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Floquet engineering appears as a new protocol for designing topological states of matter, and features anomalous edge
modes pinned at quasi-energy π/T with vanished topological index. We propose how to predict the anomalous edge modes
via the bulk Hamiltonian in frequency space, and use Zak phase to quantitatively index the topological properties. The
above methods are clarified by the example of time periodic Kitaev chain with chemical potential of harmonic driving and
pulse driving, and topological phase transitions are manifested at different driving frequencies.
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1. Introduction
Topological state of matter is an intriguing topic for years,

and many fruitful methods on endowing quantum systems
with nontrivial topological properties have been brought up,
such as spin orbit coupling,[1–12] shaking optical lattice,[13–19]

and exercising external magnetic field.[20–25] Among all these
methods, Floquet engineering appears as a most profound one,
for the generation of anomalous edge modes. The main idea
of Floquet engineering is to drive the physical parameters pe-
riodically in time. Under periodical boundary conditions, the
system not only loops around in real space, but also in time.
Hence, it is quite natural to think up that traditional one-
dimensional topological index must be altered to characterize
the driven system. Meanwhile, we should also notice that the
driven system can transit quantized energy with external driv-
ing field, and thus features non-equilibrium properties.[26–29]

With all these in mind, we can imply from Bloch theorem (Flo-
quet theorem in time space) that periodically driving will en-
force the energy to winds around, and there is no well defined
lowest energy as well as ground states.

One typical way to identify topological properties is via
edge modes. In the driven system, there are two kinds of edge
modes, located respectively at quasi energy 0, π/T . In the fol-
lowing, we will show that the driving term will generate the π

gap due to the bands avoid crossing. According to the Floquet
theorem, the quasi energy are folded into the energy Brillouin
zone [− π

T ,
π

T ]. With above in consideration, edge modes can
be quite hard to recognize when the driving frequency get ex-
tremely low, where all energy shall be maintained within a tiny
window. In this case, one usually utilizes a long chain of big

size to distinguish the edge modes from bulk states in energy,
which is very costly in calculation. To overcome this problem
is the central part of this paper.

We utilize the Floquet–Schrödinger equation, and mani-
fest the bulk spectrum in frequency space. Such a spectrum
is not folded, and carries the full information of topological
properties. The close and reopen of the 0, π/T gap in fre-
quency space can predict the emergence of two kinds of edge
modes. Meanwhile, we also propose how to quantitatively de-
note topological phase transitions via Zak phase. To illustrate
our method, we take a time-periodic Kitaev chain with chem-
ical potential of different driving forms as an example.

2. Harmonic driving Kitaev chain
We consider a time periodic Kitaev chain with harmonic

driving chemical potential in thermodynamic limit

H = ∑
j

[
−w(c†

jc j+1 + c†
j+1c j)−µ(t)

(
c†

jc j −
1
2

)
+c jc j+1∆ + c†

j+1c†
j∆

]
, (1)

where c†
j represents creating a fermion at site j; w is the hop-

ping amplitude, ∆ denotes the pairing between the nearest
sites, µ(t) is the driving chemical potential, and here we take
µ(t) = µ0+µ1 cos(ωt +φ). Since there is no ground state for
the driven system, all information of topological properties are
contained within the evolving operator

U(T ) =
1
T
𝒯 e−i

∫ T
0 H(t)dt , (2)

where 𝒯 represents the time ordering. In Fig. 1(a), we have
set hopping amplitude w = 1, it is manifested that in con-
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trast to the nondriven Kitaev chain, there still exist Majorana
edge modes for µ0 > 2w. Intuitively, Majorana edge modes
in real space can be derived from the bulk Hamiltonian. To
manifest this, we turn to use the time-independent effective
Hamiltonian U(T ) = 1

T e−iT Heff(k). Figure 1(b) denotes the
time-independent effective Hamiltonian at µ0 = 3. The total
number of Majorana 0, π

