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Abstract
The main focus of this paper is to investigate an interacting phenomena 
between dark matter-dark energy within a non-flat FLRW spacetime 
geometry bounded by a horizon with specific Ricci cut-off. We assume an 
interaction term Q(z) between two dark components of the fluid and evaluate 
it analytically via physical quantities like energy density and pressure. We 
constraint the model parameters and found specific region of validity for these 
parameters. Considering ‘Chevallier-Polarsky-Linder type parametrization’ 
of the coincidence parameter r(z), we observed that our model possess a 
future singularity of Type III. After finding the singular behavior, we examine 
the nature of our model via cosmological parameters like q, r, s. It is noted 
that our model is very close to Λ cold dark matter (ΛCDM) model.

Keywords: dark energy models, Statefinder parameters, future singularities

(Some figures may appear in colour only in the online journal)

1.  Introduction

Latest observational data of Type 1a Supernovae and WMAP indicate that the current uni-
verse is transforming from decelerating stage to an accelerating one. Initially, it is supposed 
that an enigmatic kind of energy dubbed as dark energy (DE), having large negative pressure 
effecting the evolution of the universe. Later on, it is confirmed by CMBR. The most adopted 
and simplest DE component is the cosmological constant (Λ) with constant equation of state 
(EoS), i.e. ‘ω = −1’, well fitted with recent observational data. Yet, it suffers with two major 
issues: ‘fine-tuning; cosmic coincidence’. The first puzzle is generated due to larger gaps 
between observed and anticipated value of Λ. The second problem can be explained as: ‘In 
present time, our cosmos is experiencing an expansion when the energy densities of dark 
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matter (DM) and DE are comparable. How this is possible?’ To overcome such problems, a 
large number of DE models have been proposed in literature such as quintessence, k-essence, 
tachyon, phantom, holographic DE (HDE), Ricci DE (RDE) and Chaplygin gas (CG) etc [1]. 
However our knowledge about the past and future fate of the universe is quite limited till now. 
Still there is no certain unified scenario for such evolution of the universe. This motivates us 
to explore the DE problem by using some other procedure like, ‘holographic principle (HP)’.

This principle is an attribute of quantum gravity, which states that ‘the information contents 
of a space volume lie on the boundary surface that bound this volume’. This principle also 
suggests that the ultraviolet (UV) cutoff scale Λ is connected to its infrared (IR) cutoff scale L. 
Cohen et al [2] pointed out that for a system with size L and UV cutoff scale Λ without decay-
ing into a black hole (BH), the quantum vacuum energy (ρΛ) of the system should not exceed 
the mass of BH with the same size. Mathematically, it is written as L3ρΛ � LM2

p, where 
M2

p = 8πG  is the reduced Planck mass. Applying this idea to cosmology, one can choose the 
largest L, which satisfies this inequality by assuming ρΛ as DE.

Holographic type DE model seems to be a reasonable choice as it solved some DE related 
issues but unfortunately this model attached with ‘causality issue’, i.e. future event horizon is 
supposed in this model. Gao et al [3] put forward an idea of proportionality relation between 
DE density (ρD) and Ricci scalar (R), i.e. RDE. This model is physically viable as it provides 
consistent results with latest astrophysical data. In addition, also eliminate the causality and 
cosmic coincidence issues. The scalar R for flat FRW universe is calculated as 6(Ḣ + 2H2), 
which leads to ρRDE = 3c2(Ḣ + 2H2), where H is the ‘Hubble parameter’.

Most of the investigation has been done by considering DE and DM as separate candidates, 
but there is no logic to neglect associations in the dark sector. It is found that cold DM (CDM) 
is decaying into DE, which favors the interaction between these two components. Many 
models with interacting DE have been investigated in literature. The possibility of DE-DM 
interaction is the usual phenomena and gives a richer dynamic. Arevalo et al [4] studied the 
interaction phenomena between DE-DM by considering a ‘holographic Ricci-like DE model’ 
in flat FRW spacetime. They noted that during cosmic evolution a change of sign involves in 
the interaction function. They obtained results that are well-fitted with the current observable 
universe. Aydiner [5] observed that the interaction between DE and DM can be modeled with 
the help of few types of ‘non-linear Lotka–Volterra equations’ suitable for cosmology. In pre-
vious years, a lot of work has been done on HDE/RDE and on their generalizations see [6–11].
del Campo et al [12] studied different HDE models from a unique point of view. They com-
pared models for which the parameter H, the future event horizon or a quantity proportional 
to R are considered as an IR cutoff. Estimation of EoS parameter for all the three cutoffs are 
performed with the help of a ‘Bayesian statistical analysis’, using data from supernovae type 
Ia and the history of the H. The ΛCDM model is the significant triumph of the analysis. Som 
et  al [13] studied DE models encouraged by the HP in homogeneous isotropic spacetime 
along with a DE density ρDE = 3(αH2 + βḢ) where α, β are constants. They worked by 
introducing different general types of interaction terms among three HDE models including 
HRDE and DM. In a spatially non-flat universe, Pasqua et al [14] analyzed the ‘logarithmic 
entropy corrected’ and ‘power law’ versions of the RDE model within Horava–Lifshitz grav-
ity (HLG). For non-interacting and interacting RDE and DM, they get exact differential equa-
tions that admit the evolutionary form of the RDE density. Jawad [15] studied the behavior 
of ‘pilgrim DE (PDE) conjecture’, which can explain that phantom-like DE model holds the 
sufficient resistive force to prevent the formation of a BH. He considered the non-flat geom-
etry, comprised of interacting CDM and ‘ghost PDE (GPDE)’. In this scenario, he discussed 
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the nature of DE model through famous cosmological parameters, statefinder pair, evolution 
parameter (ωΛ), ωΛ − ω′

Λ planes and squared speed of sound.
Jimenez et  al [16] explored interacting DE and DM models and provided new physics 

using Q-interaction. They determined their potential relation with cosmological future singu-
larities and explored an interaction singularity named Q-singularity that can be mapped into 
every future singularity existed in the literature. Ali and Amir [17] reconstructed different 
scalar field models including K-essence, tachyon, quintessence and dilaton using modified 
HRDE model within Chern–Simon modified gravity. In this scenario, they observed the accel-
erating expanding cosmic behavior via declaration parameter (q). Zadeh et al [18] explored 
the cosmological effects of the sign-changeable interacting HDE model in the context of FRW 
universe by considering the Brans–Dicke theory of gravity. They choose three different cut-
offs, i.e. the Granda–Oliveros, the future event horizon and the Ricci cut-offs and obtained the 
parameters such as ω , the density parameter (ωD) and q. They observed that ωD can cross the 
phantom divide line (PDL) only for future event horizon. Moreover, the stability of the sign-
changeable interacting HDE model against perturbations has been checked.

