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1.  Introduction

Considerable interest is now devoted to the search for novel 
ferromagnetic (FM) materials suitable for application in spin-
tronics [1, 2]. For effective spin injection of semiconductors, 
these materials usually possess a very high spin polarization 
(HSP) of the electron states [3, 4], especially half-metal with 
100% spin polarization at the Fermi level (PF = 1), such as 
some Heusler alloys [5], zinc-blende structure compounds 
[6], CrO2 [7] and Fe3O4 [8]. Meanwhile, these materials must 
have a Curie temperature (TC) noticeably higher than the 

room temperature to be compatible with the semiconductors 
used in industry [9]. Of them all, Heusler alloys are attractive 
materials with various fantastic properties such as supercon-
ductor, topological insulators, Kondo systems and heavy-Fer-
mion behavior [10–13]. In particular, many half-metals (HM) 
with high TC, which even more than several hundred degrees 
above room temperature [14, 15], have been found in Heusler 
alloys, thus always attracted extensive attention.

Exhausting investigations have been carried out in the 
past several decades, then many excellent ferromagnetic 
Heulser alloys had been excavated. Recently, Sanvito et  al 
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systematically studied the thermodynamical stability and 
magnetic properties of Heusler alloys made of transition 
metals with the assist of high throughput calculations to 
search high TC compounds [16]. Obviously, expensive com-
puting resources should be needed in order to screen all candi-
date materials due to the exponentially increasing complexity 
with a variety of chemical compositions. In fact, there are 
already many efforts underway, which have led to a boom 
in very useful materials science databases such as materials 
project [17], AFLOWlib [18], and OQMD [19]. In spirit of 
statistical learning or machine learning (ML), the leading 
paradigm is that, incorporating with first-principles compu-
tational methods, such as density functional theory (DFT), 
researchers populate and analyze the computational materials 
databases and the massive data from published literature to 
screen candidate materials for target properties, which signifi-
cantly reduced the computing cost [20–22].

So far, machine learning as an effective method has been 
attracting much attention in the field of material science. For 
example, Kernel ridge regression as an efficient regression 
model is used to estimate molecular energy [23] and find 
density functional [24]; Random forest method [25, 26] and 
support vector machine [27] were as used to judge the mat
erial structure. At the same time, the ML methods based on 
deep neural network (DNN) are also prominent, from finding 
atomic topology in crystals [28] to analyzing complex reaction 
networks to guide experimental design [29], and predicting 
crystal stability [30, 31], although it is less interpretable than 
other methods. These reveal that DNN has fantastical success 
due to robust feature extraction and function fitting ability, 
thus it may help us achieve mass data analysis and search for 
emerging materials rapidly [17, 32, 33]. However, the dis-
covery of stable HSP ferromagnet in this way has not been 
reported yet.

In this paper, we design a workflow composed of multiple 
DNN models to predict lattice constants, formation energy 
and spin polarization, as illustrated with figure 1, which are 
utilized to search for stable HSP materials. The reason for 
using three models here is because they have different char-
acteristics, which are also necessary to implement in different 
training sets and validation sets. Firstly, if an alloy is expected 
to form in the desired structure, it is necessary to verify the 
lattice constants with high precision by comparing it with the 
database of x-ray after experimentally synthesized or the DFT 
calculated data. Secondly, the formation energy is essential 
to the synthesis and stability of materials, but it is not easy to 
obtain formation energy data through experimental methods, 
and calculation of formation energy is also complex. If we can 
predict the formation energy of materials, excluding materials 
that cannot be synthesized can greatly reduce the search scope 
of materials with high spin polarization. Thirdly, the spin 
polarization PF is much hard to obtain experimentally, but it 
could be easily extracted from first-principle DFT calculation. 
Meanwhile, despite the exploding growth of the number of 
compiled entries of computational materials database cur
rently, rarely materials have been known for the information of 
PF. Therefore an independent data set via first-principle DFT 
calculations has to be constructed for training and testing.

