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1.  Introduction

Transition metal dichalcogenides (TMDCs) are materials 
composed of a transition metal from the group VI (M: Mo, 
W, etc) and a chalcogen (X: S, Se, Te) with the formula 
MX2. Being the atomic-thick semiconductor, TMDC mono
layers gained recently a lot of interest as a promising mat
erial for electronic and optoelectronic application [1] where 
they allow for the realization of e.g. FETs [2] and ultrasen-
sitive photodetectors [3]. Similarly to graphene, the con-
duction and valence band extrema in TMDCs align in two 
non-equivalent K and K′ points in the Brillouin zone. This 

effectively gives the charge carriers an, additional to spin, 
degree of freedom—valley [4] which can be exploited for 
information processing, controlled by valley mixing [5, 6]. 
In addition, the absence of inversion symmetry in the mono
layers results in the strong spin–orbit coupling (SOC) which 
breaks the spin degeneracy of the valence and conduction 
band near to the energy gap [7, 8] making TMDCs prom-
ising candidates for spintronics applications [9, 10]. A par
ticularly important property of TMDCs nanostructures is the 
formation of edge states [11], which can exhibit magnetic 
properties when proximitized by a ferromagnet [12] or host 
Majorana bound states in proximity of a superconductor 
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Abstract
We study scanning gate microscopy conductance mapping of a MoS2 zigzag ribbon exploiting 
tight-binding and continuum models. We show that, even though the edge modes of a pristine 
nanoribbon are robust to backscattering on the potential induced by the tip, the conductance 
mapping reveals presence of both the edge modes and the quantized spin- and valley-current 
carrying modes. By inspecting the electron flow from a split gate quantum point contact (QPC) 
we find that the mapped current flow allows to determine the nature of the quantization in the 
QPC as spin–orbit coupling strength affects the number of branches in which the current exits 
the constriction. The radial conductance oscillation fringes found in the conductance mapping 
reveal the presence of two possible wavevectors for the charge carriers that correspond to spin 
and valley opposite modes. Finally, we show that disorder induced valley mixing leads to a 
beating pattern in the radial fringes.
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[13]. Recently, significant progress has been made in theor
etical understanding of electronic transport properties of 
TMDCs, both in theory [14, 15] and in the experiment—
thanks to the realization of locally gated nanostructures [16] 
and split-gate quantum point contact (QPC) devices [17, 18].

A very powerful technique, well established for explo-
ration of quantum transport properties in two-dimensional 
electron gases, is the scanning gate microscopy (SGM) con-
ductance mapping. In this approach a charged atomic force 
microscope tip scans over the sample inducing a repulsive 
potential in two-dimensional electron gas (2DEG) and thus 
scatters the propagating electrons. This technique has been 
applied to a variety of nanodevices [19], mainly realized in 
semiconducting heterostructures where it allowed for map-
ping of the electron flow. The most prominent was demon-
stration of branched electron flow from a QPC [20, 21] which 
can be affected by mode mixing induced by Rashba SOC 
[22]. Most importantly, by exploiting this type of measure-
ment the coherent nature of the electronic transport can be 
visualized—the electron self-interference [23, 24] results in 
an appearance of radial conductance fringe patterns [20, 21].

So far, SGM of monolayers was studied mainly for 
graphene nanoribbons [25] and QPCs [26, 27] where it 
allowed for demonstration states localized within the con-
striction [28, 29]. In the presence of the magnetic field 
this technique allowed for visualization of quantum Hall 
effect [30, 31], creation of magnetic focused electron 
beams [31–33] and snake states [34]. Very recently, SGM 
of MoS2 started gathering attention with the first reports of 
visualization of electron flow and formation of quantum 
dots in micrometer-sized structures [35]. This followed 
the previous research that used a local probe for visuali-
zation of edge states in a few-layer MoS2 FET [36] using 
microwave impedance spectroscopy. The latter technique 
was also used to visualize of current flow in a MoS2/WSe2  
heterostructure [37].

