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Abstract

Many astrophysical observations and measurement techniques that rely on data from images include an image
registration step. The results of such techniques thus heavily rely on the precision of the registration. We present an
Iterative Phase Correlation (IPC) algorithm, which is an extension of the well-known phase correlation method of
image registration and is ideally suited for problems, where the subpixel registration accuracy plays a crucial role.
Furthermore, a sophisticated and reliable method of optimal IPC parameter estimation is described. The paper
includes examples of such optimized parameters for Solar Dynamics Observatory (SDO)/Helioseismic and
Magnetic Imager, SDO/Atmospheric Imaging Assembly, and Solar Terrestrial Relations Observatory A/B Sun
Earth Connection Coronal and Heliospheric Investigation images. The new method (both with or without the
parameter optimization step) significantly outperforms standard image registration methods, such as (non-iterative)
phase correlation or (normalized) cross correlation in the sense of subpixel accuracy. A step-by-step pseudocode
implementation is also included.

Unified Astronomy Thesaurus concepts: Astronomical techniques (1684); Direct imaging (387); Astronomy
software (1855); CCD observation (207); Publicly available software (1864); Fast Fourier transform (1958);
Astrometry (80); Algorithms (1883); Astronomical methods (1043); Astronomy data analysis (1858);
Computational methods (1965); Analytical mathematics (38)

1. Introduction

The need to effectively solve the image registration problem
arises in many domains (Foroosh et al. 2002), ranging from
medical (Jenkinson & Smith 2001) and satellite imaging (Do
et al. 2019; Li et al. 2019; Mahmood & Lee 2019) to optical flow
(Lefébure & Cohen 2001), experimental mechanics (Bing et al.
2006), 3D reconstruction (Gravel et al. 2012; Li et al. 2018;
Casella et al. 2019), and astrophysics (Shapiro et al. 2013; Chen
et al. 2014; Zhou & Yu 2018). Algorithms based on a notion of
correlation are one of the most frequently used and widely
known techniques in this domain (Leng et al. 2019).

The problem of image registration consists of finding the exact
image geometric alignment, which in turn consists of determining
the scale, rotation, and shift between two input images. If the log-
polar transform is applied to the amplitude spectra of both input
images, rotation and scale can be inferred from the shift between
them (Reddy & Chatterji 1996; Druckmüller 2009). Thus one
needs to be concerned only with determining the image shift,
without any loss of generality.

In the standard cross correlation approach, two real-valued
functions f (t), g(t) and their cross correlation (×) and
convolution (*), defined as

( )( ) ( ) ( ) ( )òt t´ = +
-¥

¥
f g f t g t dt, 1

( )( ) ( ) ( ) ( )ò t t t* = -
-¥

¥
f g t f g t d , 2

are considered. Because of the ease of computing convolutions
via the convolution theorem and Fourier transforms, it is
desirable to express the cross correlation in the form of
convolution. From these definitions we can readily see that

( ) ( ) ( ) ( ) ( )´ = - *f t g t f t g t , 3

which is the sought cross correlation/convolution relation. One
of the basic properties of the Fourier transform (here denoted ),
namely, the conjugate property

{ ( )} { ( )} ( )= - f t f t 4

allows the computation of cross correlation in the frequency
domain as

{ } { } · { } ( )´ =  f g f g . 5

Applying the inverse Fourier transform (denoted - 1), we get

{ { } · { }} ( )´ = -  f g f g . 61

If we consider functions f and g as two-dimensional discrete-
valued functions over a finite region (e.g., images) and replace
the continuous Fourier transforms with their appropriate discrete
two-dimensional counterparts, the coordinates of the cross
correlation maximum will result in the corresponding pixel shift
between input images:

[ ] ( { { } · { }}) ( )D D = -  x y f g, arg max . 7
x y,

1

The phase correlation approach (Reddy & Chatterji 1996)
differs from cross correlation only by having the cross-power
spectrum normalized element-wise, thus removing the magni-
tude component and correlating phases only (hence the name
phase correlation). Theoretically, this approach results in a
Dirac impulse δ (Δx, Δy) at the location of the image shift.
Since input images are finite and noisy, this will not be the
case in practice. One can then simply estimate the image shift
as the phase correlation maximum location, similarly to the
cross correlation approach. The phase correlation image shift
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can then be computed as
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The Iterative Phase Correlation (IPC) algorithm presented
here is an extension of the standard phase correlation method.

