liouville
derivatives are derived. In Section 4, we extend the results

of Sction 3 to FBSH with other kinds of fractional derivatives.

REDPf (1) =

o _ 1
REDRf () = Ti—a) (‘

The left and right Caputo fractional derivatives are defined as!?!

el eer e (&) o

Foa ] ¢ ")"1_%1(_;6) At @

SDAf(1) =

cDEf(1) =

o (@

)m [ et ac. @

Then, in Section 5, an example is given to demonstrate the
exact invariants and adiabatic invariants of the system of Her-
glotz type. Finally, the conclusion is given in the last section.

2. Preliminaries

Let the function f (¢) be continuous and integrable on the

interval [a, 1], then the left and right Riemann—Liouville frac-

tional derivatives are defined as follows: !

) [a-aret@a, )

The derivatives of Riesz—Riemann-Liouville and Riesz—Caputo are defined as!?!

KDY f (1)

RCDEf(1) =

where o is the order of fractional derivatives with m — 1 <
o < m, T'(x) is Euler—-Gamma function. The combined
Riemann-Liouville and Caputo fractional derivative are de-

fined as respectively!!”!

RLDaﬁf
cDaﬁf

YRLD“f < ~9)(~)"DYf(1), ()
— DA () +(1—7) (=1)"DPr(r).  (®)

3. Exact invariants and adiabatic invariants
with Riemann-Liouville derivatives

3.1. Exact invariants with Riemann-Liouville derivatives

The fractional PBDPH with Riemann-Liouville deriva-
tive can be written as follows: 1]

OR JB
[ 5 :RLD‘”* v_cphe " (MRy) — My }&z”:O,
(W,v=12...2n), )

dat dat

_ F(l_a)@) [i-eretr@ae, )

where

Al:exp[ / <8aRZVRLDOCﬂ \% (3f>d6:|

The generalized variations Aa* and At are defined as

Aa" =¢eF} (t,a",z), (10
At =¢ef%(t,a",7), (11)

where Fp(l) and fO are called the generators of space and time
of infinitesimal transformations respectively. Using the re-
lation between isochronous variational and non-isochronous
variational,[*#, we obtain

Sat = Ad* — " Ar = € (F) —a* f0) =¢F}). (12)

Substituting the formula (12) into the principle (9),

d
adding and subtracting the expression e [G°L1], we have

dt  dat 8

e[}tlaRvRLD Pav DB (Ry) — 14 ‘93} (Fo_aufO)_g{M@[(&BJrM. JB (RADYPar )>fo

9B o OB o (ORy IRy ., ORy
T ot 7aauF” <8t +8a# t o 8
_|_8RVRLDOCI3 VFO—l-a VRLD(Xﬁ vf _|_

da ot

(R RLDaﬁ B))RLD;tﬁﬁavf ?93 (RVRLDaﬁ v B)f{)

(R RLD;Cﬁa# B)RLDocﬁ vfo] CDﬁ“(llRH)FO}
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u

:g{l] (1) |:(8RVRLD065 v_aB> FO4 (aRvRLD?/C,Bav_

dat dat ot

o d
+Ry <RLD?’ﬁ FO4 — m

(RLDocﬁ Vf°)>+G°+G°(

B\ o
8t>f —Bf

)

8£ _ 8RVRLDO¢3

—= { {ll (R DyPa”—B) f+ GO)} + / t {MRVRLD)O,"ISFO FCphe (/llRu)] } (13)