The aim of this paper is to explain how features typical 
to TMDCs as the presence of edge currents, strong SOC and 
spin-valley splitting affects SGM mapping on an example of 
MoS2. We find that in a pristine ribbon the edge current can be 
mapped only when the Fermi energy is tuned close to the edge 
band bottom. On the other, hand when the Fermi energy is 
tuned to the conduction band, the SGM conductance mapping 
reveal fans of conductance due to the presence of quantized 
modes in the nanoribbon rather than directly depict the cur
rent distribution [38]. By mapping the electron flow from a 
QPC constriction we find that unlike as in a 2DEG in het-
erostructure, the number of branches is not solely dependent 
on the quantized conductance value but it is rather sensitive 
to the intrinsic SOC strength. Finally, we investigate valley-
mixing effect as probed by SGM mapping of the conductance 
oscillations.

This paper is organized as follows: in section 2 we describe 
the model used for calculations. The conductance mapping 
results of a pristine ribbon and a ribbon with QPC are pre-
sented in sections 3.1 and 3.2 respectively. We summarize the 
work in section 4.

2.  Model

We consider a MoS2 monolayer shaped into a nanoribbon as 
presented in figure 1. To describe its electronic properties we 
adopt the tight-binding model that includes d and p  orbitals 
of Mo and S atoms respectively [39]. To allow for a large 
scale calculations required for the description of SGM we 
perform reduction of the basis that casts the contribution of 
p -orbitals of the S layers into symmetric and antisymmetric 
combinations [40, 41]. The Hilbert base of the adopted model 
is spanned by the vector (d3z2−r2 , dx2−y2 , dxy, pS

x , pS
y , pA

z ), where 
the A and S indices of p -orbitals correspond to antisymmetric 
and symmetric combinations with the respect to the z-axis 
pA

i = 1/
√

2( pt
i − pb

i ) p
S
i = 1/

√
2( pt

i + pb
i ). The index i refers 

to spatial directions: x, y, z and superscripts t and b indicate 
the top or bottom sulfur plane.

The Hamiltonian for each spin component of the consid-
ered system reads,

H =
∑

i,o

[
εM

i,oa†i,oai,o+ε
X
i,ob†i,obi,o

]
+

∑
(i,j),o,ω

[
tMM
ij,oωa†i,oaj,ω + tXX

ij,oωb†i,obj,ω

]

+
∑

(i,j),o,ω

tMX
ij,oωa†i,obj,ω + H.c.,

�

(1)

where i, j iterate over lattice sites, o,ω go over atomic orbital 
basis and a† and b† are creation operators for Mo and S orbitals 
respectively. The first sum corresponds to the onsite energies 
with the elements that read,

εM =



ε0 + V 0 0

0 ε2 + V −iλMsz

0 iλMsz ε2 + V


 ,� (2)

Figure 1.  The considered MoS2 ribbon. At y   =  100.1 nm and 
y   =  −100.1 nm the ribbon is terminated by zigzag edges formed by 
Mo and S atoms respectively. The gray background corresponds to 
the tight-binding lattice shown in the circular zoom-in. The blue and 
yellow circles correspond to the Mo and S atoms respectively. At 
the left and right edges of the sample we introduce open boundary 
conditions in the form of semi-infinite leads (pink colours). 
The colourmap depicts the QPC potential used in a part of the 
calculations.
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εX =



εp + txx + V −iλX

2 sz 0
iλX

2 sz εp + tyy + V 0
0 0 εz − tzz + V


 .� (3)

In the above we include external, position dependent potential V = VQPC + Vt  and where sz equals 1(−1) for spin up (down) 
component.

