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Abstract

®

CrossMark

We present a simple view on band unfolding of the energy bands obtained from supercell
calculations. It relies on the relationship between the local density of states in reciprocal
space and the fully unfolded band structure. This provides an intuitive and valid approach not
only for periodic, but also for systems with no translational symmetry. By refolding into the
primitive Brillouin zone of the pristine crystal we recover the conventional unfolded bands.
We implement our algorithm in the SIESTA package. As an application, we study a set of
benchmark examples, ranging from simple defects on crystals to systems with increasing
complexity and of current interest, as the effect of external pressure on rotated graphene

bilayers.
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Introduction

Plots of so called energy bands are the most basic and used tool
in interpreting the calculated electronic structure of simple
crystals. Such plots represent the energy of the Bloch orbitals
as a function of their crystal momentum in the primitive
Brillouin zone (PBZ), that is, E (k). These theoretical bands
can be obtained within the tight-binding approximation, the
density functional theory (DFT) or other electronic structure
methods, and they are directly connected to results of angle
resolved photoemission spectroscopy (ARPES) experiments.
However, the simplicity of this approach disappears when the
calculations involve large supercells with many atoms. As the
size of the cell in real space increases, the first Brillouin zone
in reciprocal space shrinks and more lines populate the band
structure, hindering the extraction of useful information and
the comparison with experiments.

Several authors have already explored the unfolding
problem and developed specific techniques to unfold the
supercell Brillouin zone into the PBZ. Some of the existing
works focus on algorithms within the tight-binding approxi-
mation [1-4] or first principles calculations, employing as
basis sets linear combinations of atomic orbitals [5], plane
waves [6] or Wannier functions [7]. Another methodology
studies the electronic structures of alloy systems [8, 9]. Other
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authors have delved into the theory of the problem and they
have developed general reformulations of it [10-14].

Most of these methods focus on obtaining a direct rela-
tionship between the Brillouin zones of the primitive crystal
cell and of the simulation supercell, by expanding the super-
cell states in a basis set with the periodicity of the crystal. In
contrast, we aim to simplify the procedure and provide a link
between existing methods by dividing the problem in two
steps. First, we consider the fully unfolded bands, extended to
the whole reciprocal space, through a Fourier decomposition
of the Bloch wave functions of the system [14]. This yields
a non-periodic description, interesting by itself. Second, by
what we call refolding into the crystal PBZ, we recover the
result that other authors refer to as unfolded bands.

Method

The basic steps of our unfolding method are schematically
summarized in figure 1. We start by considering the energy
bands not just as dispersion relations, but as the density of
states in the (first) simulation Brillouin zone (SBZ), the recip-
rocal of the real-space simulation (super) cell (SC):

nSBz(K, 6) = Z (5(6 — EK,,') (1)
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Figure 1. Scheme of the unfolding method. (a) 1D model of a
chain of pseudo-atoms (dots) with an attractive gaussian potential
(line). The atoms are paired, with a Peierls distortion of 2% relative
to their undistorted distance a. The energy origin is the average
potential and its units are h2/(a’m,). The unit cell of the distorted
chain is shaded. (b) First two bands of the distorted chain, with its
PBZ shaded. A random K point is singled out (dashed line). The
(normalized) weights of the Bloch states at this K (black dots), are
split according to the squared Fourier coefficients of their respective
wave functions (red dots), appearing at ¢ = K + G. Dot areas

are proportional to weights. (c) Fully unfolded bands, obtained
through the procedure described in (b) for all Ks in the PBZ. The
non-periodic unfolded weights are the local DOS in Fourier space
(qLDOS) n(g, €). (d) Bands refolded into the PBZ of the undistorted
chain (shaded region). The weight at each k (blue dots) is the sum
over g of the unfolded weights in (c), at points ¢ = k + g. The
continuous line is the first band of the undistorted chain.

where K is a wave vector in the SBZ, and ek ; is the eigenvalue
of its ith Bloch state, that is, band energyl.

The normalization of nspz (K, ¢€), as well as those of other
densities defined below, is such that they are densities of states
per unit of macroscopic volume (as well as per unit of their
respective independent variables), what facilitates the com-
parison between simulation cells of different volumes.

