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Abstract
The well-noted correspondence between gravitation and electrodynamics 
emphasizes the importance of the Lanczos tensor—the potential of the 
Weyl tensor—which is an inherent structural element of any metric theory 
of gravity formulated in a 4-dimensional pseudo Riemannian spacetime. 
However, this ingenious discovery has gone largely unnoticed. We elucidate 
this important quantity by deriving its expressions in some particularly chosen 
spacetimes and try to find out what it represents actually. We find out that the 
Lanczos potential tensor does not represent the potential of the gravitational 
field, as is ascertained by various evidences. Rather, it is enriched with various 
signatures of quantum character, which provides a novel insight into the heart 
of a geometric embodiment of gravity.

Keywords: Lanczos tensor, potential of Weyl tensor, gravitational potential, 
singularity avoidance, gravitational Aharonov–Bohm effect,  
gravitational waves

1.  Introduction

Einstein’s revolutionary discovery of the local equivalence of gravitation and inertia or the 
local cancellation of the gravitational field by local inertial frames—the (weak) equivalence 
principle—is one of the best-tested principles in the whole field of physics [1]. The principle 
is central to all metric theories of gravity, including Einstein’s general relativity (GR). As 
the gravitational field and the local inertial frames—both are characterized by the spacetime 
metric, their equivalence helps to achieve the lofty scheme of the geometrization of gravita-
tion in the geometrodynamical structure of the pseudo-Riemannian spacetime. Recognizing 
the metric field as the fundamental ingredient in a gravity theory, the Riemann tensor and the 
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Weyl tensor are supposed to provide a deeper understanding of the geometric character of the 
theory. However, to further dissect the conceptual foundations of the Riemannian geometry, 
one must introduce additional ideas that may in turn lead to a greater insight, thus helping in 
the modeling and the interpretation of the physical reality.

Due to the staggering amount of scientific and technological advancement made over the 
last few decades, our understanding of gravity has certainly improved quite a bit. Nevertheless, 
we cannot claim that all the consequences of the geometrization of gravity have already been 
fully explored. This is indicative of the fact that gravity has remained the most mysterious 
interaction among the four known fundamental interactions.

In the following we address a fundamental feature of any metric theory of gravity—the 
gravitational analogue of the electromagnetic potential—a comparatively unfamiliar and hith-
erto not seriously considered aspect of the theory. The study sheds new light on the physical 
meaning of the quantity indicating that it has a deeply ingrained quantum character, which 
may lead to a gateway to quantum physics in the presence of gravitation.

2.  Potential of the Weyl field

In order to gain a deeper insight into the conceptual foundations of gravity, let us consider the 
well-known correspondence1 between gravity and electrodynamics, which has helped emi-
nently in a better understanding of the gravity-problems again and again in the past. In electro-
dynamics, a crucial ingredient of the electromagnetic field is its 4-potential Aµ, (µ = 0, 1, 2, 3) 
whence emanates the Maxwell tensor Fµν :

Fµν = Aµ;ν − Aν;µ = Aµ,ν − Aν,µ,� (1)

which measures the strength of the field. Here the semicolon (comma) followed by an index 
denotes covariant (ordinary) derivative with respect to the corresponding variable. This dem-
onstrates that it is the gauge field Aµ, that is the fundamental field providing Fµν  as a derived 
concept through (1). Also, in the Lagrangian for a free electromagnetic field, the basic field is 
Aµ, and not Fµν . Variation of the Lagrangian with respect to Aµ gives the equations of motion. 
Evidence for the direct detectability and physical importance of the potential field Aµ has 
already been given by the famous Aharonov–Bohm effect (discussed later).

What about the gravitational analogue of the electromagnetic 4-potential Aµ? As if in a 
direct answer to this question, an interesting feature of the 4-dimensional Riemannian geom-
etry was discovered by Cornelius Lanczos during the early part of the 1960s [3]: that, there 
exists another classical characterization of the geometrical structure associated with the Weyl 
conformal curvature tensor. While analyzing the self-dual part of the Riemann tensor Rµνσρ 
in four dimensions, Lanczos discovered a new tensor of rank three (now recognized as the 
Lanczos potential tensor Lµνσ) satisfying the symmetries

Lµνσ = −Lνµσ,� (2a)

Lµνσ + Lνσµ + Lσµν = 0� (2b)

and expressing linearly the Weyl tensor Cµνσρ of the manifold in terms of the first covariant 
derivatives of the new tensor Lµνσ through the generating equation

1 By this correspondence, we mean the fully covariant analogy between gravity and electrodynamics emanating 
from the irreducible decomposition of the Weyl and the Maxwell tensors in the respective electric and magnetic 
parts. See, for example [2].
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Cµνσρ = L[µν][σ;ρ] + L[σρ][µ;ν] − ∗L∗[µν][σ;ρ] − ∗L∗[σρ][µ;ν],� (3)

where the starred symbol denotes the dual operation defined by ∗N∗αβµν = 1
4 eαβρσeµντδNρστδ , 

with eµνσρ representing the Levi-Civita tensor and the square brackets [] denote antisymmetri-
zation: for instance X[µν] ≡ {Xµν − Xνµ}/2!.

Thus in the specific case of four dimensions and Lorentzian metric there indeed exists a 
relativistic potential—the Lanczos potential tensor Lµνσ—generating the Weyl tensor differ
entially, in parallel to the electromagnetic gauge potential Aµ generating the field strength 
tensor Fµν . This constitutes the Lanczos potential as a more fundamental geometrical object 
than the Weyl tensor. Let us recall that the Weyl tensor2 Cµνσρ is the gravitational analogue of 
the electromagnetic Maxwell tensor Fµν . Both the tensors are trace-free.

