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Abstract

Motivated by the need of a robust geometrical framework for the calculation
of long, and highly accurate waveforms for extreme-mass-ratio inspirals,
this work presents an extensive study of the hyperboloidal formalism for the
Kerr spacetime and the Teukolsky equation. In a first step, we introduce a
generic coordinate system foliating the Kerr spacetime into hypersurfaces
of constant time extending between the black-hole horizon and future null
infinity, while keeping track of the underlying degrees of freedom. Then, we
express the Teukolsky equation in terms of these generic coordinates with
focus on applications in both the time and frequency domains. Specifically,
we derive a wave-like equation in 2 4 1 dimensions, whose unique solution
follows directly from the prescription of initial data (no external boundary
conditions). Moreover, we extend the hyperboloidal formulation into the
frequency domain. A comparison with the standard form of the Teukolsky
equations allows us to express the regularisation factors in terms of the
hyperboloidal degrees of freedom. In the second part, we discuss several
hyperboloidal gauges for the Kerr solution. Of particular importance, this
paper introduces the minimal gauge. The resulting expressions for the Kerr
metric and underlying equations are simple enough for eventual (semi)-
analytical studies. Despite the simplicity, the gauge has a very rich structure
as it naturally leads to two possible limits to extremality, namely the standard
extremal Kerr spacetime and its near-horizon geometry. When applied to
the Teukolsky equation in the frequency domain, we show that the minimal
gauge actually provides the spacetime counterpart of the well-known Leaver’s
formalism. Finally, we recast the hyperboloidal gauges for the Kerr spacetime
available in the literature within the framework introduced here.
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1. Introduction

Black-hole perturbation theory has always been a key topic in the theoretical understanding of
general relativity (GR) from both the mathematical and physical perspective. With the dawn
of a new era in gravitational-wave (GW) astronomy, observational data of the merger of binary
systems [1] provide the complete picture to the field. The detected wave signals not only
enhance our comprehension of astrophysical black holes, but they also raise new challenging
questions to contemporary fundamental physics [2]. In the near future, testing GR in even
stronger conditions shall become routine due to the design/development of the third genera-
tion of ground-based detectors, together with the launching of the space-based gravitational
wave observatory LISA.

Critical sources of GWs for the LISA Mission are the so-called extreme mass ratio inspi-
rals (EMRI) [3], i.e. relatively light objects (e.g. stellar black holes and neutron stars) orbit-
ing a supermassive black hole. They are likely to be found in the centres of galaxies, and
the successful detection of their signals brings not only information about the formation and
evolution of supermassive black holes [4], but it also allows us to test Einstein’s theory in the
strongest gravity regime [5-9]. Therefore, highly accurate waveform models are crucial to
maximising the scientific gain from the GW observations.

Among the methods to tackle the two-body problem in GR, the gravitational self-force
(GSF) [10-15] approach is probably the best option to describe EMRI’s within the accuracy
demanded by LISA. In particular, the optimal parameter estimation within the LISA mission
requires the information coming from the second-order expansion in the binary mass ratio
parameter [16-24].

Motivated by this enterprise, this paper focuses on a particular geometrical aspect of black-
hole perturbation theory, namely the most appropriate choice of coordinates (on a fixed back-
ground) to best describe the (infinitely) far away wave zone. For instance, the GSF approach
relies on the construction of a refarded potential, which comes about after fixing boundary
conditions to the underlying GSF equations. The boundary conditions must be chosen to
describe a physical scenario composed of a black-hole horizon and a radiation zone infinitely
far away from the source. The vast majority of GSF applications use spherical-like coordi-
nates (t, r, 0, ¢) with external boundary conditions imposed in terms of the retarded u ~ t — r
or advanced time v ~ t + r. As a consequence, Pound points out [25] that, at second order,
the failure at late times in the GSF programme translates to a failure at large distances as well.
Therefore, it has been recently emphasised the need of a robust and systematic framework for
adapting the time coordinate to the geometrical structure of the spatial scales near the black
hole, and (infinitely) far out at the radiation zone.

Formal methods to treat gravitational radiation at large scales take into account the underly-
ing conformal structure of the spacetime [26-29]. Typically, the physical spacetime (M, gup)
is mapped into a compact, conformal spacetime (M,gab) via 2., = Q%g4. The conformal
metric is regular, the region in the conformal spacetime where the conformal factor €2 vanishes
capturers the notion of spacetime infinity. In this way, the future endpoints of null geodes-
ics, i.e. the future null infinity .# T, formally identify the (infinitely) far way radiation zone.
Within this framework, one also defines the past null infinity .# ~ as the past endpoints of
null geodesics, while space-like infinity i follows from i = .#* N .#~. On a (stationary)
black-hole spacetime, one identifies further a future horizon HT (the black-hole horizon), a



Class. Quantum Grav. 37 (2020) 065019 R P Macedo

past horizon ™ (the white-hole horizon), and the bifurcation sphere B = H* N H ™ (see for
instance [30]). A practical way to achieve the conformal compactification is via an appropriate
choice of coordinates.

In the standard approaches to black-hole perturbation theory, the preference for spheri-
cal-like coordinates (z,r, 8, ¢) lies on the simplicity of the resulting equations. However, the
limiting regions as ¥ — 0o and r — rperizon along time surfaces ¢ = constant are precisely
the space-like infinity i° and the bifurcation sphere B, respectively. Loosely and intuitively
speaking, i entails features of both future/past null infinity. Similarly, B entails features of
both future/past horizon. Hence the need for external boundary conditions to fix the physical
scenario as composed of a black hole () and an infinitely far away wave zone (.# ).

An alternative approach is to introduce a new coordinate system that reaches directly .#
as r — oo, and eventually the black-hole horizon HT as r — Fhorizon- Space-like hypersurfaces
of constant time in such system are called (horizon-penetrating) hyperboloidal slices, as they
resemble hyperbolas in flat spacetime. This strategy removes the necessity of imposing exter-
nal boundary conditions since the time coordinate is—by construction—naturally adapted to
the causal structure of the black hole and the wave zone.

The idea to exploit the freedom in the coordinate choice to reach . was first put for-
ward in [31], while the more recent [32] argues in favour of the hyperboloidal approach to
black-hole perturbation theory. In the last decade, a few choices of hyperboloidal coordinates
on fixed backgrounds have been proposed, initially applied to the development of numerical
codes and the study of the late time decay of several fields propagating in black-hole spa-
cetimes [33-47]. Then, the framework led to some initial studies of EMRI’s, mainly within
the so-called effective-one-body approach [48-56]. In the context of the GSF approach, the
hyperboloidal formulation was fundamental for the calculation of worldline convolutions [57,
58], and it has been recently used in the effective source approach [59].

Interestingly, all the works mentioned above treat the underlying equations in the time
domain, even though Zenginoglu argued rather early that the hyperboloidal formulation
should also lead to efficient codes in the frequency domain [32]. One likely reason is that the
coordinates employed in the majority of the studies so far are rather lengthy [60], thus hinder-
ing an early development of (semi-)analytical tools in the frequency domain. The scenario
changed with the recent identification of the so-called minimal gauge [61, 62] for static black-
hole spacetimes.

With a focus on the Schwarzschild [61] and Reissner—Nordstrom [62] spacetimes, we
showed that the hyperboloidal formulation in the minimal gauge provides the geometrical,
spacetime counterpart of the well-known Leaver’s approach in the frequency domain [63, 64].
In particular, we noticed that the minimal gauge provides two limiting processes to extremal-
ity, one leading to the usual extremal Reissner—Nordstrom black hole, while the second show-
ing a discontinuous transition to the Reissner—Nordstrom near-horizon geometry [65, 66]. It
turns out that the hyperboloidal counterpart of Leaver’s approach corresponds to the second
formulation. Besides, due to the rather simple analytical structure of the spacetime metric
and the wave equations involved [61, 62], expand on Leaver’s approach in the frequency
domain. The works provide novel tools—based on the so-called ‘discrete Green’s function’
technique for recurrence relations—to express the solutions to wave-like equations in terms of
a discrete (quasi-normal-modes) + continuous (tail decay) spectra on non-rotating black-hole
spacetimes.