Next, we split the normalized weight (e — ek ;) according
to the squared Fourier coefficients of the corresponding wave
function. Summing over Bloch states, we construct the fully
unfolded bands as the spectral density, which can also be
considered as the local density of states in reciprocal space
(qLDOS):

! Following conventional practice, we write the Bloch wave vector K as a
subscript, even though it is a continuous variable.

n(q,e) = Z /S . dK |k i(q)]” (e — ex,) 2)

where &K)i(q) is the Fourier transform of a Bloch wave func-
tion (normalized in the SC), ¥k, (r) = uk;(r)e'X:

1 -~ )
Vi) = Gy /oo dq vxi(q) ', 3)
’J)K,i(q) = (271-)3/2 Z 6(K +G - Q) ﬁK,i,G’ (4)
G

- 1 i

ki = o— [ drug,(r) e, )
sc Jsc

with Vgc the volume of the SC and G its reciprocal wave vec-

tors. Then, we can write n(q, €) as
n(q,e) = Z \lNqu,i,G(,|2 O — ex,.i)» 6)

where Kq and G are the unique vectors such that: Kq is within
the SBZ; G is a reciprocal wave vector; and Kq + G4 = q.
A state ¢k ; will contribute to n(q, €) at points ¢ = K + G for
all G = wN/a vectors, due to Bloch’s theorem. We empha-
size that q extends to infinity and n(q, €) is not periodic in q:
although the energies at which n(q, €) can be nonzero are peri-
odic, these ‘bands’ have a different weight at each Brillouin
zone (figure 1(c)).

As can be seen by comparing with equation (2), the gLDOS
is the Fourier-space equivalent of the real-space local density
of states (rLDOS),

Vsc

r0) = 525 Z /S BZdK|wK,[(r)\26(e—eK,i). )

The total density of states (DOS) can be obtained by integra-
tion of either n(r, €) or n(q, €):

1 1
VSC/SCdrn(r,e)W/Oodqn(q,e). 8)

Since |¢k.i(q)|? is the probability of measuring momentum
q of a given electron, n(q, €) is the probability of finding an
electron (or an empty state) in the system with energy € and
momentum q, and it can thus be directly related with ARPES
results if matrix element effects are taken into account
[14, 15, 16].

The qLDOS, that we call fully unfolded bands, is the same
as the spectral weight of other authors [10, 12, 13] and the
plane-wave unfolded spectra introduced by Kosugi ef al [14].
Therefore, our approach is a different description, rather than
a new method that yields different results. Our emphasis is to
provide a clear and simple link with previous methods through
the (L)DOS, as well as to generalise band structure analysis to
non periodic systems.

The last step in our method is to refold n(q,€) into a
refolding Brillouin zone (RBZ) as

nrpz(k, €) = Z nk+ge), )

g

n(e)
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where k is within the RBZ and g = 7n/a are its reciprocal
lattice vectors. Notice that, since Y  |ik;c|*> =1, then
> oK+ G, €) =nspz(K,e€), that is, refolding n(q, €) back
into the SBZ recovers the original bands.

Frequently, the simulation cell will be a supercell of the
refolding cell. In these cases, the RBZ will be a supercell of the
SBZ, and vectors g will belong to the set of Gs (figure 1(d)).
Nevertheless, this condition is not necessary in our method,
and in fact it will not be true in many cases, as for simula-
tion cells of liquids or amorphous systems, or of defects that
induce strong deformations?.

The above full unfolding/refolding method can be imme-
diately applied in a plane wave DFT code, since the Fourier
coefficients of the Bloch wave functions are then directly
available. The slow decay with momentum of all-electron
wavefunctions can be addressed by using pseudopotentials
or by introducing a momentum cutoff. For a basis of atomic
orbitals, we expand the Bloch states as

Yki(r) = ER: z,; Ky Pp(r — R —1y) e R, (10)

where ck, are expansion coefficients and ¢, are atomic
orbitals centered at position R +r,, (R being SC lattice vec-
tors). Substituting into equation (5) we find

(27.‘.)3/2
Vsc

K iG = > ekip $u(K+G) e, (1)
I

where éu(q) is the Fourier transform of the numerical atomic

orbital ¢, (r), with well defined angular momentum quantum

numbers (/,,,m,), that can be decomposed into radial and
angular parts:

Gu(r) = bu(r) Yi,m, (F) (12)

6u() = 6.(q) Vi, m, (@) (13)

dula) = 20 [ T Pdrjy () du(). (4)
m 0

with ¥,,(F) spherical harmonics and j/(x) spherical Bessel
functions.

