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Abstract

CrossMark

In this work, topological properties of a ferromagnetic Heisenberg model on a breathing
kagome lattice are investigated extensively in the presence of Dzyaloshinskii—Moriya
interaction. While the kagome ferromagnet hosts only a single first order topological phase,
the breathing kagome system exhibits multiple first and second order topological phases
along with their coexistence. Magnon dispersion relation is obtained by using linear spin
wave theory. Flat band and Dirac cones are obtained in the absence of Dzyaloshinskii—Moriya
interaction. A topological phase diagram is presented where several first and second order
phases as well as their overlap are identified. Values of thermal Hall conductivity for all the
first order phases are obtained. Distinct first order phases are characterized by different sets of
Chern numbers in association with the necessary chiral edge states in accordance to the first
order bulk-boundary-correspondence rule. Second order phase is characterized by polarization
along with the emergence of corner states. Violation of the second order bulk-corner-

correspondence rule has been noted in some regions.

Keywords: topological phases, Chern number, breathing kagome lattice, thermal Hall
conductivity, topological edge states, topological corner states, topological phase diagram
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1. Introduction

Topological states of matter have become one of the most
studied topics for several years. A topological insulator (TT)
is characterized by gapped bulk states and gapless boundary
states or edge states. Time reversal symmetry (TRS) breaking
TI's are known as Chern insulator [1], where each energy
band is associated with a definite Chern number [2], while
time reversal invariant TI's are characterized by a nontrivial
Z, invariant [3]. Bulk-boundary-correspondence (BBC) rule
[4, 5] determines the relation between the bulk and boundary
properties of such systems and gives topological protection to
the edge states. Also, there are topological crystalline insula-
tors [6], where mirror Chern number acts as the topological
index.

Recently, the concept of higher order TT’s (HOTT) [7-12]
has been introduced where a d dimensional nth order TI
shows (d — n) dimensional boundary states contrary to the
conventional or first order TI’s when n = 1. For instance,
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a two-dimensional second order TT (SOTI) will show zero-
dimensional corner states but will not show one-dimensional
gapless edge states [13-21]. In those HOTI’s, the conven-
tional BBC rule may not be applicable. Obviously, different
types of topological invariants like polarization [13], Zy Berry
phase [21, 22], nested Wilson loop [8], mirror Chern number
[14] etc have been introduced depending on the symmetry of
the system to characterize the topological property of the bulk.
Origin of lower dimensional edge states can be attributed to
quantization of dipole or quadrupole moment as observed in
two-dimensional phononic and electric quadrupole topolog-
ical insulators [7, 23, 24].

In recent times, besides electronic TI, topological magnon
insulators (TMI) [25] are being studied, where the quasipar-
ticle excitation (magnon) is bosonic in nature. It has been
known that the topological nature of a system is independent
of the statistics of the quasiparticles. Topological magnons
are found before in honeycomb lattice [26, 27], kagome lat-
tice [25, 28], Lieb lattice [29], etc. Those topological phases

© 2020 IOP Publishing Ltd  Printed in the UK


https://orcid.org/0000-0002-4493-525X
mailto:arghyasil36@gmail.com
mailto:asimkumar96@yahoo.com
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/ab6f8b&domain=pdf&date_stamp=2020-02-20
publisher-id
doi
https://doi.org/10.1088/1361-648X/ab6f8b

J. Phys.: Condens. Matter 32 (2020) 205601

A Sil and A K Ghosh

have been experimentally observed in kagome ferromagnets,
Lu,V,05 [30, 31], Cu(1,3-benzenedicarboxylate (bdc)) [32],
and honeycomb ferromagnet, Crlz [33]. Topological magnons
give rise to thermal magnon Hall effect (MHE), in which a
temperature gradient transports a dissipationless heat current
which has been verified experimentally [34]. Generally, in
those spin systems, ferromagnetic (FM) Heisenberg model is
considered where Dzyaloshinskii—-Moriya interaction (DMI)
is incorporated to trigger non-zero berry curvature. Spin
models without DMI have also been shown to possess non-
trivial topology. For example, FM Heisenberg models with
Kitaev and spin-anisotropic interactions (HKSA) are found
to host a number of topological phases [35, 36]. Thus, topo-
logical magnons have promising applications in the field of
dissipationless spin transport, magnon spintronics and magn-
etic data storage.

