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Abstract
The character of thermodynamics for f (R) theories of gravity with coupling 
between matter and geometry in the FLRW universe has been studied in this 
paper. The result shows that on the apparent horizon, both the temporal and 
spatial component of the Friedmann equations  can be written as the form 
of the first law of thermodynamics in the conservative context, but some 
additional terms are appeared due to the matter-geometry coupling and the 
non-equilibrium in the system. Moreover, the derived generalized second law 
of thermodynamics can not be always held in our considering case, which is 
different from the one given in general relativity. The condition to protect it 
is obtained, when we consider results from observational data and numerical 
solutions.

Keywords: coupling f (R) gravity, thermodynamics, FLRW universe

1.  Introduction

The result of the observational data from the type Ia supernovae (SNe Ia) [1, 2] indicates 
that our universe presently experiences an accelerating expansion, usually called the late-time 
cosmic acceleration. It makes the modern cosmology based on general relativity (GR) face 
troubles. Moreover, the high-precision observational data of cosmic microwave background 
(CMB) provided by the Wilkinson microwave anisotropy probe (WMAP) group [3–5] gives 
strong support to the existence of an inflationary period, which seems to be happened in the 
very early universe. This causes the situation of modern cosmology to get much more serious. 
In order to shed some lights on these observational issues, dark energy and modified theories 
of gravity are taken into consideration. However, up till now, the nature and the origin of dark 
energy are still not clear.
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Alternative to dark energy, due to the simplicity and stability, f (R) theories of gravity 
(see, for instance, [6–8] for reviews) are attractive candidates in modified theories of gravity, 
where f (R) is an arbitrary function of the Ricci scalar R. To achieve the accelerating cosmic 
expansion, a great deal of study have been carried out in f (R) theories of gravity (see, for 
instance, [9–14] and references therein). Moreover, under some conditions, the early-time and 
late-time cosmic acceleration can be unified (see, for instance, [10] and references therein). 
However, for a successful gravitational theory, besides attaining the stage of cosmic accelera-
tion, other viability criteria, such as cosmological perturbations (see, for instance, [15–19] 
and references therein), energy conditions (see, for instance, [20–23] and references therein), 
instabilities (see, for instance, [22, 24, 25] and references therein) and the degeneracy problem 
of Lagrangian densities for a perfect fluid (see, for instance, [26–29] and references therein), 
should be also satisfied [7]. Among them, the character of thermodynamics is one of the most 
important aspects.

The gravitational field of black holes is the strongest in the nature and can be dealt with 
by GR. Considering the consequence of the quantum mechanics, black holes emit thermal 
radiations, just like the behavior of black bodies. Moreover, by introducing quantities of the 
area and the surface gravity of the black hole horizon, the laws of black holes mechanics are 
established in GR, which is very similar to the laws of the usual thermodynamics [30–32]. It 
is pointed out that the temperature, which is proportional to the surface gravity of the black 
hole horizon, the entropy, which is proportional to the area of the black hole horizon, and the 
mass of black holes satisfy the first law of thermodynamics [30].

The first law of thermodynamics of black holes indicates that there should be an asso-
ciation between thermodynamics of black holes and the Einstein equations  since both the 
temperature and the entropy of black holes and the space-time structure are determined by 
purely geometric quantities. This relationship was found by Jacobson for the first time [33]. 
Then in the context of f (R) theories of gravity [34], the general static spherically symmetric 
space-time [35] and scalar-tensor gravity [36–38], it was also discovered. While for the sec-
ond law of thermodynamics, it has been widely studied in contexts of GR [39–49] and gener-
alized theories of gravity [50, 51], where the second law of thermodynamics is usually called 
the generalized second law (GSL) of thermodynamics.

Since our universe can be seen as a thermodynamical system, the study on black holes can 
be extended to the framework of cosmology. It has been shown that the relationship between 
the first law of thermodynamics and the Friedmann equations with any spatial curvature was 
existed, but the horizon is the apparent horizon and the non-equilibrium thermodynamics 
should be taken into consideration [50, 52]. It is worth declaring that the apparent horizon 
and the event horizon are two kinds of horizons usually used in cosmology. They can not be 
distinguished clearly in some cases, which makes some difficulties in particular study [52]. 
However, since the event horizon does not protect the first and the second law of thermody-
namics [47], we will only focus our concentration on the apparent horizon as the boundary of 
our universe in this work.