This paper extends the geometrical results from [61, 62] into the Kerr spacetime. Here,
we introduce a generic formulation for the hyperboloidal approach of the Kerr spacetime and
its perturbation equations. The work provides the theoretical tools for a robust hyperboloidal
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framework, which will serve as the basis for further studies of EMRI’s focusing on the pro-
duction of highly accurate waveform signals templates for the data analysis pipeline in the
LISA Mission. Specifically, section 2 introduces the generic hyperboloidal coordinate system
for the Kerr spacetime and scrutinises the degrees of freedom within the coordinate choice.
Then, section 3 develops the hyperboloidal formulation of the Teukolsky equation in both
time and frequency domain. Finally, sections 4 and 5 discuss several choices of hyperboloidal
gauges for the Kerr spacetime. The former focuses on the simplest hyperboloidal foliation
for the Kerr spacetime—the minimal gauge. The latter reviews and re-casts all hyperboloidal
gauges available in the literature in terms of the formalism introduced here.
This work uses natural units where G = ¢ = 1.

2. Kerr spacetime

In this section, we present the generic formalism for the construction of hyperboloidal slices
on a fixed background with the focus on the Kerr spacetime.

2.1. Boyer—Lindgst coordinates

We begin by reviewing the Kerr spacetime in Boyer-Lindgst coordinate (f,r, 6, )

AM. »
d? = —fd? — % sin® 0drdg + < dr” + £ d6?

2 (1
+sin?0 (20 n @ sin? 9) d¢?,
with
A(r) = —2Mr+d* = (r—r.,.) (r—r_), )
Y(r,0) = r* + a*cos* 0, Yo(r) = X(r,0) = r* + d?, 3)
2Mr

As usual, the parameters M and a relate, respectively, to the black hole’s mass and angular
momentum. The condition A(r) = 0 defines the event (r; ) and Cauchy (r_) horizons

a2
re =M | 1x£4/1— 2| ©)
It will be convenient to parametrise the spacetime via x € [—1, 1] defined by
2 r_ N 2M M, 6
K= —=>ry=——, 7-=——=K, a=ryqk
ry T 4R2 1+ K2 * ©

In terms of the usual dimensionless spin parameter j = a/M, it reads

K= (7)
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Thus, £ = 0 (a = 0) reduces the metric to the Schwarzschild spacetime while|x| = 1 (ja| = M)
leads to the extremal Kerr solution.

Along the hypersurfaces ¢ = constant, the limit » — oo leads to spatial infinity i’, whereas
r = r, corresponds to the bifurcation sphere.

2.2. Ingoing Kerr coordinates

Since we wish to construct horizon penetrating coordinates, we first introduce the ingoing
Kerr coordinates (v, r, 0, ¢) via

t=v—ri(r), ©=0¢—k(r), 8)
with the tortoise coordinate r*(r) and the phase k(r) defined by

drs ¥y dk a

A & A ®
Note that the tortoise coordinate r* and the phase k are defined up to an overall constant. When
needed, we use in this work

2M 2M
r*:r—i—1 1n(r—1>—/$21 1n(r—1€2> (10)

*I{z ry *Iiz ry

K r/ry —1
k= 1 — k2 1n<r/r+—/£2>' (n

The line element (1) then transforms into its original Kerr’s form

2
ds? = —f(dv—asin20d¢) + Y dw?
(12)
+2<dv—asin29d¢> (dr—asin29d¢),

with dw? = d#? + sin? 6 d¢ the line element of the unit sphere. By construction, the surface
r = r; along v = constant corresponds to the future black-hole horizon. However, the limit
r — oo leads to past null infinity & —.

In the next section, we introduce coordinates for which r — oo corresponds, actually, to
future null infinity .# . Following [62], to identify .# T it is convenient to keep track of the
null vectors k“ and [ associated to the ingoing and outgoing light rays, respectively. In the
present coordinate system, they read

2 2 A
a __ __ +sa a_ —1[7T ta a a a
K= —(80, "= ( S 6V+226,+25¢>. (13)

The (free) boost parameter ( is fixed in the next section.

2.3. Conformal compactfication and the hyperboloidal slicing

We finally introduce compact hyperboloidal coordinates (7,0, 6, ¢) via the height function
technique [67]. Extending on [62], we consider a f-dependence via
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v:)\<7'—h(0,9)), AP, (14)

g

with A a length scale of the spacetime. Appendix B discusses different choices for A. The
height function i(o, 8) and the radial function p(c) encode the gauge degrees of freedom. The
radial compactification allow us to naturally associate a conformal factor in terms of the new
coordinate o via

Q=0/\, (15)
which leads to a conformal spacetime with line element'

ds? = Q2 ds?

2
= —0’2F<d7' —hydo —hgdf — asin29d¢> + 3 dw?

- 2<d7 —hydo — hgdf — asin® 9d¢> (ﬁda + ao? sin? 9d¢>.
(16)
In the above expression, the gauge freedom in the radial direction is captured by the shift
B(o) = plo) —ap'(o). (17)

Moreover, equations (2)—(4) transform under the coordinate change and the conformal com-
pactification to

_ 18
= (p(0)- ’;o) (p<a> - &a> . (19
3(0,0) = B (r(0),0) = p(c)* + o® 6> cos® b, (19)
So(0) = X*%o(r(0)) = plo)* + a*o?, (20)
2pplo)o
F 5 0 - N 0 - 1 — =
(0.0) =f(r(0).0) S0.0) 1)
with the dimensionless mass and spin parameters respectively (see appendix B)
w=M/N\ a=all\ (22)

The conformal null vectors re-scale as k* = Q~'k% and I* = Q=" [%. To ensure that the
hypersurfaces 7 = constant foliate future null infinity, we require 7 to be a good parameter of
the ingoing conformal null vector via k*d,7 = 1. This requirement fixes the boost parameter
¢ in (13), and it leads to

. 1
K= 004 05 (23)

! Appendix A brings explicitly the components of the metric, its inverse and determinant.

6
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w hy . Ac?h, 2h .
o= o (2320 - Ao—Zh,a) o — 22 2o ge 20 Jo g (24)
232% 25323 BX
Finally, we impose that 0 = 0 is a null surface corresponding to future null infinity via [62]
~ 1
lim £k = 62 = lim — = 0. (25)
o—0 o—0 1,

However, the above condition must not jeopardise the regularity of the outgoing conformal
null vector [ as o — 0.

We recall that for non-rotating black holes, p(o) is the areal radius in the conformal repre-
sentation of the spacetime. As such, it was natural to considered it to be a regular function on
its domain attaining positive, non-vanishing values [62]. We assume the same properties here.
If one considers

p(a) = po +op1 + O(0®) = B(0) = po + O(0?), (26)

and expands all the relevant quantities around o = 0, one obtains the same result as in [62],
i.e. the spin parameter of the Kerr solution does not affect the leading terms in the height func-
tion. Specifically, the components of /* remain finite for

2 2
he =13 [1 + ,,“o] +0(1) = h(0,0) = ho(0) + A0, 0), @7
0
with
1 2
ho(o) = —2pp [ il 0':| . (28)
[0z £o

The time function A(o,6) together with the radial shift 5(o) account for all gauge degrees
of freedom. The only restriction on their choice is that the surfaces 7 = const. are spacelike
outside the black-hole region. Thus, V,7V“r < 0 imposes

y- <y <y, (29)
with

d a?Ah, Aoc? | 5
y.:—)\dr*h: SR yizli\/l—iz(hﬁ—i—oﬂsm 9). (30)

3. Teukolsky equation
The (sourceless) Teukolsky equation (TE)—originally derived in the Boyer—Lindgst coordi-
nates x* = (t,r, 6, p)—reads for the master function ¥ (x“)

4Mar
A

2
0= [@ — @’ sin? 9} DXV +

2
i 8,2@\1/+{“—— : ]32\1,

A sin?g] ¥¥

)
— AP, (A”“@,\I/) —2p [w —(r+ iacos@)} A

a(r — M) .0050} )

1 .
—2p [ A Tiioy, W%(Sln@ao‘lf) +p(peot’d —1)0.

