10P Publishing

Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 32 (2020) 205302 (10pp)

https://doi.org/10.1088/1361-648X/ab6f83

Scanning gate microscopy mapping of edge
current and branched electron flow in a
transition metal dichalcogenide nanoribbon
and quantum point contact

M Prokop!, D Gut>® and M P Nowak?®

! AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer

Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland

2 AGH University of Science and Technology, Faculty of Materials Science and Ceramics,

al. A. Mickiewicza 30, 30-059 Krakow, Poland

3 AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A.

Mickiewicza 30, 30-059 Krakow, Poland

E-mail: mpnowak @agh.edu.pl

Received 7 October 2019, revised 10 January 2020
Accepted for publication 24 January 2020
Published 20 February 2020

Abstract

®

CrossMark

We study scanning gate microscopy conductance mapping of a MoS, zigzag ribbon exploiting
tight-binding and continuum models. We show that, even though the edge modes of a pristine
nanoribbon are robust to backscattering on the potential induced by the tip, the conductance
mapping reveals presence of both the edge modes and the quantized spin- and valley-current
carrying modes. By inspecting the electron flow from a split gate quantum point contact (QPC)
we find that the mapped current flow allows to determine the nature of the quantization in the
QPC as spin—orbit coupling strength affects the number of branches in which the current exits
the constriction. The radial conductance oscillation fringes found in the conductance mapping
reveal the presence of two possible wavevectors for the charge carriers that correspond to spin
and valley opposite modes. Finally, we show that disorder induced valley mixing leads to a

beating pattern in the radial fringes.

Keywords: transition metal dichalcogenides, quantum transport, scanning gate microscopy,

quantum point contact

(Some figures may appear in colour only in the online journal)

1. Introduction

Transition metal dichalcogenides (TMDCs) are materials
composed of a transition metal from the group VI (M: Mo,
W, etc) and a chalcogen (X: S, Se, Te) with the formula
MX,. Being the atomic-thick semiconductor, TMDC mono-
layers gained recently a lot of interest as a promising mat-
erial for electronic and optoelectronic application [1] where
they allow for the realization of e.g. FETs [2] and ultrasen-
sitive photodetectors [3]. Similarly to graphene, the con-
duction and valence band extrema in TMDCs align in two
non-equivalent K and K’ points in the Brillouin zone. This
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effectively gives the charge carriers an, additional to spin,
degree of freedom—valley [4] which can be exploited for
information processing, controlled by valley mixing [5, 6].
In addition, the absence of inversion symmetry in the mono-
layers results in the strong spin—orbit coupling (SOC) which
breaks the spin degeneracy of the valence and conduction
band near to the energy gap [7, 8] making TMDCs prom-
ising candidates for spintronics applications [9, 10]. A par-
ticularly important property of TMDCs nanostructures is the
formation of edge states [11], which can exhibit magnetic
properties when proximitized by a ferromagnet [12] or host
Majorana bound states in proximity of a superconductor
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[13]. Recently, significant progress has been made in theor-
etical understanding of electronic transport properties of
TMDCs, both in theory [14, 15] and in the experiment—
thanks to the realization of locally gated nanostructures [16]
and split-gate quantum point contact (QPC) devices [17, 18].

A very powerful technique, well established for explo-
ration of quantum transport properties in two-dimensional
electron gases, is the scanning gate microscopy (SGM) con-
ductance mapping. In this approach a charged atomic force
microscope tip scans over the sample inducing a repulsive
potential in two-dimensional electron gas (2DEG) and thus
scatters the propagating electrons. This technique has been
applied to a variety of nanodevices [19], mainly realized in
semiconducting heterostructures where it allowed for map-
ping of the electron flow. The most prominent was demon-
stration of branched electron flow from a QPC [20, 21] which
can be affected by mode mixing induced by Rashba SOC
[22]. Most importantly, by exploiting this type of measure-
ment the coherent nature of the electronic transport can be
visualized—the electron self-interference [23, 24] results in
an appearance of radial conductance fringe patterns [20, 21].