Later, a rigorous proof of existence was given for the Lanczos tensor generating the 
Weyl tensor of any 4-dimensional Riemannian manifold [4]. Interestingly, this potential ten-
sor exists only for the Weyl tensor and not for the Riemann tensor in general [5]. Thus the 
Lanczos potential emerges as a fundamental building block of a metric theory of gravity, 
deeply engraved in the respective Riemannian spacetime geometry, in the form of an inherent 
structural element.

Albeit its novelty and importance, this remarkable discovery is comparatively unfamiliar 
even now—some sixty years after Lanczos first introduced it—and it has remained an obscure 
backwater to the mainstream relativists and cosmologists. The main reason for this conno-
tative obscurity lies in the immense difficulty to calculate the Lanczos potential tensor for 
a given spacetime by integrating equation (3) directly, given the Weyl tensor. Although the 
Lanczos potentials have been investigated previously in several simple cases, there remains 
the lack of an algorithm that can allow one to obtain the Lanczos tensor unambiguously from 
lower-rank tensors for any given 4-dimensional pseudo-Riemannian spacetime in the most 
general case.

However, some progress in this direction has also been made, though heuristically. Novello 
and Velloso have discovered by direct manipulation some algorithms, albeit ad-hoc, for 
Lanczos potential in terms of vector fields satisfying certain symmetries, which were then 
applied by them to calculate the potential tensor for Schwarzschild, Kasner and Godel space-
times [6]. It appears that the Lanczos potential tensor can be obtained comparatively more eas-
ily by the use of the Newman–Penrose formalism. This formalism has been used to calculate 
the potential tensor for the Kerr and Petrov type N, III and O spacetimes in [7, 8].

In order to exemplify the Lanczos potential, we first simplify the simple-looking and yet 
complex equation (3) by calculating the duals appearing in it. This yields

Cµνσρ = Lµνσ;ρ + Lσρµ;ν − Lµνρ;σ − Lσρν;µ + gνσL(µρ) + gµρL(νσ)

− gνρL(µσ) − gµσL(νρ) +
2
3

Lλκ
λ;κ(gµσgνρ − gνσgµρ),

� (4)

2 The Riemann tensor is decomposed in terms of the Weyl and the Ricci tensors as

Rµνσρ = Cµνσρ − gµ[ρRσ]ν − gν[σRρ]µ − 1
3

Rgµ[σ gρ]ν .

 The twenty degrees of freedom of the Riemann tensor are thus distributed equally among the Weyl and the Ricci 
tensors.

R G Vishwakarma﻿Class. Quantum Grav. 37 (2020) 065020



4

where Lµν ≡ L κ
µ ν;κ − L κ

µ κ;ν and the round brackets () denote symmetrization, i.e. 
2X(µν) ≡ Xµν + Xνµ. Although the conditions (2a) and (2b) are necessary and sufficient for 
Lµνσ to generate Cµνσρ through equation (4), Lanczos considered the following additional 
symmetries

L κ
µ κ = 0,� (5a)

L κ
µν ;κ = 0� (5b)

as two gauge conditions in order to reduce the number of degrees of freedom present in Lµνσ. 
He noticed that the Weyl tensor Cµνσρ given by equation  (4), remains invariant under the 
gauge transformation

L̄µνσ = Lµνσ + gνσXµ − gµσXν ,� (6)

where Xα is an arbitrary vector field. In order to fix this arbitrariness, he assumed the condi-
tion (5a), which gives Xα = 0. Whereas the condition (5b) was adopted by him due to the 
reason that the divergence L κ

µν ;κ does not participate in equation (4). These however do not 
appear as compelling reasons to choose the Lanczos gauge (5) and one can adopt any other 
gauge by assigning any other (tensor) values to the tensors L κ

µ κ and L κ
µν ;κ suiting the con-

sidered problem.

2.1.  An elucidation of the Lanczos potential

We try to exemplify the obscure theory of Lanczos potential in the following. For this purpose, 
the first example we consider is from the existing literature. We also calculate the potential 
tensor, for later use, in some other particularly chosen spacetimes.

2.1.1.  Schwarzschild spacetime.  Let us consider the Schwarzschild spacetime as the first 
example:

ds2 =

(
1 − 2m

r

)
dt2 − dr2

(1 − 2m/r)
− r2dθ2 − r2 sin2 θ dφ2.� (7)

For simplicity, we have considered the geometric units with G  =  1  =  c. Novello and Velloso 
[6] have shown that if a unit time-like vector field Vα ≡ dxα/ds tangential to the trajectory 
of an observer in a given spacetime is irrotational and shear-free, the Lanczos potential of the 
sapcetime is given by

Lµνσ = Vµ;κVκVνVσ − Vν;κVκVµVσ .� (8)

By considering Vα =

(
1√

1−2m/r
, 0, 0, 0

)
, which comes out as irrotational and shear-free in 

the spacetime (7), the formula (8) calculates the corresponding Lancozs potential with only 
one non-vanishing (independent) component:

Lrtt = −m
r2 ,� (9)

which though does not satisfy the gauge condition (5a) of trace-freeness, but it is divergence-
free. A trace-free potential can be obtained by using relation (6), which allows to cancel the 
trace of the tensor by choosing Xµ = −L κ

µ κ/3 giving
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L̄rtt = − 2m
3r2 ,

L̄rθθ = − m
3(1−2m/r) ,

L̄rφφ = − m sin2 θ
3(1−2m/r) ,


� (10)

which satisfy both Lanczos gauge conditions (5a) and (5b). This example illustrates that a 
spacetime can have different values of the potential tensor in different gauges.

2.1.2.  Kasner spacetime.  Next, we consider the Kasner spacetime, given by its line element 
in the form3

ds2 = dt2 − (1 + nt)2p1 dx2 − (1 + nt)2p2 dy2 − (1 + nt)2p3 dz2,� (11)

wherein n is a dimensional parameter and p 1, p 2, p 3 dimensionless parameters satisfying

p1 + p2 + p3 = 1 = p2
1 + p2

2 + p2
3.