€1y
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Here, p is the field’s spin-weight parameter and it describes scalar (p = 0), electromagnetic
(p = £1) and gravitational (p = £2) perturbation. Equation (31) must be solved with ingoing
and outgoing boundary conditions at the horizon r; and spatial infinity r — 00, respectively.

One can separate the Teukolsky equation (31) in the frequency domain [68, 69]. The ansatz

U(t,r,0,0) = e WIR(r)S(H)e" (32)
leads to two ordinary differential equations for the functions R(r) and S(6)
TSO)=0, T I d sin 0 d + a*w? cos? 0 — 2paw cos 0
= = — | sinf— aw — 2paw
’ sin6 do d P )
+pcosh’
sin 6
DR(r)=0, D= Af”i A”Hi + (2ipwr — a*w® — Agy)
’ dr dr " (34)
N (wX)? — 4Mamwr + a*m? + 2ip [am(r — M) — Mw(r* — d*)]
A .

Equation (33) forms a Sturm-Liouville eigenvalue problem, and the solutions ,Sg,(6) are
the so-called spin-weighted spheroidal harmonics [68, 69]. Then, equation (34) leads to the
quasinormal modes w, when solved with the ingoing (outgoing) boundary conditions at the
horizon (spatial infinity), together with appropriate regularity conditions?. In the next subsec-
tions, we discuss the TE in the time and frequency domain within the hyperboloidal formalism
introduced in the last section.

3.1. Time domain

We aim initially at re-writing equation (31) in the hyperboloidal coordinates x* = (7, 0,0, ¢)
in terms of a master function U(x*) which is regular at future null infinity o = 0 and the hori-
zon 0 = 0. Then, thanks to the axial-symmetry, we introduce a Fourier decomposition in the
coordinate ¢. With a regularisation at the poles of the spherical coordinates sin # = 0, the final
goal is to obtain an equation in 2 4 1 dimensions for a given Fourier mode V,,(7, o, #) which
is regular at the radial and angular boundaries.

3.1.1. Regularity at radial boundaries. Initially, one applies the transformation x* = x4(x?)
from the Boyer—Lindgst to the hyperboloidal coordinates directly to equation (31). After the
coordinate change, the regularisation of essential singularities in the radial direction at future
null infinity 0 = 0 and the black-hole horizon ¢ = o follows from

U(x*) =~ Apﬁf(xb(x“)>- (395)

In particular, one can follow the intermediary step for section 2.2 and first transform the TE
from the Boyer—Lindgst into the ingoing Kerr coordinates—see equation (8). The factor A?

2 Conditions leading to quasinormal modes are often expressed solely by the asymptotic behaviours of R(r) as

r* — #oo. Though necessary, such conditions are not sufficient—see e.g. section 3.1.2 in [70]. Ansorg and Macedo
[61] employs numerical tools to address important issues regarding the regularity of the underlying quasinormal
mode eigenfunctions, whereas [71, 72] brings a rigorous mathematical discussion on the matter.

8
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in equation (35) enters at this stage to regularise the field at the horizon. Then, one transforms
from ingoing Kerr to hyperboloidal coordinates according to equation (14). The factor 2~ ! in
equation (35) guarantees the regularity at .# *. Indeed, the final form of the TE in the hyper-
boloidal formulation reads

» 2A
(Oh!g |:2 _ g h,g

- I:h?g + o2 sin® 9] ) Urr+c, U+ ZQEU,(z,

B Yo B
o o?Ah, [ O'Zhg:| o2
2— 11— ——|U;o —2a |1 — — | Ur¢ +200—Ugzp —2hoU ;
E S0B | CI R R
AP | g20+p) Al-p _ AP a2 Al-p
- U,| —[|00—-2p+ = gl U=0.
Bo { 5 B Ea

The derivatives in the angular directions were incorporated in terms of the eth-operator [73] 0
acting on the field U(x*) with spin weight p

ag(Sin@@gU) 8§5¢U

_ . cosf (37)
00U = , + +2ip——-04U + p(1 — pcot® ) U.
sin 6 sin? 0 P sin? 0 p(1=p )
Moreover, the coefficient ¢ is given by
Ar 24P Al=p 2. 2
,=— - ho —Xp— —(1-2

¢ 5o [ 3 + 550 S (1=2p)

(38)
89 ( sin Qh!9>

+2ipacosd — -
sin 6

Despite its apparent singular behaviour at o = 0, one verifies that ¢, actually behaves as
B—po
cr ~ — 200 — B(1 — 2p)] ~ O(a). (39)
B8 o
The result follows from 3(c) — py = O(0?), together with the height function’s leading order

behaviour—see equations (26) and (27).
Finally, we observe that the particular form of the last terms in equation (36) leads to

A 2p A1—
o+ %01—2;7 lwl ) ~ O(0). (40)

Alternatively, the factor —2p could be incorporated into the angular operator via 30 = 90 — 2p.
The chosen option allows for more straightforward comparison with the standard equations in
the frequency domain—see section 3.2.2.

The re-scaling (35) does not remove the degeneracies of the TE at the two boundaries
altogether. In fact, the term proportional to J,, U goes as oA, which vanishes at ¢ = 0 and
0 = 0+. Such degeneracies provide boundary conditions guaranteeing that the characteristics
of the wave equation always point outward the numerical domain. Hence, when looking for
regular solutions, no further boundary conditions at the horizon nor future null infinity are
allowed to be imposed.
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Table 1. Master function and its asymptotic behaviour.

p \ Q-0
-2 0ty oQ)
—1 972¢2 O(Q—l)
0 ® oJ(9))

1 o O3
2 Wy o)

3.1.2. Conformal re-scaling and peeling properties. The peeling theorem for the Newman—
Penrose scalars states that’

U=y, (k=0--4); ¢, =0"¢,, (n=0---2), (41)
while the scalar field transform as ® = 2®. Apart from that, the Teukolsky master function ¥
includes a pre-factor ¢* whenever p < 0, with o = —(r +iacos#)~! the Newman—Penrose

spin coefficient. Its direct re-scaling reads

—1
o= Qp, Q=—<p(o)+iacos€) ) (42)

By systematically collecting all the conformal factors for the master functions with different
spins, one obtains the asymptotic behaviour ¥ ~ Q!*2’—see table 1. Such asymptotic behav-
iour follows straightforwardly from equation (35). Indeed, with the conformal re-scaling of
the function A in equations (18) and (35) yields

U~ Q 42y — gy 920 o(1). 43)

3.1.3. Evolution equation in 2 + 1 dimensions. Finally, we exploit the axial-symmetry of the
system to decompose the solution into its Fourier modes

(oo}

U(r,0,0.0) = > Un(r,0,0)e". (44)

m—=—0o0

To regularise the essential regularity at sin(6) = 0, we introduce one last transformation
Un(7,0,0) = cos® (0/2) sin®(0/2)V,u(7, 0, 0), (45)

with the exponents §; = |m — p|and §, = |m + p|.

3 Quantities denoted with a bar represent a regular function of order O(1) as 2 — 0. They may not necessarily
coincide with the conformal Newman—Penrose quantities derived directly from the conformal metric (16) and the
tetrads (24).

