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Abstract
We present the results of our computation of the subregion complexity 
and also compare it with the entanglement entropy of a 2  +  1-dimensional 
holographic superconductor which has a fully backreacted gravity dual with 
a stable ground sate. We follow the ‘complexity equals volume’ or the CV 
conjecture. We find that there is only a single divergence for a strip entangling 
surface and the complexity grows linearly with the large strip width. During 
the normal phase the complexity increases with decreasing temperature, but 
during the superconducting phase it behaves differently depending on the 
order of phase transition. We also show that the universal term is finite and the 
phase transition occurs at the same critical temperature as obtained previously 
from the free energy computation of the system. In one case, we observe 
multivaluedness in the complexity in the form of an ‘S’ curve.

Keywords: AdS/CFT, entanglement entropy, phase transitions,  
holographic models, computational complexity, subregion complexity, 
holographic superconductor

(Some figures may appear in colour only in the online journal)

1.  Introduction

The AdS/CFT correspondence provides us a dual description of the d-dimensional strongly 
interacting field theories on the boundary and the d  +  1-dimensional weakly coupled gravity 
theories in the bulk [1, 2]. This correspondence has been used extensively in many contexts 
over the past decade. Two quantities on the boundary field theory play important roles in the 
quantum information theory: the entanglement entropy and the computational complexity. 
Surprisingly, both these quantities are reflected in the bulk geometry.

A Chakraborty

On the complexity of a 2  +  1-dimensional holographic superconductor

Printed in the UK

065021

CQGRDG

© 2020 IOP Publishing Ltd

37

Class. Quantum Grav.

CQG

1361-6382

10.1088/1361-6382/ab6d09

Paper

6

1

17

Classical and Quantum Gravity

IOP

2020

1361-6382/ 20 /065021+17$33.00  © 2020 IOP Publishing Ltd  Printed in the UK

Class. Quantum Grav. 37 (2020) 065021 (17pp) https://doi.org/10.1088/1361-6382/ab6d09

https://orcid.org/0000-0001-5140-3836
mailto:avikchak@usc.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab6d09&domain=pdf&date_stamp=2020-02-20
publisher-id
doi
https://doi.org/10.1088/1361-6382/ab6d09


2

The entanglement entropy is a measure of the quantum correlations of a quantum state 
and is extremely useful for studying black hole physics, condensed matter systems etc. Given 
a quantum mechanical system, let us divide it into two subsystems: A and its complement 
B = Ā . Then the reduced density matrix of A is given by taking the partial trace over the 
system B: ρA = TrB(ρtot), where ρtot is the total density matrix of the system. Then the entan-
glement entropy of the subsystem A is defined as the von Neumann entropy of the reduced 
density matrix ρA: SA = −TrA(ρA log ρA). The Ryu–Takayanagi (RT) conjecture tells us 
how to compute the entanglement entropy holographically [3, 4]. To be more specific, it 
tells that the holographic entanglement entropy of a subregion A with its complement in the 
d-dimensional boundary is given by:

S =
Area(γA)

4Gd+1
,� (1)

where γA is the extremal surface in the bulk, that extends from the boundary of the region A 
and Gd+1 is the Newton’s constant in the d  +  1-dimensional bulk.

On the other hand, the computational complexity of a quantum state can be roughly inter-
preted as the minimum number of gates required to implement a certain unitary operator 
to prepare this state from a given reference state. A precise definition of the complexity in 
the boundary CFT remains an open problem and recently there have been many attempts 
to address this question. Studies of circuit complexity of Gaussian states in the free field 
theories using Nielsen’s geometric approach and Fubini–Study metric have been investigated 
in [5–10]. A path-integral optimization procedure to define the computational complexity is 
explored in [11–14]. Recently, there have been two conjectures to compute the complexity in 
holography [15–18]. The first conjecture is known as the ‘complexity equals volume’ or CV. 
It says that for an eternal black hole the complexity is proportional to the spatial volume of 
the Einstein–Rosen bridge connecting two boundaries. The second one is known as the ‘com-
plexity equals action’ or CA which relates the complexity to the action on a Wheeler–DeWitt 
patch1. In this paper we will focus only on the CV conjecture. Based on the CV conjecture, 
Alishahiha in [32] has proposed that the holographic complexity of a subregion A is equal to 
the codimension-one maximal volume of the bulk enclosed by the entangling region and the 
RT surface that appears in the holographic entanglement entropy computation:

