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In complex networks, identifying influential spreader is of great significance for improving the reliability of networks
and ensuring the safe and effective operation of networks. Nowadays, it is widely used in power networks, aviation net-
works, computer networks, and social networks, and so on. Traditional centrality methods mainly include degree centrality,
closeness centrality, betweenness centrality, eigenvector centrality, k-shell, etc. However, single centrality method is one-
sided and inaccurate, and sometimes many nodes have the same centrality value, namely the same ranking result, which
makes it difficult to distinguish between nodes. According to several classical methods of identifying influential nodes, in
this paper we propose a novel method that is more full-scaled and universally applicable. Taken into account in this method
are several aspects of node’s properties, including local topological characteristics, central location of nodes, propagation
characteristics, and properties of neighbor nodes. In view of the idea of the multi-attribute decision-making, we regard
the basic centrality method as node’s attribute and use the entropy weight method to weigh different attributes, and obtain
node’s combined centrality. Then, the combined centrality is applied to the gravity law to comprehensively identify influ-
ential nodes in networks. Finally, the classical susceptible-infected-recovered (SIR) model is used to simulate the epidemic
spreading in six real-society networks. Our proposed method not only considers the four topological properties of nodes,
but also emphasizes the influence of neighbor nodes from the aspect of gravity. It is proved that the new method can ef-
fectively overcome the disadvantages of single centrality method and increase the accuracy of identifying influential nodes,
which is of great significance for monitoring and controlling the complex networks.
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1. Introduction
With the development of science and technology and the

progress of society, various networks are gradually formed,
such as aviation networks,[1] traffic networks,[2] computer
networks,[3] social networks,[4] and biological networks,[5]

which are closely related to our life and work. In recent
decades, the researches on complex networks have gradually
attracted the attention of scholars from all walks of life. It
is found that in many real-society networks, different nodes
have different effects on the networks.[6–8] Therefore, iden-
tifying influential nodes is of great significance for stably
operating and effectively controlling the networks, such as
finding social leader,[9] mitigating disease spreading,[10] con-
trolling information dissemination,[11,12] detecting community
structures,[13] etc., and it has become one of the research
hotspots of complex networks.

In the past researches, scientists have proposed a se-
ries of centrality methods, such as the degree centrality
(DC),[14,15] betweenness centrality (BC),[16,17] closeness cen-
trality (CC),[16] eigenvector centrality (EC),[18] k-shell,[7]

PageRank (PR),[19] H-index algorithm,[19] etc. However,

sometimes these centrality methods are one-sided and inac-
curate in identifying influential nodes in complex networks.
For example, degree centrality only considers the local infor-
mation about nodes, regardless of the role of neighbor nodes;
the CC and BC focus on the shortest path, but information is
not always transmitted through the shortest path, and the time
complexity is high; when the degree of nodes is large, the EC
has the phenomenon of local centralization of numerical value;
The k-shell and H-index algorithm cannot distinguish between
nodes with the same centrality value; PR ignores the situation
of the page itself, and does not distinguish between the types
of links in the page.

In order to improve the accuracy of identifying influen-
tial nodes, researchers have also proposed a great many of im-
proved centrality methods. For instance, Wen and Deng[20]

proposed a new method based on the local information dimen-
sionality (LID) of nodes, in which the quasi-local informa-
tion around each node is considered. Fei et al.[21] proposed
a novel method based on the inverse-square law by defining
the intensity of node. Gao et al.[22] proposed a local struc-
tural centrality measuring method by considering the number
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of nearest neighbors of a node and the topological connections
among the neighbors. By taking into account the neighbors’
resource and the influence of spreading rate for the target node,
Zhong et al.[23] proposed an improved iterative resource allo-
cation (IIRA) method to identify influential nodes. Wang et
al.[24] combined degree and weight strength of each node and
proposed a modified efficiency centrality (EffCm) in weighted
network. Zeng and Zhang[25] proposed a mixed degree de-
composition (MDD) method by incorporating the residual de-
gree and the exhausted degree to revise the original k-shell
decomposition, but it is difficult to find the optimal parame-
ter λ to achieve better results. Instead of ranking all nodes,
Song et al.[26] aimed at ranking a small number of nodes in
networks and proposed a rapid identifying method (RIM) to
find the fraction of high-influential nodes.

