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Abstract
In conventional gravitational physics, the so-called ‘bootstrap procedure’ can 
be used to extrapolate from a linear model of a rank-2 tensor to a full non-linear 
theory of gravity (i.e. general relativity) via a coupling to the stress-energy 
of the model. In this work, I extend this procedure to a ‘Lorentz-violating’ 
gravitational model, in which the linear tensor field and the matter fields ‘see’ 
different metrics due to a coupling between the tensor field and a background 
vector field. The resulting model can be thought of as a generalized Proca 
theory with a non-minimal coupling to conventional matter. It has a similar 
linearized limit to the better-known ‘bumblebee model’, but differs at higher 
orders in perturbation theory. Its effects are unobservable in FRW spacetimes, 
but are expected to be important in anisotropic cosmological spacetimes.

Keywords: Lorentz symmetry, linearized gravity, standard model extension, 
bootstrap

1.  Introduction

Lorentz symmetry and general relativity have been intimately related ever since their incep-
tion. The idea of Lorentz symmetry between locally defined reference frames is inherent in 
the Einstein equivalence principle, and in the description of gravity as due to the effects of a 
spacetime metric [1].

However, in recent years some physicists have started to questions whether Lorentz sym-
metry is in fact an exact symmetry of nature, or whether it could be broken and how such 
a breaking would manifest itself. One of the major frameworks for these investigations is 
the standard model extension (SME) [2], which ‘extends’ the standard model Lagrangian 
by relaxing the restriction that the operator combinations appearing in the Lagrangian be 
Lorentz scalars. The coefficients of these operators are then Lorentz tensors, and it becomes 
an experimental question to measure or constrain the components of these tensor coefficients 
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in a particular reference frame. A wide variety of experiments have been performed over the 
past two decades in order to constrain these coefficients [3].

Given its roots in particular physics, the picture underlying the SME is that of fields propa-
gating on flat spacetime. For this reason, research into gravitational phenomenology in the 
context of the SME has almost entirely focused on the description of metric perturbations 
about flat spacetime [4–6], and almost entirely on the linearized equations of motion for these 
perturbations. (However, see [7] for a case where second-order perturbation theory can be 
applied in a Lorentz-violating gravitational context.) In some models involving a ‘Lorentz-
violating’ tensor field (i.e. a tensor field whose dynamics give it a non-zero vacuum expecta-
tion value), the perturbations of the Lorentz-violating tensor field effectively decouple from 
the linearized Einstein equation, and the linearized Einstein equation  can therefore be put 
into a standard form involving the linearized Riemann tensor (and its derivatives) and various 
contractions of the background value of the Lorentz-violating tensor.

These investigations provide valuable constraints on the possible behavior of Lorentz-
violating gravity models. However, they cannot access the full range of phenomenology that 
one could describe as ‘Lorentz-violating gravity’, for the simple reason that they are confined 
to perturbations of a flat spacetime background. Some of the most fascinating behavior in 
general relativity, as well as some of the most sensitive constraints on it, come not from the 
weak-gravity limit but from situations that cannot be viewed as ‘close’ to flat spacetime: black 
hole physics and cosmology. To model these situations, we require a full non-linear model of 
gravity in which Lorentz symmetry is broken.

The question then arises how to construct such a model in a well-motivated way. Ideally, 
we would like this model to in some sense extrapolate from the linearized Lorentz-violating 
gravity picture of the SME to a fully dynamical Lorentz-violating version of general relativity. 
In the case of Lorentz-invariant gravity, there is a known technique to make this extrapola-
tion: the so-called ‘bootstrap’ procedure. (See [8–10] among others). One starts with a model 
containing a massless symmetric rank-2 tensor field hab in flat spacetime, along with some 
other matter sources. One then adds terms to the Lagrangian that couple hab to the total stress-
energy tensor of the model, including its own. These new terms may themselves contribute to 
the stress-energy tensor, so we must then insert couplings between hab and these new contrib
utions. Iterating this procedure generates an infinite series of terms in the action; and the 
infinite series of terms involving hab alone can be shown to converge to the Einstein–Hilbert 
action, with R being the Ricci scalar of the metric gab = ηab + hab. Moreover, if the matter 
sector is not too complicated, the infinite series of terms coupling hab and the matter fields will 
simply have the effect of replacing the flat spacetime matter Lagrangian with a ‘minimally 
coupled’ version of the matter Lagrangian, substituting ηab → gab and ∂a → ∇a. In effect, this 
procedure ‘bootstraps’ a linear model into a non-linear one.

It is natural to ask whether this elegant procedure can be applied if we relax some of 
the underlying assumptions. In particular, if we start with a linear field theory that violates 
Lorentz symmetry in some way, is it still possible to apply the bootstrap procedure? Is there 
a mathematical impediment to this process? Is the interpretation of the resulting model the 
same? In this work, I show that the bootstrap procedure can in fact be applied even if Lorentz 
symmetry is violated in the linear field theory for the tensor field hab. The result is a bimetric 
model, in which the Ricci curvature appearing in the Einstein–Hilbert action is associated 
with an effective metric g̃ab constructed in a non-linear way from the metric gab that is ‘seen’ 
by matter and a dynamical Lorentz-violating vector field Aa.

The paper is structured as follows. In section 2, I will discuss what it means for a linear 
gravity model to be Lorentz-violating, and how such a model can be constructed in the pres-
ence of a background vector field. Section 3 reviews the Lorentz-invariant bootstrap procedure, 
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and then applies it to the Lorentz-violating models constructed in section 2. Finally, section 4 
briefly discusses two simple applications of the model constructed in section 3: the SME coef-
ficients of the resulting model, and the application to FRW universes.

We will use units where c = � = 1 throughout; the sign convention will be (−,+,+,+). 
Symmetrizations and antisymmetrizations of tensors over n indices will be weighted by a fac-
tor of 1/n!, e.g. ∇(aAb) = (∇aAb +∇bAa)/2!.

2.  Linearized gravity without Lorentz symmetry

2.1.  Defining ‘Lorentz violation’

Before discussing the construction of a linear gravity model that ‘violates Lorentz symmetry’, 
it is important to state clearly what we mean by the phrase. As a toy model, consider two ver-
sions of the massless Klein–Gordon equation:

−∂2φ

∂t2 +
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0� (1)

−∂2φ

∂t2 +
∂2φ

∂x2 +
∂2φ

∂y2 +
1
4
∂2φ

∂z2 = 0.� (2)

Which of these equations is ‘Lorentz-invariant’? Since Lorentz symmetry includes rotations, 
and since the speed of waves in the x-direction and z-direction are different in (2), one might 
conclude that only (1) is Lorentz-invariant. However, it is not hard to see that (1) and (2) are 
equivalent if we have the freedom to redefine our coordinates; one merely needs to rescale 
z → z/2 in (2) to obtain (1).

More generally, given a quadratic form αab with signature (−,+,+,+), it is always pos-
sible to find some set of coordinates in which the equation

αab∂aφ∂bφ = 0� (3)

takes the form (1). In such a coordinate system, the components of αab will simply be the 
familiar components of the (inverse) Minkowski metric ηab. This allows us to define an ‘iner-
tial coordinate system’ to be one in which the equation of motion for φ takes the form (1). 
Such sets of coordinates are not unique, of course; the set of linear coordinate transformations 
that leave the wave equation in this form will simply be a subgroup of GL(4) that is isomor-
phic to SO(3, 1), and will be the ‘Lorentz transformations’ between our inertial coordinate 
systems.

