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Abstract
Some pairs of neutron star models can intuitively be thought of as being 
‘closer’ together than others, in the sense that more precise observations might 
be required to distinguish between them than would be necessary for other 
pairs. In this paper, borrowing ideas from the study of geometrodynamics, 
we introduce a mathematical formalism to define a geometric distance 
between stellar models, to provide a quantitative meaning to this notion of 
closeness. In particular, it is known that the set of all metrics on a Riemannian 
manifold itself admits the structure of a Riemannian manifold (‘configuration 
manifold’), which comes equipped with a canonical metric. By thinking of 
a stationary star as being a particular 3  +  1 metric, the structure of which 
is determined through the Tolman–Oppenheimer–Volkoff relations and their 
generalisations, points on a suitably restricted configuration manifold can be 
thought of as representing different stars, and distances between these points 
can be computed. We develop the necessary mathematical machinery to build 
the configuration manifold of neutron star models, and provide some worked 
examples to illustrate how this space might be used in future studies of stellar 
structure.

Keywords: neutron stars, modified gravity, stellar dynamics, general 
relativity

(Some figures may appear in colour only in the online journal)

1.  Introduction

A fundamental problem in high-energy physics concerns the behaviour of macroscopic matter 
at nuclear densities. A determination of the nuclear equation of state (EOS) of matter within 
neutron stars (NSs) provides an astrophysical avenue for studying this problem. Indeed, given 
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a relationship between the thermodynamic variables of the star, such as the pressure, density, 
and temperature, a unique stellar model can be constructed [1]. Owing to the complexity of 
the physical processes involved, many different EOS have been proposed [2, 3], each of which 
predict different macroscopic properties for the stars. Modified gravity considerations also 
complicate the picture, since the compactness of the star, and hence the mass-radius relation-
ship, is ultimately determined by the ability for the hydrostatic pressure to resist gravitational 
compression [4, 5]. Observations of NS masses and radii, coming from analyses of their oscil-
lation [6], gravitational wave [7], and x-ray [8] spectra, can be used to identify the EOS by 
solving the respective inverse problems [9–11].

Suppose that the configuration space of viable NS models (or some subset thereof), i.e. 
the set of EOS consistent with causal constraints [12] and observations, can be built (such as 
the set considered in [13]). There should be a way to think about different members of this 
space as being ‘close’ to one another (or otherwise), in the sense that elements which make 
quantitatively similar predictions should neighbour each other. It is the purpose of this paper 
to propose a formal, mathematical means to achieve this, based on geometrodynamic concepts 
first introduced by Wheeler [19, 20]. In general, an EOS corresponds to a spacetime metric 
through the Tolman–Oppenheimer–Volkoff relations or their generalisations [14]. This allows 
one to think about the space of stars defined by a set of EOS as being equivalent to a specific 
collection of metrics.

Given a manifold M, it is known that the collection of all Riemannian metrics on M, 
Met(M), itself admits the structure of an infinite-dimensional Riemannian manifold [15–18]. 
As such, given two metrics h and k on M, the metric G on Met(M) essentially defines an inner 
product between tangent vectors at the ‘points’ h, k ∈ Met(M). In the context of general rela-
tivity, Wheeler called this collection superspace and used it to study the configuration space of 
cosmology [19, 20] and the concept of quantum foam [21]. The structure of Wheeler’s super-
space has since been investigated in detail [22–24], though without much attention towards its 
potential application to stellar dynamics.

Here, we restrict our attention to only those metrics h and k which correspond to NS geom-
etries. This allows us to consider a finite-dimensional submanifold MetNS(M) ⊂ Met(M) (see 
[25, 26]), whose geometric properties can be tied to stellar physics in a precise way. In par
ticular, this submanifold is parameterised by the macroscopic stellar variables, such as the 
masses and radii of the stars, rather than the usual spacetime coordinates. This allows for 
a natural means to quantify the relationship between different EOS. The formalism has the 
benefit that one is not restricted to general relativity or any other particular theory of gravity 
a priori, since the only inputs are the actual metrics themselves. Typically, stars are defined 
within the context of a spacetime M, though we can perform a 3  +  1 split to work with a 
spacelike hypersurface M ⊂ M, which is explicitly Riemannian. Having constructed a metric 
G on MetNS(M), we can further determine the Christoffel symbols, and thus geodesic curves, 
from which explicit distances can be computed.