Novello and Velloso have also shown that if the vector field Vα in a spacetime is irrotational 
and geodetic and satisfies the conditions ∗CµνλρVνVρ = 0 and σµν;κVκ + σµνV κ

;κ = 0, then 
the Lanczos tensor of the spacetime is given by

Lµνλ =
1
3
(σµλVν − σνλVµ) ,

where σµν represents shear in the vector field Vα. Following Novello and Velloso, we consider 
Vα = (1, 0, 0, 0), which satisfies all the prerequisites of the formula mentioned above for the 
line element (11). The non-vanishing (independent) components of Lµνσ for this line element 
then come out as

Ltxx =
n
9 (3p1 − 1)(1 + nt)2p1−1,

Ltyy =
n
9 (3p2 − 1)(1 + nt)2p2−1,

Ltzz =
n
9 (3p3 − 1)(1 + nt)2p3−1,


� (12)

which also satisfy, by chance, the Lanczos gauge conditions.

2.1.3.  Robertson–Walker spacetimes.  It may be curious to note that even when the Weyl ten-
sor vanishes, its potential—the Lanczos tensor—can be non-vanishing. To illustrate this point, 
let us consider the Robertson–Walker (R-W) spacetime

ds2 = dt2 − S2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θ dφ2)

]
,� (13)

which is conformally flat and hence its Weyl tensor vanishes identically. It would be worth-
while to mention that Hyoitiro Takeno [10] has derived differential equations for the Lanczos 
tensor for some particular cases of a spherically symmetric spacetime. Taking inputs from this 
and using computational resources, we obtain the following as the Lanczos potential for the 
spacetime (13) with a single non-vanishing independent component

Lrtt =
ar√

1 − kr2
, a ≡ an arbitrary constant.� (14)

3 This form of the Kasner line element is due to Narlikar and Karmarkar [9]. The beauty of this form of the line 
element is that the coordinates x, y, z appearing in it have the natural dimensions of length, unlike the standard form 
ds2 = dt2 − t2p1 dx2 − t2p2 dy2 − t2p3 dz2.
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As this form is not trace-free, a trace-free form can be obtained, as mentioned earlier, by using 
equation (6), giving

L̄rtt =
2ar

3
√

1−kr2
,

L̄rθθ = ar3S2(t)

3
√

1−kr2
,

L̄rφφ = ar3S2(t)

3
√

1−kr2
sin2 θ.





� (15)

It may be noted that a spacetime can have more than one Lanczos potentials even in the same 
gauge. To exemplify this, we discover another set of Lµνσ values satisfying the gauge condi-
tion (5a) for the spacetime (13):

L̃tθφ = br3 sin θ,
L̃tφθ = −br3 sin θ,
L̃θφt = −2br3 sin θ,



� (16)

where b is an arbitrary constant. The presence of the arbitrary constants in the potentials 
given by (14)–(16) follows from the fact that given Lµνσ as a solution of equation (4) with 
Cµνσρ = 0, aLµνσ is also a solution with a being an arbitrary constant. This happens because 
the Weyl tensor is linear in Lµνσ in equation (4). It is easy to check that a linear combination 
of the potentials given by (14)–(16) is also a potential of the spacetime (13), owing to the same 
reason of the vanishing Cµνσρ and the linearity of (4).

2.1.4.  R-W spacetimes in static form.  The Lanczos potentials of a given spacetime differ not 
only in different gauges, but also in different coordinates. To illustrate this, let us consider a 
static form of the spacetime (13). It is already known that this line element, which appears 
clearly dynamic in (13), can be transformed to a static form in the case of a constant Ricci 
scalar R [11]. For instance, for k  =  1 and S = b cosh(t/b), (where b  =  constant), the line ele-
ment can be transformed to the static de-Sitter form

ds2 =

(
1 − ρ2

b2

)
dτ 2 − dρ2

(1 − ρ2/b2)
− ρ2(dθ2 + sin2 θ dφ2)� (17)

by use of the transformations ρ = b r cosh(t/b), tanh(τ/b) = (1 − r2)−1/2 tanh(t/b). We 
can now apply the formula (8) of Novello–Velloso to calculate the Lanczos potential of (17). 

By considering Vα =

(
1√

1−ρ2/b2
, 0, 0, 0

)
, which fulfills the prerequisites of the formula, the 

non-vanishing independent components of Lµνσ yield

Lρττ = a
ρ

b2 ,� (18)

in the gauge (5b) and

L̄ρττ = 2aρ
3b2 ,

L̄ρθθ = − aρ3

3(ρ2−b2)
,

L̄ρφφ = − aρ3 sin2 θ
3(ρ2−b2)

,




� (19)

in the Lanczos gauge ((5a) and (5b)). Here a is an arbitrary constant.
Similarly, in the case k  =  −1, the R-W line element (13) can be transformed, for 

S = b sin(t/b), to its static form

R G Vishwakarma﻿Class. Quantum Grav. 37 (2020) 065020
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ds2 =

(
1 +

ρ2

b2

)
dτ 2 − dρ2

(1 + ρ2/b2)
− ρ2(dθ2 + sin2 θ dφ2)� (20)

by use of the transformations ρ = b r sin(t/b), tan(τ/b) =
√
(1 + r2) tan(t/b). By consid-

ering Vα =

(
1√

1+ρ2/b2
, 0, 0, 0

)
, the formula (8) gives the non-vanishing independent comp

onents of the Lanczos potential as

Lρττ = −a
ρ

b2 ,� (21)

in the gauge (5b) and

L̄ρττ = − 2aρ
3b2 ,

L̄ρθθ = − aρ3

3(ρ2+b2)
,

L̄ρφφ = − aρ3 sin2 θ
3(ρ2+b2)

,





� (22)

in the Lanczos gauge.

