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Abstract
Since cosmic string spacetime is locally flat but with nontrivial global topology 
characterized by a deficit angle, we devote to address the quantum bound to 
the estimation of the deficit angle parameter by using a two-level atom as a 
detector which is coupled to a massless scalar field. We show that the initial 
excited state of the detector is the optimal state, and quantum precision always 
obtains the maximum value when the detector evolves for a limited time. We 
find that the sensitivity in the predictions for the deficit angle parameter ν  
decreases with the increase of ν . We also note that a uniform, rectilinear 
accelerated motion does not improve the estimation accuracy, so we obtain 
the inertial detector is better than the uniform, rectilinear accelerated detector. 
Therefore, we provide a possibility for detecting the nontrivial global topology 
in the spacetime.
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1.  Introduction

Among the most interesting consequences of phase transitions in gauge theories is the forma-
tion of a variety of topological defects [1–3]. Topology defects in the geometry of spacetime 
(such as cosmic strings) plays an important role in the evolution of the early Universe [3]. 
The evolution of a defect network perturbs the background spacetime, and those perturbations 
evolve and affect the contents of the Universe [3]. Inflationary perturbations were seeded pri-
mordially and then evolve passively, while defects induce perturbations actively during their 
whole existence [4].

Cosmic strings arose as topological defects during the symmetry breaking phase transitions 
in the early history of the Universe [1, 5, 6]. Some may still exist and may even be observ-
able; others may have collapsed long ago. Cosmic strings models gained much attention in 
the last decades [7–12]. Deser et al ’T Hooft discussed the global properties of the (locally 
flat) geometries generated by moving point particles in 2  +  1 dimensions, or equivalently by 
parallel moving cosmic strings in 3  +  1 dimensions [13], and they also found that physical 
cosmic strings do not generate closed timelike curves [14]. There are also some typical works 
which are connected with quantization effects of the cosmic string spacetime [9, 10, 15, 16]. 
Tight constraints on the parameters of the cosmic strings by observations of gravitational wave 
signatures are given recently [17]. Current bounds on the string tension Gµ from CMB experi-
ments constrain its value to be below 10−7 [4, 17–19]. The observations from the COBE, 
WAMP, CMB, and PLANCK satellites also put constraints on the parameters of the model 
[20–28]. Cosmic strings have attracted considerable attention within the framework of string 
theory inspired cosmological models [29–32].

The simplest cosmic string spacetime is characterized by a flat metric with a deficit angle, 
which is described by an infinite, straight and static cylindrically symmetric cosmic string [33, 
34]. The spacetime is locally flat outside the string but topologically nontrivial [34]. There are 
a lot of interesting and remarkable gravitational effects associated with cosmic string, such as 
gravitational lens [35], gamma ray bursts [36–39], the gravitational waves [40–42], and the 
high-energy cosmic rays [43].

In cosmic string spacetime, fields propagating are affected by its nontrivial topology [34]. 
In resent years, it is of great interest to focus on this perspective of the effect of the topological 
features on quantum systems. Here we mention some typical examples, such as the study of 
topological scattering in the context of quantum mechanics on a cone [44], the investigations 
on the interaction of a quantum system with conical singularities [45], quantum mechanics on 
topological defects of spacetimes [46], shifts in the energy levels due to the nontrivial topol-
ogy [47], and the so-called gravitational Aharonov–Bohm effect [48]. Cosmic string space-
time is characterized by its nontrivial topological structure, and many quantum effects exhibit 
significant characteristics in such spacetime.

Motivated by these interesting research on topological defects in cosmic string spacetime, 
we would like to probe the topological defects in this spacetime. Since the spacetime is locally 
flat but with nontrivial global topology characterized by a deficit angle parameter, we now 
devote to address the quantum bound to the estimation of this parameter.

In classical metrology approaches, the statistical error is reduced by repeating the meas-
urement and averaging the results, and the central limit theorem implies that the reduction is 
proportional to the square root of the number of repetitions [49–51]. Quantum metrology is 
the use of quantum techniques such as entanglement to yield higher statistical precision than 
purely classical approaches [51].

