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Abstract

A nonlinear force-free field (NLFFF) extrapolation is widely used to reconstruct the three-dimensional magnetic
field in the solar corona from the observed photospheric magnetic field. However, the pressure gradient and
gravitational forces are ignored in the NLFFF model, even though the photospheric and chromospheric magnetic
fields are not in general force-free. Here we develop a magnetohydrodynamic (MHD) relaxation method that
reconstructs the solar atmospheric (chromospheric and coronal) magnetic field as a non-force-free magnetic field
(NFFF) in magnetohydrostatic equilibrium where the Lorentz, pressure gradient, and gravitational forces are
balanced. The system of basic equations for the MHD relaxation method is derived, and mathematical properties of
the system are investigated. A robust numerical solver for the system is constructed based on the modern high-
order shock capturing scheme. Two-dimensional numerical experiments that include the pressure gradient and

gravitational forces are also demonstrated.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Solar corona (1483); Solar chromosphere
(1479); Solar photosphere (1518); Solar atmosphere (1477); Solar coronal loops (1485)

1. Introduction

Information on the three-dimensional structure of the
magnetic field in the solar atmosphere (chromosphere and
corona) is essential to understand and predict various solar
phenomena. However, the atmospheric magnetic field has not
been directly measured, whereas the vector magnetic field, i.e.,
all three components of the magnetic field, on the photosphere
can be measured with high accuracy. Therefore, we must
reconstruct the solar atmospheric magnetic field from the two-
dimensional distribution of the photospheric vector magnetic
field (e.g., see review by Wiegelmann & Sakurai 2012).

Since the plasma beta is low in the solar corona (Gary 2001),
the pressure gradient and gravitational forces are negligible
compared to the Lorentz force. Therefore, a force-free field
assumption where the Lorentz force vanishes may be appropriate
for the coronal magnetic field model. In particular, a nonlinear
force-free magnetic field (NLFFF) model, where a factor of
proportionality between the magnetic field and current density
vectors is not constant, has been widely studied. Since the
NLFFF cannot be analytically solved except specific configura-
tions, various numerical methods for the NLFFF extrapolation
such as the Grad—Rubin method (e.g., Sakurai 1981; Amari et al.
2006), the optimization method (e.g., Wheatland et al. 2000;
Wiegelmann 2004), and the magnetofrictional or magnetohydro-
dynamic (MHD) relaxation method (e.g., Miki¢ & McClymont
1994; Valori et al. 2005; Inoue et al. 2014) have been proposed
so far. All these methods well reproduce analytical force-free
field models (e.g., Schrijver et al. 2006). On the other hand, the
vector magnetic fields on the photosphere and in the lower
chromosphere are not in general force-free (Metcalf et al. 1995)
because the plasma beta below the chromosphere is order of
unity or more (Gary 2001). In order to use observed non-force-
free data as the boundary condition for the NLFFF model, a
preprocessing procedure to minimize an integrated force over the
observed region is required (Wiegelmann et al. 2006; Fuhrmann
et al. 2007). The preprocessing, however, may change the

solution quantitatively or qualitatively. In fact, comparative
studies using a solar-like (Metcalf et al. 2008) or observational
data set (Schrijver et al. 2008; DeRosa et al. 2009) pointed out
that the different NLFFF extrapolation methods with/without the
preprocessing produce different magnetic field geometries and
different free energies.

