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Abstract — The antiferromagnetic coupling and entanglement between skyrmion lattices are
treated in magnetic bilayer systems. We first formulate the problem of large bilayer skyrmions
using the CP! @ CP!-theory. We have considered bilayer skyrmions under the presence of
Dzyaloshinskii-Moriya (DMI) and Zeeman interactions confined in a two-dimensional chiral mag-
net such as Feg 5Co0.5Si. We parametrize bilayer skyrmions using the SU(4) representation, and
represent each skyrmion and antiskyrmion using the Schmidt decomposition. The reduced den-
sity matrices for skyrmion and antiskyrmion have been calculated. The conditions for maximal,
partial entanglement and separable bilayer skyrmions are presented. Our results can be used for
generating entanglement in systems with a large number of spins.

Copyright © EPLA, 2020

Introduction. — Magnetic skyrmions are microscopic
topological defects in spin textures that are characterized
by the charge [1]
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In the mathematical literature, ) is a topologically in-
variant quantity known as Pontryagin number. It counts
how many times n(r) = n(z,y) wraps the unit sphere [2].
Skyrmions were first introduced by Skyrme [3] to explain
hadrons in nuclei. Interestingly they have turned out to
be relevant in other condensed matter systems such as chi-
ral magnets [4]. Theoretically, magnetic skyrmions were
introduced and investigated by Bogdanov and his collabo-
rators in [5,6]. Skyrmions can be driven by charge or spin
currents in confined geometries [7]. In general, skyrmions
are subject to the skyrmion Hall effect (SKHE) caused by
the Magnus force. SKHE was predicted theoretically in [8]
and has been observed experimentally [9]. The Magnus
force is the force acting transversely to the skyrmion ve-
locity in the medium and can be interpreted as a manifes-
tation of the real-space Berry phase [10,11].

SKHE is a detrimental effect since the skyrmions expe-
riencing it will deviate from following a straight path. As
a result, moving skyrmions can be damaged or even de-
stroyed at the edges of a thin film sample. One way of sup-
pressing SKHE is to consider two perpendicular chiral thin
films strongly coupled via antiferromagnetic (AFM) ex-
change coupling. It is expected that when skyrmion lattice
is formed at the bottom thin film, simultaneously another

(1)

skyrmion lattice is created at the top thin film with op-
posite topological charge. In this case, the SkKHE van-
ishes since the Magnus force acting on the top skyrmion
(antiskyrmion) is equal to the Magnus force that acts on
the bottom antiskyrmion (skyrmion) with opposite sign
leaving us with zero net force. An analogous scheme was
proposed to suppress SKHE in nanoscale Néel skyrmions
by considering two perpendicular ferromagnetic films sep-
arated by an insulator with a heavy metal underneath the
second ferromagnetic film [12].

Quantum signatures for large skyrmions can emerge
at the phase boundary between skyrmion crystal phase
(SkX) and ferromagnetic phase at zero temperature like
skyrmions in Fep5Cog.55i. During this phase transition
a quantum liquid phase is expected to emerge [13]. In
this case, the classical LLG [14] and Thiele equation [15]
break down due to quantum fluctuations. The full quan-
tum theory of bilayer skyrmions is out of the scope of this
work and it can be recovered under some circumstances.
As an example, for sufficiently weak antiferromagnetic ex-
change coupling between thin films, bilayer skyrmion (an-
tiferromagnetically coupled skyrmion-antiskyrmion pair)
can be seen as two separate skyrmions and the quantum
dynamics is already known for a single large skyrmion [13].
In this work, we give a detailed theory of large bilayer
skyrmions (with sizes of the order of 100 nm) using the
HDMZ (Heisenberg exchange + Dzyaloshinskii-Moriya in-
teraction + Zeeman interaction) model. We study the
problem of entanglement in large bilayer skyrmions from a
general perspective using our developed continuum theory
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of bilayer skyrmions and SU(4) representation. In the fi-
nal section, we study the geometry of quantum states in
bilayer skyrmions.