2.2.  A misunderstanding creped into the literature

There appears a widespread misunderstanding4 in the literature regarding the degrees of 
freedom/number of independent components of Lµνσ. It is obvious that the antisymmetry 
in the first two indices of Lµνσ represented by condition (2a) leaves the number of indepen-
dent components of Lµνσ as 24. Further, the cyclic symmetry (2b), which is equivalent to 
∗L κ

µ κ = 0, gives 4 independent equations hence reducing the number of independent comp
onents of Lµνσ to 20. Lanczos tried to further reduce the number of degrees of freedom 
of Lµνσ in order to match that of the Weyl, which is 10. As has been explained earlier, he 
assumed the condition (5a), to fix the arbitrariness in Lµνσ brought about through (6). This 
algebraic gauge condition (5a) provides 4 equations and reduces the number of independent 
components of Lµνσ to 16. Up to this point everything goes fine.

However, claiming that the differential gauge condition (5b), which provides 6 equations, 
reduces the number of independent components of Lµνσ to 10 and thus matches the number 
of independent components of Weyl thereby providing a unique Lµνσ in a given spacetime 
(which is largely5 posited in the existing literature), does not seem correct. In fact, the differ
ential gauge condition is not effective in reducing the number of independent components of 
the tensor. The reason why this is so is the following.

The differential gauge condition (5b), unlike its algebraic counterpart (5a), does not in gen-
eral supply 6 clean algebraic equations in the components of Lµνσ only. Rather the integration 
of the partial differential equations resulting from the condition (5b), also produces arbitrary 
functions which provide ‘handles’ one can randomly adjust. In order to fix this arbitrariness, 
one needs additional conditions/assumptions. Thus the condition (5b) alone, taken together 
with (2a), (2b) and (5a), cannot supply a unique value of Lµνσ in a given spacetime. As we 
shall soon see in an example, an abundant degeneracy in the value of Lµνσ appears even after 
the gauge conditions (5a) and (5b) are applied.

4 A similar issue related with the Lanczos tensor has been dealt with in [12].
5 Though a few authors, for example [7], have mentioned the non-uniqueness in the value of Lµνσ.
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Let us recall that it is only the algebraic symmetries of the Riemann (Weyl) tensor which 
determine its 20 (10) independent components, and the differential symmetries (Bianchi iden-
tities) do not contribute to it. Similarly, the Weyl tensor admits a divergence-free condition 
Cµ

νσρ;µ = 0 in the Ricci-flat spacetimes (Rµν = 0), but this does not further reduce its 10 
independent components.

Interestingly, the above-mentioned arbitrariness in Lµνσ can be attributed to another agent 
discovered by Takeno in [10]. He noticed that given a Lanczos potential Lµνσ of a particular 
spacetime, the quantity

L̄µνσ = Lµνσ + Aµνσ� (23)

is again a Lanczos potential of that spacetime if the tensor Aµνσ (termed as ‘s-tensor’ by 
Takeno) satisfies

Aµνσ = −Aνµσ, Aµνσ + Aνσµ + Aσµν = 0,
A[µν][σ;ρ] + A[σρ][µ;ν] − ∗A∗[µν][σ;ρ] − ∗A∗[σρ][µ;ν] = 0.

}
� (24)

Thus the tensor Aµνσ appears as an auxiliary potential tensor for the considered spacetime, 
as is clear from a comparison of equation (24) with (2) and (3). Obviously the gauge condi-
tion (5b) of divergence-freeness, which implies that A κ

µν ;κ = 0, does not fix Aµνσ uniquely 
owing to the same reason as mentioned above and hence causes degeneracy in Lµνσ. This is 
clear from the following examples, which show the existence of more than single values of 
Aµνσ and hence Lµνσ in the Schwarzschild spacetime, all values satisfying the Lanczos gauge 
conditions (5a) and (5b).

As has been mentioned above, Takeno [10] has also derived differential equations for the 
tensor Aµνσ in Lanczos gauge for some particular cases of a spherically symmetric spacetime. 
It can be solved for the Schwarzschild line element (7) yielding

Atrr =
2

r3(1−2m/r) ,

Atθθ = − 1
r ,

Atφφ = − sin2 θ
r ,


� (25)

as the non-vanishing independent components of the auxiliary potential tensor for this space-
time in Lanczos gauge (i.e. they satisfy A κ

µ κ = 0 and A κ
µν;κ = 0 in addition to (24)). We find 

another solution for the line element (7) as

Artt = 2r,

Arθθ = r3

1−2m/r ,

Arφφ = r3 sin2 θ
1−2m/r ,


� (26)

in the same Lanczos gauge. Interestingly, the potential tensor (16), calculated for the space-
time (13), also forms yet another auxiliary potential for the Schwarzschild spacetime (7) in 
the Lanczos gauge6. Clearly the conditions (24) imply that aAµνσ is also an auxiliary poten-
tial of the considered spacetime for an arbitrary constant a, given that Aµνσ is an auxiliary 
potential tensor. Similarly, a linear combination of two or more auxiliary potentials of a given 

6 It may be interesting to note that the solution given by (16) appears as an auxiliary potential tensor for many (all?) 
Spherically symmetric spacetimes, for instance the spacetimes ((7), (13) and (34)). Perhaps this has some deeper 
physical meaning, unveiling thereof requires further study. Let us note that an auxiliary potential becomes a proper 
potential of a spacetime whose Weyl tensor vanishes, as is clear from a comparison of equation (24) with (2) and 
(3).
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spacetime is again an auxiliary potential. Thus, these examples of the auxiliary potential of 
the Schwarzschild spacetime, taken together with its Lanczos potential given by (10), provide 
ample evidence for the degeneracy in the values of the tensor Aµνσ and hence the degeneracy 
in Lµνσ (through (23)) even after the Lanczos gauge conditions are applied.