So far, SGM of monolayers was studied mainly for
graphene nanoribbons [25] and QPCs [26, 27] where it
allowed for demonstration states localized within the con-
striction [28, 29]. In the presence of the magnetic field
this technique allowed for visualization of quantum Hall
effect [30, 31], creation of magnetic focused electron
beams [31-33] and snake states [34]. Very recently, SGM
of MoS; started gathering attention with the first reports of
visualization of electron flow and formation of quantum
dots in micrometer-sized structures [35]. This followed
the previous research that used a local probe for visuali-
zation of edge states in a few-layer MoS, FET [36] using
microwave impedance spectroscopy. The latter technique
was also used to visualize of current flow in a MoS, /WSe,
heterostructure [37].

The aim of this paper is to explain how features typical
to TMDCs as the presence of edge currents, strong SOC and
spin-valley splitting affects SGM mapping on an example of
MoS,. We find that in a pristine ribbon the edge current can be
mapped only when the Fermi energy is tuned close to the edge
band bottom. On the other, hand when the Fermi energy is
tuned to the conduction band, the SGM conductance mapping
reveal fans of conductance due to the presence of quantized
modes in the nanoribbon rather than directly depict the cur-
rent distribution [38]. By mapping the electron flow from a
QPC constriction we find that unlike as in a 2DEG in het-
erostructure, the number of branches is not solely dependent
on the quantized conductance value but it is rather sensitive
to the intrinsic SOC strength. Finally, we investigate valley-
mixing effect as probed by SGM mapping of the conductance
oscillations.

This paper is organized as follows: in section 2 we describe
the model used for calculations. The conductance mapping
results of a pristine ribbon and a ribbon with QPC are pre-
sented in sections 3.1 and 3.2 respectively. We summarize the
work in section 4.
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Figure 1. The considered MoS; ribbon. At y = 100.1 nm and

y = —100.1 nm the ribbon is terminated by zigzag edges formed by
Mo and S atoms respectively. The gray background corresponds to
the tight-binding lattice shown in the circular zoom-in. The blue and
yellow circles correspond to the Mo and S atoms respectively. At
the left and right edges of the sample we introduce open boundary
conditions in the form of semi-infinite leads (pink colours).

The colourmap depicts the QPC potential used in a part of the
calculations.

2. Model

We consider a MoS; monolayer shaped into a nanoribbon as
presented in figure 1. To describe its electronic properties we
adopt the tight-binding model that includes d and p orbitals
of Mo and S atoms respectively [39]. To allow for a large
scale calculations required for the description of SGM we
perform reduction of the basis that casts the contribution of
p-orbitals of the S layers into symmetric and antisymmetric
combinations [40, 41]. The Hilbert base of the adopted model
is spanned by the vector (d3,2_,2,dy2_ 2, dyy, 3, p*yg ,p), where
the A and S indices of p-orbitals correspond to antisymmetric
and symmetric combinations with the respect to the z-axis
ph = l/ﬁ(pf - pi= 1/\/§(pf + p?). The index i refers
to spatial directions: x,y,z and superscripts ¢t and b indicate
the top or bottom sulfur plane.

The Hamiltonian for each spin component of the consid-
ered system reads,

H=3" [halaosclblbio] + D [Bal e + 5,b] b
0,0

(i)ow
>

2% al b, +He., (1)
(i)

ijow%i,0

where i,j iterate over lattice sites, o, w go over atomic orbital
basis and a' and b' are creation operators for Mo and S orbitals
respectively. The first sum corresponds to the onsite energies
with the elements that read,

e+V 0 0
M = 0 e+ V —idys; |, (2)
0 i\ys, e+V
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In the above we include external, position dependent potential V = Vppc + V; and where s, equals 1(—1) for spin up (down)
component.