Formula (13) is the deformation of differential variational principle for FBSH with Riemann—Liouville derivatives. In other

words, the transformation of invariance condition of the PBDPH with Riemann—Liouville derivatives. Here, G = G (¢,a",7) is
a gauge function.
From the formula (13), we can obtain the following theorem.
Theorem 1 For FBSH with Riemann—Liouville derivatives, if £, f, and G° satisfy the following condition:
IRy gL apB v JB 0 IRvRrL yaBp v 9B o RL®B (50 d RLaB v .0
AIK&M Dyta —o—p | Fy+ (- Dy T’ — == ) [P+ RyEDy (Fy - f0)+Rvdt( Dyaf)
; dB OR .
_Bf0+ GO (8_8\’RLD?aﬁav)+G0:|:()) (14)
z z

there is a conserved quantity in the system, which is an exact invariant, i.e.,

t
=24 [(RVRLD)(fﬁaV 73) £+ GO} +/ [AIR"RLDJO’C’ﬁ (F\E) - ava) + (Fﬁ

Theorem 1 gives the exact invariant and its existence con-
dition for the fractional Birkhoffian system based on the frac-
tional PBDPH. When G° =
quantity in Ref. [19].

0, Iry is reduced to the conserved

3.2. Adiabatic invariants with Riemann—-Liouville deriva-
tives

Definition 1 If I, (t,a”,D;f P at, G) is a physical quan-
tity of an FBSH containing small parameter 6 whose highest
power is z, and dI,/dt is in direct proportion to 6=+, then I,
is the z-th order adiabatic invariant of the system.

Assume there is a small disturbance acting on FBSH, the
original symmetry and conserved quantity of the system will
change accordingly. It is assumed that the change is a small
perturbation based on the undisturbed system, f (t,a",z) and

|
OR oB OR ) oB
A [(aa:RLDgﬁ v - ”> F” ( (%VRLDg,ﬁav

+G,<a3 8RVRLD wh v

dz 0z

there is a z-order adiabatic invariant, as given below

4

L=Y o {Al {(RVRLD%%V —B) i G/}

J=0

" ) D% (MRy) | dr = const. (15)

Fy (t,a%,z) are generating functions of time and space after
disturbance, respectively, G (z,a",z) is the gauge function af-
ter disturbance, and

f=4of +6*f+-, Fu=F +0F} +0*F}+---,
G=G"+0G' +0%*G*+---. (16)

So we have the following results.
Suppose that a small perturbation 6Q,, make a change to
FBSH with Riemann—Liouville derivatives, and we have

OR oB
e ;’RLD“B v CDﬁ“(MR#) s

Theorem 2 For FBSH with Riemann—Liouville deriva-
tives is affected by a small perturbation 6 Qy,, if fi(t,a",z2),
Fji (t,a",z), and G/ (1,a" z) satisfy

=60y (17)

)ﬂ B+ RADP (R = 1) + Ry 5 (R0 )

d
)+G’f} =0 (B —aty ). (18)

+_/t (MRFEDYE (B —a f7) + (Fi—a" 1) °DPS, (LR, | dt} . (19)

In particular, when z = 0, the adiabatic invariant above is reduced to the exact invariant.

Proof From formulae (16) and (18), we have

~Lo{an[(5-Gemopte) (noiar-s) 9 +0)
j=0
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L. L aRv aRV 8RV RL ~&,8 aRV RL @, j
j_pfi i+ a* — =—=B | ""Dy"a f/
+G Bf+<8t+&“ + 5, Ru Dyt — yra'f

B 0B B ; d -
_ (éz;t + Ba Lt + %RVRLD?,"ﬁaV — (?93) i +RVE (RLDg’ﬁavfl)}
+ MRSDEP (Rl —a* 1) + (Rl = a 1) DY (MRy) |
_ Z 8B 3RVRL aﬁ RLAH®.B v J J ~j
- g ] (G- Gemortar) (ot —p) 4 ) 6

Jj=0

+ MRSDPP (Rl —a* 1) + (Fi = a* 1) D% (MRy)
+ A {<8£V+§§V “+B§VRuRLD“ﬁ - a;;VB) RLDSP Y fi
N <‘31: aali “+aa—BRvRLDO‘B v_ B> £ —RRLD%P (va'—avff)
G ) () -0
_61@113 aivRLDaB )}—l—Q”(F!{_l—d”fjl)}
:;‘661 [Q“ (Fﬁ{‘l—auf.ifl) - ()L gR;RLD“ﬁ VD% (MRy) — A ;i) (Fj—a”ff)}
_ iai [~00u (Fi—da" 1) +0u (Fi™ —a )]

_ z+1Q ( —a“fz) (20)

This proof is completed.