In a real sense, then, it is not possible to define a ‘violation’ of Lorentz symmetry in the 
context of a model containing only one scalar field obeying a wave equation. We can always 
use the behavior of this field to define our clocks and metersticks, and a preferred set of trans-
formations of coordinates between observers, in such a way that the speed of wave propaga-
tion is the same in all directions and for all observers. Where a notion of Lorentz violation 
can arise is when we have multiple fields which propagate with respect to different metrics. 
For example, if our Universe contains two massless scalar fields φ and ψ, with φ propagating 
according to (3) and ψ propagating according to

α̃ab∂aψ∂bψ = 0� (4)

with αab �= α̃ab, then generically we cannot define a set of coordinates so that the equations of 
motion for both φ and ψ are both of the form (1). (The exception being if αab = λα̃ab for some 

M D Seifert﻿Class. Quantum Grav. 37 (2020) 065022



4

λ �= 1; but in this case (4) is equivalent to (3).) In mathematical terms, the SO(3, 1) subgroups 
of GL(4) which leave αab and α̃ab invariant are not necessarily the same. We are free to use 
either one of these fields to define what we mean by clocks, metersticks, and transformations 
between ‘inertial reference frames’; but once we have done so, the other field will ‘violate 
Lorentz symmetry’ according to this description.

More generally, if our model contains several ‘sectors’, it is sometimes possible to define 
Lorentz transformations in such a way that one of the sectors is Lorentz-invariant. From this 
perspective, it is not particularly miraculous that a ‘privileged’ speed exists in our universe; 
we could simply define our notion of Lorentz transformations in such a way that the speed of 
light was the same for all inertial observers. What is remarkable, rather, is that this privileged 
speed appears to be the same for all polarizations of all fundamental fields: electromagnetic 
fields, fermion fields, and gravitational fields. Even within a sector, it is not always possible to 
choose coordinates for a sector such that it becomes Lorentz-invariant. For example, in mini-
mal Lorentz-violating electrodynamics, an arbitrary Lorentz-violating Lagrangian contains 
nineteen free coefficients for the photon sector, of which only nine can be shifted to the matter 
sector [11]. The remaining ten coefficients cause light to have a polarization-dependent speed 
(i.e. birefringence), and so cannot be removed via a simple coordinate redefinition. Similar 
redefinitions can shift nine of the coordinates in the gravitational SME into the photon sector 
or vice versa [12].

In the context of this work, we will assume that this choice has already been made in 
some portion of the ‘matter sector’, which propagates according to some metric ηab; our 
notion of Lorentz transformations will be those transformations which leave this matter met-
ric unchanged. I will call this metric the fiducial metric. I will remain agnostic as to whether 
all parts of the matter sector propagate according to the fiducial metric, though the simplest 
choice (see below) would be that all of them do.

2.2.  Constructing the propagator

Assuming that we have defined a fiducial metric and a notion of Lorentz symmetry with 
reference to some portion of the matter sector, the question then arises what sorts of phenom-
enology can arise if the ‘linearized gravity sector’ is not Lorentz-symmetric. In general, one 
can imagine two broad classes of Lorentz-violating effects: direction-dependent propagation 
speeds, and polarization-dependent propagation speeds (i.e. ‘gravitational birefringence’.) 
While this question was addressed in a group-theoretic context in [6], it is instructive to take 
an axiomatic approach to this matter: if we make a certain set of assumptions about the propa-
gation of the linearized gravity field, which types of effects are allowed? 

In choosing my axioms, I will adopt a philosophy of ceteris paribus: I will attempt to 
construct a model that preserves as many key features of conventional linearized gravity as 
possible, while relaxing the assumption of Lorentz symmetry. These features include:

	 (i)	�Being described by a rank-2 symmetric tensor hab. 
	(ii)	�Being expressible in terms of an action principle. 
	(iii)	�Having second-order questions of motion.
	(iv)	�Being coupled to a conserved stress-energy tensor.

Under criteria (i), (ii), and (iii), the Lagrange density for the free field hab must be of the form

L =
1
2
[
Pabcdef∂ahbc∂dhef +Rabcef (∂ahbc)hef +Qbcef hbchef

]
� (5)
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for some tensors Pabcdef , Rabcde, and Qabcd. These tensors are assumed to be constant in space-
time, but they will in general involve some additional ‘background geometry’: they should not 
be expected to remain invariant under the Lorentz transformations that keep ηab fixed.

From (5), we can see that Pabcdef  can be taken to be symmetric under the simple exchanges 
b ↔ c and e ↔ f , and under the simultaneous exchange {abc} ↔ {def}. Similarly, Qbcef  can 
be taken to be symmetric under the exchanges b ↔ c, e ↔ f , and {bc} ↔ {ef}. Finally, since 
we can write

(
Rabcef +Raefbc) (∂ahbc)hef = ∂a

(
Rabcef hbchef

)
,� (6)

it follows that the part of Rabcef  that is symmetric under the exchange {bc} ↔ {ef} does not 
contribute to the equations of motion. We can thus take Rabcef  to be antisymmetric under the 
exchange {bc} ↔ {ef}, as well as being symmetric under the exchanges b ↔ c and e ↔ f .

The equations of motion that arise from (5) are

−Pabcdef∂a∂dhef −Rabcef∂ahef +Qbcef hef = 0,� (7)

or, in momentum space,

Pabcdef kakdhef − iRabcef kahef +Qbcef hef = 0.� (8)

We note from this equation  that we can take Pabcdef  to be symmetric under the exchange 
a ↔ d.

We can now apply criterion (iv) to this equation. We will eventually want to couple (7) to 
the matter stress-energy tensor Tbc. In the linearized limit about flat spacetime, we expect this 
tensor to be identically conserved: ∂bTbc = 0. This implies that the divergence of (7) must also 
vanish identically; in momentum space, this means that

Pabcdef kakbkd − iRabcef kakb +Qbcef kb = 0� (9)

for any four-vector kb. Note that given the symmetries of Pabcdef , Rabcef , and Qbcef , the con-
dition (9) is equivalent to (7) being invariant under the customary gauge transformation 
hab → hab + ∂(aξb).

In principle, any set of tensors Pabcdef , Rabcef , and Qbcef  with the appropriate symmetries 
and satisfying (9) would provide a Lorentz-violating equation of motion for hab. However, the 
underlying picture we have is that this tensor is due to a coupling between hab and some new 
fundamental field that spontaneously breaks Lorentz symmetry. The simplest choice for such 
a field is a Lorentz vector Aa; the propagator tensor Pabcdef  must then be constructed locally 
out of tensor products of Aa and the fiducial metric ηab. The question then becomes how many 
distinct tensors there are which can be so constructed and which satisfy the desired symmetry 
properties and the contraction identity (9).

To answer this question, we can simply write down a list of all tensors of a given rank, 
without any particular symmetry properties, that can be so constructed. The most general such 
tensor of a given rank must be a linear combination of these; and the symmetry requirements 
and the contraction identity (9) will then place constraints on the coefficients of each tensor in 
this linear combination. For example, suppose we want to construct a rank-6 tensor from the 
metric alone. such a tensor must be constructed from three ‘copies’ of the metric, and so the 
six indices must be paired off; there are fifteen such pairings. The most general rank-6 tensor 
that can be constructed from the metric is then

C1η
abηcdηef + C2η

abηceηdf + C3η
abηcf ηde + . . . ,� (10)
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where the Ci are arbitrary coefficients. However, if we require that this expression be sym-
metric under the exchanges b ↔ c, e ↔ f , and {abc} ↔ {def}, and require it to obey the 
contraction identity (9), then it is straightforward (if a bit tedious) to show that there is only 
one such tensor:

Pabcdef
(0) = ηa(bηc)dηef + ηa(eη f )dηbc − ηa(bηc)(eη f )d

− ηa(eη f )(bηc)d − ηadηbcηef + ηadηb(eη f )c.
� (11)

This expression, when contracted with ∂a∂dhef  as in (7), yields the standard linearized Einstein 
equation.