The second and third sums in Hamiltonian (1) correspond to the hopping elements between intra- and inter-atomic orbitals 
respectively. The mapping of i, j coordinates into the hopping elements is presented in the inset to figure 1. The lattice spacing 
is 0.319 nm. The hopping matrices for the intra- and inter-lattice hoppings are,

tXX
1 =

1
4




3Vppπ + Vppσ
√

3(Vppπ − Vppσ) 0√
3(Vppπ − Vppσ) Vppπ + 3Vppσ 0

0 0 4Vppπ


 ,

�

(4)

tXX
2 =




Vppσ 0 0
0 Vppπ 0
0 0 Vppπ


 ,� (5)

tXX
3 =

1
4




3Vppπ + Vppσ −
√

3(Vppπ − Vppσ) 0
−
√

3(Vppπ − Vppσ) Vppπ + 3Vppσ 0
0 0 4Vppπ


 ,

�

(6)

tMM
1 =

1
4




3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ) − 3
2 (Vddδ − Vddσ)√

3
2 (−Vddδ + Vddσ)

1
4 (Vddδ + 12Vddπ + 3Vddσ)

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)

− 3
2 (Vddδ − Vddσ)

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
1
4 (3Vddδ + 4Vddπ + 9Vddσ)


 ,

�

(7)

tMM
2 =

1
4




3Vddδ + Vddσ
√

3(Vddδ − Vddσ) 0√
3(Vddδ − Vddσ) Vddδ + 3Vddσ 0

0 0 4Vddπ


 ,

�

(8)

tMM
3 =

1
4




3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ)
3
2 (Vddδ − Vddσ)√

3
2 (−Vddδ + Vddσ)

1
4 (Vddδ + 12Vddπ + 3Vddσ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
3
2 (Vddδ − Vddσ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ)
1
4 (3Vddδ + 4Vddπ + 9Vddσ)


 ,

�

(9)

tMX
1 =

√
2

7
√

7



−9Vpdπ +

√
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ +

√
3Vpdσ

5
√

3Vpdπ + 3Vpdσ 9Vpdπ −
√

3Vpdσ −2
√

3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ 5
√

3Vpdπ + 3Vpdσ 6Vpdπ − 3
√

3Vpdσ


 ,

�

(10)

tMX
2 =

√
2

7
√

7




0 −6
√

3Vpdπ + 2Vpdσ 12Vpdπ +
√

3Vpdσ

0 −6Vpdπ − 4
√

3Vpdσ 4
√

3Vpdπ − 6Vpdσ

14Vpdπ 0 0


 ,

�

(11)

tMX
3 =

√
2

7
√

7




9Vpdπ −
√

3Vpdσ 3
√

3Vpdπ − Vpdσ 12Vpdπ +
√

3Vpdσ

−5
√

3Vpdπ − 3Vpdσ 9Vpdπ −
√

3Vpdσ −2
√

3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ −5
√

3Vpdπ − 3Vpdσ −6Vpdπ + 3
√

3Vpdσ


 .

�

(12)
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In (2) and (3) λM and λX  correspond to intrinsic SOC 
parameters which we choose after [42], with the modification 
of λM = −0.086 eV and λS = 0.013 eV which assures the 3 
meV spin–orbit splitting in the conduction band minimum of 
and the crossing of the conduction bands as found in [43]. 
We adopt the following Slater–Koster parameters given in 
eV units: Vpdσ = 3.689, Vpdπ = −1.241, Vddσ = −0.895, 
Vddπ = 0.252, Vddδ = 0.228, Vppσ = 1.225, Vppπ = −0.467, 
ε0 = −1.094, ε2 = −1.512, εp = −3.560, εz = −6.886 [40].

In our work we consider an external potential induced in 
the monolayer that defines the QPC constriction modeled as 
a split-gate [44]:

VQPC(x, y) =
Vg

π

[
arctan

(
W + x

d

)
+ arctan

(
W − x

d

)]

−g(S + y, W + x)− g(S + y, W − x)

−g(S − y, W + x)− g(S − y, W − x),
� (13)

with g(u, v) = 1
2π arctan( uv

dR ) and R =
√

u2 + v2 + d2 , where 
W and S control the span of the potential in the x and y  direc-
tions respectively and where d is the parameter that controls its 
smoothness. We take W  =  20 nm, S  =  20 nm and d  =  15 nm. 
The resulting potential for Vg = 0.1 eV is plotted in figure 1 
on the colourmap.

