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Abstract

We present a simple and effective multigrid-based Poisson solver of second-order accuracy in both gravitational
potential and forces in terms of the one, two, and infinity norms. The method is especially suitable for numerical
simulations using nested mesh refinement. The Poisson equation is solved from coarse to fine levels using a one-
way interface scheme. We introduce antisymmetrically linear interpolation for evaluating the boundary conditions
across the multigrid hierarchy. The spurious forces commonly observed at the interfaces between refinement levels
are effectively suppressed. We validate the method using two- and three-dimensional density-force pairs that are
sufficiently smooth for probing the order of accuracy.

Unified Astronomy Thesaurus concepts: Gravitation (661); Computational methods (1965)

1. Introduction

Self-gravitational forces are responsible for the formation
of objects and structures at all scales in the universe. The
calculation of self-gravity is usually associated with the Poisson
equation:

p r F = G4 , 12 ( )

where Φ is the gravitational potential, G the gravitational
constant, and ρ the volume density. Once the potential, Φ, is
solved, the self-gravitational forces are then obtained through a
relation F=−∇Φ. However, given a density distribution,
solving the Poisson equation is not an obvious task due to the
long-range nature of gravitational forces.

Studying structure formations, such as galaxy formation, star
formation, planet formation, etc., usually involves complicated
physics working at different dynamical scales. For a grid-based
hydrodynamic/magnetohydrodynamic (HD/MHD) code, the
technique of mesh refinement is usually among the development
list for addressing multiscale problems. Although numerical
schemes of high-order accuracy have been well developed for
hyperbolic systems within the framework of mesh refinement
(Berger & Oliger 1984; Berger & Colella 1989; Quirk 1991; De
Zeeuw & Powell 1993), a Poisson solver of compatible accuracy
is still under development.

Multigrid methods have a long and fruitful history. The
methods employ a multiscale hierarchical mesh structure with
decreasing spatial resolution to efficiently damp the errors at
large and small scales. The theory behind the methods is
mathematically well developed. For interested readers, we refer
to the books by Wesseling (2004) and Briggs et al. (2000).
Relaxation methods accelerated by multigrid techniques have
been successfully applied for solving the Poisson equation in
computational astrophysics. This combination makes a multi-
grid relaxation method easy to implement and yet enjoy a linear
computational complexity. It is also relatively straightforward
to deploy the methods on massively parallelized computing
resources, i.e., computer/GPU clusters (Schive et al. 2018).

Ricker (2008) developed an improved multigrid Poisson solver
for patch-based adaptive meshes based on the work of Huang &
Greengard (2000). The accuracy of this method degrades around

the zones adjacent to the interfaces between levels. When the
calculation domain is partially refined, the potential calculated in
this way loses the desirable second-order accuracy in terms of the
L2 error norm. The accuracy of the corresponding gravitational
forces, which are derived from the gradient of the potential, cannot
be better than the potential. Guillet & Teyssier (2011) proposed a
simpler but improved multigrid scheme for solving the Poisson
equation with arbitrary domain boundaries (see also Gibou et al.
2002). Although their calculated potential can reach second-order
accuracy in terms of the ¥L error norm in the context of adaptive
mesh refinement (AMR), the corresponding forces are still
suffering spurious forces at interfaces between levels. This then
degrades the accuracy of the calculated forces to the first-order
accuracy in terms of the ¥L error norm.
It is desirable to reduce the spurious forces at fine–coarse

interfaces as much as possible to avoid the accumulating effects
such as deflection or artificial “heating” when particles/fluids
are passing through a jump in spatial resolution. It is also
important to reduce the effects of impacts of “squareness” due
to the use of Cartesian coordinates. Based on those previous
efforts, in this work, we further improve the multigrid method
for the Poisson equation applicable to nested mesh refinements.
By comparing the numerical results with analytic solutions, we
demonstrate the proposed method is of second-order accuracy
in gravitational forces in terms of the ¥L error norm. That is,
the spurious forces near coarse–fine interfaces are largely
suppressed.
The paper is organized as follows. In Section 2, we detail the

algorithm of the improved multigrid method. In Section 3, we
implement the proposed algorithm and conduct numerical tests
for two- and three-dimensional problems. The numerical results
are compared with analytic solutions to validate the method.
We conclude this work with a brief summary and discussions
in Section 4.

2. A Multigrid Algorithm for Nested Mesh Refinement

We follow the multigrid procedure described in Guillet &
Teyssier (2011), except for the treatment on the ghost zones
surrounding refined levels and across the multigrid hierarchy.
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For completeness, we detail the entire numerical procedure in
the following subsections.

