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Abstract
In a recent work we have proved a weaker version of the Penrose inequality 
with angular momentum, in axially symmetric space-times, for a compact and 
connected minimal surface. In this previous work we use the monotonicity 
of Geroch energy on two-surfaces along the inverse mean curvature flow 
and we obtain a lower bound for the ADM mass in terms of the area, the 
angular momentun and a particular measure of size of the minimal surface. 
In the present work, using similar techniques and the same measure of size, 
we extend and improve the previous result for a compact and connected 
outermost apparent horizon. For this case we use the monotonicity of Hawking 
energy, instead of Geroch energy, along the inverse mean curvature flow, and 
assume different conditions on the extrinsic curvature. This type of relations 
constitutes an important test to evaluate the cosmic censorship conjecture.

Keywords: Penrose inequality, axial symmetry, angular momentum, IMCF, 
outermost apparent horizon

1.  Introduction

After formulating the cosmic censorship conjecture, Penrose proposed [29] that, when con-
sidering collapsing matter, if the conjecture is valid, the mass m and the area A of the resulting 
black hole must satisfy the relation:

m �

√
A

16π
.� (1)
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Given that the validity of this relation gives one of the most important tests to evaluate the 
cosmic censorship conjecture, there are plenty of works that study this relation, and one can 
find very exhaustive review articles [5, 28] as well as general approaches to the problem [6, 7, 
14]. Moreover, since the Penrose heuristic argument one can strengthen the to include charge 
and angular momentum and charge (see [9, 11, 28] for more details), this topic has become 
an active area of research. Good progress has been made in considering the case of a charged 
black hole without angular momentum [13, 22–25, 32], but regarding the case with angular 
momentum, there are only a few results exploring the relation between the angular momen-
tum, the size and the mass of a compact object [1, 2, 21]. For further details and references 
regarding geometrical inequalities bounding angular momentum see the review article [12]. 
In this work we present an extension of our previous work [2] for compact and connected 
general horizons.

Take an axially symmetric initial data M connecting the black hole region with spatial 
infinity, such that the collapse has already occurred, and calculate the mass m, the area A, and 
the angular momentum J of the black hole. Then, from the Penrose heuristic argument for 
rotating black holes, see for example [2], we expect that:

m2 �
A

16π
+

4πJ2

A
.� (2)

Note that this version of the Penrose inequality admits a rigidity case which states that the 
equality can only occur for the Kerr black hole.

In [2] we studied this problem in the particular case that the apparent horizon is a compact 
and connected minimal surface. We use the monotonicity properties of the Geroch energy [16] 
along the IMCF and proved the following version of (2):

m2
ADM �

A
16π

+
J2

2R2
� (3)

where mADM is the ADM mass, [3], and R is a specific measure of size defined in terms of 
the norm of the axial Killing vector. This measure has reasonably nice properties, see [1, 2], 
and under certain conditions can be related to usual measures of size. In this previous work, 
in order to have a non-negativity scalar curvature we need to assume some special conditions 
for the extrinsic curvature, for example that the initial data is maximal. In this work we use 
Hawking energy, instead of Geroch energy, similar techniques and the same measure of size 
to extend and improve (3) for a compact and connected general horizon.

Regarding the mentioned papers, [1, 2, 21], that explore the relation between the angular 
momentum, the size and the mass of a compact object it is important to remark the following 
issue. Although the technique used to relate the angular momentum with the surface integral 
of the extrinsic curvature are very similar, and the particular measure of the axial radii is the 
same, in [1, 2], and in the present work, one need to impose some particular conditions over 
the extrinsic curvature in order to assure that the energy is non-decreasing along the flow, and 
also one need to assume there exist a smooth solution of the IMCF for the initial data. In [21] 
the author present a different approach to this problem, they use an embellished version of the 
Jang equation and they study a Jang/IMCF system of equations. This allows the authors to 
obtain a result very similar to the one presented on this work but assuming only a few general 
conditions, but they need assume that there exist a smooth solution of a more complex system 
of equations, where the IMCF equation and a particular version of Jang equation are coupled.
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2.  Background

We consider an asymptotically flat and axially symmetric initial data set (M, ∂M, ḡ, K;µ, ji) 
with boundary ∂M , where M is a three-manifold with positive definite metric ḡ and extrinsic 
curvature K, ∂M  is a connected and compact two-surface, µ is the energy density and j i is the 
matter current density. This set must satisfy the constraint equations

D̄jKij − D̄ik = −8πji,� (4)

R̄ − KijKij + k2 = 16πµ,� (5)

where D̄ and R̄ are the Levi-Civita connection and the curvature scalar associated with ḡ, and 
k = trḡK . We assume the matter fields satisfy the dominant energy condition (DEC), µ � |j|, 
and that ∂M  is an outermost future apparent horizon and there are no other trapped surfaces on 
M. With these assumptions M is an exterior region and has the topology R3 minus a ball [20].

