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We study the dissipative quantum phase transition (QPT) in a biased Tavis–Cummings model consisting of an en-
semble of two-level systems (TLSs) interacting with a cavity mode, where the TLSs are pumped by a drive field. In our
proposal, we use a dissipative TLS ensemble and an active cavity with effective gain. In the weak drive-field limit, the QPT
can occur under the combined actions of the loss and gain of the system. Owing to the active cavity, the QPT behavior can
be much differentiated even for a finite strength of the drive field on the TLS ensemble. Also, we propose to implement
our scheme based on the dissipative nitrogen-vacancy (NV) centers coupled to an active optical cavity made from the gain-
medium-doped silica. Furthermore, we show that the QPT can be measured by probing the transmission spectrum of the
cavity embedding the ensemble of the NV centers.
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1. Introduction
Due to its fundamental importance and potential ap-

plications in quantum technologies, quantum phase transi-
tion (QPT) in, e.g., the Dicke model has attracted much
attention.[1–19] In quantum optics, the Dicke model, which de-
scribes the collective behavior of two-level systems (TLSs)
interacting with a cavity mode, was first used to study
the superradiance.[20] This model includes both rotating and
counter-rotating interactions between the TLS ensemble and
the cavity mode. In the thermodynamical limit, when contin-
uously varying the strength of the collective interactions, the
system undergoes a QPT at a critical coupling strength (equal
to the half of the geometric mean of the resonance frequen-
cies of the TLS ensemble and the cavity mode).[21–27] With
maller (larger) than the critical coupling strength, the TLS en-
semble is in the normal (superradiant) phase. When neglecting
the counter-rotating coupling terms via the rotating-wave ap-
proximation (RWA),[28] the Dicke model can be reduced to the
Tavis–Cummings (TC) model.[29] Similar to the Dicke model,
the TC model can also exhibit a QPT, but the corresponding
critical coupling strength is twice the critical coupling strength
of the Dicke model.[30] However, the very large critical cou-
pling strength (in either the Dicke or TC model) is not acces-
sible in a realistic physical system.

To circumvent this difficulty, the nonequilibrium
QPT was theoretically proposed[31–34] and experimentally
implemented[35–38] by simulating the superradiant QPT with
drive physical systems. For instance, an effective Dicke
Hamiltonian was designed by pumping the ensemble of four-
level atoms coupled to an optical cavity mode with two drive
fields.[31] In this engineered Dicke model, the QPT is con-
trolled by tuning the coupling strength between the TLS en-
semble and the cavity mode via varying the drive-field fre-
quencies and intensities. Then, this proposed scheme was
implemented using a hybrid system consisting of a Bose–
Einstein condensate in a dilute atomic gas and an optical
cavity.[35] In addition, by off-resonantly pumping the standard
TC model with a drive field, an effective TC Hamiltonian can
also be engineered in a rotating frame with respect to the drive
field.[34] In the ideal case without decoherence for the system,
the driven TC model can have a QPT in the weak drive-field
limit, where the experimentally achievable critical coupling
strength is equal to the geometric mean of the frequency de-
tunings of both the cavity mode and the TLS ensemble from
the drive field. Usually, both cavity mode and TLS ensemble
are dissipative. The losses of the cavity mode and the TLS en-
semble then greatly obscure the QPT in the TC model,[39–41]

as observed in the experiment.[38]
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In this paper, we present a scheme to demonstrate the
QPT in a biased TC model by including the decoherence of the
system. In our proposal, the biased TC model describes a dis-
sipative TLS ensemble pumped by a drive field and coupled to
an active cavity mode (instead of a lossy cavity mode[38]). In
the rotating frame with respect to the drive field, the effective
frequencies of the TLS ensemble and the cavity mode become
their frequency detunings from the drive field, respectively. In
the limit of a weak drive field, we show that the biased TC
model tends to exhibit the QPT owing to the combined actions
of the loss and gain of the system. Furthermore, we find that
the active cavity can greatly improve the QPT behavior even
at a finite strength of the drive field. We also propose to imple-
ment the scheme by using an ensemble of nitrogen-vacancy
(NV) centers in diamond coupled to an active optical cavity
and show that the QPT can be probed by measuring the trans-
mission spectrum of the cavity embedding the TLS ensemble.
Our work provides an approach to reduce the adverse effect
of the decoherence on the QPT in a biased TC model and can
make it promising to experimentally observe the QPT in a re-
alistic system.

