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Abstract
We discuss a λϕ4 + ρϕ6 scalar field model defined in the Euclidean section of 
the Schwarzschild solution of the Einstein equations  in the presence of 
multiplicative noise. The multiplicative random noise is a model for fluctuations 
of the Hawking temperature. We adopt the standard procedure of averaging 
the noise dependent generating functional of connected correlation functions 
of the model. The dominant contribution to this quantity is represented by a 
series of the moments of the generating functional of correlation functions 
of the system. Positive and negative effective coupling constants appear in 
these integer moments. Fluctuations in the Hawking temperature are able to 
generate first-order phase transitions. Using the Gaussian approximation, we 
compute 〈ϕ2〉 for arbitrary values of the strength of the noise. Due to the 
presence of the multiplicative noise, we show that 〈ϕ2〉 near the horizon must 
be written as a series of the the renormalized two-point correlation functions 
associated to a free scalar field in Euclidean Rindler manifold.

Keywords: Euclidean Schwarzschild manifold, Landau–Ginzburg model, 
multiplicative noise

1.  Introduction

In this paper we investigate phenomena described by a semi-classical theory of gravity, where 
quantized matter fields are defined in a classical space-time. One of the most interesting pre-
diction in this scenario is that a spherical uncharged non-rotating black hole emits thermal 
radiation. In a field theory framework, the above discussed result indicates a deep connection 
between geometric event horizons and thermal effects [1–5]. In the extended Schwarzschild 
solution of the Einstein equations it can be shown that the gravitational entropy is proportional 
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to the area of the event horizon. With the advent of the gravitational wave astronomy, the semi-
classical gravity paradigm can be tested [6, 7].

This work is motivated by two points that have been discussed by many authors. The first 
one is that a deeper understanding of the black hole thermodynamics and the effects of the 
geometric event horizon may be achieved introducing the idea of a quantum open systems 
[8, 9]. The second one is that is necessary to investigate the effects of fluctuations of the 
Hawking temperature [10, 11]. To overcome technical difficulties connected with the fluctua-
tions of the black hole mass, here we use a quite simple and useful approach. First, to study 
open systems the literature have been used differential equations with random coefficients. 
Also in the λϕ4 scalar model at finite temperature, the coefficient of ϕ2 is a function of the 
temperature. Therefore, the simplest assumption we can make to model fluctuation of the 
Hawking temperature is to add a random contribution to this coefficient. This random coef-
ficient can be considered as a local fluctuation of the Hawking temperature. For instance, the 
pseudo Riemannian Schwarzschild solution of the Einstein equations, after a Wick rotation 
becomes a Riemannian metric for r  >  2M, where the singularity at r  =  2M is removed if the 
Euclidean time is periodic with period 8πM. This periodicity in imaginary time defines a 
canonical ensemble at temperature T = 1/8πM  [12–14]. Here, we introduce multiplicative 
noise in a scalar field model defined in the Euclidean section of the Schwarzschild solution. 
We use the term multiplicative noise to the situation where the noise couples quadratically 
with the scalar field. It is important to point out that our approach is quite different from sto-
chastic semi-classical gravity, where the induced fluctuations of the gravitational field can be 
obtained studying the Einstein Langevin equations. In this approach it is possible to obtain a 
self-consistent study of horizon fluctuations [15, 16].

The aim of this paper is to discuss connections between gravitational physics, statistical 
mechanics and statistical field theory. We study the λϕ4 + ρϕ6 scalar model defined in the 
Euclidean section of the Schwarzschild solution of the Einstein equations in the presence of 
noise. We are interested to use the approach that have been used in the theory of nonlinear 
dynamical systems with the presence of multiplicative noise [17–19]. The main characteris-
tic of these equations is the introduction of a source of disorder or random noise in models 
describing macroscopic phenomena. A fundamental question is how the noise couples with 
the dynamical variables. On general grounds, the models are usually defined with an additive 
internal noise or a multiplicative external noise term. The origin of internal noise is an aver-
age effect of microscopic degree of freedom that are not otherwise taken into account. On 
the other hand in the scenario discussing noise in spatially extended systems, a multiplica-
tive noise is an external fluctuating parameter. As it has been discussed in the literature, the 
presence of multiplicative noise has interesting consequences, as for example noise-induced 
phase transitions [20, 21]. In this work, we discuss phase transitions generated by multipli-
cative noise coupled with a scalar field defined in Euclidean black hole background. This 
multiplicative noise model is the random mass d-dimensional Landau–Ginzburg model on a 
black hole background. In the λϕ4 scalar model, the renormalized squared mass is a regular 
function of the temperature. The behavior of scalar field models at finite temperature has been 
widely discussed in the literature [22–25]. In a generic d-dimensional Euclidean space in the 
one loop approximation one can show that the renormalized squared mass is a sum of two 
terms: one correspond to zero temperature and other explicitly temperature dependent i.e. 
m2(β) = m2