Assume there exists a smooth inverse mean curvature flow (IMCF) of surfaces St starting 
from S0 = ∂M and having spherical topology, and take ν  to be unit normal vector of St (see 
equation (A.1) on appendix). Then one can write the metric ḡ in the form:

ds2
ḡ =

dt2

H2 + gijdxidx j� (6)

where H and gij are the mean curvature and the induced metric of St respectively, and (x1, x2) 
are and the induced coordinates. See [19, 31] for a review of the basic properties of the IMCF. 
In this context the extrinsic curvature can be decomposed [26]:

Kij = zνiνj + νisj + siνj + gk
i gl

jχlk +
q
2

gij� (7)

where q is the trace with respect to gij of K, q = Kijgij  and

z = Kijν
iν j si = g j

i Kjlν
l χij = gl

ig
n
j Kln −

q
2

gij� (8)

then the trace of the extrinsic curvature takes the form k = tr(K) = z + q and its norm is

KijKij = z2 + 2sisi + χijχ
ij +

q2

2
� (9)

and then from equation (5) we have that the scalar curvature of the initial data can be written 
in the following way:

R̄ = 16πµ+ 2sisi + χijχ
ij − q

2
(q + 4z).� (10)

Let ϑ+ and ϑ− be the expansions of the outgoing null geodesics orthogonal to St, future 
directed and past directed respectively, then because ∂M  is a future apparent horizon we 
have ϑ+|∂M = 0 and ϑ−|∂M � 0. From the previous decomposition ϑ+|St = H + q and 
ϑ−|St = H − q and then if M has no other trapped surface than ∂M , the expansions satisfy 
satisfy ϑ+|St � 0, ϑ−|St � 0 ∀t > 0, and then

(ϑ+ϑ−)|St = H2 − q2 > 0 ∀t > 0.� (11)

Following [26] we are going to use a functional proposed by Hawking [17],the Hawking 
energy of a surface EH(S):
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EH(S) :=
A1/2

(16π)3/2

(
16π −

∫

S
ϑ+ϑ−dS

)
� (12)

where A is the area of S. This energy, under certain conditions (see [26]) is monotonic under 
a smooth inverse mean curvature flow, and has the interesting properties that it tends to the 

ADM mass of M at infinity and for a future apparent horizon is equal to 
√

A
16π . From [26] we 

have that the derivate of Hawking energy along the IMCF can be written in the following way 
(see appendix for more details and definitions of used quantities):

d
dt

EH =
A1/2

t

(16π)3/2

[∫

St

(
16π(µ+

q
H
ν iji)

)
+

∫

St

2
q
H

gij∇̄isjdS

+

∫

St

(
χijχ

ij − 2
q
H
χijtij + tijtij

)
dS

+

∫

St

2
(

sisi − 2
q
H

s j ∇̄jH
H

+
gij∇̄iH∇̄jH

H2

)
dS

]
.

� (13)

3.  Main result

Now from [1] we know that when considering the IMCF in axially symmetric initial data, 
the IMCF equation preserves axial symmetry. Then from now on, when we discuss the IMCF 
flow, we always consider it consisting of axially symmetric surfaces St. Then for each surface 

of the flow we can define orthogonal coordinates θ,ϕ such that ηi = ∂
∂ϕ

i
. One can always 

choose this for axially symmetric two-surfaces that are diffeomorphic to S2, see for example 
[8]. Hence we have:

ds2
g = Ψ4dθ2 + ηdϕ2� (14)

where η = gijη
iη j is the square norm of the axial Killing vector.

The physical and geometrical quantities we are interested in are the ADM mass mADM and 
the Komar angular momentum J(St):

J(St) =
1

8π

∫

St

Kijη
iν jdS,� (15)

where we use that ḡijν
iη j = 0.