The CP' @ CP'-theory of large bilayer skyrmions.
— We consider two thin films of chiral magnets sepa-
rated by an insulating spacer with antiferromagnetic cou-
pling between chiral films. We assumed each film to host
Bloch skyrmions under certain ranges of temperature and
external magnetic field determined by the film parame-
ters. Skyrmions in the first thin film are equal in size to
skyrmions in the second thin film but with opposite topo-
logical charge. For our model to hold, we assume tempera-
tures lower than the magnon gap and skyrmions with large
radius [13]. Fortunately, skyrmions in Feg5Cog 5Si sup-
port these assumptions [16]. We present a detailed theory
of bilayer skyrmions written with respect to CP* @ CP'-
theory. The HDMZ Hamiltonian density for each chiral
magnet layer is

M= ; (0,m%) - (@,n') + D' - (Vxn') —B-n'. (2)

We adopted the Einstein summation notation for re-
peated indices dyn - 9yn = ¥,0,n - 9,n. Since we are
interested in two-dimensional thin films u = =, y. The in-
dex i = 5, A labels the skyrmion and antiskyrmion respec-
tively and n® = (sin 0° cos ¢*, sin 6% sin ¢*, cos 0% gives the
transpose magnetic moment unit written in the O(3) rep-
resentation with a unit modulus constraint [n’|> = 1. The
first term in the Hamiltonian represents the exchange in-
teraction with exchange constant J, the second term is
the DMI term with D being the Dzyaloshinskii-Moriya
(DM) vector constant. DMI term is a manifestation of
chirality in the system since it has a vanishing value
for centrosymmetric crystal structures. The last term
is the Zeeman interaction. According to the Derrick-
Hobart theorem, the Hamiltonian (2) supports the emer-
gence of large skyrmions [17,18]. Suppose there exists a
skyrmion solution n° to the system. We compute each
contribution in the energy functional as EY, E%,, and
EY, where H,DM and Z denote Heisenberg exchange,
Dyzaloshinskii-Moriya and Zeeman terms. Now we con-
sider the scaling n = n°(A\z). Substituting this scaled
solution into each term in the energy functional gives

E(X) = Eg — A7 Epy| + AT E7. 3)

This has a unique minimum point which could be found

0
by the relation A = %

for consistency throughout our argument. From eq. (3),
it is not difficult to observe that the skyrmion is sta-
bilized by the DMI term. When A — oo, eq. (3) im-
plies that a skyrmion shrinks to zero without the DMI
term. The perpendicular magnetic anisotropy (PMA)
term was ignored since such a term does not play an
important role in Feg5Co5Si [16]. The total energy is
the spatial integral of H,;: H; = fd2r H;. The bilayer

It is safe to choose A = 1

skyrmion can be described by the following Hamiltonian:
Hiopt = Hs+Ha+ H;pe. The term Hy,y; is assumed to con-
tain the AFM exchange coupling between the two chiral
magnets,

Hinter = —Jint /d2$ ni:S : ni:A- (4)

The AFM interaction term is responsible for the cou-
pling between spin degrees of freedom in the skyrmion
and spin degrees of freedom in the antiskyrmion. AFM-
coupled spins are in opposite alignment with each others.

We will use a purely geometric approach in our in-
vestigation of quantum entanglement. Thus, it is more
convenient to work in the equivalent CP' formulation of
the nonlinear sigma model NLoM [19,20]. This can
be achieved using the Hopf map n’ = (z°)To’z’. This
mapping connects the classical object n’ with spinor

Ccos LA

z' = [ i i } The spinor z° can be interpreted as the
sin ?e“”

coherent-state wavefunction of spin—% particles. The DMI
term can be phrased in term of the spinor z; as follows:

n' - (Vxn') = sinf’ cos0'(cos ¢; 9,¢" + sin ¢ 9,¢")
+(sin ¢ 00" — cos ¢’ 90" — sin® 070, ¢")
—on’-a' —i(z") (¢ V) 2

+i(V(z)T) - o'z’