10
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With the substitution x = cosf one achieves the final (regular) form for the Teukolsky
equation*

_& 702Ah,07 2\ 2 2 B 2
o(Bh,g [2 ioﬂ} (1 x)[h,ﬁa])v,,m [(1 x)v,,,,x]’x

2 p) 2Ah,
1 2iam TV, +220 1= 220 Ly 2(1 — )y Vi
B B o
o%h,
+ {CT —2iam (1 — ﬂ’ ) +[(1=x)d1 — (1 +x)d7] h,x] Vinr
Ar | 24P Al-p 2iamo
~ o { 5 Vo ) + [(14+x)0 — (1 —x)01] Viux + { 3
o' =WAP [ oW AP o 51+ 0 ltp+ 0146 v
3 3 P p ) P B me
' (46)

Similar to the behaviour at the boundaries in the radial direction, the equation still degenerates
at x = %1 due to the vanishing of the coefficient in front of 92 V,,. No extra boundary condi-
tions are needed thereon as the corresponding regularity conditions at the north and south
poles of the spherical-type coordinate system must be imposed.

Equation (46) provides a hyperbolic equation for the regular field V,,(7, o, x) defined in the
domain (7,0,x) € [19,71] X [0,1] x [—1, 1]. A unique time evolution follows from initial data

V,?L(a,x) = Vu(70,0,%), W,?L(U,x) = 0, Viu(10,0,%). 47)

3.2. Frequency domain

We now approach the hyperboloidal formulation of TE in the frequency domain. The most
straightforward strategy is to directly Fourier-transform equation (46) into the frequency
domain. This procedure allows us to identify the key elements within the frequency domain
for the direct hyperboloidal transformation of the equations (33) and (34).

3.2.1. Fourier-transform of hyperboloidal time. We begin by considering the Ansatz
Vu(T,0,0) =€ v(o) S(6). (48)
To enable a separation of variables, the height function must decompose as
h(o,0) = Ho(o) + H,(0). (49)

At this point, it is essential to recall equations (27) and (28), which identifies the irregu-
lar leading term /(o) and the regular function A(c, 6). While the former yields the desired
hyperboloidal behaviour for the foliation, the latter captures the gauge degrees of freedom.
Thus, in the decomposition (49), the radial dependence Hy(o) must not necessarily coincide
with the leading term Ao (o). It is actually the regular part A(o, 8) that must be separable lead-
ing to Hy(o) = ho(o) + Ag(o) and H,(6) = A,(0).

4In equation (46) and further equations in this section, we abuse the notation for the functions regarding the substi-
tution x = cos @ and consider the notation f(¢) as resulting from f(x(6)).

1
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Equation (46) leads to the following ordinary differential equations for the functions S(x)
and v(o)

2 d2
OS(x) =0, @z(l—x)dx2
+ <2s(1 —XA)H] —2x — (14 x)0, + (1 x)51> %
+ (Aem + (p -0 ;52> (1 fp+ ;62> +[(1 -2 H? — o2 8
~slaipar= (=) - (0 -96 - 1498 HiD, (50)

Ar d [02<1+P>A1—P d]

8 do
S 2 A Eg! 2 SN2/ 2 AL’
-2 s& 1- U~AH0 + iama— i - ZoHy 2 — U~AH0 —a?|s?
B 58 B ) do B o8

AP 2(14p) Al—p g’ _ 2
. [ AP d (0’ A HO> ~ 2p(1 —2p) i (1 B %Hé)
o

~ Bo¥ do B
+27§0 n 2i amo n Arg!=2 (g Al-P oy A 1)
o | "B 3 g ) o

Equations (50) and (51) inherit the degeneracies of equation (46). In particular, equation (50)
presents a regular singular point at x = =1, which allows one to seek solutions in the form

S(x) =Y an(1+x)" (52)
n=0

Whenever H;(x) is polynomial in x, the Ansatz (52) leads to a recurrence relation for the
coefficients a,. In this case, the methods developed in [62, 63] can be used to find the angular
eigenvalues Ay, and to construct the (re-scaled) spin weighted spherical harmonics ,Sg, (x).
For instance, Leaver’s well-known three-term recurrence relation [63] follows from—see sec-
tion 5.4.2 for further comments on this choice

H,(x) = iax. (53)

We observe that the above choice is not essential to the study of equation (50) with the Ansatz
(52). The option H;(x) = 0 can also be employed, but it leads to a four-term recurrence rela-
tion for the coefficients a,,.

Equation (51), has a regular singular point at ¢ = 0 and one can express the solution as

v(o) = an (1 - ;) . (54)
n=0 +

Similar to the angular equation, whenever Hy(o) yields an equation (51) whose coefficients
are polynomial in o, a recurrence relation for b, follows. The quasi-normal frequencies sy, are
obtained for v(o) sufficiently regular in the entire domain o € [0, 0] [61, 63, 71, 72, 74]. As
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in the case of static black-hole spacetimes, Leaver’s approach [63] follows from a particular
choice of the hyperboloidal formulation, the so-called minimal gauge—see section 4.2.

3.2.2. Hyperboloidal transformation in the frequency domain. Finally, we can compare the
relation between the regular functions v(o) and S(6) obtained via the Fourier transform of
the hyperboloidal wave equation against the original R(r) and S(6) introduced in (32). To this
end, we recall the complete mapping from Boyer—Lindgst to the hyperboloidal coordinates as

g

t:/\<7—h(a,9)>—r*(r(0'))» r=a2D b ko). 55)

After inserting equation (55) directly into equation (32), one reads the following relation
between the hyperboloidal frequency parameter s and the frequency w

s = —1\w. (56)
Then, the re-scaling provided by equations (35) and (45) leads to

§(0) = E(0)S(0),

2(6) = cos® (0/2) sin®(0/2) exp [sH, (0)], ©7

together with

(58)

Z(0) = Qo) TP A(0) P exp [s (Ho(o) + r“;"”) + im k(r(o))] .

With the above consideration, one verifies the following relation between the differential oper-
ators in the original formulation and the hyperboloidal setting

TS=EBS, DR=ZAv. (59)

The functions =(#) and Z(o) are precisely the regularisation factors needed to incorporate
the regularity/boundary conditions into the original equations (33) and (34). Typically, they
are determined via standard techniques in the theory of ordinary differential equations, for
instance, as in the well-known works by Leaver [63, 64]. Clearly, they are not unique. In fact,
other choices have been considered when studying the original equation (34) in the frequency
domain, such as the ones by Dolan and Ottewill [75, 76].

Here, we observe that the factors (57) and (58) are directly related to the choice of the
height function and the radial compactification in the hyperboloidal formulation. Therefore,
they can be derived directly from a spacetime perspective, adding in this way an extra geo-
metrical insight into the problem.

The next sections discuss several hyperboloidal gauges for the Kerr spacetime and the TE,
which amounts to different choices of the radial function p(o)}—or equivalently (o }—and
the time function A(o, 0).

4. The minimal gauge

This section introduces the minimal gauge (MG) for the Kerr solution. As in [62], one requires
the gauge functions (o) and A(o, §)—see equations (17) and (27)—to assume their simplest
form

A(0,0) =0, B(o) =po==p(d)=po+opi. (60)

13
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All the degrees of freedom now reduces to a choice of a preferred length scale A, together with
the values py and py, restricted to p(o) > 0—see discussion around equation (26).

We begin by choosing A = ry, which according to (6) and (22) fixes the dimensionless
Kerr parameters to

1+ K2

=
Moreover, it is convenient to set the coordinate location of the black-hole horizon r; at o, = 1,
which constraints py and p; to

o= kK. (61)

po=rs/A—pi
0 (62)

The minimal gauge leads naturally to two distinct conformal representation of the spacetime,
depending on the choice of the remaining gauge parameter p;. The two geometries have dif-
ferent spacetime limits in the extremal case.

