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Abstract
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In order to search for stable ferromagnets with high spin polarization in Heusler alloys for
spintronic applications, we develop an efficient machine learning workflow based on a deep
neural network, whose training data were collected from the open quantum materials database
and high throughput calculation by first-principle calculations. The lattice constants, formation
energy and spin polarization of 10577 candidate materials were predicted, and 192 materials
with high spin polarization were selected according to a spin polarization greater than 0.87
and formation energy less than 80 meV/atom. 57 of these alloys have been reported as Half-
metal (100% spin polarization) according to previous researches, and 18 have been reported
as semiconductors. Especially, 6 Heusler alloys were identified as promising half-metallic
ferromagnets, and some of them have high Curie temperature above room temperature. Our
study suggests this approach is an efficient method for the discovery of superior spintronic
materials, which should be also suitable for exploring other functional materials.
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1. Introduction

Considerable interest is now devoted to the search for novel
ferromagnetic (FM) materials suitable for application in spin-
tronics [1, 2]. For effective spin injection of semiconductors,
these materials usually possess a very high spin polarization
(HSP) of the electron states [3, 4], especially half-metal with
100% spin polarization at the Fermi level (Pg = 1), such as
some Heusler alloys [5], zinc-blende structure compounds
[6], CrO; [7] and Fe;04 [8]. Meanwhile, these materials must
have a Curie temperature (7¢) noticeably higher than the
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room temperature to be compatible with the semiconductors
used in industry [9]. Of them all, Heusler alloys are attractive
materials with various fantastic properties such as supercon-
ductor, topological insulators, Kondo systems and heavy-Fer-
mion behavior [10-13]. In particular, many half-metals (HM)
with high T¢, which even more than several hundred degrees
above room temperature [14, 15], have been found in Heusler
alloys, thus always attracted extensive attention.

Exhausting investigations have been carried out in the
past several decades, then many excellent ferromagnetic
Heulser alloys had been excavated. Recently, Sanvito er al
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systematically studied the thermodynamical stability and
magnetic properties of Heusler alloys made of transition
metals with the assist of high throughput calculations to
search high T compounds [16]. Obviously, expensive com-
puting resources should be needed in order to screen all candi-
date materials due to the exponentially increasing complexity
with a variety of chemical compositions. In fact, there are
already many efforts underway, which have led to a boom
in very useful materials science databases such as materials
project [17], AFLOWIib [18], and OQMD [19]. In spirit of
statistical learning or machine learning (ML), the leading
paradigm is that, incorporating with first-principles compu-
tational methods, such as density functional theory (DFT),
researchers populate and analyze the computational materials
databases and the massive data from published literature to
screen candidate materials for target properties, which signifi-
cantly reduced the computing cost [20-22].

So far, machine learning as an effective method has been
attracting much attention in the field of material science. For
example, Kernel ridge regression as an efficient regression
model is used to estimate molecular energy [23] and find
density functional [24]; Random forest method [25, 26] and
support vector machine [27] were as used to judge the mat-
erial structure. At the same time, the ML methods based on
deep neural network (DNN) are also prominent, from finding
atomic topology in crystals [28] to analyzing complex reaction
networks to guide experimental design [29], and predicting
crystal stability [30, 31], although it is less interpretable than
other methods. These reveal that DNN has fantastical success
due to robust feature extraction and function fitting ability,
thus it may help us achieve mass data analysis and search for
emerging materials rapidly [17, 32, 33]. However, the dis-
covery of stable HSP ferromagnet in this way has not been
reported yet.

In this paper, we design a workflow composed of multiple
DNN models to predict lattice constants, formation energy
and spin polarization, as illustrated with figure 1, which are
utilized to search for stable HSP materials. The reason for
using three models here is because they have different char-
acteristics, which are also necessary to implement in different
training sets and validation sets. Firstly, if an alloy is expected
to form in the desired structure, it is necessary to verify the
lattice constants with high precision by comparing it with the
database of x-ray after experimentally synthesized or the DFT
calculated data. Secondly, the formation energy is essential
to the synthesis and stability of materials, but it is not easy to
obtain formation energy data through experimental methods,
and calculation of formation energy is also complex. If we can
predict the formation energy of materials, excluding materials
that cannot be synthesized can greatly reduce the search scope
of materials with high spin polarization. Thirdly, the spin
polarization Pg is much hard to obtain experimentally, but it
could be easily extracted from first-principle DFT calculation.
Meanwhile, despite the exploding growth of the number of
compiled entries of computational materials database cur-
rently, rarely materials have been known for the information of
Pr. Therefore an independent data set via first-principle DFT
calculations has to be constructed for training and testing.