Recently, based on the multiple attribute decision mak-
ing (MADM),[14,27–30] Mo and Deng[31] proposed a multi-
evidence centrality (MeC) method from the perspective of
multi-attributes. Bian et al.[32] considered several different
centrality methods as the multiple attributes and proposed a
method to identify influential nodes based on the analytic hi-
erarchy process (AHP). Hu et al.[33] proposed a weighted tech-
nique to identify influential nodes based on the technique for
order preference by similarity to an ideal solution (TOPSIS)
by calculating the weight of each attribute. To further explain
the influence of neighbor nodes, Li et al.[34] proposed a grav-
ity model in which both neighborhood information and path
information are used to measure a node’s influence. By view-
ing the k-shell value of each node as its mass and the shortest
path distance between two nodes as their distance, according
to the gravity formula, Ma et al.[6] proposed a gravity central-
ity index to identify the influential spreaders.

Based on the above researches, it can be found that a com-
mon shortcoming in these centrality methods is that in most of
methods only single centrality characteristic is considered, or
the weight of every characteristic is regarded as being identi-
cal when multiple characteristics are considered, which may
reduce the accuracy of ranking nodes. Another obvious short-
coming is that the influence of a node depends not only on its
direct neighbors (1-step neighbors), but also on its 2-step and
even more steps of neighbors. So to solve these issues, we
need to do further research on identifying influential nodes.
In view of the multi-attribute decision-making, we propose an
improved centrality method in which taken into account are
several aspects of node’s properties, including local topologi-
cal characteristics, central location of nodes, propagation char-
acteristics, and properties of neighbor nodes. We regard the
classical centrality methods as the attributes of nodes. Con-
sidering the different effects of different attributes on nodes,
we use entropy weight method,[14,28,29] which is a method

to calculate the weight quantitatively, to weigh different at-
tributes and obtain the combined centrality. Then the grav-
ity law[6,34,35] is utilized to evaluate the influence of nodes.
Finally, based on the real complex networks, the classical
SIR[36] model is used to simulate the spreading process and
verity the evaluation results. The results show that the pro-
posed method is feasible and accurate in identifying influential
nodes.

With the increasing variety and quantity of complex net-
works in society, there is an urgent need for some efficient,
accurate and universally applicable centrality methods. Based
on our proposed method, we can find the influential nodes in
the networks, focus on them, protect and regulate them, so as
to improve the reliability of the network. For example, in the
transmission of infectious diseases, we can determine “super
communicators”, predict the trend and scope of virus trans-
mission, and provide a basis for virus prevention and control;
in the traffic network, we can evaluate the traffic congestion
to further ensure the connectivity of the network based on in-
fluential nodes. And the method can be applied to all kinds
of networks, whether it is directed or undirected, weighted or
unweighted. Therefore, nowadays, our research is of great sig-
nificance in complex networks.

The rest of the paper is organized as follows. In Section 2,
the description of our method is presented. In Section 3, we
introduce the datasets, the spreading model and the evaluation
methodologies that are used to evaluate the performance of
our method. In Section 4, we analyze the effectiveness of our
proposed method in six real networks through the numerical
simulation of classical SIR model. And finally, some conclu-
sions are drawn from the present study and brief discussion is
also presented in Section 5.

2. Method
As stated above, a lot of researches have been carried out

to identify influential nodes in complex networks and many
centrality methods have also been proposed. These central-
ity methods show their advantages and superiorities together
with some shortcomings and limitations. Based on these re-
searches, in this paper we utilize the idea of the multi-attribute
decision-making and propose a novel centrality method of
identifying the influential nodes in the complex networks
based on entropy weight method and gravity law.

Firstly, we summarize four important characteristics re-
lating to the influence of node, namely local topological char-
acteristic, central location of nodes, propagation characteris-
tics and properties of neighbors. Then we regard seven classi-
cal centrality methods selected as the attributes of nodes, and
according to the expression meanings of different centrality
methods, we classify seven attributes as four categories.
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Table 1. Four categories of node attributes.

Category
1 local 2 central 3 propagation 4 properties of

topological characteristic location of nodes characteristic neighbors

Centrality (attribute) DC H-index CC k-shell BC EC PageRank

Secondly, based on the idea of the multi-attribute
decision-making, we select different attributes to form differ-
ent combinations according to Table 1. Each combination con-
tains four attributes selected from four categories respectively.
So eight combinations are obtained. Besides, the combination
of all seven attributes is regarded as a contrast. The specific
combinations are as follows.