4. Generalizations of Theorems 1 and 2
4.1. Exact invariants and adiabatic invariants with Riesz—Riemann-Liouville derivatives

Theorem 3 For FBSH with Riesz—Riemann—Liouville derivatives, if F, ,? , f 0 and G° satisfy the following condition:

JdR JdB JdR JdB . d
Ao Ka raDfa" — o ) F)+ ( atv RDfa" — a:) P+REDE (F) —a"f°) +Ry o (Rpga f°)
; JdB IR )
—Bf'+ G o= — =2kDYa" ) +G°| =0 21
f + <aZ aZ allpad + ) ( )
there is a conserved quantity in the system, which is an exact invariant, i.e.,
Ig=2 [(RVEDFa" —B) O+ G°] + / (AR 5D (Fy —a” f0) + (Fy — a* f°) K°DYf (A2Ry,) ] dt = const., (22)

where

!
Ay = exp {—/ (aaRZvaRDg‘ §B> de]

Theorem 4 For FBSH with Riesz—Riemann-Liouville derivatives is affected by a small perturbation cQy,, if fi(t,a",z2),
Fji (t,a",z), and G’ (1,a" z) satisfy

JR B OR B o d .
lz{(a raDpa’ -5 u) F’+( avaRDg‘a"—)f/ Bf’ +R,RDY (Ff an1> +Ry - (aDya"f)
0B OJR, .. i1 -
J Rpa v J| = J=L_ ak il
+G(az S eDfa )+G] Q,J(F# Gt f ) 23)
there is a z-order adiabatic invariant, as given below
z . ) 't . ) . ,
L.=Y o/ {A[(RADFa" —B) f1 +G/] + / laREDg (Fi = avp7) + (Fi =" 1) 2Dy (AaRy) | dt} L4
J=0 Ja

In particular, when z = 0 , the adiabatic invariant above is reduced to the exact invariant.
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4.2. Exact invariants and adiabatic invariants with Caputo derivatives

Theorem 5 For FBSH with Caputo derivatives, if F, 0 fo, and G° satisfy the following condition:

ava ocﬁ v JB 0 ava af v JB 0 CHoB (0 v 0 d /c aB v 0
AgKa“D — o ) B+ (GEDS e - 5 ) 1 REDSE (R = ) + Re (CDFP )
—Bf0+G°(3§ 8§VCD°‘B >+G°}:o, (25)

there is a conserved quantity in the system, which is an exact invariant, i.e.,

le =% [ (RCDFPa* ~B) 2+ 6°) + / AR CDFP (FD —a¥ 1) + (F - £°) "D (3aRy) | dr = const, 26)

lgexp[ /(a;;chaﬁ v (Zf)de}

Theorem 6 For FBSH with Caputo derivatives is affected by a small perturbation 6 Qy, if fi(t,a",z), FJ (t,a",z), and
G/ (t,a",z) satisfy

IR IB\ ;. (OR IBY ;i . d .
/13{( YCpyhay - )Fd+( VCD?*ﬁaV—)ff—BferRvCD?ﬁ(FVO—anJ)JrRth(CD$=’3anJ)

where

dat dat d

+ G (?915 a;VCDaB >+Gj] =0 (B a7 ). @n

there is a z-order adiabatic invariant, as given below

L=Y o (%] (RCDyPa" ~B) 6] + / t 2aR,CDSP (Rl —a*7) + (Bl = a7 ) RoDS, (AaRy)| dt} . @8)

Jj=0

In particular, when z = 0, the adiabatic invariant above is reduced to the exact invariant.