To measure the size of the surface St we will use the areal and circumferential radii of a 
surface St in M:

RA(St) :=

√
At

4π
, RC(St) :=

C(St)

2π
� (16)

where At is the area of St and C(St) is the length of the greatest axially symmetric circle in St. 
It is also useful to consider the following size measure studied in [1, 2]:

1
R(St)2 := A1/2

t

∫ ∞

t

A1/2
t′∫

St′
ηdS

dt′.� (17)
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This measure of size of a surface St, based on the behavior of the norm of the Killing vec-
tor along the IMCF from St to infinity, is positive and well defined provided the flow remains 
smooth. Moreover, as shown in [2], in some cases, R can be related to RA and RC. In particular 
assuming that the IMCF is convex we have:

R2(St) �
5
2

∫
St
ηdS

At
�

5
2
R2

C(St).� (18)

Using the previous tools and this definition of size, and assuming the same conditions of 
the main theorem in [26], we prove the following theorem.

Theorem 3.1.  Let (M, ∂M, ḡ, K) be a vacuum, asymptotically flat, and axially symmetric 
initial data, such that ∂M  is a compact and connected outermost apparent horizon and there 
are no other trapped surfaces on M. Assume there exists a smooth IMCF of surfaces St starting 
from ∂M  and having spherical topology, then if the initial data satisfies either:

	(a)	�qH is constant for each surface St , or
	(b)	�gij∇̄isj = 0,

then:

m2
ADM �

A
16π

+
J2

R2
� (19)

where J and A are the angular momentum and the area of ∂M  respectively, and R = R(∂M) 
is defined by (17).

Proof.  From the fact that the surfaces of the flow are axially symmetric we have that mean 
curvature H does not depend on the coordinate ϕ:

s j∇̄jH = sθ∇̄θH gij∇̄iH∇̄jH = gθθ∇̄θH∇̄θH� (20)

hence in this case:

d
dt

EH =
A1/2

t

(16π)3/2

[∫

St

2
q
H

gij∇̄isjdS +

∫

St

(
χijχ

ij − 2
q
H
χijtij + tijtij

)
dS

+

∫

St

2
(

sθsθ − 2
q

H2 sθ∇̄θH +
1

H2 gθθ∇̄θH∇̄θH
)

dS
]
+ 2

A1/2
t

(16π)3/2

∫

St

sϕsϕdS

�

(21)

where we have used that the initial data is vacuum.

In order to include the angular momentum into the inequality we know from [2] that we 
can relate the angular momentum of any surface St to the surface integral of the norm of si and 
the norm of ηi. In this work we need to improve the previous calculation in order to relate the 
angular momentum, not with the norm of si, but only with the component of si along the axial 
Killing vector. First note that Kijη

iν j = siη
i = sϕ, then using the Cauchy–Schwarz inequality 

in the definition of Jt := J(St):

P Anglada﻿Class. Quantum Grav. 37 (2020) 065023
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J2
t =

1
(8π)2

(∫

St

siη
idS

)2

=
1

(8π)2

(∫

St

sϕdS
)2

�
1

(8π)2

(∫

St

|sϕ|
√
η

√
η

dS
)2

�
1

(8π)2

∫

St

s2
ϕ

η
dS

∫

St

ηdS

=
1

(8π)2

∫

St

sϕsϕdS
∫

St

ηdS

� (22)

where in the fourth step we have used the Hölder inequality with p1 = p2 = 2. Then we have:
∫

St

sϕsϕdS �
(8π)2J2

t∫
St
ηdS� (23)

and hence we could include explicitly the angular momentum on the derivate of Hawking 
energy:

d
dt

EH �
A1/2

t

(16π)3/2

[∫

St

2
q
H

gij∇̄isjdS +

∫

St

(
χijχ

ij − 2
q
H
χijtij + tijtij

)
dS

+

∫

St

2
(

sθsθ − 2
q

H2 sθ∇̄θH +
1

H2 gθθ∇̄θH∇̄θH
)

dS
]
+ 2

√
πJ2

t
A1/2

t∫
St
ηdS

.

�

(24)

Now first note that from the hypothesis that there are no other trapped surfaces in M than 
∂M  we have that H2 > q2 and thus |H

q | � 1, hence the integrands on the second and third 
terms

(
χijχ

ij − 2
q
H
χijtij + tijtij

)
,

(
sθsθ − 2

q
H2 sθ∇̄θH +

1
H2 gθθ∇̄θH∇̄θH

)

are positive quadratic forms, and thus the second and third integrals in (24) are positive. Then 
note that if we assume condition b the integrand on the first term in (24) is equal to zero, and 
if we assume condition a then by partial integration on St the first term in (24) also vanishes.