4.1. Radial function fixing gauge

The most straight forward choice is to set

p1 =0. (63)
Such an option fixes the radial function to the value
plo) =1, (64)

and thus it is referred to as the radial function fixing minimal gauge (MGg).
It leads to a conformal line element with metric components—see equations (A.1)—(A.3).

go(): 70'2F, g()l (1 —2F |:1+(1+/€2)0'}), gzzzz,

1 2\ +3 ) B _
803 = —M sin? 0, g3 = SH} 0 (E% — Ax*c?*sin 6 s
by
(1 + x?) (65)
gn = 4T [1+(1+rKY)o] [+ k(1 —ocos’0)],
1 2
813 = ksin® 0 (1 +2w [l + (14 RZ)U}> ;
= —%(4(1 + 87 [14+ (1 +sDo] [1+K(1—0)] — 52sm29>
2 2
~11_‘7A ~22_l ~33 _ 1 -13 _ ko
8o 8Ty f T sae Sl
| yes < K
01 _ 1 _ 2 03 _ Ko 2 )
=2 (zo 27 1+(1+n)a}),g i(l 2[1+(1+m)a}),
(66)
g =det g = —22 sin? 6. (67)

The Kerr spacetime in the MGy gauge is well-defined in the complete parameter range
k € [—1,1] In particular, the limiting value || = 1 approaches the usual extremal Kerr
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spacetime. Indeed, the norm of the vector V. at o = 0 indicates the type of hypersurface
# 7 is. In this gauge, we obtain

- 2(1 = o0)(1 — K2
;%|vag|2:11m”( =) o yuel-11] (68)

o—0 rﬁ_i
In other words, . is a null hypersurface for all values of the parameter x, including the
extremal case |k| = 1.

The Cauchy horizon r_ in the new compact radial coordinate is o_ = x~2 Thus, the coor-
dinate location o_ changes in the o-direction parametrically, according to ~. In particular, at
the Schwarzschild limit £ = 0, ¢_ — o0, i.€. it corresponds to the singularly »_ = 0. In the
extremal case k = 1, the horizons coincide at o = o4 = 1, as expected.

Appendix C displays the complete form of the Teukolsky equation in the time and fre-
quency domain for the MGy gauge. Here, we focus on the factor Z(o) that regularises the TE
in the frequency domain according to equation (58)

I —r Jﬁimlﬁ—-‘:zuA ) Ty —r 7iml'i+n22m
20 1-75) (1-35)
—(14-2p+2pus)
oo (<02) () ©

Of particular interest is the expression of equation (69) in the extremal limit|x| — 1 (r = M)

2(0) o exp {—srgw") _ 25 +im) (’5‘7") - 1) _l]

—2pt2s —(14+2p+25)
><(1— M) ’ (’(")) T (70)

r(o) ri

Equation (70) corresponds precisely to the factor introduced by Richartz in [77] to calcu-
late the quasi-normal modes of an extremal Kerr black hole according to Leaver’s algorithm.
Within the hyperboloidal approach, it becomes clear that spacetime counterpart of Richartz
ansatz is the description of the Kerr solution in the radial function fixing minimal gauge.

4.2. Cauchy horizon fixing gauge

As an alternative to the previous gauge, one can fix the Cauchy horizon at a pre-defined
coordinate distance o_ = ¢~!, independent of the Kerr parameter «. This family of gauges is
called the Cauchy horizon fixing minimal gauge (MGg).

One natural requirement is that both the MGy and the MG gauges lead to the same results
in the Schwarzschild limit £ = 0. Such a requirement gives ¢ = 0, i.e. it fixes the Cauchy
horizon at o_ — oo, Vk. This property is achieved by setting

p1 = K2, (71)

which leads to the metric components
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- N -~ sin® 0
8o =—0’F, gn =23, gu = S (

g1 = %(1 +&%)[1 = &%+ (1 + £*)o] [1 — K*(1 — o'sin0)]

— Ar%0?sin 9)

201 = —(1 — &*)(1 = 2F) + 2F (1 + x*)o,
k(14 K2)[1 — k*(1 — 0)]o?

- L,
- = sin” 6.
803 5
g3 = rsin’ 0 <1 — K? +20(1 -l =K1 _‘i)][l +o0—r(1-0))
by
(72)
1 2
g00__i<4(1 + K?) [1 + 14_'*«'20] _ 24in 9>
Sl 02(1~— 0') 522 _ i g33 1 B Ko
% ’ >’ S sin2 6 (- )5
- 1 - - (1+K2)0,]
01
* (1_"52)2< ’ { 1— k2
L 1+& )
¢ > (1 2[1+1n20:|)
g =detgm = —(1— k2> 52 sin0. o)

By writing the Teukolsky equation in the Cauchy horizon fixing gauge—see appendix C—one
observes that the MG¢ gauge provides the same regularisation scheme as Leaver’s approach
to the TE in the frequency domain [63]. Indeed, one first notices that, in terms of the original
radial coordinate r(o ), the Taylor expansion around the horizon for v(o) in equation (54) reads

Zb 1=o)" Zb ( Z::f) : (74)

i.e. it leads precisely to the expansion used by Leaver. Apart from that, the hyperboloidal
regularisation factor (58) reads

(o) —(142p) L —p+(2sutims) /(1-1%)
ry r(o)

2(0) s exp (o))
—(1+p)—[2ps(2—r)imr] / (1— )
<(1-7)

(75)
which is precisely the one used by [63].

The strategy employed by Leaver for regularising the TE in the frequency domain is based
on tools developed for the study of ordinary differential equations. Here, we see that the MG¢
gauge provides a complete spacetime description of Leaver’s approach.

A well-known limitation in Leaver’s strategy is that it does not apply to the extremal case
|x| = 1. By having the spacetime description, it becomes evident that the extremal limit |x| — 1
is not well defined due to the vanishing of the determinant g|,—; = O—or equivalently, by the
singular behaviour of some components for the inverse metric g. Such a singular behaviour
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reflects the fact that the radial transformation (14) is ill-defined in the extremal limit, i.e.
=

These results on the limit to extremality are not restricted to the choice of fixing the Cauchy
horizon at o_ — o0, Vk. It is valid whenever one fixes the Cauchy horizon to a given coordi-
nate location o_ independent of the parameter «.

Interestingly, one observes that .#* becomes a timelike surface in the extremal limit.
Indeed, one has

. o?(1—o0)
lim [V,Q[* = li
o530 | | 050 ri(1 — &?)(1 — k? = 20) 4 K202(K? + cos? 0) 6)

B 0 ke (—1,1)
S U 4cos?0) >0 [kl=1

The timelike character of the spacetime boundary is typical of (asymptotically) Anti-de Sitter
manifolds, and therefore it strongly suggests that the limit corresponds actually to the near-
horizon geometry [78, 79].
The near-horizon geometry is achieved by one further coordinate transformation
T K

Tﬁm’ ¢7®+mT72ma. (77)
As in the radial case, the transformation above is ill-defined for  — 1. Nevertheless, the
resulting metric is regular in the limit. In particular, the 7 dependence in the angular coor-
dinate is crucial to ensure the regularity of the final line element. On the other hand, the o
dependence is not needed for obtaining a regular limit £ — 1. However, it simplifies the final
result as it implies that 7'is an ingoing Eddington—Finkelstein-type null coordinate. In the final
coordinates (T, o, 8, @), the conformal line element for x = 1 reads

1 —
ds* = (1 + cos’0) <40 d7* — dT do + o* d02>

4sin” 0 1—0 2
—— | 0d® dar | .
T + cos? 0 (o T )

(78)

Therefore, the failure of Leaver’s algorithm in the limit || — 1 is not a technical one. It is
instead a consequence of the discontinuous transition to the near-horizon geometry.

The next section surveys several hyperboloidal gauges in the literature and presents them in
terms of a single formalism for comparison. It becomes evident the advantages of the minimal
gauge due to its simplicity.