2.1. The Structure of Nested Mesh Refinement

We restrict the discussion to Cartesian coordinates and
describe a numerical computational domain using Ω0=[ωL,
ωR]×[ωF, ωB] for two-dimensional problems and [ωL, ωR]
×[ωF, ωB]×[ωD, ωT] for three-dimensional problems, where
the superscript 0 is used to denote the base (coarsest) level of

nested mesh. The domain of the refined mesh of level ℓ, Ωℓ,
should satisfy

W Ì W - ,ℓ ℓ 1

for =ℓ ℓ1, 2 ,..., max, where ℓmax is a positive integer represent-
ing the highest (finest) level of mesh refinement. A simple
nested mesh hierarchy between two successive levels is shown
in Figure 1(a).
The calculation domain of a refined patch of level ℓ is

enclosed by the thick black rectangle and denoted as Ωℓ, while

Figure 1. (a) Two-dimensional representation of a refined region (Ωℓ) of level ℓ enclosed by the black rectangle. The domain of a coarse level ℓ − 1 enclosed by the
blue rectangle is denoted as Ωℓ−1. A refined level should completely lie within the domain of a coarse level and the ratio of cell size between a coarse and a refined
levels is fixed at two. (b) This refined domain Ωℓ is surrounded by a buffer layer of two-cell size denoted as Wb

ℓ (the green region). (c) The density values (denoted by
circles) in the inner layer ofWb

ℓ are linearly interpolated from the associated coarse region in Ωℓ−1. The potential values (denoted by crosses) in the outer layer ofWb
ℓ are

obtained by linear interpolation from the associated coarse region in Ωℓ−1. We apply the multigrid method to solve for the potential of the gray shaded region enclosed
by the red border denoted as Γℓ. (d) A one-dimensional representation of the mesh structure used for the multigrid method. In this figure, we use capital L to denote the
level hierarchy of the multigrid algorithm. The values in the L=0 level are taken directly from the blue shaded region in (c). The width of the red border is
normalized to [0, 1]. Except for the level L=0, the correction potential values at the Γℓ are set to zero for levels L>0 in the relaxation process. The boundary values
(denoted as triangles) for the multigrid levels L>0 are calculated by a linear extrapolation process detailed in Section 2.4.
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the domain of the coarse level ℓ− 1 is enclosed by the thick blue
rectangle and denoted as Ωℓ−1. Each calculation domain is
uniformly subdivided into cells, with Δx ℓ=(ωR−ωL)/2

ℓ,
Δy ℓ=(ωB−ωF)/2

ℓ, and Δz ℓ=(ωT−ωD)/2
ℓ being the cell

sizes of the refined level ℓ in the x, y, and z directions,
respectively. Hereafter, we further assume Δx ℓ=Δy ℓ=Δz ℓ

so that each cell is a square (2D) or a cube (3D). The ratio of cell
size between levels Ωℓ−1 and Ωℓ is 2, i.e., Δx ℓ−1/Δx ℓ=2,
Δy ℓ−1/Δy ℓ=2, and Δz ℓ−1/Δz ℓ=2. A patch of level ℓ is
entirely immersed in a coarse patch of level ℓ− 1, i.e., the level
difference between patches shall be no larger than 1. Within each
calculation domain, the discretized density distribution is given
at the cell centers.

For simplicity, we solve the Poisson equation on a level-by-
level basis, from a level ℓ− 1 to a level ℓ, based on the so-
called one-way scheme. That is, we solve the gravitational
potential for the level ℓ− 1 first, and the result is used to
interpolate the Dirichlet boundary values required for the
refined level ℓ. The green layer shown in Figure 1(b) represents
the buffer zone, denoted as Ωℓ

b, surrounding the patch Ωℓ. The
domain Ωℓ∪Ωℓ

b then forms the calculation domain where we
apply the multigrid method as shown in Figure 1(c). The buffer
zone, Wb

ℓ , consists of two layers of cells belonging to level ℓ. In
the inner layer (marked by circles), the density at the cell
centers is linearly interpolated from the coarse level ℓ− 1. In
the outer layer (marked by crosses), the potential at the cell
centers is linearly interpolated from the coarse level ℓ− 1 as
well. The objective is to evaluate the self-gravitational potential
for the gray region, i.e., Ωℓ+ the first layer of the buffer zone,
and obtain the self-gravitational forces in the x direction at the
cell centers of Ωℓ using the fourth-order finite difference:

¶ F =
F - F

D
-

F - F
D

+ D+ - + - 
x x

x
4

3 2

1

3 4
,

2

x
ℓ i

ℓ
i
ℓ

ℓ
i
ℓ

i
ℓ

ℓ
ℓ1 1 2 2 4(( ) )

( )

where we have used the subscript i to index the cell centers in
the x direction, and will use indices j, k for the y, z directions in
the following discussion. The evaluation of Equation (2)
involves information from the five nearest points in the
direction of interest and this requirement sets the thickness of
the buffer zones.