C =
Volume(γA)

8πRGd+1
,� (2)

where R is the AdS radius. This quantity is known as the holographic subregion complexity. 
In [33, 34] the subregion complexity has been explained as the purification complexity using 
tensor network model.

In the AdS/CFT framework, one important object which is widely investigated is the holo-
graphic superconductor [35–40]. In recent years there has been numerous work carried out to 
model such a holographic superconductor dual to gravity theories coupled to a Maxwell field 
plus a scalar. In general the task is highly non-trivial and finding a stable vacuum is difficult. 
Recently, [41] has developed one such model in the context of AdS4/CFT3. Their solution 
is fully back reacted and the ground state is highly stable. [42] has further discussed about 
the phase transition of this system by studying the entanglement entropy using RT prescrip-
tion. The action in [41] arises as an SO(3)× SO(3) invariant truncation of four-dimensional 
N = 8 gauged supergravity. One needs to numerically solve the equations of motion coming 

1 For a selection of references see [19–31] where the authors have developed and further extended these ideas.
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from this action. At high temperature, the solution is simply the RN-AdS solution. The scalar 
has zero value and hence there is no condensate. At low enough temperature, below some 
critical value a new type of solution exists with a non-zero charged scalar hair. This solution is 
thermodynamically preferred over the RN-AdS solution. Depending on the boundary condi-
tions, there are two types of solutions: one gives rise to a second order phase transition and the 
other one first order phase transition. At zero temperature, the solution is an RG flow between 
two AdS spaces. Because the complexity measures the difficulty of turning one quantum state 
into another, it is expected that the subregion complexity should capture behavior of the phase 
transition of such a model and can provide useful information as well. In [43–47] the authors 
have discussed the subregion complexity for different types of holographic superconductors 
which have backreaction included and we will compare our results with theirs in sections 3 
and 4.

In this paper we will present our results of the subregion complexity of the 2  +  1-dimen-
sional holographic superconductor system mentioned above. We will see that there is a single 
divergence and no other divergences during the phase transition, the complexity remains finite 
during both the first order and the second order phase transitions. The complexity curves go 
linearly with l for large strip width l. Moreover, the temperature where normal phase turns into 
a superconducting phase is exactly same in both the entanglement entropy and the subregion 
complexity computation and is equal to the transition temperature Tc obtained from the free 
energy calculation in [42]. Another interesting fact that we will describe in section 3 is that of 
the multivaluedness captured in different ways for both the cases. We will also see the discon-
tinuous but finite jump behavior of the complexity for the first order phase transition.

The outline of this paper is as follows. In the next section we will review the dual gravity 
background of our 2  +  1-dimensional superconductor system, along with the solutions in dif-
ferent temperature regime. In section 3 we will present our results for both the entanglement 
entropy and the subregion complexity of this system. We will conclude this paper with a short 
summary and discussions. In an appendix we will briefly present some analytic results of the 
entropy and the complexity for general d  +  1-dimensional AdS black holes and compare them 
with our results in section 3.