5. Further hyperboloidal gauges

We recall that our compact radial coordinate o is naturally adapted to the conformal factor
Q) via equation (15), and the radial gauge degree of freedom is incorporated by the function
p(0). Most works, however, followed Zenginoglu’s scri fixing approach [67], and employed
the following radial compactification

R R

" aw " ewm) 7

In other words, the gauge freedom is encoded in the conformal factor Q(R) = o(R)/\. The
re-construction of the radial function p(o) follows straightforwardly from p(o) = R(0).
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The motivation in [67] to let the conformal factor 2(R) free comes from the community’s
initial objective of applying the hyperboloidal approach to solve numerically the full non-
linear Einstein’s equation’. Since the background spacetime is known a priori in black-hole
perturbation theory, we argue here in favour of the compact coordinate adapted to the confor-
mal factor 0 = AQ2. This choice simplifies the equations involved significantly, especially in
the minimal gauge discussed in the previous section.

One must also pay careful attention to the definition of the height function when comparing
the different gauges available in the literature. Here, the height function & (o, ) follows from
an advanced time coordinate v—see equations (8) and (14)—whereas Zenginoglu introduces
his height function Az (r) out of a ‘standard’ time coordinate® # and with the opposite sign [67].
Since, the time coordinates relate via v ~ ¢+ r, or more precisely v =t 4 r*, one usually
obtains h = —(hz + r/\) or h = —(hz + r* /) depending on the application.

Finally, we noticed that several works bring expressions mixing dimensionful and dimen-
sionless quantities. Their approach is justified as one eventually sets M = 1 in the numerical
experiments. However, before this scaling effectively takes place, the interpretation of such
expressions adds another layer of difficulty when comparing the formalisms. Here, the hyper-
boloidal coordinates (7,0, 6, ) are dimensionless, and so are the functions & and p. The
conformal factor, on the other hand, has dimension [2] = (Length)~!. Hence, we consistently
keep track of the generic length scale A to ease the dimensional analysis of all final expres-
sions. Thus, setting M = 1 is equivalent to the choice A = M—see appendix B.

5.1. Zenginoglu’s gauge

In [67], Zenginoglu fixes the conformal factor to 2 = )\_1(1 — R) = 0 =1 — R. Therefore,
one reads the radial function directly

pz(o) =1—o0. (80)

The horizons are located at the coordinate value o = (1 +rz A"~ < 1.
Then, he constructs two hyperboloidal coordinates for the Kerr spacetime:

(i) His asymptotic regularisation of the Kerr metric initially in the Boyer—Lindquist coordi-

r r

b\ +2pln <X) Since v = g + r*(r), one obtains:
AZBL (U) = - (ho(a) + hZBL (7‘(0’)) + fk(r)\(o'))>

nates led to hz, (r)

=2+2uln (%) —2uln(l — o)

2u o 2 o
o2 {ln(l—ﬂ)—ﬁln(l—g)] (81)

Note that this choice leads to a hyperboloidal foliation which is not horizon penetrating.
(i1) His asymptotic regularisation of the Kerr metric initially in the Kerr—Schild coordinates

led to hz,(r) = ; +4pln (;) Since v = tgs + r, one obtains

5 See [46, 80-89] for studies focusing on several numerical aspects of non-linear time evolutions in the hyperboloi-
dal approach.
©More precisely, along the ‘standard’ time surface # = constant, the limit » — oo leads to spacelike infintiy °.
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AZKS (U) = (h()((f) + hZKS (r(o')) + V(/\U)>

2(1 —2uIn(1 0)). (82)

5.2. The RT gauge

Following Moncrief’s [90] construction of hyperbolas in the Minkowski spacetime, Racz and
Téth [40] added the logarithm contribution to the height function, needed in any black-hole
spacetime.

In their gauge, one reads the conformal factor @ = A\~!(1 — R?)/2 — o = (1 — R?)/2,
from which the radial function becomes

prr(0) = VT =20, (83)
The coordinate location of the horizons are o = (Ar;l) 2 <\/ 1+rpX1— 1).

Their height function reads hgr(r) = /1 + (rA=1)2 —4pln (20(r)), and it was intro-

duced according to Zenginoglu’s formalism into the Kerr metric originally written in the
Kerr—Schild form. Since v = #ks + r, one gets the function

maw>=—<mma+hmow»+f§?>
1-+V1-20

(34)
=1+44un2+

It is easy to see that at 0 = 0 is, indeed, regular.
This gauge was then used by Harms and Bernuzzi as well [42].

5.2.1. The HHs gauge. Harms, Bernuzzi et al introduced the HHg with a free parameter
S adapting their numerical scheme [52]. In the HHg gauge, one reads the conformal factor
Q=X"'1-R/S) — o = (1 —R/S), from which the radial function becomes

PHHS(U) :S(] —O'). (85)

The coordinate location of the horizons are o = (1 + r—i) <.

For their numerical studies, they demand invarianéé of the coordinate expression for
outgoing characteristics in the spatially compactified coordinates. Hence, they express the
advanced-time coordinate in the Kerr—Schild form as

S+ p(o)

WA= o) O

—4uln(o) — 2uln(2u), (86)

from which we read
Anng(0) =2plnp + 38 — So. (87)
In the author’s original coordinates R, the parameter S is interpreted as the (free) coordinate

location of .# *. Here though, where one always has ¢ s+ = 0, the gauge HHy is viewed as the
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simplest extension away from the minimal gauge. Indeed, as required by the minimal gauge,
equation (83) leads to Bung = S = constant, whereas equation (87) introduces only7 a linear
term Apy, (o) ~ —So.

Despite the simple modification, the current formulation of the HHg gauge does not pro-
vide a smooth transition to the minimal gauge as S — O because the radial transformation is
not defined for S = O—see (85). Therefore, this work introduces the mHHg, i.e. a modified,
but equivalent version of the HHg gauge by adopting simply

pmpns(0) =1+ S(1 —0), Apnng(0) = —So. (88)

With this choice, one has .#+ and H ™ respectively fixed at 0 = 0 and o = 1, regardless of S.
Moreover, S — 0 naturally recovers the MGr gauge.

5.3. Tha Dolan and Ottewill gauge in the frequency domain

All hyperboloidal gauges for the Kerr spacetime available in the literature treat the problem in
the time domain. With a focus on the frequency domain, this work has already identified the
MG gauge as the counterpart of Leaver’s [63, 64] approach.

This section discusses from the hyperboloidal perspective the approach by Dolan and
Ottewill [75, 76] to approximate the quasi-normal spectrum of black holes in the Eikonal
limit. In particular [76], introduces the Ansatz®

. . _ dr 2
R(r)=r""Aexp <1/BD(r)dr> v(r), A (89)

into the Teukolsky radial equation (34).

Then [76], demands that Bp satisfies: (i) the appropriate outgoing/ingoing boundary condi-
tions at infinity/horizon; (ii) the resulting differential equation for v allows the factorisation of
an overall term A /r?; and (iii) Bp changes sign when crossing a particular ry, corresponding
to unstable circular orbits of null geodesics.

Since there is no mention to a radial compactification in their work, we assume for simplic-
ity the simplest relation r = \/o., i.e. with the radial function

ppo = 1. (90)
A comparison between the Ansatz (89) against the hyperboloidal expression (58) leads to
=Y 2300 500 _ L 9uA( 42
Qp = (1 + o?0?)w + mac? /A

Thanks to the hyperboloidal construction, fp satisfies conditions (i) and (ii) automatically. In
terms of the hyperboloidal function A(c), one gets for the Dolan gauges

dApo 1/ 1 [fp+Qp
2 _02< 2(1+2M)+w[A D 92)

As for condition (iii), the [76] considers equatorial and polar orbits.

"Tn all gauges, constants within A(c) affect only an overall time-offset.
8 The notation in this section is kept as close as possible to the work [76]. Hence, the functions Bp and 2p must not
be confused with the radial shift 3, nor with the conformal factor €2 introduced previously in this work.
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5.3.1. Equatorial orbit. For the unstable null geodesics in the equatorial plane, the function
[p reads

Bow = D (1 = albeo — @)02) " (1 = o) (1 + s7000) /2, (93)

with  Feo = 2 [1 4 cos(2 arccos(—a/p)/3)] the dimensionless orbit radius and
beo = 34/ l4Feo —  the dimensionless impact parameter. By expanding equations (92) and (93)
around o = 0 one verifies that the resulting Apo,, is regular at .# .