Similarly, there are 45 tensors that can be constructed from two copies of the metric and 
two copies of the vector Aa ≡ ηabAb; and it is also straightforward (if rather more tedious) to 
show that there is also only one possible combination of them that satisfies the desired sym-
metries and the contraction identity:

Pabcdef
(1) = ηa(bηc)dAeA f + ηa(eη f )dAbAc − 2A(aηd)(bηc)(eA f ) − 2A(aηd)(eη f )(bAc)

− 2A(bηc)(aηd)(eA f ) + 2ηbcA(aηd)(eA f ) + 2ηef A(aηd)(bAc) + 2ηadA(bηc)(eA f )

− ηadηbcAeA f − ηadηef AbAc − ηbcηef AaAd + ηb(eη f )cAaAd.
�

(12)

There are fifteen rank-6 tensors that can be constructed from four copies of Aa and one copy 
of the metric; however, it can be shown via similar techniques that any linear combination of 
these tensors with the desired symmetry properties must vanish. The tensor AaAbAcAdAeA f  
must also be excluded from our expression for Pabcdef  by a similar logic.

We can also apply the same logic to the rank-5 tensor Rabcef  and the rank-4 tensor Qbcef ; 
when we do, however, we find that these tensors must vanish. This implies that the dispersion 
relation (8) for wave solutions is homogeneous, i.e. if a plane wave of the form

hab(xc) = h(0)
ab eikcxc

� (13)

is a solution of the equations  of motion, then it remains a solution under the substitution 
kµ → λkµ for any λ. This ensures (among other things) that the speed of a wave is indepen-
dent of its frequency for a given polarization and a given direction of propagation.

Since the Lagrange density is only defined up to an overall factor, this means that the most 
general possible expression for our propagator tensor is

Pabcdef = Pabcdef
(0) + ξPabcdef

(1) ,� (14)

where ξ is a free parameter. However, it is not hard to show (albeit, again, tedious) that 
this expression is equivalent to taking the Lorentz-symmetric graviton propagator (11) and 
substituting

ηab → η̃ab ≡ ηab + ξAaAb.� (15)

In other words: in the presence of a background vector field Aa, and assuming the criteria listed 
above, the only modification to the linearized Einstein equation that is possible is to change 
the effective metric that governs the propagation of the waves and their polarization states. 
(The usual ‘transverse traceless gauge’ for these waves would be defined via η̃ab∂ahbc = 0 and 
h ≡ η̃abhab = 0, rather than the equivalent expressions with ηab.) It is not possible to define a 
propagator which allows for ‘gravitational birefringence’, i.e. a polarization-dependent speed 
of gravity. This is consistent with the results found in [6]; criterion (iii) above restricts us to 
what were called ‘d  =  4 operators’ in that work.
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3.  Bootstrapping Lorentz-violating linearized gravity

3.1.  Deser bootstrap procedure for conventional gravity

In section 2.2, we found that under certain assumptions, the only way to modify the linearized 
Einstein equation to include a coupling to a ‘Lorentz-violating’ vector field Aa is by modi-
fying the metric that appears in the Lorentz-invariant equation of motion for hab (11). This 
modification of the linearized Einstein equation is, in itself, self-consistent. However, we also 
know that it is possible to extend Lorentz-invariant linearized gravity to a non-linear theory 
(namely, conventional general relativity) by self-consistently coupling hab to all sources of 
stress-energy in the theory, including its own. The question then arises whether a similar 
procedure can be applied to a model in which hab’s propagation is governed by the effective 
metric (15), or whether there is an impediment to this.

To frame this discussion, it will help to first review the bootstrap procedure proposed by 
Deser [13]. (See also [14] for a more detailed explanation of this procedure.) In this proce-
dure, the fundamental fields are a tensor density hab and a rank-(1,2) undensitized tensor 
Ca

bc = Ca
(bc). The linear Lagrange density is written in first-order form:

L = LLI
G,lin + Lmat[η,ΨA],� (16)

where

LLI
G,lin = κ

[
2hab∂[cCc

b]a + 2ηabCc
a[bCd

d]c
]

� (17)

with κ ≡ 1/(16πG), and Lmat[η,ΨA] is the Lagrange density governing the ‘matter sector’ of 
the action. The matter sector is assumed to depend on the fiducial metric density ηab as well 
as some collection of matter fields ΨA. Note that for consistency in what follows, we will need 
to view ηab as a tensor density rather than as a simple tensor.

The equations of motion derived from (17) are then

∂cCc
ab − ∂(aCc

b)c = 0� (18)

and

∂ch
ab − ∂dh

d(aδb)
c = ηabCd

dc + ηdeC(a
deδ

b)
c − 2ηd(aCb)

cd.� (19)

Some algebra can then show that (19) is equivalent to

Cc
ab = −1

2
[
ηda∂bh̄

cd + ηdb∂ah̄
cd − ηadηbeη

cf∂f h̄
de] ≡ Γc

ab,� (20)

where we have defined h̄ab ≡ hab − 1
2η

abηcdh
cd. For future reference, the right-hand side of 

this equation is defined to be Γc
ab; the notation is intentionally suggestive.

We now define a tensor density gab = ηab + hab. This tensor density will be related to an 
inverse metric gab by gab =

√
−ggab, with g ≡ det(gµν) according to the flat spacetime coor-

dinates. This implies that det(gµν) = 1/ det(gµν), and so we have

gab =
√
−ggab.� (21)

But if we define hab = gab − ηab, then it is not hard to show that to linear order in hab,

hab ≈ h̄ab.� (22)

In other words, (20) implies that Cc
ab is the linearized Christoffel symbol Γc

ab associated with 
the inverse metric gab and this coordinate basis. Equation (18), meanwhile, says that the lin-
earized Ricci tensor associated with this Christoffel symbol is zero. Thus, at linear order, the 
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free gravitational action (17) yields equations of motion that are equivalent to the linearized 
Einstein equations.

We now wish to couple hab to the stress-energy of the model. As the left-hand side of (18) is 
equal to the Ricci tensor, we expect the source on the right-hand side to be the trace-reversed 
stress-energy tensor τab. This can be accomplished by adding the term −habtab to the action 
(17). The trace-reversed stress energy tensor τab can be found via the Rosenfeld prescription 
by ‘promoting’ the fiducial metric density ηab to an auxiliary metric density ψab, differentiat-

ing the Lagrange density LLI
(0) with respect to this auxiliary density, and then setting ψab → ηab 

in the result; this will yield − 1
2τab. (In this process, factors of 

√
−η  may need to be inserted 

into the action to ensure that various sums in our expressions have a definite weight.) The 
derivatives in the first term of (17) must also be ‘promoted’ to covariant derivatives, which are 
then varied along with ψab. The result is

−τab = 2κ
[
Cc

a[bCd
d]c + σab

]
,� (23)

where σab is a total derivative1:

σab = −1
2
∂c

[
2hcdηd(aCb) − ηadηbeη

cfhdeCf + 2ηe(aηb) f η
gchdeC f

dg − 2ηe(ah
cdCe

b)d

−2ηe(aδb)
fhdeCc

df − ηabηdf η
cghdeC f

eg +
1
2
ηabηdeη

cfhdeCf

]
,

�
(24)

where we have defined Ca ≡ Cb
ba. I have explicitly written out the fiducial metrics used to 

raise and lower indices in this expression in order to illustrate a point that will arise later in 
the Lorentz-violating case.