Recently considering the coupling between matter and geometry, a more general type of 
f (R) gravity has been proposed [53]. This proposal has been extensively explored in various 
aspects (see, for instance, [19, 26, 27, 53–56] and references therein). It is worth mention-
ing that due to the existence of the coupling between matter and geometry, the conservation 
equations can not be generally promised. In the present work, to extend previous works, it is 
interesting to investigate the effect of the non-minimal coupling on the property of thermody-
namics on the apparent horizon of the FLRW universe in f (R) theories of gravity.
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The present paper is organized as follows. The framework of our discussions is briefly 
reviewed in the following section. In section 3, in order to study the relationship between the 
first law of thermodynamics and the Friedmann equations with any spatial curvature on the 
apparent horizon of the FLRW universe, two different approaches are taken into considera-
tion in f (R) theories of gravity with coupling between matter and geometry. In section 4, the 
GSL of thermodynamics for f (R) theories of gravity with coupling is explored in the FLRW 
universe. Conclusions are given in the last section.

2.  Framework

A more general action of f (R) theories of gravity involving coupling between matter and 
geometry is given by [53]

S =

∫
{1

2
f1(R) + [1 + λf2(R)]Lm}

√
−gd4x,� (1)

where f i(R) (i = 1, 2) are arbitrary functions of the Ricci scalar R, Lm is the Lagrangian density 
of matter and λ is a constant to denote the coupling strength between matter and geometry. 
When the coupling strength between matter and geometry vanishes, action (1) reduces to the 
context of f (R) gravity without coupling. Besides, the framework of Einstein gravity can be 
reproduced by taking f 1(R)  =  R. Note that the units are taken as 8πG = c = 1 and will be used 
throughout this work.

Varying the action (1) with respect to the metric tensor, the field equations are

f1R(R)Rµν − 1
2 f1(R)gµν + (gµν�− �µ�ν) f1R(R) = −2λf2R(R)LmRµν

+2λ(�µ�ν − gµν�)Lmf2R(R) + [1 + λf2(R)]Tµν ,
� (2)

where fiR(R) ≡ dfi(R)/dR (i = 1, 2), � ≡ �α�α, �µ is the usual covariant derivative associ-
ated with the Levi-Civita connection of the metric and Tµν is the matter energy-momentum 
tensor which is defined as

Tµν = − 2√
−g

δ(
√
−gLm)

δgµν
.� (3)

Taking the covariant divergence of the field equation  (2), the generalized conservation 
equations are

�µTµν =
λf2R

1 + λf2
[gµνLm − Tµν ]�

µR,� (4)

where the Bianchi identities and the geometrical identities [57], [∇µ,∇ν ] fiR =  
(∇µ∇ν −∇ν∇µ) fiR = Rµν∇µfiR, are used. It is obvious that since the matter-geometry cou-
pling exists, the conservation law of matter no longer holds in our considering case. However, 
in principle, a conservative context can be constructed, if f 2(R) is a constant or the Lagrangian 
density of matter Lm does not explicitly depend on the metric.

Considering the spatially homogenous and isotropic FLRW spacetime,

ds2 = −dt2 + a(t)2(
dr2

1 − kr2 + r2dΩ2),� (5)

where a(t) is the scale factor, t is the cosmic time, k is the spatial curvature constant (k = 1, 0 
and  −1 correspond to a closed, flat and open universe, respectively) and dΩ2 ≡ dθ2 + sin2 θdφ2 
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is the metric of 2-dimensional sphere with the unit radius, and taking the form of the matter 
energy-momentum tensor as a perfect fluid, i.e.