On the other hand, HOTT’s have been studied so far in fer-
mionic systems in terms of tight-binding models on square
and cubic lattice [7-9, 12], breathing kagome [13, 37], pho-
tonic systems [19, 38], non-Hermitian systems [16], etc. In
addition, Kitaev model on Shastry—Sutherland lattice and
magnetic vortex model on kagome lattice exhibit HOTI phases
[17, 18]. Higher order topological Mott insulating phase has
been demonstrated in a Hubbard model on the kagome lattice,
where the topological state is characterized by Z; spin-Berry
phase [39]. Besides, SOTIs have been experimentally realized
using quantized dipole or quadrupole polarization [23, 24] and
implemented in mechanical systems [23], electrical circuits
[40], microwave systems [41], photonic [42] and phononic
crystals [37]. However, no report on higher order topological
phase in the FM Heisenberg systems is available till date.

In this work, we focus on the realization of second order
topological magnon insulating (SOTMI) phase in a spin
system with and without DMI. Here, FM Heisenberg model
is formulated on the breathing kagome lattice in the presence
of DMI along the nearest neighbor (NN) bonds. The system
reveals the existence of simultaneous first and second order
TMI phases in different parameter regimes when DMI is
non-zero. When DMI is zero, only second order TMI can be
realized as the Chern number (C), the first order topological
invariant, is always zero for all the bands. In other case, polari-
zation is used as the bulk topological index to characterize the
HOTI phase due to the mirror symmetry of the system [13].
So, polarization plays the crucial role to distinguish between
the nontrivial and trivial SOTI phase in the same way C distin-
guishes between the nontrivial and trivial TMI phases in case
of first order. One dimensional gapless edge states are found
for nontrivial TI phase, while gapped edge states along with
zero dimensional corner states are found for nontrivial SOTMI
phase. For certain values of DMI strength, both type of phases
are found to exist simultaneously. Transition between dif-
ferent topological phases are shown in the parameter-space.
In addition, thermal Hall conductivity is calculated for all the
TMI phases.

The article is organized in the following way. In section 2,
breathing kagome lattice is described and the linear spin-wave
Hamiltonian is formulated. We describe the topological phases

Figure 1. A triangular replica of breathing kagome lattice is
shown. Three sites A, B and C are denoted by green, blue and
red spheres, respectively. The notation of the unit cells is also
shown. The Heisenberg interaction strength is J; for the red lines
(upward triangles) and J; for the blue lines (downward triangles).
Considering DMI along z direction, coupling strength of two
sites along the arrow will be J; (J2) + iD; (D;) and opposite

to the arrow will be J, (J2) — iD; (D). The lattice vectors,

n; = (1,0),n; = (1/2,1/3/2) are shown in the side diagram.

for zero DMI strength in the following section 3. Topological
phases for non-zero DMI strength are explained in the subse-
quent section 4. The values of thermal Hall conductivities are
available in section 5. Finally, section 6 contains the discus-
sion along with the summary of the results.

2. Formulation of Heisenberg Hamiltonian with DM
interaction

A FM Heisenberg Hamiltonian is formulated on the breathing
kagome lattice with DMI along NN bonds. Breathing kagome
lattice is composed of three identical triangular sublattices.
As a result, the unit cell comprises of three sites A, B and C
forming a downward triangle (figure 1). The spin operators on
those three sites are denoted by S2,SP and S, respectively.
The coordinates of a unit cell are denoted by n = (ny,n5). So,
the Hamiltonian of this system can be written as

H = Hnn + Hmag + Hpw, (1)

where

Hyn = —Jo > (S3-Sh +Sh-S5 +8S5-S%).
(nn’)
Hpag = —h Y (% 4 S0 4+ 85) .