In Deser’s procedure, the gravitational sector of the action is completed by adding the non-
derivative portion of (23) to the action, coupled to hab:

LLI
G = κ

[
2hab∂[cCc

b]a + 2(ηab + hab)Cc
a[bCd

d]c
]

.� (25)

Importantly, these new terms do not refer to the fiducial metric density ηab in any way; thus, 
this additional term will not contribute to τab. This is the signal advantage of Deser’s choice 
to use the tensor density as the fundamental field; it does not require a further infinite series 
of terms in the gravitational action, as is necessary when viewing the metric perturbation hab 
as the fundamental field.

If we define gab = ηab + hab, the resulting equations of motion from this non-linear action 
can then be written as

∂cCc
ab − ∂(aCc

b)c + Cc
abCd

dc − Cc
acCd

bd = 0� (26)

and

∂cg
ab − ∂dg

d(aδb)
c = gabCd

dc + gdeC(a
deδ

b)
c − 2gd(aCb)

cd.� (27)

By taking various traces and linear combinations of this second equation, it can be shown to 
be equivalent to

1 Note that the expression for this quantity in [14] contains a sign error in one term.
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Cc
ab =− 1

2

[
2gd(a∂b)g

cd − gadgbeg
cf∂f g

de + gde

(
−δc

(a∂b)g
de +

1
2
gabg

cf∂f g
de
)]

,

�

(28)

where gab is the inverse of gab (i.e. gabg
bc = δa

c.) In other words, Cc
ab is equal to the Christoffel 

symbol associated with the metric gab =
√
−ggab (with g ≡ det(gab)), and in the absence of 

other matter, the Ricci tensor (26) associated with these Christoffel symbols vanishes.
On the other hand, it turns out that (26) and (27) are equivalent to coupling (18) to the full 

stress-energy of the action (23), including the derivative term σab. To show this, rewrite (27) as

ηabCd
dc + ηdeC(a

deδ
b)

c − 2ηd(aCb)
cd

= ∂ch
ab − ∂dh

d(aδb)
c −

[
habCd

dc + hdeC(a
deδ

b)
c − 2hd(aCb)

cd

]
.

� (29)

(Note that ∂ah
bc = ∂ag

bc.) Via the same algebraic procedure used to obtain (28) from (27), 
we find that

Cc
ab =− 1

2
[
2ηd(a∂b)h̄

cd − ηadηbeη
cf∂f h̄

de]

+
1
2
[
2ηd(ah

cdCb) − 2ηe(ah
deCc

b)d − 2ηe(bh
cdCe

c)d − ηaeηbf η
cdhef Cd

+ 2ηe(aηb) f η
cghdeC f

dg − ηdeδ
c
(aCb)h

de + 2ηdf δ
c
(ah

deC f
b)e

+
1
2
ηabη

cf ηdeCfh
de − ηabη

cgηdfh
deC f

eg

]

�

(30)

where we have defined Ca ≡ Cb
ab. The first set of terms can be seen to be Γc

ab. Taking the 
appropriate derivatives and contractions of (30), and after a fair amount of algebra, we find 
that (27) implies that

∂cCc
ab − ∂(aCc

b)c = ∂cΓ
c

ab − ∂(aΓ
c

b)c + σab,� (31)

with σab (remarkably) defined as in (24). Combining this with (26), we obtain

∂cΓ
c

ab − ∂(aΓ
c

b)c = −
[
Cc

abCd
dc − Cc

adCd
bc + σab

]
=

1
2κ

τab,� (32)

with τab defined as in (23). In other words, the non-linear equations of motion (26) and (27) 
are equivalent to the equations (18) and (19) from the linear action (17), with the full stress-
energy of the linear action acting as a source. Note that even though the derivative portion 
of the stress-energy σab is not explicitly coupled to the density hab in the non-linear action 
(25), the terms corresponding to it still arise in (32) so long as the full non-linear equations of 
motion (26) and (27) hold. I will return to this point when we pass to the Lorentz-violating 
version of the theory.

To include the effects of matter, one must also apply the bootstrap procedure to the matter 
Lagrange density Lmat. So long as the matter action Lmat[η

ab,ΨA] only depends on the fiducial 
metric density ηab itself, and not on its derivatives, it can be shown [14] that the net effect of 
applying the bootstrap procedure to the matter action is simply to replace ηab with gab.2 Any 
matter action only containing Lorentz scalars will satisfy this condition, as well as any n-form 

2 In the Deser procedure, this process does sometimes require an infinite series of terms that might not be required if 
we view hab as the fundamental field. One cannot always escape both Scylla and Charybdis.
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field whose kinetic terms depend only on that field’s exterior derivative. In particular, the 
Maxwell kinetic term − 1

4 FabFab, with Fab = 2∂[aAb], is independent of the choice of deriva-
tive operator and so only depends on the metric itself and not on the metric derivatives. The 
trace-reversed stress-energy will then appear on the right-hand side of (26), while (27) will 
be unaffected.

3.2.  Deser bootstrap procedure for Lorentz-violating gravity

In section 2.2, it was shown that under certain assumptions, the only possible modification of 
the linearized Einstein equation which couples the linearized metric perturbations to a back-
ground vector Aa is equivalent to replacing the fiducial metric ηab with an effective metric:

η̃ab = ηab + ξηacηbdAcAd.� (33)

Since we are starting off from the context of flat spacetime, we will assume that Aa is a con-
stant background vector field; only later will we ascribe dynamics to it.

We now wish to do two things. First, we wish to modify the linear action (17) so that its 
equations of motion are equivalent to (7), with Pabcdef  given by (14) and Qabcd = Rabcef = 0. 
Second, we want to self-consistently couple the stress-energy of the resulting action to itself, 
to obtain a non-linear model of Lorentz-violating gravity.

There are two possible terms we can add to the action (17) to couple the fields to a constant 
background vector field Aa:

LLV
G,lin =κ

[
2(hab + ξ1η

aeηbf AeAf )∂[cCc
b]a

+ 2(ηab + ξ2η
aeηbf AeAf )Cc

a[bCd
d]c
]

,
� (34)

where ξ1 and ξ2 are arbitrary coupling constants. The first term, with coupling constant ξ1, 
does not affect the linear equations of motion at all; since Aa is a constant vector field, this 
term is a total derivative. It does, however, change the stress-energy of the model, and it 
will become important for our interpretation of the non-linear model. The second term, with 
coupling constant ξ2, basically replaces the fiducial metric density with the ‘effective metric 
density’ given by (33) under the substitution ξ → ξ2. At this point, there is no particular rela-
tionship between ξ1 and ξ2; however, we will find that the interpretation of the model is much 
more compelling and elegant when they are equal.

In the interests of compactness, I will need to define various versions of tensors and tensor 
densities that depend on ξ1 and ξ2. I will use [i] as a prepended superscript to denote a ver-
sion of a quantity defined in section 3.1 (or subsequently) under the substitution ξ → ξi. For 
example, the addition of the ξ2 term in (34) effectively replaces

ηab → [2]η̃ab = ηab + ξ2η
acηbdAbAd.� (35)

For convenience in what follows, I will also define

[i]h̃ab = hab + ξiη
aeηbdAbAd.� (36)

It is not hard to see that under these modifications, the linear equations of motion for Cc
ab 

and hab are simply (18), unchanged, and (19) under the substitution ηab → [2]η̃ab. Thus, the 
linear Lagrange density (34) yields the desired Lorentz-violating linearized Einstein equa-
tion given by (7) and (14), with the substitution ξ → ξ2.