2. Dissipative quantum phase transition
For an ensemble of N TLSs in a cavity, when the coupling

between each TLS and the cavity photon is identical, the cou-
pled system can be described in the RWA by a TC model (we
set h̄ = 1)

HTC = ωca†a+ωsJz +
g√
N
(a†J−+aJ+), (1)

where a† and a are the creation and annihilation operators of
the cavity photon with frequency ωc, Jz and J± ≡ Jx± iJy are
the collective operators of the TLS ensemble, ωs is the tran-
sition frequency of each TLS, and g = gs

√
N is the collective

coupling strength between the TLS ensemble and the cavity
photon, with gs being the TLS–photon coupling strength. Here
the RWA applies as the TLS–photon coupling is not beyond
the strong-coupling regime.

The TC model has a conserved parity,[25] [HTC,Π ] = 0,
where Π = exp{iπ(a†a+ Jz +N/2)}. In the thermodynamic
limit N→+∞ and without the decoherence of the system, by
varying the collective coupling g from the regime g < g(TC)

c

to g > g(TC)
c , where g(TC)

c =
√

ωcωs, the system undergoes
a QPT from the normal to the super-radiant phase at zero
temperature.[21,22] However, it is extremely difficult to experi-
mentally demonstrate this QPT due to the decoherence of the
system[39–41] as well as the difficulty in accessing the very
large critical coupling strength g(TC)

c .
To solve these problems, we first reduce the critical cou-

pling strength by applying a field with frequency ωd to drive

the TLS ensemble. This corresponds to adding a drive term
4(Ωd/

√
N)Jx cos(ωdt) to the Hamiltonian (1), where Ωd =

Ωs
√

N denotes the collective coupling strength between the
drive field and the TLS ensemble, with Ωs being the TLS–field
coupling strength. In the rotating frame with respect to this
drive field, the Hamiltonian of the system can be converted, in
the RWA, to a biased TC model

Hs = ∆ca†a+∆sJz +
g√
N
(a†J−+aJ+)+

Ωd√
N
(J++J−), (2)

where ∆c(s) = ωc(s)−ωd (> 0) is the frequency detuning of
the cavity mode (TLSs) from the drive field. Without the de-
coherence of the system, this biased TC model tends to exhibit
the QPT at gc =

√
∆c∆s in the limit of weak drive field,[34]

Ωd/
√

N → 0, because the Hamiltonian (2) tends to have the
conserved parity (i.e., [HTC,Π ] = 0) only in this weak drive-
field limit. Now, gc becomes experimentally achievable by
just making ∆c and ∆s small via tuning the frequency ωd of
the drive field.

In addition, the QPT can be greatly affected by the deco-
herence of the system. In fact, for the TC model in Eq. (1), the
QPT disappears due to the decoherence of the system.[39–41]

In previous studies, the QPT is investigated by diagonalizing
the Hamiltonian of the system,[25,34] but it is difficult to diago-
nalize the Hamiltonian of the system when the decoherence of
the system is included. Therefore, we use a quantum Langevin
approach[28] to study the QPT in the biased TC model. For the
Hamiltonian in Eq. (2), the dynamics of the system is governed
by the following quantum Langevin equations:

ȧ=−i∆ca− i
g√
N

J−−κca+
√

2κcain,

J̇−=−i∆sJ−+ i
2g√

N
Jza+ i

2Ωd√
N

Jz− γJ−+
√

2γbin, (3)

where κc is the decay rate of the cavity mode, γ is the damping
rate of the TLS ensemble, and ain (bin) is the input noise op-
erator acting on the cavity mode (TLS emsemble) which has
zero mean value 〈ain〉= 〈bin〉= 0.