2.2. Build a Multi-resolution Hierarchy for a Multigrid Method

We have now set the stage for applying the multigrid method to
a patch as defined in Figure 1(c) for a level ℓ. A multigrid method
utilizes a set of multi-resolution mesh hierarchy to efficiently
damp errors of large and small wavenumbers. Given the finest
multigrid level, i.e., a patch of a refined level shown in
Figure 1(c), the multigrid mesh hierarchy in the x direction is
shown in Figure 1(d), where the bottom-most one-dimensional
mesh corresponds to the blue shaded region in Figure 1(c). The
multigrid hierarchy is built by a mesh coarsening process. This
process goes from the bottom to the top, with the multigrid mesh
sizes doubled with increasing multigrid levels until only one
active cell (dark gray) is enclosed within the domainΩℓ. Instead of
using the multigrid boundary reconstruction algorithm proposed
in Guillet & Teyssier (2011), we introduce a simple algorithm that
determines the number of active cells level by level as follows:

1. Normalize the width of the light-gray region (Γℓ) to a
range [0, 1] (including one buffer cell at the end of either

side), and calculate the multigrid mesh size for the finest
level ºh 1.0 number of cellsx

0 ( ). The number of cells
shown in Figure 1(d) of L=0 is 10.

2. Calculate the multigrid mesh size at level L>0 using the
relation = -h h2x

L
x
L 1.

3. Calculate the number of active cells at the multigrid level
L>0 by =N hround 1L

x
L

MG ( ).
4. If >N 1L

MG , go to item 2; or stop, otherwise.

In the above and in the following discussion, we have used the
superscript L to denote the multigrid level to avoid possible
confusion with mesh refinement level ℓ. We note that in this
paper the multigrid levels are described as a distinct hierarchical
structure from the mesh refinement levels. While increasing L
goes from fine to coarse multigrid levels, increasing ℓ goes from
coarse to fine refinement levels. This allows us to separate the
details when describing the multigrid boundaries and refinement
boundaries. Furthermore, the multigrid algorithm as described
above can be applied directly to a uniform mesh, i.e., without
AMR. The cell numbers in one dimension can be arbitrary and
do not have to be a power of two. For clarity, we also use the
subscript MG to denote quantities associated with the multigrid
relaxation process. In Figure 1(d), the left edges of all multigrid
levels are aligned at xMG=0, here xMG represents the
normalized coordinates used for multigrid relaxation. Given
the N L

MG and the hL
x obtained from the above algorithm, the right

edges of active cells can be calculated, which are floating but
always close to xMG=1. The active regions (marked by the
dark gray) of all multigrid levels are then prepended and
appended by a layer of buffer cells (marked by the triangles) for
Dirichlet boundary conditions.

2.3. The Multigrid Iteration

A multigrid method involves a relaxation smoother and a
multi-resolution hierarchy, which is built in the last subsection.
Given the Dirichlet boundary conditions for all multigrid levels
(will be detailed in Section 2.4), we follow the conventional
procedure for the multigrid iteration L given a refinement
level ℓ:

1. do {
2. L=0. Perform Npre Gauss–Seidel smoothing itera-

tions on the potential F =L
MG

0.
3. do {

4. Compute the density residual

r p r=  F - G4 . 5L L L
res

2
MG MG ( )

5. From fine to coarse levels, perform the restriction
of the density residual

r r=+  . 4L L
MG

1
res( ) ( )

6. Perform Npre smoothing iterations for the follow-
ing problem:

r F = -+ + , 5L L2
MG

1
MG

1 ( )

subject to the boundary condition

F = G+ 0 on . 6L ℓ
MG

1 ( )

7. ¬ +L L 1.
8. } while ( >N 1L

MG )
9. do {
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10. Perform prolongation from FL
MG and do correc-

tion to F -L
MG

1:

F ¬ F + F- -  . 7L L L
MG

1
MG

1
MG( ) ( )

11. Perform Npost smoothing iterations on F -L
MG

1 for
the following problem:

r F = -- - , 8L L2
MG

1
MG

1 ( )

subject to the boundary condition:

F = G- 0 on . 9L ℓ
MG

1 ( )
12. ¬ -L L 1

13. } while ( L> 0)
14. } while (Gravitational accelerations have not yet

converged to a tolerable level).

In the above procedure, we need to specify the numbers of
iteration Npre, Npost for smoothing. A restriction operator , a
prolongation operator  for propagating information back and
forth between levels, and a discretization of the Laplace
operator are described below.