We now wish to apply the bootstrap procedure to the action (34). The stress-energy in (23) 
will become
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−τab = 2κ
[
Cc

a[bCd
d]c +

[1]σab

]
− κ(τξ)ab,� (37)

where (τξ)ab is the contribution to the stress-energy tensor coming from the algebraic appear-
ances of ηab in the new coupling terms in (34), and [1]σab is obtained from (24) under the 
substitution hab → [1]h̃ab.

In parallel with Deser’s procedure, the method will be to again couple the non-derivative 
portion of the stress-energy (37) to the field hab, and to see whether these equations are equiva-
lent to the linear equations (18), with − 1

2τab included as a source, and (19), with ηab → [2]η̃ab. 
The (τξ)ab piece of the new stress-energy tensor can be viewed as new contribution from the 
‘matter sector’. It depends on the metric ηab itself, and so we will need to apply the procedure 
to this new term, adding in the non-derivative portion of the stress-energy from this term. 
Iterating this procedure, this will generate an infinite sum of terms as we add the higher-order 
contributions of these terms to the stress-energy. The procedure is analogous to the infinite 
series of terms that arises from the matter sector in the Lorentz-invariant bootstrap procedure; 
and as in that case, the resulting terms can be resummed, with the net effect of replacing

ξiη
aeηbf AeAf → ξi

√
−ggaegbf AeAf� (38)

in (34). Including this modification, along with the coupling between hab and the first term of 
(37), the full non-linear action becomes

LLV
G = 2κ

[
([1]g̃ab − ηab)∂[cCc

b]a +
[2]g̃abCc

a[bCd
d]c

]
,� (39)

where we have defined

[i]g̃ab = gab + ξi
√
−ggaegbf AeAf .� (40)

Note that in contrast with the Lorentz-invariant definition,

[i]g̃ab �= ηab + [i]h̃ab = ηab + hab + ξiη
aeηbdAbAd.� (41)

This difference will become important in what follows.
The equations of motion derived from (39) can be obtained by viewing gab and Cc

ab as the 
configuration variables. In performing the variation with respect to gab, it is useful to note that

δ
(
[i]gcd

)
δgab = δc

(aδ
d

b) + ξi
√
−g

[
2A(aδb)

(cgd)eAe −
1
2
gabg

cegdf AeAf

]

= δc
(aδ

d
b) + ξi

[
2A(aδb)

(cgd)eAe −
1
2

gabgcegdf AeAf

]
,

�

(42)

and so the equation of motion associated with gab becomes

∂cCc
ab − ∂(aCb) + 2Cc

a[bCd
d]c

+ ξ1

[
2A(aδb)

(cAd) − 1
2

gabAcAd
] (

∂eCe
cd − ∂(cCd)

)

+ 2ξ2

[
2A(aδb)

(cAd) − 1
2

gabAcAd
]

Ce
c[dC f

f ]c =
1

2κ
(τmat)ab,

�

(43)

where all indices are raised and lowered with gab and its inverse.
Meanwhile, the only change for the Cc

ab equation  of motion, relative to the Lorentz-
invariant version (27), is that we must substitute gab → [i]g̃ab appropriately:
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∂c
[1]g̃ab − ∂d

[1]g̃d(aδb)
c =

[2]g̃abCd
dc +

[2]g̃deC(a
deδ

b)
c − 2[2]g̃d(aCb)

cd.� (44)

I have been unable to find an elegant interpretation of the equations of motion (43) and (44) 
in the general ξ1 �= ξ2 case. Similar to the Lorentz-invariant case, (44) can still be inverted to 
obtain an expression for Cc

ab:

Cc
ab =− 1

2

[
2[2]g̃d(a∂b)

[1]g̃cd − [2]g̃ad
[2]g̃be

[2]g̃cf∂f
[1]g̃de

+[2]g̃de

(
−δc

(a∂b)
[1]g̃de +

1
2
[2]g̃ab

[2]g̃cf∂f
[1]g̃de

)]
,

�
(45)

where [2]g̃ab is the inverse of [2]g̃ab. If ξ1 �= ξ2, Cc
ab can no longer be interpreted as the 

Christoffel symbol associated with either of the metrics [1]g̃ab or [2]g̃ab. Even if Cc
ab could be 

interpreted as the Christoffel symbol for some third metric, the fact that ξ1 �= ξ2 in (43) pre-
vents us from interpreting that equation in terms of the curvature of that metric.

However, if ξ1 = ξ2 ≡ ξ, then neither of these problems arise. In this case, Cc
ab is simply 

the Christoffel symbol associated with the inverse metric density

g̃ab = g̃ab = gab + ξ
√
−ggaegbf AeAf ,� (46)

and (43) simply becomes
[
δc

(aδ
d

b) + ξ

(
2A(aδb)

(cgd)eAe −
1
2

gabgcegdf AeAf

)] (
∂eCe

cd − ∂(cCd) + 2Ce
c[dC f

f ]c
)

=
1

2κ
(τmat)ab.
�

(47)

The second factor on the left-hand side of (47) is then equal to R̃cd, the Ricci tensor of the 
gravitational metric g̃ab given implicitly by the relationship g̃ab =

√
−g̃g̃ab. The equations of 

motion from the action (39) (with ξ1 = ξ2 = ξ) are therefore equivalent to

R̃ab + 2ξA(aR̃b)cAc − 1
2
ξgabR̃cdAcAd = 8πG(τmat)ab,� (48)

where all indices are raised and lowered with gab and its inverse. Given the relative straight-
forwardness of this particular case, I will be assuming that ξ1 = ξ2 = ξ for the remainder of 
this work.

It can be shown that if g̃ab and gab are related by (46), then the corresponding undensitized 
inverse metrics are related by

g̃ab =
1√

1 + ξA2

(
gab + ξgaegbf AeAf

)
,� (49)

and the metrics themselves are related by

g̃ab =
√

1 + ξA2gab −
ξ√

1 + ξA2
AaAb� (50)

with A2 ≡ AaAbgab. The determinants of these metrics, meanwhile, are related by

det(g̃µν) = (1 + ξA2) det(gµν).� (51)

This action can be viewed as a natural generalization of Deser’s bootstrap procedure to a 
Lorentz-violating gravity model. However, the interpretation of this procedure as ‘coupling 
hab to its own stress-energy’, a particularly elegant feature of the Lorentz-invariant model, does 
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not carry over nicely to the present case. (I will ignore the matter sector for the remainder of 
this section, as it does not affect the following argument.) Recall that in the Lorentz-invariant 
case, we added a coupling between hab and the non-derivative part of the stress-energy tensor. 
We were then able to interpret the resulting non-linear equations of motion (26) and (27) in 
terms of the the linear equations of motion coupled to the full stress-energy tensor of the linear 
model; the derivation from equations (29) to (32) showed how the derivative portion of the 
stress-energy tensor σab emerged from the non-linear model naturally.