Tµν = (ρ+ p)UµUν + pgµν ,� (6)
where ρ  is the energy density, p  is the pressure and the four-velocity Uµ satisfies the con-
ditions UµUµ = −1 and UµUµ;ν = 0, the Friedmann equations with any spatial curvature 
in f (R) theories of gravity with coupling between matter and geometry can be obtained as 
follows:

H2 +
k
a2 =

1
3F

[
1
2

RF − 1
2

f1(R)− 3HḞ + (1 + λf2(R))ρ],� (7)

Ḣ − k
a2 = − 1

2F
[F̈ − HḞ + (1 + λf2(R))(ρ+ p)],� (8)

where the dot implies the derivative with respect to the cosmic time, F ≡ f1R(R) + 2λf2R(R)Lm 
and H ≡ ȧ(t)/a(t) denotes the Hubble rate. Moreover, noting the Einstein convention for 
summation, equation (4) yields

ρ̇+ 3H(ρ+ p) = − λf2R

1 + λf2
(Lm + ρ)Ṙ.� (9)

It is obvious that the condition for constructing the conservative context is to take the 
Lagrangian density of matter to be opposite to the energy density of the perfect fluid, i.e. 
Lm = −ρ, otherwise the feature and the generality of our considering case will be lost. We 
will take it in the following discussions.

3.  First law of thermodynamics

In this section, we will study the relationship between the first law of thermodynamics and the 
Friedmann equations with any spatial curvature on the apparent horizon of the FLRW universe 
in f (R) theories of gravity with coupling between matter and geometry.

Taking the spherical symmetry into consideration, the metric (5) can be rewritten as

ds2 = habdxadxb + r̃2dΩ2,� (10)

where r̃ = ra(t), x0  =  t, x1  =  r and the two-dimensional metric hab = diag(−1, a(t)2/1 − kr2). 
The dynamical apparent horizon is determined by the relation hab∂ar̃∂br̃ = 0, which indicates 
∇r̃ = 0 on the apparent horizon. Then the radius of the apparent horizon can be obtained as

r̃A =
1√

H2 + k
a2

.� (11)

When k  =  0, the radius of the apparent horizon has the same value as the one of the Hubble 
horizon.

Since the FLRW universe can be seen as a thermodynamical system with the apparent 
horizon as its boundary, we assume that definitions of the temperature and the entropy on the 
horizon of black holes can be generalized to the apparent horizon. As the Hawking temper
ature is proportional to the surface gravity of the black hole horizon, the related temperature 
on the apparent horizon can be defined as
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T =
| κ |
2π

,� (12)

where the surface gravity κ is given by

κ = 1
2
√
−h

∂a(
√
−hhab∂br̃A)

= − 1
r̃A
(1 − ˙̃rA

2Hr̃A
).

� (13)

In order to avoid a negative temperature, the absolute value sign has been introduced.
In GR, according to the Bekenstein–Hawking relation [30–32], the entropy of the black 

hole is given by S = A /4G, where A  is the area of the black hole horizon. In the context 
of f (R) theories of gravity without coupling, the entropy of the black hole is assumed as 
S = A fR(R)/4G  [58, 59]. Later, in the framework of modified theories of gravity, Wald pro-
posed that the entropy of the black hole with bifurcate Killing horizons is a Noether charge 
entropy [58]. It is then proved to be equal to a quarter of the horizon area in units of the effec-
tive gravitational coupling [60], i.e. S = A /4Geff, where Geff  is the effective gravitational 
coupling.

Based on above mentioned facts, in our considering case, we assume that the associated 
entropy on the apparent horizon can be expressed as

S =
A

4G
F,� (14)

where A = 4πr̃2
A is the area of the apparent horizon. When the matter-geometry coupling 

disappears, the expression (14) reduces to the case of f (R) gravity without coupling, which is 
just the same as the one in [58, 59]. Furthermore, the entropy of black holes in Einstein gravity 
can be obtained by taking f 1(R)  =  R.