T edge modes is supposed to be equal
to the Zak phase of the filled bands,

ϕZak =
1

2π i

∫
π

−π

dk⟨uk|∂k|uk⟩, (3)

where |uk⟩ is the eigenstate of the filled bands. In Fig. 1(a),
we denote the Zak phase by w, and for µ0 ∈ [0,1], we have
w =−1 with the existence of Majorana zero modes. However,
for µ0 ∈ [1,2], Majorana 0 modes and Majorana π modes co-
exist with vanished Zak phase. Such edge modes are anoma-
lous edge modes, and can not be obtained via traditional
bulk-edge correspondence. Indeed, inspired by Ref. [29],
we shall notice that the time-independent effective Hamilto-
nian is not available when there are degenerate points in phase
band φ(k, t), where Un(k, t) =∑n e−iφn(k,t). The degeneracy of
phase bands suggests that it can not be smoothly deformed to a
flat band, which corresponds to the time-independent effective
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Fig. 1. (a) Real space Floquet spectrum as a function of µ0 with har-
monic driving in chemical potential where w = 1, ∆ = 0.5, µ1 = 4,
ω = 3. The Zak phase of the effective Hamiltonian varies with differ-
ent regions of µ0, and anomalous Majorana 0, π

T edge modes can exists
with vanished Zak phase. (b) The bulk spectrum of Floquet effective
Hamiltonian, where w = 1, ∆ = 0.5, µ0 = 3, µ1 = 4, ω = 3.

Hamiltonian. Generally, such a degeneracy is common with
low frequency driven systems, see Figs. 2(a) and 2(b).
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Fig. 2. The phase bands with w = 1,µ0 = 0.5,µ1 = 0.5,∆ = 2. (a)
Degenerate points in phase band with low driving frequency ω = 0.5.
(b) Non-degenerate points in phase bands with high driving frequency
ω = 20.

Meanwhile, we shall keep in mind that |uk⟩ captures no
periodic properties of time, and thus can not characterize the
topological features. Notice that the driven system distin-
guishes itself by the windings in energy. If we construct a
parameter space corresponding to energy which contains the
winding features, the bulk-edge correspondence may work
again. According to the Floquet theorem ψ(t) = e−iεnt χn(t),
we have χn(t) = χn(t + T ). Substituting them into the
Schrödinger equation, we arrive at [H − i∂t ]χn(t) = εnχn(t).
It seems quite tricky that quasi energy εn here does not need
to be folded into quasi energy Brillouin zone. Indeed, such
a folding can be recovered and there is gauge freedom in the
Floquet theorem,

χ
′
n(t) = e−i pωt

χn(t). (4)

We shall see χ ′
n(t + T ) = χn(t), and the corresponding

Floquet–Schrödinger equation now becomes [H − i∂t ]χ
′
n(t) =

(εn + pω)χ ′
n(t). Notice that χn(t) has periodicity T , we can

apply the Fourier transformation χn(t) = ∑m e imωt χn(m). Put
the above Fourier expansion into the Floquet–Schrödinger
equation, and with a little integration, we can construct the
Floquet–Schrödinger equation in frequency space

∑
m

Hm,m′(k)χn(m) = εnχn(m′). (5)
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It is exhibited that all the static part contributes to the diagonal
block in Hm,m′(k)

Hm=m′ = H0(k)+mωI, (6)

where I is the identity matrix, and H0(k) = −(wcosk +
µ0
2 )σ z

k +∆ sinkσ
y
k originates from the static part of Hamilto-

nian, and driving part of the Hamiltonian contributes to

Hm=m′+1 = e iφ −µ1

4
σ

z
k , Hm=m′−1 = e−iφ −µ1

4
σ

z
k . (7)

Before proceeding, we shall notice that particle-hole symme-
try can be inherited during the driving process ΠH(k)Π−1 =

−H(−k), Π = σxκ . κ is the complex conjugator. Hence, the
quasi energy 0, π

T gaps are supposed to be closed at high sym-
metric point k = 0, π . Meanwhile, we need to point out that
the relative phase φ in the time periodic chemical potential can
be gauged out by properly choosing the initial point of evolv-
ing t ′ = t + φ