2.3.1. Discretization of the Laplace Operator

For the Laplace operator in two dimensions, we adopt the
five-point stencil finite difference approximation:

 F »
D

F + F

+ F + F - F

- +

- +

x

1

4 ,

10

L
i j L

L
i j

L
i j

L
i j

L
i j

L
i j

2
MG ,

MG
2 MG 1, MG 1,

MG , 1 MG , 1 MG ,

( )
( )

[( ) ( )

( ) ( ) ( ) ]
( )

while for three dimensions, the seven-point stencil finite
difference method reads

 F »
D

F + F

+ F + F

+ F + F - F

- +

- +

- +

x

1

6 ,

11

L
i j k L

L
i j k

L
i j k

L
i j k

L
i j k

L
i j k

L
i j k

L
i j k

2
MG , ,

MG
2 MG 1, , MG 1, ,

MG , 1, MG , 1,

MG , , 1 MG , , 1 MG , ,

( )
( )

[( ) ( )

( ) ( )
( ) ( ) ( ) ]

( )

These Laplace operators are second-order accurate.

2.3.2. Restriction Operator

For the restriction operator, we adopt the simple second-
order scheme as shown in Figure 2. For the two-dimensional
restriction operator, we consider the situation shown in the
bottom left blue square in Figure 2(a), the value E at the center
of a coarse cell is evaluated by a simple average:

= + + +E a b c d
1

4
, 12( ) ( )

where a, b, c, d are the values located at cell centers of the fine
level. Similarly, for the three-dimensional restriction as shown
in Figure 2(b), the value A at the center of a coarse cell is
evaluated through

= + + + + + + +A a b c d e f g h
1

8
, 13( ) ( )

where a, b, c, d, e, f, g, h are the values located at cube centers
of the fine level. The coefficients used in Equations (12) and
(13) are derived in the Appendix.

2.3.3. Prolongation Operator

For the prolongation operators, we adopt the second-order
scheme as shown in Figure 2. This operator involves the
nearest values from the coarse level that enclose the point of
interest. For the two-dimensional prolongation as illustrated in
the upper right blue square in Figure 2(a), the value of e located
at the cell center of the fine level is evaluated using the relation

= + + +e A B C D
1

16
9 3 3 , 14( ) ( )

where A, B, C, D are the values located at the cell centers of the
coarse level. For the three-dimensional prolongation as shown
in Figure 2(c), the value a at the center of the cube of fine level
can be calculated with

= + + + + + + +a E A H F G D B C
1

64
27 9 9 9 3 3 3 ,

15

( )

( )

Figure 2. Visual realizations of the two- and three-dimensional restriction and prolongation operators. The uppercase letters denote the values at the cell centers of a
coarser level, while the letters in lowercase are those values at the cell centers of a refined level. (a) The bottom left blue rectangle shows the relative positions of
coarse and a refined cells when applying the two-dimensional restriction operator  defined in Equation (12). The upper right blue rectangle shows the relative
positions of coarse and a refined cells when applying the two-dimensional prolongation operator  defined in Equation (14). (b) The relative positions of a coarse and
refined cells when applying the three-dimensional restriction operator  defined in Equation (13). (c) The relative positions of coarse and a refined cells when
applying the three-dimensional prolongation operator  defined in Equation (15).

4

The Astrophysical Journal Supplement Series, 247:2 (9pp), 2020 March Wang & Yen



where A, B, C, D, E, F, G, H are the values located at the cell
centers of the coarse level. The coefficients used in
Equations (14) and (15) are derived in the Appendix.

2.4. Boundary Conditions for Multigrid

For a smoother to work, one needs to specify appropriate
potential values to the boundary layers of all multigrid levels.
For the finest multigrid level (L= 0), the boundary potential
(marked by crosses) can be interpolated from the potential
calculated from the coarse level ℓ− 1. For the finest multigrid
level (L= 0), the density of the light-gray cells is taken directly
from the blue shaded region in Figure 1(c), while the initial
potential can be interpolated from the potential calculated for
the coarse level ℓ− 1. For the coarse multigrid levels (L> 0),
we require the coarse potential correction F = 0L

MG at Γℓ, i.e.,
steps 6 and 11 in Section 2.3. This requirement gives a simple
way to specify the boundary values for multigrid coarse level
L>0. For simplicity, we consider the one-dimensional
example as shown in Figure 1(d). For the left boundaries, we
simply adopt F = - FL L

MG 0 MG 1( ) ( ) . Here, we use the subscript
=i N1, 2 ,..., L

MG in FL
iMG( ) to denote the cell centers of active

cells (dark-gray cells), and i=0 and = +i N 1L
MG for the cell

centers of left and right buffer zones, respectively. For the
values in right buffer zones, we extrapolate using the following
rules:

F =
- F =

F
+

-

-
-

x, if 1

, otherwise
,

16

L
N

L
N

L
N

L
N

h

x

MG 1

MG 1 MG

MG
1.0

1.0

L

L L

L x
L

L
N L

MG

MG MG

MG MG MG

⎧
⎨⎪

⎩⎪
⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )

( )

( )

where x L
NMG L

MG
( ) is the center of the right-most dark-gray cell of

level L. Equation (16) will apply to y and z boundaries,
respectively, depending on the dimension of a problem. We
note that for every multigrid iteration given a coarse multigrid
level L, the boundary value should be updated according to the
updated FL

MG in order to satisfy the condition F = 0L
MG on Γℓ.

3. Simulations and Results

In this section, we apply the multigrid procedure detailed in
Section 2 to two- and a three-dimensional problems. The
examples are carefully selected so that the analytic expression
of forces is sufficiently smooth for probing the order of a
numerical method. In order to quantify the rate of convergence,
we measure the errors between numerical and analytic
solutions using the p·  norm defined as

ò=
W

  x xd p, if 1, 17p
p

p1
⎜ ⎟
⎛
⎝

⎞
⎠∣ ( )∣ ( ) 

and

=  ¥¥ W  x psup , if , 18∣ ( )∣ ( ) 

where Ω represents the entire calculation domain. In the
following discussion, we measure the convergence of the
proposed method using the one, two, and infinity norms. When
using 1·  and 2·  , we evaluate the total variation and energy in
errors, while using ¥·  we monitor the convergence of
maximum errors in a uniform sense. Here, “uniform” means
that all the errors in the calculation domain approach zero at the

same order of converging speed. Finally, for the following tests,
we use Npre=2 and Npost=1 for the best performance.

3.1. A 2D Model

For the two-dimensional test, we solve a Poisson equation
with G=1/(4π):

s F = , 192
2D ( )

where Φ2D is the 2D potential and the density σ has the
following distribution:

s =
+

R
R

R R

4
, 200

2

2
0
2 2

( )
( )

( )

where º +R x y2 2 is the polar radius. The corresponding
analytic potential reads

F = +R
R

R
ln 1 , 212D

0

2⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )

and the analytical form of the gravitational accelerations in
radial and x directions are º FfR 2D∣ ∣ and fx:

=
+

f
R

R R

2
, 22R 2

0
2

( )

=f f
x

R
. 23x R ( )

The calculation domain of level ℓ is defined in Cartesian
coordinates w w w wW = ´, ,ℓ

L
ℓ

R
ℓ

F
ℓ

B
ℓ[ ] [ ], with ℓ=0 representing

the base level. For the current example, we use w w,L R
0 0[ ]

w w´ = - ´ -, 0.5, 0.5 0.5, 0.5F B
0 0[ ] [ ] [ ] and wW = - 2,ℓ

L
ℓ 1[

w w w´- - -2 2, 2R
ℓ

F
ℓ

B
ℓ1 1 1] [ ] for ℓ>0. Three levels of refine-

ment are applied in this example, i.e., ℓ=1, 2, 3. The simulation
is repeated for different cell numbers, N=8, 16, 32, 64, 128, 256,
512, 1024, in one direction of the base level (ℓ=0). Since
the calculation domain in one direction of level ℓ also half
shrinks compared to level ℓ− 1, we have N ℓ=N. In this
example, we set R0=0.3. If we count one round of the procedure
described in Section 2.3 as one iteration, it normally takes around
10 or fewer iterations to converge the numerical results to a level

- <W
- -f fmax 10R

q
R
q

,num ,num
1 10∣ ∣ , where fR

q
,num represents the

numerical radial acceleration obtained at the qth iteration. The
iteration number required for convergence is independent of N.
We define the absolute differences between the numerical

results and the analytic expressions:

= -x xL f f , 24R R R,num( ) ∣ ∣(∣ ∣) ( )

= -x xL f f , 25x x x,num( ) ∣ ∣(∣ ∣) ( )

where x represents (x, y) in 2D and (x, y, z) in 3D. We apply
these expressions to measure their one, two, and infinity error
norms. The results are listed in Table 1. The upper table
tabulates the numerical values of error norms with increasing
N, while the lower table tabulates the orders of accuracy
improvement when the N of the base level is doubled. This
table shows that the multigrid method proposed in this work is
of second-order accuracy in terms of L1, L2, and ¥L norms.
Figure 3(a) shows the xLR ( ) as a function of R for N=256.