2.  Dual gravity background of 2  +  1-dimensional holographic superconductor

In this section we will briefly review the dual gravity background of our 2  +  1-dimensional 
holographic superconductor system. The Lagrangian that gives rise to this superconductor is 
[41, 42]:

e−1L =
1

16πG4

(
R− 1

4
FµνFµν − 2∂µλ∂µλ− sinh2(2λ)

2
(
∂µϕ− g

2
Aµ

)(
∂µϕ− g

2
Aµ

)
− P

)
,

� (3)
where the potential P  is given by:

P = −g2
(

6 cosh4 λ− 8 cosh2 λ sinh2 λ+
3
2
sinh4 λ

)
.� (4)

This is the geometry of a black hole coupled with scalar fields λ and ϕ with a non-trivial 
potential, Aµ being the gauge field. G4 is the 3  +  1-dimensional gravitational constant. We 
choose the ansatz for the metric, the gauge field and the scalar field as follows:

ds2 = −R2

z2 f (z)e−χ(z)dt2 +
R2

z2 (dx2
1 + dx2

2) +
R2

z2

dz2

f (z)
, At = Ψ(z) , λ = λ(z),

�

(5)
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where we have set the scalar ϕ to zero using the equations of motion and symmetry. Next, we 
define a dimensionless coordinate: z = Rz̃ . Then substituting this ansatz into the equations of 
motion arising from the Lagrangian (3) we get the following system of ordinary differential 
equations:

χ′ − 2z̃(λ′)2 − z̃eχ sinh2(2λ)Ψ2

8f 2 = 0 ,� (6)

(λ′)2 −

(
f ′

z̃f

)
+

z̃2eχ(Ψ′)2

4f
+

R2P
2z̃2f

+
3
z̃2 +

eχ sinh2(2λ)Ψ2

16f 2 = 0 ,� (7)

Ψ′′ +

(
χ′

2

)
Ψ′ − sinh2(2λ)Ψ

4z̃2f
= 0 ,� (8)

λ′′ +

(
− χ′

2
+

f ′

f
− 2

z̃

)
λ′ − R2

4z̃2f
dP
dλ

+
eχ sinh(4λ)Ψ2

16f 2 = 0 .� (9)

The horizon is the zero locus of f (z̃). We will assume that it occurs at z̃ = z̃H . There are three 
scaling symmetries of the equations of motion [42]:

t → γ−1
1 t, χ → χ− 2 ln γ1, Ψ → γ1Ψ,

t → γ−1
2 t, z → γ−1

2 z, R → γ−1
2 R,

xµ → γ−1xµ, f (z) → f (z), Ψ(z) → γΨ(z), λ(z) → λ(z), χ(z) → χ(z) .
� (10)

Using these scaling symmetries we can choose arbitrary values of the position of the event 
horizon, the coupling constant of gauged supergravity, g, and the asymptotic value of the field 
χ(z). We choose the following:

z̃H = 1 , g = 1 , lim
z→0

χ = 0 .� (11)

To solve the equations of motion we need to know the IR and the UV behavior of various 
fields. Near the IR, i.e. the horizon, the fields have an expansion:

λ(z̃) = λ(0) + λ(1)

(
1 − z̃

z̃H

)
+ ...,

χ(z̃) = χ(0) + χ(1)

(
1 − z̃

z̃H

)
+ ...,

f (z̃) = f (1)

(
1 − z̃

z̃H

)
+ ...,

Ψ(z̃) = Ψ(1)

(
1 − z̃

z̃H

)
+Ψ(2)

(
1 − z̃

z̃H

)2

+ ... .

�

(12)

Plugging this into the equations of motion (6)–(9) leaves us with three independent parameters 
which are our initial conditions for the numerical shooting method. We choose the following 
parameters:

λ(0) , χ(0) , Ψ(1) .� (13)
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In the UV, i.e. near the AdS boundary z̃ = 0, the fields have the following expansion:

λ(z̃) = λ1z̃ + λ2z̃2 + ...,

χ(z̃) = χ0 + λ2
0z̃2 + ...,

f (z̃) = 1 + λ2
0z̃2 + f3z̃3 + ...,

Ψ(z̃) = Ψ0 +Ψ1z̃ + ... .