0 + δm2
0(β). Therefore, as it was discussed above, a random contribution δm2

0(x) 
added to m2

0 can be considered as a local perturbation of the Hawking temperature. This 
approach was also used by Dotsenko where a random temperature Landau–Ginzburg model 
defined in a d-dimensional Euclidean space was investigated [26]. Following these ideas, we 
introduce a zero mean Gaussian white noise in the λϕ4 + ρϕ6 scalar field model defined in 
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Euclidean black hole background. The ϕ(x)6  contribution must be introduced to obtain a sta-
ble theory. We would like to stress that in principle one must include a random contribution to 
the time derivative kinetic term following the scenario discussed in [27]. As we discussed we 
are studying quantized matter fields in a classical space-time. Another argument to avoid this 
random contribution is the following: the mass introduces a characteristic length, therefore 
our description of the fluctuations is valid for distances larger than this characteristic length. 
By this reason, it is not necessary to introduce randomness in the time derivative operator.

In the scenario of continuous phase transitions in equilibrium statistical mechanics, the 
usual approach is to use functional methods. To implement a functional approach for scalar 
fields and noise in the Euclidean section of the Schwarzschild solution of the Einstein equa-
tions, it is necessary to define a functional integral of the system using the scalar action with 
the presence of noise. From the generating functional of correlation functions for one realiza-
tion of the noise of the model, we define the generating functional of connected correlation 
functions also for one realization of the noise. In order to obtain the noise averaged generating 
functional of the connected correlation functions of the model, we use the distributional zeta-
function method [28–31]. At this point, with these mathematical tools, it is worth emphasiz-
ing how it is possible to go one step further starting from the Fawcett and Hawking results  
[32, 33]. These authors discussed the behavior of a scalar field near a evaporating black hole. 
A scalar field in the ordered phase can go from a spontaneous broken symmetry phase to the 
disordered phase near a hot black hole, since at sufficiently high temperature a spontaneous 
broken symmetry can be restored. Now, suppose a very high temperature black hole and the 
scalar field in the disordered phase. Taking into account fluctuations in the Hawking temper
ature, it appears transitions from a disordered phase to an ordered ones with decay of metasta-
ble phases with first-ordered phase transitions.

For instance, random noise was introduced in space-times with event horizons in a quite 
different situation. In [34, 35] it was investigated the influence of fluctuations in the event 
horizon on the transition rate of a two-level system interacting with a quantum field in Rindler 
space. The main result of these works is that in the case of a scalar field interacting with a 
Unruh–Dewitt detector, the correction to the response function has a Fermi–Dirac factor. For 
the case of massless Dirac field coupled to a detector, i.e. a fermionic monopole moment 
operator, the spectral density of fermion field is also modified due to the horizon fluctuations, 
where it appears a Bose–Einstein contribution.

The organization of this paper is the following. In section  2 we discuss the Euclidean 
section of the Schwarzschild solution of the Einstein equations. In section 3 we discuss the 
structure of the fields in each integer moment of the generating functional of all correlation 
functions. In section 4, we compute 〈ϕ2〉 in the weak- and strong-noise situations. In section 5 
to find the 〈ϕ2〉 in the presence of multiplicative noise near the horizon, we discuss the two-
point correlation function in Euclidean Rindler manifold. Conclusions are given section 6. We 
assume that � = c = kB = G = 1.

2.  Interacting scalar field in Euclidean section of the Schwarzschild solution

In classical statistical mechanics of Hamiltonian systems, any state is a probability measure 
on the phase space. The expectation value of any observable can be obtained from an average 
constructed with the Gibbs measure. For systems described in the continuum with infinitely 
many degrees of freedom, this framework can be maintained. For instance, Euclidean func-
tional methods with functionals and probability measures, introduced classical probabilistic 
concepts in quantum field theory [36]. The Euclidean correlation functions, i.e. the Schwinger 
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functions, are the analytic continuation of vacuum expectation values for imaginary time of 
the Wightman functions [37–40]. For a scalar field, these n-point correlation functions, which 
are the moments of probability measure, are defined by

〈ϕ(x1)...ϕ(xk)〉 =
1
Z

∫
[dϕ]

k∏
i=1

ϕ(xi) exp (−S(ϕ)) ,� (1)

where [dϕ] is a functional measure, i.e. a measure in the space of all field configurations, given 
by [dϕ] =

∏
x dϕ(x) and S(ϕ) is the Euclidean action of the system. To discuss non-trivial 

effects generated by random noise on a Euclidean black hole background, we must briefly 
present the Schwarzschild solution.