We have implemented this algorithm in the SIESTA package
[17]. After a converged DFT SIESTA calculation, the hamilto-
nian and overlap matrices, in the atomic basis set, are calcu-
lated and written in a file. This file, as well as those specifying
the radial numerical atomic orbitals, are read by an external
utility program that calculates the fully unfolded and refolded
spectra at the desired q and k band lines. Some SIESTA sub-
routines are also used by the unfolding/refolding program to
obtain the wave function coefficients at each required K point
of the SBZ, as well as to perform the Fourier transforms in
equation (14).

2 In these cases, however, the vector K such that K + G = k + g, will
depend not only on k but also on g. This will make the calculation of
nrez (K, €), at given k points, considerably more expensive.
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Figure 2. (a) Refolded bands, into the crystal PBZ, of a single
vacancy in bulk Si. The darkness is proportional to the LDOS.
Energies are relative to the Fermi level, set at zero (horizontal
dotted line). Vertical dotted lines mark high symmetry points of
the PBZ; (b) (conventional) bands of Si FCC crystal; (c) difference
between the refolded LDOS of the defective Si and the pristine
crystal, zoomed in the gap region, near the I" point. States arising
(vanishing) due to the vacancy appear in hot (cold) colours. The
black (red) dashed line is the Fermi level of the perfect (defective)
system.

Applications

We apply our previously described SIESTA implementation to
a Si FCC crystal with a single vacancy, a model of amorphous
Si (a-Si), a monolayer of graphene with a (585) divacancy,
and a rotated graphene bilayer under pressure. We employed
the GGA-PBE [18] functional for exchange and correlation
and double-( + polarization (DZP) basis sets (double-¢ (DZ)
for a-Si).

Vacancy in Si crystal

We model a vacancy in a Si FCC crystal using a 63-atom
supercell. Its refolded bands into the crystal PBZ vectors are
depicted in figure 2(a), and can be compared with the bands
of the periodic crystal, in figure 2(b). Changes are appreci-
ated at a careful sight. The refolded bands become blurred and
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Figure 3. (a) Fully unfolded bands of a 512-atom cubic cell of
amorphous silicon, along the (111) and (100) directions. Vertical
lines indicate high symmetry points of the first and second Brillouin
zones of the crystal. They are shown for reference but they are not
special in the a-Si simulation cell. The red line is a fit to a free-
electron dispersion relation with an effective mass m* = 1.1; (b)
refolding of the a-Si bands into the PBZ of crystalline silicon. Solid
lines are the crystal bands. The refolded free-electron dispersion
relation is shown with dashed lines.

widened due to the appearance of small splittings. Some of
these are a consequence of the supercell approach and they
become smoother in a larger SC.

The most relevant changes occur around the Fermi level.
A new state arises within the gap, with higher weight around
the I" point. The top of the valence band, around T', decreases
in energy and in weight. We show the difference between the
crystal and defective refolded spectra in figure 2(d) around T,
at the gap, to remark these changes.

Amorphous Si

A clear example of disorder is an amorphous solid. In this
case, we cannot talk about a proper band structure, but yet the
energy dispersion of the electron states provides interesting
results. We studied the fully unfolded and refolded bands of
a-Si using supercells of 216, 512 and 1024 atoms, modelled
by Igram et al [19], obtaining equivalent results for all cases.
We present the results for the 512-atom supercell.

In figure 3(a) we show those corresponding to the L — T
and I' — X directions of the FCC crystal, up to the second
Brillouin zone. As expected from the isotropic character of the
amorphous solid, its unfolded bands are essentially identical
in all directions, with a radial symmetry, yielding a widened
free-electron dispersion with an effective mass m* = 1.1 and a
gap of 1.5eV, consistent with existing values [19, 20].

The same bands, refolded to the PBZ of the crystal, are
shown in figure 3(b). At close magnification and inspection,
a few localised states appear in the gap due to defects in the

Figure 4. (a) Relaxed structure of the (585) divacancy in graphene.
The dashed lines are the mirror planes of the defect. (b) PBZ of
graphene, its symmetry modified by the (585) defect.

a-Si model [19]. Interestingly enough, despite its isotropic
and non-periodic structure, and the incommensurability of its
simulation cell with that of the crystal, the refolded bands of
a-Si appear as a blurred version of the crystalline silicon (c-Si)
bands, specially at low energies. Also, higher LDOS of a-Si
can be appreciated in regions of c-Si band degeneracies. This
similarity is independent of the size of the a-Si simulation cell
employed. We attribute it to the similarity of the local struc-
ture in a-Si and c-Si in bond distances and angles [19].