2. The IPC Algorithm

In the IPC algorithm, the improved subpixel accuracy is a
result of the iterative character of the method, together with
bilinear upscaling. It is important to mention that the exact
same extension can be applied to the cross correlation method
or any of its variants. However, the standard phase correlation
technique frequently outperforms cross correlation (in the sense
of subpixel accuracy—Foroosh et al. 2002), and thus is a better
candidate for further accuracy refinement. The required steps
are given in what follows.

2.1. Image Alignment

In the field of astrophotography and microscopy, for
example, it is often necessary to compose images taken with
different instruments and varying wavelengths. These images
can be noticeably misaligned due to differences in location of
the instruments, varying times of acquisition, and/or varying
optics. Misalignments typically include a combination of image
translation in both directions, image rotation, and scaling. To
accurately align two such images, four parameters need to be
precisely estimated—pixel shifts, Δx and Δy, in the x, y
directions, rotation angle j, and a scale factor s. If these four
parameters are computed with good subpixel accuracy, the
resulting composed image can have distinctly better character-
istics than an image with standard pixel accuracy methods. This
subpixel composition is possible via the use of bilinear (or any
other) interpolation.

2.2. IPC Image Alignment Process

The IPC image alignment procedure first evaluates the
rotation and scale parameters j, s by computing the shift
between log-polar transformed normalized logarithms of
Fourier transform magnitude components of both input images
with the IPC algorithm. The scale ratio of Fourier transform
magnitude components is inversely proportional to the image
scale ratio, according to the Fourier transform scale property
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This expression can be intuitively interpreted as the fact that
to increase the size of a feature in an image, the basic
corresponding spatial frequencies need to be decreased and
vice versa. One of the input images is then rotated and scaled
back by the computed amount, followed by another run of IPC,
this time to estimate the subpixel shift Δx and Δy, which is
again applied to the corresponding image, therefore completing
the alignment. All mentioned geometric transformations are
done subpixel-wise via bilinear interpolation.

2.3. Filtering

Let C(x, y) be the normalized cross-power spectrum of
images I1(x, y) and I2(x, y), which are optionally spatially
windowed, as windowing can help reduce spectral leakage
present in the discrete Fourier transform (Harris 1978). The
characteristics of the resulting phase correlation peak and its
neighborhood can be improved by first applying frequency
domain filtering to the cross-power spectrum. Higher frequen-
cies of C(x, y) mostly contain noise, and for this reason
correlating their phases will most likely lower the precision of
the result. Therefore, ideally a low-pass filter is first applied to
C(x, y). Likewise, the lowest frequencies mostly contain the
overall brightness of the image. Hence to make the method
more resilient to different levels of brightness between the two
input images and to allow for more parameter optimization,
these lower frequencies can also be dampened. However, it is
important to realize that the phase correlation algorithm is
correlating phases only, contrary to cross correlation, and thus
has some level of brightness resilience built in. The resulting
ideal frequency domain filter for the proposed method is then a
bandpass filter, whose optimal parameters depend on the
individual image characteristics (levels of noise, image size,
difference in exposure times, sharpness, etc.). The method
presented here performed well with a Gaussian bandpass filter
constructed by multiplying a Gaussian low-pass filter and an
inverse Gaussian high-pass filter. The equation for the applied
bandpass filter B(x, y) can be writtenas
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where w and h are the width and height of the cross-power
spectrum in pixels, and σL and σH are parameters determining
the amount of low-pass and high-pass filtering. An example of
such a Gaussian bandpass filter with σL=2 and σH=7 is
given in Figure 1. The low-pass frequency damping (darker
regions near the edges of the spectrum) and the high-pass
frequency damping (a dark region near the center of the
spectrum) can clearly be seen.