(5)
Equation (2) can be re-expressed in terms of the spinor
z' as 7
Hi = 3
=2J ((‘Z’)lL(zi)Jr + iaz zj —iK (zi)Toz)
(Ouz' —ial, 2" + ik ozzi) - B (z") o'z

o
= 2J(Dszi)TDszi - B (z)To'2’,

(0yn") - (Oyn")+Dn"-(Vxn')—B-n'

(6)

where D!, = 9, — ia}, +ixo], denotes the covariant deriva-
tive for the thin film i, k = £, and !, = —i(2")'9,2'
is the emergent gauge field. Each magnetic layer carries
a CP'- field which is responsible for the magnetization.
The CP'-field is a two-component normalized vector with
complex entries such that each field is being represented
using the SU(2) representation. The inclusion of the DMI
term in the effective Hamiltonian (6) is done simply by
adding a non-Abelian gauge field proportional to Pauli
matrices 0,. The emergent gauge field aL is usually called
the real-space Berry connection. It is synthesized by adi-
abatically varying the spin texture sufficiently slowly in
time. The real-space Berry phase connection can give rise
to the skyrmion Hall effect, unlike the momentum-space
Berry connection which gives rise to the anomalous Hall
effect [11]. Although the non-Abelian gauge field is non-
dynamic (constant), it has an associated flux with it. The
covariant derivative commutator gives the field tensor,

(7)

where the Abelian part of the flux is ffw = 9,a’, — ayaj,

i i i i 2 i
F,, = z[Du,DV] = frw t 267€un 03,
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The two-dimensional emergent vector potential for a
single magnetic skyrmion is
. . . A’L‘ X AZ' 91
T, zTV sz)—]_f o :g-Q_.
a i(z")"Vaz 2r( cos 0'(r)) L sin” 5

(8)

Since qu = (sin ¢’ cos ¢, 0), the gauge field a’ turns out
to be a two-dimensional object. The magnetic flux origi-
nating from this gauge field is

Vo xal = % sin 6 (r) (6 (r), )
where Vo = (95, 9y, 0).

The local spin orientation (6¢, ¢%) is related to the local
coordinate system of a single skyrmion (r,¢) such that
0; = 0;(r) and ¢; = ; — 5. For the sake of simplicity,
we assume B = BZ > 0. The geometric considerations on
skyrmions impose the following boundary conditions on
0;: a) 0;(00) = 0 and b) 6;(0) = w. The total energy of a
single skyrmion (antiskyrmion) reads [20]

o0 1 X 2
ESK=47TJ/ rdr[(—d—ez—i-ﬁ)
0 2 dr

1
— K2 +—51n9 cos0; +4 sin? 6; — (COSGil)]; (10)

where v = %. The total energy of the large bilayer

skyrmion is

Eiot = Esi(0s) + Esi(0a) + Eint(0s,04). (11)

In the CP'-formulation, the AFM interaction term takes
the form
o0
Eipt = —271'Jmt/ rdr cosOg - cosf 4. (12)
o

For sufficient AFM interaction, we have the case where
each spin in the first film is coupled with another op-
posite spin in the second film. This allows us to write
04 = m — 0s and express the total energy functional (11)
in terms of a single angle 6g or 6 4. The total energy func-
tional (11) simplifies for fixed values of DM interaction
constants D, exchange couplings J and magnetic fields B
in both skyrmion and its AFM-coupled antiskyrmion. It
takes the following simple form:

E—4Jood Ldo° ++ 299
tot — 4T 07“7“ 2(‘17’ ’}/ 2 Sll’l

o0
+ 2 T it / rdr cos® 6°. (13)
0

Realistically, in order for eq. (13) to make sense, we have
to introduce a hard cutoff rg; such that 0g 4(r) = 0 for
r > rgi. Physically, rgi is a half-skyrmion distance in the
skyrmion phase crystal or the size of skyrmion.

It is not difficult to show that our system has a vanishing
skyrmion Hall effect. For each chiral magnet film, the

Thiele equation can be written as [12,15]
F:GX(VS—R)—FFZ‘J‘ (ﬁVS—Oé

R), (14)

where v denotes the velocity of spin polarized current,
« is the Gilbert damping term, [ is the non-adiabatic
damping constant, R represents the center of mass coor-
dinates, G and I';; are the gyromagnetic vector and dissi-
pative tensor respectively given by

Gi = Eijk /d2I' (1’17 81'1’17 ajn),

/d21‘ 6in 6]‘1’1.