Thus assuming the hypothesis of the theorem and either of the conditions a or b, the first 
term in (24) vanishes and the second and third terms are positive, hence:

d
dt

EH �
√

4πJ2 A1/2
t∫

St
ηdS

� (25)

where we have used that M is a vacuum exterior region, thus Jt  =  J.
From these arguments we have that EH is monotonically increasing along the flow, hence 

EH(St) � EH(∂M) ∀t � 0, then because ∂M  is an apparent horizon H2 = q2 we have 

EH(∂M) =
√

A
16π  and thus:

EH(St) �

√
A

16π
∀t � 0.� (26)
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Now we calculate the derivate along the flow of the functional E2
H and use equation (25) to 

obtain a lower bound for it in terms of J:

d
dt

E2
H = 2EH(St)

d
dt

EH � 2EH(St)
√

4πJ2 A1/2
t∫

St
ηdS

� (27)

then using equation (26) we have:

d
dt

E2
H � J2

√
A

A1/2
t∫

St
ηdS

.� (28)

Now integrating this expression along the flow from ∂M  to infinity and using the relation 
between Hawking energy and the ADM mass we obtain:

m2
ADM � lim

t→∞
E2

H(St) � E2
H(S0) + J2

√
A
∫ ∞

0

A1/2
t∫

St
ηdS

dt.� (29)

Finally we use the fact that E2
H(S0) =

A
16π, and we write this expression in terms of R and 

obtain (19).� □ 

Inequality (19) is also valid for non-vacuum initial data, provided that the matter fields sat-
isfy the DEC and that jiηi = 0  everywhere in M. Assuming the DEC we assure that Hawking 
energy remains monotonic for non-vacuum initial data. Condition jiηi = 0  assures that the 
angular momentum is preserved along the flow J(St)  =  J, and that there is no contribution to J 
coming from the matter fields J = J(∂M).

In case we have a non-zero contribution of the matter fields to the angular momentum, 
jiηi �= 0 , we obtain an extension, for objects that contain a general horizon, of the results for 
ordinary objects presented in [1]. We assume that the matters fields satisfy the DEC and that 
both the matter density and the matter current have compact support. In this case the angular 
momentum of a surface St is

J(St) =
1

8π

∫

St

Kijη
iν jdS = J(∂M)−

∫

V(St)

jiηidv,� (30)

where V(St) is the region enclosed between ∂M  and St. Thus the conservation of the angular 
momentum along the flow is only satisfied when the surfaces St are outside the compact sup-
port of the matter fields. Then the measures of size involved in the rotational contribution to 
the energy are not measures of size of the apparent horizon, but measures of size of the first 
surface of the flow ST that enclosed the object.

Then for a non-vacuum initial data with jiηi �= 0 , assuming the same conditions of theorem 
3.1, we obtain the following result.

Theorem 3.2.  Let (M, ∂M, ḡ, K;µ, ji) be an initial data satisfying the same conditions of 
theorem 3.1. Assume the matter fields satisfy the dominant energy condition and have com-
pact support, and let T such that for all t � T  the matter density and the matter current have 
compact support inside St, then:

mADM � mT +
RA

2
+

J2

RA(T)R2(T)
� (31)

P Anglada﻿Class. Quantum Grav. 37 (2020) 065023



8

where J is the total angular momentum of the data, RA and RA(T) are the areal radii of ∂M  
and ST respectively, R(T) = R(ST) is defined by (17), and

mT :=
∫ RA(T)

RA

∫

Sξ

(
µ+

q
H
ν iji

)
dSdξ� (32)

where ξ stands for the areal radius coordinate.

Proof.  From (13) and the previous calculations we have:

d
dt

EH �

√
At

16π

∫

St

(
µ+

q
H
ν iji

)
dS +

√
4πJ2

t
A1/2

t∫
St
ηdS

.� (33)

Note that because the matter fields satisfy the DEC, and | q
H | � 1 the fist term in (33) is also 

positive. Then, integrating this expression along the flow from ∂M  to infinity and using the 
relation between Hawking energy and the ADM mass we have:

mADM � EH(S0) +

∫ ∞

0

√
At

16π

∫

St

(
µ+

q
H
ν iji

)
dS +

∫ ∞

0

√
4πJ2

t
A1/2

t∫
St
ηds

dt.