For the SGM conductance mapping we model potential 
induced by the tip following [45] that well approximates the 
SGM potential generated in atomic-thick materials [46],

Vt(x, y) =
Vtip

1 + (x−xt)2+(y−yt)2

γ2

,� (14)

with Vtip = 0.1 eV and the effective width of the tip potential 
γ = 5 nm for a pristine ribbon and γ = 1 nm for the system 
with a QPC.

We consider linear response regime at zero temperature 
where the conductance is obtained from Landauer formula. 
The scattering matrix is calculated using wave-function 
matching method implemented in Kwant package [47]. The 
conductance maps and plots were obtained using Adaptive 
package [48].

3.  Results

3.1.  Pristine zigzag wire

In the considered system, the lattice in the y  direction is ter-
minated by non-equivalent atoms. At the bottom edge of the 
ribbon is terminated by S atoms, while on the top it is termi-
nated by Mo atoms. Those terminations constitute two zigzag 
edges of the ribbon that have different electronic structure. In 
figure 2 we present the band structure of a 24 nm width zigzag 
nanoribbon. With the arrows we denote three spin-split bands 
that correspond to the modes located at the Mo and S edges 
of the ribbon. In the top part of the figure we observe sets of 
bands that correspond to the current polarized in K, K′ and 
Q valleys [49]. Note that changing of the width of the ribbon 
does not modify the structure of the edge bands until critical 
width of 2 nm is reached and the edge modes start to mix.

Let us first focus on the Fermi energy range where the 
transport is dominated by the edge modes. In figure 3(a) we 

Figure 2.  Dispersion relation of a MoS2 zigzag nanoribbon 
with denoted bands corresponding to the edge modes. The inset 
shows zoom-in on the bands of Q polarized modes and four bands 
corresponding to the edge modes.

Figure 3.  Conductance map versus the tip position in the 
y -direction (for xt  =  0) and the Fermi energy for a zigzag 
nanoribbon for edge (a) and (b) bulk dominated transport.

J. Phys.: Condens. Matter 32 (2020) 205302
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show conductance of the ribbon versus the tip position along 
the y  axis (y t) and the Fermi energy in range [−0.5, 0.8] eV. 
The considered ribbon is invariant in the x direction and we 
set xt to zero.

In the absence of the tip the conductance is proportional 
to the number of current carrying modes. The lack of the 
energy gap in the metallic band structure of a pristine zigzag 
ribbon leads to nonzero conductance in the whole map. 
For the energy range considered in figure  3(a) this corre-
sponds to the current being transmitted at the edges of the 
ribbon—see figure  4(f). We distinguish two main regimes 
in the map (depicted with violet and orange colour) where 
the conductance takes values 2e2/h and 4e2/h due to Kramers 
degeneracy. The violet colour in the map corresponds to the 
case when a single (Mo or S) edge is populated, while the 
orange colour denotes the transport through both the edges 
[15]. A prominent feature of the map is the stability of the 

conductance when the tip approaches the edges despite the 
fact that the current is transmitted through them. Only when 
the Fermi energy is tuned near the bottom of the edge bands 
we observe that the conductance drops by 2e2/h as it happens 
for E  =  −0.3 eV and E  =  0.55 eV. For such values of E the 
small potential perturbation induced by the tip locally lifts up 
the energy of the edge modes. As a result their band bottom 
positions above the Fermi energy which in turn blocks the 
transport through the S edge for E  =  −0.3 eV and Mo termi-
nated edge for E  =  0.55 eV. As a result the incoming electron 
is reflected completely from the depletion region generated 
by the tip which correspondingly lowers the conductance by 
the conductance quanta.

In the map we also observe a sharp peak of the increased 
conductance due to the bend Mo edge band at energies close 
to 0.6 eV (see the dispersion relation in figure 2) which results 
in propagation of two edge modes on this side of the ribbon.