We introduced the non-adiabatic spin transfer torque with
parameter [ in eq. (14) to account for small dissipative
forces that break the conservation of spin in the spin-
transfer process. Since we have considered an external
magnetic field parallel to the z-direction and an in-plane
spin polarized current, by symmetry considerations, the
dissipation tensor has the following simple form:

Lij (15)

100
r=r|10 10 (16)
0 0 0
and the gyromagnetic vector takes the form
0 -1 0
G=47r@Q |1 0 O (17)
0 0 O

Note that F in eq. (14) vanishes since the HDMZ action
is translationally invariant r — r + dr provided that the
Zeeman field is uniform. Thus, we obtain the following
coupled equations:

al'  —47Q X _( pr
47@Q  al y ] \4nQ

This system is non-singular and always has a solution of

the form
) . (19)

From the last result, we observe that the skyrmion (an-
tiskyrmion) velocity vgy is a combination of drag veloc-
ity vs and Magnus term proportional to the topological
charge (). Since we dealt with two thin films of chiral mag-
nets where skyrmions in one layer have opposite charge
with respect to the other, i.e., Qs = —Q 4, this implies the
vanishing of the Magnus term contribution for the whole
system.

(18)

—47Q
pr )

VSkZRZ(X,Y)

:évs+a7—ﬁ(
(6%

, + —z X Vg
QB(#) +

4mQ

SU(4) parametrization of bilayer skyrmion. — At
the perfect coupling between skyrmion-antiskyrmion pairs
such that each spin in the skyrmion is AFM-coupled
to a spin in the antiskyrmion, the system skyrmion-
antiskyrmion pair can be described by a four-component
wave function. Thus we can represent the spin degrees
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of freedom in bilayer skyrmions using SU(4) symmetry.
The SU(4) skyrmions were studied before in the multi-
component quantum Hall system [21] and graphene [22].
It was found that skyrmions in these systems are stabilized
mainly by the competition between Zeeman and Coulomb
interactions, unlike skyrmions in chiral magnets. How-
ever, both skyrmions share the same topological proper-
ties in common regardless of the system details. Since
we have AFM coupled skyrmion-antiskyrmion pairs, our
system resembles the spin-pseudospin skyrmions in term
of parametrization despite the fact that we now have two
skyrmions instead of one. For large bilayer skyrmions,
we consider the properties of SU(2) ® SU(2) skyrmion-
antiskyrmion pairs under the presence of DM and Zeeman
interactions (HDMZ model). We do this from a perspec-
tive of entanglement between the spin degrees of freedom
in the skyrmion and its AFM-coupled antiskyrmion. Be-
cause of the Zeeman interaction term, the full SU(4) sym-
metry breaks down to U(1) ® U(1) symmetry where each
symmetry group corresponds to a rotation of spin in the
skyrmion or antiskyrmion along the applied magnetic field
direction (in our case, the z-direction). Thus, we have the
symmetry breaking sequence SU(4) — SU(2) @ SU(2) —
U(1)®U(1). Interestingly, the DMI term written in terms
of spinors z’ preserves the full SU(2) ® SU(2) symme-
try. This is due to the embedding of the DMI term in
the covariant derivative that acts on the spinor z’ as a
non-dynamic term.