The presence of the Lorentz-violating terms disrupts this line of logic severely. In the case 
where ξ1 = ξ2 = ξ �= 0, the derivative portion of the stress-energy is now

σab = −1
2
∂c

[
2h̃cdηd(aCb) − ηadηbeη

cf h̃deCf + 2ηe(aηb) f η
gch̃deC f

dg − 2ηe(ah̃
cdCe

b)d

−2ηe(aδb)
f h̃deCc

df − ηabηdf η
cgh̃deC f

eg +
1
2
ηabηdeη

cf h̃deCf

]
,

�
(52)

and the analogue of (29) becomes

η̃abCd
dc + η̃deC(a

deδ
b)

c − 2η̃d(aCb)
cd

=
(
∂ch

ab − ∂dh
d(aδb)

c

)
−
(
habCd

dc + hdeC(a
deδ

b)
c − 2hd(aCb)

cd

)

+
(
∂ck

ab − ∂dk
d(aδb)

c

)
−
(
labCd

dc + ldeC(a
deδ

b)
c − 2ld(aCb)

cd

)�

(53)

where I have defined

kab = ξ
√
−ggacgbd� (54)

and

lab = ξ
[√

−ggacgbd − 2ηacηbd]AcAd.� (55)

It does not seem possible to parallel the Lorentz-invariant derivation any further from 
this point. The next step would be to isolate Cc

ab from (53), to obtain an analog of (30). 
However, this would lead to terms involving kab and lab (arising from the third and fourth 
sets of terms on the right-hand side of (53), respectively) that do not have an analog in 
the linear equations of motion. Moreover, the process of isolating Cc

ab from (53) in the 
present case would involve raising and lowering indices with the metric η̃ab , rather than 
the fiducial metric ηab . The terms that enter into the derivative portion of the stress-energy 
σab, however, have their indices raised and lowered with ηab . There do not appear to be any 
fortuitous cancellations in all of these extra terms. It seems that the equations of motion 
for the non-linear model (39) cannot easily be interpreted as ‘the linear field hab coupled 
to its own stress-energy.’ 

The presence of a fixed background vector field Aa on the underlying flat spacetime means 
that the equations of motion will not have diffeomorphism invariance; the fixed background 
vector field explicit breaks this symmetry. While some recent work has explored the possibili-
ties of Lorentz symmetry violation via an explicitly breaking of diffeomorphism invariance 
[15], a more common tactic is to restore diffeomorphism invariance to these equations by 
‘promoting’ the background vector field Aa to a dynamical field [16]. In particular, this ensures 
that so long as the equations of motion for Aa are satisfied, the stress-energy of associated with 
Aa will be conserved (as we assumed at the outset.)
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The simplest way to do this is by assuming that Aa is governed by the action

LA = −1
4
ηacηbdFabFcd − V(AaAbη

ab)� (56)

in flat spacetime, where V(AaAbη
ab) is a Higgs-like potential energy for Aa that is responsible 

for the breaking of Lorentz symmetry. When we apply the bootstrap procedure, this will sim-
ply replace the inverse metric density ηab with gab = ηab + hab throughout; the result will then 
be

LA =− 1
4
√
−ggacgbdFabFcd −

1√
−g

V
(√

−ggabAaAb
)

=
√
−g

[
−1

4
gacgbdFabFcd − V(AaAbgab)

]
.

�

(57)

3.3.  Formalisms and frames

3.3.1.  Palatini & metric formalisms.  All told, our bootstrapped Lorentz-violating action is

L = 2κg̃ab [∂[cCc
b]a + Cc

a[bCd
d]c
]

− 1
4
√
−ggacgbdFabFcd −

1√
−g

V
(√

−ggabAaAb
)
+ Lmat.

�
(58)

In terms of the metrics g̃ab and gab, this becomes

L = 2κ
√
−g̃g̃ab [∂[cCc

b]a + Cc
a[bCd

d]c
]

+
√
−g

[
−1

4
gacgbdFabFcd − V(AaAbgab)

]
+ Lmat.

�
(59)

Thus far, we have effectively been using a ‘Palatini’ (first-order) form of the gravitational 
action; the resulting equations of motion are given by (48). However, one can also obtain the 
same equations of motion in a more familiar ‘metric’ (second-order) formalism, where the 
connection is viewed as a function of the metric rather than as an independent field:

L = κ
√
−g̃g̃abR̃ab +

√
−g

[
−1

4
gacgbdFabFcd − V(AaAbgab)

]
+ Lmat.� (60)

To see that these are equivalent, it suffices to vary the gravitational portion of the action. We 
can view gab and Aa as our fundamental fields, with variations δgab and δAa. The gravitational 
metric g̃ab will then change by δg̃ab under these variations. Thus, the variation of the gravita-
tional portion of the action (60) is

∫
d4xδ(

√
−g̃g̃abR̃ab) =

∫
d4x

[
δ(
√

−g̃g̃ab)R̃ab +
√

−g̃g̃abδ(R̃ab)
]

=

∫
d4x

{
δ(
√

−g̃g̃ab)R̃ab +
√
−g̃∇̃a

[(
−g̃abg̃cd + g̃adg̃bc) ∇̃bδg̃cd

]}
,

�

(61)

where ∇̃a is the covariant derivative defined by ∇̃ag̃bc = 0. The second term can be seen to 
be a total derivative, and so it will not contribute to the equations of motion. Moreover, from 
(49) and (51) it can be seen that

√
−g̃g̃ab =

√
−g

(
gab + ξAaAb) ,� (62)
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where Aa ≡ gabAb. Thus,

δ(
√
−g̃g̃ab)R̃ab =

√
−g

[
δgab + 2ξ

(
δgacAbdAc + AagbdδAd

)

− 1
2

gcdδgcd (gab + ξAaAb)
]

R̃ab.
�

(63)

The equation of motion arising from the variation of the metric gab in this formalism is thus

R̃ab −
1
2

gabgcdR̃cd + 2ξA(aR̃b)cAc − 1
2
ξgabAcAdR̃cd = 8πGTab,� (64)

where Tab here includes the stress-energy contributions of both the vector field Aa and any 
other matter sources present; in particular, we have for the vector field

Tab = Fa
cFbc −

1
4

gabFcdFcd + gabV(A2) + 2AaAbV ′(A2),� (65)

where A2 ≡ gabAaAb, and all indices have been raised and lowered with gab. Equation (64) can 
be seen to be equivalent to (48) by taking a contraction of that equation with gab. (For a more 
general discussion of when the Palatini and metric formalisms are equivalent, see [17, 18].)

The equation of motion arising from the variation of Aa in (60), meanwhile, is

∇bFba − V ′(A2)Aa + 2ξAbR̃b
a = 0,� (66)

where all indices have been raised and lowered with gab.
Finally, it should be noted that the Ricci tensor associated with the gravitational metric g̃ab 

is related to the Ricci tensor of the fiducial metric by

R̃ab = Rab +∇cCc
ab −∇aCc

cb + Cc
cdCd

ab − Cc
daCd

cb,� (67)

where

Cc
ab ≡ 1

2
g̃cd [∇ag̃bd +∇bg̃ad −∇dg̃ab] .� (68)

These relationships would allow the equations of motion (64) and (66) to be fully expressed in 
terms of the variables gab and Aa. However, the relationships between g̃ab and gab, as given in 
equations (49) and (50), result in expressions that are rather complicated, and so we will not 
exhibit them explicitly here.

3.3.2.  Jordan & Einstein frames.  In taking the equations of motion from the action (60), we 
can make a choice of which fields we view as fundamental. In particular, we can either choose 
to view gab or g̃ab as the fundamental metric in the theory, and vary the action with respect to 
one or the other along with the vector field Aa. Since the relationship between the sets of field 
variables {gab, Aa} and {g̃ab, Aa} is invertible, we will obtain equivalent sets of equations of 
motion with either choice. Using terminology from scalar-tensor gravity theories, viewing gab 
as the fundamental field (as was done in the previous subsection) corresponds to working in 
the Jordan frame, while viewing g̃ab as the fundamental field corresponds to working in the 
Einstein frame [19].