Figure 4.  (a)–(d) Dispersion relations close to the conduction band minimum for four positions of the tip with y t  =  0 (a), y t  =  3 nm (b), 
y t  =  6 nm (c), y t  =  9 nm (d). (e) Density current probability obtained for the tip positioned at the center of the ribbon (marked with the 
white cross) for E  =  0.9 eV. The blue and yellow colors correspond to the current density localized at the Mo and S edges respectively. (f) 
Density current probability obtained for the tip positioned at y t  =  −6 nm (marked with the white cross) for the Fermi energy E  =  −0.3 eV 
where the transport occurs solely through the edges. The current flows from left to right and its density takes zero values in the bulk of the 
ribbon (black) and it is maximal on the edges (yellow). In the panels (e) and (f) the black arrows denote the current direction.

J. Phys.: Condens. Matter 32 (2020) 205302
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In figure 3(b) we present the conductance map versus the 
Fermi energy and the tip position along the y  axis for the ener-
gies tuned to the conduction band. Here the current is carried 
mainly by the modes that have either maximum in the center 
of the ribbon (states with even parity) or maxima symmetri-
cally around the center (odd states). Nevertheless, we see that 
actually the conductance mapping does not probe the prob-
ability current distribution, but rather we observe a set of fans 
of quantized conductance which increases when the tip is 
moved towards the edges of the ribbon—see e.g. the conduct-
ance at E  =  0.88 eV.

The above observation can be explained by an analysis 
of the energy bands of the ribbon section in which the tip is 
located. Here, the energy values are dominated by the energy 
separation between states of transverse quantization in the 
ribbon which bands we find in the top part of figure 2. Taking 
a cross-section of the system at x  =  0 and assuming its invari-
ance along the x direction we calculate the band structure for 
different y t, as we moved the tip toward the top edge, and plot 
it in figures 4(a)–(d). When the tip is positioned in the center 
of the ribbon with y t  =  0 we obtain the dispersion relation 
presented in figure  4(a). We observe two sets of parabolas 
that correspond to K and K′ modes. Each band in those sets is 
nearly fourfold degenerate—see the red arrow in figure 4(a). 
The degeneracy results from the presence of two bands split 
by SOC and two spatial channels for the current flow—on the 
two opposite sides of the tip. We show the probability current 
at E  =  0.9 eV in figure 4(e), where the colors corresponds to 
the magnitude of the current probability. In the plot we observe 
the current flowing around the tip. Note that the degeneracy 

of the current carrying modes at the opposite sides of the tip 
is not perfect due to coupling to two non-equivalent edges 
terminated by Mo and S atoms (see the edge current flow in 
figures 4(e) and (f)). When the tip is moved towards the edge 
of the ribbon, the band structure gradually changes as can be 
seen in figures 4(a)–(d). Due to widening of the propagation 
channel on one side of the tip and narrowing the channel on 
the other side the energies of the modes propagating in the 
wider (narrow) channel decrease (increase). Correspondingly, 
the fourfold degeneracy of the bands is replaced by twofold 
degeneracy due presence of two spin modes—see the red 
arrow in figure 4(b). As a result, subsequent bands cross the 
Fermi energy when the tip is moved towards the edge and 
accordingly the conductance gradually increases by 2e2/h 
steps.

3.2.  Coherent electron flow from a QPC

The coherent electron scattering can be most distinctly dem-
onstrated by a SGM conductance mapping of the electron 
flow from a QPC. Let us focus now on the conductance map-
ping in a MoS2 ribbon with a QPC. We consider a model of a 
QPC in the form of a split-gate as studied in the experiment 
[17] with the potential plotted in figure 1 on the colourmap. 
We consider a wide zigzag ribbon with the width of 200.2 nm 
and present in figure 5(a) the quantized conductance versus 
the QPC potential for E  =  0.9 eV. For the most positive values 
of the gate potential in figure 5(a) we see that the conductance 
reaches the value of 4e2/h. We have checked that this plateau 
is very stable in Vg and results from the edge modes that are 
pinched off only if the gates create potential barrier high 
enough to lift up the edge mode band above the Fermi energy.