Feng et al [19] considered interacting HDE model in the framework of a perturbed universe. 
It is the first work in literature in which generalized post-Friedmann approach is being used 
to avoid the large scale instability issue. They constrained the model by employing red-shift 
(RS) space distortions measurements. They found that for both of the cases: Q = βH0ρc and 
Q = βHρc, the interacting HDE model is more preferred over non-interacting model. Cruz and 
Lepe [20] considered a generalized function for c2 term, which seems in the conventional expres-
sion for HDE model in curved FRW universe bounded by apparent horizon. They explored the 
slowly varying condition for c2 term and obtained a range of validity for the HDE model. They 
found that the holographic cut-off is satisfactory to define late time cosmic evolution. The same 
authors [21] discussed the DE model by considering future event and particle horizons in flat 
FRW universe within a holographic background. They found that the model experienced genu-
ine big rip singularity, when the DE density is drew by future horizon resulting parameter state 
cross PDL. Further, they analyzed that in the DE-DM interaction, the second law of thermody-
namics (SLT) cannot be satisfied because of the production of negative entropy.

In a curved space-time the trouble with singularities is very subtle and a broad literature 
deals with this problem from different perspectives. Apart of previous bibliography, recently, a 
new technique of DE-DM interaction under a holographic approach within curved FLRW spa-
cetime has been proposed in [22] in which the interaction term is not the usual one. According 
to the observational results of Planck, BAO, SNIa and H0 [23, 24], they considered a positive 
interaction function with a ‘Chevallier-Polarsky-Linder (CPL)’ type parametrization of the 
coincidence parameter and realized that the considered model admits a future singularity of 
Type III. Also, obtained the crossing of PD with the aid of some cosmological parameters 
constrained with astrophysical data of DE survey year I results mentioned in [25] and Planck 
Power Spectra, Planck Lensing, and BAO published in [26]. So, motivated by [22], our aim is 
to check the role of RDE model to discuss the singular universe when the effects of spatial cur-
vature of the spacetime are included and to alleviate the coincidence problem by introducing 
an interaction function between RDE and DM under non-flat FRW model. To discuss future 
singularity, we consider CPL-type Parametrization of the coincidence parameter r(z). In this 
scenario, the interaction term Q(z) will be calculated analytically through physical quantities, 
i.e. we did not consider a specific parametrization for the Q-terms as is often done in literature.

The arrangement of this paper is as under: in section 2, we will develop basic dynamical 
equations  for RDE-DM interacting scheme in the framework of non-flat FRW model. We 
will calculate some quantities of interest at cosmological level such as the coincidence and 
deceleration parameters using Ricci cut-off in section 3. Using some recent observational data 
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given in published papers [23–26], we will determine the specific range of values for each 
cosmological parameter at present time, we mainly focus on the EoS parameter of DE. In sec-
tion 4, we will discuss about future singularity coming from CPL-type of parametrization and 
after admitting singularity, we will perform statefinder diagnostic for our model. The results 
are summarized in the last section.

2.  Interacting DM-DE scheme

In this section, we are going to describe briefly the dynamics of interacting scheme for the 
DM-DE components. We have a tendency to show that beneath the selection of a cut-off, 
which is given by Hubble scale in the form of ρDE, we are able to construct a particular inter-
action term between these dark components, which is function of some model parameters as 
well as the cosmological RS. In the case of non-flat FLRW spacetime, the Friedmann con-
straint can be defined as follows

E2(z) =
1

3H2
0
(ρDE(z) + ρDM(z)) + Ωk(z),� (1)

where E(z) = H(z)
H0

 be a normalized Hubble parameter, 1 + z = a0
a , ρDM, the energy den-

sity of DM and ρDE be the DE density. Also, Ωk is the curvature parameter described as 

Ωk(z) = Ωk(0)(1 + z)2, where Ωk(0) = − k
a2

0H2
0
. The continuity equations in the form of energy 

densities are defined as

ρ′DE − 3
(

1 + ωDE

1 + z

)
ρDE =

Q
H0E(z)(1 + z)

,� (2)

ρ′DM −
(

3
1 + z

)
ρDM = − Q

H0E(z)(1 + z)
,� (3)

where ωDM is supposed to be zero in the above equations and prime represents derivative with 
respect to z. Also, the Q-term concludes the behavior of the interaction between DM and DE.

Differentiating equation (1) with respect to z and simplifying, we get

1 +
ωDE(z)

1 + r(z)
=

2E2(z)
3ρDE(1 + r(z))

[
3H2

0

2
(1 + z)d lnE2(z)

dz
− Ωk(0)

(
1 + z
E(z)

)2]
.

� (4)
We can evaluate an expression used in the above equation using (1), given as follows

E2(z)
ρDE(1 + r(z))

=

[
3H2

0 − Ωk(0)
(

1 + z
E(z)

)2]−1

,

putting this expression in the above equation (4), we get

1 +
ωDE(z)

1 + r(z)
=

2
3

(
1
2
(1 + z)

d lnE2(z)
dz

− Ωk(0)
(

1 + z
E(z)

)2)[
1 − Ωk(0)

(
1 + z
E(z)

)2]−1

,� (5)

where r(z) is said to be the coincidence parameter defined as r = ρDM
ρDE

. Also, equation (5) can 
be written in the form of deceleration parameter, using following definition of q (by convert-
ing formula of q in terms of z) as

1 + q(z) =
1
2
(1 + z)

(
d lnE2(z)

dz

)
,� (6)
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we get modified equation (5) as under

1 +
ωDE(z)

1 + r(z)
=

2
3

(
1 + q(z)− Ωk(0)

(
1 + z
E(z)

)2)[
1 − Ωk(0)

(
1 + z
E(z)

)2]−1

.
� (7)

Performing the calculations for equation (7) at present time i.e. at z  =  0, we can have an 
approximation for the present value of q as follows

q0 =
1
2

(
1 +

3ωDE,0

1 + r0

)
(1 − Ωk(0)).