� (34)

Now because the matter fields have compact support inside ST the fist integral runs only 
from 0 to T, then dividing the integral involving the angular momentum from 0 to T and from 
T to infinity and using that Jt = J ∀t � T  we obtain

mADM � EH(S0) +

∫ T

0

√
At

16π

∫

St

(
µ+

q
H
ν iji

)
dSdt

+
√

4πJ2
∫ ∞

T

A1/2
t∫

St
ηdS

dt +
√

4π
∫ T

0
J2

t
A1/2

t∫
St
ηdS

dt.

� (35)

Finally disregarding the last term, using that EH(S0) =
RA
2 , and writing this expression in 

terms of RA(ST), R(ST) and mT we obtain (31).� □ 

Remarks. The notion of size we use, R, albeit apparently artificial at first sight have proved 
to be very useful to relate the angular momentum to the total mass in axially symmetric and 
asymptotically flat initial data [2]. It comes from the particular method we use to relate the 
angular momentum with the ADM mass, and gives a good measure of how different the IMCF 
is from a spherical one. These kind of measures based on the norm of the Killing vector have 
been found to give an appropriate description of size of a region when describing both regular 
objects and black holes with angular momentum [1, 10, 15, 30].

Assuming particular properties for the IMCF we can write (19) in terms of the usual meas-
ures of size. The best situation is to have a spherical IMCF, thus R2(∂M) = A

4π, in which case 
this proof implies the validity of (2) in the vaccum case:

m2
ADM �

A
16π

+
4πJ2

A
.� (36)

In general we do not expect to have a spherical IMCF in the context we are considering. For 
weaker conditions for the IMCF, for example assuming that the flow is convex, we obtain a 
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weaker version of the Penrose inequality with angular momentum for vaccum initial data in 
terms of the axial radius of the apparent horizon RC = RC(∂M):

m2
ADM �

A
16π

+
2
5

J2

R2
C

.� (37)

If we consider a spherically symmetric initial data then the angular momentum is zero, 
and the presented result implies the validity of the usual Penrose inequality for apparent hori-
zons in spherical symmetry that was already proved by Malec and O’Murchadha in [27]. It 
is important to mention that in [4] Ben-Dov presents an important counterexample to some 
formulation of the Penrose inequality in spherical symmetry, but these counterexamples do 
not contradict either the result of Malec and O’Murchadha or the present result. In [4] the 
author explicitly constructs an asymptotically flat initial data that contains an apparent horizon 
and violates the Penrose inequality, but this particular initial data contains past-trapped sur-
faces outside the apparent horizon, and thus it does not satisfy the hypothesis of theorem 19.  
From this results one can infer that, if we consider a future apparent horizon ∂M , the hypoth-
esis that states that there are no other trapped surfaces in M other than ∂M  is necessary to 
assure the validity of the Penrose inequality.

In the previous work [2] we consider ∂M  to be a minimal surface and we use the monoto-
nicity property of Geroch energy. To assure that this monotonicity property is valid we need 
to have a non-negativity scalar curvature. In order to do this we need to assume some special 
conditions for the extrinsic curvature, one possible choice is to take K such that for every sur-
face of the flow q|St = 0. This condition, known as the polar gauge condition, together with 
the assumption that there are no other trapped surfaces in M than ∂M , also assures that ∂M  
is an outermost future apparent horizon. Note that if we assume the condition q|St = 0 then 
Geroch and Hawking energies are equal along the IMCF, and in this case the previous and 
present results are the same. The other possible condition, the most usual, is to consider that 
the initial data is maximal, k  =  0. With this condition we have a non-negative scalar curvature, 
and thus Geroch energy is monotonic, but in this case the a minimal surface is a future appar-
ent horizon only if the extrinsic curvature also satisfies q|∂M = z|∂M = 0. In present work we 
study the case in which ∂M  is a general outermost future apparent horizon, in this case the 
Geroch energy of ∂M  is given by the area of the horizon plus a term that involves the surface 
integral of q2. Thus Geroch energy is no longer useful to study the problem, we need to use 
Hawking energy and the maximal condition is not sufficient to assure its monotonicity. The 
main problem is that one need to control the sing of the second term in (13) to assure that the 
derivate along the flow of Hawking energy is positive. One possible option, condition a, is to 
control the behavior of q along the IMCF, the other option, condition b, is to control the ν, η 
components of the extrinsic curvature. Although a and b are less general than the maximal 
condition, because both of them depend on a particular foliation of the initial data given by the 
IMCF, these conditions allows us to extend the previous result to the case in which q|∂M �= 0. 
At the present time we do not have a clear geometrical or physical interpretation of these con-
ditions and it will be interesting to study its meaning in detail.