This illustrates that the cause of the degeneracy in Lµνσ is not an issue with the gauge 
but it arises due to the redundant degrees of freedom of the tensor. Similar situation appears 
in electrodynamics where different electromagnetic four-potentials correspond to the same 
electromagnetic field, depending upon the choice of gauge, or even in the same gauge [13].

3.  On the physical meaning of the Lanczos tensor

The great formal similitude between gravitation and electrodynamics indicates that the 
Lanczos potential must be imbued with interesting physical properties. Nevertheless, this ter-
rain is largely unexplored and Lanczos’s ingeneous discovery has remained more or less a 
mathematical curiosity. This is also one of the reasons of the virtual obscurity of Lanczos’s 
theory. Here we attempt to explore what the Lanczos potential tensor Lµνσ may represent 
physically. In this endeavor we first show what Lµνσ does not represent.

3.1.  Lµνσ does not represent the potential of the gravitational field

Since the Lanczos tensor appears as the potential to the Weyl tensor and since the latter is 
linked with the gravitational field, one may naturally expect the Lanczos tensor to represent 
the relativistic formulation of the gravitational potential. However, if this is so, the tensor is 
expected to reduce to the Newtonian potential in a weak gravitational field. As the Newtonian 
theory of gravitation provides excellent approximations under a wide range of astrophysi-
cal cases, the first crucial test of any theory of gravitation is that it reduces to the Newtonian 
gravitation in the limit of a weak gravitational field where the velocities are small compared 
with the speed of light. This requirement however does not seem to be fulfilled by Lµνσ, as 
we shall see in the following.

Let us consider a static point mass m placed at the origin of a centrally symmetric coordi-
nate system r, θ,φ. In the Newtonian theory of gravity, the gravitational field produced by the 
mass at a point r is represented in terms of the gravitational potential Φ(r) = −m/r  at that 
point. In a relativistic theory of gravitation, for example GR, the gravitational field of the mass 
is well-described by the Schwarzschild line element (7). In the case of a weak field, when the 
spacetime line element differs minutely from the Minkowskian metric ηµν given by (34), i.e.

gµν = ηµν + hµν , where |hµν | � 1,� (27)

the line element (7) reduces to

ds2 = ηµνdxµdxν − 2m
r
(dt2 + dr2),� (28)

in the first order of approximation [(hµν)2 � hµν], hence giving the only non-vanishing 
components of hµν as htt = hrr = −2m/r . It has been shown [3] that the Lanczos tensor, in 
the case of (27), can be written in terms of the metric tensor as

Lµνσ =
1
4

(
hµσ,ν − hνσ,µ +

1
6

h,µηνσ − 1
6

h,νηµσ

)
, h ≡ hµνηµν� (29)

R G Vishwakarma﻿Class. Quantum Grav. 37 (2020) 065020
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in the first order of approximation. For the line element (28), this definition then provides the 
only non-vanishing independent component of Lµνσ as

Lrtt = − m
2r2 ,

which though does not match with the Newtonian value of the gravitational potential 
Φ(r) = −m/r  (This was expected since it is the metric tensor, and not its derivatives (as in 
(29)), that gives the Newtonian potential in a weak field [14].). Thus Lµνσ does not seem to 
represent the potential of the gravitational field. This is corroborated by another evidence—
inconsistencies in the construction of an energy-momentum tensor of the gravitational field 
from Lµνσ.

3.2.  An energy-momentum tensor from the Lanczos tensor

Like the energy-momentum of matter, the energy-momentum of the gravitational field itself 
gravitates. Hence, there have been many dedicated efforts to construct the energy-momentum 
tensor of the gravitational field. However, the quantities which are generally arrived at for this 
purpose are various energy-momentum pseudotensors, which are known to be unsatisfactory. 
An important breakthrough in this direction is the formulation of a completely symmetric and 
trace-free tensor of rank 4 known as the Bel–Robinson tensor

BR
T αβγδ = C σρ

α γ Cβσρδ + ∗C σρ
α γ ∗Cβσρδ ,� (30)

which has been derived from the Weyl tensor in analogy to the energy-momentum tensor of 
the electromagnetic field [15] (for another interpretation of the tensor, see [16]). However, the 
Bel–Robinson tensor has the wrong dimensions: dimensions of the energy density squared. 
Incidentally, a tensor constructed along the lines of (30) from the Lanczos tensor, has the cor-
rect dimensions (dimensions of the energy density), which was introduced in [17] as a pos-
sible candidate of the energy-momentum tensor of the gravitational field. A tensor of rank 4 
formulated along the lines of (30) out of Lµνσ is

Tαβγδ = L σ
α γ Lβσδ + ∗L σ

α γ ∗Lβσδ ,� (31)

though it is not symmetric in all pair of indices, contrary to what one expects from an energy-
momentum tensor. A symmetric tensor can be obtained from (31) by contracting over the last 
pair of indices of Tαβγδ, giving

Tαβ = L σρ
α Lβσρ + ∗L σρ

α ∗Lβσρ,� (32)

which is symmetric and also trace-free (even if Lµνσ does not satisfy the trace-free condi-
tion) like the Bel–Robinson tensor. (However, Tαβ is not divergence-free in general.) It is 
expected that a completely time-like component of the energy-momentum tensor relative to 
any observer must be positive definite—a desirable property for any candidate of the energy 
density of the gravitational field. Nevertheless, the tensor Tαβ given by (32) does not seem to 
fulfill this requirement, as we shall see in the following.