Hpm = —Do > (S x Sh +Sp x S5, + 85 x S%) - 2.
(n’)

Jo, @« =1(2) is the NN exchange interaction strength
between upward (downward) triangles and D, a = 1(2) is
the DMI strength, pointing towards z (—z) direction, between
upward (downward) triangles. (-) denotes the summations
over NN pairs. Considering the FM case, we fix J, >0
throughout the paper. h = gugH, where H is the strength of
the external magnetic field along z direction, which helps to
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Figure 2. Dispersion relation of breathing kagome system for zero DMI strength with J, = 1 and (a) J; = 0.2, (b) J; = 0.7, (¢) J; = 1.0.
Edge state diagram for finite lattice with 70 unit cells along k, direction with same parameter values as the corresponding bulk band
structures in the upper row. The diagrams (d)—(f) show the evolution of the in-gap edge modes (indicated by red lines) and depicts the way
it affects the existence of corner states of the system. Density of states are shown in the side panel of each edge state diagram.

align the localized spins ferromagnetically along z direction
when £ is assumed greater than zero.

Now, based on the classical ground state in which all the
spins point along the 4z direction, we obtain FM magnon dis-
persion relation by expressing the spin operators, Sy, in terms
of bosonic creation (n') and annihilation operators (1) by
using the standard Holstein—Primakoff (HP) transformation:

SuE =S — ninn, SUT = V28, SIT = V280,

where n = a,b and ¢ for the respective sublattices A, B and
C. S7* = §7° 4 iSI. Now, following linear spin wave theory
(LSWT) and using Fourier transformation of the operators in
the form n, = \/LN >k ke®™ (N is the total number of unit
cells in the lattice), the Hamiltonian in the momentum space
can be written as

H = Ey + Hgy, 2)

where Eg = —h >, S —3(Ji +J2) 3o,y S% is the classical
ground state energy. Hgy can be written as (retaining terms
only up to second order in bosonic operators)

HSW =S Z wkTM(ka, (3)
k

where k = (ky, k), ¥k = (ck, ax, bx) and M(k) is a 3 x 3
matrix which is given by

my mp mp3
MEK)=|mf, mn my]|, 4)
miy My ms3

with the components, m;;, given by

myy = my = mzz =2(Jy +J2) +h/S,
my = —(J; +1iDy) — (Jo +iDy)e 1,
mpi3 = —(J; —iDy) — (J, — iDy)e %,
my = (/i +iD1) = (o +iDy)e ™R (5)

where ki =k -ny =k, and ky =k-my = k,/2 + \/§ky/2.
Magnetic field only appears in each of the diagonal terms of
M(K) with a fixed value, 4/S, which means that topological
properties of this system are totally insensitive to the value
of H. We have assumed a very small positive value of & only
to ensure the FM ground state. As the Hamiltonian Hgy is
number conserving, the magnon dispersion relation can be
obtained by diagonalizing it. The results are valid for any
value of S, while accuracy increases with the magnitude of S.

3. Topological properties with zero DMI

While kagome ferromagnet (J; = J) is topologically trivial
in the absence of DMI, FM breathing kagome (J; # J») with
zero DMI is found nontrivial. In this section, topological
nature of the system will be discussed by studying both bulk
and boundary properties of it in terms of suitable topological
invariants to characterize them. Henceforth, the value of J,
is fixed at unity while exploring the variation of topological
phases with respect to the parameter J;. Three sets of bulk
dispersion relation are shown in figures 2(a)—(c), where
J1 = 0.2 for the region 0.0 < J; < 0.5, J; = 0.7 for the region
0.5 < J; < 1.0,and J; = 1.0, respectively. Note that the upper-
most band is always flat and it touches the lower band at four
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Figure 3. (a) Energy spectrum of breathing kagome lattice with varying J, for L = 15. Upto J; = 0.5, zero dimensional corner states
(indicated by red dots) show its existence and beyond this value, it seems to decay into the bulk. (b) Energy of the same system is plotted
with respect to energy levels for J; = 0.3. Three red dots at same energy, E = 2.6 show the states at the three corners of the finite triangle.
The diagram is truncated to 100 energy levels (instead of 164 for L = 10) for better resolution of the three corner states. (c) Probability
distribution of a particular eigenstate corresponding to a corner state energy for J; = 0.2 and L = 5. It shows that the states are indeed

localized at the corners.

corners of the Brillouin zone spanned by (ki, k2), which are
essentially the equivalent points. At this moment, the system
is an insulator at 1/3 filling as the lower two bands are sepa-
rated. The gap decreases with the increase of J; and vanishes
at J; = 1.0. The gap again opens up for J; > 1.0.