The pseudo Riemannian Schwarzschild metric is defined by the line element

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2).� (2)

For τ = it we obtain a positive Euclidean metric for r  >  2M. Introducing the radial coordinate

x = 4M

√(
1 − 2M

r

)
,� (3)

the line element becomes

ds2 =
x2

16M2 dτ 2 +
r4

16M4 dx2 + r2(dθ2 + sin2 θdφ2).� (4)

The singularity at r  =  2M, x  =  0 is removed if τ  is a periodic coordinate with period 8πM. 
Assuming that the imaginary time coordinate τ  is periodic, we obtain a singularity free posi-
tive definite Euclidean metric. In fact, the manifold defined by 0 � x � 4M and 0 � τ � 8πM 
is the Euclidean section of the Schwarzschild solution.

Let us now consider a λϕ4 + ρϕ6 scalar model without noise defined in this positive defi-
nite Euclidean metric. In order to generate the correlation functions of the model by functional 
derivatives, as usual, a fictitious source is introduced [41]. The generating functional of the 
correlation functions of the model is

Z( j) =
∫

∂Ω

[dϕ] exp

(
−S(ϕ) +

∫
d4x

√
g j(x)ϕ(x)

)
,� (5)

where the Euclidean action is S(ϕ) = S0(ϕ) + SI(ϕ). In the above equation [dϕ] is again a 
functional measure. The free field effective action S0(ϕ) is given by

S0(ϕ) =

∫
d4x

√
g

1
2
ϕ(x)

(
−∆+ m2

0

)
ϕ(x)� (6)

where ∆ is the Laplace–Beltrami operator in the Euclidean Schwarzschild metric, g is the 
determinant of the positive definite metric and SI(ϕ) is the self-interacting non-Gaussian 
contribution, defined by

SI(ϕ) =

∫
d4x

√
g
(
λ0

4
ϕ4(x) +

ρ0

6
ϕ6(x)

)
.� (7)

The symbol ∂Ω in the functional integral means that the field ϕ(x) satisfies periodic boundary 
condition in the Euclidean time and we impose Dirichlet boundary conditions for some large 
radius. In this procedure, surface divergences can appear, however they can be eliminated 
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introducing counterterms as surface interaction [42–45]. As we will see, due to the noise 
effects, there is a sign change in the quartic effective coupling constant. Hence the introduc-
tion of the ϕ6 term guarantees that there will be a ground state. For a strong noise situation, 
the absence of such term could lead to a collapse of the system.

The Laplacian in the Euclidean Schwarzschild coordinates is defined as

∆ϕ = −
(

1 − 2M
r

)−1
∂2ϕ

∂τ 2 − 1
r
∂

∂r

(
r(r − 2M)

∂ϕ

∂r

)
− 1

r2

1
sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)

− 1
r2

1
sin2 θ

∂2ϕ

∂φ2 .

�

(8)

In order to proceed let us study the free field solution discussed in [32]. The equation of 
motion for the free scalar field, i.e. neglecting the non-Gaussian contribution, reads

(
−∆+ m2

0

)
ϕ(x) = 0.� (9)

A standard procedure to solve the above equation consists in using the following separation 
of variables:

ϕ = T(τ)R(r)Y(θ,φ).� (10)

As the imaginary time is a periodic function of period β = 8πM , one finds

Tn(τ) =
1√
β
exp

(
i
2πn
β

τ

)
,� (11)

where n is an integer. In (10), Y(θ,φ) will give the well-known spherical harmonics. The 
radial equation is written as

−1
r

d
dr

(
r(r − 2M)

dRnlp

dr

)
− V(r)Rnlp = 0,� (12)

where

V(r) =
l(l + 1)

r2 +

(
2πn
β

)2 r
r − 2M

,� (13)

and p  refers to the radial eigenvalues. In our case, p  is an integer. Instead of discussing the 
radial solutions, we are interested to discuss the effects of noise in the Euclidean Schwarzschild 
manifold. Therefore let us briefly investigate the correlation functions of the model in the 
absence of the noise. In this situation, the n-point correlation functions read

〈ϕ(x1)...ϕ(xk)〉 = Z−1( j)
1

(
√

g)k

δkZ( j)
δj(x1)...δj(xk)

∣∣∣∣
j=0

,� (14)

where Z( j)|j=0 is defined as

Z( j)|j=0 =

∫

∂Ω

[dϕ] exp
(
−S(ϕ)

)
.� (15)