By defining the expected energy density E of the gravitational filed measured by a station-
ary observer described by the timelike unit vector field Vα by

E = Tαβ VαVβ ,
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we calculate E for different spacetimes considered earlier. For the Schwarzschild spacetime 

with Vα =

(
1√

1−2m/r
, 0, 0, 0

)
, the values of the Lanczos tensor given by (9) and (10) gener-

ate the values of E respectively as

E = − m2

r4(1 − 2m/r)
, E = − 2m2

9r4(1 − 2m/r)
,

which are negative-definite for r  >  2m. Similarly, for the R-W spacetimes with Vα = (1, 0, 0, 0), 
its Lanczos potentials given by (14), (15) and (16) generate respectively

E = −a2r2

S2 , E = −2a2r2

9S2 , E = −b2r2

S4 ,

which are negative-definite for all values of r, S(t) and a, b. For the open static R-W spacetime 

(20) with Vα =

(
1√

1+ρ2/b2
, 0, 0, 0

)
, its Lanczos potentials (21) and (22) generate respectively

E = − a2ρ2

b2(b2 + ρ2)
, E = − 2a2ρ2

9b2(b2 + ρ2)
,

which are negative-definite for all values of ρ  and the constants a, b. Similarly, for the closed 

static R-W spacetime (17) with Vα =

(
1√

1−ρ2/b2
, 0, 0, 0

)
, its Lanczos potentials (18) and 

(19) generate respectively

E = − a2ρ2

b2(b2 − ρ2)
, E = − 2a2ρ2

9b2(b2 − ρ2)
,

which are negative for ρ < b with any value of the constants a, b. However, E is not negative 
for all spacetimes. Rather its sign seems arbitrary. For instance, it has a positive-definite value 
for the Kasner spacetime. For this spacetime with Vα = (1, 0, 0, 0), its Lanczos tensor given 
by (12) provide

E =
2n2

27(1 + nt)2 ,

which is positive-definite for all values of n and t.
There is another, and even more important, requirement which is expected to be satisfied 

by a genuine energy-momentum tensor. It can be described by

E = 0 ⇔ Tαβ = 0 ⇔ Lαβγ = 0.

However, the definition (32) does not seem to satisfy this fundamental property in general. 
This can be checked by generalizing the Lanczos potential (15) of the R-W spacetime by

Lrtt =
a1r√
1−kr2

,

Lrθθ = a2r3S2(t)√
1−kr2

,

Lrφφ = a2r3S2(t)√
1−kr2

sin2 θ,




� (33)

in another gauge. It can be easily checked that this value of Lαβγ indeed satisfies the generating 
equation (4) for arbitrary values of the constants a1, a2 for the line element (13). Interestingly, 
the potential (33), for the unit timelike vector Vα = (1, 0, 0, 0), gives
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E = − (a2
1 − 2a2

2)r
2

S2 ,

which vanishes by choosing the constants a1, a2 through a1 =
√

2a2, though Tαβ and Lαβγ do 
not vanish for this choice of the constants in general.

These undesired results simply indicate that the Lanczos tensor Lµνσ cannot be the poten-
tial of the gravitational field. That is what these mathematical results cry out.

4.  Quantum effects through the Lanczos potential

If the Lanczos tensor does not represent the potential of the gravitational field, what else does 
it represent then, in the presence of gravity ascribed to the spacetime curvature? The electro
magnetic analogy again helps to seek the answer to this question.

In classical electrodynamics, the electromagnetic 4-potential is generally considered no 
more than a mathematical tool for solving the Maxwell equations. However, it has an una-
voidable role at quantum level, and convey physical information beyond what is supplied by 
fields alone that are derived from it. Aharonov and Bohm [18] first pointed out the reality and 
importance of the potentials in quantum realms (Aharonov–Bohm effect), which was con-
firmed experimentally by Chambers [19].

The perfect analogy between electrodynamics and gravitation, then indicates that the 
Lanczos potential should also have fundamental significance in the way the 4-potential does 
in electrodynamics, and may be imbued with quantum aspects, but now in the presence of 
gravity. Does it then mean that the Lanczos potential as a geometrical quantity opens a new 
gateway to the quantum world in the framework of a metric theory of gravity? There have 
already been some studies which seem to give an affirmative answer to the question. Lanczos 
himself—the inventor of the potential tensor Lµνσ—showed an intimate relation of his ten-
sor to Dirac’s equation describing an electron with spin [3]. This is the reason why he named 
his tensor a ‘spintensor’. In another study, Novello and Ridrigues [20] have discovered a 
new interaction which can be thought of as a short-range counterpart of gravitation, as weak 
interactions are the short-range counterpart of electromagnetism. By using Lanczos tensor 
in Jordan’s formulation of gravity, they have discovered a model in which gravity and elec-
troweak interactions are described in a unique framework.

In the following, we discover some mores signatures of quantum physics that can be attrib-
uted to the Lanczos tensor. Here, we want to emphasize that the exposition on the Lanczos 
theory, expounded in the preceding sections, does not consider the field equations  of any 
particular theory of gravitation. Hence it holds in any metric theory of gravity formulated in a 
4-dimensional pseudo-Riemannian spacetime.

4.1.  Singularity avoidance and Lanczos potential

The existence of singularities in GR, where the classical spacetime curvature becomes infi-
nitely large, indicates a failure of the theory. There have been claims that the singularities of 
GR can be resolved by quantum effects. Although a self-consistent theory of quantum gravity 
remains elusive, there is a general consensus that removal of classical gravitational singulari-
ties is not only a crucial conceptual test of any reasonable theory of quantum gravity but also 
a prerequisite for it.

It has been shown that the classical cosmological singularities of various models can be 
avoided in quantum cosmology [21]. Singularity avoidance also occurs in the framework of 
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loop quantum cosmology, which provides a general scheme of singularity removal that can 
be used for explicit scenarios [22]. We have already mentioned some signatures of quantum 
effects attributed to the Lanczos potential. Let us see if the potential has any role in the avoid-
ance of classical singularities. As there does not exist any general agreement on the necessary 
criteria for quantum avoidance of singularities, it would be sufficient to check if the potential 
itself avoids blowing up at the singular points.