To study the steady behavior of the system, we write
each of the operators a, J−, and Jz as a sum of its mean
value and fluctuation, a = 〈a〉+ δa, J− = 〈J−〉+ δJ−, and
Jz = 〈Jz〉+ δJz. From Eq. (3), it follows that the mean val-
ues 〈a〉 and 〈J−〉 satisfy

〈ȧ〉=−i(∆c− iκc)〈a〉− i
g√
N
〈J−〉,

〈J̇−〉=−i(∆s− iγ)〈J−〉+ i
2g√

N
〈Jz〉〈a〉+ i

2Ωd√
N
〈Jz〉. (4)

When the system is in the steady state, i.e., 〈ȧ〉= 〈J̇−〉= 0, we
obtain from Eq. (4) that

(∆s− iγ)〈J−〉+
2g2〈J−〉〈Jz〉
N(∆c− iκc)

− 2Ωd√
N
〈Jz〉= 0. (5)
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According to the Holstein–Primakoff transformation,[42]

Jz = b†b−N/2,

J− =
√

N−b†bb, (6)

we can connect the collective operators J− and Jz of the TLSs
to the bosonic operators b and b†. Under the mean-field ap-
proximation, it follows from Eq. (6) that 〈Jz〉 = 〈b†b〉−N/2
and 〈J−〉 =

√
(N−〈b†b〉)〈b†b〉. Thus, the steady-state equa-

tion (5) becomes[
(∆s−η∆c)− i(γ +ηκc)

]√
χ +ξ Ωd/

√
N = 0, (7)

where χ = 〈b†b〉/N, ξ = (1− 2χ)/
√

1−χ , and η = g2(1−
2χ)/(∆ 2

c +κ2
c ). Multiplying Eq. (7) by its complex-conjugate

counterpart, we obtain an equation for the mean value χ of the
bosonic number opeartor b†b in the presence of the decoher-
ence[

(∆s−η∆c)
2 +(γ +ηκc)

2
]
χ−ξ

2(Ωd/
√

N)2 = 0. (8)

For the ideal case without decoherence, i.e., γ =

κc = 0, the above equation is reduced to (∆s − η∆c)
2χ −

ξ 2(Ωd/
√

N)2 = 0. Solving it in the weak drive-field limit
Ωd/
√

N → 0, we obtain the steady solutions χ = 0 and χ =

(1− g2
c/g2)/2, which correspond to the normal and super-

radiant phases for g < gc and g ≥ gc, respectively. Similar to
the driven TC model in Ref. [34], in the weak drive-field limit
Ωd/
√

N → 0 and in the absence of decoherence, the biased
TC model also tends to exhibit a QPT from the normal to the
super-radiant phase at the critical coupling strength g≡ gc by
tuning gc (via the frequency ωd of the drive field) from g < gc

to g > gc, with 〈Jz〉/(N/2) = 2χ−1 given by

〈Jz〉
(N/2)

=

{
−1, g < gc;

−g2
c/g2, g≥ gc.

(9)

From Eq. (9), it can be easily obtained that 〈Jz〉/(N/2) ∼
|g− gc|νz in the vicinity of g = gc, with the critical exponent
νz = 1.[34] However, for a realistic system, both the cavity
mode and the TLS ensemble are usually dissipative, i.e., γ > 0
and κc > 0. Even in the weak drive-field limit Ωd/

√
N → 0,

the TLS ensemble tends to always stay in the trivial state with
χ = 0 (i.e., the QPT disappears[39–41]), because (∆s−η∆c)

2+

(γ +ηκc)
2 > 0 in Eq. (8). At a finite drive-field strength, the

QPT is greatly obscured by both the decoherence of the system
and the drive field (cf. Fig. 1(a)).[38]

To circumvent this situation, we can harness an active
cavity mode with the effective gain rate κg = κ ′g−κc > 0 cou-
pled to a dissipative TLS ensemble with damping rate γ , where
a gain rate κ ′g is introduced by using a gain medium in the cav-
ity (cf. Section 3). This corresponds to the case with κc in the

first equation of Eq. (3) replaced by −κg. In this active-cavity
case, equation (3) becomes