This short paper is organised as follows. In section  2 we introduce the mathematical 
machinery surrounding the configuration manifold. Section 3 explores the relevance of this 
space to NS geometries, and in section 4 we evaluate the metric (4.1) and compute geodesics 
(4.2) for a specific case of Tolman VII stars to provide a worked example. Some discussion is 
offered in section 5.
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2. The configuration manifold

As mentioned in the Introduction, the set of all Riemannian metrics over a Riemannian 
manifold M admits the structure of an infinite-dimensional Riemannian manifold  
[15, 16], denoted Met(M). In this sense, points of Met(M) are Riemannian metrics on M: each 
p ∈ Met(M) corresponds to a positive-definite, symmetric (0, 2)-tensor over M. We consider 
M to be 3-dimensional (though a generalisation to higher dimensions is straightforward), as 
later it will be identified with a spacelike hypersurface, defined via a 3  +  1 splitting, of a NS 
spacetime.

If the manifold M is compact, then one may introduce a metric1, in the L2-topology [17], 
over Met(M) as [15, 16, 18]

G(α,β) =
∫

M
d3x

√
gTr

(
g−1αg−1β

)
,� (1)

where α and β are tangent vectors to the space of metrics at the ‘point’ g, which serves as a 
reference metric. On an intuitive level, a measure of distance between two vectors naturally 
depends on the choice of basis and the origin, which is why it is necessary to introduce a base 
metric g within (1).

As it stands, the metric (1) is defined over the infinite-dimensional manifold Met(M), which 
is difficult to work with. We restrict the domain to one in which α and β only correspond to 
tangent vectors to the space of NS metrics (see section 3). That is, we consider a submanifold 
MetNS(M) ⊂ Met(M), which inherits a metric, which we also call G through a slight abuse 
of notation, from its parent space via pullback (see [25, 26]). It is difficult to define the sub-
manifold MetNS(M) in total generality since, depending on the included physics, there may 
be an arbitrarily large (but finite) number of parameters which describe the stellar model; the 
stress-energy tensor may be arbitrarily complicated. Nevertheless, suppose that a star can be 
described by N macroscopic parameters: q1, . . . , qN , e.g. mass, radius, central temperature, 
polar magnetic field strength, rotational frequency, and so on. These parameters q define a 
natural coordinate basis for the N-dimensional space MetNS(M) (see section 4).

With respect to this basis, the tensor components of (1) read [25, 28]

Gij =

∫

M
d3x

√
ggnk ∂gmn

∂qi g�m ∂g�k

∂q j ,� (2)

where 1 � i, j � N . From (2), the relevant geometric quantities of MetNS(M) can be 
defined, including the Christoffel symbols Γ. The distance between two metrics h and k, 
described by parameters qh and qk , respectively, is then given by the length of a geodesic2 
γ : [a, b] �→ MetNS(M) connecting these points, viz.

d(h, k) =
∫ b

a
dτ

√
Gij

dγi

dτ
dγ j

dτ
,� (3)

1 Some other choices are possible under certain conditions, see [27]. The metric (1) used here is called the canoni-
cal metric, as it is invariant under the action of the diffeomorphism group Diff(M) on Met(M). Note also that the 
compactness of M is sufficient but not necessary; see section 5
2 Note that, while the space Met(M) is not geodesically complete (see Corollary 2.47 of [27]), if the domains of 
the parameters q are finite, then the submanifold MetNS(M) will be complete as a consequence of the Hopf–Rinow 
theorem. This ensures that the geodesic connecting any two ‘stars’ will be well-defined.
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for affine parameter τ , where γ j(a) = q j
h and γ j(b) = q j

k, and γ  satisfies the geodesic equation,

0 =
d2γi

dτ 2 + Γi
jk

dγ j

dτ
dγk

dτ
.� (4)

3.  Neutron star geometries

In general relativity and other theories of gravity, one typically deals with a spacetime (M,κ), 
which is Lorentzian and not Riemannian, i.e. the metric κ is not positive-definite. The space 
Met(M) described above therefore cannot be constructed immediately from a given set of stel-
lar models. One must first extract a Riemannian manifold from the 4-dimensional spacetime. 
If the spacetime is stationary, a unique extraction can be achieved through a 3  +  1 split [29].