The second and third sums in Hamiltonian (1) correspond to the hopping elements between intra- and inter-atomic orbitals
respectively. The mapping of i, j coordinates into the hopping elements is presented in the inset to figure 1. The lattice spacing
is 0.319 nm. The hopping matrices for the intra- and inter-lattice hoppings are,

1 3Vppre + Vipo ‘E(mer — Vipo) 0

t)l( X = ZL \/§(Vpp7r - VPI’U) V,,,,,r + Svppa 0 > @

0 0 4Vipr

Vopo 0 0
K= 0 Ve 0|, ®)
0 0 Vopr

1 3Vpp7r + Vppo _\/g(vppﬂ - Vppa) 0

tg(x = Z _\/g(vppw - Vppa) Vppﬂ + 3Vpp0 0 d (6)
0 0 4V
| 3Vaas + Vaio %(_Vddé + Viado) —3(Vaas — Vado)

™ = I %(_Vddé + Vado) 3 (Vaas + 12Vaar + 3Vaao) ?(Vdﬁ — 4Vur +3Vias) | )

i
—3 (Vaas — Vaao) ?(Vddé — 4Vain + 3Vate)  1(3Vaas + 4Vaar + Vaao)

Vs + Vato V3 (Vaas — Vaao) 0

™M = 7 V3(Vaas = Vaas)  Vaas + 3Vaao 0o 1, ®)
0 0 4V 4ar
| 3Vaas + Vaio L3 —Vaas + Vaao) 2(Vaas — Vaaor)
M = 1 ?(_Vddé + Vaao) 5 (Vaas + 12Vaar + 3Vaao) —§(Vdd§ — 4Vair + 3Vaas) | » )
2 (Vs — Vaaor) *?(Vddzi = &Vaar +3Vaae)  $(3Vaas + 4Vair + WVaao)
\@ _9Vpdﬂ' + \/§Vpda' 3\/§Vpdﬂ' — Vpdo 12V[7d71’ + \/§Vpd0
n = N 5V3Vpar +3Vode  Wpir = V3Vpio  —2V3Vpar +3Vpuo | (10)
— Vpdm — 3\/§Vpda' 5\/§Vpdﬂ' + 3Vpd¢7 6Vpd7r - 3\/§Vpda'
\/i 0 _6\6Vpdﬂ' + 2Vpd0’ 12Vpd7r + \@Vpdcr
tg/lx = 7 0 _6Vpd7r - 4\/§Vpdo' 4\5Vpd7r - 6Vpdcr s (1 D
T\ 14V 4, 0 0
\/5 9Vpd7r - \/gvpda 3\/§Vpd7r - Vpdo 12Vpd7r + \vado
tg/IX = ﬁ _5\/§Vpd‘n’ - 3Vde 9Vpd7r - \/gvpdo _2\/§Vpd7r + 3Vpd0 . (12)

— Vpdw — 3\/§Vpda' _5\/§Vpd7r - 3Vpd0 _6Vpd7r + 3\/§Vpd0'
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Figure 2. Dispersion relation of a MoS; zigzag nanoribbon

with denoted bands corresponding to the edge modes. The inset
shows zoom-in on the bands of Q polarized modes and four bands
corresponding to the edge modes.

In (2) and (3) A\y and Ay correspond to intrinsic SOC
parameters which we choose after [42], with the modification
of A\yy = —0.086 eV and \g = 0.013 eV which assures the 3
meV spin—orbit splitting in the conduction band minimum of
and the crossing of the conduction bands as found in [43].
We adopt the following Slater—Koster parameters given in
eV units: Vjgo = 3.689, V,ur = —1.241, Vg = —0.895,
Vaar = 0.252, Vygs = 0.228, Vyppe = 1.225, Ve = —0.467,
eg = —1.094, ¢, = —1.512, ¢, = —3.560, ¢, = —6.886 [40].