The preprocessing corresponds to an adjustive modeling of
the photosphere-to-chromosphere as the bottom boundary of
the NLFFF. In contrast, a magnetohydrostatic (MHS) equili-
brium model enables us to use a non-force-free magnetic field
on the photosphere directly as the boundary condition because
the magnetic field in MHS equilibrium does not have to be
force-free. Although general solutions for the MHS equilibrium
cannot be obtained, a special class of what are called linear
MHS solutions can be solved by an ansatz that the electric
current consists of both a linear force-free current and
horizontal non-force-free current (Low 1991). This linear
MHS model was applied to a quiet-Sun region (Wiegelmann
et al. 2015) and an active-Sun region (Wiegelmann et al. 2017).
On the other hand, in order to solve general nonlinear MHS
solutions, it is necessary to develop a more advanced numerical
method. The Grad—Rubin method has been applied to solve the
MHS equations without (Gilchrist & Wheatland 2013) and
with the gravitational force (Gilchrist et al. 2016). The
optimization method has also been extended for the system
without (Wiegelmann & Neukirch 2006) and with the gravity
(Zhu & Wiegelmann 2018). In these methods except the one by
Zhu & Wiegelmann (2018), the pressure on the photosphere is
imposed as the boundary condition. The magnetofrictional
method was proposed to compute the three-dimensional
equilibrium in a torus geometry including the pressure gradient
force (Chodura & Schliiter 1981). Furthermore, the MHD
relaxation method that solves the full compressible MHD
equations has been developed (Zhu et al. 2013). The validity
has been examined in comparison with an MHD simulation of
an emerging flux (Zhu et al. 2013) and H, fibrils in the
chromosphere (Zhu et al. 2016). The density as well as the
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pressure at the bottom boundary is fixed by the values on the
photosphere in this method.

In this paper, we propose a new MHD relaxation method for
a non-force-free magnetic field (NFFF) in the MHS equilibrium
including the pressure gradient and gravitational forces, where
properly reduced compressible MHD equations are dynami-
cally solved as a function of a virtual time ¢. In the previous
MHD relaxation method (Zhu et al. 2013, 2016), the
temperature distribution in the solar atmosphere is calculated
as a result of the full compressible MHD simulation. On the
other hand, in the present method, the vertical profile of
temperature is given beforehand. Moreover, the previous
method requires both the density and pressure values on the
photosphere in addition to the vector magnetic field, while this
method imposes only the vector magnetic field as the physical
boundary condition. In Section 2, the MHS -equilibrium
problem to be solved in this method is prescribed. The basic
equations and their mathematical properties are addressed in
Section 3. In addition, a robust numerical scheme for the
equations is presented. Simple numerical experiments are
performed and discussed in Section 4. Finally, in Section 5,
concluding remarks are presented.

2. MHS Equilibrium
Consider a dimensionless MHS equilibrium:
(VX B) xB — Vp — pge: =0, ey

where B, p, p, g, and e, are the magnetic field, pressure,
density, gravitational acceleration, and unit vector in z
direction, respectively. This indicates that the Lorentz force
in the MHS equilibrium does not vanish in general since it can
balance both the pressure gradient and gravitational forces. We
subtract a background hydrostatic field, po and py, from (1), and
obtain

(VxB)xB—Vp — pge, =0, )
where
3170
- = =0. 3
Py Po8 (3)

The components deviated from the hydrostatic equilibrium are
respectively

P=p—py@, P=p— py2, “)

which are termed “pressure deviation” and “density deviation.”
Note that these deviations are not necessarily small.

Here we assume that the temperature profile in the solar
atmosphere depends only on the height z and coincides with the
one determined by the background hydrostatic field as

T(7) = Po(2) _ E_ 5)
Po(2) P
Hence,
- P
= —. 6
P=7 @ (6)
Substituting (6) into (2) yields
(VxB)xB—-Vp — ~e7:0, @)

H(z)
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where the scale height H(z) is defined by
T
HE) = % ®)

Consequently, the task to be addressed in this paper is to solve
the MHS equilibrium field (7) with the boundary condition as

B(x7y$Z:O):Bph’ (9)

where By, is the vector magnetic field on the photosphere. The
background fields are not required under the assumption of (5).
Meanwhile, the profile of H(z) is given beforehand in our
model. This is one of the reasonable and efficient approaches
because the three-dimensional temperature distribution in the
solar atmosphere has not been solved consistent with the
magnetic field distribution yet.

Note that Gilchrist et al. (2016) have adopted a similar
approach: The density and pressure are decomposed into the
background components and their deviations, respectively. The
scale height is given beforehand as a function of the position,
not only of z. Their approach is more general since a different
scale height can be considered in a quiet or an active region.
However, it is difficult to know the exact scale height in
advance because the three-dimensional distribution of the
magnetic field must also be determined consistently. Therefore,
in the present MHS equilibrium (7), the scale height is simply
given as in (8), as a function of z using typical or average
values in the active region.