We parametrize the SU(4) bilayer skyrmion using a
Schmidt decomposition [23]. According to the Schmidt de-
composition, every pure state in the Hilbert space His =
Hi1 ® Ho can be written in the form

¥) =

where {|e;)}N';! is an orthonormal basis for Hi,
{|fz>}N2 ! is an orthonormal basis for Hy, N <
min{ Ny, N2}, and )\; are non-negative real numbers such
that ©Y'A? = 1. Thus, we can express the wave func-

Zilo Ailed) ® |fi), (20)

tion as
N _ o s o8 A
| (r)>—COS—|sD>®|sD>+Sm IX%) ® [x*)
[ 6_ 0° Li(B—¢"—3%)
COSQCOS 5 cos 2 +sm ) sin 2@
_|cos 3 2 sm% COS 5 2 ‘7) —sin % 2 sm%cos eiB— %)
- o i® o4 i(B—¢™) |’
COS 5 2 COS “5- 92 sin —e —sin & 2 sin %~ 005676
[ 07 Li(¢p?+9¢°) a 9° ,iB
COS 5 2 sin % sin & 5 € + sin & 5 COS Z5- COS 2 e
(21)

where a € [0, 7] and [ € [0, 27] are functions of r, and the
local two-component spinors |¢°), |x®), v|gaA> and |x4)

are constructed as follows: |<p1> = ( cos

91

<25 ) and |y) =

sin Ee“”

( —sin %le__wl
oi

2

), where 6% € [0, 7] and ¢° € [0,27] are the

Ccos
usual polar angles defining the vector n’. We can read off
directly the reduced density matrices using the Schmidt

decomposition. The reduced density matrices for spins in
skyrmion and antiskyrmion are

ps = Tra(|¥(0)(¥(x])
= cos® 5|gas><gas| + sin? 3 X (X7, (22)
pa = Trs (¥ (1) (¥(x])
= cos® 5 | ") +sin® T (AL (28)

It is convenient to express the wave function (21) as
z1

) = | 2

24
be written easily as [23]

such that the entanglement measure can

Q3:4|le472223|2. (24)

For maximal entangled states we have z; = 2o = % and

z9 = z3 = 0 while for separable (factorisable) states we
have z124 = 2923. Consider for simplicity the case when
spins in skyrmion and antiskyrmion are perfectly entan-

gled. Let |pg) = ((1]), lpa) = ((1]), Ixs) = %(i) and
1

[xa) = E(zl) Clearly when o = 7, the off-diagonal

terms of the density matrix vanish and the diagonal terms
become 1. This verify the maximal entanglement condi-
tion pf}C = %]Ig.

The local transformation operators U of the den-
sity matrices form a six-dimensional subgroup SU(2) ®
SU(2) of the full unitary group U(4) = U(1) ®
SU(4). The local transformation operators U are para-
metrized by six arbitrary real variables such that
U((gs, (255, 9,4, (23,4, Oé,ﬁ)TU(es, (bs, 9,4, (23,4, a, ﬁ) = ]14 (4 X 4
identity matrix). Without loss of generality, we can use
I ® o, and 0, ® [, as Hermitian su(2) ® su(2) Lie algebra
basis of the full SU(4) bilayer skyrmion theory. Here, o,
and I denote the Pauli matrices and the two-dimensional
identity matrix, respectively.

Geometry of quantum states. — We give a geomet-
ric description to the problem of entanglement in bilayer
skyrmions based on complex projective geometry [24].
CPV is the space of rays in CV*t1, or equivalently the
space of equivalence classes of A"+ 1 complex numbers, at
least one of them is non-zero, under (Z2°,Z%,..., ZV) ~
N2°, 2, ..., zN), where Ae C and A # 0. In quantum
theory, a CPN~'-field corresponds to an N-component
normalized spinor z = (z1, 22, 23,...2x)7 such that the
two vectors z and €'z are equivalent for arbitrary ¢ € R.
The normalization of the CPN ™! spinor takes away two
real parameters (or one complex parameter) which ex-
plains why the space cpV! corresponds to CN . As
we have seen in the previous section, the skyrmion-
antiskyrmion coupled pair can be described using a four-

component spinor which lives in a CP3-manifold. Any
U(4) ~ SU(4)
3)U(D)] — [SUB)RU)]’

CP3-manifold is isomorphic to 07
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therefore the second homotopy group is mo(CP?) =
ﬂg{%} =m[SU(3) ® U(1)]. Using the fact that
the homotopy group for the product manifold factorizes
as (g @ H) = mr(g) ® mx(H) alongside with the fact
that any simple Lie group g has a vanishing fundamen-
tal homotopy group (i.e., m1(g) = 0) give my(CP?) =
m[SU3)| @ m[U(1)] = Z [2,25].