ȧ = −i∆ca− i
g√
N

J−+κga+
√

2κcain,

J̇− = −i∆sJ−+ i
2g√

N
Jza+ i

2Ωd√
N

Jz− γJ−+
√

2γbin. (10)

Similar to Eq. (8), the steady-state behavior of the system is
now governed by[

(∆s−η∆c)
2 +(γ−ηκg)

2
]
χ−ξ

2(Ωd/
√

N)2 = 0, (11)

where χ and ξ are also given by χ = 〈b†b〉/N and ξ =

(1−2χ)/
√

1−χ , but η = g2(1−2χ)/(∆ 2
c +κ2

g ).
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Fig. 1. Numerical results of 〈Jz〉/(N/2) versus the coupling strength
g/gc for different amplitudes Ωd/

√
N of the drive field. (a) 〈Jz〉/(N/2)

versus g/gc without the gain, calculated using Eq. (8). Here κc = γ = 0
and Ωd/

√
N→ 0 for the (black) solid curve; κc/γ = 0.5 and Ωd/

√
N→

0 for the (red) dotted curve; and κc/γ = 0.5 and (Ωd/
√

N)/γ = 0.5 for
the (blue) dashed curve. (b) 〈Jz〉/(N/2) versus g/gc with the gain, cal-
culated using Eq. (11). There is no 〈Jz〉/(N/2) when g/gc < 0.2 (grey
region) because g4(1− 2χ)2− 4γ2∆ 2

c < 0 in this region [cf. Eq. (13)].
The gain rate κg in Eq. (13) is determined with Ωd/

√
N → 0 and the

same value of κg is used for the two curves. Here Ωd/
√

N→ 0 for the
(red) dotted curve and (Ωd/

√
N)/γ = 0.5 for the (blue) dashed curve.

In both (a) and (b), we choose ∆c = ∆s and g/γ = 10.

With an appropriate gain rate satisfying γ − ηκg = 0,
the steady-state equation (11) of the system is also reduced
to (∆s − η∆c)

2χ − ξ 2(Ωd/
√

N)2 = 0, as in the case with-
out decoherence for the system. In the weak drive-field limit
Ωd/
√

N → 0, the steady-state solution in Eq. (9) can also be
obtained in the presence of decoherence and 〈Jz〉/(N/2) has
the same critical behavior, i.e., 〈Jz〉/(N/2) ∼ |g− g̃c|νz , with
νz = 1, but the critical coupling strength becomes

g̃c =
√

∆s∆c(1+κ2
g/∆ 2

c ). (12)
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Solving γ−ηκg = 0 and ignoring the trivial solution, we have

κg =
g2(1−2χ)−

√
g4(1−2χ)2−4γ2∆ 2

c

2γ
(13)

in the region g4(1−2χ)2−4γ2∆ 2
c > 0, i.e.,

√
2∆cγ < g when

g< g̃c, and
√

2∆cγ < g̃c when g> g̃c. Obviously, the effective
gain rate κg varies for different critical coupling strengths g̃c,
which is experimentally achievable (see Section 3).

In Fig. 1, we numerically show the QPT in a biased TC
model using Eqs. (8) and (11), respectively. Different from
Fig. 1(a), no 〈Jz〉/(N/2) exists in Fig. 1(b) when g/gc < 0.2
(see the grey region) because g4(1− 2χ)2 − 4γ2∆ 2

c < 0 in
this region [cf. Eq. (13)]. In the region of 1.2 < g/gc <

3, 〈Jz〉/(N/2) gives rise to bistability at a finite drive-field
strength [cf. the blue dashed curve in Fig. 1(b)], where the
higher and lower branches are stable and the intermediate
branch is unstable. When sweeping the coupling strength g/gc

rightwards (leftwards), the higher (lower) branch is approach-
able. Hereafter, we only focus on the higher stable branch
of the blue dashed curve in the bistable region, which corre-
sponds to the case of sweeping g/gc rightwards. As expected,
for the ideal case of κc = γ = 0, there is the QPT in the weak
drive-field limit Ωd/