The blue, red, green, and black dots correspond to cells
of levels ℓ=0, 1, 2, 3, respectively. The spurious forces at
the interfaces between levels are effectively suppressed. In

5

The Astrophysical Journal Supplement Series, 247:2 (9pp), 2020 March Wang & Yen



Figure 3(b), the two-dimensional error map shows that the
numerical errors are still subject to the “squareness” of the
Cartesian domain; however, the errors are steadily decreasing
with increasing level of refinement.

3.2. A 3D Model

For the three-dimensional test, we solve for a Poisson
equation with G=1:

pr F = 4 . 262
3D ( )

The volume density ρ has the form

r rº -
>


r
r r r r

r r

1 , if

0, if
, 27

n
0

2
0
2

0

0

⎧⎨⎩( ) ( ) ( )

where n=2 and ρ0=1 are used for the current work,
º + +r x y z2 2 2 is the spherical radius, and r0=0.25 is

a parameter controlling the size of the ball. Imposing the
boundary condition F ¥ rlim 0r ( ) , the analytic expression

Table 1
Errors and Orders of Accuracy of the x and Radial Accelerations for the Two-dimensional Model

N Lx
1 Lx

2 ¥Lx LR
1 LR

2 ¥LR

8 1.878e−2 2.528e−2 7.181e−2 2.904e−2 3.549e−2 7.261e−2

16 4.628e−3 6.232e−3 2.002e−2 7.133e−3 8.764e−2 2.024e−2

32 1.186e−3 1.601e−3 5.444e−3 1.847e−3 2.244e−3 5.463e−3

64 3.100e−4 4.147e−4 1.430e−3 4.793e−4 5.774e−4 1.432e−3

128 8.016e−5 1.065e−4 3.671e−4 1.229e−4 1.474e−4 3.672e−4

256 2.045e−5 2.705e−5 9.303e−5 3.119e−5 3.731e−5 9.303e−5

512 5.168e−6 6.821e−6 2.342e−5 7.860e−6 9.389e−6 2.342e−5

1024 1.299e−6 1.713e−6 5.874e−6 1.973e−6 2.356e−6 5.874e−6

Np/Np+1 Ox
1 Ox

2 ¥Ox OR
1 OR

2 ¥OR

8/16 2.02 2.02 1.84 2.03 2.02 1.84

16/32 1.96 1.96 1.88 1.95 1.97 1.89

32/64 1.94 1.95 1.93 1.95 1.96 1.93

64/128 1.95 1.96 1.96 1.96 1.97 1.96

128/256 1.97 1.98 1.98 1.98 1.98 1.98

256/512 1.98 1.99 1.99 1.99 1.99 1.99

512/1024 1.99 1.99 2.00 1.99 1.99 2.00

Note. Three levels of refinement are applied. The subscript p is used to indicate the comparisons between different cell numbers. For example, when
(Np/Np+1)=(32/64), the = - - »O log 1.186e 3 3.100e 4 1.94x

1
2( ) .

Figure 3. (a) Errors of radial acceleration as a function of radius. Each dot of a different color corresponds to the result of one cell of different refined levels. Spurious
forces are largely suppressed at the interfaces between coarse and refined levels (see Figure 11 in Guillet & Teyssier 2011). (b) The map of acceleration errors.
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for the potential reads

pr pr
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where pr=M r32 105ball 0 0
3 is the total mass of the ball. The

corresponding expression for the radial acceleration fr=−∇Φ

then reads

pr
º

- - +

- >


f r

r r

M r r r

4 , if

, if
, 29r

r r

r

r

r0 3

2

5

1

7 0

ball
2

0

3

0
2

5

0
4

⎧
⎨⎪
⎩⎪

( )( ) ( )

and fx(r)=fr(r) (x/r). The force expressions are sufficiently
smooth for validating a method of second-order accuracy.

For the numerical setup, the calculation domain of level ℓ is
defined in Cartesian coordinates w w w wW = ´, ,ℓ

L
ℓ

R
ℓ

F
ℓ

B
ℓ[ ] [ ]

w w´ ,D
ℓ

T
ℓ[ ], with ℓ=0 denoting the base level. For the

base level, Ω0=[−0.5, 0.5]×[−0.5, 0.5]×[−0.5, 0.5]
and w wW = - -2, 2ℓ

L
ℓ

R
ℓ1 1[ ] × w w- -2, 2F

ℓ
B
ℓ1 1[ ] × w - 2,D

ℓ 1[
w - 2T

ℓ 1 ] for ℓ>0. Two levels of refinement are applied in this
example, i.e., ℓ=0, 1, 2. The simulation is performed with cell
numbers N=8, 16, 32, 64, 128, 256, in one direction of the
base level (ℓ=0). Similar to the two-dimensional model, if the
initial guess of Φℓ is interpolated from a coarse level Φℓ−1, it
takes less than 10 iterations to converge the numerical results to
a level - <W

- -f fmax 10r
q

r
q

,num ,num
1 10∣ ∣ , where fr

q
,num represents

the numerical radial acceleration obtained at the qth iteration. The
iteration number required for convergence is independent of N.