The pure state for each spin—% represents a vector in the
two-dimensional complex vector space. In the Dirac no-
tation, this vector can be expressed as |W) = SN 1 Z14),
where |} is a given orthonormal basis. The distance Dpg
between two states |¥1) and |¥s) is given by the Fubini-
Study distance [26]

Uy |W,))2
cos? D = |< ! =
B8 0 W) (W] U)

21 - Zs°
(Z1-Z1)(Z2- Z5)’
_ (25)
where Z; is the row vector whose entries are the com-

plex conjugates of entries in the column vector Z'. The
Fubini-Study metric measures the distinguishability of
pure quantum states. In quantum communication theory,
the Fubini-Study distance is known as fidelity function.
Since we have considered a continuum theory for describ-
ing large bilayer skyrmions in this letter, the distinguisha-
bility of any two arbitrary states in a large skyrmions or
antiskyrmions is supposed to be difficult to observe. The
infinitesimal form of the Fubini-Study distance approaches
the Fubini-Study metric tensor

» 2-247Z-dZ —Z-dZdZ -7

@ Z-2)(2-7)

(26)

Here Z-Z = Z'Z;. From the Fubini-Study metric, a time-
energy uncertainty relation can be derived directly for each
single spin [24]. As a spin-coherent state goes through a
closed loop, it will gain the phase v = §{1(s) | £ | ¥(s)).
It was found that this phase is equal to the Riemannian
curvature K = % of the phase space of spin-coherent
state up to a constant. When S = 1/2 (like large 2D
skyrmions), the curvature is equal to its maximum value
K =1 [26].

Any arbitrary state vector for a bipartite composite sys-
tem reads

L
VN

where Cj; is an N x N matrix with complex entries.
The density matrix for the composite system is given
by pijr = %C’MC’,&. Since the system is in pure state,
its density matrix has rank one. Now suppose we per-
form experiment in one of the two chiral magnets, the
reduced density matrix for this subsystem is the partially
traced density matrix pa = Trpp := Try,p which equals
pg‘}C = Ejyzglpij,kj. The rank of this subsystem density
matrix may be greater than one. The global state of the
chiral magnets system may be written as a product state

|T) = S B Cyliy @ 1), (27)

spanned in the total Hilbert space H = H4 ® Hp
| 0) =A@ | B) = S a | 1) @ (b5 1), (28)

so the matrix C;; = a;b; is the dyadic product of two
vectors a and b. It is not difficult to notice that a global
state of this kind is disentangled or separable since the
partially traced matrix and the matrix C;; have rank one
and the subsystems are in pure states of their own. On the
other hand, the maximally entangled state can be identi-
fied using the condition p;-‘,t = %]IN which corresponds
to 2?:0101-]-0,% = k. It means that we know nothing
at all about the state of the subsystems even though the
global state is precisely determined. The maximally en-
tangled states form an orbit of the group of local unitary
83 — 50(3)
which is identical to the real projective space RP?. In gen-

UWN) _ SUWN) - . .
eral, the group =—%— is a Lagrangian submani-

transformations. In our case, this group is

1 =z
fold of CPV*~!. Between these two cases, the separable
and maximally entangled cases, the Von Neumann entropy
S = —Tr(pa Inp4) takes some intermediate value with a
possibility of partial entanglement between the spins.

Conclusion. — In this letter, the problem of antifer-
romagnetically coupled skyrmions (bilayer skyrmion) has
been studied in detail using the continuum theory ap-
proach. This was done by considering two thin films
formed from the same chiral magnet separated by an in-
sulating spacer with antiferromagnetic coupling between
chiral films. We assumed each chiral film to host Bloch
skyrmions under a certain range of temperatures and ex-
ternal magnetic fields determined by the film parame-
ters. Skyrmions in the first thin film are equal in size
to skyrmions in the second thin film but with opposite
topological charge. We give a representation for the spin
degrees of freedom based on SU(4) Lie algebra. More-
over, we have computed the density matrices for the spin
degrees of freedom in a skyrmion and its AFM-coupled an-
tiskyrmion using the Schmidt decomposition. Using the
computed density matrices, we found the conditions for
maximal or partial entanglement and separability within
bilayer skyrmions. The full SU(4) symmetry is broken to
SU(2) ® SU(2) symmetry during the Schmidt decomposi-
tion process while the Zeeman interaction term causes the
breaking to U (1) ® U(1) symmetry. Interestingly the DMI
term preserves the SU(2) ® SU(2) symmetry.