2.4. Subregions and Upscaling

Multiplying the cross-power spectrum C(x, y) with an
appropriate bandpass filter B(x, y) element-wise, and computing
the inverse Fourier transform { · }- B C1 , result in a phase
correlation landscape r(x, y). Standard phase correlation
algorithms terminate here by returning the location of the
maximum element of r(x, y), or alternatively, selecting a small
rectangular neighborhood around the maximum element (usually
5×5 pixels) and returning the subpixel coordinates of a
centroid computed on that neighborhood (Druckmüller 2009).
First, to improve the accuracy and further boost the effectiveness
of the following iterative refinement, the original phase
correlation landscape r(x, y) (for later purposes and brevity also
denoted as L3) is upscaled. It is unnecessary and very costly to
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upscale the entire landscape L3; therefore, only a subregion
around the maximum element is chosen, and then bilinearly
upscaled (denoted as L2). Other interpolation methods were also
tested (bicubic interpolation, Lanczos interpolation), but yielded
no statistically significant accuracy improvement over the
bilinear interpolation. Thus, bilinear interpolation was chosen,
as it is the computationally fastest method and does not change
the overall region brightness. This is a desirable property for the
following iterative refinement, as we are only aiming to get a
more accurate maximum correlation location from given values
of L3, rather than modifying the phase correlation values
themselves. After bilinearly upscaling a chosen subregion
around the maximum correlation value, another subregion is
chosen (this time around the maximum correlation value in L2),
which we denote as L1. Contrary to the rectangular regions L3
and L2, region L1 is chosen to be circular. This is a significantly
more natural choice for the final centroid calculation compared
to the frequently used rectangular 5×5 window, as the
horizontal sections of the correlation peak are always of a
circular shape (as seen in Figure 2).

2.5. Iterative Refinement

After computing the circular region L1 and the rectangular
regions of the phase correlation L3, L2, we begin to iteratively
refine the resulting L2 centroid location. If the usual image
coordinate system (x, y) with the origin at the top left corner is
considered, and the width/height of the image region Li are
denoted as wi and hi, the zero relative shift in the Li subregion
corresponds to the maximum element located at the region

center [ ]
⎡
⎣⎢

⎤
⎦⎥=L x y

w
,

2
,i h

imid 2
i . For better clarity, we also denote

the current integer x, y pixel coordinates of the correlation peak
in a given coordinate system of subregion Li as [ ]L x y,imax .
The iterative shift refinement process is then described by
Algorithm 1.

Algorithm 1. [ ]L x y,2 max Iterative Refinement Process

1. Initialize [ ]L x y,imax for i=1, 2, 3 as maximum correlation coordinates in
the corresponding coordinate system of subregion Li

2. while ∣ [ ]∣- >C L x 0.5x 1mid , ∣ [ ]∣- >C L y 0.5y 1mid and iterations<max-
imum_iterations do

- replace the previous L1 circular subregion by a new one, centered around the
current [ ]L x y,2 max

- calculate L1 centroid coordinates Cx, Cy

- calculate [ ]L x y,1 max as rounding Cx, Cy to the nearest integer
- update [ ]L x y,2 max by adding the current relative L1
shift [ ] [ ]-L x y L x y, ,1 max 1mid

- update the number of iterations
end
Result: return the final [ ]L x y,2 max along with final L1 centroid coordinates
Cxf and Cyf (these are now both less than 0.5 pixels away from the L1 region
center)

Intuitively, the procedure simply moves the L1 circular
upscaled subregion in the direction of higher correlation,
allowing it to selectively explore the L2 landscape around

[ ]L x y,2 max , thus converging to a more accurate solution, as

Figure 1. Gaussian bandpass filter mask B(x, y) with σL=2 and σH=7,
displayed as different shades of gray in linear brightness scale.

Figure 2. Heatmap of phase correlation maximum neighborhood regions Li
with marked [ ]L x y,imax locations (alignment of 4096×4096 full-disk SDO
171 Å and 304 Å images, see Section 3.5, L2 region size equal to 9 px). Left to
right, top to bottom: original phase correlation L3, rectangular bilinearly
upscaled subregion L2, circular subregion L1(a) before iterative refinement
process, L1(b) after shift refinement process, L1(c) obtained from two (similar)
171 Å images (sharp peak), L1(d) obtained from (dissimilar) 171 Å and 304 Å
images (broad peak).
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opposed to a single centroid calculation with neighborhood
centered around the maximum correlation value in the case of
non-iterative methods. The loop terminates when the difference
between L1 centroid coordinates and [ ]L x y,1mid is less than 0.5
pixel in both directions, because one can only move the
upscaled L1 subregion by an integer number of pixels. This is
the desired behavior, and the centroid converges. If the reason
behind loop termination is to reach the maximum iterations
value, the centroid diverges. This is a pathological case that
happens only if the resulting phase correlation landscape r(x, y)
does not contain a distinct peak to begin with (possible reasons
include very low signal-to-noise ratio, wrong bandpass filter
parameters).