� (8)

If we assume the expression given in (7) along with values of Ωk(0) and r0 = ρDM,0
ρDE,0

 that are 
given in [23, 26] at z  =  0, we get an interval for ωDE,0 ∈ [−1.4746,−0.008 746], which repre-
sents the crossing from phantom region (ω < −1) to quintessence region (ω > −1).

3.  Ricci cut-off for DE

In this section, we will evaluate some physical quantities like ρDE, ρDM assuming that uni-
verse is bounded by a horizon with Ricci cut-off L = 1

R. The RDE density is given as follows

ρDE =
3c2

8π
R,� (9)

where R for flat FRW universe is given as

R = −6(Ḣ + 2H2),

where, c is a positive constant, which is given in the interval 0  <  c2  <  1 in order to define an 
expanding universe. To explain the behavior of RDE, this parameter c has an important role. 
Moreover, according to recent observations, this choice of ρDE has a good fit results as shown 
in [27]. Now, we substituting value of R in equation (9), we get ρDE in terms of z (using expres-
sion of E(z)) as

ρDE(z) = − 9c2

4πH0

(
2H0E2(z) + E′(z)

)
.� (10)

Now, we are able to calculate the quantity ρDM via equations (1) and (10) in terms of z as

ρDM(z) = 3H2
0E2(z)

[
1 − Ωk(0)

(
1 + z
E(z)

)2

+
3c2

2πH2
0

]
+

9c2

4πH0
E′(z).� (11)

Dividing equations (11) to (10) and after some simple calculations the parameter r(z) may be 
written as

r(z) = −1 − 1
3c2(2H0E2(z) + E′(z))

[
4πH3

0E2(z)
(

1 − Ωk(0)
(

1 + z
E(z)

)2)]
.

� (12)
Now differentiating equation (11) with respect to z, we get

ρ′DM(z) =
1

4πH0

[
− 24πH3

0(1 + z)Ωk(0) + 24πH3
0E(z)E′(z) + 36H0c2E(z)E′(z)

+ 9c2E′′(z)
]

,

�

(13)
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inserting above calculated expression of ρ′DM(z) in equation (3) and after some calculations, 
we arrived at

(1 + z)
d lnE2(z)

dz
= 3 +

2(1 + z)2Ωk(0)
E2(z)

+
9c2

2πH2
0
+

9c2E′(z)
4πH3

0E2(z)
− Q

3H3
0E3(z)

− 3Ωk(0)(1 + z)2

E2(z)
− 3c2E′(z)(1 + z)

πH2
0E(z)

− 3c2E′′(z)(1 + z)
4πH3

0E2(z)
.

� (14)
Putting above result in equation (4) and after a straightforward calculation, we get interaction 
term as a function of z as follows

Q(z)
9H3

0E3(z)
= 1 +

3c2

2πH2
0

[
1 +

E′(z)
2H0E2(z)

− E′′(z)(1 + z)
6H0E2(z)

− 2πH2
0Ωk(0)(1 + z)2

3c2E2(z)

− 2E′(z)(1 + z)
3E(z)

]
−
(

1 +
ωDE(z)

1 + r(z)

)(
1 − Ωk(0)

(
1 + z
E(z)

)2)
.

� (15)
At z  =  0, the term Q(z) is reduced to

Q0 = 9(1 − Ωk(0)) +
9c2

π
− 9(1 − Ωk(0))

(
1 +

ωDE,0
1 + r0

)
.� (16)

If Q0  >  0, then energy flows from DE to DM and vice versa for Q0  <  0. As perceived, the 
Q-term written in equation (15), which is constructed through physical quantities, i.e. we did 
not consider a specific parametrization for the Q-term as is often done. In [4] by using the best 
fit value of the cosmological parameters, included the previous construction may have the 
benefit of constraining the interaction term. It is significant to note that the value of Q-term 
determines the rate at which the universe expanding as r(z) decreases.

Now, from equation (1), we can write the following expression

ρDE + ρDM = 3H2(z)− Ωk(z).� (17)

Equation (10) can be modified as follows

ρDE(z) = −9c2(2H2(z) + H′(z))
4πH2

0
.� (18)

Differentiating r(z) with respect to z and using equations (17) and (18), we get

r′

r
= −3ωDE

1 + z
− Q

H0E(z)(1 + z)

(
4πH2

0(3H2(z)− Ωk(z))
−9c2ρDM(2H2(z) + H′(z))

)
,� (19)

using chain rule, r′ = ṙ
ż , in the above equation, we have

ṙ
r
= 3H(z)ωDE(z)− Q(z)

(
4πH2

0(3H2(z)− Ωk(z))
9c2ρDM(z)(2H2(z) + H′(z))

)
.� (20)

The rate of change for the coincidence parameter can be varied as Ωk(z) decreases or increases. 
In the above equation, assuming Q  =  0 along with ωDE = −1, the Λ-CDM model can be 
recovered where ṙ = −3Hr  [22]. Furthermore, at present time taking ṙ = 0 in the above equa-
tion, we can solve to obtain a specific value r0 given as under
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r0 =

[
6H2

0

(
c2ρDM,0ωDE,0 − 2H0c2 + 2πH0ωDE,0(1 − Ωk,0)

)

+ c2(6H′
0ρDM,0ωDE,0 + 4H0Ωk,0) + 4πH0ωDE,0Ωk,0(Ωk,0 − 1)

]

×
[

c2
(

4H0(3H2
0 − Ωk,0)− 3ρDM,0ωDE,0(2H2

0 + H′
0)

)]−1

.

�

(21)

Using equation (21), we can constraint r0 at specific values of other model parameters at pres-
ent time.

From equation (16) and the positivity condition, Q0  >  0, we get

ωDE,0 < (1 + ro)

(
c2

π(1 − Ωk,0)

)
,� (22)

where ωDE,0 < −0.666 485 or ωDE,0 < −0.666 007 and Ωk(0) = 0.000+0.005(k=−1)
−0.005(k=1)  [23, 26]. 