Below the bulk spectrum, we present the band structure
of the corresponding finite strip of the system for every case.
They are shown in figures 2(d)—(f). The finite strip is prepared
by breaking the periodic boundary condition (PBC) along
the k, direction. In the region, 0.0 < J; < 0.5, two gapped
edge modes are found to exist between the lower two gapped
bands, which do not decay into the bulk anymore. These are
the signature of corner states, as proved in the previous studies
[13, 14]. For 0.5 < J; < 1.0, two edge modes are found to
cross each other twice, without decaying into the bulk again.
For J; > 1.0, there are no such edge modes. From this edge
state spectrum, it is confirmed that the system is topologically
trivial in first order since there is no gap between the upper
two bands in the region 0.0 < J; < 1.0. Instead, the system is
found to host a nontrivial second order topological phase in
the above region.

For the characterization of topological phases, bulk topo-
logical invariant has been formulated by following the pro-
cedure developed in the article [13]. In this formulation, a
particular quantity, polarization along the n; axis is defined by

1
m:f// kA,
S 1BZ

where A; = —i(1|0k,|1) is the Berry connection with i = 1,2
and S = 472 being the area of the first Brillouin zone (1BZ)
spanned by k; and k. The set of polarization (py, p;) is iden-
tical to the coordinates of the Wannier center [13]. The dis-
tance of the Wannier center from the origin can be taken as the
bulk topological invariant as it changes its value only if the gap
closes. For simplicity, we take p; as the topological index as it
is protected by the mirror symmetry along the n; axis and it is
also quantized. As we will see, it is non-zero in the topological
phase and zero in trivial phase. It can be calculated analyti-
cally in extreme cases when either J; = 0,J, # 0, (p; = 1/3)
or J,=0,J;1 #0, (p; =0) as for the characterization of

(6)

topological and trivial phases, respectively. For example,
when J; =0,J, # 0 the exact ground state wave function
turns out to be ¢ = (1,e, —ei®)" /v/3. So, the Berry con-
nection, Aj, as well as polarization, p;, becomes equal to the
value 1/3, following the formula (6).

Values of p; have been obtained numerically for every non-
zero value of J;, J, and DMI strength. To evaluate the integral,
equation (6), we discretize the Brillouin zone and redefine p; as
Pin (n being the band index) and A; as Ay, = —1(uk|Ok | Uk )-
The value of p, has been calculated for every band, n. In this
case, as the gapped edge states exist between the lower two
bands, p; should have a quantized value for the lowest band.
Numerical evaluation obtains the value of p; = 1/3 for
0.0 < J; < 1.0, and p; = 0 for J; > 1.0, for the lowest band.
Hence, the non-zero value of topological invariant confirms
the nontrivial second order topological phase of the system for
the region mentioned above.

In order to investigate the existence of corner states in
this system, we consider a triangular replica of the breathing
kagome lattice, as shown in figure 1, whose size is defined
by the number of small triangles, L, along every edge. The
triangular replica preserves the three-fold rotation symmetry,
Cs, of the breathing kagome lattice as well as it has the min-
imum number of corners, which is three in this case. Different
shapes of the finite lattice can be considered for this purpose.
In figure 3(a), we plot the energy spectrum as a function of
Ji for L = 15, which shows that corner states do exist for the
region 0.0 < J; < 0.5.