Due to experimental errors and uncertainties are unavoidable in reality, quantum estimation 
has been an active subject [52, 53]. With the application of quantum estimation theory(QET), 
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one can estimate the parameter of interest with a higher precision which is beyond the stand-
ard classical limits [49]. Recently, quantum estimation has been applied widely in the entan-
glement detection [54], optimal quantum clock [55], measurement of gravity accelerations 
[56], clock synchronization [57], and so on. The estimation error is quantified by the quantum 
Cramér–Rao bound which is inversely proportional to quantum Fisher information (QFI), 
so enhancing the value of QFI for the estimated parameter has been an important issue in 
quantum estimation [52].

Here we are concerned with the parameter estimation in cosmic string spacetime. We intend 
to exploit local QET to find out the quantum measurement that maximizes the QFI which aims 
to evaluate the ultimate limits of precision in the estimation of the deficit angle parameter. 
We consider using a two-level atom as a detector to estimate the deficit angle parameter. By 
comparing the inertial detector with the accelerated detector, we devote to find some available 
conditions to improve the estimation of the deficit angle parameter.

This paper is organized as follows. In section 2, we review quantum scalar field in cosmic 
string spacetime. In section 3, we introduce the local QET and the model of a two-level detec-
tor. In section 4, we exploit the QET to cosmic string spacetime, and talk about parameter 
estimation for the deficit angle parameter with different detectors. Final remarks and conclu-
sions are given in section 5.

2.  Quantum scalar field in cosmic string spacetime

Let us briefly review the cosmic string scalar field. The simplest cosmic string spacetime is a 
static, straight cosmic string which can be described in the cylindrical coordinate system, and 
the metric is expressed as

ds2 = dt2 − dr2 − r2dα2 − dz2.� (1)

There are two types, local (gauged) and global cosmic strings, and the gravitational field of 
a gauge cosmic string is represented by a locally flat and cylindrically symmetric spacetime 
with a planar angle deficit [58]. We are mainly interested in local cosmic strings and that the 
back-reaction is ignored. In equation (1), 0 � α < 2π

ν , ν = (1 − 4Gµ)−1 with G and µ being 
Newton constant and the mass per unit length of the string respectively and the value of ν  is 
determined by the value of the mass density of the string which is in turn determined by the 
spontaneous symmetry breaking scale when the cosmic string was formed. The cosmic string 
spacetime we discussed which is locally flat but with nontrivial global topology characterized 
by a deficit angle. In this spacetime, the Klein–Gordon equation for a scalar field Φ is

(∂t
2 − 1

r
∂r(r∂r)−

1
r2 ∂α

2 − ∂z
2)Φ(x) = 0.� (2)

Then one can obtain a complete set of field modes for the scalar field by solving equation (2)

uj(t,�x) = e−iωtuj(�x),� (3)

with

uj(�x) =
1

2π

√
ν

2ω
eiκzeiνmαJν|m|(k⊥r),� (4)

where j = {κ, m, k⊥}, κ ∈ (−∞,∞), m ∈ Z , k⊥ ∈ (0,∞) and ω2 = κ2 + k⊥2. By defining 
the inner product of two mode functions
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(uj(t,�x), uj′(t,�x)) = −i
∫

d3xuj(t,�x)
−→
∂t u∗

j′(t,�x),� (5)

one can obtain that

(uj(t,�x), uj′(t,�x)) = δ(κ− κ′)δm,m′
δ(k⊥ − k′⊥)√

k⊥k′⊥
≡ δj,j′ .� (6)

Now the field operator is expanded in terms of the complete set of field modes as

Φ(t,−→x ) =

∫
dµj[aj(t)uj(

−→x ) + a+j (t)u
∗
j (
−→x )],� (7)

with
∫

dµj =

∞∑
m=−∞

∫ ∞

0
dk⊥k⊥

∫ ∞

−∞
dκ.� (8)

It is easy to verify that the creation and annihilation operators satisfy the following commuta-
tion relation

[aj(t,−→x ), a+j′ (t,
−→x )] = δj,j′ .� (9)

Other commutators are equal to zero. Then the correlation function of scalar field in cosmic 
string spacetime can be expressed as