After obtaining the position of the final L1 circular subregion
( [ ]L x y,2 max ) and the final L1 centroid coordinates Cxf and Cyf,
it is possible to calculate the refined image shift [ ]D Dx y,r r .
Because upscaling was used, refinements need to be scaled
down by the amount of upscaling. The resulting refined pixel
shift between the two input images can then be evaluated as

[ ] [ ] [ ]

( [ ] [ ] [ ] [ ])
( )

D D = - +

´ - + -

x y L x y L x y
U

L x y L x y C C L x y

, , ,
1

, , , , ,

11

r r

xf yf

3 max 3mid

2 max 2mid 1mid

where U=2k+1, Î k , k�1 is the upscaling coefficient
and a centered discrete Fourier transform is assumed (lowest
frequencies in the vicinity of [ ]L x y,3mid ).

3. Parameter Optimization

3.1. Universal Parameter Setting

The main parameters of the presented method include L2
and L1 region size, upscaling coefficient U, bandpass filter
parameters σL and σH, and input image window type. The L2
region size should be large enough to allow the circular L1
region to explore the close proximity of [ ]L x y,2 max during the
iterative phase. The L1 region size should be chosen according
to the phase correlation landscape characteristics—ideally, the
entire correlation peak should fit tightly inside the circular
region, for the best results. In the example of Figure 2, the size
is equal to 35% of the upscaled version of L2. The sizes of both
regions L2 and L1 should be an odd number, so that there exists
a central pixel, which corresponds to the maximum correlation
amplitude. The upscaling coefficient U should also be an odd
number (for the same reason) and large enough to allow for
finer refinement. However, there is a limit above which the IPC
accuracy does not improve any further with increasing values
of U (limit dependent on signal-to-noise ratio). Bandpass filter
parameters σL and σH should be chosen according to the input
image characteristics—naturally, if the image contains a high
amount of noise, a more pronounced low-pass filtering
achieves better results. For the input image windowing method,
either rectangular (for images whose edges are generally
similar) or Hann window (for images whose edges are
generally dissimilar) are recommended.

3.2. Parameter Optimization Process

The universal IPC parameter values, set according to
Section 3.1, are general recommended parameter values, as
they usually work sufficiently well. However, for applications,
where the highest possible alignment accuracy is desired, a

mathematical optimization procedure tailored to a specific kind
of input image is essential. Different kinds of input images
usually require different IPC parameters. Therefore, ideally,
with each type of image data, optimal parameters are found
with a suitable optimization algorithm. Because the objective
function (as described in Section 3.4) is essentially a black-box-
type function, an evolutionary method called Differential
Evolution (Storn & Price 1997) was chosen for this task. This
evolutionary continuous parameter optimization method per-
formed sufficiently in a global objective function minimum
search.

3.3. The Domain Transforming Function

The main parameters worth optimizing include L2 (or L1)
size, bandpass filter parameters σL, σH, and the input image
windowing method. These parameters have different domains
—bandpass filter coefficients are continuously nonzero, L2 size
is a nonnegative integer, and the window is either rectangular
or Hann window (Boolean variable, one of two choices). The
standard differential evolution algorithm works with contin-
uous variables only—a construction of transforming function,
which transforms the optimized virtual continuous unbounded
parameters into their real usable counterparts in corresponding
domains is therefore needed. The most natural choice of such a
function can be defined as

( )
( )
( )

( )
⎧⎨⎩=

>
W x y

H x y w

R x y w
,

, , if 0

, , if 0,
12

*
*

( ∣ ∣) ( )s s= max , , 13L L*

( ∣ ∣) ( )s s= max , , 14H H*

( ∣⌈ ⌉∣) ( )=L Lmax 3, , 152 2*

where w*, σL
*, sH* , and L2* denote virtual continuous

unbounded variables optimized by the differential evolution
algorithm, R and H denote rectangular/Hann windows, the
symbol⌈ ⌉x denotes rounding x to the nearest integer value, and
ò denotes a small positive value present to avoid problems
arising while dividing by a value close to zero. Passing the
virtual continuous parameters through such a function ensures
their usability in the IPC algorithm.