Combination 1: DC, CC, BC, EC;
Combination 2: DC, CC, BC, PageRank;
Combination 3: DC, k-shell, BC, EC;
Combination 4: DC, k-shell, BC, PageRank;
Combination 5: H-index, CC, BC, EC;
Combination 6: H-index, CC, BC, PageRank;
Combination 7: H-index, k-shell, BC, EC;
Combination 8: H-index, k-shell, BC, PageRank;
Combination 9: DC, H-index, CC, k-shell, BC, EC,

PageRank.
Then, because the influences of different attributes on

nodes are often different, we use the entropy weight method
to calculate the weight of each attribute in each combination
quantitatively. Generally speaking, the smaller the informa-
tion entropy of an index, the larger the variation of the index
is and the larger its weight. By weighted averaging, we ob-
tain the combined centrality of each node in each combination.
The specific calculating steps are as follows.

Assuming that there are N nodes in the network, the set
of research objects can be expressed as X = {x1,x2, . . . ,xN}.
If there are m centrality methods, the set of attributes of nodes
can be expressed as A = {a1,a2, . . . ,am}.

Step 1 Constructe the decision matrix of all nodes and
attributes in complex networks 𝑃 = (xi j)N×m

𝑃 =


x11 x12 . . . x1m
x21 x22 . . . x2m
...

...
. . .

...
xN1 xN2 . . . xNm

 . (1)

In the decision matrix 𝑃 , xi j (i = 1,2, . . . ,N; j =

1,2, . . . ,m) represents the j-th attribute of the i-th node.
Step 2 Normalize decision matrix to obtain normalized

decision matrix 𝐵 = (bi j)N×m

bi j =
xi j− xmin

j

xmax
j − xmin

j
. (2)

xmax
j = max{xi j|1 6 i 6 N}; xmin

j = min{xi j|1 6 i 6 N}.
Step 3 Calculate the information entropy for each at-

tribute

S j =−K
N

∑
i=1

Pi j lnPi j. (3)

In the formula, j = 1,2, . . . ,m, K = 1/ lnN; Pi j = bi j/
m
∑
j=1

bi j,

if Pi j = 1, Pi j = (1+bi j)/(
m
∑
j=1

(1+bi j)).

Step 4 Calculate the entropy weight for each attribute.
The set of the information entropy of each index,

[S1S2 . . .Sm], is as follows:

ω j =
1−S j

m−
m
∑
j=1

S j

. (4)

Step 5 Calculate the combined centrality of each node

Ci = S1 ·bi1 +S2 ·bi2 + . . .+Sm ·bim. (5)

Ultimately, based on the gravity law first proposed by Newton,
a physicist, we replace the mass with the combined centrality
of nodes, and regard the shortest path distance between target
node and its neighbor in network as their distance. In this way,
the influence of node i in our proposed method is denoted as
G(i) and expressed as follows:

G(i) = ∑
j∈ψi

CiC j

d2
i j

. (6)

In the formula, ψi is the neighborhood set whose distance to
node i is less than or equal to a given value r, di j is the short-
est path distance between node i and node j, Ci, and C j are
the combined centrality of the target node i and its neighbor
node j, respectively. In our research, we take r = 3, namely,
only the nearest neighbor, the second nearest one and the third
nearest one are considered.

On the whole, our method has several obvious advan-
tages. Compared with other centrality methods, such as DC,
BC, and CC, firstly, in our method more attention is paid to the
multiple characteristics of nodes. Secondly, the attributes of
nodes are not combined randomly. According to the four kinds
of main characteristics of nodes, we divide several basic cen-
trality methods into four groups and design different combina-
tion schemes. Then, we use entropy weight method to weigh
the attributes in each combination quantitatively. In contrast to
other similar multi-attribute methods, our method emphasizes
the differences of different attributes on nodes, and also avoids
subjective weighting. Besides, the influence of neighbor nodes
on the target nodes is abstractly expressed by the “gravity”
between nodes. In other gravity centrality methods, only the
nearest neighbor is considered, however, in our method the
nearest, the second nearest and the third nearest neighbors are
all considered. Last but not least, by comparing the results of
different combinations, we choose the optimal combination as
the basis of identifying influential nodes, thereby increasing
the accuracy of ranking results.
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3. Experiment
3.1. Data

We chose six real and typical networks to prove the va-
lidity and accuracy of our proposed method. The detailed de-
scriptions for six networks are as follows: (i) Friendship:[37]