3. MHD Relaxation Method for the NFFF

3.1. Basic Equations

In the relaxation method for the NFFF model, as for the
NLFFF model, the induction equation for the magnetic field is
numerically solved until a quasi-static state is reached. The
basic equations of our method are given as follows:

ov - b
— =(VxB) xB-Vp——¢ —vV 10
o ( ) P H(Z)ez v (10)
86—B:V><(V><B—77V><B) (11)
t
@z—cﬂv-v, (12)
ot

where V, v, n, and a are the fluid velocity, friction coefficient,
resistivity, and a “pseudo-speed of sound,” respectively. The
Equation (10) indicates that the fluid is accelerated not only
by the Lorentz force, but also the pressure gradient and
gravitational forces, and decelerated by the friction that
increases with the velocity. The magnetic field is evolved in
time according to the induction Equation (11) including the
motion-induced and resistive electric fields. In addition, the
time evolution of the pressure deviation is taken into
consideration. Since a physically correct time evolution of
the pressure is not necessary in our method, we propose a
simple evolution equation for the pressure deviation as in (12).
The pseudo-speed of sound a is not a physical value but a
numerical one which should be determined by numerical
experiments, and is given by an arbitrary constant in this paper.
Here we insist that § can be negative as the absolute value of
the pressure does not appear in this system of equations.
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Finally, we expect that the MHS equilibrium (7) is obtained
since V may approach to 0 due to the friction in (10). Note that
the basic equations of our method result in the equations for the
NLFFF model if p is set to 0.

3.1.1. Magnetic Field-aligned Dynamics

We consider here the magnetic field-aligned dynamics in the
case that H(z) — oo. Since the Lorentz force vanishes along
the magnetic field, (10) and (12) are combined into

Op + u@ —a® op

9P — o, 13
or? Ot (13)

onf

or
2 oV av, 2 [0V
o (M), oM _02_82_” -0, (14)
or? 8xH ot 8XH (r“)x” 8)(”
where x and V| show the coordinate and velocity along a
magnetic field line. The Equation (13) or (14) is the so-called
telegraph equation which consists of a wave equation and a
diffusion equation. Thus, bumps of j or 9V|/0x| propagate
almost at the speed a and diffuse almost at a* /v. Consequently,
in the region that the scale height is large, the pressure

deviation evolves so as to be uniform along the magnetic
field line.

3.1.2. Gravitational Stability

A thermal-fluid system, in general, can be unstable to
thermal convection if the gravitational effect is taken into
consideration. In order for the solution of the system from (10)
to (12) to converge to the static state, the system must be
gravitationally stable.

We consider here the case that B = 0. In this case, the
system becomes linear. If periodicity in all directions and a
constant H are assumed for simplicity, we obtain the following
dispersion relation:

2
W+ iu)z(wz +inw — a?k? z%) =0, (15)

where w and k denote the frequency and wavenumber. This
leads to a sufficient condition for the stability as

a
> —. 16
V> (16)

See Appendix A for details. Since a line-tied magnetic field is
expected to further stabilize the system, the condition (16) is
sufficient to stabilize the system with the boundary condi-
tion (9).

3.2. Numerical Methods

A numerical solver for the system from (10) to (12) may be
constructed such that the second and third terms of the right-
hand side of (10) and the Equation (12) are simply discretized
and added to an existing well-optimized code for the NLFFF.
Here, however, we propose numerical methods that are suitable
for our entire system.
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Photosphere

® » O [»

Figure 1. Schematic diagram of the grid structure around the photospheric
boundary. The open circle shows the representative point of a cell just inside
the boundary (termed as I), whereas the filled circles are the points of ghost
cells (termed as G). The time evolution of the conservative variables in the cell
I is determined by the numerical fluxes at the open and filled triangles. The
variables or fluxes at the filled marks cannot be treated in the same manner as
those inside the domain.