ω
. Since U(T,0) =U(T + φ

ω
, φ

ω
), different initial

phase φ results in same topological properties. Similar to the
way we obtain the Bloch state with periodical potential in real
space, here we truncate m =−3,−2,−1,0,1,2,3. Figure 3(a)
depicts the quasi energy π

T , 0 gap with k = 0. Figure 3(b) de-
picts the quasi energy π

T , 0 gap with k = π . It is exhibited that
π

T gaps close and reopen with k = 0 at µ0 = 1. Correspond-
ingly, we see that in Fig. 1(a), Majorana π

T edge modes start
to appear from µ0 = 1. With this in mind, we observe from
Fig. 3, π

T , 0 gaps close and reopen at µ0 = 1,2,4,5. Corre-
spondingly, in Fig. 1(a), topological phase transitions happen
at the same place.

To denote the topological phase transition quantitatively,
we define a new topological invariant based on the Zak phase:
ν0,± π

T
= mod(∑i=n

i=1 ϕn
Zak,2), where n denotes n-th bands right

below quasi energy 0,± π

T . We observe that if ν0,± π
T
= 1,

it is supposed to be edge modes pinned at energy 0,± π

T . If
ν0,± π

T
= 0, no edge mode exist, and the system appears to be

topologically trivial. In our cases, with truncation at m = −3.
The first six bands are located below quasi energy − π

T , first
seven band located below quasi energy 0, and first eight band
located below quasi energy π

T . To illustrate this, we take
µ0 = 0.5 (other parameters are fixed the same as those in
Fig. 1(a)). The corresponding Zak phase of first eight bands
is [−1,−1,−1,−1,−1,−1,−1,−1]. Hence, ν± π

T
= 0,ν0 = 1,

there are only Majorana 0 modes, and no Majorana π

T modes.
For µ0 = 1.5, the Zak phase are [−1,0,0,0,0,0,0,0]. There-
fore, ν0 = 1, ν± π

T
= 1, there are both Majorana 0 modes, and

Majorana π

T modes. The above results coincide with that of
Fig. 1(a).

With all the above methods, we are capable of studying
topological phase transitions as a function of driving frequency

ω readily, which is very costly in numerics with the conven-
tional method. In Fig. 4(a), we fix the µ0 = 3, µ1 = 4 (other pa-
rameters are the same as those in Fig. 1(a)), and varies the driv-
ing frequency. Here δ represents the magnitude of the gaps at
high symmetric point. Every time δ = 0 implies that there
are topological phase transitions, which can be implied by
the emergence of Majorana edge modes. It is exhibited from
Fig. 4(a) that at low driving frequency, topological phase tran-
sitions occur quite frequently. We shall figure out that when
ω ≥ 1, the magnitude of quasi energy 0 gap become constant
δ = 1. Such results originate from the following: when the
driving frequency is large enough, the intrinsic energy scale
of the Kitaev chain is no larger than size of the quasi energy
Brillouin zone, which means that energy does not need to be
folded.

0 2 4 0 2 41 5
µ0 µ0

(a) (b)

0

0.5

1.0

1.5

2.0

2.5

3.0

δ
/
g
a
p

0

0.5

1.0

1.5

2.0

2.5

3.0

δ
/
g
a
p

Fig. 3. (a) The magnitude of quasi energy π

T gap (blue line), 0 gap (red
line) as a function of chemical potential µ0 with k = 0, w = 1, ∆ = 0.5,
µ1 = 4, ω = 3. (b) The magnitude of quasi energy π

T gap (black line), 0
gap (red line) as a function of chemical potential µ0 with k = π , w = 1,
∆ = 0.5, µ1 = 4, ω = 3.