It is important to point out that the parameter ωDE,0 can take positive values, if k  =  1, which 
could define a decelerated expansion. Using already mentioned expression given in equa-
tion (6), we can find the value of q(z) from equation (14) as

q(z) =
1
2

[
1 +

2(1 + z)2Ωk(0)
E2(z)

+
9c2

2πH2
0
+

9c2E′(z)
4πH3

0E2(z)
− 3c2E′′(z)(1 + z)

4πH3
0E2(z)

− 3Ωk(0)(1 + z)2

E2(z)
− 3c2E′(z)(1 + z)

πH2
0E(z)

− Q
3H3

0E3(z)

]
.

�

(23)

While at present time, it is calculated that q0 < 1
2. By using equation (23), we get interaction 

term in the following form

Q(z) <
27c2H0E3(z)

2π
+

27c2E(z)E′(z)
4π

− 9c2E(z)E′′(z)(1 + z)
4π

− 9c2H0E2(z)E′(z)(1 + z)
π

− 3H3
0Ωk(0)E(z)(1 + z)2.

�
(24)

It is significant to point out that the above changes in the sign of Q-interaction term strongly 
depends on the sign of Ωk(z). Moreover, a modification in the sign of Q interaction term used 
to determine the phase transitions (sign changes in heat capacities) along the cosmic evolution 
as well as provide data to confirm the validity of SLT [28, 29].

4.  Future singularity

Here, we will discuss about the presence of future singularity in this dynamical model. The 
most highlighted point is that the mentioned singularity is only assists in a curved universe. 
We assume a CPL-type parametrization for r(z) that helps us to recognize the occurrence of 
singularity in the RS. We are working with a Type III future singularity but not with a genuine 
big rip, moreover, we can observe that cosmic evolution induced by the existence of previous 
singularity differs from that singularity, which is attained by Λ. We prove that the Q-term will 
remain positive through the cosmic evolution using the previous results. Using equation (12), 
we can form E(z) in terms of r(z) as given below:
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E(z) =
2πH3

0Ωk(0)
3c2r3

0

[
r2

0(1 + z)2 + 2r0(r0 + rc)(1 + z) + 2(r0 + rc)
2 ln(r(z)− rc)

]
,� (25)

here a constant quantity, rc =
1−c2

c2 . The expression E(z) became singular at given point 
r(z)  =  rc. Evaluating equation (25) at z  =  0, we can find an expression for rc, which is given 
in terms of r0 and Ωk(0) as

rc =
1 − c2

c2 =
9(1 + r0)

4π(Ωk(0)− 1)
.� (26)

Now for r(z), we will assume a CPL-type parametrization given as follows [30]

r(z) = r0 + ε0
z

1 + z
,� (27)

where ε0 = r′0 can be obtained from equation (27) after taking its derivative with respect to 
z. One can see that at z  =  −1, the preceding parametrization will become singular for high 
values of z for which r(z) has a bounded nature and declares a linear behavior for low values of 
z, also shows the sensitive behavior to observational data [31]. Comparing the equations (26) 
and (27), we can find the following value of zs at which E(z) will become singular

zs = −
[

4πr2
0(1 − Ωk(0)) + 9(1 + r0)(2r0 − rc)

4πr0(r0 + ε0)(1 − Ωk(0)) + 9ε0(1 + r0)(1 + (2r0 − rc)/ε0)

]
.� (28)

In the future, we must have  −1  <  zs  <  0 for a singular behavior. From the previous condition 
and by using equations (26) and (27), we get

r(z)− rc = ε0

[
z − zs

(1 + zs)(1 + z)

]
� 0 =⇒ z � zs.� (29)

It is noted that r → rc as the limit z → zs in the above expression. Evaluating previous equa-
tion at present time, we get an inequality which must be satisfied

−ε0
zs

(1 + zs)
� 0,� (30)

and is consistent with the interval  −1  <  zs  <  0. The equation  (25) can be re-written using 
previous results

E(z) =
4πH3

0Ωk(0)(r0 + rc)

3c2r2
0

(1 + z) +
4πH3

0Ωk(0)(r0 + rc)
2

3c2r3
0

ln

(
z − zs

ηc2(1 + z)

)

+
2πH3

0Ωk(0)
3c2r0

(1 + z)2,

�

(31)

where η = (1+zs)
c2ε0

> 0 if ε0 > 0. The behavior of equation  (31) can be examined from fig-

ure  1. Left plot of figure  1 shows behavior of E2(z) as z progresses for specific values of 

the model parameters taken from literature [23, 26]. It is clear from the trajectory plotted in 
the left graph, E2(z)  −  z that during closed universe (Ωk(0) = −0.005 for k  =  1), E2(z) has 
decreasing behavior as z transits from past to future era. Right plot of figure 1 is plotted for 
Ωk(0) = 0.005, which generates negative values of E2(z). The solid line in figure 1 shows the 
point of singularity zs. Note that a change in the sign of the Ωk(0) can cause two types of cos-
mic evolution but in both cases the value zs is the same.
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Inserting E(z) = H
H0

, H = ȧ
a along with 1 + z = ao

a  in equation  (31) and perform some 
simplifications, we get an analytical solution for a(t) as follows

a(t) = exp

[(
4πH4

0Ωk(0)(r0 + rc)
2

3c2r3
0 − 4πH4

0Ωk(0)(r0 + rc)(r0a0)

)
ln

(
a0

1 + zs

)
t
]

.� (32)

It is clear from equation (32), as Ωk(0) → 0 then a(t) converges to a constant value, which 
shows a static universe. This type of universe model is in conflict with the SLT, which is one 
of the famous universal laws of nature [32], so a singular universe along with a negative value 
of Ωk(z) is more preferred explanation of cosmic expansion. Furthermore, since both of the 
energy densities ρDM and ρDE are directly associated to the quantity E(z) and its first derivative 
over the Friedmann constraint as z → zs, the ρDM, ρDE → ∞, therefore the quantity PDE also 
diverges. From this behavior, we have concluded that our model admits a future singularity of 
Type III similar to HDE [33, 34].