√
N → 0 [see the black solid curve in

Fig. 1(a)]. When including the losses of both cavity mode and
TLS ensemble, the QPT disappears either in the weak drive-
field limit or at a finite drive-field strength [see the red dotted
curve and the blue dashed curve in Fig. 1(a)]. Instead of a lossy
cavity, if an active cavity is coupled to the lossy TLS ensem-
ble and their gain and loss rates satisfy Eq. (13), the system
tends to approach the QPT behavior in the weak drive-field
limit, even for the finite drive-field strength in Fig. 1(a) [com-
paring the red dotted curve and the higher stable branch of the
blue dashed curve in Fig. 1(b) with the red dotted line and the
blue dashed curve in Fig. 1(a)]. Therefore, an active cavity can
much improve the QPT behavior in a biased TC model.

3. Possible implementation using NV centers
coupled to an optical cavity
The gain has been widely studied in optical cavities.[43,44]

Below we propose to implement our scheme using an ensem-
ble of NV centers in diamond coupled to an active optical
whispering-gallery-mode (WGM) cavity,[45–47] where each
NV center acts as a TLS with the ground and excited states
being 3A2 and 3E of the electronic spin.[48]

In the system proposed, the ensemble of NV centers
is driven by an optical field with frequency ωd, and the
WGM cavity is made from the silica doped with a gain
medium (e.g., rare-earth-metal ions).[43,44] This gain medium
can be modeled as an auxiliary spin ensemble with population
inversion,[49] as schematically shown in Fig. 2(a). Without the

auxiliary spin ensemble, the coupled system is also described
by the Hamiltonian Hs in Eq. (2).[50,51] In the rotating frame
with respect to the drive field on the NV centers, the Hamilto-
nian of the auxiliary spin ensemble is

Haux = ∆aJ(a)z , (14)

and the interaction Hamiltonian between the auxiliary spin en-
semble and the WGM cavity is

Hint =
ga√
Na

(
a†J(a)− +aJ(a)+

)
, (15)

where ∆a = ωa −ωd is the frequency detuning between the
auxiliary spin ensemble (with transition frequency ωa) and the
drive field on the NV centers, J(a)z and J(a)± = J(a)x ± iJ(a)y are the
collective operators of the auxiliary spin ensemble, and ga is
the collective coupling strength between the auxiliary ensem-
ble of Na spins and the WGM mode. The total Hamiltonian
H = Hs +Haux +Hint of the proposed system in Fig. 2(a) can
now be written, in the rotating frame, as

H = ∆ca†a+∆sJz +∆aJ(a)z +
g√
N
(a†J−+aJ+)

+
ga√
Na

(
a†J(a)− +aJ(a)+

)
+

Ωd√
N
(J++ J−). (16)

For clearity, we display the energy-level structure in Fig. 2(b)
for the above Hamiltonian.

NV AUX

ground state 

E
n
e
rg

y NV 
ensemble 

WGM 
cavity

auxiliary 
ensemble 

(b)

(a)

(in)
ap

(out)
ap

Ωd

Ω
d ωd

γ

γ

γa

∆s ∆c

∆a γa

kc

kc

g
ag

Ωa

Fig. 2. (a) Schematic illustration of our proposal for improving the QPT
in a hybrid system consisting of a driven ensemble of dissipative NV
centers (blue oval) coupled to an active WGM cavity with gain modeled
as an auxiliary spin ensemble with population inversion (yellow oval).
The input and output fields of the cavity are denoted as a(in)p and a(out)

p ,
respectively. (b) Energy-level diagram for the Hamiltonian in Eq. (16).