�

(14)

Using our initial conditions we first fix λ(0) and χ(0). We then tune Ψ(1) so that either λ1 = 0 
or λ2 = 0. In general this will generate some non-zero value for χ0 which we shift using the 
scaling symmetry to χ0 = 0. The UV asymptotic values of the field λ define the vacuum 
expectation value of the charged operators in the theory and they are defined as:

O1 =
2λ1√
16πG4

, O2 =
2λ2√

16πG4R
.� (15)

Using the holographic dictionary, the UV asymptotics of the gauge field Ψ(z) define a chemi-
cal potential µ and the charge density ρ  given by:

µ =
eχ0/2√
16πG4

Ψ0 , ρ = − eχ0/2
R
√

16πG4
Ψ1 .� (16)

The temperature can be computed in the usual way by Wick-rotating the metric (5) to Euclidean 
signature and then imposing regularity at the horizon [41]:

T =
1

4πRz̃H

e−(χ(0)−χ0)/2

32

(
61 + 36 cosh

(
2λ(0)

)
− cosh

(
4λ(0)

)
− 8z̃2

Heχ
(0)
(
Ψ(1)

)2
)

.� (17)

At high temperature the solution is the familiar RN-AdS black hole. At low enough temper
ature, below some critical value, there exists a new type of solution which has scalar hair. By 
computing the free energy in both cases it has been shown that the hairy black hole solution 
is thermodynamically preferred to that of the RN-AdS solution and the transition temperature 
Tc has been obtained as well. See [41, 42] for further details.

2.1.  RN-AdS solution

The high temperature RN-AdS solution is obtained by setting λ(z) = 0 and χ(z) = 0. That 
means both the operators O1 and O2 vanish and there is no condensate. The metric and the 
gauge field are given by:

Ψ(z) =
2QR
zH

(
1 − z

zH

)
, f (z) = 1 − (1 + Q2)

z3

z3
H
+ Q2 z4

z4
H

.� (18)

Using equations (16) and (17) the temperature, the chemical potential and the charge density 
become:

T =
1

4πzH
(3 − Q2) , µ =

R√
16πG4

2Q
zH

, ρ =
R√

16πG4

2Q
z2

H
.� (19)
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2.2.  Hairy black hole solution

As mentioned before, at low enough temperatures there exists a new branch of solutions which 
is a black hole with a charged scalar hair. There is no analytic solution available. So we 
employ a numerical shooting technique to obtain the solution. We impose the initial condi-
tions in the IR and set χ(0) = 1. Then by tuning Ψ(1) we set either λ1 = 0 or λ2 = 0, meaning, 
either O2 or O1 being turned on respectively. Below the critical temperature Tc this new type 
of solution represents the superconducting phase with non-zero condensate.

2.3.  Zero temperature solution

It is argued in [48] that the zero temperature solution is an RG flow between two AdS4 spaces. 
We will again use the numerical shooting technique and impose the initial conditions in the 
IR. Since there is no black hole horizon at zero temperature, the IR is now at z̃ → ∞. In the 
IR, the fields have an expansion of the form [41]:

λ(z̃) = log(2 +
√

5) + λ1z̃−α + ...,

Ψ(z̃) = ψ1z̃−β + ...,

f (z̃) =
7
3
+ ...,

χ(z̃) = χ0 + ... ,

�

(20)

where,

α =

√
303
28

− 3
2

, β =

√
247
28

− 1
2

.� (21)

As before, using the scaling symmetries (10) of the equations of motion, we can fix the values 
of Ψ1 and χ0 and then tune the free parameter λ1 to either have λ1 = 0 or λ2 = 0 in the UV. 
We set Ψ1 = 1 and χ0 = 4.

3. The entanglement entropy and the subregion complexity

It is instructive to reproduce the results of the entanglement entropy reported in [42] for com-
pleteness and also so that we can compare that with our subregion complexity results in the 
next section. To that end, let us choose a strip region A with width l and length L → ∞ in a 
constant time slice (figure 1). Now following the RT proposal, we need to find the minimal 
surface γA bounded by the perimeter of A and that extends into the bulk of the geometry. 
Then the area of this minimal surface will give us the entanglement entropy of the subregion 
A using equation (1) and the volume enclosed by this minimal surface and the strip region A 
will give us the subregion complexity using equation (2). Since our background is static we 
can compute this volume by slicing the bulk with planes of constant z. See [49] for a review 
on the computation of volumes of subregions in various AdS black hole geometries. In [19] 
the authors have further discussed the divergence structure of the volume and a covariant gen-
eralization of computing the volume which includes time-dependent geometries as well. The 
2-dimensional minimal surface is given by minimizing the area functional:

Area(γA) = L
∫ l/2

−l/2
dx

R2

z2

(
1 +

z′(x)2

f (z)

)1/2

.� (22)
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The minimization problem leads to the Hamiltonian which is independent of x and hence this 
is a constant of motion:

1
z2
∗
=

1
z2

1√
1 + z′(x)2

f (z)

,

�

(23)

where z  =  z* is the turning point of the minimal surface in the bulk. This equation determines 
the minimal surface γA:

dz
dx

=

√
(z4

∗ − z4) f (z)
z2 .� (24)

Since z  =  z* is the turning point of the minimal surface in the bulk we will require that:

l(z∗)
2

=

∫ z∗

0
dz

z2
√

(z4
∗ − z4) f (z)

.� (25)

Then using (1) and (23) or (24), the entanglement entropy becomes:

4G4S = 2LR2
∫ z∗

ε

dz
z2
∗

z2

1√
(z4

∗ − z4) f (z)
= 2LR2

(
s +

1
ε

)
,� (26)

where s is the finite part and has dimension of inverse length [42]. Note that we have intro-
duced a small cut-off ε to regularize the area integral.

To compute the subregion complexity, we need to find out the volume enclosed by the 
minimal surface γA and the strip region A. This can easily be done by integrating the inside 
of the minimal surface:

V(z∗) = 2LR3
∫ z∗

ε

dz
1

z3
√

f (z)
x(z),� (27)

l

Ly

z

BB A

x

z = z∗

Figure 1.  The strip geometry considered in this paper. Here z denotes the radial 
direction in the dual bulk geometry AdS4. The strip width is l and the length is L which 
can be taken to infinity. The boundary is at z  =  0 where the field theory lives and z  =  z* 
denotes the turning point of the minimal surface inside the bulk.

A Chakraborty﻿Class. Quantum Grav. 37 (2020) 065021
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where,

x(z) =
∫ z∗

z
du

u2
√
(z4

∗ − u4) f (u)
.� (28)

Then using (2) and (27) the subregion complexity becomes:

8πGRC = 2LR3

(
cfin +

x(0)
2ε2

)
,� (29)

where, cfin is the finite part of the subregion complexity and has dimension of inverse length. 
Note that,

x(0) =
∫ z∗

0
dz

z2
√
(z4

∗ − z4) f (z)
≡ l(z∗)

2
.� (30)

Since the diverging term has z* dependence we should divide the quantity in the big parenthe-
sis in equation (29) by x(0) and then plot this re-scaled finite complexity c as a function of the 
strip width l or the temperature T. This ensures that we subtract the same diverging term for 
each z*. Finally, symmetries allow us to use the following dimensionless quantities to analyze 
our system:

T
√
ρ

,
O1√
ρ

,
O2

ρ
,
√
ρ l,

s
√
ρ

,
c
ρ

.� (31)

3.1.  O1 superconductor

Figure 2 shows our results for the entanglement entropy s and the subregion complexity c as 

functions of the strip width l for a fixed temperature: R1/2

(16πG4)1/4
T√
ρ = 0.053, which is below the 

transition temperature Tc. In both cases we see the expected linear growth behavior for large 
l (for the entanglement entropy this is known as the ‘area law’) and we find that the entropy 
and the complexity are lower in the superconducting phase than that of the normal phase. The 
RN-AdS case having higher entropy than the superconducting case represents the fact that the 
degrees of freedom have condensed in the latter case. As we decrease the temperature all the 
curves still go linearly for large l though the slopes of the curves in superconducting cases are 
smaller. In figure 3 we plot our results for T  =  0. Remember that the zero temperature solu-
tion is an RG flow between two AdS vacua [41, 48]. Now, large l probes more deeply into the 
IR and for empty AdS since there is no horizon, the IR is at z̃ → ∞ where f (z̃) is constant. 
Hence, the entropy and the complexity approaching different constant values for large l during 
the superconducting phase is not surprising.