In our work we consider an external potential induced in
the monolayer that defines the QPC constriction modeled as

a split-gate [44]:
V w W —
Vare (x,y) = =% |arctan Wrx + arctan a
d d
—8(S+yW+x) —g(S+y,W—1x)

F
—8(S8 =y, W+x)—g(S—y,W—x),
(13)

with g(u,v) = 5= arctan(%) and R = Vu? +12 + d?, where
W and S control the span of the potential in the x and y direc-
tions respectively and where d is the parameter that controls its
smoothness. We take W =20nm, S = 20nm and d = 15nm.
The resulting potential for V, = 0.1 eV is plotted in figure 1
on the colourmap.

For the SGM conductance mapping we model potential
induced by the tip following [45] that well approximates the
SGM potential generated in atomic-thick materials [46],

Vtip
1+ Of—)fz)z;r#))z

Vilx,y) = (14)

with Vi, = 0.1 eV and the effective width of the tip potential
~ =5 nm for a pristine ribbon and v = 1 nm for the system
with a QPC.

E [eV]
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Figure 3. Conductance map versus the tip position in the
y-direction (for x, = 0) and the Fermi energy for a zigzag
nanoribbon for edge (a) and (b) bulk dominated transport.

We consider linear response regime at zero temperature
where the conductance is obtained from Landauer formula.
The scattering matrix is calculated using wave-function
matching method implemented in Kwant package [47]. The
conductance maps and plots were obtained using Adaptive
package [48].

3. Results

3.1 Pristine zigzag wire

In the considered system, the lattice in the y direction is ter-
minated by non-equivalent atoms. At the bottom edge of the
ribbon is terminated by S atoms, while on the top it is termi-
nated by Mo atoms. Those terminations constitute two zigzag
edges of the ribbon that have different electronic structure. In
figure 2 we present the band structure of a 24 nm width zigzag
nanoribbon. With the arrows we denote three spin-split bands
that correspond to the modes located at the Mo and S edges
of the ribbon. In the top part of the figure we observe sets of
bands that correspond to the current polarized in K, K’ and
Q valleys [49]. Note that changing of the width of the ribbon
does not modify the structure of the edge bands until critical
width of 2nm is reached and the edge modes start to mix.

Let us first focus on the Fermi energy range where the
transport is dominated by the edge modes. In figure 3(a) we
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Figure 4. (a)—(d) Dispersion relations close to the conduction band minimum for four positions of the tip with y, = 0 (a), y; = 3nm (b),
vy, = 6nm (c), y, = 9nm (d). (e) Density current probability obtained for the tip positioned at the center of the ribbon (marked with the
white cross) for £ = 0.9eV. The blue and yellow colors correspond to the current density localized at the Mo and S edges respectively. (f)
Density current probability obtained for the tip positioned at y, = —6nm (marked with the white cross) for the Fermi energy £ = —0.3eV
where the transport occurs solely through the edges. The current flows from left to right and its density takes zero values in the bulk of the
ribbon (black) and it is maximal on the edges (yellow). In the panels (e) and (f) the black arrows denote the current direction.

show conductance of the ribbon versus the tip position along
the y axis (y;) and the Fermi energy in range [—0.5,0.8] eV.
The considered ribbon is invariant in the x direction and we
set x; to zero.

In the absence of the tip the conductance is proportional
to the number of current carrying modes. The lack of the
energy gap in the metallic band structure of a pristine zigzag
ribbon leads to nonzero conductance in the whole map.
For the energy range considered in figure 3(a) this corre-
sponds to the current being transmitted at the edges of the
ribbon—see figure 4(f). We distinguish two main regimes
in the map (depicted with violet and orange colour) where
the conductance takes values 2¢*/h and 4e*/h due to Kramers
degeneracy. The violet colour in the map corresponds to the
case when a single (Mo or S) edge is populated, while the
orange colour denotes the transport through both the edges
[15]. A prominent feature of the map is the stability of the

conductance when the tip approaches the edges despite the
fact that the current is transmitted through them. Only when
the Fermi energy is tuned near the bottom of the edge bands
we observe that the conductance drops by 2¢%/h as it happens
for E= —0.3eV and E = 0.55eV. For such values of E the
small potential perturbation induced by the tip locally lifts up
the energy of the edge modes. As a result their band bottom
positions above the Fermi energy which in turn blocks the
transport through the S edge for E = —0.3eV and Mo termi-
nated edge for E = 0.55eV. As a result the incoming electron
is reflected completely from the depletion region generated
by the tip which correspondingly lowers the conductance by
the conductance quanta.