We only focused on the A2BC trinary compounds, which 
consist of full-Heusler and inverse Heusler structure, shown 
in figures 2(a) and (b). The input required for the entire work-
flow is also terse, which only includes the name of the three 
elements that make up the Heusler alloy. Finally, there were 
192 stable HSP materials were figured out in 10 577 materials. 
Furthermore, with the assistance of first-principles calculation 
by DFT, 6 alloys were identified to behave half-metallic and 
were discussed in detail. The paper is organized as follows: in 
section 2, we present the details of our methods. The source 
of data set is described in the section 2.1. The parameters set-
ting of the DNN training and the descriptors are described in 
section 2.2. The calculation details of the first principle calcul
ation are given in the section 2.3. In section 3.1, the accuracy 
of three DNN models is analyzed and the process of searching 
HSP and HM materials using DNN models is presented. Then 
the results and discussions are presented in section 3.2.

2.  Method

2.1.  Introduction of data set

In this work, we used many data sets, and detailed information 
about their sources and roles can be found in table 1. The first 
data set comprise 10 577 candidate materials, which initially 
contain only the name of materials, and are needed to predict 
their lattice constant, formation energy and spin polarization 
via DNN models. A- and B-site atoms are 3d, 4d, 5d trans
ition metals excluding radioactive elements, and used Al, Si, 
P, S, Mg, Ar, Ga, Ge, As, Se, B, In, Sn, Sb as the C-site atoms. 
These elements consist of the target area of the Periodic 
table  that we are interested in, in which we attempt to find 
stable HSP ferromagnets.

Next, approximately 65 000 Heusler alloys were collected 
from the open quantum materials database (OQMD) [19], 
including the information about the structure and formation 
energy. There are certain criteria for the selection of the three 
elements that make up the Heusler alloys, which A- and B-site 
atoms from 3d, 4d, 5d periods and C-site atoms from groups 
III–VI. However, we excluded hydrogen and inert gas ele-
ments that are considered difficult to form stable compounds. 
Also, radioactive lanthanides and actinides elements are not 
included. The collection conditions of this data set appear to 
be similar to the data set of 10 577 materials, but the content 
is quite different. We get 65 000 materials data based on these 
conditions, but the random combination is not sure to find the 
corresponding material in the database. However, for the data 
set of 10 577 materials, we can determine a material based on 
the random combination. Therefore, among 65 000 materials, 
only 1506 materials overlapped with 10 577 candidate mat
erials, which were removed in the training process and used 
for comparing with the predicted results of the model, and 
nearly 9000 of the 10 577 materials were not found in the data 
set of 65 000 materials.

Furthermore, we prepared a data set containing 3450 mat
erials to train the model of spin polarization. We selected 17 
transition metals as A- or B-site atoms, including Sc, Ti, V, Cr, 
Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, and the 
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selection of C- site atom is the same as the previous candidate 
materials data set. The data set is derived from the results of 
first-principle spin-polarized calculation, and details would be 
introduced in the following. To verify the spin polarization 
model, we randomly selected 119 materials as test set from 
10 577 materials and obtained their PF via the first-principle 
calculation.

The full-Heusler alloy crystallizes in the cubic space group 
Fm-3m (space group No.225) with Cu2MnAl (L21) as the 
prototype. The A-site atoms occupy the Wyckoff position 8c 
(1/4, 1/4, 1/4), the B- and C-site atoms are located at 4a (0, 
0, 0) and 4b (1/2, 1/2, 1/2), respectively (figure 2(a)). Inverse 
Heusler structure is still described by four interpenetrating 
fcc sublattices, and A-site atoms are placed on the Wyckoff 
positions 4a (0, 0, 0) and 4d (3/4, 3/4, 3/4), while the B- and 
C-site atoms are located at 4b (1/2, 1/2, 1/2) and 4c (1/4, 1/4, 
1/4), respectively (figure 2(b)). Although the data set include 
both the full-Heusler and inverse Heusler alloys, unfortu-
nately, our model could not distinguish the structure during 
the training process, since the discrepancy of the formation 
energy between two structures is often quite tiny. Thus, we 
only distinguish the structure after capturing a stable HSP 
ferromagnet.

2.2.  Details of DNN model

As shown in table 2, we selected some descriptors as model’s 
inputs. Descriptors are derived from the atomic information 
of the elements that make up the material and do not require 
any first-principle calculations. The selection of descriptors 
is based on previous researches [23, 26, 34] or semi-empir-
ical approaches. For example, the atomic number should be 

important for the prediction of the lattice constant, while the 
electronegativity and unit cell size would significantly influ-
ence on the formation energy.