We rewrite the basic Equations (10) to (12) in the
conservative form as

%—lt]+V-F:S, (17)
~ B?
v (p+7)I—BB
B
2y
’ll) a
Cth

where I is the unit tensor, and

-V
-V x (nV x B)
S = 0 . (19)
_a
6‘2
»
Here we introduce an additional scalar field v proposed by
Dedner et al. (2002) in order to maintain the divergence-free
condition for the magnetic field. The temporal evolution of
and V - B obeys the telegraph equation, where propagation and
diffusion speeds are controlled by constants ¢, and c,. Thus,
V - B is kept as small as possible.

We solve the system of conservation laws (17) using the
finite volume approach. Although simple -centered-finite
differences may be applicable, a tuned-artificial viscosity must
be required for the numerical stability particularly in using
complicated real data. Therefore, since the system is hyperbolic
(see Appendix B), we construct an upwind-type scheme in
which an appropriate numerical viscosity is automatically
added. The numerical fluxes for (17) are evaluated as in
Appendix C. Moreover, in order to achieve high-order
accuracy, third-order MUSCL (Koren 1993) and third-order
SSP Runge—Kutta methods (Gottlieb et al. 2001) are applied.
Note that the present solver which is robust can be applied to
the NLFFF reconstruction.

We must define the numerical fluxes at the domain boundary
because the boundary lies on a surface of a control volume, i.e.,
a cell face, in our approach as shown in Figure 1. Since the
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Figure 2. Distribution of the magnetic field and the pressure deviation for H(z) — oo. (Left) The lines represent contour lines for the magnetic flux-like function
W(x, z) = — fo ! B.(x', 0)dx" + fo ‘ B, (x, z')dz’'. When the divergence-free condition of the magnetic field is satisfied, ¥ completely corresponds to the magnetic flux
function. Thus, the solid and dashed lines indicate the magnetic field lines connected to and detached from the bottom boundary, respectively. The color indicates the

out-of-plane magnetic field, By. (Right) The color indicates the pressure deviation.

vector magnetic field on the photosphere is given, all three
components of the magnetic field in the numerical fluxes at the
boundary as By, in (50) are fixed by (9). Moreover, two layers of
ghost cells, i.e., the filled circles in Figure 1, are added outside
the domain in order to compute the other variables for
evaluating the numerical fluxes at the boundary, i.e., the filled
triangle in Figure 1. The magnetic field in the ghost cells, Bg,
below the photosphere is fixed as a function of x and y as in (9).
On the other hand, the pressure deviation in the photosphere
cannot be measured with the same degree of accuracy as the
magnetic field. Therefore, the pressure deviation in the ghost
cells, p;, should be given numerically, not observationally.
One approach is that the pressure deviation is determined from
the horizontal force balance in the ghost cells as adopted by
Zhu & Wiegelmann (2018). Another approach is that f is
extrapolated from the physical values in the domain. Here we
propose approximate outgoing characteristics at the bottom
boundary,

dw = dp; — dV,ya* + B2,

where pp = p + B2/2. If we set B = By, V.c =0, and
assume wg = wj, where the subscript / is the index corresp-
onding to the cell just inside the boundary, we obtain

ﬁG :ﬁl — ‘/Z]daz +B§h

Note that positive (negative) V;; leads to a decrease (increase)
in the pressure deviation. The top and lateral boundaries should
be positioned far enough away from an active region in general.
Then, for example, we assume a conducting wall, or apply
some extrapolation techniques. The boundary conditions
adopted in this paper are summarized in Appendix D. Although
other extrapolation techniques are worth investigating, those
should be examined using real data and are beyond the scope of
the present study.

(20)

ey

4. Numerical Experiments

We demonstrate two-dimensional numerical experiments to
investigate not only numerical stability but also the dependence
of H(z) which controls the gravitational effect, in particular.