The standard big-bang models are constructed by assuming the cosmological principle 
which leads to a homogeneous and isotropic spacetime represented by the R-W line element 
(13). By solving Einstein’s equation  Rµν − 1

2 gµνR = −8πTµν for (13) and a perfect fluid 
Tµν, one gets the Friedmann models which show a singularity (big-bang) when the scale 
factor S of the universe vanishes, signifying a state wherein the entire space shrinks to zero 
volume with the density going to infinity.

Let us examine this situation in the accompanied Lanczos potentials derived for the line 
element (13). Since the curvature of the spacetime [given by the Ricci tensor in the case of the 
line element (13)] diverges at S  =  0 in general, one may expect the same fate for its Lanczos 
potential, particularly when it is the gravitational potential. Interestingly, all the Lanczos 
potentials obtained for this dynamic spacetime given by equations  (14)–(16) and (33) are 
finite7 and well-defined at S  =  0 for a general S = S(t) and for all values of the curvature 
parameter k. Let us recall that the only unknowns in the line element (13) are S(t) and k which 
are determined and linked to the perfect fluid Tµν by solving Einstein equation. Let us also 
recall that the coordinates r, θ appearing in equations (14)–(16) are the comoving coordinates 
of the R-W spacetime (13) and hence are independent of time. Thus the absence of any singu-
larity in Lµνσ given by these equations is beyond doubt.

On the one hand, the absence of a big bang-singularity in the Lanczos potential reassures 
that it is not a gravitational potential. On the other hand, it reveals a quantum signature of 
Lµνσ. This may thus be helpful to develop an effective description of quantum gravity physics 
which captures some quantum effects but is otherwise based on classical concepts.

4.2.  Gravitational analog of the Aharonov–Bohm effect

At the classical level, a charged particle is considered to be influenced only by the electric and 
magnetic fields at the location of the particle. At the quantum level however, the behaviour of 
a charged particle (confined to a region with vanishing electric and magnetic fields but non-
vanishing 4-potential) is affected by the action of an external magnetic field from which the 
charged particle is excluded. This happens because the wave functions display a phase-shift 
due to non-vanishing potentials even in regions where they give rise to no electrodynamic 
forces. This is the Aharonov–Bohm effect.

The electromagnetic analogy points out that the Lanczos potential should manifest an 
Aharonov–Bohm-like property in the case of gravity. In a metric theory of gravity, a genu-
ine gravitational field is associated with a non-vanishing Riemann tensor. The gravitational 
analog of the Aharonov–Bohm effect then suggests that the particles constrained to move in 
a region where the Riemann tensor vanishes, but not the Lanczos potential, may nonetheless 

7 The definitions (14)–(16) and (33) of the Lanczos potential for the spacetime (13) may not be exhaustive and 
hence cannot rule out the existence of any other value which blows up at S  =  0. (Such values, if exist, may however 
facilitate the possibilities of the existence of some non-vanishing minimum of S.) Nevertheless, the existence of the 
values of the tensor given by (14)–(16) and (33), do substantiate our point of view considered in some particular 
gauges.
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exhibit physical effects which result from a non-vanishing curvature in a region from which 
the particles are excluded.

Numerous gravitational analogies of the Aharonov–Bohm effect have been studied in the 
past. Nevertheless, this has been done largely by considering the metric tensor gµν as the 
gravitational analog of the electromagnetic potential Aµ (see, for instance [23]). However, we 
now know that this analogy is not quite correct and the true gravitational analog of the electro
magnetic potential Aµ is the Lanczos tensor Lαβγ.

A detailed study of the gravitational Aharonov–Bohm effect in terms of the Lanczos ten-
sor is beyond the scope of the present article; a separate article itself dedicated to this topic 
is required. Here we limit ourselves to showing the fulfillment of the minimum requirement 
expected from such an effect in the framework of a metric theory of gravity. That is, like 
its electromagnetic counterpart, the Lanczos tensor should be non-vanishing in the region 
where the particle is confined, viz. wherein the gravitational field vanishes and the spacetime 
becomes Minkowskian. This is indeed the case, as we shall see in the following—that the 
Lanczos tensor can very well be non-zero in the Minkowskian spacetime.

4.2.1.  Lanczos tensor for the Minkowskian spacetime.  Takeno has already shown that the 
Minkowskian spacetime too admits, unexpectedly, non-trivial values for the Lanczos poten-
tial tensor [10]. Although he has derived differential equations for the Lanczos tensor for this 
spacetime, it has not been bracketed explicitly in closed form. In order to derive it explicitly, 
let us consider the Minkowskian spacetime in the spherical polar coordinates:

ds2 = dt2 − dr2 − r2dθ2 − r2 sin2 θ dφ2.� (34)

For this case, Cµνσρ = 0 in equation (4) and the covariant derivatives reduce to the ordinary 
derivatives. With the aid of computational resources and taking guidance from the Takeno’s 
differential equations for the Lanczos tensor derived for a spherically symmetric spacetime, 
we obtain the following with a single non-vanishing independent component as the Lanczos 
potential for the line element (34):

Lrtt = rf (t), f (t) ≡ an arbitrary function of t,� (35)

which is though not trace-free in its present form. A trace-free form can be obtained by using 
equation (6) giving

L̄rtt =
2r
3 f (t),

L̄rθθ = r3

3 f (t),

L̄rφφ = r3

3 f (t) sin2 θ.


� (36)

We also obtain another set of Lanczos potential for the line element (34) given by

Ltrr = g(r), g(r) ≡ an arbitrary function of r,� (37)
with a single non-vanishing independent component; and

L̄trr =
2
3 g(r),

L̄tθθ = − r2

3 g(r),

L̄tφφ = − r2

3 g(r) sin2 θ.




� (38)
satisfying the gauge condition (5a) of trace-freeness. Clearly, a linear combination of two or 
more Lanczos potentials of this spacetime is again its Lanczos potential.