Taking the time derivative of the radius of the apparent horizon (11) and using the Friedmann 
equation (8), we can obtain

Fdr̃A =
1
2

r̃3
AH[F̈ − HḞ + (1 + λf2(R))(ρ+ p)]dt,� (15)

where dr̃A is the infinitesimal change in the radius of the apparent horizon during the time 
interval dt. Then taking the differential of the entropy (14) and combining the relationship 
(15), it reaches

1
2πr̃A

dS = (4πr̃3
A)H[F̈ − HḞ + (1 + λf2(R))(ρ+ p)]dt +

2r̃A

4G
dF.� (16)

Multiply the factor (1 − ˙̃rA
2Hr̃A

) on both sides of the relationship (16), then one can get

TdS = T A
4G r̃2

AH(F̈ − HḞ)dt + (1 + λf2(R))(4πr̃3
A)H[(ρ+ p)dt

− 1
2Hr̃A

(ρ+ p)dr̃A] + T A
4G dF.� (17)

The total energy of matter inside the apparent horizon with a sphere radius r̃A is given by

E = ρV ,� (18)

where V = 4
3πr̃3

A is the volume of the sphere. Then the differential of the total energy of mat-
ter is

dE = 4πr̃2
Aρdr̃A − 4πr̃3

AH(ρ+ p)dt,� (19)
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where the conventional relationship between the density ρ  and the pressure p  is used. 
Substituting the relationship (19) into the expression (17), we find

TdS = (1 + λf2(R))(−dE + WdV) + T
A

4G
[̃r2

AH(F̈ − HḞ) + Ḟ]dt,� (20)

where W = 1
2 (ρ− p) is the work density [61, 62].

It is clear that the universal form, dE = TdS + WdV , contained in GR on the apparent hori-
zon of FLRW universe does not hold for our considering case, where some additional terms 
are appeared. On the right side of the relationship (20), additional ones in the first term arise 
from the coupling between matter and geometry inside the apparent horizon as the existence 
of the constant λ. While besides the matter-geometry coupling, additional ones in the second 
term come from modified geometry terms, which may be interpreted as a entropy production 
of the non-equilibrium developed internally in the system according to [34, 63].

In order to denote additional terms, three notations are introduced as follows:

Ec ≡ λf2(R)E,� (21a)

Wc ≡ λf2(R)W,� (21b)

dS ≡ − A

4G
[̃r2

AH(F̈ − HḞ) + Ḟ]dt.� (21c)

Then the expression (20) can be rewritten as

TdS = −dE − dEc + WdV + WcdV − TdS.� (22)

If we can take W̃ = W + Wc as the effective work density and dẼ = d(E + Ec) and 
dS̃ = d(S + S) as the infinitesimal change of the effective energy and the effective entropy 
on the apparent horizon of the FLRW universe during the time interval dt, respectively, the 
expression (22) can be written as

TdS̃ = −dẼ + W̃dV .� (23)

It is worth stressing that when the matter-geometry coupling disappears, the expression 
(20) will be reduced to the context of f (R) theories of gravity without coupling, which is 
consistent with the one given in [37]. Moreover, the traditional first law of thermodynamics in 
GR can be achieved, when f 1(R)  =  R.

On the other hand, the first law of thermodynamics for f (R) theories of gravity with cou-
pling between matter and geometry on the apparent horizon of the FLRW universe can also be 
obtained in the following way.

From the entropy of Einstein gravity, i.e. SE = A /4G, the thermodynamical fluid δQ can 
be given as

δQ = TdSE = −3V
d(H2 + k

a2 )

dt
dt − 3VH

(Ḣ − k
a2 )

2

H2 + k
a2

dt.� (24)

In general, the Friedmann equations in any theories of gravity can be expressed as that in 
GR, i.e.

H2 +
k
a2 =

1
3
ρeff,� (25)

J Wang and K Liu﻿Class. Quantum Grav. 37 (2020) 065011
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Ḣ − k
a2 = −1

2
(ρeff + peff),� (26)

where ρeff = ρ+ ρfe and peff = p + pfe are the effective energy density and the effective pres
sure respectively, where ρ  and p  are the energy density and the pressure of ordinary matter, 
and ρfe and pfe are the energy density and the pressure of other matter fields and energy comp
onents, respectively. From the functional point of view, the Friedmann equation (25) can be 
written as

H2 +
k
a2 = H (ρ, ρfe).� (27)