This directed network represents the friendship between stu-
dents. Nodes represent students and the edge weights indi-
cate interactions. (ii) Advogato:[38] This is the trust network
of Advogato. Nodes are the users of Advogato and the di-
rected edges represent trust relationships. (iii) Trust:[39] This
is a network of who-trusts-whom relationships among users
of the Bitcoin Alpha platform. A weighted edge from i to j
represents trust ratings. (iv) Collaboration:[40] This network
is a collaboration network. Nodes are the authors and edges
are joint work between authors. (v) Airlines:[41] This is the
directed network of flights between US airports. Nodes repre-
sent airports and edges represent connections from one airport
to another. (vi) WormNet:[42] This is a network by integration
of all data-type-specific networks by modified Bayesian inte-
gration. Nodes represent the genes and edges represent lines.
Several statistical features of six networks are listed in Table 2,
including the number of nodes n, the number of edges m, aver-
age degree 〈k〉, largest degree kmax, degree assortativity r, and
the epidemic threshold βc ≈ 〈k〉/

(
〈k2〉−〈k〉

)
.

Table 2. Basic statistical features of four networks.

Network n m 〈k〉 kmax r βc

Friendship 2539 12969 10.216 36 0.232 0.082
Advogato 5155 47135 18.287 941 −0.089 0.011

Trust 3783 24186 12.787 888 −0.163 0.010
Collaboration 7343 11898 3.864 102 0.243 0.070

Airlines 1574 28236 35.878 596 −0.122 0.005
WormNet 2220 53683 48.363 242 0.068 0.011

3.2. SIR model

In order to compare the ability to identify the influential
nodes in complex networks by using different centrality meth-
ods, we use standard SIR[36] model to simulate the spreading
process and evaluate the ability of different nodes to propa-
gate. In the SIR model, each node has three states, i.e., (i) sus-
ceptible state, S(t) is used to represent the number of individ-
uals that are susceptible to (not yet infected) the disease; (ii)
infected state, I(t) denotes the number of individuals which
have been confirmed to be infected and can spread the disease
to other susceptible individuals; (iii) recovered state, R(t) de-
notes the number of previously infected individuals that have
recovered already and will never be infected any more. In each
experiment, only one node is infected at the initial time, and
the others are the susceptible. At each time step, the infected
node randomly infects its susceptible neighbors with the prob-
ability λ , and the infected node becomes the recovered with
the probability β . When there are no more infected nodes in

the network, the spreading process ends. At the moment t, the
total number of infected and recovered nodes in the network is
denoted as F(t), which can be used to evaluate the transmis-
sion capacity of the initial infected node at time t. Obviously,
in the ranking list, the more influential the node, the larger the
value of F(t) at time t will be. For each initial infected node,
we carry on 300 simulations and take the average as the final
simulation data.

3.3. Validation parameters

3.3.1. Complementary cumulative distribution func-
tion

In identifying influential nodes in complex networks,
many nodes may have the same centrality values, i.e., ranking
values. For example, nodes in the same layer have the same
k-shell value; nodes with the same neighbors have the same
degree value. So it is difficult to distinguish the differences
among these nodes. Here, we use the complementary cumu-
lative distribution function (CCDF)[43] to analyze the distri-
bution of influential nodes, and then make a comparison of
advantage and disadvantage among various centrality meth-
ods. For good centrality methods, different nodes should have
different ranking values, so the distribution of CCDF is rela-
tively decentralized and the ranking range is larger than those
of other methods.

CCDF(z) = Prob(Z > z) = 1−CDF (z) , (7)

where CDF (z) is the cumulative distribution function, also
known as the distribution function, which is the integral of
probability density function within the range of the variable
Z less than specified value z. For discrete variables, it repre-
sents the sum of all values less than or equal to z (CDF (z) =
Prob(Z 6 z)).

3.3.2. Kendall’s tau coefficient

To assess the performances of different centrality meth-
ods, we use Kendall’s tau coefficient[44–47] to analyze and ver-
ify the simulation results. The Kendall’s tau coefficient is an
index used to reflect the correlation between two ordered se-
quences. Here, a series of influential nodes is obtained based
on the centrality values and another one is based on the SIR
simulation results. The higher the value of Kendall’s tau co-
efficient, the higher the correlation between the two ordered
sequences is, that is, the more accurate the ranking list of the
influential nodes generated by centrality methods is.

Definition 1 X and Y are two random variables,
(x1,y1),(x2,y2), . . . ,(xN ,yN) are a set of observed values of
random variables X and Y respectively. If xi > x j and yi > y j,
or xi < x j and yi < y j, (xi, yi) and (x j, y j) are condisered to be
concordant. If xi > x j and yi < y j, or xi < x j and yi > y j, (xi,
yi) and (x j, y j) are regarded as being discordant. If xi = x j and
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yi = y j, (xi, yi) and (x j, y j) are neither concordant nor discor-
dant.