The numerical evaluation of the topological index p; shows
that it bears the value 1/3 for the entire region 0.0 < J; < 1.0,
which indeed should be the case as the insulating phase exists
up toJ; = 1.0 and the invariant has no scope to change its value
since no phase transition occurs in the intermediate point. On
the other hand, corner states cease to show its existence as
soon as the gapped edge modes are found to cross each other.
And it occurs in this system, when J; becomes greater than 0.5,
which is illustrated in figure 2(e). As a result, no corner states
are found beyond J; = 0.5. But, the system hosts the second
order topological phase in the entire region 0.0 < J; < 1.0,
even though the corner states are topologically protected only
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Figure 4. Dispersion relation of breathing kagome system for non-zero DMI strength with J, = 1.0, D; = 0.1, D, = 1.5 and (a) J/; = 0.2,
(b) J1 = 1.7, (c) J1 = 2.0. Chern numbers of respective bands are also specified. Edge state diagram for finite lattice with 70 unit cells
along k; direction with same parameter values as the corresponding bulk band structures in the upper row. The diagrams (d)—(f) show the
evolution of the gapless and gapped edge modes and depicts the way it affects the existence of corner states of the system. Pair of in-gap
edge modes (denoted by red lines) indicates the existence of second order topological phase, while chiral edge modes (blue lines) signify
the existence of first order topological phase. Density of states are shown in the side panel of each edge state diagram.

up to J; = 0.5. It implies that bulk-corner-correspondence is
satisfied for the region 0.0 < J; < 0.5, and violated for the
region 0.5 < J; < 1.0. However, the system becomes trivial
beyond the limit, J; = 1.0. In figure 3(b), the energy spectrum
is plotted with respect to the energy levels for a particular
value of J;, which clearly shows the existence of three degen-
erate corner states at energy 2.6J, which correspond to the
three different corners of the triangular replica. The number of
corner states may vary with the shape of replica with different
number of corners. The distribution of probability density for
a particular parameter value in this topological phase is shown
in figure 3(c), which clearly exhibits that the corner states are
truly localized at each corner.

4. Topological properties with non-zero DMI

The kagome ferromagnet (J; = J, and D; = D) exhibits an
unique first order TMI phase in the presence of DMI [25].
On the other hand, FM breathing kagome with non-zero DMI
(J1 #J2 and D; # D;) exhibits a rich topological phase
diagram which includes distinct first and second order TMI
phases as well as coexistence of both phases. In this section,
effect of DMI on the topological properties will be discussed.
DMI is turned on within upward and downward triangles with
strenghts D and D5, respectively. For some specific values
of Ji, Dy and D,, coexistence of both first and second order
topological phases is found. Two such cases will be described
extensively, where both edge and corner states are found

simultaneously. Otherwise, distinct first or second order topo-
logical phases appear in different regions for the nontrivial
cases.

Now, to characterize the first order topological phase,
Chern number C,, for the nth band has been evaluated which is
defined as the integration of the Berry curvature, €, (k), over
the 1BZ, i.e.

1
C, = — d’kQ, (k),
| / (k) )

where Q, (k) = —i ((01¥k|02¥nk) — (O29nk|O1¥nx)). Here
[thnx) are the eigenvectors of 4(k) and 9; = 3%. In this article,
to calculate the Chern number, we use the discretized version
of the integration, equation (7), developed by Fukui and others
[43]. For nontrivial first order topological insulating phase,
Chern numbers of two or more bands must be non-zero while
it will be identically zero for all the bands for the trivial insu-
lating phase. Chern numbers are undefined when the bands
either touch or overlap. To confirm the existence of this first
order topological phase, we construct the edge state energy
diagram by breaking PBC along k, direction, diagonalizing
the resulting Hamiltonian and plotting the energy spectrum
with respect to the good quantum number k. Likewise, for
the characterization of second order topological phase, value
of polarization is obtained in association with the prediction
of corner states. To find the corner states, a triangular rep-
lica of breathing kagome lattice with L = 15 is considered by
breaking PBC along both the directions.