In figure 4 we present how s and c change with the temperature while the strip width l is 
kept fixed. For the entropy plot, the physical curve is determined by choosing the point of low-
est entropy for a given temperature [42]. As we lower the temperature the entropy decreases 
in both the phases and there is a discontinuity in the slope at the transition temperature Tc. On 
the contrary, as we lower the temperature the complexity increases during the normal phase 
but decreases during the superconducting phase. At some low temperature, the complexity 
in the superconducting phase rises slightly and then drops to a finite minimum value at zero 
temperature. Note that we do not plot all the superconductor results due to lack of numerical 
control in our shooting technique. Similar to the entropy plot, there is again a discontinuity in 

A Chakraborty﻿Class. Quantum Grav. 37 (2020) 065021
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the slope at the transition temperature Tc ≈ 0.1199
√
ρ(16πG4)

1/4

R1/2 . Also note that both plots lead 

to the same transition temperature Tc.

3.2.  O2 superconductor

Figure 5 again shows our results for the entanglement entropy s and the subregion complex-

ity c as functions of the strip width l for a fixed temperature: R1/2

(16πG4)1/4
100T√

ρ = 0.305. We 

choose the fixed temperature to be below the transition temperature Tc as before. For O2 

Figure 2.  The entanglement entropy (a) and the subregion complexity (b) as 

functions of the strip-width l for the O1 superconductor for a fixed temperature: 
R1/2

(16πG4)1/4
T√
ρ = 0.053. The red dashed curve is the Reissner–Nordstrom solution and 

the solid blue curve is the superconductor solution.

Figure 3.  The entanglement entropy (a) and the subregion complexity (b) as functions 

of the strip-width l for the O1 superconductor for a fixed temperature: R1/2

(16πG4)1/4
T√
ρ = 0. 

The red dashed curve is the Reissner–Nordstrom solution and the solid blue curve is the 

superconductor solution.

A Chakraborty﻿Class. Quantum Grav. 37 (2020) 065021
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superconductor the critical temperature is given by: Tc ≈ 0.3638
√
ρ(16πG4)

1/4

R1/2 . In [42], the ori-

gin of this multivaluedness has been argued to be the non-monotonic behavior of f (z), which 

applies to the results of the complexity as well. In figure 6 we plot our results for T  =  0. In 
general both the plots behave similar to that of the O1 case for large l. But there are few crucial 
differences here now. For the temperature below the critical temperature Tc both the quantities 
now show multivaluedness for a given range of l. For the entropy this fact is reflected in the 
form of a swallowtail [42, 50]. In the complexity plot this is captured as an ‘S’ curve. Also 

Figure 4.  The entanglement entropy (a) and the subregion complexity (b) 
as functions of the temperature T for the O1 superconductor for a fixed l: 
√
ρ(16πG4)

1/4R−1/2l/2 = 2.5. The red dashed(or dotted) curve is the Reissner–
Nordstrom solution and the solid blue curve is the superconductor solution. The black 
solid line denotes the transition temperature Tc. Since the zero temperature solution is 
exactly known, we include our results for T  =  0 in the plot.

Figure 5.  The entanglement entropy (a) and the subregion complexity (b) as 

functions of the strip-width l for the O2 superconductor for a fixed temperature: 
R1/2

(16πG4)1/4
100T√

ρ = 0.305. The red dashed curve is the Reissner–Nordstrom solution and 

the solid blue curve is the superconductor solution.