We only focused on the A,BC trinary compounds, which
consist of full-Heusler and inverse Heusler structure, shown
in figures 2(a) and (b). The input required for the entire work-
flow is also terse, which only includes the name of the three
elements that make up the Heusler alloy. Finally, there were
192 stable HSP materials were figured out in 10577 materials.
Furthermore, with the assistance of first-principles calculation
by DFT, 6 alloys were identified to behave half-metallic and
were discussed in detail. The paper is organized as follows: in
section 2, we present the details of our methods. The source
of data set is described in the section 2.1. The parameters set-
ting of the DNN training and the descriptors are described in
section 2.2. The calculation details of the first principle calcul-
ation are given in the section 2.3. In section 3.1, the accuracy
of three DNN models is analyzed and the process of searching
HSP and HM materials using DNN models is presented. Then
the results and discussions are presented in section 3.2.

2. Method

2.1. Introduction of data set

In this work, we used many data sets, and detailed information
about their sources and roles can be found in table 1. The first
data set comprise 10577 candidate materials, which initially
contain only the name of materials, and are needed to predict
their lattice constant, formation energy and spin polarization
via DNN models. A- and B-site atoms are 3d, 4d, 5d trans-
ition metals excluding radioactive elements, and used Al, Si,
P, S, Mg, Ar, Ga, Ge, As, Se, B, In, Sn, Sb as the C-site atoms.
These elements consist of the target area of the Periodic
table that we are interested in, in which we attempt to find
stable HSP ferromagnets.

Next, approximately 65000 Heusler alloys were collected
from the open quantum materials database (OQMD) [19],
including the information about the structure and formation
energy. There are certain criteria for the selection of the three
elements that make up the Heusler alloys, which A- and B-site
atoms from 3d, 4d, 5d periods and C-site atoms from groups
IITI-VI. However, we excluded hydrogen and inert gas ele-
ments that are considered difficult to form stable compounds.
Also, radioactive lanthanides and actinides elements are not
included. The collection conditions of this data set appear to
be similar to the data set of 10577 materials, but the content
is quite different. We get 65000 materials data based on these
conditions, but the random combination is not sure to find the
corresponding material in the database. However, for the data
set of 10577 materials, we can determine a material based on
the random combination. Therefore, among 65 000 materials,
only 1506 materials overlapped with 10577 candidate mat-
erials, which were removed in the training process and used
for comparing with the predicted results of the model, and
nearly 9000 of the 10577 materials were not found in the data
set of 65000 materials.

Furthermore, we prepared a data set containing 3450 mat-
erials to train the model of spin polarization. We selected 17
transition metals as A- or B-site atoms, including Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, and the
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(a)

~65000 Heusler Alloys in OQMD

Training the first model to
predicts lattice constant

Training the second model to
predict formation energy

(b)

~3500 Heusler Alloys by DFT

Training the third model to
predict spin polarization

10577 Heusler Alloys

Predict lattice constants,
formation energy and spin
polarization.

238 Heuslers with
P=>0.87

192 Heuslers with
AE <0.08 eV/atom

6 promising Half-metal

Figure 1. Our workflow for models training and searching HSP Heusler alloys. (a) The data for training the first and second models comes
from OQMD. The first model is used to predict lattice constant, and the second is used to predict formation energy. (b) The data for training
the third model comes from high throughput calculation. The third model is used to predict spin polarization. (c) By screening candidate
materials with spin polarization greater than 0.87 and formation energy less than 80 meV/atom, we found promising six half-metallic

materials finally.

selection of C- site atom is the same as the previous candidate
materials data set. The data set is derived from the results of
first-principle spin-polarized calculation, and details would be
introduced in the following. To verify the spin polarization
model, we randomly selected 119 materials as test set from
10577 materials and obtained their Pr via the first-principle
calculation.