Divacancy in graphene

Graphene is a material with unique electronic properties, but
highly sensitive to structural disorder. The presence of defects
leads to significant changes on its bands, specially around
the Fermi level. Many types of defects have been studied by
theorists, such as adatoms, vacancies or Stone—Wales defects,
with the aim of predicting their properties and, potentially,
using them to tailor the functionalities of graphene. Hence,
unfolding their band stuctures will shed light on how they
modify the original graphene bands.

We consider a (585) divacancy in a graphene monolayer, a
defect that has been synthesised and characterised by Ugeda
et al [21]. The (585) defect is formed by two adjacent C
vacancies rearranged into two pentagons and one octagon, as
shown in figure 4(a), with no dangling o bonds. We modelled
the divacancy in simulation cells of different sizes, from 7 x 7
to 14 x 14. Here we report the 11 x 11,12 x 12 and 13 x 13
as representative.

The conventional bands of the supercell calculations within
their SBZs, figure 5, reveal that the former six-fold symmetry
of the Brillouin zone is broken, leading to inequivalent K
and M points and two emerging mirror planes, figure 4(b),
as happens in the atomic structure. The K and K’ points no
longer present a Dirac cone, although all of them present a
band crossing of Ef at different points in their Brillouin zones:
near K’ for the 11 x 11 SC, around I for the 12 x 12 SC and
between M’ and K for the 13 x 13 SC. Besides this, it is hard
to find similarities between them. To relate these overcrowded
spectra with the band structure of graphene, we compute the
refolded bands into the PBZ in the surroundings of K and K’
points of graphene.
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Figure 5. Conventional bands of a (585) divacancy in graphene modelled in (a) 11 x 11, (b) 12 x 12 and (c) 13 x 13 simulation cells, in

their respective SBZs.
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and (c) 13 x 13 simulation cells. K’¢ denotes the K’ point of the PBZ of graphene. K" indicates a K’ point of the (n x n) SBZ.
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Figure 7. 2D bands of a (585) divacancy refolded into the PBZ, in the surroundings of the K’ point, obtained from (a) 11 x 11, (b) 12 x 12
and (c) 13 x 13 simulation cells. The darkness times size of the dots is proportional to the LDOS, with weights smaller than a hundredth of
the maximum neglected. The units for k are 1/ay, where ag is the lattice parameter.

Figures 6(a) and (c) show the 11 x 11 and 13 x 13 SC
bands refolded into the PBZ. The Fermi level crossing is
located around K’ of graphene, which corresponds to a K’
point in both SBZs. One of the bands conforming the former
Dirac cone stays almost unaltered, while the other one is
split, forming two cone tips shifted in the k, direction and
connected by a state. In the 2D bands plot of figures 7(a) and
(c) this is seen with more clarity. The Fermi level decreases
from its original value, being coincident with the tip of the
lower cone.

In the case of the 12 x 12 SC, figure 6(b), we see a sim-
ilar behaviour, with slight differences. One band of the cone
remains almost unaltered, with a small gap of 0.04 eV opening
at K’. The other one is split, with one of its fragments con-
forming a flat state at the Fermi level, leading to a single band
crossing. In figure 7(b) this flat state and the cone tips can be
appreciated. Here, the K’ of graphene coincides with a I" point
of the 12 x 12 SBZ.

Despite the differences between the three sizes, a general
trend is clearly identified after refolding into the PZB of gra-
phene, which is not the case in the traditional bands description
of figure 5. All cases present a splitting and a shift in &, of the
Dirac cone, as well as a single band between the two cone tips
as the lowest unoccupied electronic state. The Fermi level is
located at the tip of the lower cone. We remark that, in 3n x 3n
SCs, the K’ of the PBZ corresponds to a I point in the SBZ,
unlike in the (3n+1) x 3n+1) and (3n+2) x (3n+2)
cases. This is consistent with the formal differences existing
between both kinds of supercells [22]. Finally, the refolded
bands obtained around K are inverted in k, compared to the
refolded bands around K’ shown above.