When working in the Einstein frame, the variation of the gravitational portion of the action 
is straightforward and familiar. However, the variation of the vector portion of the action (as 
well as any other matter sources that might be present) is complicated by the fact that they 
depend on the fiducial metric gab rather than the gravitational metric g̃ab. To derive the equa-
tions of motion in the Einstein frame, we begin by contracting (49) with AaAb, yielding
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Ã2 ≡ g̃abAaAb = A2
√

1 + ξA2.� (69)

We can then invert (49) and (50) to obtain

gbc =
√

1 + ξA2g̃bc − ξ

1 + ξA2 g̃beg̃cf AeAf .� (70)

Note that (69) could in principle be inverted to yield a closed-form expression for A2 in terms 
of Ã2; but this involves taking the root of a cubic polynomial, leading to complicated expres-
sions. Instead, we can simply view A2 as an function of g̃ab and Aa, defined implicitly by (69). 
In particular, varying both sides of (69) with respect to g̃ab yields the relation

Nab =
δ(A2)

δg̃ab =

√
1 + ξA2

1 + 3
2ξA2

AaAb.� (71)

With all of this in hand, we can write out the full equations of motion for this model. When 
we vary Aa, we obtain

(EA)
a ≡ 1√

−g̃
δL
δAa

= ∇̃b

(√
QgbcgadFcd

)
−
√
QMabcgdeFbdFce

− gabAb

Q3/2

(
−ξ

4
gacgbdFabFcd − ξV(A2) + 2QV ′(A2)

)
,

�

(72)

where we have defined Q ≡ 1 + ξA2 and

Mabd =
1
2
δgbc

δAa
=

ξ

Q

(
−Ã(bgc)a +

1
Q

ÃbÃcgadAd

)
� (73)

with Ãa ≡ g̃abAb. The equation of motion obtained when we vary g̃ab, meanwhile, is

(Eg̃)ab ≡ 1√
−g̃

δL
δg̃ab

= κG̃ab −
1
2

√
QFacFbdg̃cd +

ξ

Q

(
A(aFb)cFdeg̃ceÃd +

1
2

ÃcÃdFc(aFb)d

)

− 1
2

g̃ab

(
−1

4
gacgbdFabFcd − V(A2)

)

+
1√
Q

(
−ξ

8
FabF̃ab − ξ

2Q3/2 ÃaÃcg̃bdFabFcd +
ξ

2Q
V(A2)− V ′(A2)

)
Nab,

�

(74)

with Nab defined as in (71) and F̃ab ≡ g̃acg̃bdFbd .

4.  Applications & connections

4.1.  SME coefficients

The primary motivation of this work was to extend a Lorentz-violating model of linearized 
gravity [4] to a fully non-linear model. Still, this model should still have a linearized limit, and 
should be able to make predictions about the behavior of objects moving under the influence 
of gravity in (for example) the solar system. Within the SME, a substantial machinery has 
been developed to address such questions. In the gravity sector [4], the observational effects 
will be parametrized by a set of ten coefficients: a scalar ū and a trace-free tensor s̄ab. (If one 
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allows higher-order equations  of motion, the situation is more complicated [6]. However, 
since we required in section 2.2 that the equations of motion only be second-order in deriva-
tives of the metric, such effects will not be present in this model.)

In general, to find the SME coefficients for a general gravitational model, one must take 
the Euler–Lagrange equations, linearize them, and combine them to yield an effective equa-
tion for the linearized Ricci tensor. In the process, one can typically only work to first order in 
the parameter which controls Lorentz violation (ξ in the present case); there are often terms of 
order ξ2 which are discarded in the process, under the assumption that they will be negligible. 
It is therefore legitimate to expand (60) to O(ξ), with the understanding that the effective SME 
gravity equation will only be accurate to this order in any event. More pragmatically, we will 
see that the action simplifies greatly in this limit.

The Ricci tensor corresponding to g̃ab is given by (67) and (68). We have, to O(ξ),

g̃ab = gab + ξ

(
1
2

A2gab − AaAb

)
+O(ξ2),� (75)

and so

Cc
ab =

ξ

2

[
δc

(a∇b)
(
A2)− 2∇(a

(
Ab)Ac)− 1

2
gab∇c (A2)+∇c (AaAb)

]
+O(ξ2).

� (76)
In other words, Cc

ab is O(ξ), and so the gravitational portion of the action is
√

−g̃g̃abR̃ab =
√
−g

[
R + ξAaAbRab +∇a

(
gbcCa

bc − gabCc
cb
)]

+O(ξ2).
� (77)

The terms involving the derivatives of Cc
ab are total derivatives and so will not contribute to 

the equations of motion, while the terms quadratic in Cc
ab are higher-order in ξ.

Since we can ignore these terms, and using the relation (62) derived earlier, the non-linear 
action is

L ≈
√
−g

[
κ(R + ξAaAbRab)−

1
4

gacgbdFabFcd − V(A2)

]
� (78)

to this order in ξ. This can be recognized as the action for the so-called bumblebee model [16]. 
The SME analysis for this equation was carried out in [4], with the results

s̄µν = ξ

(
AµAν − 1

4
ηµνA2

)
, ū = − 1

12
ξA2.� (79)

The bootstrapped Lorentz-violating model (60) will therefore have these same SME coef-
ficients when we look at linearized solutions about a background where the matter metric is 
Minkowski (gab = ηab) and the vector field Aa is constant.

The components of the tensor s̄µν in the Sun-centered Frame [20] have been bounded, 
directly or indirectly, by a variety of experiments [3]. For experiments within the Solar 
System, the magnitudes of these components are 10−5 for s̄TT , 10−8 for s̄TI  ( I ∈ {X, Y , Z}), 
and 10−10 for s̄IJ; these bounds come from a combination of precision gravimetry [21] and 
lunar laser ranging measurements [22]. These constraints can be viewed as bounding various 
combinations of the coupling constant ξ and the components of the vector field Aµ in the cur
rent cosmological environment.

More stringent bounds on the components s̄µν, down to the 10−14 level, have also been 
inferred from sources outside the solar system, from observations of cosmic rays [5]. While 
these latter bounds are indirect, requiring some assumptions about the origin and nature of 
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cosmic rays, they do imply that ξ and/or the components Aµ must be quite small in the current 
epoch. The gravitational wave event GW170817, which was observed in conjunction with a 
gamma-ray burst, also bounded certain combinations of the ̄sµν components to the 10−15 level 
[23]. While this bound is direct, it is worth noting that a single event such as GW170817 only 
bounds the difference between the speeds of electromagnetic and gravitational waves for one 
particular direction of propagation, and thus only places bounds on a single combination of 
the components s̄µν. At the present time, the region of parameter space consistent with these 
observations is still unbounded; but as LIGO sees more such events, we would expect this 
region to become rather stringently bounded.

4.2.  Generalized Proca theory

The bootstrapped Lorentz-violating model (60) can be connected to generalized Proca theory 
[24, 25]. Such models were constructed as a Galileon-like generalization of Proca theory, and 
generically include derivative self-interactions. The general form of the kinetic terms for the 
vector field in a generalized Proca theory is

LK = −1
4

FabFab +

6∑
n=2

βnLn,� (80)

where the βi’s are arbitrary coefficients, and L2 is an arbitrary algebraic function G2 of Fab 
and Aa. The terms Li (3 � i � 6) depend on the symmetric part ∇(aAb) of the derivative of 
the vector field and on arbitrary algebraic functions G3 through G6. The precise form of these 
terms can be found in the above references; however, we will see shortly that these terms van-
ish in the present case.