Condition b can be fulfilled by choosing a particular form for si. Note that this condition is 
a necessary condition to get the monotonicity of Hawking energy if we do not want to assume 
the very restricted condition a. First if we take si such that does not have any component on the 
θ direction, that is to say si = sηi condition b can be written in the following way:

P Anglada﻿Class. Quantum Grav. 37 (2020) 065023
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gij∇̄isj =gijηj∇̄is + sgij∇̄iηj

=ηi∇̄is +
s
2
(
gij∇̄iηj − gij∇̄jηi

)

=∂ϕs

� (38)

where in the second step we use the Killing equation for ηi, ∇̄iηj = −∇̄jηi. Then one of the 
possible choices to get condition b is to assume that si = sηi and that s does not depend on the 
coordinate ϕ.

Is important to note that if we assume that si  =  0, conditions a and b are not necessary to get 
the monotonicity of Hawking energy, but in this case we do not have angular momentum. Take 
an asymptotically flat and axially symmetric initial data that do not have any other trapped 
surface than ∂M , satisfy the DEC and have si  =  0. Then for this initial data the existence of a 
smooth solution of the IMCF is the only necessary condition one needs to prove the positiv-
ity of the derivative of Hawking energy along the flow, and thus the only necessary condition 
one needs to prove the Penrose inequality (1). Then one can infer that the angular momentum 
generates difficulties in obtaining a foliation of M for which it can be assured that Hawking 
energy is monotonically increasing.

In respect to the assumption of existence of a smooth solution of the IMCF, the conditions 
we assume to assure that Hawking energy is monotonic will probably not be fulfilled for a 
weak flow. Moreover the method we use to relate the angular momentum with the energy 
strongly depends on having a smooth IMCF. In order to adapt the present formulation to a 
weak formulation of the flow one need to control the behavior of all the terms involved in 
equation on each discontinuity of the flow, and we do not know if it is possible to control the 
terms involving q. In this sense we think the method presented in the previous work [2] has 
better chances to be adapted to a weak formulation of the IMCF
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Appendix.  Monotonicity of Hawking energy along the IMCF

Since it is relevant for the prove of our main theorem, in this section we will review the proof 
of the monotonicity property of Hawking energy obtained by Malec et al in [26].

Let (M, ∂M, ḡ, K;µ, ji) be a asymptotically flat and axially symmetric initial data with 
boundary. Assume there exists a smooth inverse mean curvature flow (IMCF) of surfaces 
St starting from S0 = ∂M and having spherical topology. Then we have a smooth family of 
hypersurfaces St:  =  x(S, t) on M, with x : S × [0, τ ] → M  satisfying the evolution equation

∂x
∂t

=
ν

H
� (A.1)

where t ∈ [0, τ ], H  >  0 is the mean curvature of the two-surface St at x and ν  is the outward 
unit normal to St. Let ∇i be the covariant derivative, hij the second fundamental form and dS  
the area element of St. Then one can derive the evolution equations, see [19, 31]:
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∂

∂t
gij =

2
H

hij� (A.2)

∂

∂t
(dS) = dS� (A.3)

∂

∂t
H = −∆(H−1)− H−1(hijhij + R̄ijν

iν j).� (A.4)

Using the decomposition of ḡ and K presented in section 2 we now calculate the derivate 
of Hawking:

d
dt

EH =
A1/2

t

(16π)3/2

[
8π − 1

2

∫

St

(H2 − q2)dS
]

− A1/2
t

(16π)3/2

∫

St

(
2H

dH
dt

− 2q
dq
dt

+ (H2 − q2)

)
dS.