J. Phys.: Condens. Matter 32 (2020) 205601

A Sil and A K Ghosh

12 ‘ — 0.35
(a) 61 (b) 1 (C) PR 03

= 8 "mm!ll “‘ m“ o.o o.o 0.25
5 .......mm||||l|ll|||ll|||“""|-'-ﬂ-- lpgngm{l | B4 o
UQJ 4 umlllllllllll””“""m il 2 i AAARARS 0.15
.............................. F eeoc0o0coceoe 0.1

0 u...mu|n|||||||||||lII|||||||||||”lIll||llIIIIIIlII|Ilﬂi\iiil|||H|"l|ﬂ|i|i|ﬂ\|ﬂm||i|ﬂ 0 | ERRRRRE

0.0 2.0 50 100 150 v’

J1

Energy levels

Figure 5. (a) Energy spectrum of breathing kagome lattice with varying J; for L = 15. Dy, D, and J, are kept constant at the values of 0.1,
1.5 and 1.0, respectively. Upto J; = 1.6, zero dimensional corner states exist (denoted by red dots) and beyond this, it decays into the bulk.
(b) Energy of the same system is plotted with respect to energy levels for J; = 0.3. Three red dots at same energy (same value as in the case
with zero DMI) show the states at the three corners of the finite triangle. The diagram is truncated for better resolution of the three corner

states. (c) Probability distribution of a particular eigenstate corresponding to a corner state energy for J; =

0.2 and L = 5. It shows that the

states are indeed localized at the corners and introduction of DM interaction has not changed the distribution considerably.

In the presence of DMI, the kagome ferromagnet exhibits
a particular TMI phase with C,, = (1,0, — 1) [25]. Numbering
of band index follows the ascending order starting from the
lowest energy. For FM breathing kagome, the uppermost flat
band for zero DMI is found to become dispersive as soon
as DMI is non-zero. The bulk dispersion relations plotted
in figures 4(a)-(c), with D; = 0.1 and D, = 1.5, reveal that
the system is an insulator for this set of DMI in the region
0.00 < J; < 1.66, as true gap exists between all the bands. At
a particular point, J; = 1.67, the upper band gap vanishes and
reopens thereafter. Therefore the system undergoes a phase
transition at J; = 1.67. Similar phase transition occurs at
J1 = 1.92 when the lower band gap vanishes.

Calculating C, for each of the cases, it is found that
C,=(—1,1,0) for 0.00 < J; < 1.66. When J; > 1.68, the
Chern numbers are redistributed as C,, = (—1,0,1). Thus, the
system undergoes topological phase transition through which
the upper two bands exchange Chern number of £1 since
the upper two bands touch at a Dirac band touching point.
Similar situation happens again at J; = 1.92, where lower two
bands touch at a Dirac band-touching point. At this time, they
exchange Chern number of +1 leading to new distribution,
C,=(0,—L1).

Figure 4(d) shows chiral gapless edge states connecting the
lower two gapped bands according to the BBC rule since the
Chern numbers are (—1, 1, 0). The pair of gapped edge modes
in the upper band gap indicates the existence of corner states.
But this time, they do not cross each other. Thus, there are
simultaneous existence of first and second order topological
insulating phases for 1/3 and 2/3 filling, respectively. In sim-
ilar fashion, figures 4(e) and (f), correspond to the existence
of other topological phases. The nature of edge states supports
the pattern of Chern numbers for the corresponding parameter
regions satisfying the BBC rule.

To confirm the presence of SOTMI phase, existence of the
corner states is investigated. Figure 5(a) shows the energy
spectra with varying J;. It is evident that the SOTMI phase
do exist up to J; = 1.66. The calculation of polarization fur-
ther emphasizes our claim that TMI and SOTMI phase do
simultaneously exist in the region 0.00 < J; < 1.66. For this

Figure 6. Topological phase diagram in J; — D, parameter space
with J, = 1.0 and D; = 0.1. Four different phases are separated by
different colors as shown in the lower panel. In first order, three

of them are topologically nontrivial and one is trivial. The solid
black line separates topologically nontrivial (lower portion) and
trivial (upper portion) phases in second order. Evidently, green and
magenta portions beneath the solid black line host both first and
second order topological nontrivial phases.