To cast bootstrapped Lorentz-violating gravity into the above form, we can rewrite (60) in 
the Einstein frame using (49) and (51). The result is

L = κ
√
−g̃

[
g̃abR̃ab −

1
4

√
Qg̃acg̃bdFabFcd

+
1
2
ξ

Q
ÃaÃcg̃bdFabFcd − V(A2)

]
+ Lmat[g].

�

(81)

The kinetic term for Aa can clearly be seen to be a function of Fab and Aa only; in other words, 
we have

L2 = −
√
Q− 1

4
g̃acg̃bdFabFcd +

1
2
ξ

Q
ÃaÃcg̃bdFabFcd,� (82)

and the remaining terms in (80) vanish. Since this model is a special case of generalized 
Proca theory, this implies that the bootstrapped Lorentz-violating model has the same desir-
able properties as generalized Proca theory; in particular, it is free of ghost instabilities and 
has only three propagating degrees of freedom associated with the vector field.

Finally, I will make two related observations concerning this connection. First, in most 
work involving generalized Proca theory, it is assumed that the ‘matter sector’ couples mini-
mally to the gravitational metric. This is not the case here; to put the action in the form (80), 
it was necessary to work in the Einstein frame. This means that the cosmological solutions 
found in [26] (and similar works) would not necessarily be solutions of the current model, 
since the matter couples to the gravitational fields differently. This is an example of an obser-
vation made (and exploited) in a recent work by Gümrükçüoǧlu and Koyama [27]: while it is 
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possible to find equivalent descriptions of a ‘pure gravity’ action in terms of different frames, 
the choice of coupling between ‘conventional matter’ and the gravitational fields can break 
this equivalency.

Second, consider again this model in the Jordan frame. While the action (60) would be 
rather complicated if written entirely in terms of gab, ∇a, and Aa, it is obvious that it would not 
fit naturally into the class of theories described in [24, 25]. In particular, the resulting action 
in our current model would contain a term of the form AaAbRab , which is not included in any 
of the Li terms in the generalized Proca Lagrangian. But we know that (at least in the absence 
of matter) this model is equivalent to a special case of generalized Proca theory. This suggests 
that there may be more models having the desirable properties of the ‘original’ generalized 
Proca theories [24, 25] that have not yet been described. Such models could be obtained using 
similar techniques to those described in [27]: a change of frame in the gravitational sector, 
followed by a minimal coupling between the ‘new’ metric and conventional matter.

4.3.  FRW cosmology

As a simple illustration of a non-linear solution of this model, we ask what a dark-energy-dom-
inated FRW spacetime would look like in this case. If we assume that our solution is spatially 
homogenous and isotropic, the form of the gravitational metric must be of the standard FRW form

ds̃2 = g̃µνdxµdxν = −dt2 + a2(t)dΣ2,� (83)

where dΣ2 is the metric on surfaces of constant t, which are assumed to be maximally sym-
metric (S3, R3, or H3.) The vector field Aa, meanwhile, must simply be

Aa = At(dt)a� (84)

in order to respect the symmetry of the solution. This later condition is quite restrictive, since 
it implies that Fµν = 2∂[µAν] = 0. The equation of motion (72) then simplifies drastically:

1
Q3/2

(
ξV(A2)− 2QV ′(A2)

)
= −2

d
d(A2)

[
V(A2)√

Q

]
= 0.� (85)

In other words, the norm of the vector field A, as measured with respect to the physical metric 
gab, is not found at the minimum of the potential V(A2), but instead at the minimum of an 
effective potential defined by

Veff(A2) =
V(A2)√
1 + ξA2

.� (86)

We can define b2 such that V ′(−b2) = 0, and b̄2 such that V ′
eff(−b̄2) = 0. Note that in 

general, these two quantities will differ. For example, suppose the potential is of the form 
V(A2) = β

4 (A
2 + b2)2 + Λ: a ‘Higgs-like’ potential plus a cosmological constant term. It is 

then the case that

−b̄2 =
1
3ξ

[
2

√
(1 − b2ξ)

2
+

3Λξ2

β
− b2ξ − 2

]
= −b2 +

ξΛ

β
+O(ξ2).� (87)

The equation of motion for the gravitational metric g̃ab is then simply

G̃ab + 8πGΛ̃g̃ab = 0� (88)
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where Λ̃ ≡ V(−b̄2). This implies that the gravitational metric is de Sitter, anti-de Sitter, or 
Minkowski, depending on the sign of Λ̃ and the Gaussian curvature k̃ of the spatial hypersur-
faces; the scale factor a(t) will simply obey the Friedmann equation

(
da
dt

)2

− 8πGΛ̃

3
a2 = −k̃.� (89)

To find the matter metric gab—which is, after all, what would be measurable via observa-
tions of ‘normal matter’ in such a Universe—we first note that since A2 = gabAaAb = −b̄2, 
we have

At =
b̄√
−gtt

.� (90)

Recalling (49), this implies that

g̃µνdxµdxν =
1√

1 − ξb̄2
(gµν + ξgµρgνσAρAσ) dxµdxν

=

√
1 − ξb̄2gttdt2 +

1√
1 − ξb̄2

gij(xµ)dxidxj.
�

(91)

Comparing this to (83), we conclude that

ds2 = gµνdxµdxν = − dt2
√

1 − ξb̄2
+

√
1 − ξb̄2a2(t)dΣ2.� (92)

The constant in front of the spatial part of the metric can be absorbed into a(t), and we can 
rescale our time coordinate t̄ = t/(1 − ξb̄2)1/4. In terms of this coordinate, the Friedmann 
equation (89) becomes

(
da
d̄t

)2

− 8πG
√

1 − ξb̄2Λ̃

3
a2 = −k̃

√
1 − ξb̄2.� (93)

In other words, the matter metric is (like the gravitational metric) de Sitter, anti-de Sitter, or 
Minkowski; however, the measurable values of the cosmological constant Λ̄ and the Gaussian 
curvature k̄ would be rescaled:

Λ̄ = Λ̃

√
1 − ξb̄2, k̄ = k̃

√
1 − ξb̄2.� (94)

The effects of this model would therefore not be distinguishable from a conventional FRW 
cosmology with Λ �= 0; the net effect of the non-trivial couplings between Aa and the metric 
in (60) is simply to rescale the ‘bare’ values of the cosmological constant and the spatial 
curvature.

The lack of directly observable effects in this simplistic spacetime does not necessarily 
imply that physically meaningful effects do not exist in other circumstances. The spatial isot-
ropy of this spacetime makes it a particularly poor test bed for the effects of a fundamental 
non-zero vector field, since it implies that the field strength vanishes identically. A more rea-
sonable assumption in the context of Lorentz symmetry violation would be a spacetime that 
is homogeneous but anisotropic, with a local two-dimensional rotational symmetry at every 
point corresponding to rotations keeping the spatial part of Aa fixed. Metrics with this symme-
try structure have been previously examined in the context of perfect-fluid solutions [28–30], 
as well as in the context of more recent vector-tensor models [26, 31]. In the Lorentz-violating 

M D Seifert﻿Class. Quantum Grav. 37 (2020) 065022



21

bootstrap model, this would lead to non-trivial dynamics for Aa, since we would now have 
Fab �= 0; the equations of motion (72) and (74) would also become significantly more com-
plicated. Work on the evolution of such spacetimes in this model is ongoing, and will be 
described in a future paper.
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