We apply the L1, L2, and ¥L norms to measure the
acceleration errors in radial and x directions and the results are
listed in Table 2. The interpretation of this table is the same as
Table 1. The results confirm that the proposed multigrid
algorithm is of second-order accuracy in terms of all error
norms. The spurious forces at the interfaces between different

levels are suppressed in a three-dimensional problem. The
proposed algorithm is generally applicable to nested mesh
refinement in Cartesian coordinates.

4. Summary and Discussions

Based on the previous work of Guillet & Teyssier (2011), we
present an improved multigrid Poisson solver of second-order
accuracy in terms of all error norms. The method is applicable
to grid-based HD/MHD codes that adopt patch-based mesh
refinement schemes. The spurious forces commonly seen at
interfaces between coarse and fine levels are largely suppressed
so that the accuracy of self-gravitational accelerations derived
from the potential also reach second-order accuracy in terms of
all error norms.
Compared to the work of Guillet & Teyssier (2011), we have

the following major differences in terms of algorithm:

1. A buffer zone of two-cell width is required. Although the
algorithm proposed by Guillet & Teyssier (2011) requires
only one layer of ghost cells, this modification shall not
be considered as a major drawback of the method given
the improvement in accuracy.

2. The proposed algorithm does not need a mask function
for boundary reconstruction in the process of multigrid
relaxation.

3. The proposed algorithm does not need a modified
Laplace operator when approaching the boundary of a
patch. One may apply Equations (10) and (11) uniformly
over the domain ÈW Wℓ

b
ℓ .

Overall, the proposed algorithm is simpler, easier to implement,
and more accurate.
We attribute the second-order accuracy in derivatives at

refinement boundaries to the use of buffer layers of two-cell
size. As shown in Figure 4, evaluating Equation (2) for the cell
(shown as the red cross) adjacent to the boundary involves five
cells as indicated by the solid circles, the cross, and the empty
circles. The empty circles represent the potentials in the buffer

Table 2
Errors and Orders of Accuracy of the x and Radial Accelerations for the Three-dimensional Model

N Lx
1 Lx

2 ¥Lx Lr
1 Lr

2 ¥Lr

8 1.275e−3 2.191e−3 9.813e−3 1.849e−3 3.386e−3 1.027e−2

16 3.255e−4 5.035e−4 3.390e−3 4.219e−4 7.032e−4 3.467e−3

32 7.883e−5 1.253e−4 8.738e−4 9.702e−5 1.678e−4 9.260e−4

64 1.958e−5 3.169e−5 2.159e−4 2.415e−5 4.170e−5 2.392e−4

128 4.867e−6 7.991e−6 5.340e−5 6.011e−6 1.040e−5 6.073e−5

256 1.215e−6 2.010e−6 1.327e−5 1.505e−6 2.605e−6 1.530e−5

Np/Np+1 Ox
1 Ox

2 ¥Ox Or
1 Or

2 ¥Or

8/16 1.97 2.12 1.53 2.13 2.27 1.57

16/32 2.05 2.01 1.96 2.12 2.07 1.90

32/64 2.01 1.98 2.02 2.01 2.01 1.95

64/128 2.01 1.99 2.02 2.01 2.00 1.98

128/256 2.00 1.99 2.01 2.00 2.00 1.99

Note. Two levels of refinement are applied. The subscript p is used to indicate the comparisons between different cell numbers. The subscript p is used to indicate the
comparisons between different cell numbers. For example, when (Np/Np+1)=(32/64), the = - - »O log 7.883e 5 1.958e 4 2.01x

1
2( ) .
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zones. Guillet & Teyssier (2011) fill the values in the buffer
zones by linear interpolation from the coarser levels. As already
remarked in their work, since the coarse Laplace operator and
the linear interpolation are both accurate to second order, the
truncation errors associated with the interpolated values (empty
circles) have the form (Δx)2òi, while those associated with the
fine level (solid circles) have (Δx)2ηi, where òi and ηi are of the
order 1( ). Since the potential of different levels are calculated
separately, òi does not smoothly connect to ηi in general. When
applying Equation (2), the jump in second-order truncation
errors degrades the accuracy to first order across fine–coarse
boundaries. Without resorting to higher-order Laplace and
interpolation operators, in this work, the values in the buffer
layers are evaluated directly in the relaxation process of fine
levels. This enforces a smooth connection of truncation errors
across boundaries; therefore, the second-order accuracy is
maintained.