�

(A.5)

First we calculate the derivate of H along the flow, we refer the reader to [18] and [26] for 
details, proofs and further references. From (A.4) we have:

2H
dH
dt

= −2H∆(H−1)− 2hijhij + 2R̄ijν
iν j� (A.6)

then we use the Gauss equation

2R̄ijν
iν j = R̄ + H2 − hijhij − 2κ� (A.7)

where κ is the Gauss curvature, and we obtain:

2H
dH
dt

= −2H∆(H−1)− hijhij − R̄ − H2 + 2κ.� (A.8)

Now let tij be the trace free part of hij:

tij = hij −
H
2

gij� (A.9)

then

hijhij = tijtij +
H2

2
� (A.10)

hence using this and equation (10) we obtain:

2H
dH
dt

=+ 2κ+ 2zq +
q2

2
− 2H∆(H−1)− 3

2
H2

− 16πµ− 2sisi − χijχ
ij − tijtij.

� (A.11)

For the derivate of q along the flow we first calculate the covariant derivate in the direction 
of ν i, and then using the vector constraint (5) we obtain:
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H
dq
dt

= ν i∇̄i (trK − z) = ν i∇̄jK
j

i + 8πν iji − ν i∇̄iz

= ∇̄j

(
ν iK j

i

)
− K j

i ∇̄jν
i + 8πν iji − ν i∇̄iz

= ∇̄j
(
zν j + s j)− K j

i ∇̄jν
i + 8πν iji − ν i∇̄iz

= z∇̄jν
j + ∇̄js j − K j

i ∇̄jν
i + 8πν iji

= zH + ∇̄isi − K j
i ∇̄jν

i + 8πν iji.

� (A.12)

One can write the term ∇̄isi in the form:

∇̄isi = ḡij∇̄isj = gij∇̄isj + ν iν j∇̄isj

= gij∇̄isj − sjν
i∇̄iν

j

= gij∇̄isj + Hs j∇̄j
1
H

� (A.13)

where in the last step we use the fact that ν i∇̄iνj = −Hgi
j∇̄i

1
H , see for example [19]. And the 

term Ki
j∇̄iν

i is:

Kij∇̄iνi = zν iν j∇̄iνj +
(
siν j + ν is j) ∇̄iνj + Kijhij

= zν iν j∇̄iνj +
(
siν j + ν is j) ∇̄iνj + χijtij +

Hq
2

= −Hs j∇̄j
1
H

+ χijtij +
Hq
2

� (A.14)

where in the last step we use siν j∇̄iνj =
1
2 si∇̄i(ν

jνj) = 0 and equation (A.1).
Then using (A.13) and (A.14) in (A.12) we obtain:

H
dq
dt

= 8πν iji + zH − Hq
2

+ gij∇̄isj + 2Hs j∇̄j
1
H

− χijtij.� (A.15)

Now using this, the integrand on the second term of (A.5) is:

2H
dH
dt

− 2q
dq
dt

+ (H2 − q2)

=2κ+ 2zq − q2

2
− 2H∆(H−1)− 3

2
H2 − 16πµ− 2sisi − χijχ

ij − tijtij

− q
H

16πν iji − 2zq + q2 − 2
q
H

gij∇̄isj − 4qs j∇̄j
1
H

+ 2
q
H
χijtij + (H2 − q2)

=2κ− 1
2
(H2 − q2)− 2H∆(H−1)− 16πµ− 2sisi − χijχ

ij − tijtij

− q
H

16πν iji − 2
q
H

gij∇̄isj − 4qs j∇̄j
1
H

+ 2
q
H
χijtij

=2κ− 1
2
(H2 − q2)− 16π(µ+

q
H
ν iji)

−
(
χijχ

ij − 2
q
H
χijtij + tijtij

)

− 2sisi − 4qs j∇̄j
1
H

− 2H∆(H−1)− 2
q
H

gij∇̄isj.
� (A.16)

Next, we incorporate the previous expression on the derivate of Hawking energy (A.5), we 
use the Gauss–Bonnet theorem and integrate by parts the Laplace operator:
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d
dt

EH =
A1/2

t

(16π)3/2

[
8π − 4πχ(St) +

∫

St

(
16π(µ+

q
H
ν iji)

)
dS

+

∫

St

2
q
H

gij∇̄isjdS +

∫

St

(
χijχ

ij − 2
q
H
χijtij + tijtij

)
dS

+

∫

St

2
(

sisi − 2
q
H

s j ∇̄jH
H

+
gij∇̄iH∇̄jH

H2

)
dS

]
.

� (A.17)
Finally because St is assumed to have spherical topology we obtain (13), and thus assum-

ing either of the conditions, a or b, presented in theorem 3.1 we have that Hawking energy is 
monotonic along the IMCF.
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