3.4. The Objective Function

The last but most important part of correct parameter
optimization is the construction of a suitable objective function.
The IPC parameters are optimized to improve the subpixel
accuracy of the method—it is then natural to define the
objective function as an average subpixel error over a fixed
amount of registration trials. The computation process of
an appropriate objective function value is described in
Algorithm 2, and an example objective function landscape of
a simplified two-parameter version can be seen in Figure 3.
This particular 2D simplified objective function landscape was
obtained by fixing the L2 and w* parameters, while smoothly
varying the other two parameters σL and σH (used as the x-axis
and y-axis values). The z-axis value was then set as the
registration error measure for the corresponding values of σL
and σH. The global minimum (σL= 4.83, σH= 12.14) of this
simplified objective function for a 32×32 Solar Dynamics
Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)
image can clearly be seen.
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Algorithm 2. Objective Function Used for IPC Parameter
Optimization

1. Load the appropriate input image
2. Initialize usable IPC parameters by passing their continuous optimized

counterparts through a transforming function
3. Extract subregion 1 with predefined size (e.g., 32×32)
4. (optional) Generate artificial noise with characteristics corresponding to the

input image wavelength and add it to subregion 1
5. Initialize total subpixel error as 0
6. while trials<maximum_trials do
- generate the artificial shift value, either randomly or from an equidistant grid
- extract subregion 2 with the same size as subregion 1, artificially shifted by a
known non-integer amount

- (optional) generate artificial noise with characteristics corresponding to the
input image wavelength and add it to subregion 2

- calculate the shift between subregion 1 and subregion 2 with IPC
- update the total subpixel error
end
Result: Return the average subpixel registration error

The artificial subpixel shifts used in the computation of the
objective function value can either be randomly distributed
uniformly over a given region of interest or arranged in a
predefined equidistant [x, y] grid. For non-integer (subpixel)
shifts, the artificially shifted image can be obtained with the use
of a bilinear interpolation. Artificially generated noise can also
be applied to both input images (separately generated for each
one) to simulate the presence of real noise between input
images.

3.5. Parameter Optimization for SDO Images

Concrete examples, for which the IPC parameters were
optimized in this paper, include the SDO (Pesnell et al. 2011)/
HMI images (see Schou et al. 2012), the Atmospheric Imaging
Assembly (AIA) images (see Boerner et al. 2011; Lemen et al.
2011), and the Solar Terrestrial Relations Observatory (STEREO
A/B) Sun Earth Connection Coronal and Heliospheric Invest-
igation (SECCHI) images (see Howard et al. 2008).

Standard deviations of the applied artificial noise are
calculated from dark regions in the corners of input images,
as they do not receive solar emission from the optics (being
shaded by the filter-wheel mechanism, therefore containing
noise only) as described in Lemen et al. (2011). These
measured standard deviations (denoted by σMES) can be
different for each detector, and thus are computed separately
for each wavelength. Furthermore, the raw maximum and
minimum pixel intensities also vary with wavelength, and for
every image, the histogram was stretched over the entire 16-bit
range (0–65,535) prior to being processed by IPC. Standard
deviations therefore need to be normalized equally (denoted
σN), resulting in a more accurate (relative) measure of noise in
the input image, following

( ) ( )
( )s s=

-I x y I x y

65,535

max , min ,
. 16N MES

Usable IPC parameters optimized by the differential
evolution algorithm for SDO/HMI, SDO/AIA, and STEREO
A/B SECCHI images can be seen in Table 1. The use of a
bandpass filter proved beneficial for all input image wave-
lengths. A typical subpixel accuracy improvement, obtained
with the use of the optimal IPC parameters (optimized with a
mathematical optimization algorithm, such as differential
evolution), can be seen in Figure 4, for an SDO/AIA
32×32 input image. The optimized IPC registration errors
(colored green) are visibly significantly closer to zero,
compared to the raw IPC (set by hand) registration errors
(colored blue). This illustrates the effectiveness and accuracy
improvement achieved by the parameter optimization step.