Finally, we note that the multigrid relaxation method is fast and
flexible, especially when mesh refinement is required. For the self-
gravitational forces of infinitesimally thin disks, using multigrid
method will not benefit much since appropriate boundary
conditions, which are also unknown, need to be calculated in
advance and imposed on the surface of a thin box, thus making
the method complicated and inefficient. Recently, Moon et al.
(2019) combined the James algorithm (James 1977) with the
discrete Green’s function (DGF) to develop an accurate and
efficient algorithm that may apply to three-dimensional Cartesian
and cylindrical coordinates with open boundary conditions. This
algorithm has a complexity of order  N Nlog3( ), with N being
the number of cells in one dimension. In their work, the evaluation
of boundary potentials using DGF is the key to reach second-
order accuracy in potential. The use of DGF is interesting and
may combine with the multigrid method for mesh refinement. We
leave explorations along this line for future works. Direct, fast,
and accurate methods that reduce three-dimensional infinitesi-
mally disk problems to two-dimensional integrals are also
developed. The kernel-based Poisson solvers of high-order
accuracy for self-gravitational forces for infinitesimally thin disks

have been extensively studied for uniform Cartesian coordinates
(Yen et al. 2012; Wang et al. 2019), for nested mesh refinement in
Cartesian coordinates (Wang et al. 2016), for AMR using GPU
acceleration (Tseng et al. 2019), and for polar coordinates (Wang
et al. 2015).
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Council of Hong Kong: General Research Fund 14308217 and
14305717 and the support by the Research Committee Direct
Grant for Research from CUHK: 4053229 and 4053309.

Appendix
Bilinear and Trilinear Interpolations

In this appendix, we explain the origin of the coefficients
used for the restriction operators Equations (12) and (13), and
the prolongation operators Equations (14) and (15). As shown
in Figure 5(a), given the values located at positions A(x1, y1),
B(x2, y1), C(x2, y2), and D(x1, y2), we approximate the value
f (x, y) using the bilinear interpolation f x y,˜ ( ):

=
D D

- -

+ - - + - -
+ - -

f x y
x y

A x x y y

B x x y y C x x y y

D x x y y

,
1

, 30

2 2

1 2 1 1

2 1

˜ ( )
( )( )

[ ( )( )

( )( ) ( )( )
( )( )] ( )

whereD º -x x x2 1 andD º -y y y2 1. Due to the squareness
of the cell shape, we further impose the condition Δy=Δx.
One may easily check that =f x y A,1 1

˜ ( ) , =f x y B,2 1
˜ ( ) ,

=f x y C,2 2
˜ ( ) , and =f x y D,1 2

˜ ( ) . Assume the function f (x, y)
varies smoothly over the domain [x1, x2]×[y1, y2], the
interpolation f̃ approximates f to an accuracy of second order.
Evaluating the value at the center where we have x−x1=
x2−x=0.5Δx and y−y1=y2−y=0.5Δx naturally leads to
the coefficients of Equation (12). To consider the situation in
the upper right of Figure 2(a), one may simply take x−x1=
0.25Δx, x2−x=0.75Δx, y−y1=0.25Δy, and y2−y=
0.75Δy, resulting in the coefficients in Equation (14).
By the same token, as shown in Figure 5(b), the three-

dimensional equivalent of Equation (30) is the trilinear
interpolation:

=
D D

- - -

+ - - -
+ - - -
+ - - -
+ - - -
+ - - -
+ - - -
+ - - -

f x y z
x y

A x x y y z z

B x x y y z z

C x x y y z z

D x x y y z z

E x x y y z z

F x x y y z z

G x x y y z z

H x x y y z z

, ,
1

. 31

2 2 2

1 2 2

1 1 2

2 1 2

2 2 1

1 2 1

1 1 1

2 1 1

˜ ( )
( )( )

[ ( )( )( )

( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )
( )( )( )] ( )

The coefficients of Equation (13) are then obtained using the
conditions x2−x =x−x1 =y2−y =y−y1 =z2−z =z−z1=
0.5Δx. Equation (15) is a result of x−x1=y−y1 =z2−z=
0.25Δx and x2−x=y2−y =z−z1=0.75Δx.

Figure 4. Calculation of gravitational forces at the fine–coarse boundary using
Equation (2). Evaluating the gravitational force for the cell (marked by the
cross) next to the boundary involves fives potentials marked with the solid
circles, the cross, and the empty circles. The solid circles and the cross
represent the potential of the fine level, while the empty circles are the potential
in the buffer layer. While Guillet & Teyssier (2011) computed the values of
empty circles from the coarse level potential by linear interpolation, in this
work, the potential in the buffer layer is directly calculated in the process of
relaxation to avoid a jump in truncation errors across the fine–coarse boundary.
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