In the map we also observe a sharp peak of the increased
conductance due to the bend Mo edge band at energies close
to 0.6eV (see the dispersion relation in figure 2) which results
in propagation of two edge modes on this side of the ribbon.



J. Phys.: Condens. Matter 32 (2020) 205302

M Prokop et al

12/(@)

10

G [e?/h]

[‘)‘.30 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.21
Vg [ev]

5.05 7.40
5.00
4.95

[ ‘! ‘
' l | ' ' " | I i 0
| |

4.85

ye [nm]
G [e?/h]
ye [nm]

4.80

4.75

60 80
X¢ [nm]

60 80
X¢ [nm]

Figure 5. (a) The conductance versus QPC potential. The SGM
conductance map on the first (b) and (c) the second step, as
indicated by a blue and a red star in panel (a), respectively. The
results obtained within the tight-binding model for £ = 0.9eV.

In figure 3(b) we present the conductance map versus the
Fermi energy and the tip position along the y axis for the ener-
gies tuned to the conduction band. Here the current is carried
mainly by the modes that have either maximum in the center
of the ribbon (states with even parity) or maxima symmetri-
cally around the center (odd states). Nevertheless, we see that
actually the conductance mapping does not probe the prob-
ability current distribution, but rather we observe a set of fans
of quantized conductance which increases when the tip is
moved towards the edges of the ribbon—see e.g. the conduct-
ance at £ = (0.88eV.

The above observation can be explained by an analysis
of the energy bands of the ribbon section in which the tip is
located. Here, the energy values are dominated by the energy
separation between states of transverse quantization in the
ribbon which bands we find in the top part of figure 2. Taking
a cross-section of the system at x = 0 and assuming its invari-
ance along the x direction we calculate the band structure for
different y,, as we moved the tip toward the top edge, and plot
it in figures 4(a)—(d). When the tip is positioned in the center
of the ribbon with y, =0 we obtain the dispersion relation
presented in figure 4(a). We observe two sets of parabolas
that correspond to K and K’ modes. Each band in those sets is
nearly fourfold degenerate—see the red arrow in figure 4(a).
The degeneracy results from the presence of two bands split
by SOC and two spatial channels for the current flow—on the
two opposite sides of the tip. We show the probability current
at E=0.9eV in figure 4(e), where the colors corresponds to
the magnitude of the current probability. In the plot we observe
the current flowing around the tip. Note that the degeneracy

0.94

0.92

0.86

-1.00 -0.75 -0.50 -0.25 0.00
k [1/nm]

0.25

0.50

Figure 6. The band structure of the bulk MoS, monolayer for

ky = 0 obtained in the continuum model with two possible values
of the wavevector for the modes with positive group velocity at

E =0.92¢eV denoted with k; and k,. The inset shows schematically
the spin- and valley-split bands in the conduction band of the
monolayer.

of the current carrying modes at the opposite sides of the tip
is not perfect due to coupling to two non-equivalent edges
terminated by Mo and S atoms (see the edge current flow in
figures 4(e) and (f)). When the tip is moved towards the edge
of the ribbon, the band structure gradually changes as can be
seen in figures 4(a)—(d). Due to widening of the propagation
channel on one side of the tip and narrowing the channel on
the other side the energies of the modes propagating in the
wider (narrow) channel decrease (increase). Correspondingly,
the fourfold degeneracy of the bands is replaced by twofold
degeneracy due presence of two spin modes—see the red
arrow in figure 4(b). As a result, subsequent bands cross the
Fermi energy when the tip is moved towards the edge and
accordingly the conductance gradually increases by 2e%/h
steps.