These moments of the probability measure are the sum of all diagrams with k external 
legs, including disconnected ones, with exception of the vacuum diagrams. The generating 
functional of n-point connected correlation functions W( j) is defined as W( j) = ln Z( j). The 
order parameter of the model without noise 〈ϕ(x)〉 is given by
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〈ϕ(x)〉 = Z−1( j)
1
√

g
δZ( j)
δj(x)

∣∣∣∣
j=0

.� (16)

To discuss the effects of random noise we are assuming that is modeled by a zero mean 
Gaussian white noise. The two-point correlation of the noise is defined by

E[δm2
0(x)δm2

0(y)] = σδd(x − y),� (17)

where σ is a small parameter that describes the strength of the noise and E[· · · ] means the 
average over the ensemble of all the realizations of the noise. This is the situation of a scalar 
field coupled to a random variable with Gaussian correlations. Since we are interested to 
investigate the model in the presence of a multiplicative noise, a random contribution δm2

0(x) 
is added to m2

0. In this case the functional action of the model becomes

S(ϕ, δm2
0) =

∫
ddx

√
g
[

1
2
ϕ(x)

(
−�+ m2

0 − δm2
0(x)

)
ϕ(x) +

λ0

4
ϕ4(x) +

ρ0

6
ϕ6(x)

]
.� (18)

Now, let us study the n-point correlation functions associated with the system in the pres-
ence of multiplicative noise. The generating functional of correlation functions for one reali-
zation of the noise is given by

Z(δm2
0; j) =

∫

∂Ω

[dϕ] exp

(
−S(ϕ, δm2

0) +

∫
ddx

√
gj(x)ϕ(x)

)
,� (19)

where a fictitious source, j(x) as usual is introduced. The n-point correlation function for one 
realization of the noise reads

〈ϕ(x1) · · · ϕ(xn)〉δm2
0
=

1
Z(δm2

0)

∫
[dϕ]

n∏
i=1

ϕ(xi) exp
(
−S(ϕ, δm2

0)
)

,� (20)

where the noise dependent functional integral that appears in the above equation is defined 
as Z(δm2

0) = Z(δm2
0, j)|j=0. Similarly to a system without noise, one can define a generat-

ing functional for one noise realization, W0(δm2
0, j) = lnZ(δm2

0, j). Now, we can introduce a 
noise-averaged correlation function as following

E
[
〈ϕ(x1) · · ·ϕ(xn)〉δm2

0

]
=

∫
[dδm2

0]P
(
δm2

0

)
〈ϕ(x1) · · ·ϕ(xn)〉δm2

0
,� (21)

where again [dδm2
0] is a functional measure and the probability distribution of the noise is writ-

ten as [dδm2
0]P

(
δm2

0

)
 where P

(
δm2

0

)
 is given by

P(δm2
0) = p0 exp

(
− 1

4σ

∫
ddx

(
δm2

0(x)
)2
)

,� (22)

the quantity p 0 is a normalization constant. The disorder-averaged generating functional of 
connected correlation functions is defined as

W( j) =
∫

[d δm2
0]P(δm2

0) ln Z(δm2
0, j).� (23)

At this point, the replica method [46] can be used to compute the noise average generating 
functional of connected correlation functions. Following [28–31], we are using an alternative 
approach where the average generating functional of connected correlation functions can be 
represented by
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W( j) =

[ ∞∑
k=1

(−1)k+1ak

k! k
E
[
Zk]− log a − γ − R(a, j)

]
,� (24)

where γ  is the Euler constant, the quantity R(a, j) is given by

R(a, j) = −
∫
[d δm2

0]P(δm2
0)

∫ ∞

a

dt
t

e−Z(δm2
0,j)t,� (25)

and finally, E
[
Zk
]
 is the kth integer moments of the generating functional of all correlation 

functions. The advantage of this approach is that contrary to the replica method this technique 
neither involves derivatives of the integer moments of the partition function, E[Zk], nor the 
extension of this derivative to non-integer values of k. Notice that R(a, j) vanishes as long 
as a → ∞. Indeed, in the following, we discuss the asymptotic behavior of R(a, j) which is 
related to the incomplete Gamma function, defined as [47]

Γ(α, x) =
∫ ∞

x
e−ttα−1 dt.� (26)

The asymptotic representation for |x| → ∞ and −3π/2 < arg x < 3π/2 reads

Γ(α, x) ∼ xα−1e−x
[
1 +

α− 1
x

+
(α− 1)(α− 2)

x2 + · · ·
]
.� (27)

In the next section  we discuss the mean-field approximation and how to go beyond this 
approximation.