The full-Heusler alloy crystallizes in the cubic space group
Fm-3m (space group No.225) with Cu,MnAl (L21) as the
prototype. The A-site atoms occupy the Wyckoff position 8c
(1/4, 1/4, 1/4), the B- and C-site atoms are located at 4a (0,
0, 0) and 4b (1/2, 1/2, 1/2), respectively (figure 2(a)). Inverse
Heusler structure is still described by four interpenetrating
fcc sublattices, and A-site atoms are placed on the Wyckoff
positions 4a (0, 0, 0) and 4d (3/4, 3/4, 3/4), while the B- and
C-site atoms are located at 4b (1/2, 1/2, 1/2) and 4c (1/4, 1/4,
1/4), respectively (figure 2(b)). Although the data set include
both the full-Heusler and inverse Heusler alloys, unfortu-
nately, our model could not distinguish the structure during
the training process, since the discrepancy of the formation
energy between two structures is often quite tiny. Thus, we
only distinguish the structure after capturing a stable HSP
ferromagnet.

2.2. Details of DNN model

As shown in table 2, we selected some descriptors as model’s
inputs. Descriptors are derived from the atomic information
of the elements that make up the material and do not require
any first-principle calculations. The selection of descriptors
is based on previous researches [23, 26, 34] or semi-empir-
ical approaches. For example, the atomic number should be

Heusler inv-Heusler

©

Input Hidden layers

AO®
B O
cO

Figure 2. The structure of Heusler alloy: (a) Heusler and (b) inverse
Heusler structures, that created by VESTA. (c) Schematic diagram
of multilayer fully connected neural network.

important for the prediction of the lattice constant, while the
electronegativity and unit cell size would significantly influ-
ence on the formation energy.

We design three models according to the different char-
acteristics of prediction properties, and they have different
descriptors: (a) We get the first model that can predict the
value of lattice constant by using the atomic number, the
number of core electron, the number of s-orbital electron and
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Table 1. The data set used in this work.

Size Source Purpose

Caption

a 64935 OQMD

b 3450 DFT

c 10577 By ourselves

1506
e 119

Test set
Test set

OQMD
DFT

Model training

Model training

Search for HM

A- and B-site atoms from 3d, 4d, 5d periods and
C-site atoms from groups III-VI

A- or B- site atoms include Sc, Ti, V, Cr, Mn, Fe,
Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, and
used Al Si, P, S, Mg, Ar, Ga, Ge, As, Se, B, In, Sn,
Sb as the C-site atoms

This database only contains the names of material.
A- and B-site atoms are 3d, 4d, 5d transition metals
excluding radioactive elements, and Al, Si, P, S,
Mg, Ar, Ga, Ge, As, Se, B, In, Sn, Sb as C-site
atoms

The overlap of set a and set ¢

Randomly selected from 10577 materials

Table 2. Descriptors of DNN model. The descriptors using in the
first model are a, b, ¢, d and e. When training the second model, the
descriptors are a, b, ¢, d, e and h. The third model uses a, b, e, f and

g.

Descriptors Symbol

a Atomic number z1,72,23
The number of core electron el,e2,e3

c The number of s-orbital sl, s2,s3
electron

d The number of p- or d- pl,p2,p3
orbital electron

e Electronegativity elel, ele2, ele3

f The sum of the valence vel,ve2, ve3
electrons

g Valence electron n
concentration

h Lattice constant a

the number of p- or d- orbital electron of the three elements
that make up the Heusler alloy as the descriptors and lattice
constants as labels. (b) The electronegativity of the atoms and
lattice constant was added to the former descriptors, and the
second model could predict the formation energy. (c) The
atomic number, the number of core electron, the sum of the
valence electrons of each atom and valence electron concen-
tration were selected as descriptors for the third model to pre-
dict spin polarization, which is the average number of valence
electrons. In the preparation of the descriptor, we did not use
the first-principles calculation, focusing on the simplest infor-
mation to complete the training.

Next, according to the structure of neural network, we will
show how they are built and work. Three models are all neural
networks composed of multiple fully connected hidden layers,
as shown in figure 2(c). The input is made up of descrip-
tors for the three elements that make up the Heusler alloy,
for example, X = (zl,el,sl,pl, 22, ...,53,p3) as the input of
model for predicting lattice constants. Data were normalized
by the Min-Max normalization method before the training
began. The training data of each model were randomly
divided into non-intersecting training sets and validation sets
in proportions. The objective of model training is to minimize

the loss function L(Ypred, Yirue)» Where yuye represents the true
labels and yyreq represents the predicted ones. We chose the L2
regular loss function, which is the sum of the squares of the
between the true value and the predicted value.