Note that Apo,, retains a parameter m/w. When working in the frequency domain, the algo-
rithm developed in [76] eventually associates the frequency w the black-hole’s quasi-normal
modes. The usage of this gauge in the time domain would require a re-interpretation of the
frequency since the function A (o) should be real-valued. One possible choice is to work with
the energy of the photon in the circular orbit. Further studies interpreting and discussing the
advantages of this gauge in the time domain are required, and they go beyond the scope of
this work.

5.3.2. Polar orbit. For the unstable null geodesics in polar orbits, the function fp reads

2(p2 — o2
Bp,, = w (1 = Fpo0) \/ 1 + 200 — Maz (94)

"po

2 2
with Fpo = p + 24/ p? — a? /3 cos {3_1 arccos <m>] the dimensionless orbit

. (3}%0 - az)(?go + 2) . . . .
radius and by, = > 5 the dimensionless impact parameter. As in the pre-
-
po
vious case, an expansion around o = 0 shows that resulting Apo,, is regular at . t,
Contrary to the orbits in the equatorial plane, polar orbits have m = 0. Therefore, factors
containing the frequencies w cancels out and this gauge is suitable for eventual studies and

evolutions directly in the time domain.

5.4. The 9-dependence

So far, the functions A considered have only a radial dependence. We end this section by men-
tioning further gauges in the literature where an angular dependence is present.

5.4.1 The CMC and ACMC gauges. Of great interest in the study of the conformal Einstein’s
equations are the so-called constant mean curvature (CMC) slices. Contrary to the Schwar-
zschild spacetime, in which CMC slices are known analytically [91], in the Kerr spacetime,
they are only obtained numerically [92]. For their construction one: (i) writes down the mean
curvature K (o, ) in terms of the function A(c, 8), and (ii) solves the resulting second-order
differential equation for the unknown A(c, #) which results from the condition K (o, ) = Kj
constant. In [92], we found regular solutions for all parameters « € [0, 1].

By relaxing the global CMC condition [93], we introduced analytic—though lengthy—
functions A(o,0) leading to hypersurfaces in which the mean curvature behaves as
K(0,0) = Ko+ O(c*), the so-called asymptotically constant mean curvature (ACMC)
condition.

5.4.2. The Newman—Janis ‘complex gauge’. Finally, it is interesting to notice that the New-
man—Janis complexification’s algorithm [94] to derive the Kerr metric from the Schwarzschild
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solution introduces a complex transformation of the null coordinate v. This ‘trick’ can be for-
mally absorbed in our framework by

A(o,0) = iacosb. 95)

At this stage, the above expression is regarded just as a side remark in the formalism. Indeed,
if one were to take equation (95) into the definition of the hyperboloidal coordinates (14)
and (27), one would obtain a complex time 7. Nevertheless, when considering the Teukolsky
equation in the frequency domain, equation (95) leads precisely to the normalisation factor
introduced by Leaver [63] when studying the spin-weighted spheroidal harmonics—see sec-
tion 3.2, in particular, equation (53).

6. Discussion and conclusion

In this work, we developed a comprehensive hyperboloidal framework for the Kerr spacetime.
Apart from performing a systematic study of the degrees of freedom involved, the formalism
provides the tools to study the Teukolsky equation in the time and frequency domains.

The first step introduces a generic hyperboloidal coordinate system (7, 0, 6, ¢) allowing a
conformal compactification of the spacetime along the spatial directions’. In particular, the
radial coordinate o is naturally adapted to the conformal factor €2 via o = A{2, with X a generic
length scale. The degrees of freedom are encoded by a radial function p(o) and a height func-
tion /(o #). Then, the requirement that the resulting hypersurfaces of constant time intersect
future null infinity fixes a leading term /(o) of the height function as expressed in equa-
tions (27) and (28). Already observed in previous works [67], the presence of a black hole with
mass M introduces a logarithmic term in height function, but no further contribution from the
black hole’s angular momentum is required. A similar feature was observed in [62], i.e. the
black hole’s charge does not impose any further restrictions on the leading terms of the height
function.

The systematic construction of the hyperboloidal slices should be valid for any other pos-
sible black-hole spacetime arising in modified theories of Gravity, such as [96-98]. The par-
ticular form of the height function’s leading terms is a direct consequence of the asymptotic
behaviour of the tortoise coordinate dr* /dr ~ 1 + 2M /r + O(r~2). Thus, no matter how the
modifications look like near the horizon, one should expect qualitatively the same behaviour
for the height function. In this way, we anticipate that the logarithm term is a feature exclu-
sive of 4-dimensional black-hole spacetimes. In asymptotically flat, higher dimensions spa-
cetimes, the leading singular contribution y(c) ~ o~! to the height function is sufficient for
the construction of hyperboloidal slices.

In a second stage, we consider the Teukolsky equation, which had already been studied in
the time domain for some specific hyperboloidal gauges. This work approaches the problem
from a generic perspective and develops the formalism in both the time and frequency domain.
Exploiting the axial-symmetry of the system, we make use of a Fourier decomposition in the
azimuthal direction to write the TE as a 2 4 1 evolution problem for a regular master field V,,,.
The final equation (46) is to be solved in the domain (7, 7, x) € [19, T1] X [0, Fhorizon] X [—1,1]
after the prescription of initial data for the field and its time derivative. As expected, no exter-
nal boundary conditions are required due to the hyperboloidal nature of the times slices. Then,

% A larger class of hyperboloidal slices can be explored by relaxing the need of the conformal compactification [95].
In terms of the radial transformation introduced in [95], this work has n = 2.
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the hyperboloidal framework is applied to the frequency domain. Ideally, one wants to sepa-
rate the equations into ordinary differential equations for the angular and radial directions. A
pre-requisite for the separability of the equations in the frequency domain is that the height
function also separates as (o, ) = Ho(o) + H;(6). The regularisation factors for the stand-
ard Teukolsky radial and angular equations follows straightforwardly from hyperboloidal
gauge degrees of freedom—see equations (57) and (58).

Of particular importance, this work introduces the minimal gauge (MG) for the outer
region of the Kerr spacetime. Its construction follows from retaining only the minimal require-
ment for the slices 7 = constant to foliate future null infinity. For the height function, this
property translates into fixing i(o,60) = ho(o), whereas the radial function p(c) reduces to
a polynomial of the first order—see equation (60). Despite its simplicity, the minimal gauge
provides a rich structure to study the limits to extremality. In a first option, one can fix the
radial function to a constant—the so-called radial function fixing gauge MGg. In this gauge,
the coordinate location of the Cauchy horizon o_ changes parametrically according to the
spin parameter of the Kerr solution. As the black-hole’s spin increases, the Cauchy horizon
continuously approaches the event horizon, and one obtains the standard extremal Kerr black
hole in the limit |a| — M. A second option is to fix the Cauchy horizon at a given coordinate
value independently of the spin parameter—the so-called Cauchy horizon fixing gauge MGc.
This choice leads to a discontinuous transition to Kerr’s near-horizon geometry in the extre-
mal limit [78, 79]. The same feature was qualitatively observed in the Reisnner—Nordstrom
solution [62].