Now, we are able to evaluate equation (4) in terms of z only using obtained solution of E(z) 
given in equation (31) as

1 +
ωDE(z)

1 + r(z)
=

[
12(r0 + rc)r3

0θ(z)(1 + z)2 + 4(r0 + rc)
2r2

0θ(z)(1 + z){(1 + θ(z))

+ 2 ln(η−1c−2θ−1(z))}+ 8(r0 + rc)
3r0{(1 + z)(θ(z)− 1)2

+ θ(z) ln(η−1c−2θ−1(z))}+ 4(r0 + rc)
4(θ(z)− 1)2 + 4r4

0θ(z)(1 + z)3

+
9c4r6

0θ(z)(1 + z)2

2π2H6
0Ωk(0)

][
24(r0 + rc)

3r0θ(z) ln(η−1c−2θ−1(z))

+ 12(r0 + rc)r3
0θ(z)(1 + z)2 + 12(r0 + rc)

2r2
0θ(z)(1 + z){1

+ ln(η−1c−2θ−1(z))}+ 12(r0 + rc)
4 θ(z)

1 + z
ln(η−1c−2θ−1(z))

−
27c4r6

0θ(z)(1 + z)
4π2H6

0Ωk(0)
+ 3r4

0θ(z)(1 + z)3
]−1

,

�

(33)

where θ(z) = (1+z)
(z−zs)

. Consequently, by using aforementioned equation, we get a divergent 

behavior for ωDE, which can be written as ωDE(z → zs) → −∞, negative sign is due to 

Figure 1.  Left plot of E2(z) versus z for Ωk(0) = −0.005, c = 0.681 476, 
ε0 = 0.2, zs = −0.26, H0 = 1, r0 = 0.11, rc = 0.4674; right plot of E2(z) 
versus z for Ωk(0) = 0.005.

R Saleem and M J Imtiaz﻿Class. Quantum Grav. 37 (2020) 065018



10

range of zs. For early universe, the RS parameter z → ∞. By using this assumption in CPL 
parametrization, we obtained r(z → ∞) → r0 + ε0 and the right hand side of equation (33) 
becomes 4

3 while the bounded value of ωDE(z → ∞) → 1+r0+ε0
3 . We observed that in early 

universe, ωDE takes greater values than those attained at present time.
To evaluate the interaction term Q, put equations (33) in (15) and after solving it, we get

Q(z)
3H3

0
= 3

[
4π2H6

0Ω
2
k(0)

9c4r2
0

(
4(r0 + rc)

2(1 + z)2

r2
0

+
4(r0 + rc)

4

r4
0

(ln(η−1c−2θ−1(z)))2

+ (1 + z)4 +
4(r0 + rc)

r0
(1 + z)3 +

8(r0 + rc)
3(1 + z)

r3
0

ln(η−1c−2θ−1(z))

+
4(r0 + rc)

2(1 + z)2

r2
0

ln(η−1c−2θ−1(z))
)]3/2[(

12(r0 + rc)r3
0θ(z)(1 + z)2

× (2πH2
0 + 3c2 − 1) + 4(r0 + rc)

2r2
0θ(z)(1 + z){6πH2

0 ln(η
−1c−2θ−1(z))

+ 6πH2
0 + 9c2 + 9c2 ln(η−1c−2θ−1(z))− 1 − θ(z) + 2 ln(η−1c−2θ−1(z))}

+ 8(r0 + rc)
3r0θ(z){6πH2

0 ln(η
−1c−2θ−1(z)) + 9c2 ln(η−1c−2θ−1(z))

− (1 + z)(θ(z)− 1)2 − ln(η−1c−2θ−1(z))} − 4(r0 + rc)
4(θ(z)− 1)2

+ 12(r0 + rc)
4 θ(z)

1 + z
ln(η−1c−2θ−1(z))(2πH2

0 + 3c2) + r4
0θ(z)(1 + z)3(6πH2

0

+ 9c2 − 4)−
9c4r6

0θ(z)(1 + z)
2πH4

0Ωk(0)

(
3 +

9c2

2πH2
0
+

1 + z
πH2

0

))
(2πH2

0�)−1]

+
2πH3

0Ω
2
k(0)(1 + z)2

c2r0

[
2(r0 + rc)(1 + z)

r0
+

2(r0 + rc)
2

r0
ln(η−1c−2θ−1(z))

+ (1 + z)2
][(

4(r0 + rc)
2r2

0θ(z)(1 + z){−2 + θ(z)− ln(η−1c−2θ−1(z))}

+ 8(r0 + rc)
3r0{(1 + z)(θ(z)− 1)2 − 2θ(z) ln(η−1c−2θ−1(z))}

+ 4(r0 + rc)
4{(θ(z)− 1)2 − 3θ(z)

1 + z
ln(η−1c−2θ−1(z))}

+ r4
0θ(z)(1 + z)3 +

9c4r6
0θ(z)(1 + z)

2π2H6
0Ωk(0)

(z +
5
2
)

)
�−1

]

+
8πH4

0Ω
2
k(0)

3c2r2
0

[({
2(r0 + rc)(1 + z)

r0
+

2(r0 + rc)
2

r2
0

ln(η−1c−2θ−1(z))

+ (1 + z)2
}{

(1 + z) +
(r0 + rc)

r0
+

(r0 + rc)
2(θ(z)− 1)

r2
0(1 + z)

})(
3

4H0

−
2πH3

0Ωk(0)(1 + z)
3c2r0

{
2(r0 + rc)(1 + z)

r0
+

2(r0 + rc)
2

r2
0

ln(η−1c−2θ−1(z))

+ (1 + z)2
})]

,

�

(34)

where

R Saleem and M J Imtiaz﻿Class. Quantum Grav. 37 (2020) 065018



11

� = 12(r0 + rc)r3
0θ(z)(1 + z)2 + 12(r0 + rc)

2r2
0θ(z)(1 + z){1 + ln(η−1c−2θ−1(z))}

+ 24(r0 + rc)
3r0θ(z) ln(η−1c−2θ−1(z)) + 12(r0 + rc)

4 θ(z)
1 + z

ln(η−1c−2θ−1(z))

−
27c4r6

0θ(z)(1 + z)
4π2H6

0Ωk(0)
+ 3r4

0θ(z)(1 + z)3.