3.2.1.  Branching versus SOC strength.  Let us now focus on 
two Vg values for which we denote the conductance by stars in 
figure 5(a). In the bottom panels we plot corresponding SGM 
conductance maps versus the position of the scanning probe. 
We observe that in the both cases the current flows in the form 

Figure 5.  (a) The conductance versus QPC potential. The SGM 
conductance map on the first (b) and (c) the second step, as 
indicated by a blue and a red star in panel (a), respectively. The 
results obtained within the tight-binding model for E  =  0.9 eV.

Figure 6.  The band structure of the bulk MoS2 monolayer for 
ky   =  0 obtained in the continuum model with two possible values 
of the wavevector for the modes with positive group velocity at 
E  =  0.92 eV denoted with k1 and k2. The inset shows schematically 
the spin- and valley-split bands in the conduction band of the 
monolayer.
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of a single branch. This in the striking contrast with the mea-
surements of 2DEG in semiconductor heterostructures [50] 
where in absence of magnetic field, the number of branches N 
reflects the conductance value quantized in N × 2e2/h. This 
is the hallmark of transmission through the QPC constriction 
of modes with increased quantization number and by that 
increased number of maxima in the cross-section of the prob-
ability current in the transverse direction.

It is important to realize here that in a bulk TMDC mono
layer the conduction band minimum consists of two spin-
opposite modes localized at two sets of nonequivalent K and 
K′ points in the Brillouin zone. At each K and K′ points there 
are two bands that have minima separated by the energy of 2∆ 
stemming from the intrinsic SOC—see the inset to figure 6. As 
a result, in a nanoribbon the resulting dispersion relation con-
sist of two sets of nearly-parabolic bands for K and K′ polar-
ized modes where in each set there are bands corresponding 
to spin-up and spin-down modes separated by energy of 
2∆. The commonly assumed value of the spin–orbit gap of 
a freestanding MoS2 sheet is 2∆ = 3 meV as obtained from 
DFT calculations [43]. However, recent experiments suggest 
that in fact ∆ can be different, and sample dependent: in the 
experimental measurements of Shubnikov–de Haas oscilla-
tions in MoS2 the gap value was found to be 15 meV [51]. 
Also, for MoSe2 the experimentally probed spin–orbit split-
ting turned out to be larger than predicted theoretically [52]. 
Those measurements suggest that gating and the presence of 
substrate might affect the magnitude of spin–orbit splitting in 
the conduction band. In the QPC constriction the transverse 
mode quantization energy of order of meV is comparable to 
2∆ = 3 meV. In the following we inspect how the strength of 
SOC affects the SGM conductance mapping by varying the 
value of ∆.

To investigate the physics of the observed branched elec-
tron flow in a more detail let us approximate the monolayer 
band structure close to the conduction band edge at the K 
points by the continuum Hamiltonian [43],

Hcontinuum =




�2k2

2m+↑ +∆ Γ 0 0

Γ �2k2

2m−↑ −∆ 0 0

0 0 �2k2

2m+↓ −∆ Γ

0 0 Γ �2k2

2m−↓ +∆




− µ1.

� (15)
We take the effective masses: m−↑(m+↓) = 0.44 m (where m 
is the free electron mass) that corresponds to K′ (K) spin-up 
(spin-down) bands and m−↓(m+↑) = 0.49 m that corresponds 
to K′ (K) spin-down (spin-up) bands. We neglect trigonal 
warping [53] and set the chemical potential µ = −0.8561 
eV to match the band structure obtained in the tight-binding 
model. 2∆ is the band splitting due to the intrinsic SOC and 
Γ is the valley mixing parameter. The main advantage of 
this model is the ability to explicitly control the strength of 
internal the SO coupling and the valley mixing. The resulting 
band structure for ∆ = 1.5 meV is presented in figure 6.