Interestingly enough, when exploring the minimal gauge in the frequency domain, one
observes that the Cauchy horizon fixing gauge corresponds exactly to Leaver’s strategy to
regularise the radial equation [63]. While Leaver’s regularisation factor follows from tech-
niques for ordinary differential equations, here we obtain it directly from the geometrical
arguments in the hyperboloidal formalism. The spacetime insight explains the limitation in
Leaver’s algorithm in the extremal limit. As mentioned, the extremal limit in MG¢ gauge is
discontinuous, and one obtains the Kerr’s near-horizon geometry. Since there is a change in
topology from an asymptotically flat to an asymptotically AdS spacetime, external bound-
ary conditions are suddenly required at .#t. Alternatively, the extremal case is treated by a
Leaver-like algorithm in [77], where the regularisation is performed after the extremal limit is
taken. From the hyperboloidal perspective, the strategy from [77] is a consequence of writing
the Kerr spacetime in the radial function fixing gauge.

A few hyperboloidal gauges have already been used to perform the time evolution of
Teukolsky equation [40—45, 47]. Here, we review all gauges and write them into the formal-
ism presented in this paper. It becomes evident that the minimal gauge provides the simplest
structure for (semi-)analytical studies of the Teukolsky equation. In particular [45], studies
the TE in the time domain within the MGy gauge. Due to the implicit nature of the fully spec-
tral code in [45], time integration is not restricted by Courant—Friedrichs—Lewy conditions.
Therefore, a direct comparison with other codes to assess the numerical efficiency of the MG
via explicit time integrators requires further investigation. Several studies [52-56, 58, 59] are
based on the HHg gauge, introduced initially in [52]. This gauge has a free parameter S to
enhance the numerical stability of the code [52]. In this paper, we showed that the HHg gauge
is the most straightforward extension beyond the minimal gauge. Within our formalism, one
notes that the gauge simply introduces an additional linear term ~ So to the height function,
beyond its leading term. However, the original formulation does not allow for a smooth trans-
ition between the MG (S = 0) and the gauge HHs. Therefore, we proposed a modification in
the HHg to continuously recover the MG gauge in the limit S — 0, without changing the core
properties of the HHg gauge for S # 0—see equation (88).
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Despite the absence of studies of the hyperboloidal formalism in the frequency domain
[75, 76], introduced new regularisation factors for the equations. These factors were re-inter-
preted here as specific choices for the hyperboloidal coordinates in the spacetime picture.
Apart from discussing such interpretation, this paper also reviews the constant mean cur-
vature (CMC) and asymptotically constant mean curvature (ACMS) gauges, for which the
height function depends on the angular coordinate 6. A separation of the TE in the frequency
domain is not available in such #-dependent gauges. By geometrically adapting the time coor-
dinate to the black-hole horizon and the (infinitely) far wave zone, the hyperboloidal approach
provides a robust formalism to black-hole perturbation theory. Specifically, the framework
recast the quasi-normal problem in terms of the spectral problem of non-selfadjoint opera-
tors. Therefore, novel tools become available to develop the theory further. Among several
possibilities, the spectral decomposition of the solutions to Teukolsky equation in terms of a
quasi-normal mode (+tail) expansion should be explored in future works. The semi-analytical
algorithms from [61, 62] applies directly to both the angular and radial equations in the fre-
quency domain, while more rigours results on this topic can be explored along the lines of [71,
72]. This work also lays the path for further applications of the hyperboloidal formalism in the
Kerr spacetime, for instance in the context of the Lorenz gauge field equations [99—-101]. In a
broader sense, the generic hyperboloidal framework is expected to contribute to studies on the
EMRI problem via complementary approaches in the time and frequency domain.
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Appendix A. Conformal metric in hyperboloidal coordinates

Explicitly, the non-vanishing components of the conformal metric, its inverse and the deter-
minant read

%00 = —0°F, go1 = —(hs + B), 80 = 0°Fhyg, g0z = —oyugsin® 6.
g1 =ho(he +26), 812 = ho(he + B), 813 = asin®0 (3 + ughy)

sin® 0

&n = - Uth?e, 83 = aughy sin’ 6, g3 =—= (f)g — Ad?c? sin® 0) ;
Y (A.1)
h - < 2A >
O P T SRS (R )
B2 3 ) 3
- « o%h, - a?A ac? 1 . 1
p p Sin” fa 2)
g=detgy = -5 22 sin? 6. (A3)
For simplicity, we introduced the following quantities in the above expressions,
2 3
g="L 4=k +a’sin?0, h,=—0Fh,.
(A4)
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Appendix B. Length scales and dimensionless parameters

In this work, we employed the black-hole horizon r, as the typical length scale A\. We recall,
however, that many works set M = 1 in the numerical simulations, which is equivalent to the
choice A = M. Besides, Leaver [63] normalises according to A = 2M, whereas our previous
works [45, 61, 62] had A = 2r..

Exploiting the definition of the Kerr parameter € [0,1] introduced in equation (6),
table B1 brings the dependence on  of the dimensionless mass g and spin o parameters
according to each normalisation.

Appendix C. Teukolsky equation in the minimal gauge
Here, we display the TE in the time and frequency domain for the two possible choices within

the minimal gauge. We recall that the results are displayed in terms of the parameter k—see
equations (6) and (7).

C.1. Radial function fixing

In the time domain, the TE (46) in the MGy gauge reads
(4 (1+r) 1+ £ 1 =0)] (1+o1+£]) -k (1-x) > Vi
- 2(1 + K20? — 202 (1+ /12) [1+ KA1 — o)] ) Viro — (1 =3 Ve

—*(1—0) (1 = K%0) Voo +2|20 (1 + £%) [1 + £*(1 — 20)]

— Ko [1-o(1+ Iﬁz)} -p[(1+ K?) [1-o(1+ nz)} — irx]

+ikm [1+20 (1 + K] | Vinr + <2x —81(1—x) + 61 +x)> Vinx

- 0‘<2(1 +p) — o [2ikm+ (1+ nz) 3+p) —4/@20} >Vm,a + | (1+ 112) po

o [1+K*(1 —20)] + 2ikmo — (p— i ;62) (l -i—p—i-61 ;52)

V=0

(C.1)
whereas the radial operator (51) in the frequency domain is
2

d
AIO’Z(I—U)(I—H2U)@+

2(pO'+S+J)+G'2<—2i/{m—(1+Iiz)p

d

—3[1+ Kk (1+25)] +4 [P0 —k's(1 —0) — s (1 — K*0)] )}da

—Agm—a[1+2s(l+n2)] [Zi&m—i—(l—l—ﬁ; ) p| — 2s [ikm — [)(l-l-lﬂlz)]
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K

—o[1+2s (1+6%)] [(1+ K51+ 2s) + 2561 .
(C.2)
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Table B1. Dimensionless mass and spin parameters dependence on x.

A 1 e

M 1 2k/(1 + k%)
2M 172 w/(1+ K?)
Iy (1+x%)/2 r

2, (1+K2)/4 K/2

C.2. Cauchy horizon fixing

Finally, we present the Teukolsky equation in the MGc. In the time domain, it reads

(1 —|—f~@2)o

4(1+6%) (14 1/#] — k2 (1—x) 1 Virr — 02 (1 = 0) Vinoo

(1 + /iz) o?

| Vo — (1= ) Vi

—2{(1—0) 1+o-r(1-0)] -

—o (1+p)(2—a)—2a<1+11f”;2) Vo + 26— 81(1 —x)

+ 8 (14 x) | Vi + | 26(im — k) + 2p [ikx — (1 4+ £%) (1 — 0)]

2ikm
o(l+p+ 5
11—~k

20 (1 + /<a2) (2 + 2ikm — Hz)
+
1— k2

Vs +

01 + 0 01 +9
—(p-222) (14p+ 252 ) [Va=0
2 2
(C.3)
whereas the radial operator in the frequency domain is
2
o*(1—o) 2t |@-a)e (14+p+2k%s) =207 +2 (1 — &%) s
o
202(2s +i d
- M 3 " Amts [2p + K25 — 2imk] — (1 + p) (o — 2k7s)
—K o

20[1+2(1+I€2)S] [(l—i—/iz)s—i—i/fm}.

—2s (14 &%) [(1+p)o +2s] — 1— K2
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