Thus there indeed exist, by coincidence or providence, non-vanishing potentials sup-
ported by the Minkowski spacetime, justifying the existence of a gravitational analog of the 
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Aharonov–Bohm effect. Assigning a ‘ground state’ potential field to the Minkowskian space-
time in the absence of any curvature, may appear puzzling and surprising at the first glance. 
Nevertheless, the existence of this non-vanishing Lµνσ with a vanishing Cµνσρ is a reminis-
cent of and analogous to the non-vanishing electromagnetic potential Aµ outside a solenoid 
where Fµν  vanishes in the Chambers’ experiment [19].

The existence of the non-trivial potentials given by (35)–(38) for the flat Minkowskian 
spacetime with vanishing Cµνσρ, cannot be ignored by taking advantage of the arbitrariness in 
the functions f (t), g(r) by assigning them to zero. This would be like forcing upon the theory 
a prejudiced interpretation, since a similar situation appears in the case of the R-W spacetime 
where one would not hesitate to accept a non-vanishing potential with Cµνσρ = 0.

4.3.  Gravitational waves and Lanczos potential

The fundamental observables of microscopic phenomena are described in terms of elementary 
particles and their collision. In the parallel between electrodynamics and gravity underlies the 
fact that both interactions are mediated by massless particles—the photon and the graviton 
respectively. This is the reason why both classical theories look similar. Plane wave solu-
tions of Maxwell’s equations lead most naturally to an interpretation in terms of the photon. 
Similarly, it is the wave solution in a gravitational theory, that is expected to lead to the con-
cept of graviton. Thus the theory of gravitational waves provides a crucial link between grav-
ity and the microscopic frontier of physics. Let us note that the interaction being mediated by 
virtual exchange of gravitons is also a prediction of a quantum theory of gravity.

It is already known (see, for example [16, 24]), that a Killing vector field Aµ in a Ricci-flat 
spacetime plays the role of the electromagnetic 4-potential and the source-free Maxwell equa-
tions, in Lorenz gauge (Aκ

;κ = 0), reduce to the wave equation

∇κ∇κAµ ≡ gαβAµ;α;β = 0,� (39)

where ∇κ∇κ is the curved-spacetime d’Alembertian operator. In close correspondence with 
this, the Lanczos potential also satisfies the homogeneous wave equation

∇α∇αLµνσ = 0,� (40)

in Lanczos gauge, in any Ricci-flat spacetime [25]. This simple and beautiful exact analytical 
solution has been paid the least attention while discussing the theory of gravitational waves in 
view of the recent observations of the gravitational waves emanated from the merger of binary 
black holes and neutron stars. Rather what is considered, in order to provide a theoretical 
explanation to these observations, is the numerical relativity simulations of Einstein’s equa-
tion of GR. A simple wave equation on a par with equation (40), is a linearized approximation 
of Einstein’s equation where the velocities are small and the gravitational fields are weak 
constrained by (27). Einstein’s equation then yields

∂κ∂κh̄µν = 0, h̄µν ≡ hµν − ηµνh/2,� (41)

in vacuum. Here ∂κ∂κ is the special-relativistic d’Alembertian operator. However, the stron-
gest gravitational-wave signals come from highly compact systems with large velocities, i.e. 
from the processes where the linearization assumptions (27) do not apply. Thus equation (41) 
is not competent to explain accurately the gravitational-wave emission from the violent pro-
cesses like the stellar core collapse and the mergers of black holes or neutron stars. But equa-
tion (40) consistently serves the purpose which hold in the most general case (in a Ricci-flat 
spacetime) in any metric theory of gravity formulated in a 4-dimensional pseudo-Riemannian 
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spacetime. In a general case where Rµν  is not necessarily vanishing, the corresponding wave 
equation is obtained as

∇α∇αLµνσ = ψ(Rµν , Lµνσ),� (42)

where the function ψ can be calculated in terms of the matter energy-momentum tensor by 
assuming a field equation, for instance Einstein’s equation in the case of GR.

Thus the Lanczos potential theory provides an outline of a classical gravitational field 
whose quantum description would be a massless spin-2 field propagating at the speed of light. 
Let us recall that in order to understand gravity on the same footing as the other interactions, 
one has to consider it as a spin-2 gauge theory.

5.  Summary and conclusion

Einstein’s enlightening insight—the local equivalence of gravitation and inertia—paved way 
for the geometrization of gravitation in the framework of a pseudo Riemannian spacetime. 
By considering the well-noted correspondence between gravitation and electrodynamics, we 
have developed another insight that the geometry of the spacetime is endowed with at least 
two fundamental geometric structures. First, the Riemann-Christoffel curvature tensor which 
is the nodal point for the unfolding of gravity in any metric theory. Second, a rank-three ten-
sor discovered by Lanczos which is enriched with extraordinary scientific and philosophical 
value, but has nevertheless gone largely unnoticed by mainstream relativists and cosmologists. 
The Lanczos tensor, which appears as the potential for the Weyl tensor, emerges as an inher-
ent structural element of any metric theory of gravity formulated in a 4-dimensional pseudo 
Riemannian spacetime, without considering the field equations of any particular theory.

By deriving expressions for the Lanczos tensor in some particularly chosen spacetimes, we 
have attempted to find its physical meaning and an adequate interpretation. It appears that the 
tensor does not represent a relativistic formulation of the potential of the gravitational field, 
despite being assigned to the potential of the Weyl tensor which shares a major part of the cur-
vature of spacetime. Rather, it is impregnated with signatures of quantum physics and opens 
up a new gateway to the quantum world in the framework of a metric theory of gravity. This 
is ascertained by various evidences which open up a novel vision in a geometric embodiment 
of gravity.

It appears that the consequences of the geometrization of gravitation go beyond what we 
know today and rich prospects stand open for investigation by considering the lead of the 
Lanczos potential tensor.
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