As such, we restrict our attention to NS spacetimes (M,κ) which are stationary, so that 
there exists a timelike Killing vector ξ satisfying [29]

∇µξν +∇νξµ = 0.� (5)

One may now define the norm, λ, and twist, ω, of ξ through

λ = ξαξα,� (6)

and

ωα = εαβγδξ
β∇γξδ ,� (7)

respectively. A general line element on M may now be written in the generalised Papapetrou 
form [30, 31]

ds2 = κµνdxµdxν

= λ(dt + σidxi)2 − λ−1hijdxidx j,
� (8)

where the twist ω is related to σ through ωi = −λ−2εijkD jσk and D forms the covariant deriv-
ative with respect to h. The form (8) illustrates a 3  +  1 split of the spacetime (M,κ), and we 
denote the manifold associated with the Riemannian 3-metric h as S. It is this class of metrics 
h that form the inputs for the metric G on the configuration manifold (2), once a suitable 
restriction of S is considered. Note that in writing (8) we have chosen the time coordinate t 
such that ξµ = (1, 0, 0, 0), which ensures that the (time-independent) potentials λ, σi, and hij 
are uniquely defined given some stationary κµν.

Indeed, recall that we considered only compact manifolds M to ensure that the integral 
within (1) converges. However, since we wish to measure the difference between two stellar 
configurations, it is reasonable to consider only the section of S confined by some notion of 
the maximal stellar surface, i.e. we consider M ⊂ S , where M is defined by the presence of 
a (maximal) non-zero stress energy tensor (see below). This M is to be identified with the 
domain of the integral (1). However, in general, two stars will define different spheroids, and 
so care must be taken to ensure that the whole star is always considered.

For any collection of NS models, the space M ⊂ S  is built to include all possible stars 
within the family, i.e. it is defined as the union of points potentially occupied by matter. For 
spherical stars, this amounts to identifying the largest stellar radius permitted by the EOS (see 
section 4). However, for rotating stars, which are often not contained within one another in 
a concentric sense, one must identify M with the set of permitted spheroids, i.e. the volume 
defined by the union of points defining the maximally oblate and prolate stars permitted by the 
EOS (set, for instance, by the centrifugal breakup limit).
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In general, the components of h defined within (8) are to be subjected to some set of field 
equations. One typically introduces a stress-energy tensor T , which is non-zero inside the 
star, though vanishes outside, which acts as a source for κ and hence h. For example, neglect-
ing viscosity, anisotropic pressures, and magnetic fields, a simple NS may be composed of a 
perfect-fluid [1] with stress-energy

Tµν = (ρ+ p) uµuν + pκµν ,� (9)
for mass density ρ , pressure p , and 4-velocity u, where we have taken natural units c  =  G  =  1. 
In general relativity, the Einstein equations

Rµν − 1
2

Rα
ακµν = 8πTµν ,� (10)

where Rµν  is the Ricci tensor, determine the structure of κ. The union of points for which p  
does not vanish thus defines the set M. In a modified theory of gravity, the metric κ (and hence 
h) is similarly determined through a modified set of field equations. In an f (R) theory of grav-
ity, for instance, the metric is set through the f (R) field equations (e.g. [32])

f ′(Rα
α)Rµν − f (Rα

α)

2
κµν + (κµν�−∇µ∇ν) f ′(Rα

α) = 8πTµν .� (11)

The components hij satisfy boundary conditions across the stellar surface, defined as the 
vanishing of the stress-energy (9), so as to continuously match the geometry to some exterior 
[33]. For instance, static, spherically symmetric spacetimes in general relativity must match to 
an exterior Schwarzschild geometry by virtue of Birkhoff’s theorem [1, 29].

3.1.  Spherically symmetric stars

To make the above more explicit, we consider the case of spherically symmetric stars, so that 
the various steps involved are clearly laid out. The general spacetime metric κ, in Boyer–
Lindquist coordinates (t, r, θ,φ) [29], is given by

ds2
κ = −A(r)dt2 + B(r)dr2 + r2dΩ2.� (12)

From (8), the line element on S reads (e.g. [32])

ds2
S = B(r)A(r)dr2 + r2A(r)dΩ2.� (13)

Consider any two stars, characterised by two distinct metrics of the form (13), where the 
first star has radius R1, and the second has radius R2. Without loss of generality, assume that 
R2 � R1. In the region R1 � r � R2, the first spacetime is Schwarzschild, i.e. we have that

A1(r > R1) = B1(r > R1)
−1 = 1 − 2M1

r
.� (14)

To make sure that we capture the features of all stars within the set of models under consid-
eration, it is important that the spacelike hypersurface M is defined with respect to the largest 
radius within this set, i.e. the largest such R2, which we call R̄. In general, R̄ is defined as the 
largest radius for which a hydrostatic equilibrium exists for the EOS under consideration. 
Suppose now that each member of the family within (8) depends on some (maximal) set of 
parameters q. In this case, the Riemannian manifold MetNS(M) is dim(q)-dimensional, and 
the metric tensor (2) has components

A G Suvorov﻿Class. Quantum Grav. 37 (2020) 065013
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Gij =4π
∫ R̄

0
dr

r2
√

AB3

[
A
∂B
∂qi

(
B
∂A
∂q j + A

∂B
∂q j

)

+ B
∂A
∂qi

(
3B

∂A
∂q j + A

∂B
∂q j

)]
,

� (15)

where care is to be taken with regards to integration in the region R � r � R̄.