3.2. Coherent electron flow from a QPC

The coherent electron scattering can be most distinctly dem-
onstrated by a SGM conductance mapping of the electron
flow from a QPC. Let us focus now on the conductance map-
ping in a MoS, ribbon with a QPC. We consider a model of a
QPC in the form of a split-gate as studied in the experiment
[17] with the potential plotted in figure 1 on the colourmap.
We consider a wide zigzag ribbon with the width of 200.2nm
and present in figure 5(a) the quantized conductance versus
the QPC potential for £ = 0.9 eV. For the most positive values
of the gate potential in figure 5(a) we see that the conductance
reaches the value of 4e?/h. We have checked that this plateau
is very stable in V, and results from the edge modes that are
pinched off only if the gates create potential barrier high
enough to lift up the edge mode band above the Fermi energy.

3.2.1. Branching versus SOC strength. Let us now focus on
two V, values for which we denote the conductance by stars in
figure 5(a). In the bottom panels we plot corresponding SGM
conductance maps versus the position of the scanning probe.
We observe that in the both cases the current flows in the form
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of a single branch. This in the striking contrast with the mea-
surements of 2DEG in semiconductor heterostructures [50]
where in absence of magnetic field, the number of branches N
reflects the conductance value quantized in N x 2¢%/h. This
is the hallmark of transmission through the QPC constriction
of modes with increased quantization number and by that
increased number of maxima in the cross-section of the prob-
ability current in the transverse direction.

It is important to realize here that in a bulk TMDC mono-
layer the conduction band minimum consists of two spin-
opposite modes localized at two sets of nonequivalent K and
K’ points in the Brillouin zone. At each K and K’ points there
are two bands that have minima separated by the energy of 2A
stemming from the intrinsic SOC—see the inset to figure 6. As
aresult, in a nanoribbon the resulting dispersion relation con-
sist of two sets of nearly-parabolic bands for K and K’ polar-
ized modes where in each set there are bands corresponding
to spin-up and spin-down modes separated by energy of
2A. The commonly assumed value of the spin—orbit gap of
a freestanding MoS, sheet is 2A = 3 meV as obtained from
DFT calculations [43]. However, recent experiments suggest
that in fact A can be different, and sample dependent: in the
experimental measurements of Shubnikov—de Haas oscilla-
tions in MoS, the gap value was found to be 15 meV [51].
Also, for MoSe, the experimentally probed spin—orbit split-
ting turned out to be larger than predicted theoretically [52].
Those measurements suggest that gating and the presence of
substrate might affect the magnitude of spin—orbit splitting in
the conduction band. In the QPC constriction the transverse
mode quantization energy of order of meV is comparable to
2A = 3 meV. In the following we inspect how the strength of
SOC affects the SGM conductance mapping by varying the
value of A.

To investigate the physics of the observed branched elec-
tron flow in a more detail let us approximate the monolayer
band structure close to the conduction band edge at the K
points by the continuum Hamiltonian [43],

L SN | 0 0
212
Heontinuum = 2)?7,1—(T -a 2 20 0 — ul
0 0 e AT
0 0 r P+ A
15)

We take the effective masses: m~T(m*+) = 0.44 m (where m
is the free electron mass) that corresponds to K’ (K) spin-up
(spin-down) bands and m~+(m*T) = 0.49 m that corresponds
to K’ (K) spin-down (spin-up) bands. We neglect trigonal
warping [53] and set the chemical potential p = —0.8561
eV to match the band structure obtained in the tight-binding
model. 2A is the band splitting due to the intrinsic SOC and
I" is the valley mixing parameter. The main advantage of
this model is the ability to explicitly control the strength of
internal the SO coupling and the valley mixing. The resulting
band structure for A = 1.5 meV is presented in figure 6.

We use the continuum model to describe the same system
as previously treated in the tight-binding approach, i.e. we
perform transport calculations describing a nanoribbon
with the QPC and SGM potentials using the Hamiltonian

©
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Figure 7. (a) Conductance versus the QPC potential for three
values of the internal SOC strength A. (b) and (c) Present the
SGM mapping on the second step. The results are obtained in the
continuum model approximating the tight-binding description
near the conduction band minimum—see text for details—for
E=09eV.