〈0|Φ(t,−→x )Φ(t′,
−→
x′ )|0〉

=
ν

8π2

∞∑
m=−∞

∫ ∞

0
dk⊥

∫ ∞

−∞
dκ

k⊥
ω

e−iω∆teiκ∆zeiνm∆α

× Jν|m|(k⊥r)Jν|m|(k⊥r′),

�

(10)

where ω =
√
κ2 + k⊥2, ∆t = t − t′, ∆α = α− α′, and ∆z = z − z′. According to the [59], 

equation (10) can be written as

〈0|Φ(t,−→x )Φ(t′,
−→
x′ )|0〉 = q(1 − Λ2ν)

1 + Λ2ν − 2Λν cos(ν∆α)
,� (11)

where

Λ =
r2 − r1

r2 + r1
,� (12)

with

r1 =
√
(r − r′)2 + (z − z′)2 − (t − t′ − iε)2,� (13)

r2 =
√
(r + r′)2 + (z − z′)2 − (t − t′ − iε)2,� (14)

and q = ν
4π2r1r2

, ε is a positive infinite small real number.
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3.  Local quantum estimation theory and physical model

3.1.  Local quantum estimation theory

Any inference strategy amounts to find an estimator, i.e. a mapping λ̂ = λ̂(x1, x2, ...xn) from 
the set of measurement outcomes into the space of parameters. According to the Cramér–Rao 
theorem, the optimal estimators are bounded by the inequality [52, 60]

Var(λ) �
1

NFλ
,� (15)

where Var(λ) = Eλ[(λ̂− λ)2] is the variance of any estimator, N is the number of measure-
ments and Fλ is the Fisher information(FI) of parameter λ. In equation (15), there is a lower 
bound on the mean square error of any estimator of the parameter λ. Upon maximizing the 
FI over all the possible quantum measurements, we have that the FI of any quantum measure-
ment is upper bounded by the QFI, i.e. F(λ) � H(λ) ≡ Tr[ρ(λ)L(λ)2], where ρ  is the density 
matrix of the detector and L(λ) represents the symmetric logarithmic derivative satisfying 
the partial differential equation ∂ρ(λ) = 1

2 (L(λ)ρ(λ) + ρ(λ)L(λ)), and H(λ) is the QFI of 
parameter λ. Therefore, the quantum Cramér–Rao bound is expressed as

Var(λ) �
1

NFλ
�

1
NHλ

.� (16)

The quantum Cramér–Rao bound provides the ultimate bound to precision in the estimation 
of parameter λ for a state of the family ρ(λ).

For a two-level atom system, the atomic state can be expressed in the Bloch sphere as

ρ =
1
2
(I + ω · σ),� (17)

where ω = (ω1,ω2,ω3) denotes the Bloch vector, and σ = (σ1,σ2,σ3) is the Pauli matrices. 
Then the QFI can be written as [61]

HX =

{.
|∂Xω|2 + (ω·∂Xω)2

1−|ω|2 , |ω| < 1,

|∂Xω|2, |ω| = 1.
� (18)

3.2.  Dynamical evolution of a two-level detector

In this section, we would like to discuss the evolution of the two-level atom. The total 
Hamiltonian of the detector-field system can be described as

H = HS + HF + HI ,� (19)

where HS = 1
2�ω0σ3 is the Hamiltonian of the two-level atom, HF denotes the Hamiltonian 

of the free scalar field and HI is the interaction Hamiltonian between the atom and the scalar 
field. Here �ω0 represents the atomic energy spacing, and σ3 is the Pauli matrix. The interac-
tion Hamiltonian can be described as

HI = µm(τ)Φ(x(τ)) = µ[σ+(τ) + σ−(τ)]Φ(x(τ)),� (20)

where µ is the coupling constant, m(τ) is the monopole matrix of the detector whose space-
time coordinates are given by x(τ). σ+(τ) and σ−(τ) are the atomic rising and lowering 
operator, respectively. Here Φ(x(τ)) corresponds to the scalar field operator.
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Supposing the initial total density matrix of the system is ρ̂tot(0) = ρ(0)⊗ |0〉〈0|, where 
ρ̂(0) denotes the initial density matrix of the atom, and |0〉〈0| is the vacuum state. In the limit 
of weak coupling, the master function of the atom is given by the Kossakowski–Lindblad form 
[62]