L= Z(ypred - ytrue)z- (1)
i=1

n;
Fig) = h(O> wisif (xim1g) + bicyy). 2)
j=1

Equation (2) is the calculation formula of the neuron j in the
hidden layer i. A(y) is activation function, w;_; is the weight
of the upper neuron, and b;_; is bias. The deep neural net-
works are implemented by the TensorFlow platform. The
tf.random _normal function is used to initialize the network
parameters (w and b) according to the normal distribution,
and network parameters are optimized by Backpropagation to
minimize the loss function on the training data. We use the
AdamOptimizer [35] provided by TensorFlow to control the
learning speed. The activation function %(y) is rectified linear
(ReLu) activation functions. Each network is trained until the
loss function evaluated on the validation set fails to decrease
after some training epochs. More detail about three models,
such as the number of layers and nodes of the neural network,

batch size and learning rate, are presented in table 3.

2.3. Details of DFT computation

The first-principle calculations were performed using density
functional theory (DFT) method with projector augmented
wave (PAW) [36] pseudopotentials implemented in Vienna
ab initio simulation package (VASP) [37]. We select the gen-
eralized-gradient approximation Perdew—Burke—Ernzerhof
(GGA-PBE) as exchange-correlation functional [38] and use
ak-mesh of 12 x 12 x 12. The plane wave cutoff energy is set
to 400eV. Atomic positions were fully relaxed until the energy
and force were converged to 107% eV and 107* eV A I
addition, a much dense k-mesh of 20 x 20 x 20 was used to
the self-consistent calculations when dealing with six prom-
ising half-metallic materials.
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Table 3. Neural network structure and training information of three models.

Details Model A Model E Model P
Structure Type Neural Network (NN) NN NN
Input zl,el, sl, pl, egl, 72, €2, s2, p2,z1, el, s1, pl,egl, 72, €2, s2, p2, zl, el, vel, egl, z2, 2,
(Descriptors) eg2, 73, e3, s3, p3, eg3 eg2, 73, e3,s3,p3,eg3,a ve2, eg2, 73, e3, vel,
eg3, n
Number of hidden 5 7 5
layers
Number of nodes 150, 120, 90, 45, 15 200, 180, 160, 120, 90, 45, 25 50, 100, 90, 45, 15
Output Lattice constant Formation energy Spin polarization
Activation ReLu ReLu ReLu
function
Loss function L2 L2 L2
Train Data set size ~63 000 ~63 000 3450
Split train/ 99%/1% 99%/1% 99%/1%
validation set
Validation set 634 634 34
Test set 1506 1506 119
Learning rate 0.001 0.001 0.001
Batch size 120 100 50
T T T T T T T T T I Y I : ! - !
(a) 20F 1 (Ml §
¥ —e— Validation . —s=— Validation
= 15+ —— Train 1 & | —— Train 1
2] - Model A e E 8 Model E —
§/ 10 - Pearson'sR=0.99] + >~ | Pearson's R = 0.98
& _[ 1 8
- S| 1 =9
0+ e 0l
1 1 | 1 1 1 1 1 |
0 4000 8000 12000 16000 0 5000 10000 15000
Generation Generation
(c) Q‘.\% : ¥ T T T ¥ T T T (d) T 63 H T T T T T T T T
i i 60k . ]
—e— Validation
2 or —=— Train . [Model P (
= | Model P i « 40 IMAE = 0.13{
= Pearson's R = 0.94 g
n & ° -1 e
Qd | o
- 5 20
Q'QQ

2000 4000 6000 8000
Generation

0 %
0.0 0.2 0.4 0.8 1.0
Distribution of Absolute Error

Figure 3. The value of Train- and Validation- loss function vary with generation number: (a) Model A; (b) Model E; (c) Model P. (d) The

absolute error distribution of Model P.