A Chakraborty﻿Class. Quantum Grav. 37 (2020) 065021



11

note that the superconducting phase now has higher complexity than the normal phase in the 
region of multivaluedness and for large l as well which is in contrast with the entropy plot. It 
has been observed that in the O2 case, f (z) can develop a minimum and a maximum (at low 
temperatures). When the turning point of the minimal RT surface in the bulk, z* lies in the 
neighborhood of the minimum of f (z), the entropy and the complexity become multivalued. 
See [42] for further details and a clear demonstration of how it happens using the domain wall 
analysis. We show the behavior of f (z) in figure 7. In figure 8 we compare different parts of 
the entanglement entropy and the subregion complexity curves for zero temperature by map-
ping out the corrsponding features of the multivalued regions. From the entropy plot (figure 
8(a)) we see that the physical curve must follow the sequence 6 → 2 → 1 as explained in [42]. 
Accordingly, there is a finite jump towards a lower value in the complexity plot (figure 8(b)) 

from 6 → 2 → 1.
We present in figure 9 how s and c change with the temperature while the strip width l is 

kept fixed. There is again a discontinuity in the slope at the transition temperature Tc in both 
the cases. Moreover, as we lower the temperature, the value of the entropy drops discon-
tinuously whereas the value of the complexity rises discontinuously. There is another special 
feature in this case. For our chosen value of l, there is an additional discontinuity in the slope 
of the decreasing entropy at some lower temperature and the entropy curve is a combination 
of two types of curve joined by this new discontinuity. This special feature is due to a new 
length scale in the theory as argued in [42]. In the complexity plot, correspondingly we see 
a discontinuous but finite jump exactly at the temperature where the above-mentioned new 
discontinuity shows up in the entropy plot.

4.  Summary and outlook

In summary, we have performed a numerical shooting technique to compute the subregion 
complexity for a 2  +  1-dimensional holographic superconductor using the ‘Complexity 
equals Volume’ or the CV conjecture. Our analysis reveals that apart from the universal 

Figure 6.  The entanglement entropy (a) and the subregion complexity (b) as functions 

of the strip-width l for the O2 superconductor for a fixed temperature: R1/2

(16πG4)1/4
100T√

ρ = 0. 

The red dashed curve is the Reissner–Nordstrom solution and the solid blue curve is the 

superconductor solution.
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divergent term, there are no other divergences in the complexity as far as the phase transition 
is concerned. The subregion complexity grows linearly with l for large strip width l. From our 
computation it is clear that the complexity captures phase transition as well and the transition 
temperature Tc is exactly same as computed from the free energy analysis of the system. Same 
Tc has been read off from the entropy versus temperature plot as well. This is not surprising 
since the gravity background is dual to a field theory with a single transition temperature and 
hence our result is a nice confirmation of holography2. Apart from that, the complexity actu-
ally behaves differently. Specially, for the first order phase transition, the complexity of the 
superconducting phase is higher than the normal phase, and it also increases with decreasing 
temperature. The second order phase transition rather shows a similar behavior to that of the 
entropy analysis, though, at very low temperature the complexity behavior is quite strange and 

Figure 7.  (a) Behavior of f (z) for the O1 superconductor. This has been shown for: 
R1/2

(16πG4)1/4
T√
ρ = 0.053. (b) Behavior of f (z) for the O2 superconductor. This has been 

shown for: R1/2

(16πG4)1/4
100T√

ρ = 0.305.

Figure 8.  A comparison of the multivalued regions of the entanglement entropy (a) and 
the subregion complexity (b) as functions of the strip-width l for the O2 superconductor 

for a fixed temperature: R1/2

(16πG4)1/4
T√
ρ = 0.

2 We thank the anonymous referee for pointing this out.
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the physics behind it is yet to be investigated. We have shown the zero temperature solution in 
all these cases as well. We have also observed the multivaluedness similar to the entropy plot 
except the fact that in this case the multivaluedness is of different form, namely in the form of 
an ‘S’ curve. Finally, the behavior of the complexity suggests that it may be used as another 
independent probe to the physics of the phase transition.