It is obvious that Q can be positive and negative defining two different regions of cosmos. 
The calculated interaction term Q is plotted versus z in left and right plot of figure 2. It is 
important to note that the value of Ωk(z) shows a crucial role in order to have real Q-function. 
The left plot of figure 2 verifies the natural phenomena that interaction term remains positive 
throughout the domain of z for Ωk(0) = −0.005 during closed universe. As Q  >  0 represents 
the conversion of DE dominated era to DM dominated era. Although the observations sug-
gests that Q must be positive, but right plot of figure 2 for Ωk(0) = 0.005 is not in good agree-
ment with recent observations [25]. So, in a closed universe, DM is converted in to DE. We 
have to assume the possible implications at thermodynamic level for late-time universe, this is 
to study the fulfillment of SLT and the occurring possibility of phase transitions.

Substituting equations (25) in (6), we obtain q(z) as given below

q(z) =
1
2

[ r2
0(1 + z)2 + 2(r0 + rc)

2
(

1+z
r(z)−rc

r′(z)− ln(r(z)− rc)

)

r2
0
2 (1 + z)2 + r0(r0 + rc)(1 + z) + 2(r0 + rc)2 ln(r(z)− rc)

]
.� (35)

To check the singular behavior of q(z), we have to convert the above expression in terms of z 
and zs by putting equations (31) into (6) as under

q(z) =
(1 + z)2 + 2(r0+rc)

2

r2
0

[(
1+zs
z−zs

)
− ln

(
ε0(z−zs)

(1+zs)(1+z)

)]

(1 + z)2 + 2(r0+rc)
r0

(1 + z) + 2(r0+rc)2

r2
0

ln

(
ε0(z−zs)

(1+zs)(1+z)

) .� (36)

Note that q(z → zs) → −∞ and q(z → ∞) → 0, i.e. the universe expanding more rapidly. If 

we evaluate θ(z) at z  =  0 then we get θ0 = − 1
zs

, which is always positive. At present time, the 
expression of q(z) can be modified as follows

Figure 2.  Left plot Q(z) versus z for Ωk(0) = −0.005, c = 0.681 476, ε0 = 0.2, 
zs = −0.26, H0 = 1, r0 = 0.11, rc = 0.4674; right plot for Ωk(0) = 0.005.
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q0 = −
[−1 + 2

(
(r0+rc)

2

r0

)(
− θ0(1 + zs) + ln

(
−ε0zs
1+zs

))

1 + 2(r0+rc)
r0

+ 2(r0+rc)2

r2
0

ln

(
−ε0zs
1+zs

)
]
< 0.� (37)

The above inequality is proved in figure 3 for specified values of the model parameters. We 
have checked that this expression is independent of Ωk(0). The term q0 remains negative in the 
range  −1  <  z  <  1 for any positive or negative value of Ωk(0).

Equations (33) and (34) at present time has the following expression

ωDE,0 =

[
− 1 +

(
12(r0 + rc)r3

0θ0 + 4(r0 + rc)
2r2

0θ0{(1 + θ0) + 2 ln(η−1c−2θ−1
0 )}

+ 8(r0 + rc)
3r0{(θ0 − 1)2 + θ0 ln(η

−1c−2θ−1
0 )}+ 4(r0 + rc)

4(θ0 − 1)2 + 4r4
0θ0

−
9c4r6

0θ0

2π2H6
0Ωk(0)

)(
12(r0 + rc)r3

0θ0 + 12(r0 + rc)
2r2

0θ0{1 + ln(η−1c−2θ−1
0 )}

+ 24(r0 + rc)
3r0θ0 ln(η

−1c−2θ−1
0 ) + 12(r0 + rc)

4θ0 ln(η
−1c−2θ−1

0 )

−
27c4r6

0θ0

4π2H6
0Ωk(0)

+ 3r4
0θ0

)−1]
(1 + r0),

�

(38)

Figure 3.  Plot of q0 verses z  =  zs for Ωk(0) = −0.005; ε = 0.2 (red) and 
Ωk(0) = 0.005; ε = −0.7 (green).
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Q0

H3
0
= 9

[
4π2H6

0Ω
2
k(0)

9c4r2
0

(
1 +

4(r0 + rc)
2

r2
0

+
4(r0 + rc)

4

r4
0

(ln(η−1c−2θ−1
0 ))2

+
4(r0 + rc)

r0
+

8(r0 + rc)
3

r3
0

ln(η−1c−2θ−1
0 ) +

4(r0 + rc)
2

r2
0

ln(η−1c−2θ−1
0 )

)]3/2

×
[(

12(r0 + rc)r3
0θ0(2πH2

0 + 3c2 − 1) + 4(r0 + rc)
2r2

0θ0{6πH2
0 + 9c2

+ ln(η−1c−2θ−1
0 )(9c2 + 6πH2

0 + 2)− 1 − θ0} − 4(r0 + rc)
4(θ0 − 1)2

+ 8(r0 + rc)
3r0θ0{ln(η−1c−2θ−1

0 )(6πH2
0 + 9c2 − 1)− (θ0 − 1)2}

+ 12(r0 + rc)
4θ0 ln(η

−1c−2θ−1
0 )(2πH2

0 + 3c2) + r4
0θ0(6πH2

0 + 9c2 − 4)

−
9c4r6

0θ0

2πH4
0Ωk(0)

(
3 +

9c2

2πH2
0
+

1
πH2

0

))(
{2πH2

0}{∇}
)−1]

+
6πH3

0Ω
2
k(0)

c2r0

[
2(r0 + rc)

r0
+

2(r0 + rc)
2

r0
ln(η−1c−2θ−1

0 ) + 1
][(

r4
0θ0

+ 4(r0 + rc)
2r2

0θ0{−2 + θ0 − ln(η−1c−2θ−1
0 )}+ 8(r0 + rc)

3r0{(θ0 − 1)2

− 2θ0 ln(η
−1c−2θ−1

0 )}+ 4(r0 + rc)
4{(θ0 − 1)2 − 3θ0 ln(η

−1c−2θ−1
0 )}

+
45c4r6

0θ0

4π2H6
0Ωk(0)

)(
∇
)−1]

+
8πH4

0Ω
2
k(0)

c2r2
0

[({
2(r0 + rc)

2

r2
0

ln(η−1c−2θ−1
0 )

+
2(r0 + rc)

r0
+ 1

}{
1 +

(r0 + rc)

r0
+

(r0 + rc)
2(θ0 − 1)

r2
0

})(
3

4H0

−
2πH3

0Ωk(0)
3c2r0

{
2(r0 + rc)

r0
+

2(r0 + rc)
2

r2
0

ln(η−1c−2θ−1
0 ) + 1

})]
,

�

(39)

where

∇ = 12(r0 + rc)r3
0θ0 + 12(r0 + rc)

2r2
0θ0{1 + ln(η−1c−2θ−1

0 )}+ 24(r0 + rc)
3r0θ0

× ln(η−1c−2θ−1
0 ) + 12(r0 + rc)

4θ0 ln(η
−1c−2θ−1

0 )−
27c4r6

0θ0

4π2H6
0Ωk(0)

+ 3r4
0θ0.