particular case, the topological invariant would be the value of
p1 of the uppermost band, since the gapped edge mode exist
between the upper two bands. The value of p| remains fixed at
1/3 for the whole region, which is same as the value of p; for
zero DMI. But, in contrast to the zero DMI, here both corner
states and non-zero polarization simultaneously persists for
the region 0.00 < J; < 1.66. This result can be implied from
the fact that there is no crossover of in-gap edge modes in this
insulating region. Thus, BBC as well as bulk-corner-corre-
spondence rules are jointly satisfied both for TMI and SOTMI
phases, as evident from the diagram. For J; > 1.66, the corner
states decay into the bulk as well as polarization vanishes.
Thus, SOTMI phase cease to exist beyond J; > 1.66.

This finding clearly predicts the existence of SOTMI phase
as well as TMI phase in the region 0.00 < J; < 1.66, when
the strengths of DMI are fixed at D; = 0.1 and D, = 1.5.
Therefore, DMI not only helps to extend the range of SOTMI
phase from 0.0 < J; < 1.0 to 0.00 < J; < 1.66, in addition,
it favors the coexistence of first and second order topological
phases. The system undergoes a phase transition in the vicinity
of J; = 1.67, hosting a new TMI phase thereafter.
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Figure 7. Edge state diagram for D; = 0.1,D, = 0.9 and (a) J; = 0.3, (b) J; = 0.7. Upper band-gap hosts two gapped pair of edge modes
(denoted by red lines) in (a), while the lower one decays into the bulk in (b). A chiral edge state appears between the lower band-gap in (b).

A topological phase diagram is presented in figure 6, which
is drawn with respect to two parameters J; and D,, where D,
is kept fixed at 0.1. To explain the phase diagram, let us fix the
value of D, at 0.9. Along this line, the system is a topologically
trivial insulator in first order in the region 0.00 < J; < 0.41.
Additionally, the system is found to host second order topo-
logical phase in the same region since there is a pair of in-gap
edge modes in the upper band gap. At J; = 0.42 lower gap
vanishes. Thereafter, the system hosts a TMI phase with
C,=(—1,1,0) up to J; =0.97. Thus, the system becomes
topologically nontrivial in first order for 0.42 < J; < 0.97.
But, at the same time, the gapped pair of edge mode in the
upper band gap changes its shape in such a manner that the
lower edge mode decays into bulk as it is shown in figure 7.
Because of this fact, although the value of p; for upper band
is 1/3 up to J; = 0.97, but the corner states are topologically
protected up to J; = 0.41. So, violation of bulk-corner-corre-
spondence rule is noted again in the region 0.42 < J; < 0.97.
Thus, for D; = 0.1 and D, = 0.9, coexistence of both phases
remains in the region 0.42 < J; < 0.97. For J; > 0.97, the
upper band-gap vanishes and the system undergoes a topo-
logical phase transition where it is driven into a phase which
is topologically trivial in second order but nontrivial in first
order. This TMI phase is characterized by the Chern numbers
(=1,0,1). With further increase of J;, another phase transi-
tion is observed at J; = 1.57. The resulting TMI phase has the
Chern number distribution (0, —1, 1).

So, it can be concluded that, although polarization, as a
topological invariant, changes its value only when gap closes,
its (d — 2) dimensional counterpart, the corner states will
be found as long as the pair of in-gap edge modes survives
distinctly without crossing each other or decaying into bulk
band in (d — 1) dimension. Thus, there is an anomaly in the
correspondence between two-dimensional bulk and its zero-
dimensional boundary for the SOTMI phase. In addition, this
diagram clearly exhibits the occurrence of phase transitions
between different topological phases with the variation of
parameters, J; and D;.