∂ρ(τ)

∂τ
= −i[Heff, ρ(τ)] + L[ρ(τ)],� (21)

with

Heff =
1
2
Ωσz =

1
2
{ω0 + µ2Im(Γ+ + Γ−)}σz,

L[ρ(τ)] =
3∑

j=1

[2LjρL†
j − L†

j Ljρ− ρL†
j Lj],

�

(22)

where Γ± =
∫∞

0 eiω0∆τG+(∆τ ± iε)d∆τ , L1 =
√

γ−
2 σ−, L2 =

√
γ+

2 σ+, L3 =
√

γz
2 σz , 

γ± = µ2
∫∞
−∞ e∓iω0∆τG+(∆τ − iε)ds, γz = 0, where G+(x − x′) = 〈0|Φ(x)Φ(x′)|0〉 is the field 

correlation function, and ∆τ = τ − τ ′. Equation (21) characterizes the evolution of the detector. 

If a two-level atom is initially prepared in an arbitrary state |ψ(0)〉 = cos θ
2 |+〉+ eiφ sin θ

2 |−〉, 
where θ, φ denote the weight parameter and phase parameter, and |−〉, |+〉 represent the ground 
state and excited state of the atom respectively. According to the equations (21) and (17), we 
obtain the evolution of the Bloch vector as follows

ω1(τ) = sin θ cos(Ωτ + φ)e−
1
2 Aτ ,

ω2(τ) = sin θ sin(Ωτ + φ)e−
1
2 Aτ ,

ω3(τ) = cos θe−Aτ − B
A
(1 − e−Aτ ),

�

(23)

with A = 1
4 (γ+ + γ−) and B = 1

4 (γ+ − γ−). It is worth noting that A and B are related to the 
field correlation function that depends on the property of spacetime. As a consequence of the 
interaction between the detector and field, the information of cosmic string spacetime could 
be encoded into the quantum state of the detector. By performing the measurements on the 
detector, we can infer the related parameter through the relevant outcomes.

4.  Parameter estimation in cosmic string spacetime

Now, we intend to exploit local QET to find out the quantum measurement that maximizes 
the QFI which aims to evaluate the ultimate limits of precision in the estimation of the deficit 
angle parameter. We devote to explore how the precision in the estimation of the parameter 
changes when a two-level detector interacts with cosmic string scalar field. In the next, we 
will discuss the case that the detector which is very close to the string to obtain the analytical 
results. Here, we use the wire-approximation.

4.1.  Parameter estimation for an inertial detector

We now probe the cosmic string spacetime by using the inertial detector. Since the spacetime 
is locally (but not globally) flat, the trajectory of the detector is written in Minkowski coordi-
nates, which is described as

Y Yang et alClass. Quantum Grav. 37 (2020) 065017
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t = γτ , z = z0 + vγτ ,
r = constant, α = constant,
� (24)

where γ = (1 − v2)−
1
2 is the Lorentz factor, v is the velocity of the detector, and τ  is the 

proper time of the detector. According to the definition of the Wightman function, we obtain

G(τ − τ ′) =
q(1 + Λν)

1 − Λν
,� (25)

with

Λ =
r2 − r1

r2 + r1
,� (26)

and

r1 =
√
(r − r′)2 + (z − z′)2 − (t − t′ − iε)2,� (27)

r2 =
√
(r + r′)2 + (z − z′)2 − (t − t′ − iε)2,� (28)

where q = ν
4π2r1r2

, and ε is a positive infinite small real number. By taking the trajectory (24) 
into equation (25), we obtain the Wightman function at r → 0 as

G(∆τ) = − ν

4π2

1
(∆τ − iε)2 .� (29)

Accordingly, we obtain

γ− =
νµ2ω0

2π
,� (30)

and

γ+ = 0.� (31)

Then, we obtain

A = B =
νγ0

4
,� (32)

where γ0 = µ2ω0
2π  is the spontaneous emission rate of the atom. In order to investigate the 

precision of quantum estimation for the deficit angle parameter ν , we will calculate the QFI 
of it, and devote to find the optimal estimation conditions. Based on the above result, we now 
substitute equation (23) into (18), and use the result from equation (32). Then we obtain the 
QFI of ν  as follows

Hν =
e−νττ 2 cos2 θ

2 (2eντ − 1 + cos θ)

2(eντ − 1)
.� (33)

It is interesting that the QFI is independent of quantum phase φ. Thus, the QFI in fact should 
be written as Hν(ν, τ , θ,ω0), while we adopt the notation Hν  for simplify here. We will work 
with dimensionless quantities by rescaling time

τ �−→ τ̃ ≡ γ0τ .� (34)

For convenience, we continue to term τ̃  as τ .