From equations (37)–(39), we can observe that the both conditions: cosmic evolution deter-
mined by the quintessence fluid can be always sure by fulfilling condition ηθ2

0 > 0 and the 
positive interaction term Q at present time.

Finally, using equation (27) for r(z) and its derivative with respect to z at present time along 
with differentiating both sides of equation (25) with respect to z, we have

r′(z) =
r(z)− rc

(r0 + rc)2

[
3c2r3

0

4πH3
0Ωk(0)

E′(z)− r2
0(1 + z)− r0(r0 + rc)

]
.� (40)

Now equation (40) can be modified using the condition r′0 = ε0 as

ε0 =
1

(r0 + rc)2

[
3c2r3

0(r0 − rc)

4πΩk(0)
E′

0 − 2r3
0 + r0rc(r0 + rc)

]
.� (41)

Using equations (10) and (11) at z  =  0, then we have a an important result for E′(z) as given 
below

E′
0 =

3
2

(
1 +

ωDE,0

1 + r0

)
(1 − Ωk(0)) + Ωk(0).� (42)
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Using this value in the above equation, we determined the value of ε0 as follows

ε0 =
1

(r0 + rc)2

[
3c2r3

0(r0 − rc)

4π
+

9c2r3
0(r0 − rc)

8πΩk(0)

(
1 +

ωDE,0

1 + r0

)
(1 − Ωk(0))

− 2r3
0 + r0rc(r0 + rc)

]
.

�

(43)

Note that, we can obtained in a similar way the whole analysis developed for the considered 
model, to find a suitable value for parameter ε0 in which Ωk(z) has a crucial role. It is impor-
tant to point out that for quintessence model ε0 > 0 for flat and closed universe. While in 
phantom region, Ωk(0) > 0 for which ε0 < 0.

A relationship between ε0 (calculated in the above equation) and Ωk(0) can be seen from 
both three dimensional graphs of figure 4. The model parameters are constrained in the cap-
tion of the figure  whereas the value of ωDE,0 has been taken from [25]. The left graph is 
plotted for quintessence region taking value of ωDE,0 > −1 while right plot admits the phan-
tom region (ωDE,0 < −1). We can see from the left plot that ε0 starts from zero and goes on 
decreasing with an increment in Ωk(0) in the interval −0.005 < Ωk(0) < 0 (representing the 
closed universe). In the open universe where 0 < Ωk(0) < 0.005, the graph has monotonic 
behavior as ε0 > 0 increases firstly with the increase of Ωk(0) for 0  <  r0  <  0.2 after that ε0 has 
decreasing behavior for some region then again increasing and process continues. In phantom 
region (right plot of figure 4), the curves show the same behavior as of quintessence. In region 
−0.005 < Ωk(0) < 0, an inversely proportional relation holds between ε0 and Ωk(0) while for 
0 < Ωk(0) < 0.005, the curve shows monotonic behavior firstly increases to a specific value 
then decreases while space of validity r0 increases as compared to previous description for 
quintessence in the left plot.

4.1.  Statefinder diagnosis

In this section, we will discuss about the Satefinder diagnosis for our model. The Statefinder 
diagnostic pair is an effective geometrical tool that is used to compare the properties of a DE 
model with other DE models and then check how far this model from the Λ-CDM. As the uni-
verse has an accelerating expansion, so the rates of a(t) are important to investigate the cosmic 
behavior. In more general sense, these can be used to examine the fluid that filled the universe 
with the effects of other parameters involved in its expression. These parameters r and s are 
defined as under, respectively

r =

...a
aH3 =

Ḧ
H3 + 3

Ḣ
H2 + 1, s =

r − 1
3(q − 1

2 )
.

� (44)
For ΛCDM model, the above parameters corresponds to a fixed point (r, s) = (1, 0) in the 
s  −  r plane.

Taking the derivatives of a(t) (calculated in equation (32)) up to third order, we are able to 
evaluate the expressions of r and s. These expressions directly reduced to ΛCDM limit. The 
declaration parameter q is equal to  −1, which represents an accelerating expansion of the 
universe.

The values found from ΛCDM model (q = −1) are always greater than current values. It 
is observed that we will get a static universe in our RDE model by assuming a null curvature 
parameter.
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5.  Some possible modifications

In literature, a large number of DE models has been proposed. Some of them are the generalized 
and the modified versions of the HDE and the RDE models. Different authors worked on differ-
ent interacting and non-interacting DE models in various scenarios. Wei [35] reconsidered the 
idea of HDE and proposed a new model of DE, known as PDE (ρPDE = 3n2m4−s

p L−s; s � 2 
for s  =  2, it reduced to HDE model). One of its key points is the formation of the BH and based 
on the speculation that the repulsive force contributed by the phantom-like DE (ω < −1) 
is strong enough to prevent the formation of the BH. They also considered the cosmologi-
cal constraints on PDE by using the latest observational data of Type Ia supernovae (SNIa) 
alone and then the Supernova Cosmology Project (SCP) collaboration released the updated 
Union2.1 compilation, which consists of 580 SNIa. Recently, using relation of non-additive 
entropy for the non-extensive systems introduced by Tsallis and holographic hypothesis, 
which led to the suggestion of a DE density in the form ρ = BL2δ−4, where B is an unknown 
parameter [36]. Similarly, a lot of work have been done on DE-DM interaction in modified 
theories of gravity such as Kaluza–Klein, Brane-world Models, Horava–Lifshitz cosmology, 
f (R), f (T), f (R, T), f (G, T), gravity etc.