The geometry of quantum states in bilayer skyrmions
can be described using a complex projective space CP3
endowed with a unitary-invariant Fubini-Study metric.
Geometrically, the entangled states can be described nat-
urally using a CP? space. We have two extreme cases cor-
responding to maximally entangled and separable states.
The space of maximally entangled states happens to be the
real projective space RP® while for separable states is sim-
ply the space CP! ® CP*. The entanglement in skyrmion-
antiskyrmion pairs can be extended to the whole skyrmion
lattice SkX. We can have maximally entangled, partially
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entangled and separable cases for each coupled pairs.
However, for uncoupled skyrmion-antiskyrmion pairs, the
formalism studied in this letter cannot be accurate in
terms of entanglement conditions. This is mainly because
of the fact that skyrmion-antiskyrmion pairs are treated
as antiferromagnetically coupled pairs throughout our for-
malism. This allowed us to impose conditions on energy
eigenstates of skyrmion and antiskyrmion accordingly. We
need to consider each skrymion and antiskyrmion as X X 7
spin chains and calculate the corresponding entanglement
entropy [27]. Other possible scenarios such as having sat-
urated ferromagnetic phase or general helical spin phase
in one layer and skyrmion lattice in the second layer are
theoretically possible. However we do not find these struc-
tures to be of great interest at least in terms of having a
vanishing Magnus force for the whole system.

In comparison with graphene and multicomponent
Hall systems, an intimate relation between the entangle-
ment conditions in large bilayer skyrmions and SU(4)-
skyrmions has been found. However the system which
has been investigated in this letter is different from that
studied in graphene and multicomponent quantum Hall
systems. For example, Lian et al. dealt in the graphene
case with spin-valley pseudospin degrees of freedom in a
single skyrmion [28]. In contrast, we have considered two
skyrmions with AFM coupling between its internal spins.
This is the reason why we used CP' ® CP'-theory instead
of CP3-theory. However, the space of entangled states is
a CP*-manifold as expected [24,29].

As a last comment, we propose the usage of entangle-
ment in skyrmion-antiskyrmion lattices for probing the
geometric nature of quantum entanglement. This will
help in turn to further understand and possibly manip-
ulate skyrmion lattices in performing quantum technolog-
ical tasks such as generating entanglement in systems with
a large number of spins.
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Appendix: SU(4) representation. — The special
unitary group SU(N) has (N? — 1) generators, where —1
is because of the condition det(M) = 1, where M is any
element from SU(N). We denote the generators as Ay,
A =1,2,...,N? — 1. We choose the following normal-
ization condition between generators: Tr(AgAp) = 2045.
Their commutator and anti-commutator are [30]

A4, AB] = 2i fapcAc,
4
{Aa, A} = N 2 dapcAc,

(A1)
(A.2)

where fapc and dapc are the structure constants of
SU(N). When Ay = 04 (Pauli matrix) we have fapc =
eapc and dapc = 0 in the case of SU(2).

Since our developed model of bilayer skyrmions in chiral
magnets is based on SU (4) we will give a specific attention
to this group. SU(4) has 15 generators while SU(2) ®
SU(2) has 6 generators in total. Embedding SU(2) ®
SU(2) into SU(4) we find the matrix representation for
skyrmion S and its AFM-coupled antiskyrmion A

S O 0 S__ [ Oy 0 S _ [0z 0
T”( ax>’ Ty<0 ay>’ TZ(O 0.)’

0
(A.3)
A (0 Iy A [0 —ily A (I 0
T”_(Hg o) T\l o ) =7 0 L)
(A4)
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