We use the continuum model to describe the same system 
as previously treated in the tight-binding approach, i.e. we 
perform transport calculations describing a nanoribbon 
with the QPC and SGM potentials using the Hamiltonian 

H = Hcontinuum + V1, where 1 is an identity matrix. We dis-
cretize the Hamiltonian H on a square mesh with the lattice 
constant ∆x = ∆y = 1 nm and apply a semi-open boundary 
condition analogously as in the tight-binding model case.

The obtained conductance traces versus the QPC potential 
are plotted in figure 7(a) for three values of the SOC strength 
∆. For ∆ = 1.5 meV we find that the conductance curve 
depicted in panel (a) reproduces the trace obtained in tight-
binging model (figure 5(a)) differing only by the offset 4e2/h 
as the edge modes are not captured in the continuum approx
imation. Accordingly, when the QPC is set to the second step, 
there is a single branch in the conductance map of figure 7(b) 
similar to the one presented in figure 5(c).

In figure 7(a) with the black and blue curve we plot the con-
ductance for ∆ = 3 meV and ∆ = 5 meV. We observe that for 
∆ = 3 meV when Vg decreases the conductance raises from 
2e2/h already to 6e2/h which reflects the fact that the QPC trans-
mits three spin-degenerate modes. When we further increase ∆ 
to 5 meV the overall shape of the conductance trace become 
again similar to the one obtained for ∆ = 1.5 meV. However, 
now mapping the current flow on the second step we observe 
that the current divides in two branches (figure 7(c)). Comparing 
the results for ∆ = 1.5 meV and ∆ = 5 meV it becomes clear 
that in the former case the first plateau corresponds to the trans-
mission of two ground states of the transverse quantization with 
the K′ ↑, K ↓ polarization and the value of 4e2/h is obtained as 
the QPC transmits four spin- and valley-opposite modes (K ↑, 
K′ ↓, K ↓, K′ ↑) also in the ground state of the transverse excita-
tion. For a strong spin splitting the spin–orbit split bands (K′ ↓, 

Figure 7.  (a) Conductance versus the QPC potential for three 
values of the internal SOC strength ∆. (b) and (c) Present the 
SGM mapping on the second step. The results are obtained in the 
continuum model approximating the tight-binding description 
near the conduction band minimum—see text for details—for 
E  =  0.9 eV.
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K ↑) are shifted to higher energies and now the conductance of 
4e2/h on the second step corresponds rather to the transmission 
of a ground state and an excited state of transverse quantization 
of two spin- and valley-opposite modes (K′ ↑, K ↓). Therefore, 
the SGM mapping of the branched electron flow provides a tool 
to distinguish the nature of the conductance quantization by the 
QPC.

3.2.2.  Oscillation period in the presence of spin- and valley-
split bands.  An important feature of the conductance maps 
presented in figure 5 are the radial fringes-conductance oscil-
lations obtained when the tip moves outwards from the QPC 
narrowing. For a single band semiconductor they are separated 
by a half of Fermi wavelength and result from the interference 
of the wave function of the electron exiting the constriction 
and the wave reflected back to it [20].

To inspect the period of oscillations we consider now a 
modified version of the system described in the continuum 
model, i.e. we consider a wide (500 nm) ribbon for which 

we set to zero the potential created by the QPC gates for 
x  >  50 nm. This way we exclude all possible sources of back 
scattering for waves exiting the QPC and make sure that the 
QPC does not affect the local chemical potential outside the 
region close to the QPC gates. We consider the Fermi energy 
E  =  0.92 eV and ∆ = 1.5 meV.