We can extend our work to these DE models interacting with DM under the framework of 
non-flat FRW model. In this way, we may be able to find out corresponding physical quanti-
ties through which the future behavior can be predicted that either these models would admit 
a future singularity or not. Further, we can check that how far these model are from ΛCDM 
model? In case of modified theories of gravity, we will get generalized results that can be 
compared with general relativity results. We will come back with this scenario in near future.

6.  Conclusion

This paper is devoted to explore the nature of the universe via interacting RDE-DM model 
within curved FLRW background. The future singularity is being discussed using a special 
type of parametrization, i.e. CPL parametrization of the parameter r(z). The evaluated expres-
sions of energy densities of both components and pressure of RDE lead us to prove that our 
model admits a future singularity of type III at a specific point z  =  zs. From the dynamics of 
the model and observations of DE survey year I results [25] and Planck Power Spectra, Planck 

Figure 4.  Left plot ε0 in terms of r0 and Ωk(0) for c = 0.681 476, ωDE,0 =  
−0.95, rc = 0.4674; Right plot for c = 0.681 476; ωDE,0 = −1.5, rc = 0.4674.

R Saleem and M J Imtiaz﻿Class. Quantum Grav. 37 (2020) 065018



16

Lensing, and BAO results [26] can be established that the DE EoS parameter can take values 
within the quintessence-phantom region at present time, i.e. the cosmic evolution has an accel-
erated expansion. The value for the ω-parameter can change if we consider different values for 
the curvature parameter (Ωk(0)).

We obtained an analytical solution of E2(z), which is strongly dependent upon Ωk(z). It is 
graphically represented in figure 1 for closed (k  =  1) and open universe (k  =  −1). The main 
results of this figure are listed as:

	 •	�It is clear from the left E2(z)  −  z trajectory that in a closed universe (Ωk(0) = −0.005 for 
k  =  1), E2(z) has decreasing behavior for constraint model parameters {r0, rc} as z transits 
from past to future era.

	 •	�Right plot of figure 1 is plotted for Ωk(0) = 0.005 (for k  =  −1) for which the function 
attains negative values.

	 •	�It is found that the range  −1  <  zs  <  0 is not valid for all values of the pair of parameters 
{r0, rc}. Considering appropriate values for the aforementioned pair and keeping them 
fixed, we find that ε0 plays an important role in the manifestation of the singular behavior. 
When this parameter decreases the singularity can take place close to the far future 
(z  =  −1) otherwise, the singularity is closer to the present time (z  =  0) as ε0 increases.

	 •	�It is noted that a change in the sign of the Ωk(0) can cause two types of cosmic evolution 
but in both cases, the value zs (the singularity point) remains the same.

We have calculated the expression of Q(z) analytically and explored its nature graphically. 
In our case, the sign of function Q(z) is uniquely dependent upon the value of Ωk(0), and 
it plays a crucial role to have real Q-function. The function Q is plotted versus z in figure 2 
for Ωk(0) = −0.005 and Ωk(0) = 0.005 keeping the other parameters fixed as mentioned in 
figure 1.

	 •	�As observed from left plot of figure 2, we have a monotonically increasing Q function 
from the recent past to early times with a singular behavior at some future value of the RS 
(zs). The positivity of Q implies that DE is transforming into DM all the time, compatible 
with the Planck, BAO, SNIa and H0 data [23, 24] and positive values work in the direction 
of solving the cosmological coincidence problem. It is checked that the behavior remains 
the same if we consider other appropriate values for {r0, rc} and ε0.

	 •	�According to the observations, Q  <  0 would violate the SLT. In our case, right plot of 
figure 2 for Ωk(0) = 0.005 shows Q(z) < 0, which is not in good agreement with Planck, 
BAO, SNIa and H0 data [23, 24].

It is important to mention that in a similar way to the obtained throughout the analysis devel-
oped for RDE model, the parameter Ωk(0) plays an important role in determining an accept-
able value for the parameter ε0. A relationship between ε0 and Ωk(0) can be seen from figure 4. 
The left graph is plotted for quintessence region (ωDE,0 > −1) while right plot admits the 
phantom region (ωDE,0 < −1), where the value of ωDE,0 = −0.95 has been taken from DE 
survey year I results mentioned in [25] and ωDE,0 = −1.56 from Planck Power Spectra, Planck 
Lensing, and BAO [26].

	 •	�In quintessence region, for Ωk(0) < 0, the parameter ε0 < 0 coming from CPL para-
metrization.

	 •	�ε0 > 0 is attained for open and flat universe as shown in right plot. While for HDE model, 
ε0 > 0 for closed and flat universe obtained in [22].
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The behavior of deceleration parameter q for closed and open universe is shown in figure 3.

	 •	�The RDE model always have negative values for the parameter q, which implies acceler-
ated expansion in the whole region  −1  <  z  <  1.

	 •	�The condition for ΛCDM model, i.e. q  =  −1 is also attained for both early and late uni-
verse as compared to HDE model [22].

	 •	�With the appropriate selection of the model parameters, we performed the Statefinder 
diagnosis, which showed that RDE model with this interacting scheme exactly generates 
the ΛCDM model. Using evaluated scale factor, one can easily checked that the expres-
sions of r and s parameters are directly valued {1, 0}. For HDE model, the ΛCDM model 
can not be achieved as the authors claimed in [22] that their model represents an over 
acceleration.

In a general perspective, we observed that:

	 •	�The closed universe model provides more physical results as compared to an open one.
	 •	�With a Ricci cutoff, this work produce much complicated and lengthy results than a holo-

graphic cutoff considered in [22] but these results are more physical than HDE model.
	 •	�A comparison with the flat universe can not be performed since the quantities obtained 

are trivialized in the corresponding limit, therefore the future singularity can be obtained 
only in the non-flat universe within RDE model description.

	 •	�The accelerating expansion is the big picture of the universe evolution has been attained 
in this model and RDE is proved to be a promising candidate for its explanation. Based 
on previous results, we can conclude that to induce a phantom behavior in the model, the 
value of curvature parameter must be negative in spite of the previous value for curvature 
parameter describes a closed universe, this is due to the existence of the future singularity 
for which universe will not collapse as we have attained in the standard cosmology.
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