The vector magnetic field on the photosphere, B(x, z = 0),
is given by

{&OJgh@L&Lu)bﬂﬂgw

22
otherwise (22)

B,=B,=B, =0
unless otherwise stated, where J, are «-th order Bessel
functions of the first kind and r;, is the first zero-point of Jy,
i.e., Jo(rp) = 0. The test problems are not so easy from the
numerical stability point of view because B, on the photosphere
is discontinuous at r,. The pressure deviation at the boundary is
calculated by (21). The initial magnetic field is given by the
potential field which satisfies the boundary condition of B,. The
other initial conditions are set to zero as |[V| =p =¥ = 0.
The dimensions of the computational domain are —5 < x < 5
and 0 < z < 10 in the x- and z-directions, respectively. The
grid numbers are N, = 200 and N, = 200 in each direction.
Number of iterations is fixed to 500,000 in all tests. The
parameters to control the time evolution of the system are given
by specific values as a = 0.4 and v = a/H(0) except the case
H — o0 in this paper. The resistivity 7 is set to 0.

4.1. Case H(z) — o0

First, we take notice only of the pressure gradient force. The
gravitational effect in (10) is eliminated if H(z) becomes
infinite. The friction coefficient v in this case is given by 0.1a.

One of the exact solutions is that a semicylindrical force-free
magnetic field, (B, By, By) = (0, Jo(r), Ji(r)), is confined by
the surrounding pressure. Figure 2 shows the distribution of the
magnetic field and the pressure deviation reconstructed by the
present method without the gravity. The initial potential
magnetic field spontaneously develops into a semicylindrical
magnetic field in which the pressure deviation is almost
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Figure 3. Same as Figure 2, but for the NLFFF.

constant. The semicylindrical configuration itself is supported
by the external pressure. Note here that the pressure deviation
becomes negative inside the magnetic loop since the pressure
gradient force is not dependent on the absolute value of the
pressure. Thus, a Bessel function-like configuration is well
reproduced.

The present method results in the relaxation method for
the NLFFF model if forcing the pressure deviation to zero.
Thus, the NLFFF model is also computed for comparison.
The distribution of the magnetic field is shown in Figure 3. The
lower magnetic loop expands due to force imbalance at the
bottom boundary, while the upper loop seems to be suppressed
by a detached magnetic field. Here we notice that the detached
magnetic field lines seem to penetrate the upper boundary
incorrectly. It suggests that the NLFFF model with the NFFF
boundary condition (22) does not satisfy the divergence-free
condition with high accuracy.

Figure 4 shows the residual force, i.e., the first and second
terms of the right-hand side of (10), as a function of iteration
number. Both the mean and maximum values of the residual
force for the NLFFF model are larger than one order of
magnitude compared with those for the NFFF model. The
increase in the residual force for the NLFFF model is expected
to be due to the significant violation of the divergence-free
condition near the bottom boundary.

We also perform the test without the out-of-plane magnetic
field B, at the bottom boundary instead of B, = Jo(x) in (22).
Since even the magnetic field at the boundary is completely not
force-free in this case, an equilibrium distribution far away
from force-free is expected. Figure 5 reveals that a semicircular
magnetic field distribution similar to the poloidal field
distribution in Figure 2 is reconstructed, while the pressure
deviation is automatically developed so as to balance the
inward Lorentz force instead of the magnetic pressure due to
B,. Conversely, the solution of the NLFFF model does not
converge in this situation.

4.2. Case H(z) = Const.

When H(z) is a sufficiently large constant as 100, a
semicylindrical magnetic field distribution quite similar to that
in Figure 2 is obtained. However, if H(z) becomes almost the
same or smaller in size as an active region, the gravitational
effect should be clearly seen. Figure 6 shows the results for the

10 1.00
— 0.50
5 1 — 0.00
-0.50
0 - -1.00
-5 0 5
0.1 100
—— ave. residual force for NFFF
—— ave. residual force for NLFFF
max. residual force for NFFF
—— max. residual force for NLFFF
0.01 A F 10
0.001 o F o1
0.0001 T T T T 0.1
1x10° 2x105 3x10° 4x10° 5x10%

Figure 4. Residual force as a function of iteration number. The left vertical axis
represents the mean of the residual force, and the right vertical axis represents
the maximum value of the residual force. The bluish, reddish, yellowish, and
greenish lines correspond to the mean for the NFFF, for the NLFFF, the
maximum value for the NFFF, and for the NLFFF, respectively.

case H(z) = 3. The gravitational stratification leads to the
pressure deviation decreasing as the height increases. Accord-
ingly, the magnetic loop is elongated upward because the
pressure gradient force that suppresses expansion of the outer
magnetic loop becomes weak. Since the magnetic pressure
greatly exceeds the pressure deviation at above the scale height,
the reconstructed magnetic field gradually approaches the
force-free field. Such a configuration will never be realized in
the NLFFF model.