With the auxiliary spin ensemble included, the quantum
Langevin equations of the total system are

ȧ=−i∆ca− i
g√
N

J−− i
ga√
Na

J(a)− −κca+
√

2κcain,
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J̇−=−i∆sJ−+ i
2g√

N
Jza+ i

2Ωd√
N

Jz− γJ−+
√

2γbin,

J̇(a)− =−i∆aJ(a)− + i
2ga√

Na
J(a)z a− γaJ(a)− +

√
2γacin, (17)

where γa is the decay rate of the auxiliary spin ensemble, and
cin is the input noise operator of the auxiliary spin ensemble
which also has the zero mean value 〈cin〉 = 0. Assuming that
the auxiliary spin ensemble is in the steady state, we have

J(a)− = i
2ga√

Na(γa + i∆a)
J(a)z a+

√
2γa

γa + i∆a
cin (18)

by setting J̇(a)− = 0 in the third equation of Eq. (17). With the
above equation, we can eliminate the degree of freedom of J(a)−
and reduce Eq. (17) to

ȧ = −i∆ca− i
g√
N

J−+
2g2

a

Na(γa + i∆a)
J(a)z a−κca

−i
ga√

Na(γa + i∆a)

√
2γacin +

√
2κcain,

J̇− = −i∆sJ−+ i
2g√

N
Jza+ i

2Ωd√
N

Jz− γJ−+
√

2γbin. (19)

If the population inversion of the auxiliary spin ensemble is de-
noted as δNa (> 0), 〈J(a)z 〉 = δNa. By replacing the operators
J(a)z and cin with their expected values δNa and 0, respectively,
equation (19) is reduced to the same form as in Eq. (10), but
the auxiliary spin ensemble shifts the frequency of the WGM
mode to

ω̃c = ωc +
2g2

aδNa∆a

(∆ 2
a + γ2

a )Na
, (20)

where κg = κ ′g−κc, with

κ
′
g =

2g2
aδNaγa

(∆ 2
a + γ2

a )Na
. (21)

In the experiment, the gain rate κ ′g (related to the population
inversion δNa) can be tuned from 0 to, e.g., 450 MHz by vary-
ing the amplitude of the pump-laser field acting on the gain
medium, while the change of the frequency of the cavity due
to the gain medium is very slight.[52] Without loss of gener-
ality, below we neglect the effect of the gain medium on the
frequency shift of the WGM mode.

In the experiment, the dissipative QPT can be measured
via the transmission spectrum of the active WGM cavity
embedding an ensemble of NV centers. When considering
the probe field a(in)p , it corresponds to adding a probe term√

2κia
(in)
p to the first equation in Eq. (10), where κi is the de-

cay rate of the cavity mode induced by the input port. Then,
from Eq. (10), it follows that

〈ȧ〉=−i(∆c + iκg)〈a〉− i
g√
N
〈J−〉+

√
2κi〈a

(in)
p 〉,

〈J̇−〉=−i(∆s− iγ)〈J−〉+ i
2g√

N
〈Jz〉〈a〉+ i

2Ωd√
N
〈Jz〉. (22)

Compared with the drive field on the NV centers, the probe
field is usually chosen extremely weak in the spectroscopic
measurement,[53] i.e.,

√
2κi〈a

(in)
p 〉 � Ωd. By performing

a Fourier transform on Eq. (22), we obtain the quantum
Langevin equations in the frequency domain

−i[(∆c−ω)+ iκg]〈a〉− i
g√
N
〈J−〉+

√
2κi〈a

(in)
p 〉=0,

−i[(∆s−ω)− iγ]〈J−〉+ i
2g√

N
〈Jz〉〈a〉+ i

2Ωd√
N
〈Jz〉δ (ω)=0, (23)

where ω = ωp −ωd is the frequency detuning of the probe
field (with frequency ωp) from the drive field on the NV cen-
ters. To avoid the influence of the drive field, the probe field
is tuned off-resonance with the drive field (i.e., ωp 6= ωd), so
the δ -function term in Eq. (23) can be removed. Solving the
above equation, we obtain the intra-cavity field

〈a〉=
√

2κi〈a
(in)
p 〉

−κg + i(∆c−ω)− 2(g/
√

N)2〈Jz〉
γ + i(∆s−ω)

. (24)

According to the input–output theory,[28] when no input
field is applied to the output port, the output field can be writ-
ten as

〈a(out)
p 〉=

√
2κo〈a〉, (25)

where κo is the decay rate of the cavity mode induced by the
output port. Now, the total decay rate of the cavity mode is
κc = κi + κo + κint, with κint being the intrinsic decay rate.
Combining Eqs. (24) and (25), we can derive the transmission
coefficient