3. Results and discussion

3.1. Performance of models

For different targets, we chose three models that performed

best during training to further evaluate their predictive perfor-
mance, named Model A, Model E and Model P. The value of

the Pearson correlation coefficient (Pearson’s R) is considered
a score for the predictive performance of the three models,
showing the correlation between the predicted value and the
real value of a random test sample set. Pearson’s R of Model
A, Model E and Model P are 0.99, 0.98 and 0.94, respectively.
As shown in figure 3, the value of the validation loss function
is always lower than the training loss function, and decreases
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Figure 4. Comparison of lattice constants from OQMD and ML in validation set (a) and test set (¢c). Comparison of formation energy from

OQMD and ML in validation set (b) and test set (d).

with the increase of generation number, which means that
their training process are not overfitting. When the loss func-
tion reduces to a value and does not change after some gen-
erations to make sure that each sample is trained, the training
process stops.

Next, we need to further evaluate the accuracy of these
models. Figure 4 reveals the effectiveness of Model A and
Model E in validation set and test set. The predicted results
by ML were compared with the results of validation set
(including 634 materials) and test set (including 1506 mat-
erials), and more information about data set can be found in
tables 1 and 3. As can be observed in figures 4(a) and (b),
Model A and Model E performed well in validation set, and
this is the result of the last generation of the training process.
The MAE of Model A is 0.07 A, MAE of Model E is 0.069¢eV/
atom. The robustness and accuracy of model training may not
be fully demonstrated only by analyzing validation set, so we
also used a larger test set including 1506 materials. These data
are overlaps between candidate materials and 65000 materials
in OQMD, which are eliminated during training and used for
testing the performance of model. As shown in figures 4(c)
and (d), the MAE of Model A rose slightly to 0.12 A, that
of Model E also rose to 0.085eV/atom. In previous studies
[28], the average absolute error range of prediction formation
energy was in the range of 0.04-0.08eV/atom. Our Model
E is not prominent, but given the brevity of the descriptors

used, the result seems acceptable. It is worth mentioning that
Kirklin et al [19] reports that the MAE of the DFT calcul-
ation with respect to experimental measurements in OQMD
is 0.081-0.136 eV/atom depending on whether the energies of
the elemental reference states are fitted.

How to determine the stability of the material is the main
problem to be solved in the screening of a large number of
candidate materials. A common criterion [39] for stability is
the difference between the total energy of the compound and
that of its elementary constituents is less than O:

Eror —2E4 — Ep — E¢
7 )

3)

Eppc =

In fact, A,BC can be broken down into stabler binary or
ternary compounds, so the most rigorous way is to con-
struct a ternary convex hull diagram. It takes about 10000
prototypes to construct a phase diagram of a binary alloy
information diagram, and at least 30000 to construct a
ternary alloy [16, 40]. Considering that we need to screen
a large number of materials, it is impossible to carry out
such a huge amount of calculations. In addition, the record
of convex hull energy in various databases is limited, so
we still choose formation energy as a criterion for thermal
stability. Perhaps after narrowing down the scope of the
search, we can use the existing database for further ana-
lyzing convex hull energy.
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Figure 5. The distribution of components of high spin polarization materials in the Periodic Table of Elements, predicted by the DNN model.
The A-site atoms are more likely to be Cr, Mn, Fe, Co, Ru, Rh, while the B-site atoms are mostly elements in the early transition metal.

Now, we begin to analyze the performance of Model P.
Spin polarization [41-43] reflects the ability of a metal to
maintain spin-polarized currents. The spin polarization of
3450 materials was calculated based on DFT using the fol-
lowing equation:

T +
Np — N

PF:H 4)
ng + ng

wherein n?f (o =1, ]) is the density of state at the Fermi level,
and the up and down arrows indicate different spin direc-
tions. We got the third model by training the spin polarization
of 3450 materials until the loss function value drops below
0.005, and remains stable within 500 generations without
over-fitting as shown in figure 3(c). At the same time, the cor-
relation coefficient of test results was 0.94. We also used a data
set containing 119 materials to verify the model and got the
absolute error distribution diagram (figure 3(d)). The MAE of
the model is 0.13, which is one of the reasons why we set the
screening value of HSP materials as 0.87. Because of HM has
100% spin polarization (Pg = 1), the search cut-off of high
spin-polarization materials was set to 0.87 to ensure that as
much HM materials were found as possible. The process of
searching HSP or HM materials is accelerated by checking
the value of Pr.