3. The mean-field approximation of the model with multiplicative noise

As it was shown, the series representation of the average generating functional of connected 
correlation functions is written in terms of the integer moments of the generating functional of 
all correlation functions E

[
Zk
]
. Using the probability distribution for the noise and the action 

of the model, this quantity is given by

E
[
Zk] =

∫ k∏
i=1

[dϕi] e
(
−S (1)

eff (ϕi)−S (2)
eff (ϕi,j)

)
,� (28)

where the effective actions S (1)
eff (ϕi) and S (2)

eff (ϕi, j) are written as

S (1)
eff (ϕi) =

∫
ddx

√
g

[
1
2

k∑
i=1

ϕi(x)
(
−∆+ m2

0

)
ϕi(x) +

1
4

k∑
i,j=1

ηijϕ
2
i (x)ϕ

2
j (x)

+
ρ0

6

k∑
i=1

ϕ6
i (x)

]
,

� (29)
and

S(2)
eff (ϕi, j) =

∫
ddx

√
g

k∑
i=1

ϕi(x) j(x),� (30)
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where the symmetric coupling constants ηij are given by ηij = (λ0δij − σ). The saddle-point 
equations derived from each integer moment of the generating functional of the correlation 
functions E

[
Zk
]
 in the absence of the external source read

(
−�+ m2

0

)
ϕi(x) + λ0ϕ

3
i (x) + ρ0ϕ

5
i (x)− σϕi(x)

k∑
j=1

ϕ2
j (x) = 0.� (31)

Using that ϕi(x) = ϕj(x), the above equation becomes
(
−�+ m2

0

)
ϕi(x) + (λ0 − kσ)ϕ3

i (x) + ρ0ϕ
5
i (x) = 0.� (32)

Indeed, consider a generic term of the series given by (24) with integer moments of the gener-
ating functional of the correlation functions given by E [Z l]. See also (28) and (29). For each 
kth integer moment, E [Z l], all the fields must be equal, we are led to the following choice in 
the structure of the fields in each E [Z l],

{
ϕ
(l)
i (x) = ϕ(l)(x) for l = 1, 2, ..., N

ϕ
(l)
i (x) = 0 for l > N,

� (33)

where for the sake of simplicity we still employ the same notation for the field. Therefore the 
average generating functional of connected correlation functions is written as

WN( j) =
N∑

k=1

(−1)kak+1

k! k
E
[
Zk]+ · · · .� (34)

In (24), the WN(j ) is independent of a. However the entire approach relies on the fact a can 
be chosen large enough so that R(a) can be neglected in practice. In this case, the WN(j ) is 
described by a series which is a-dependent. The a factor is incorporated in the functional mea-
sure in each integer moment of the generating functional of the correlation functions.

To proceed, the mean-field theory corresponds to a saddle-point approximation in each 
term of the series. A perturbative approach give us the fluctuation corrections to mean-field 
theory. With the choice of (33), we get that the integer moments of the generating functional 
of the correlation functions that defines the average generating functional of connected cor-
relation functions and the effective action reads

E
[
Zk] =

∫ k∏
i=1

[
dϕ(k)

i

]
e−S(1)

eff

(
ϕ

(k)
i

)
−S(2)

eff

(
ϕ

(k)
i , j

)
,� (35)

where the S(1)
eff

(
ϕ
(k)
i

)
 and the S(2)

eff

(
ϕ
(k)
i , j

)
 are given by

S(1)
eff

(
ϕ
(k)
i

)
=

∫
ddx

√
g

k∑
i=1

[
1
2
ϕ
(k)
i (x)

(
−∆+ m2

0

)
ϕ
(k)
i (x) +

1
4
(λ0 − kσ)

(
ϕ
(k)
i (x)

)4

+
ρ0

6

(
ϕ
(k)
i (x)

)6
]�

(36)

and

S(2)
eff (ϕ

(k)
i , j) =

∫
ddx

√
g

k∑
i=1

ϕ
(k)
i (x) j(x).� (37)
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Using (33), we find that

E
[
Zk] = N

∫ [
dϕ(k)

]
e−S(1)

eff (ϕ
(k))−S(2)

eff (ϕ
(k)),� (38)

where the S(1)
eff

(
ϕ(k)

)
 and the S(2)

eff

(
ϕ(k)

)
 are given by

S(1)
eff

(
ϕ(k)

)
= k

∫
ddx

√
g
[

1
2
ϕ(k)(x)

(
−∆+ m2

0

)
ϕ(k)(x) +

1
4
(
λ0 − kσ

) (
ϕ(k)(x)

)4

+
ρ0

6

(
ϕ(k)(x)

)6
]�

(39)

and

S(2)
eff (ϕ

(k), j) = k
∫

ddx
√

gϕ(k)(x) j(x).� (40)