S21(ωp) =
2
√

κiκo

−κg + i(ωc−ωp)+
(ΩR/2)2

γ + i(ωs−ωp)

(26)

via the relationship 〈a(out)
p 〉= S21(ωp)〈a(in)p 〉, where the effec-

tive Rabi frequency,

ΩR ≡ 2g

√
|〈Jz〉|
(N/2)

= 2g
√

1−2χ, (27)

corresponds to the separation between the two Rabi-splitting
peaks in the transmission spectrum of the cavity, which can be
measured in the experiment.

Using Eqs. (11) and (26), we can simulate the transmis-
sion spectrum |S21(ωp)|2 of the active WGM cavity embed-
ding the dissipative ensemble of NV centers. Figures 3(a) and
3(b) show the simulated transmission spectra versus ωc−ωp

and g/gc in the weak drive-field limit and at a finite drive-field
strength, respectively, where the corresponding 〈Jz〉/(N/2)
can be found in Fig. 1(b). The maximal values in each trans-
mission spectrum (see the yellow pattern) represent the two
Rabi-splitting peaks. At a fixed coupling strength g/gc in the
transmission spectrum, 〈Jz〉/(N/2) can be obtained from the
separation between the two Rabi-splitting peaks [cf. Eq. (27)].
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Fig. 3. Simulated transmission spectrum |S21(ωp)|2 of the system ver-
sus (ωc−ωp)/γ and g/gc when (a) Ωd/

√
N→ 0 and (b) (Ωd/

√
N)/γ =

0.5, calculated using Eqs. (11) and (26). Here we choose κi/γ = κo/γ =
0.1, and other parameters are the same as those in Fig. 1(b).

4. Discussion and conclusions
For a TC model, one can also use a pump field to di-

rectly drive the cavity instead of the TLS ensemble.[34] Ac-
tually, both cases of driving the cavity and the TLS ensem-
ble are essentially equivalent. Using a unitary transform
D(α) = eαa†−α∗a (with α =−Ωd/g) on the biased TC model
in Eq. (2), we obtain

H ′s = D(α)†HsD(α)

= ∆ca†a+∆sJz +
g√
N
(a†J−+aJ+)

−Ωeff(a† +a)+∆cΩ
2
d/g2, (28)

where Ωeff = Ωd∆c/g is the effective Rabi frequency on the
cavity mode. Comparing Eq. (28) with Eq. (2), we can see that
driving the TLS ensemble with a Rabi frequency Ωd is equiv-
alent to driving the cavity mode with a Rabi frequency Ωeff.
Thus, the conclusions in Sections 2 and 3 are still valid in the
case of driving the cavity. For the standard TC model without
the decoherence of the system, the occurrence of the superra-
diant QPT is related to the parity-symmetry breaking.[30,34] In
our considered dissipative situation, however, it is difficult to
show the parity-symmetry change of the system when the QPT
occurs, because deriving an effective compact Hamiltonian of
the system becomes very challenging.[38–41] In Ref. [34], it is
theoretically shown that in a driven TC model, the QPT can
occur in the ideal case without the decoherence of the system.
However, the losses of the cavity mode and the TLS ensem-
ble smear out the QPT, as demonstrated in the experiment.[38]

Our scheme circumvents this difficulty and provides a promis-
ing approach to experimentally realize the QPT in a biased TC
model.

In summary, we have theoretically studied the dissipative
QPT in a biased TC model. We propose to couple a dissipa-
tive ensemble of TLSs with an active cavity field, where the
TLS ensemble is pumped by a drive field. Using a quantum
Langevin approach, we demonstrate the existence of QPT in
the weak drive-field limit when the loss and gain rates of the
system satisfy a certain constraint. Also, we propose to exper-
imentally implement our scheme with a lossy ensemble of NV
centers coupled to an active optical cavity and also show that
the QPT can be measured using the transmission spectrum of
the cavity embedding the TLS ensemble.
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