5. Thermal Hall conductivity

The values of thermal Hall conductivity (THC) of the system
have been calculated for first order TMI phases. THC is useful

0.8

04

m
S
gi‘ (d

(©)
(b)

0.0

0.4 (a), : . .
0 5 10 15 20 25
kT

Figure 8. Variation of x,,(T) as a function of T for J, = 1.0
and (a) J; = 1.7,D; = 0.1,D, = 1.5, for C, = (—1,0,1),
(b) J1 =22,D;, =0.1,D, = 1.5, for C,, = (0, — 1,1),

(©) J1 =02,D; = 0.1,D5 = 1.5, for C, = (—1,1,0), (d)
J1=13,D;y=—-14,D, =03, for C, = (1, — 1,0), (e)

Ji =13,D; = 0.0,Ds = —0.2, for C, = (0,1, — 1), (f)

Jy = 1.4,D, = —05,Dy = —0.8, for C, = (1,0, — 1.

to study the occurrence of phase transitions, and, at the same
time, these values can be verified experimentally. Resulting
diagram is shown in figure 8. We have included THC values
for some extra TMI phases those are not discussed before.
Additional TMI phases with different combinations of Chern
numbers are obtained by varying all the parameters. The
transverse THC can be formulated in terms of Berry curva-
tures, 2, (k) as [44],

2
nw(r)z—%; / /IBZc(p,,(k))dkxdkan(k). ®)

Here the sum runs over all bands, n. kg is the Boltzmann
constant and A is the reduced Planck’s constant.
pn(k) = 1/(ef®)/%T _ 1) is the Bose distribution func-
tion with E,(k) being the energy eigenvalue of the nth
band. ¢(x) = (1+x)In (1%‘)2 — (Inx)? — 2Li>(—x) where
Lir(y) =— [y dzw. In high temperature limit, THC
can be simplified as xy, = —ﬁ%—h Yo C,E, [29], where the
k-dependent energy is replaced by the average energy of the
respective band. By using this equation and the distribution of
Chern numbers, one can anticipate the sign of saturated value
of kyy at high temperature. For example, sign will be positive
(negative) if the band with higher energy has lower (higher)
value of Chern number considering one of the bands always
has C,, = 0 in this three-band system. The behavior of THC is
reflected in figure 8.
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6. Summary and discussions

We have investigated the properties of FM Heisenberg model
with and without DMI on breathing kagome lattice and estab-
lished the simultaneous appearance of first and second order
TMI phases for various values of the exchange and DMI
strengths which have been taken of different magnitudes for
upward and downward triangles. Topological phase diagram of
breathing kagome ferromagnet is richer than that of kagome.
Magnon dispersion relations are obtained following LSWT for
any value of spin S. While only a single SOTMI phase exists
when no DMI is present, either SOTMI or TMI or both of
them are present for non-zero DMI strength. In order to char-
acterize the first order conventional TMI phases the Chern
numbers of the insulating band as well as chiral edge states in
strip geometry are obtained. The existence of different phases
with different distribution of Chern numbers and the transition
between them are studied. Transverse THC values for various
TMI phases are also calculated. While SOTMI phases are char-
acterized by non-zero values of polarization or in terms of the
coordinate of Wannier center, those are additionally verified
by the existence of zero-dimensional corner states where the
pair of in-gap edge modes are clearly found in one dimension
without any crossing. In previous studies on breathing kagome
lattice, SOTI phase was found in a fermionic tight binding
model [13]. A TI phase was found on another tight binding
model in the presence of spin orbit coupling [45].

Six different TMI phases and one SOTMI phase are found
in this system. Since the TMI phase in kagome ferromagnet has
been observed before in Lu,V,07 [30, 31], these findings can
also be verified experimentally in future. No material is avail-
able right now whose property can be explained in terms of
FM breathing kagome lattice. DMI can be induced via external
electric field if it is not present intrinsically [29]. Topological
phases with higher Chern numbers may be obtained by intro-
ducing further neighbor interactions. Similarly, it would be
more interesting to study the topological behavior of the FM
models on three-dimensional pyrochlore lattice by following
the same procedure. Violation of bulk-corner-correspondence
rule found in some SOTMI phases demands more attention as
well. Anomaly in bulk-corner-correspondence rule is reported
before in a Hubbard model on kagome lattice, where gapless
spin excitations around the corners are found in the presence of
electron correlations instead of gapless charge excitations [39].
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