The fields in each integer moment of the generating functional of the correlation functions 
are different since each field has a distinct quartic coefficient (λ0 − kσ). In the series represen-
tation for the average generating functional of connected correlation functions, each integer 
moment of the generating functional of the correlation functions is defined by a functional 
space where the fields are different. The average generating functional of connected correla-
tion functions, (34) can be written as

WN( j) =
kc∑

k=1

(−1)k+1

k! k
E
[
Zk]+

N∑
k=kc+1

(−1)k+1

k! k
E
[
Zk] ,� (41)

where the first term is the contribution to the average generating functional of connected cor-

relation functions for fields which oscillate around the ground state defined by ϕ(k)
0 = 0, for 

k � kc. It is possible to go beyond the one-loop approximation using the composite field oper-
ator formalism where an infinite of leading diagrams is summed. This technique deals with 
the effective action formalism for composite operators. One must consider a generalization 
of the effective action where the scalar field is coupled linearly and quadratically to sources 
[25, 48–51]. Going back to our approach, for the latter terms, i.e. k  >  kc, although ϕ(k) = 0 

is a local minimum, another global minimum appears for |λ0 − kσ| > 4√
3
m0

√
ρ0 . A detailed 

discussion for the ground state structure of the ρ0ϕ
6 potential is presented in [36].

We shall complete our treatment of the influence of the multiplicative noise in the model 
discussing the Hawking work [33] and our new results. Many authors have been discussed 
the effects of fluctuations in the Hawking temperature. The approach used by these authors 
is that the mass of the black-hole is a fluctuating parameter [10, 11]. See also [52]. Here we 
are developing an alternative and simpler approach. Using the fact that a spontaneous broken 
symmetry may be restored at sufficiently high temperature, Hawking claims that a system 
described by a λϕ4 model can go from a spontaneous broken symmetry phase to the dis
ordered phase near a sufficiently hot black hole. The simplest assumption we can make to 
model fluctuations in the Hawking temperature is to couple the noise with ϕ2(x). Therefore 
we have a model for fluctuation in the Hawking temperature. Using the distributional zeta-
function approach we obtained a series representation for the average generating functional of 
connected correlation function. Interpreting each term of the series as quite different subsys-
tems since the order parameter is different in each of them, we have the interesting result that 
fluctuation in the Hawking temperature is able to generate transition from a disordered states 
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to ordered ones. Therefore for sufficiently strong noise one may expect that the system can 
goes from a disordered phase to an ordered ones with first-order phase transitions. In the next 
section, we obtain the 〈ϕ(x)2〉 in the presence of noise.

4. The computation of 〈ϕ(x)2〉 in the presence of multiplicative noise

The aim of this section is to compute the following quantity

〈ϕ(x)2〉 = 1
(
√

g)2

δ2WN [ j]
δj(x)2

∣∣∣∣
j=0

.� (42)

From (41), the first summation concerns the ground state at ϕ(k) = 0 and the second refers to 
the values of k where the ground state occurs at ϕ(k) �= 0. The value of kc represents the k where 

the ground state goes to ϕ(k) = 0 to ϕ(k) �= 0. From the above discussion, kc >
λ0
σ + 4 m0

σ

√
ρ0
3 . 

Using λeff(k) = λ0 − kσ. For simplicity, henceforth we are going to use λeff(k) = λeff. The 
field potential is

V(ϕ(k)) =
1
2

m2
0

(
ϕ(k))2

+
1
4
λeff

(
ϕ(k))4

+
1
6
ρ0
(
ϕ(k))6

.� (43)

For the case where k  >  kc, the ground state, ϕ(k)
0 , is

ϕ
(k)
0 = −λeff

2ρ0
+

√(
λeff

2ρ0

)2

−
m2

0

ρ0
.� (44)

Now we expand the field potential around the new ground state. Defining the field 

ϕ(k) = φ(k) − ϕ
(k)
0 , we get

V(φ(k)) = V(ϕ
(k)
0 ) +

meff(k)2

2

(
φ(k)

)2
+O

[(
φ(k)

)3
]

,� (45)

where the noise-dependent mass square is

meff(k)2 =
λ2

eff − 4m2
0ρ0 − λeff

√
λ2

eff − 4m2
0ρ0

ρ0
� 0.� (46)

From now on, for brevity we are going to use meff(k) = meff . Notice that we retain only the 
quadratic terms as we are interested to investigate the contributions of the multiplicative noise 
to the vacuum activity at the Gaussian approximation. Defining a series representation for the 
vacuum activity, 〈ϕ2〉, through

〈ϕ(x)2〉 =
N∑

k=1

(−1)k+1

k!k
1

(
√

g)2

δ2

(δj(x))2 E
[
Zk] ,� (47)

we get

〈ϕ(x)2〉 =
kc∑

k=1

(−1)k

(k − 1)!
G(k)