4.3. Exact invariants and adiabatic invariants with Riesz-Caputo derivatives

Theorem 7 For FBSH with Riesz—Caputo derivatives, if Fl?, 79, and G satisfy the following condition:

JR JB JR JB d
[ (Grrcon— ) i (Gracoger—52) 0+ RADE (=) 4R (08
_ Bf0+ GO (‘3? . aaRZv SCDZXGV) JrGO} =0, (29)

there is a conserved quantity in the system, which is an exact invariant, i.e.,

Irc = A4 [(RVEEDYa” —B) 0+ G%] + / t (MRVEEDE (Y —a" f0) + (F — a* f°) DY (A4Ry,) ] dt = const., (30)

t (IR oB
Ay =exp {—/a ( azv RCD%a¥ — 3: ) de}
Theorem 8 For FBSH with Riesz-Caputo derivatives is affected by a small perturbation 6Qy, if f/(t,a",z), Fd (t,a%,2),
and G/ (t,a",7) satisfy

where

OR JdB i OR oB . . oy d ;
A4 [(8 :aRCD 3a“) FL{+ ( - VaRCDZzav _ ) Vi —Bf"+RvaRCDZ‘ (F\{ _an./) +R"a (aRCDgcan./)
+ G (ilj a;;VRCD“ V) +GJ] =0, (R =atp), 31)

there is a z-order adiabatic invariant, as given below

L= ZG/{M[(RVRCD —B) I + 6] +/t (REDE (F]—a" f7) + (Fl—d" f1) RDg (AaRy) | dt}. (32)
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In particular, when z = 0, the adiabatic invariant above is R,=0, R3= a4, Ry =0. (33)
reduced to the exact invariant.

Theorems 3, 5, and 7 are the generalizations of Theo-  pe yction functional 7 satisfies the differential equation
rem 1, which give the exact invariants and their existence con-

ditions for fractional Birkhoffian systems based on the frac- 5 4.3 23 a2
tional PBDPH. Theorems 4, 6, and 8 are the generalizations of = (a ta )a taa —aa+ (a ) to (34
Theorem 2, which give the adiabatic invariants and their ex-
istence conditions for fractional Birkhoffian systems based on We try to study the exact invariants and adiabatic invari-
the fractional PBDPH. ants of the FBSH with four kinds of fractional derivatives.
Firstly, the fractional Birkhoff’s equations of Herglotz

5. Example type with Riemann-Liouville derivatives are!'’]

Consider a fractional Birkhoffian system of Herglotz type
whose Birkhoffian and Birkhoff’s functions are of the follow- M IRy RLD“ B v CDﬁ « ()LlRH) M 9B =0. (35
ing form: oat dat

B=d’a’— (a4)2 —z, Ri=d+d, Hence, we have

—CD[f;o;, [exp(a—1)(a*+a®)] =0, exp(a—1) RLD;i"ﬁa1 —exp(a—t)a® =0,

exp(a—t) R]‘Df,"ﬂczl - CDf’_O;, [exp(a—1) a4] —exp(a—t)a®> =0, exp(a—t) RLD Pad 4 exp(a—1)2a*=0. (36)
According to formula (14), the condition that the generators f° and FS should satisfy is

(a2+a3) [RLDOCﬁ( afO) (RLDaﬁ 1fo)} RLDaB g a3F20+GO_GO+(RLDaﬁ 3+2a> FO

2 .
+[ azas_(ad,) _'_Z} A RLDaB VEY — ?FD 4 4 |:RLD$,[3 (F30 3f0) (RLD B 3f0)] —0, (37)

equation (37) has a solution
1,

Z FY —
24

lf,Gﬁzd. (38)