4. Results

To determine the level of improvement in accuracy of the
presented method over the standard methods, a subregion of a

Figure 3. Example of a 2D cut of the four-dimensional IPC parameter
objective function described in Algorithm 2 for a 32×32 SDO/HMI image
(see Section 3.5). The objective function is plotted for varying bandpass
parameters σL and σH with a constant IPC subregion size L2=15, and with a
Hann window applied to both input images (w* > 0).

Table 1
Optimal IPC Parameters (Described in Section 3), Found by a Differential
Evolution Algorithm, Optimizing the Objective Function Described in
Algorithm 2 with Different Types of Astronomical Input Images (See

Section 3.5), 32×32/512×512 Input Image Size

Instrument λ σL σH L2 W

SDO/HMI WL 1.2/5.4 70.3/76.2 11/19 Hann

SDO/AIA
94 Å 5.5/5.1 8.7/98.1 11/17 Hann
131 Å 4.9/5.2 9.1/92.3 11/19 Hann
171 Å 6.5/5.5 1.4/199.0 11/19 Hann
193 Å 3.8/5.4 10.1/82.9 11/19 Rect
211 Å 4.9/5.9 1.6/30.3 9/17 Rect
304 Å 5.9/5.2 4.1/95.9 11/19 Hann
335 Å 4.9/5.2 9.8/84.3 11/19 Hann

STEREO A SECCHI
171 Å 5.1/6.1 1.4/30.1 9/15 Hann
195 Å 4.8/5.2 1.9/197.1 9/19 Hann
284 Å 4.9/9.4 1.2/7.4 9/17 Hann
304 Å 5.1/6.0 1.7/32.7 9/15 Hann

STEREO B SECCHI
171 Å 4.9/5.9 1.6/35.0 9/17 Hann
195 Å 4.5/7.0 1.5/18.1 9/15 Hann
284 Å 5.1/8.0 1.1/12.8 9/17 Hann
304 Å 4.9/5.8 2.0/34.6 9/17 Hann
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sample image is manually shifted by a random (but known)
amount [ ]D Dx y,b b . The known image shift is then estimated
by the IPC method (and others for comparison). If done many
times for many different values of [ ]D Dx y,b b , this allows for
objective method performance evaluation. To also measure
subpixel accuracy, the random shift applied to the image is
chosen uniformly over an entire finite interval (this is again
done with the use of bilinear interpolation, as in Algorithm 2).
For this purpose, the chosen sample input data in this paper are
SDO/HMI and SDO/AIA images (similarly to Section 3.5),
because of their varying characteristics. For example, SDO/
HMI WL images are very homogeneous, i.e., they have no
apparent distinct features and are impossible for a human eye to
correctly align (as can be seen Figure 5). This is contrary to the
relatively feature-rich SDO/AIA images (Figure 6).

Standard methods of image registration, which the presented
method is compared to, include the cross correlation method
(CC), phase correlation (PC), and a frequently used non-
iterative subpixel version of phase correlation with the centroid
calculated on a 5× 5 rectangular window around the pixel
with maximum correlation (sPC). This version of phase
correlation is implemented in the very popular OpenCV—Open
source Computer Vision C++ library. The same bandpass filter

and spatial window settings are used for all four tested
methods.
The results show that the upscaling and iterative refinement

procedures included in the IPC algorithm significantly decrease
the bias of resulting shifts being close to an integer. This hugely
boosts the overall accuracy of the method (see Table 2). The
effect can clearly be seen in Figure 7—the shifts predicted by
the IPC algorithm (denoted Δx) are significantly closer to the
actual correct shifts (denoted Δxb), as opposed to the shifts
predicted by the frequently used sPC algorithm. This fact is
evident at first glance—the IPC registration predictions form a
very consistent line, which is very close to the perfect line
Δx=Δxb. The resulting shifts of the IPC method are
substantially more accurate for every input image size setting
(tested from 32×32 to 4096×4096), making it a good
overall replacement for standard correlation methods.