In this scenario, the driven system is much alike a non-
driven one. To prove this, we consider a non-driven Kitaev
chain (just put µ1 = 0) at k = π , the 0 gap is supposed to be
δ = 2|wcosk+ µ0

2 |= 1, which is consistent with Fig. 4(a). In
Fig. 4(b), we have enlarged µ0 = 5, it can be seen that the
topological phase transition becomes even more complicated,
and driving frequency has to be a larger value for the system to
get approach to a non-driven Kitaev chain. When ω ≥ 7, en-
ergy 0 gap at k = 0 becomes constant δ = 2|wcosk+ µ0

2 |= 7.
Comparing Figs. 4(a) and 4(b), we can find that when the in-
trinsic energy scale is much larger than the driving frequency,
Majorana edge modes emerge and disappear quite frequently,
and are not stabilized. In Fig. 4(c), we fix µ0 = 3 and enlarge
µ1 = 10. We shall observe that topological phase transitions
are suppressed, and Majorana edge modes only merge (or dis-
appear) at ω = 2.38. It is necessary to mention that the en-
ergy gap also indicates the tunneling between different edges.
When δ → 0, edge modes become close to the bulk.
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Fig. 4. The magnitude of quasi energy π

T , 0 gap, at high symmetric point k = 0, k = π as a function of driving frequency. Parameters are fixed
the same as those in Fig. 1(a) except for µ0, µ1: (a) µ0 = 3, µ1 = 4. (b) µ0 = 5, µ1 = 4. (c) µ0 = 3, µ1 = 10. (d) µ0 = 5, µ1 = 10.
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Fig. 5. The magnitude of quasi energy gaps (color) as a function of driving frequency ω , and the strength of driving µ1 with k = 0, µ0 = 0.5,
t = 1, ∆ = 0.5 (a) for the ± π

T gap amplitude and (b) for the 0 gap amplitude.

We proceed to explicitly demonstrate that how the
strength of time periodic driving will affect the topological
properties. In Figs. 5(a) and 5(b), we exhibit how the π

T ,0 gaps
reacts with tilting driving strength and driving frequency. The
dark blue line circles out different topological phases, in which
it can be seen that with larger driving strength, it needs much
higher driving frequency to induce topological phase transi-
tions. Combined with Figs. 4(c) and 4(d), Figs. 5(a) and 5(b)
can manifest that enlarging the driving amplitude will stabilize
the system, make topological phases easier to recognize.

3. Pulsed driving Kitaev chain
In the previous part, we have considered the Kitaev chain

with harmonic driving in chemical potential. Now we turn to
the case of pulse driving: µ(t) = µ0 +µ1δ (t −NT ). A direct

consequence of this will be manifested as follows:

Hm′ ̸=m =
−µ1

2
σ

z
k . (8)

Here Hm′ ̸=m does not need to be a tridiagonal matrix. Consid-

ering this, it seems that the above truncations at m = 3 are not

accurate enough to give the topological phase transitions. In

Fig. 6(a), we show the Majorana edge modes by diagonalizing

the Floquet operator U(T ). Figures 6(b), 6(c), and 6(d) show

the magnitude of the 0, π

T gap at high symmetric point k = 0,

π , with truncation m = 3,5,8. It appears although enlarging

the truncation will slightly alter the gaps, where we shall ad-

mit that accurate critical points of topological phase transitions

can not be gained with finite m, a general figure of topological

properties can still be obtained via our methods.
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Fig. 6. (a) Real space Floquet spectrum as a function of µ0 with pulsed driving in chemical potential, where w = 1, ∆ = 0.5, µ1 = 4, ω = 5.
(b) The magnitude of π

T gap at k = π with truncation m = 3,5,8, δ = 0, µ0 = 4.2, where the other parameters are fixed the same as those in
(a). (c) The magnitude of 0 gap at k = π with truncation m = 3,5,8, δ = 0.24, µ0 = 9. (d) The magnitude of 0 gap at k = 0 with truncation
m = 3,5,8 for δ = 0, µ0 = 5.3.

4. Conclusion
We have shown how to construct the bulk-edge corre-

spondence for identifying the anomalous edge modes in a
driven system. Our methods are capable of dealing with Flo-
quet phase transitions at low driving frequency, and save the
numerical calculations from avoiding using large size of lat-
tice. We use time periodic Kitaev chain with harmonic, pulsed
driving in chemical potential to illustrate our method, and
prove its generality. Our works enrich the study of topolog-
ical phase transitions in the driven system.
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