Then the expression (24) reads

TdSE = −3V(
∂H

∂ρ
ρ̇+

∂H

∂ρfe
ρ̇fe)dt − 3VH

(Ḣ − k
a2 )

2

H2 + k
a2

dt.� (28)

Multiplying the factor (3∂H /∂ρ)−1 on both sides of the expression (28), it follows that

T
1
3

1
∂H
∂ρ

dSE = −Vρ̇dt − V
1

∂H
∂ρ

∂H

∂ρfe
ρ̇fedt − VH

(Ḣ − k
a2 )

2

H2 + k
a2

1
∂H
∂ρ

dt.� (29)

Taking the conservative equation into consideration, one can prove that

−VH
(Ḣ − k

a2 )
2

H2 + k
a2

1
∂H
∂ρ

= −1
2
(ρ+ p)V̇ .� (30)

Then the expression (29) can be written as

T
1
3

1
∂H
∂ρ

dSE = −dE + WdV − V
1

∂H
∂ρ

∂H

∂ρfe
ρ̇fedt.� (31)

The left side of the above expression can be expressed as

T
1
3

1
∂H
∂ρ

dSE = Td(
1
3

1
∂H
∂ρ

SE)− T
1
3

SEd(
1

∂H
∂ρ

).� (32)

If the entropy can be redefined as

S′ ≡ 1
3

1
∂H
∂ρ

SE,� (33)

we can obtain

TdS′ = −dE + WdV − TdS
′
,� (34)

where dS
′
 is defined as

dS
′ ≡ − 1

T
[−V

1
∂H
∂ρ

∂H

∂ρfe
ρ̇fedt + T

1
3

SEd(
1

∂H
∂ρ

)].� (35)

Consequently, the form of the first law of thermodynamics in generalized theories of gravity 
can be expressed as

TdS′ + TdS
′
= −dE + WdV .� (36)
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Formulations of the entropy S′ and the entropy production dS
′
 depend on particular theories of 

gravity. The reason of the presence of the entropy production dS
′
 has been mentioned above. 

In our considering context, expressions of S′ and dS
′
 are just the same as expressions (14) and 

(21c).

4.  GSL of thermodynamics

The second law of thermodynamics for f (R) theories of gravity with coupling between matter 
and geometry in the FLRW universe is explored as follows. In contexts of modified theories of 
gravity, the second law of thermodynamics is usually called the GSL of thermodynamics. In 
order to study the GSL, all kinds of the entropy should be taken into consideration. From the 
expression of the first law of thermodynamics (23), it is clear that the entropy on the apparent 
horizon and the entropy production of the non-equilibrium should be included. Besides them, 
the entropy for all fluids of matter, field and energy inside the apparent horizon should be also 
contained, which can be given by the Gibb’s equation as

TmdSm = d(ρV) + pdV = Vdρ+ (ρ+ p)dV ,� (37)

where Tm denotes the temperature of the total energy inside the apparent horizon, which usu-
ally is not equal to the temperature on the apparent horizon T due to the energy flow between 
them. One assumes that Tm  =  bT [50, 64], where b is the temperature parameter and satisfies 
0  <  b  <  1 to ensure that the value of temperature is positive and less than the temperature on 
the apparent horizon. When b  =  1, the energy flow between the apparent horizon and inside 
it vanishes, which indicates that the energy on the apparent horizon and inside it are in the 
thermal equilibrium. In our discussions, the continuity equation is protected so that b  =  1.

According to the statement of the second law of thermodynamics, the GSL in our consider-
ing case can be proposed as

Ṡ + dṠ + Ṡm � 0.� (38)

Then using expressions (23) and (37), the inequality (38) reads

− λf2R
1+λf2

8π(H2 + k
a2 )

− 3
2 [Ḧ + 2HḢ + 2H(Ḣ − k

a2 )][−3F(Ḣ + H2)

+ 1
2 f1 + 3HḞ] + 1

1+λf2
2π(H2 + k

a2 )
− 3

2 H[2λf2 − (1 − λf2)
Ḣ− k

a2

H2+ k
a2
][

−2F(Ḣ − k
a2 )− F̈ + HḞ] � 0.