=1, P=F =0, = 5

From Theorem 1, we obtain an exact invariant of the system
Ip=exp(a—t) {(a2 +a )RLD‘ZB '+a*RtDy Pad— g2d3 +(a4)2+z+ e’} +/t {exp(a—1) [(a2 +ad’) RLD;”B (—a")
a
+ a4RLD$’ﬁ (fa3)} + (fdl) CDIIS’_O;, [exp(a—1) (a2 + a3)} + (fa3) CD?’_O;, [exp (a—1) a4] } dr = const. 39)
Suppose there is a small disturbance acting on the system
601=0, 00, =exp(a—t) oa*, 603 =0, 604 =exp (a—t) od’. (40)
According to formula (18), the condition that the generators f! and F‘} should satisfy is
exp(a—1) {(a2+a3) [RLD;le,B (Fll _alfl) n (‘;t (RLDaﬁ fl )] LG G+ [_azas _ (a4)2+z} I +RLD$!7ﬁa]F21
_a3F21+(RLDaB 3+2a)F +RLDOtB g 2F1+a |:RLD06ﬁ( —af) (RLDaﬁ 31 )}}
=0 (B —d*f') + Qu (Fy —d*f"), @1
equation (41) has a solution
f'=1, F'=F =F =F/ =0, ¢' = -d%d* (42)
From Theorem 2, we obtain an adiabatic invariant of first order for the system

I =exp(a—t) [(az—i—a VREDIP ! 4 *RDSP & — 2 4 (a ) +z+ e’}
044501-6
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+ [ Hewla=) [(@+a) D (—at) + D5 ()

+ (=a") DG exp (a—1) (@ +a®)] + () DI [exp (a—1)a*] | di
vefexpa—0) [(@+a) D a +a*DEPS 2 + (o) +2 ]
+/at [exp (a—1) [(a2+a3)RLD$’B (—d") +a*R-D%P (—a3)}

+ (=a") DS [exp (a—1) (@@ +a®)] + () DI [expla—r)a'] | dr }.

On this basis, higher order adiabatic invariants of the system can be obtained.
Secondly, the fractional Birkhoff’s equations of Herglotz type with Riesz—Riemann—Liouville derivatives are!!"!

JR,
dat

Then according to Theorem 3, we obtain an exact invariant of the system

JdB

A Jal

0.

aDya" = 3Dy (ARy) — Ao

Io=exp(a—1) [(@+a*)RDfa' +a*RDfa® —Pa® +(a*)’ +2+ e’} + /t {exp(a—1)[(a*+a’) gD (—a")
+a'’D} (—a’)] + (—a") R°DY [exp (a—1) (a* +a°)] + (—d?) HRCDE‘ [exp(a—1t)a*]} dt = const.
Suppose there is a small disturbance acting on the system
601=0, 00, =exp(a—t) ca*, 603 =0, 604 =exp (a—t) od’.
From Theorem 4, we obtain an adiabatic invariant of first order for the system
I = exp(a—t) [(az +a’)’pa' +a*¥DYa’ —a*a’ + (014)2 +z+ et}
+ [Hewla—1) [(@+a) g (~a') +a'5DE ()]
+ (a—al) RCDY [exp(a—1t) (a* +a®)] + (—a®) R°D¥ [exp(a—1)a*] } dt
+ e{ exp(a—1) | (¢ +a®) RDfa +a*RDfa® — e + (a*) 2+ |
+ [ fexpla—0) [(@+*) 8f (<a') +a5Df (~a)]
+ (—a") X°DY [exp(a—1) (a* + )| + (—a®) KDY [exp (a—1t) a*]] dt}.

On this basis, higher order adiabatic invariants of the system can be obtained.
Thirdly, the fractional Birkhoff’s equations of Herglotz type with Caputo derivatives are!!"!

aRVC
dat

Then according to Theorem 5, we can obtain an exact invariant of the system

a5 _
dak

A3 D;“ﬁav — RLle,_Ot ()GR“) -3

. 0.