Y Yang et alClass. Quantum Grav. 37 (2020) 065017
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4.2.  Parameter estimation for a uniformly accelerated detector

The trajectory of the uniformly accelerated two-level atom is described as [63]

t =
1
a
sinh aτ , z =

1
a
cosh aτ ,

r = constant, α = constant.
� (35)

By taking the trajectory (35) into equation (25), we obtain the Wightman function of massless 
scalar fields in cosmic string spacetime at r → 0 as

G(∆τ) = − a2ν

16π2

1
sinh2( a∆τ

2 − iε)
.� (36)

Accordingly, we obtain

γ− =
νµ2ω0

2π
(1 +

1

e
2πω0

a − 1
),� (37)

and

γ+ = −νµ2ω0

2π
(1 +

1

e
−2πω0

a − 1
).� (38)

Then, we obtain

A =
νγ0

4
coth

πω0

a
, B =

νγ0

4
,� (39)

where γ0 = µ2ω0
2π  is the spontaneous emission rate of the atom. Similarly, we will calculate 

the QFI of it, and devote to find the optimal estimation conditions. We now substitute equa-
tion (23) into (18), and use the result from equation (39). Then we calculate the QFI of ν  as 
follows

Hν =
w−1τ 2γ2

0 [w
2g2 tan2 θ + cosh2(πω0

a )(1 + g)(w(3 + cos(2θ) + 4g)− (1 + g) sin2 θ)]

(w − 1)[4w − 1 + 2 cos(2θ) cosh2(πω0
a ) + 3 cosh( 2πω0

a ) + 4 cos θ sinh( 2πω0
a )]

,� (40)

where w = eντγ0 coth(
πω0

a ), g = cos θ coth(πω0
a ). Here the QFI is also independent of quantum 

phase φ. It only depends on the parameters ν, τ , a, θ  and ω0. Similarly, the QFI in fact should 
be written as Hν(ν, τ , θ,ω0, a), while we adopt the notation Hν  for simplify here. We will 
work with dimensionless quantities by rescaling time and acceleration

τ �−→ τ̃ ≡ γ0τ , a �−→ ã ≡ a
ω0

.� (41)

For convenience, we continue to term ã  and τ̃ , respectively, as a and τ .

4.3.  A comparison of the inertial detector and the accelerated detector

In order to find the conditions to improve the estimation, we would like to analyze and com-
pare the inertial and accelerated cases. In the following, several figures will be presented to 
better illustrate our conclusions.

Firstly, to clarify which initial state is the best probe state for the estimation of ν , we plot 
the QFI as a function of the initial state parameter θ with different effective time τ  in figure 1. 
The left panel is for the inertial detector, and the right panel is for the accelerated detector 
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with the effective acceleration a  =  3. Obviously, for the two cases, both the QFI approaches 
its maximum value with an initial excited state of the detector. Therefore, we arrive a conclu-
sion that the maximum sensitivity in the predictions for the deficit angle parameter ν  can be 
obtained by initially preparing the detector in its excited state, which means that the excited 
state is the best probe state. In addition, we find that the maximum value of QFI for the inertial 
detector is higher than that for the accelerated detector.