τ =
nc−nd

0.5N(N−1)
, (8)

where nc and nd represent the total number of the concordant
and discordant observations,respectively, and N denotes the
total number of nodes. The higher the value τ , the more accu-
rate the ranking list of influential nodes is.

3.3.3. Imprecision function

The imprecision function is another method of assessing
the accuracy of centrality methods, which is proposed by Kit-
sak et al.[7,48] and modified by Liu et al.[48,49] Based on the se-
quence of influential nodes generated by the centrality method
and the sequence generated by the real SIR numerical simula-
tion, the imprecision function is used to analyze the difference
in average spreading capability between the top M nodes in
two ordered sequences. The definition of this function is as
follows:

ε (p) = 1− S(p)
Seff(p)

, (9)

where p represents the ratio of the number of top M nodes to
the total number of nodes N (p = M/N). S(p) and Seff(p)
represent the average spreading capability of the top M nodes
in two ordered sequences determined by the centrality method
and SIR numerical simulation respectively. The smaller the
value ε , the closer to that determined by SIR numerical simu-
lation the nodes sequence determined by the centrality method

is, that is, the more accurate the ranking list of influential
nodes is.

4. Results and analysis
4.1. Comparisons among multi-attribute combination

methods

Based on the idea of the multi-attribute decision-making,
in Section 2, we obtained nine combinations. Here we com-
pare and analyze the differences among these combination
methods in the identifying influential nodes, and select the op-
timal combination, namely our proposed centrality method.

4.1.1. Comparing correlation of different combinations

According to the definition of Kendall’s tau coefficient,
the larger the coefficient τ , the more accurate the ranking list
of influential nodes is. We use Kendall’s tau coefficient to an-
alyze the correlations between node spreading capability F(t)
and centrality values of nodes in six real networks. The re-
sults are shown in Fig. 1. By changing the infection probabil-
ity λ , we can obtain a series of Kendall’s tau coefficients for
each combination. First of all, we find that in each graph, the
trends of all curves are basically the same, which shows that
the nine combinations have certain similarity in identifying in-
fluential nodes. Secondly, the simulation results of combina-
tion 6 are relatively stable, and the curve is basically above all
other curves as indicated in Figs. 1(a)–1(f), except for several
points, for example, the value of λ is 0.15 in Fig. 1(a) and 0.03
in Fig. 1(e).
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Fig. 1. Comparisons of ranking similarity between various combination methods and SIR model over six real-world networks. Kendall’s tau coefficient
τ is acquired by varying infection probability λ , and results are obtained by averaging over 300 independent realizations.
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In addition, the value τ of combination 9 (com9) is not
the largest in the six networks, that is, when all attributes are
considered, the ranking result is not optimal. In general, com-
bination 6 (com6) has the larger value of τ and more accurate
ranking results in identifying influential nodes.

4.1.2. Comparisons of imprecision among different
combinations

In the above, by comparing the coefficient τ , we know
that the combination 6 is better than other combinations. Here,
we choose the imprecise function to further prove this conclu-
sion. The smaller the imprecise function ε , the more accurate
the ranking result is. The results are shown in Fig. 2.

In Fig. 2, with the increase of the value p, all curves show
a downward trend, showing that the larger the number of the
top M nodes in ranking list, the smaller the value of ε is. In
Figs. 2(a)–2(f), the curve of combination 6 is located below
other curves and has a smaller value of ε , which shows that
the sequence of influential nodes determined by combination
6 is closer to that determined by SIR simulation. In Fig. 2(e),
when the value of p is 0.03, the value of ε is larger than that
of p (0.01). It shows that the average accuracy of top 3% of
all influential nodes is lower than that of top 1%. All in all,
combination 6 has a smaller ε in six networks, which further
proves that combination 6 is superior to other combinations.
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Fig. 2. Comparisons of ranking imprecision between various methods and SIR model over six real-world networks. Imprecision function ε is acquired
by varying the fraction of network size p. Results are obtained by averaging over 300 independent realizations.

4.2. Comparisons between optimal combination method and seven centrality methods

Through the researches in Subsection 4.1, we find that among all combinations, combination 6, namely the multi-attribute
combination of H-index, CC, BC, and PR, has more stable and accurate effect in identifying influential nodes. In this subsection,
we mainly compare and analyze the differences between the combination 6 and seven basic centrality methods considered in the
multi-attribute decision-making, to further determine the feasibility and accuracy of combination 6.