Ip = exp(a—t) {(a2 +a®) D' +a*DYP & — P + (a*) + 2+ e’]
# [ {epla=nlt@ +@°DE? — @) + D ()
+ (—a! )RLDf’_O;,[exp(a —1)(a* +a®)] + (—d3)RLDf’_O;,[exp(a —1)a] } dr = const.
Suppose there is a small disturbance acting on the system
6Q1 =0, 60, =exp(a—t)oa*, 6Q3=0, 6Qs=exp(a—1)cd’.
From Theorem 6, we obtain an adiabatic invariant of first order for the system
I =exp(a—t) {(a2 +d®) DI +a* DI & — Pad + (a4)2 +z+ e’}
044501-7
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—I—/at {exp(a—t) {(a2+a3) CD;”ﬁ (—a") —|—614CD$,”[3 (—d3)}

+ (fal) RLD?’_O;, [exp (a—1) (a2 +a3)] + (—a3) RLD?’_O;, [exp (a—1) a4] } dr

n S{exp(a—t) [(a2+a3)CD$’Bal +a4CD§f’ﬁa3—a2a3+ (a4)2+z_aza4}
t
+ [ fewta= [(@+0) P (=a') +a*DF? (~a*)]

+ (—dl)RLDf’_O;, [exp (a—1) (a2+a3)] + (—d3) RLD?’_O;, [exp (a—t)aﬂ] dt}. (51)

On this basis, higher order adiabatic invariants of the system can be obtained.

Finally, the fractional Birkhoff’s equations of Herglotz type with Riesz—Caputo derivatives are!!"]

JR
dat

A4

YRS — RDE (Ry) — A

o

Sai 0. (52)

Then according to Theorem 7, we can obtain an exact invariant of the system

t
I=exp(a—t)[(a® +a’)’°DEa' +a*¥°D}a’ — a*a’ —|—(a4)2 +z+ e’} —|—/ {exp(a—1) [(a*+a®) X°DY (—a')
a

+a*®°DY (—a*)] + (—a") RDY [exp (a—1) (a* +a*)] + (=d®) RDY [exp (a —1)a*]} dt = const. (53)

Suppose there is a small disturbance acting on the system

601 =0, 00y =exp(a—t) oa*, 603 =0, 604 =exp (a—t) od’. (54)

From Theorem 8, we obtain an adiabatic invariant of first order for the system

I =exp(a—t) {(a2 +a’)Rpla' +a*ReDla’ — a*a’ + (a4)2 +z+ et}

+/: {exp(a—1) [(az +a3) RCpY (—a") +a*ReDy (—c‘z3)] + (—al) SDY! [exp(a—t) (a2 +a3)]

+ (%) B0g [expla—1)a]} dr -+ {exp (a—) [+ ) K°Dfal +aRDE® ~ P + (a*) 4 2+ o

+/at lexp(a—1) [(a*+a’)R°DY (—a') +a*X°DY (—d?)]

+ (—a") 2DY [exp(a—1t) (a* + )| + (—a®) RDY [exp (a—1t) a*]] dt}. (55)

On this basis, higher order adiabatic invariants of the sys-
tem can be obtained.

6. Conclusions

The Herglotz generalized variational principle provides a
new way to study the nonconservative dynamics, and gives a
variational description of nonconservative or dissipative prob-
lems. Although adiabatic invariants have been considered
and discussed in many daynamical system, it is noteworthy
that adiabatic invariants of fractional dynamics system in term
of Herglotz type are still in the preliminary stage and much
work is required. In this paper, we studied the exact invari-
ants and the adiabatic invariants for fractional Birkhoffian sys-
tems based on the PBDPH. For the fractional Birkhoffian sys-
tems discussed in this work, we consider four kinds of dif-
ferent definitions of fractional derivative. We present eight
theorems, among them four of which are about exact invari-

ants and anothe four of which are about adiabatic invariants.
When GY = 0, the exact invariants we obtained give the re-
sults of Reference [19]. The method and results of this pa-
per have universal applicability and can be futher studied in
the more general dynamical systems, such as fractional gen-
eralized Birkhoffian systems, nonholonomic nonconservative
systems with fractional derivatives, efc.
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