We plot QFI of the deficit angle parameter ν  as a function of the effective time τ  with the 
optimal values of initial parameter θ for different detectors in figure 2. The left panel is for 
the inertial detector, and the right panel is for the accelerated detector with the effective accel-
eration a = 3, 5, 8. As is shown in figure 2, for different detectors, the QFI always achieves 
the maximum value when the detector evolves for a limited time, so we obtain that we can 
improve the precision for parameter ν  by choosing appropriate detecting time. In addition, we 
find that the maximum value of QFI is higher for the inertial detector by comparing it with 
the uniform accelerated detector, and we obtain that accelerated motion does not improve this 
precision. We choose the string tension Gµ = 10−7 according to the current bounds on the 
string tension from CMB experiments data [4]. We approximate the distance to the string to 
zero to get an analytic solution, while in the specific experimental operation, the magnitude of 
distance to the core can be taken around the order of r ∼ 10−6 m. From figure 2, we find out 
that an inertial detector is better. Here, we will give the optimal observation time and the QFI 
of the parameter. According to the [64], γ0/ω0 is of the order of 10−6, and a typical transition 
frequency of the hydrogen atom is around ω0 ∼ 1015 s−1. For the initial state parameter θ = 0, 
we calculate the optimal evolution time is around 1.58 × 10−9 s, and Hν  is around 0.65 for 
the inertial detector.

Though the parameter ν  for a real cosmic string spacetime is only slightly larger than unity, 
the investigations on cosmic string spacetimes with other ν  also caught much attention [9, 65, 
66]. In order to illustrate how the estimation is affected by different deficit angle, we plot the 
QFI as a function of the effective time τ  with different ν  in figure 3. The left panel is for the 
inertial detector, and the right panel is for the accelerated detector with the effective accelera-
tion a  =  3. With the increase of the parameter ν , the maximum value of QFI is decreased. 
As we have discussed above, the maximum value of QFI is higher for the inertial detector by 
comparing it with the accelerated detector.

Figure 1.  QFI of the deficit angle parameter ν  as a function of the initial state parameter 
θ with fixed values of the effective time τ . The left panel is for the inertial detector, and 
the right panel is for the accelerated detector with the effective acceleration a  =  3. We 
take the string tension Gµ = 10−7, and the effective time τ = 0.1, 0.3, 0.7, respectively.
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5.  Conclusion

We are interested in detecting the topological defects in cosmic string spacetime. Based on 
this motivation, we use a two-level atom which is coupled to the scalar field as a probe to 
estimate the deficit angle parameter ν , since the nontrivial global topology in this spacetime 
is characterized by the parameter ν . To address the quantum bound to the estimation of this 
parameter, we investigate the QFI of it, and we perform measurements on the two-level detec-
tor and maximize the value of QFI over all possible detector preparations and evolution times. 
Since it is very difficult to give a general analytic expression in such spacetime, we discuss the 
case that the atom is very close to the string to obtain the analytical results. For the estimation 
of parameter ν , we find some consistent conclusions for different detectors. We obtain that the 
QFI approaches its maximum value with an initial excited state of the detector, which tells us 
that the excited state is the best probe state. We show that the QFI always achieves the maxi-
mum value when the detector evolves for a limited time. We note that the sensitivity in the 
predictions for the deficit angle parameter ν  decreases with the increase of ν . We also prove 
that the optimal QFI decreases with the increase of the acceleration, which shows that inertial 

Figure 2.  QFI of the deficit angle parameter ν  as a function of the effective time τ . The 
left panel is for the inertial detector, and the right panel is for the accelerated detector 
with the effective acceleration a = 3, 5, 8. We take the string tension Gµ = 10−7, and 
the initial state parameter θ = 0.

Figure 3.  QFI of the deficit angle parameter ν  as a function of the effective time τ  
with fixed values of ν . The left panel is for the inertial detector, and the right panel is 
for the accelerated detector with the effective acceleration a  =  3. We take the initial 
state parameter θ = 0, the acceleration a  =  3, and the different deficit angle parameter 
ν = 1.2, 1.5, 1.8, respectively.
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detector is better than uniform, rectilinear accelerated detector for the estimation, but maybe 
circular detector is an even better choice, we would like to discuss it in the following work. 
Therefore, we provide a possibility to detect the nontrivial global topology in the cosmic 
string spacetime. We should acknowledge, for the atom which is very close to the string, there 
are still some limitations, for example, scaling problems will arise. There is a strategy which 
is proposed by ’t Hooft, by considering conformal invariant gravity. Then the metric close to 
the string can we written as gµν = Ω2ḡµν  with ḡµν Minkowski metric, where Ω2 contains all 
the scale dependence. More detail please see the [58].
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