3.2. Discovery of high spin polarization ferromagnets

Different from those high-throughput screening methods in
which the whole chemical space should be searched at DFT
level, we developed ML and DFT combined scheme only needs
to compute the most promising candidate at DFT level, which
greatly saves the computational resources. With these trained
models, the stable HSP materials could be discovered in any
target data set, including 10577 candidates in our case. As
shown in figure 1(c), the lattice constants of all materials were
predicted firstly, further the predicted results were added to
the second model as new descriptors to forecast the formation
energy, which benefits from the small MAE of model A. The
spin polarization of candidate materials are given by Model P.
Finally, we found 238 of all candidate materials with P > 0.87,

and 192 stable materials with the formation energy less than or
equal to 80 meV. Here, we use the tolerance of E < 80 meV/
atom to evaluate stability for two reasons: first, the MAE of
Model E is close to 0.08 eV/atom; second, this criterion is used
in previous study [44], which is further supported by the mat-
erials known to be stable in experiments. All predicted stable
Heulser alloys are listed in supplementary information (stacks.
iop.org/JPhysCM/32/205901/mmedia). By analyzing the com-
position of these materials as shown in figure 5, obviously, the
A-site atoms are more likely to be Cr, Mn, Fe, Co, Ru, Rh,
while the B-site atoms are mostly elements in the early trans-
ition metal.

It should be mentioned that 57 of these HSP stable mat-
erials have been investigated in the literature as HM or nearly
HM, and 18 materials are semiconductors. The model identi-
fies the semiconductor as HM mainly because nIT; and né of
the semiconductor are both 0. According to the formula, the
spin polarization is denoted as 1. Semiconductors and HMs
can be further classified in other ways. Subsequently, we per-
formed more systematic DFT calculations to investigate their
properties with different magnetic states. In the end, we found
6 promising HMs with a calculated half-metallic gap above
0.1eV, which are Co,NbAl, Fe,CrGe, Co,ScSi, Co,CrB,
Co,ZrAl and Co,ZrGa.

It is confirmed that Co,NbAl, Co,CrB, Co,ZrGa, Co,ZrAl,
and Co,ScSi behave FM ground state. As for Fe,CrGe
(figure 6(c)), although the electronic structure of FM state
shows half-metallic behavior with a half-metal gap size of
0.346¢V, it is found that the total energy of AFM Fe,CrGe is
energy favorable. However, it is found that the ground state
of Fe,CrGe could transform to the FM state under +1.61%
stress on a-axis, which means that Fe,CrGe may achieve half-
metallic ferromagnetism on the thin film due to the stress
induced by the substrate. It is needed to point out that the total
energy difference between the FM and AFM ground states of
Fe,CrGe is only 6.4 meV/atom, which is lower than the MEA
of energy ML model. Therefore, we do not consider using ML
model to determine whether FM or AFM state is more stable,
which would be distinguished after the screening process. The
method of distinguishing different magnetic states is expected
to be solved in future work.
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Figure 6. Band structure and DOS of Co,NbAl, Co,CrB and Fe,CrGe by first-principle electronic structure calculations. The left panel
shows the band structure of the minority spin channel and the right one displays the majority spin channel. The left side of middle panel
shows the PDOS of the minority spin channel and the right one is majority spin channel. The zero energy is assigned to the Fermi level.

Table 4. The ground state, half-metallic gap and Curie temperature (7¢) of the six half-metal Heusler alloys are provided by DFT
calculations. The formation energy ( Egom, ) are obtained from OQMD, and Eform—mz is predicted by Model E. Note: the estimated T¢ of
Fe,CrGe responds to a distorted structure with FM states with +1.61% stress on a-axis.