In figure 6 we plot the band structure of a bulk MoS2 flake 
near the conduction band minimum obtained in the continuum 
model. At the Fermi energy of 0.92 eV there are two possible 
values of the electron wavevector denoted with k1 and k2 that 
correspond to spin- and valley opposite modes. When the QPC is 
tuned to the first conductance plateau it transmits the band with 
minimal energy at kx  =  0, i.e. the one that gives the wavevector 
k1 at energy 0.92 eV. Accordingly, when we inspect the con-
ductance oscillations presented in figure 8(a) we find that they 
have a period corresponding to l1 = π/k1. On the other hand, 
if we monitor the oscillations at the second conductance step 
plotted in figure 8(b), we observe that there is no single oscil-
lation period. In figure 8(c) we plot conductance oscillations 

Figure 8.  (a) Conductance oscillations with the period of 3.494 nm corresponding to the mode with wavevector k1 obtained at the first QPC 
conductance step. (b) Conductance oscillations at the second QPC conductance step. (c) The blue (black) curve depict the conductance 
from K ↓, K′ ↑ modes (K ↑, K′ ↓). The two curves oscillate with period π/k1 and π/k2. The sum of this oscillations gives the trace 
presented in the panel (b). The results are obtained for E  =  0.92 eV.
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at the second step divided into components corresponding to 
the ground state in the band structure (with the wavevector k1 
at the energy 0.92 eV) (blue curve) and to the first excited state 
(with the wavevector k2 at the energy 0.92 eV) (black curve). 
They have two different oscillation periods and their composi-
tion gives the slightly beating curve of figure 8(b). This is the 
hallmark of valley and spin coupling specific to TMDCs.

3.2.3.  Beating pattern due to valley mixing.  It is important to 
note here that despite the electrons propagate in a composition 
of the two valley states there is no inter-valley scattering—the 
electrons are injected and exit the system in a well defined val-
ley state. Correspondingly, each valley state exiting the QPC 
is interfering with its counterpart reflected from the tip. It is 
known that short range scatterers as vacancies in the atomic lat-
tice [54–56] might lead to the inter-valley scattering provided 
the Fermi energy is high enough to allow for spin-preserving 
valley flips [49] and hence to mixing of the valley states propa-
gating through the ribbon. Alternatively, the valley scattering 
with spin-flips can be caused by magnetic impurities [57].

Let us now investigate the effect of the valley mixing on the 
conductance oscillations. We first analyze the results obtained 
in the continuum model. In figure 9(a) we show the conductance 
calculated in the continuum model with Γ = 0 and Γ = 1.5 
meV with black and red curves respectively. We observe that 
the valley mixing induced by the nonzero Γ parameter results 
in a strong beating pattern in the conductance.

Finally, we go back to the system described in the tight 
binding model. To test that we introduce 300 vacancies in the 
region span by x = [−25, 50] nm and y = [−50, 50] nm4. The 

resulting conductance trace is shown in figure 9(b) with the 
red curve. Comparing it to the one obtained in the system with 
no disorder (black) we note a significant beating pattern due to 
valley mixing made possible now by the disorder.

4.  Summary and conclusions

In summary, we have studied the electronic transport in a MoS2 
ribbon in the presence of a scanning probe. We adopted the 
tight-binding and the continuum approaches for the descrip-
tion of TMDC monolayer nanodevices. For a pristine ribbon we 
showed that the edge modes can be mapped by the SGM tech-
nique provided the Fermi energy is tuned to the bottom of their 
bands. When the ribbon is doped into conduction band the con-
ductance probing reveals fan pattern in the conductance maps 
as the tip scans across the sample. This is due to the presence of 
the quantized spin- and valley-coupled modes in the ribbon. In 
wide structures where the conductance is controlled by a split-
gate QPC we demonstrated that the current exits the constriction 
in branches which number is controlled not only by the QPC 
constriction itself as in ordinary 2DEGs but also by the intrinsic 
SOC strength. We explained that the conductance oscillation 
fringes evidence of two possible wavevectors for the charge car-
riers due to the SOC splitting of the bands. Finally, we showed 
that valley mixing induced by the short-range scatterers induces 
significant beating in the conductance oscillations.
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