H = Honginuum + V1, where 1 is an identity matrix. We dis-
cretize the Hamiltonian H on a square mesh with the lattice
constant Ax = Ay = 1 nm and apply a semi-open boundary
condition analogously as in the tight-binding model case.

The obtained conductance traces versus the QPC potential
are plotted in figure 7(a) for three values of the SOC strength
A. For A =1.5 meV we find that the conductance curve
depicted in panel (a) reproduces the trace obtained in tight-
binging model (figure 5(a)) differing only by the offset 4¢*/h
as the edge modes are not captured in the continuum approx-
imation. Accordingly, when the QPC is set to the second step,
there is a single branch in the conductance map of figure 7(b)
similar to the one presented in figure 5(c).

In figure 7(a) with the black and blue curve we plot the con-
ductance for A = 3 meV and A = 5 meV. We observe that for
A =3 meV when V, decreases the conductance raises from
2¢%/h already to 6e*/h which reflects the fact that the QPC trans-
mits three spin-degenerate modes. When we further increase A
to 5 meV the overall shape of the conductance trace become
again similar to the one obtained for A = 1.5 meV. However,
now mapping the current flow on the second step we observe
that the current divides in two branches (figure 7(c)). Comparing
the results for A = 1.5 meV and A = 5meV it becomes clear
that in the former case the first plateau corresponds to the trans-
mission of two ground states of the transverse quantization with
the K’ 1, K | polarization and the value of 4¢*/h is obtained as
the QPC transmits four spin- and valley-opposite modes (K T,
K’ |, K |, K’ 1) also in the ground state of the transverse excita-
tion. For a strong spin splitting the spin—orbit split bands (K’ |,
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Figure 8. (a) Conductance oscillations with the period of 3.494 nm corresponding to the mode with wavevector k; obtained at the first QPC
conductance step. (b) Conductance oscillations at the second QPC conductance step. (c) The blue (black) curve depict the conductance
from K |, K’ 1 modes (K 1, K’ |). The two curves oscillate with period 7 /k; and 7/k,. The sum of this oscillations gives the trace

presented in the panel (b). The results are obtained for £ = 0.92eV.

K 1) are shifted to higher energies and now the conductance of
4¢*h on the second step corresponds rather to the transmission
of a ground state and an excited state of transverse quantization
of two spin- and valley-opposite modes (K’ 1, K J.). Therefore,
the SGM mapping of the branched electron flow provides a tool
to distinguish the nature of the conductance quantization by the
QPC.

3.2.2. Oscillation period in the presence of spin- and valley-
split bands. An important feature of the conductance maps
presented in figure 5 are the radial fringes-conductance oscil-
lations obtained when the tip moves outwards from the QPC
narrowing. For a single band semiconductor they are separated
by a half of Fermi wavelength and result from the interference
of the wave function of the electron exiting the constriction
and the wave reflected back to it [20].

To inspect the period of oscillations we consider now a
modified version of the system described in the continuum
model, i.e. we consider a wide (500nm) ribbon for which

we set to zero the potential created by the QPC gates for
x > 50nm. This way we exclude all possible sources of back
scattering for waves exiting the QPC and make sure that the
QPC does not affect the local chemical potential outside the
region close to the QPC gates. We consider the Fermi energy
E=092eVand A = 1.5 meV.