Our results are in agreement with that reported in [44] and in [45] where the authors have 
studied 1  +  1-dimensionsal s-wave and p -wave holographic superconductor respectively: the 
complexity remains finite during the phase transition3 and the subregion complexity plot leads 
to the same transition temperature as observed from the entropy plot. [45] has also observed 
multivaluedness and discontinuous but finite jump in the complexity during the first order 
phase transition. While this project was near completion two new articles appeared in the 
literature: in [46] the authors have studied the time dependent complexity and how the com-
plexity (of formation) scales with the temperature where the scaling factor is a function of the 
superconductor model parameters by using the CV conjecture in an asymptotically AdSd+1 
geometry. In [47] the authors have investigated the subregion complexity for the Stückelberg 
superconductor which is very similar to our set up in this paper. Apart from the second order 
phase transition result, all other main results reported here agree with theirs as well. During 
the second order phase transition the complexity of the superconducting phase is opposite to 
what they have found4,5.

Figure 9.  The entanglement entropy (a) and the subregion complexity (b) 
as functions of the temperature T for the O2 superconductor for a fixed l: 
√
ρ(16πG4)

1/4R−1/2l/2 = 2.5. The red dashed(or dotted) curve is the Reissner–
Nordstrom solution and the solid blue curve is the superconductor solution. The black 
solid line denotes the transition temperature Tc. Since the zero temperature solution is 
exactly known, we include our results for T  =  0 in the plot.

3 Notice that our results do not match with the results reported in [43]. They have found that during the phase trans
ition the complexity becomes infinite for a 1  +  1-dimensional s-wave superconductor.
4 See also [51] for analytic expressions of the complexity in the high and the low temperature regime for the 
Schwarzschild–AdS and the RN-AdS black holes.
5 In [52] the authors have calculated holographic entanglement entropy, subregion complexity and fisher informa-
tion metric for a class of nonsupersymmetric D3 branes and also reviewed the same for the AdS black brane as well.
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There are multiple questions which need to be answered. It has been reported that the 
complexity decreases with increasing temperature during the second order phase transition, 
but in this paper we actually found that it behaves quite similar to that of the entropy for the 
superconducting phase. It seems like the temperature dependence of the complexity is not 
universal. It will be nice to see if there is any deeper physics behind it. Also, the behavior of 
the complexity of the O1 superconductor at low temperature needs some careful explanation. 
Some other questions that we might ask is what happens if we compute the complexity using 
the CA conjecture and how the complexity evolves after a thermal quench? Finally, what all 
of these mean in the the dual field theory is worth exploring. We will try to answer some of 
these in future work.
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Appendix. The subregion complexity in (d  +  1)-dimensions

Let us consider a general asymptotically AdSd+1 metric:

ds2 =
1
z2 [ f0(z)dt2 + f1(z)dx2

µ + f2(z)dz2],
� (A.1)

where f 0(z), f 1(z) and f 2(z) are some arbitrary functions of z with f i(z  =  0)  =  1. We choose the 
entangling region as a strip of width l and length L → ∞. The entanglement entropy then 
turns out to be the following [49]:

S(z∗) =
2Ld−2

4GN

∫ z∗

ε

dz
zd−1

√
f2f d−1

1√
1 − f d−1

1 (z∗)z2d−2

f d−1
1 (z)z2d−2

∗

,� (A.2)

and the subregion complexity is given by:

C(z∗) =
2Ld−2

8πGR

∫ z∗

ε

dz
√

f d−1
1 f2

zd x(z),� (A.3)

where,

x(z) =
∫ z∗

z
dZ

√
f2(Z)
f1(Z)√

f d−1
1 (Z)z2d−2

∗

f d−1
1 (z∗)Z2d−2 − 1

.� (A.4)
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As usual, z  =  z* is the turning point of the minimal surface inside the bulk and ε is a small UV 
cut-off. The strip width l is:

l(z∗)
2

=

∫ z∗

ε

dz

√
f2(z)
f1(z)√

f d−1
1 (z)z2d−2

∗

f d−1
1 (z∗)z2d−2 − 1

.� (A.5)

If we choose: f0 = −R2f (z)e−χ(z), f1 = R2, f2 = R2

f (z)  and d  =  3, we arrive at our results 

(25)–(29).
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