Pressure in rotated graphene bilayers

Another path to modify the electronic behaviour of graphene
is given by rotated graphene bilayers. These are defect-free



J. Phys.: Condens. Matter 32 (2020) 205902

S G Mayo et al

Energy (eV)

Figure 8. Fully unfolded bands of a graphene monolayer, up to the
second Brillouin zone. The squared area marks a Dirac cone, region
considered for further study in the bilayer case.

systems with a Moiré pattern, involving large periodicities. At
small angles, the interaction between the two layers induces
two saddle points in the band structure, along with two log-
arithmic van Hove singularities in the DOS. As the angle
decreases, the singularities approach and, eventually, at the
so called magic angles (6 = 1.1°), they collapse into a single
peak at the Fermi level [23]. The same effect has been recently
reported to occur for larger angles, when external pressure is
applied [24-27].

We study a bilayer rotated 5.08° at equilibrium under
increasing pressures up to 1.63 GPa. We employ a GGA
exchange-correlation functional including Van der Waals
interactions [28, 29]. As none of the monolayers lattice ori-
entations has a prevalence over the other, refolding into the
PBZ of one of them is not particularly informative. Therefore,
we consider the fully unfolded bands as the adequate tool to
analyze this system. We first show the fully unfolded bands
of a graphene monolayer, figure 8, up to its second Brillouin
zone, for comparison purposes. Two paraboloids with gaps
opening along them and a six-fold symmetry and are clearly
distinguished, and conform the dispersion relations of the o
and 7 orbitals. In the case of the bilayer, we will restrict the
unfolding region to the surroundings of a K (and K3-08%) point
(red square).

In figure 9 we show the conventional band structures of the
bilayer at the equilibrium distance, at a middle stage and under
a pressure of 1.63 GPa, next to their corresponding DOS. The
saddle points and van Hove singularities can be appreciated.

Figure 10 depicts the evolution of the fully unfolded
spectra under increasing pressures. At equilibrium configu-
ration, figure 10(a) shows a neat picture of the interaction
between the cones of both monolayers, as well as the saddle

(a) 08

o
'S

Energy (eV)
o

Figure 9. Conventional bands in the SBZ and DOS of a graphene
bilayer rotated an angle of 5.08°, (a) at equilibrium geometry; (b)
under a pressure of 0.70 GPa and (c) under 1.63 GPa.

point emerging in between. The relative maximum intensities
of the LDOS are homogeneous in energies, and the states pre-
sent high dispersion in energies. As pressure is applied, fig-
ures 10(b)—(e), the cones flatten and the saddle points move
towards the Fermi level. We appreciate as well that the two
pairs of bands immediately over and below the cones lower
their energies and start to merge. Also, in figures 10(d) and (e),
higher weights correspond to these merging bands, whereas
the cone states around the Fermi level tend to be delocalized
in many qs. In figure 10(f) the cones have collapsed into flat
bands. We remark how their weight in this area of reciprocal
space is small compared to that of the merging bands, despite
the sharp peak on the DOS of figure 9(c). This is an indicator
of delocalization in q, and is not unexpected, as these states
are known to be well localized in the AA stacking region in
real space [21, 24, 30].
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Figure 10. 2D fully unfolded bands of a graphene bilayer rotated 5.08°, in the surroundings of the first K points of the monolayers, at
different pressures: (a) equilibrium distance. The arrows indicate the saddle points that originate the van Hove singularities; (b) 0.04 GPa;

(c) 0.23 GPa; (d) 0.70 GPa; (e) 1.06 GPa and (f) 1.63 GPa.

Conclusions

We have presented a simple formulation of the band unfolding
problem, a tool necessary to extract useful information from
the band structure of large supercell calculations. The idea of
a full unfolding that expands the bands not only to the primi-
tive cell, but to the full reciprocal space, allows to treat this
problem as a decomposition of the wave functions into its
Fourier coefficients. A refolding recovers the conventional
unfolded bands in the PBZ of the crystal. It is feasible for any
eigenstate, regardless of the basis used. In the case of plane
wave codes this implementation shall be almost immediate.

We have successfully applied our algorithm to obtain new
characterizations of non-trivial physical systems. The fully
unfolded bands provide a distribution of the states as a function
of their energy and momenta, allowing a direct comparison
with experimental photoemission spectra, as well as a way to
determine a value of the effective mass of the system under
study in a chosen direction of reciprocal space. Refolding into
the primitive cell yields clear band spectra that allow com-
parison with the crystal bands, even identifying crystal-like
patterns in an amorphous solid.

The outcomes of this work prove that the underlying state
distribution in reciprocal space is much richer than what con-
ventional band structures can evince, transcending the exist-
ence of any real or imposed periodicity.
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