4.  Worked example: Tolman VII stars

We consider a simple, worked example to demonstrate the mathematical machinery developed 
in the previous sections. As is well-known, the Tolman VII solution is an exact solution to the 
Einstein field equations with perfect fluid matter (9) [34]. The advantage of this solution is that 
the stellar density ρ  has the simple form

ρ(r) =
15M
8πR3

[
1 −

( r
R

)2
]

,� (16)

for mass M and radius R. Despite its simplicity, calculations of the binding energy and moment 
of inertia for NSs with more realistic EOS match well with those of the Tolman VII solution 
for M � M� [2] (see also [35]). The Tolman VII density profile (16) has further been used to 
study compactness limits in scalar-tensor theories of gravity [36], and gravitational radiation 
from magnetically deformed [37, 38] and pulsating [39] NSs in general relativity.

A curious feature of the Tolman VII solution is that the stars exhibit no mass-radius 
relationship; both M and R are free parameters3. This will not be the case for more realistic 
EOS, and other parameters, such as the central temperature, will feature instead.

4.1.  Metric functions

In natural units, the metric functions A and B within (12), for the Tolman VII metric, read  
[2, 34]

A(r) =
(

1 − 5M
3R

)
cos2 [Φ(r)] ,� (17)

and

B(r) =
[

1 − Mr2

R3

(
5 − 3r2

R2

)]−1

,� (18)

where

Φ(r) =
1
2
log


 1 + 2

√
3R
M − 6

6r2

R2 − 5 + 2
√

9r4

R4 − 15r2

R2 + 3R
M




+ arctan

[
M√

3M (R − 2M)

]
.

� (19)

3 Note, however, that one requires the compactness parameter MG/(Rc2) � 0.27 to preserve causality, i.e. to ensure 
that the speed of sound is bounded by the speed of light [12]. This sets a rather high value to the density maximum; 
ρmax = 6 × 1018 kg m−3 for a very compact star with radius of R = 6 × 103 m.

A G Suvorov﻿Class. Quantum Grav. 37 (2020) 065013
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Outside of the star, r  >  R, the metric functions continuously match to the Schwarzschild exte-
rior (14).

Given expressions (17)–(19), one may evaluate the metric components (15), to in turn 
measure the ‘distance’ (3) between two Tolman VII configurations, one described by the pair 
(R1, M1) and the other by (R2, M2). The metric G is therefore parameterised by the coordinates 
(R, M) and we have that, for example,

GMM = 4π
∫ R̄

0
dr

r2
√

AB3

[
A
∂B
∂M

(
B
∂A
∂M

+ A
∂B
∂M

)
� (20)

+B
∂A
∂M

(
3B

∂A
∂M

+ A
∂B
∂M

)]
� (21)

is the ‘MM’ component of the metric tensor (2). Actually evaluating the integral within (20) 
is, unfortunately, non-trivial owing to the logarithmic and trigonometric functions appear-
ing within the functions A and B above, though can be evaluated numerically without much 
difficulty.

Table 1 shows distances d(R1, M1, R2, M2) from (3) between distinct Tolman VII configu-
rations for various stellar radii and masses. We see that, for fixed radius R1 = R2, even for 
rather large variations in mass 1.2 � M/M� � 2.0, the distances are relatively small; d � 105 
for M2/M1 � 1.4 . In contrast, even for � 5% changes in the radius, the distance is relatively 
large for fixed mass M1 = M2; d � 5 × 105 for R1/R2 � 0.95. This shows that two configu-
rations with the same radii but different masses are ‘closer together’ than two configurations 
with the same masses but different radii. This is expected, since the central density within (16) 
varies strongly with radius, ρc ∝ R−3, while ρc only varies linearly with M. Nevertheless, the 
mathematical framework captures this feature automatically.