4.3. Case H(z) = Const.
Here we adopt the following scale height profile:

H(z) = Hy, + %(HCO - th)[l + tanh(z_—ZCh)], (23)
w

where Hpy, Heo, Zch, and w correspond to the scale height on
the photosphere, that in the corona, the thickness of the
chromosphere, and the width of the transition layer from the
chromosphere to the corona, respectively. The parameters are
fixed as Hp, = 3, Heo = 100, and w = 0.2.

Figure 7 shows the results for (23) with Z,, = 1. The
magnetic field distribution apparently resembles that for
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Figure 5. Same as Figure 2, but for By, = 0 at the bottom boundary.
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Figure 6. Same as Figure 2, but for H(z) = 3.
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Figure 7. Same as Figure 2, but H(z) is defined by (23) with Z, = 1.

Figure 2. The pressure deviation decreases as the height
increases by z =~ 1, whereas the pressure deviation at z > 1,
i.e., the corona in this model, does not decrease significantly
because H(z) becomes large as 100. Therefore, the coronal

magnetic field does not converge to the force-free field since
the magnetic field in the lower corona is not force-free. On the
other hand, when Z, = 4, which is larger than the scale height
in the chromosphere, the pressure deviation decreases
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Figure 8. Same as Figure 2, but H(7) is defined by (23) with Z, = 4.

sufficiently in the chromosphere as in Figure 8. Thus, the
distribution of the magnetic field as well as the pressure
deviation are similar to Figure 6.

The results of the present preliminary tests suggest that
small-scale magnetic fields are strongly affected by the plasma
pressure and/or the gravity.

5. Summary

A new MHD relaxation method for the NFFF where the
Lorentz force balances the pressure gradient and gravitational
forces has been proposed in this paper. In particular, assuming
that a temperature profile in the solar atmosphere is given
beforehand and depends only on the height z, the MHD
equilibrium problem is reduced to solving the magnetic field
and pressure deviation for a given scale height H(z). Therefore,
the basic Equations (10) to (12) are proposed, where the
pseudo-speed of sound that is not physical but numerical is
employed in the evolution equation for the pressure deviation.
Note here that the pressure deviation can be negative although
the pressure should remain positive. The background pressure,
which is determined independently of our model, must be
given so that the total plasma pressure is positive. In the region
of large H(z), the pressure deviation tends to be uniform along
the magnetic field according to the telegraph equation. A
sufficient condition for gravitational stability of the system is
also derived.

The basic equations are solved imposing only the vector
magnetic field on the photosphere, where a robust high-
resolution shock capturing scheme can be applied. In order to
confirm the effectiveness of our method and show the
difference from the NLFFF extrapolation, we particularly
performed two-dimensional numerical experiments. The magn-
etic flux loops were able to be confined with a finite area due to
the pressure gradient force in the NFFF model though those
expanded to the whole domain in the NLFFF model. Some
demonstrations including the gravitational effect were also
carried out in this paper.

The critical assumption of the present model is that the
temperature distribution is given as a function only of z. The
realistic temperature distribution in the solar atmosphere,
however, is not plane parallel but more complicated. When
applying the present method to real data, it is necessary to

utilize a typical or an average vertical temperature profile in the
active region. Moreover, since real data is dynamic and not
completely MHS equilibrium, some sort of preprocessing for
the photospheric vector magnetic field as in the NLFFF model
(Wiegelmann et al. 2006; Fuhrmann et al. 2007) may be
needed. Thus, hereafter, we need further experiments that
three-dimensional magnetic fields are reconstructed using the
linear MHS model (Low 1991; Zhu & Wiegelmann 2018) or
observational data set, in which the temperature must be a
three-dimensional distribution. A comparative study with a
time-dependent MHD simulation is also worthwhile. We
investigate, through the experiments, the applicability and
extension of the present method whose temperature depends
only on z. These are currently being studied and will be
reported in our future papers.