Figure 4. Subpixel errors as a function of actual shifts Δxb for IPC with
optimized parameters and IPC with parameters set by hand for a 32×32
SDO/AIA 94 Å image.

Figure 5. Example of the homogeneous input SDO/HMI white-light image
subregions I1(x, y) and ( ) ( )= + D + DI x y I x x y y, ,b b2 1 with applied Hann
window, used for the IPC method subpixel performance analysis.

Figure 6. Alignment of artificially shifted, scaled, and rotated SDO/AIA 304 Å
and 171 Å images. Top to bottom: SDO/AIA 304 Å first input image (left),
artificially misaligned SDO/AIA 171 Å second input image (right), raw first
and second image color composition (left), first and second image color
composition after the IPC alignment (right).

Table 2
Rounded Sum of 1000 Absolute Subpixel Image Registration Errors of

Different Methods for Different Input Image Sizes, SDO/HMI WL Images

Image Size CC PC sPC IPC

32×32 1165 1022 168 36
64×64 256 270 175 36
128×128 253 252 167 18
256×256 250 248 154 12
512×512 245 245 170 12
1024×1024 238 238 165 11

Note. The bold values in the final column are rounded sums of 1000 absolute
subpixel image registration errors of the optimized Iterative Phase Correlation
(IPC) method calculated with different input image sizes (from 32×32 to
1024×1024 pixels), tested on 1000 (for each image size) uniformly randomly
artificially shifted SDO/HMI WL images.
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Figure 7. Estimated shifts Δx and subpixel registration errors Δx–Δxb as a function of actual shifts Δxb for different image registration methods, different types of
input images, and different input image sizes. Top to bottom: shifts and errors between two 32×32 SDO/HMI white-light images, shifts and errors between two
32×32 SDO/AIA 171 Å images, shifts between (significantly dissimilar) 2048×2048 AIA 171 Å and 304 Å images (left), subpixel registration errors between
2048×2048 HMI white-light images (right). Example source images with applied Hann window, from which the 1000 subregions used for subpixel shift estimation
accuracy were extracted, as can be seen in Figure 5.

7

The Astrophysical Journal Supplement Series, 247:8 (8pp), 2020 March Hrazdíra, Druckmüller, & Habbal



The real shift, rotation, and scale misalignments of consecutive
SDO images (e.g., 171 and 304Å) are visible, but quite small.
However, the IPC method is very resilient even to much larger
input misalignments. It was also tested to align artificially rotated,
shifted, and scaled images, this time by much larger amounts. The
quality of the resulting alignment is indistinguishable from the
high-precision results achieved with less misaligned images. An
example of a high-precision subpixel alignment of extremely
artificially misaligned images with very different characteristics
and features (SDO/AIA 171 and 304Å) can be seen in Figure 6.
In this alignment/composition example, the red color channel is
determined only by the first image (304Å), the blue color channel
is determined only by the extremely artificially misaligned second
image (171Å), and the green color channel is set as the average
value of the two input images. This color composition channel
assignment theoretically results in a perfect black and white
composition for identical images (which is not the case in
Figure 6), which are aligned precisely.

The IPC method of image alignment is an integral part of a
workflow, which is routinely used for the creation of SDO/AIA
PM-NAFE processed videos. The archive of these videos can
be found at http://www.zam.fme.vutbr.cz/~druck/Sdo/Pm-
nafe/0-info.htm.

5. Summary

The IPC algorithm described in this paper is a powerful,
robust, and very accurate method for image registration. This
phase correlation extension is useful primarily for tasks where
small subpixel differences play a crucial role in the quality of the
result. The method was extensively tested and compared with
other algorithms for various astrophysical examples, yielding
superior results for all tested input image types and sizes, ranging
from 32×32 to 4096×4096 16-bit images. The algorithm,
implemented in C++ with an easy to use command line
interface, through which the user can specify all the IPC
parameters (described in Section 3), is available as freeware,
together with a manual and all required dependencies at https://
github.com/zdenyhraz/IPC.

The work of Z.H. and M.D. was supported by the Grant
Agency of Brno University of Technology, project No. FSI-S-
14-2290.
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