1 (x, x; m0) +

N∑
k=kc+1

(−1)k

(k − 1)!
G(k)

2 (x, x; meff)� (48)

where

G(k)
1 (x, x; m0) =

〈
ϕ(k)(x)ϕ(k)(x)

〉
� (49)
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is the two-point correlation function associated to the field ϕ(k)(x) which has mass m0. In the 
same way,

G(k)
2 (x, x; meff) =

〈
φ(k)(x)φ(k)(x)

〉
� (50)

is the same quantity for φ(k)(x) at coincident points, obtained from kth integer moment of 
the generating functional of correlation functions of the model. The field φ(k) has mass meff  
given by (46). Therefore we are generalizing the results obtained by Fawcett [32], comput-
ing 〈ϕ(x)2〉, modified by the presence of multiplicative noise. It is not possible to find the 
〈ϕ(x)2〉 in a closed form. Therefore, in the next section, we are going to consider the region 
near the event horizon where the Schwarzschild coordinates can be approximated by Rindler 
coordinates.

5. The two-point correlation function in Euclidean Rindler manifold

The aim of this section  is use the results obtained in [53, 54] to find the 〈ϕ(x)2〉 in the 
presence of noise near the horizon. Near the horizon, r ≈ 2M , taking the Euclidean sec-
tion (t �→ i4Mτ ) of the Schwarzschild line element (2), and redefining the radial coordinate as 
ρ =

√
8M(r − 2M), we get

ds2 = ρ2dτ 2 + dρ2 + 4M2dΩ2,� (51)

where the horizon is located at ρ = 0 and the angular part of this metric describes a line ele-
ment of a 2-sphere with radius 2M. Using (6) and (51), the equation of motion in the Euclidean 
Rindler space is given by

(
1
ρ2 ∂

2
τ + ∂2

ρ +
1
ρ
∂ρ + ∂2

i + m2
0

)
ϕ = 0,� (52)

which normalized3 modes can be obtained

u�k⊥,ω(τ , ρ,�x⊥) =

√
2ω sinhπω

π(2π)
d−2

2

Kiω(µρ) exp(i�k⊥ ·�x⊥ + ωτ),� (53)

where µ =
√
�k2
⊥ + m2

0 and Kiω(x) is the modified Bessel function of third kind. From these 

modes, we get the two-point correlation function [54–57]:

G2π(τ , ρ,�x⊥, τ ′, ρ′,�x′⊥) =
∫ ∞

0
dω

∫
dd−2�k⊥

sinhπω

π2(2π)d−2

× Kiω(µρ)Kiω(µρ
′) exp

(
i�k⊥ · (�x⊥ −�x′⊥)

)
exp (−ω|τ − τ ′|) .

�
(54)

From the (48) we have that 〈ϕ(x)2〉 has two kind of contributions constructed with G1(x, x) and 
G2(x,x). Since both contributions are divergent, to regularize this divergent quantities we are 
following [55–57]. We define the renormalized two-point correlation function of coincident 
points as

[
G(k)

i (x, x)
]

ren
=

(
G(k)

2π (x, x0; mi)− G(k)
∞ (x, x0; mi)

)∣∣∣
x=x0

,� (55)

3 The inner product is 〈ϕ,ψ〉 =
∫

M ϕ∗(x)ψ(x)gττ
√

gdd−1x .

M S Soares et alClass. Quantum Grav. 37 (2020) 065024



12

where G(k)
2π (x, x0; mi) is the finite temperature (T = 1/2π)-Rindler–Schwinger function4 and 

G(k)
∞ (x, x0; mi) is the (T  =  0)-Rindler–Schwinger function. For simplicity, we consider the 

four dimensional case. The mass mi can be either m0, for i  =  1, or meff , for i  =  2, where m2
eff  

is defined in (46). The above quantity can be written as [57]:
[
G(k)

i (x, x)
]

ren
=

mi

4π2ρ

∫ ∞

0
du

K1[2miρ cosh(u/2)]
(π2 + u2) cosh(u/2)

.� (56)

Finally, at the tree level, using (48) and (56), we get the renormalized expectation value of the 
scalar field ϕ2 in the presence of noise:

〈ϕ(x)2〉ren =

(
kc∑

k=1

(−1)k

(k − 1)!

)[
G(k)

1 (x, x)
]

ren
+

N∑
k=kc+1

(−1)k

(k − 1)!

[
G(k)

2 (x, x)
]

ren
.