In figure 6 we plot the band structure of a bulk MoS, flake
near the conduction band minimum obtained in the continuum
model. At the Fermi energy of 0.92eV there are two possible
values of the electron wavevector denoted with k; and k, that
correspond to spin- and valley opposite modes. When the QPC is
tuned to the first conductance plateau it transmits the band with
minimal energy at k, = 0, i.e. the one that gives the wavevector
k; at energy 0.92eV. Accordingly, when we inspect the con-
ductance oscillations presented in figure 8(a) we find that they
have a period corresponding to /; = 7/k;. On the other hand,
if we monitor the oscillations at the second conductance step
plotted in figure 8(b), we observe that there is no single oscil-
lation period. In figure 8(c) we plot conductance oscillations
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Figure 9. (a) Conductance oscillations as a function of the
longitudinal tip position obtained in the continuum model on the
second QPC conductance step without (black) and with (red)

valley mixing. (b) Conductance oscillations as a function of the
longitudinal tip position obtained in the tight-binding model on the
second QPC conductance step without (black) and with (red) atomic
impurities. The results are obtained for £ = 0.92eV.

at the second step divided into components corresponding to
the ground state in the band structure (with the wavevector k;
at the energy 0.92eV) (blue curve) and to the first excited state
(with the wavevector k, at the energy 0.92eV) (black curve).
They have two different oscillation periods and their composi-
tion gives the slightly beating curve of figure 8(b). This is the
hallmark of valley and spin coupling specific to TMDCs.

3.2.3. Beating pattern due to valley mixing. It is important to
note here that despite the electrons propagate in a composition
of the two valley states there is no inter-valley scattering—the
electrons are injected and exit the system in a well defined val-
ley state. Correspondingly, each valley state exiting the QPC
is interfering with its counterpart reflected from the tip. It is
known that short range scatterers as vacancies in the atomic lat-
tice [54-56] might lead to the inter-valley scattering provided
the Fermi energy is high enough to allow for spin-preserving
valley flips [49] and hence to mixing of the valley states propa-
gating through the ribbon. Alternatively, the valley scattering
with spin-flips can be caused by magnetic impurities [57].

Let us now investigate the effect of the valley mixing on the
conductance oscillations. We first analyze the results obtained
in the continuum model. In figure 9(a) we show the conductance
calculated in the continuum model with I' =0 and ' = 1.5
meV with black and red curves respectively. We observe that
the valley mixing induced by the nonzero I' parameter results
in a strong beating pattern in the conductance.

Finally, we go back to the system described in the tight
binding model. To test that we introduce 300 vacancies in the
region span by x = [~25,50] nm and y = [—50, 50] nm*. The

4The edge vacancies can significantly alter the transport properties of a
ribbon when the Fermi energy is tuned into the bulk gap as found in [15].
There, the authors found that even a single edge vacancy can significantly
alter the edge transport, provided that the sites close to the edges are vacant.
Nevertheless, in our SGM study of the system with QPC, the conductance
mapping is sensitive to the current flow from the QPC constriction—far
from the edges. The disturbance of the edge transport modifies the con-
ductance—when the edge transport is blocked—but that alters the overall
conductance magnitude, not its change induced by the tip which scans the
vicinity of the QPC constriction.

resulting conductance trace is shown in figure 9(b) with the
red curve. Comparing it to the one obtained in the system with
no disorder (black) we note a significant beating pattern due to
valley mixing made possible now by the disorder.

4. Summary and conclusions

In summary, we have studied the electronic transport in a MoS,
ribbon in the presence of a scanning probe. We adopted the
tight-binding and the continuum approaches for the descrip-
tion of TMDC monolayer nanodevices. For a pristine ribbon we
showed that the edge modes can be mapped by the SGM tech-
nique provided the Fermi energy is tuned to the bottom of their
bands. When the ribbon is doped into conduction band the con-
ductance probing reveals fan pattern in the conductance maps
as the tip scans across the sample. This is due to the presence of
the quantized spin- and valley-coupled modes in the ribbon. In
wide structures where the conductance is controlled by a split-
gate QPC we demonstrated that the current exits the constriction
in branches which number is controlled not only by the QPC
constriction itself as in ordinary 2DEGs but also by the intrinsic
SOC strength. We explained that the conductance oscillation
fringes evidence of two possible wavevectors for the charge car-
riers due to the SOC splitting of the bands. Finally, we showed
that valley mixing induced by the short-range scatterers induces
significant beating in the conductance oscillations.
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