4.2.1. Comparisons of similarity ranking among all nodes

We use the comprehensive cumulative distribution function (CCDF) to compare the distribution of the ranking values for
revealing the distinction of node between the optimal combination and seven basic centrality methods. The wider the range of
ranking list, the better the centrality method is. The results are shown in Fig. 3. In Fig. 3, it can be clearly observed that the
ranking ranges created by different centrality methods are different from each other. The distributions of the ranking values of
EC, PR, and combination 6 are relatively wider than those of other centrality methods. By comparison, DC, k-shell, and H-index
algorithm have small ranking ranges. Generally speaking, the ranking range created by combination 6 is much larger than by the
seven basic centrality methods, and it shows our proposed method can more easily reveal a difference among the nodes within
the network.
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Fig. 3. Comparisons of complementary cumulative distribution function between optimal combination and seven basic centrality methods. Curves are
acquired by sequencing all nodes based on CCDF, and results are obtained by averaging over 300 independent realizations.

4.2.2. Comparisons of correlation between optimal combination and centrality methods

A good centrality method should not only distinguish nodes as much as possible, but also rank influential nodes as accurately
as possible. It is obvious that the curve generated by combination 6 is higher than those generated by other centrality methods
especially in Figs. 4(b) and 4(d). It means that our method performs much better than the other centralities in all six networks. In
Fig. 4(f), all curves have consistent trends and similar values of τ , which indicates the sequences of influential nodes generated
by these centrality methods are relatively uniform in the network of WormNet. We can also find that these traditional centrality
methods do not perform consistently in six networks. For example, the BC in Fig. 4(a) has larger values of τ than most of
methods, but smaller values of τ in Figs. 4(d), 4(e), and 4(f).
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Fig. 4. Comparisons of Kendall’s tau coefficient τ between optimal combination (red curve) and seven centrality methods according to SIR model in six real
networks. Each point is obtained by averaging over 300 independent runs.
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Thus these traditional centrality methods are hard to ap-
ply to the most networks with different structures. Therefore,
our method has more stable and accurate performances.

4.2.3. Comparisons of imprecision between optimal
combination and centrality methods

According to the definition of the imprecision function,
the smaller the value of ε , the more accurate the centrality
method is. In Fig. 5, with the increase of p, the imprecision of
most of centrality methods has a consistent downward trend.

In Fig. 5(d), that is, in the network of collaboration, the im-
precisions of the EC, CC, and combination 6 are basically the
same, but are significantly smaller than those from other cen-
trality methods. All in all, the curve created by combination
6 has lower imprecision, except for at a few points. It means
that our method can not only identify influential nodes accu-
rately, but also be widely applied to different complex net-
works. Therefore, our novel method is superior to the previous
centrality methods, which is of great significance for operating
and controlling the complex networks.
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Fig. 5. Comparisons of imprecision between the optimal combination (red curve) and seven basic centrality methods over six real-world networks. Results
are obtained by averaging over 300 independent realizations.

5. Conclusions and discussion
In this paper, we proposed a novel centrality method of

identifying influential nodes in the complex networks. Con-
sidering the shortcomings of the traditional centrality methods,
we adopt the idea of multi-attribute decision-making to com-
prehensively consider the multiple characteristics of nodes,
and use entropy weight method to quantitatively weigh dif-
ferent attributes to obtain the combined centrality of nodes.
Then, according to the gravity law, we replace the mass with
the combined centrality to calculate the ‘gravity’ of the target
node, and take this ‘gravity’ as the basis for identifying influ-
ential nodes. In order to evaluate the performances, we apply
our method to six real networks and use SIR model to simu-
late the spreading process. By calculating the comprehensive
cumulative distribution function (CCDF), we find that the pro-
posed method can better distinguish nodes. Then, by calcu-
lating Kendall’s tau coefficient τ and the imprecision function
ε , we find that ranking results of influential nodes generated

by proposed method are more stable and accurate in different
complex networks.

After that, further efforts are needed to improve the pro-
posed method. Firstly, the selection of the basic attributes
of nodes is relatively subjective. So how to rationally select
attributes according to the real situation of networks is very
necessary. Then, we use the classical SIR model to simulate
spreading process. However, in the real-society networks with
complex structures, nodes do not completely evolve according
to the SIR model. Therefore, a more accurate and appropriate
numerical model may be one of the important challenges and
breakthroughs in the research of identifying influential nodes
in complex networks.
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