� (39)

This is the GSL of f (R) theories of gravity with coupling between matter and geometry in the 
FLRW universe. It is obviously that the GSL can not be always held. To obtain this result, the 
Friedmann equations (7) and (8) have been used. When λ = 0, the inequality (39) reduces to 
the case of f (R) theories of gravity without coupling, which is different from the one in [50], 
where the GSL can be always held. Moreover, if we further take f 1(R)  =  R, the second law of 
thermodynamics for GR in the FLRW universe can be attained.

According to the observational data from the Large Scale Structure [65, 66] and the result 
of numerical solutions in [19], the spatial part of our universe is flat and the coupling between 
matter and geometry should be weak. Hence, when k  =  0 and λ ∼ 0, the inequality (39) reads

2FḢ2 + F̈Ḣ − HḞḢ � 0.� (40)

It is clear that the condition to protect the inequality (40) mainly depends on the function F 
and its time derivatives.
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5.  Conclusions

In this paper, the character of thermodynamics for f (R) theories of gravity with coupling 
between matter and geometry in the FLRW universe has been investigated. By extending the 
definition of the temperature and the entropy on the horizon of black holes to the apparent 
horizon of the FLRW universe, and taking the condition for the conservation law, the spatial 
component of the Friedmann equations can be written as the form of the first law of ther-
modynamics, but some additional terms are appeared. Due to the matter-geometry coupling 
inside the apparent horizon, additional terms related to the energy and the work density arise 
as expected. While the rest additional terms can be seen as the entropy production of the non-
equilibrium developed internally in the system. On the other hand, by introducing the Clausius 
relation, δQ = TdS, to the apparent horizon of the FLRW universe, the temporal component 
of the Friedmann equations can also be written as the form of the first law of thermodynamics, 
where additional terms are also appeared. It is clear that, if the FLRW universe can be seen 
as a thermodynamical system with the apparent horizon as its boundary, the Friedmann equa-
tions can be written as the form of the first law of thermodynamics in f (R) theories of gravity 
with coupling between matter and geometry. When the matter-geometry coupling disappears, 
the form of the first law of thermodynamics in f (R) theories of gravity without coupling can 
be obtained. Moreover, when f 1(R)  =  R, the traditional first law of thermodynamics in GR can 
be achieved.

In order to study the second law of thermodynamics in our considering context, which is 
usually called GSL, all kinds of the entropy should be taken into consideration. Besides the 
entropy provided by the apparent horizon and the non-equilibrium, the entropy for all fluids 
of matter, field and energy inside the apparent horizon should be also contained. According 
to the statement of the second law, the total entropy of an isolated system can never decrease 
over time, we have derived the GSL for f (R) theories of gravity with coupling between matter 
and geometry in the FLRW universe. The result shows that the GSL can not be always held, 
which is different from the one in GR. When we consider the spatial part of our universe is flat 
and the coupling between matter and geometry should be weak, the condition to protect the 
reduced GSL can be obtained.

In this work, results are obtained in the conservative context. However, when the conserva-
tion of the matter energy-momentum tensor is not preserved, the conventional relationship 
between the density and the pressure no longer holds. Actually, this situation can occur in any 
theory of gravity, where metric couples to another field or the extra degree of freedom appears 
(see [67] as an example alternative to f (R) theories of gravity). In our considering case, it 
leads to the result given in equation (18), which right side is not equal to zero. It is clear that 
the extra term depends on the form of the arbitrary function f 2(R) and the Lagrangian density 
of matter and the coupling strength between matter and geometry. Then this term will appear 
in equation (29) and eventually affect the result given in equation (20). Since the additional 
term essentially arises from the coupling between matter and geometry, it will be in the first 
term on the right side of equation (20). This is the effect of the deviation from the conservation 
on the first law of thermodynamics in our considering case. Moreover, the coupling between 
matter and geometry could cause a source or sink to the fluid, which can be a classical form 
or in the form of the particle production. This should be noted as the physical consequence of 
the violation from the conservation of the matter energy-momentum tensor.
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