This work was supported by MEXT/JSPS KAKENHI grant
Nos. JP15K04756 (T.M.), 15H05812 and JP15H05814 (K.K.).

Appendix A
Stability Condition

Consider here a nonmagnetic system, i.e., a pure hydro-
dynamic system. We assume periodic boundaries in all
directions and a constant scale height H for simplicity. Since
the system becomes linear for the nonmagnetic system, the
time evolution of Fourier modes as

[‘:]exp(—iwt + ik - 1), (24)
p

where k is the wave vector and w is the complex frequency, can
be exactly solved. Substituting (24) into (10) with B = 0 and
(12), we obtain the following homogeneous linear system:

w+iv 0 0 —ky v,
0 w+ v 0 —ky A}

. . 21=0. (25
0 0 w+iv —k,+i/H v,
—a’k, —a*k, —d’k, w 3

This system has nontrivial solutions if the determinant of the
coefficient matrix is zero. Thus, we obtain the dispersion
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relation (15) and rewrite it as
a’k,
(w+ iy)z(w2 + ivw — a%k? + 17) =0. (26)

The solutions of (26) are

w=—iv, 227
and
N4

w=—iz + /¢, (28)

where

2 2k

a2 - 4 29
§ 2 7 (29)

The stability of the system is determined by the imaginary
part of w. The amplitudes of the Fourier modes (24)
exponentially grow in time if Im(w) > 0, while those
exponentially decay in time if Im(w) < 0. Since Im(w) of
(27) is always negative for v > 0, the modes are stable. On the
other hand, Im(w) of (28) as

() = ~% /@ (30)

are always negative when the condition
V2
5 1€ — Re (&) (B

is satisfied. The stability condition (31) leads to

_ alk
H IK]

(32)

after some manipulations. Thus, the sufficient condition for the
stability of the system is given by

a
v>— 33
7 (33)

for any wave vectors. The system is expected to be more stable
when wall boundaries are considered.

Appendix B
Eigenvalues

Consider the one-dimensional system of the Equation (17)
without the source terms as

_ - [ B2 2 2]

v S

Vy —B,B,

V,
I R I o0, (34)
ot | By X ViB, — B.Y,

liz Vsz - Bsz

_p i aZVX
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where B, is constant due to the divergence-free condition for
the magnetic field. The Jacobian A of (34) is given by

[0 0o o0 B, B 1
0 0 0 —-B, 0 0
0 0 0 0 -B 0
A= , —B, 0 V., 0 O0f (35
BZ 0 *Bx 0 Vx O
(a2 0 0 0 0 0]

The eigenvalues \ of A satisfy the following characteristic
equation:

AN = V) = BIHX — V. ¥
— (B> + @)X + V,a@’\ + B}a*} = 0. (36)
where B? = B? + By2 + B2. Two of the roots of (36) are
V, £ V> + 4B?
A= 5 . 37)

These correspond to the Alfvén waves. The other four roots are
obtained from

M- V¥ — B2+ a) X+ Vid®X + B?a2=0.  (38)
If V., = 0, then (38) gives

B2 2:|: BZ 2274344
)\:i\/ @B+ ) 2l (39)

2
Moreover, if By = B, = 0,
Ve + V2 + 4B?
A= 5 , A= *a. (40)
Therefore, the roots of (38) indicate the magnetosonic waves.
Since the eigenvalues are real, the system (34) is hyperbolic.