� (57)
We obtained the ‘vacuum activity’ near the event horizon associated to a scalar field in the 
presence of multiplicative noise in the Gaussian approximation. Now we are going to interpret 
our results. In the absence of the ϕ6 term, there is a possibility of the collapse of the system 
since the effective coupling constant λeff = λ0 − kσ becomes negative for a sufficiently strong 
noise. With the presence of the ϕ6 term, he have now two possibilities: the vacuum activity is 
represented only by the first sum of the right hand side of (57) or by the whole series. In the 
former, the noise is so weak that all fields have the same mass m0. In the latter, for k  >  kc, the 
vacuum activity is represented by a series of correlation functions of fields of different effec-
tive masses, meff .

Now, to conclude, we are going to take the limit where the non-random mass is zero, 
m0  =  0. In this case, some exact results can be obtained. Equation (56) can be simplified (see 
[57])

[
G(k)

1 (x, x)
]

ren
=

1
8π2ρ2

∫ ∞

0
du

1
(π2 + u2) cosh2(u/2)

=
1

48π2ρ2 .� (58)

Using (46) we have meff = 0 and 
[
G(k)

1 (x, x)
]

ren
=

[
G(k)

2 (x, x)
]

ren
. The vacuum activity for a 

massless scalar field can be computed

〈ϕ(x)2〉ren =

(
N∑

k=1

(−1)k

(k − 1)!

)
1

48π2ρ2 .� (59)

This series converges very fast and the vacuum activity is written as

〈ϕ(x)2〉ren = − 1
48eπ2ρ2 .� (60)

Therefore the presence of noise changes very abruptly the nature of the vacuum activity of 
a scalar field near the event horizon of a Euclidean Schwarzschild black hole. This quantity 
turns to be negative if the noise is present rather than the positive one for the clean system. For 
m0 �= 0, one has to perform numerical calculations since the integral of (56) cannot be solved 
in a closed form. However, we see that this integral is always positive, and the the effect of 
noise is to change the vacuum activity to a negative value no matter how weak is the disorder 
strength.

4 It is shown in [54] that this very Schwinger function is exactly the Euclidean one.
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6.  Conclusions

Nonlinear stochastic differential equations have been used to describe different systems from 
nonlinear quantum optics, non-equilibrium growing interface to growth mechanism of popu-
lation dynamics. On general grounds, stochastic differential equations  are usually defined 
with additive or multiplicative noise. The linear stochastic differential equation with multipli-
cative noise has interesting consequences in the physics of nonequilibrium systems.

Inspired in the above scenario, we discuss a λϕ4 + ρϕ6 scalar model defined in the Euclidean 
section of the Schwarzschild solution of the Einstein equation in the presence of multiplicative 
noise. The multiplicative noise models a fluctuating Hawking temperature. Before continuing, 
we would like to stress that our approach is much less ambitious than the stochastic semiclas-
sical gravity where is include fluctuations in Einstein equations, defining the stochastic semi-
classical Einstein Langevin equations [15, 16]. See also [58]. The idea of this approach is to 
solve self-consistently these equations discussing back-reaction of the quantum stress-energy 
fluctuations of the gravitational field. In our approach the back-reaction problem is ignored.

We adopt the standard procedure of averaging the generating functional of connected cor-
relation functions of the model in the presence of the noise. The dominant contribution to this 
quantity is represented by a series of the moments of the generating functional of correla-
tion functions of the system. In the Euclidean functional approach it is necessary to define a 
disordered functional integral of the system using the disordered action. From the disorder 
generating functional for one realization of the noise of the model we must obtain the noise 
averaged generating functional of the model. To obtain the quantity discussed before we will 
use the distributional zeta-function method. We obtain a series representation for the generat-
ing functional of connected correlation functions. Some terms of the series that contribute 
to the average generating functional of connected correlation functions is defined for fields 

which oscillate around the ground states defined by ϕ(k)
0 = 0. This series representation con-

tains new interesting features. For k  >  kc, different global minimum in each term of the series 
appears. To proceed we computed, in the Gaussian approximation, 〈ϕ(x)2〉 in the presence of 
noise near the horizon. An exact result can be obtained for m0  =  0 and the presence of noise 
changes completely the behavior of the scalar field in a Euclidean black hole.

In this article we have discussed an unified mathematical description of noise-induced 
phase transitions. A natural continuation of this work is the following. From (41) it is possible 
to compute the two-point correlation function G(x, x′). Then we analytically continue it to the 
Lorentzian metric to obtain the positive frequency Wightman function. The Fourier transform 
of this quantity will give the response function of a Unruh–Dewitt detector interacting with the 
scalar field with the presence of multiplicative noise. Another related issue concerns the pos-
sibility to construct an analog model for the fluctuating Hawking temperature. These subjects 
are under investigation by the authors.
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