EForm—mL
Name Ground state Gap (eV) Tc (K) Egorm (eV/atom) (eV/atom)
Co,NbAI FM 0.594 671 —0.424 —0.401
Co,CrB FM 0.385 1066 0.134 0.011
Fe,CrGe AFM 0.346 393 —0.041 —0.052
Co0,ScSi FM 0.223 255 —0.589 —0.582
Co,ZrAl FM 0.163 649 —0.520 —0.511
Co0,ZrGa FM 0.113 584 —0.440 —0.450
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For Co,NbAl and Co,CrB, with the assistance of DFT
calculations, they indicate a good half-metallic FM ground
states. Their half-metallic gaps are 0.594 and 0.385eV,
respectively, which are comparable to the famous HM,
Co,MnSi [15]. The spin-polarized band structures and partial
density of states (PDOS) are shown in figure 6. The PDOS of
majority spin channel is metallic, while minority spin channel
is semiconductor-like around the Fermi level, showing the
half-metallic behavior. As for Co,NbAI, the valence band
maximum (VBM) in the minority-spin band is located
at —0.477eV and the conduction band minimum (CBM)is
at 0.117eV at G point, thereby the gap is 0.594eV. As we
known, GGA often underestimates the width of the band gap
[45], therefore the gap of Co,NbALI should be bigger than the
calculated value. We have highlighted the PDOS of Co d, Nb
d and Al p electrons for Co,NbAl. Below the Fermi energy,
the total densities of states (TDOS) are predominantly due to
Co d electrons and Co atoms have the principle contribution to
the total DOS. As for Co,CrB, VBM is located at —0.202eV
and CBM is at 0.183 eV, thereby the gap is 0.385eV. As shown
in table 4, we found that the formation energy of Co,CrB is
0.134eV/atom in OQMD , which means it is very likely to be
decomposed in nature. This result largely limits the applica-
tion of Co,CrB.

Furthermore, the magnetic exchange interactions could be
calculated by mapping the total energy of different magnetic
states into a Heisenberg model, further used to estimate the
critical temperature:

H= —%:Jijsi-s, 5)

where S; and §; are the spin vectors of Co, Cr ions at the sites
i and j in the case of CooNbAL. Jj; is the exchange interaction
between the nearest-neighbor spin pair. The J;; was calculated
using the energy difference of three different magnetic struc-
tures [FM; AFM-1(100); AFM-2(110)]:

Epvt = Eo — 32Jco-NbScoSnb — 24Jco—coScoSco;  (6)
Earv-1 = Eo — 8Jco—coScoScos (7

Earm-2 = Eo + 8Jco—coScoSco- (8)

Then, T¢ can be estimated within the mean-field approx-
imation (MFA) by solving the equation [46, 47]:

Si(S,' + 1)
(85) = WZJU (S5)- )
j
The T¢ is given by the largest eigenvalue of the matrix
S,‘(S,‘ + 1)
0= =5 — 2 i (10)

here kg is the Boltzmann constant. The estimated T¢ results
are listed in table 4, in where it is found that the T of Co,CrB
is as high as 1066 K, followed by Co,NbAI at 671 K. There
must be some differences between the 7 calculated by the
MFA and the experimental measurement, but such high value
implies that the actual 7¢ should be much higher than room
temperature. Therefore Co,NbAl would be a promising FM

HM for spintronics application. The T¢ of Co,ZrAl, Co,ZrGa,
Fe>CrGe and Co,ScSi are 649 K, 584 K, 393 K and 255 K,
respectively. Although the ground state of Fe,CrGe is AFM,
the magnetic ground state change generated by the strain
might be also a little attractive for applications.

Note that we became aware of similar studies in [48]
showing Co,NbAl and Co,ZrAl are Half-metallic ferromagnet.

4. Conclusions

To summarize, we have carried out an efficient ML workflow
based on DNN for searching thermodynamic stable HSP fer-
romagnet in Heulser alloys. We used DNN models to screen
10577 candidate materials and then obtained 192 potentially
stable and HSP materials. In addition, Co,NbAl, Fe,CrGe,
Co,CrB, Co,ScSi, Co,ZrAl and Co,ZrGa were found to have
half-metallic property, which are carefully evaluated using sys-
tematically DFT calculations. Moreover, some of them might be
potential candidates for spintronic application as its T¢ is esti-
mated to be much higher than room temperature. In conclusion,
our approach based on data of material databases and DNN pro-
vides an effective way for discovering the superior half-metallic
ferromagnet, which could be applied to other structural families,
opening up further possibilities for the discovery of innovative
functional materials. In future work, we also encourage the
exploration of novel materials using more interpretable machine
learning methods to compose similar workflow, such as Random
Forests, k-Nearest Neighbor and Kernel Ridge Regression.

5. Data availability

The data sets generated during and/or analyzed during the
current study are available from the corresponding author on
reasonable request.

6. Code availability

The codes used for preprocessing, model training, and invoca-
tion are available from the corresponding author on reason-
able request.
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