4.2.  Geodesic paths

To further explore the structure of the configuration space spanned by Tolman VII stars, we 
investigate geodesic paths. While it is not clear if these curves have any physical relevance 
beyond being used to measure distance through (3), it seems plausible that least action prin-
ciples, applied to the lengths of curves within MetNS(M), might imply something about stellar 
evolution.

To this end, the problem may be thought about as follows: consider a star initially in some 
state, (R1, M1), evolving towards a different state, (R2, M2), through some physical process. 
Suppose that, whatever this process may be, the star evolves so as to minimise an energy 

Table 1.  Distances d(R1, M1, R2, M2), defined in (3), between various Tolman VII 
configurations (17)–(19).

R1 (104 m) M1 (M�) R2 (104 m) M2 (M�) d(R1, M1, R2, M2)

1.35 1.2 1.4 1.2 5.8 × 105

1.11 1.2 1.16 1.2 6.0 × 105

1.0 1.2 1.04 1.2 6.2 × 105

1.2 1.2 1.2 1.3 1.5 × 104

1.2 1.3 1.2 1.4 1.6 × 104

1.2 1.4 1.2 2.0 1.3 × 105

A G Suvorov﻿Class. Quantum Grav. 37 (2020) 065013
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integral on some appropriate configuration space, which may (or may not) be the space 
MetNS(M). As is well-known, geodesics, which extremise arc-length, also extremise energy 
[40], and therefore trace some kind of energy-minimising evolution. Again, whether this is 
relevant to stellar dynamics is unclear, though, in any case, it is interesting to explore the 
mathematical structure of the configuration manifold.

Figure 1 presents the geodesic curve on the Tolman VII configuration manifold connecting the 
points (R, M) = (1.2 × 104 m, 1.2M�) and (R, M) = (1.15 × 104 m, 1.75M�), with the (suit-
ably normalised) Ricci scalar curvature Ric = Rij

GGij of MetT−VII(M) with R̄ = 1.8 × 104 m . 
Loosely speaking, the scalar curvature traces how the volume form deviates from its flat counter
part, and thus affects how length is measured. We see that the geodesic path connecting the 
end points exhibits significant curvature, indicating that the configuration manifold has a com-
plicated geometric structure. The curve further suggests that a star evolving, from the initial to 
the final states defined by the end points of the geodesic, may have non-monotonic behaviour 
in the relative mass and radius shifts which occur during the state change.

5.  Discussion

In this paper we explore a mathematical framework to quantify the ‘distance’ between differ-
ent NS models. In particular, many different stellar models have been proposed in the litera-
ture [2, 3, 13], some members of which should be, intuitively speaking, ‘closer’ together than 
others. The framework developed here allows for a rigorous definition of ‘closeness’, by defin-
ing a distance, given by expression (3), on the configuration space of NS models, MetNS(M). 

Figure 1.  Geodesic path (blue curve) on the configuration manifold of Tolman VII 
metrics, connecting the points (yellow dots) (R, M) = (1.2 × 104 m, 1.2M�) and 
(R, M) = (1.15 × 104 m, 1.75M�). The colour scale shows the (suitably normalised) 
Ricci scalar GijR

ij
G, with darker shades indicating a greater value for |GijR

ij
G|.

A G Suvorov﻿Class. Quantum Grav. 37 (2020) 065013
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We have shown how the framework may be applied in the simple case of Tolman VII stars, 
and have speculated that geodesics on this configuration manifold may imply something about 
stellar evolution beyond providing a distance measure; see figure 1. While the work presented 
here is mostly conceptual, it is hoped that it may be useful in future studies of NS structure.

It is interesting to note that, as for the initial considerations by Wheeler and others [19, 20, 
24], nothing within the formalism developed here explicitly restricts us to NS spacetimes. For 
example, an extension to black hole spacetimes could be developed, though there are certain 
obstacles. In particular, the construction of the space M from S is not obvious in this case, 
since the asymptotic behaviour of the black hole may be relevant, e.g. asymptotically de Sitter 
black holes behave differently to asymptotically flat ones [41], and a distance measure should 
reflect this. This is problematic since the compactness of M, which cannot be imposed if one 
wishes to integrate out to infinity, is assumed so that (1) is well-defined. If some compact 
hypersurface M ⊂ M can be constructed in an invariant manner which captures the black 
hole physics, or if suitably decaying conformal factors can be introduced so that (1) converges 
(i.e. build hij from e2Ωκµν with conformal factor Ω decaying sufficiently rapidly so that (1) 
converges) [30], the formalism developed here would largely carry over. This could be used to 
quantify the ‘closeness’ of black hole models in different modified theories of gravity [42–44].
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