Appendix C
Upwind-type Scheme

Consider first the one-dimensional system of (34) as in
Appendix B. Since the system is hyperbolic, an upwind-type
numerical scheme enables us to realize robust computation.
However, construction of Godunov’s scheme or Roe’s scheme
for the system is neither so easy nor necessary. Therefore, a
simple numerical scheme is developed here, where numerical
fluxes at a cell interface are evaluated using approximate
systems of equations instead of (34). We split the system
of (34) into compressible (OV,/0x = 0) and incompressible
(0V,/0x = 0) systems as follows: The compressible system is
given by

2| Vi 0 Lof W
— . — . =0, 41
8t[pu] * [a2 + B} O] ax[pu] “h)

where Bf = By2 + BZ2 and pr,. =p + Bf /2. The incompres-
sible systems are given by

o[V o -B]a[v
— + =] | = 0, 42
ot [By] [_Bx Vi ] Ox |:By:| (42)

o[V, o -BJo[v]
b A v Y R
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respectively. Thus, the magnetosonic waves and the planar
Alfvén waves are decoupled. We readily derive the upwind-
biased values at the cell interface, denoted by 4, from (41) as

VR 4 yE 1
Vie £ X (P —prh). (44)
’ 2 2Ja? + B?
5R 4+ 5L a? + B?
ﬁTli:pTi_;pTL B . L(VXR—VXL), 5)

where the superscripts R and L indicate the right and left states
at the interface. Here B is given by max (BR2, BE?) because
B is not determined self-consistently. From (42),

VR 4 vt
yh=22 >y Vi (VK — Vi)
' 2 2\V2+ 4B
B,
+ ——=——(BF - BY), (46)
VVi + 4B]
BF + BF
B){’L — Yy y + BX (VyR _ VyL)
2 VVi + 4B;
Vi R L
— ———=(B; — B,"), 47)
2 V2 ragr T
and from (43),
vR 4 vt v,
Vh — Z Z + X (VR o VL)
) 2 22 ragr C
B gr_BY, (48)
VVi + 4B]
BR + B B
Bh _ Tz z + x V,R o VL
) 2 JV2 + 4B REE
Va BX - BhH (49)

N

are obtained using the method of characteristics. Here V. is
replaced by (44). Hence, using (44) to (49), the numerical
fluxes of (34) can be evaluated as

S
Pri—

—B.B)
—B,B!
VI!B! — BV} .
V!Bl — B V!

a*vh

(50)

In order to extend to multidimensions, the divergence-free
constraint of the magnetic field must be maintained numeri-
cally. Although variants of the Constrained-Transport method
(e.g., T6th 2000; Minoshima et al. 2019) where the divergence-
free constraint is exactly preserved can be applied, here we
adopt the hyperbolic divergence cleaning method (Dedner et al.
2002). Introduce a new scalar field ¢ that corrects the magnetic
field, and consider the time evolution of the numerical
divergence of the magnetic field. In order to reduce the

Miyoshi, Kusano, & Inoue

divergence of the magnetic field 0B, /0x,

0| B, 0 1]0|B,

81[1,/1] [c,% O]ax[w] G
are solved in addition to (34). The upwind-biased values at the
interface are evaluated as

R L
B — # _ %We — gty (52)
h
R L
W= % _ %(Bf — Bh. (53)

Constant B, in the numerical fluxes of (50) is replaced by (52).
Appendix D
Boundary Conditions

At the bottom boundary that corresponds to the photosphere,
the following conditions in the ghost cell are applied:

B = Bph’

Vo =0,

. N (54)
P =P — VZ“/az + Bsh’

Y6 =0,

where the subscripts G and [ are the indices corresponding

to the ghost cell and the cell just inside the boundary,

respectively. The unphysical scalar field i correcting the

magnetic field is fixed in time because of numerical stability.
At the top and lateral boundaries,

B; =0,

Vig = Var + B /a,

Vi =0, (55)
b =0,

Y6 = Yy + cpBny

are imposed in the numerical experiments. Here n and ¢ indicate
the normal and tangential components, in which the normal vector
points outward from the domain. Assuming that j; and an
approximate characteristics as dp + dV,a are zero, Vg is
calculated. Unlike at the bottom boundary, s is extrapolated
from the inner quantities though the condition for 1 does not
affect the results much.
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