We design three models according to the different char-
acteristics of prediction properties, and they have different 
descriptors: (a) We get the first model that can predict the 
value of lattice constant by using the atomic number, the 
number of core electron, the number of s-orbital electron and 

Figure 1.  Our workflow for models training and searching HSP Heusler alloys. (a) The data for training the first and second models comes 
from OQMD. The first model is used to predict lattice constant, and the second is used to predict formation energy. (b) The data for training 
the third model comes from high throughput calculation. The third model is used to predict spin polarization. (c) By screening candidate 
materials with spin polarization greater than 0.87 and formation energy less than 80 meV/atom, we found promising six half-metallic 
materials finally.

Figure 2.  The structure of Heusler alloy: (a) Heusler and (b) inverse 
Heusler structures, that created by VESTA. (c) Schematic diagram 
of multilayer fully connected neural network.
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the number of p- or d- orbital electron of the three elements 
that make up the Heusler alloy as the descriptors and lattice 
constants as labels. (b) The electronegativity of the atoms and 
lattice constant was added to the former descriptors, and the 
second model could predict the formation energy. (c) The 
atomic number, the number of core electron, the sum of the 
valence electrons of each atom and valence electron concen-
tration were selected as descriptors for the third model to pre-
dict spin polarization, which is the average number of valence 
electrons. In the preparation of the descriptor, we did not use 
the first-principles calculation, focusing on the simplest infor-
mation to complete the training.

Next, according to the structure of neural network, we will 
show how they are built and work. Three models are all neural 
networks composed of multiple fully connected hidden layers, 
as shown in figure  2(c). The input is made up of descrip-
tors for the three elements that make up the Heusler alloy, 
for example, X = (z1, e1, s1, p1, z2, ..., s3, p3) as the input of 
model for predicting lattice constants. Data were normalized 
by the Min-Max normalization method before the training 
began. The training data of each model were randomly 
divided into non-intersecting training sets and validation sets 
in proportions. The objective of model training is to minimize 

the loss function L(ypred, ytrue), where ytrue represents the true 
labels and ypred represents the predicted ones. We chose the L2 
regular loss function, which is the sum of the squares of the 
between the true value and the predicted value.

L =

n∑
i=1

(ypred − ytrue)
2.� (1)

f (xi,j) = h(
ni∑

j=1

wi−1,jf (xi−1,j) + bi−1,j).� (2)

Equation (2) is the calculation formula of the neuron j  in the 
hidden layer i. h(y) is activation function, wi−1,j is the weight 
of the upper neuron, and bi−1,j is bias. The deep neural net-
works are implemented by the TensorFlow platform. The 
tf .random_normal  function is used to initialize the network 
parameters (w and b) according to the normal distribution, 
and network parameters are optimized by Backpropagation to 
minimize the loss function on the training data. We use the 
AdamOptimizer [35] provided by TensorFlow to control the 
learning speed. The activation function h(y) is rectified linear 
(ReLu) activation functions. Each network is trained until the 
loss function evaluated on the validation set fails to decrease 
after some training epochs. More detail about three models, 
such as the number of layers and nodes of the neural network, 
batch size and learning rate, are presented in table 3.

2.3.  Details of DFT computation

The first-principle calculations were performed using density 
functional theory (DFT) method with projector augmented 
wave (PAW) [36] pseudopotentials implemented in Vienna 
ab initio simulation package (VASP) [37]. We select the gen-
eralized-gradient approximation Perdew–Burke–Ernzerhof 
(GGA-PBE) as exchange-correlation functional [38] and use 
a k-mesh of 12 × 12 × 12. The plane wave cutoff energy is set 
to 400 eV. Atomic positions were fully relaxed until the energy 
and force were converged to 10−6 eV and 10−4 eV Å

−1
. In 

addition, a much dense k-mesh of 20 × 20 × 20 was used to 
the self-consistent calculations when dealing with six prom-
ising half-metallic materials.

Table 2.  Descriptors of DNN model. The descriptors using in the 
first model are a, b, c, d and e. When training the second model, the 
descriptors are a, b, c, d, e and h. The third model uses a, b, e, f and 
g.

Descriptors Symbol

a Atomic number z1, z2, z3
b The number of core electron e1, e2, e3
c The number of s-orbital 

electron
s1, s2, s3

d The number of p- or d- 
orbital electron

p1, p2, p3

e Electronegativity ele1, ele2, ele3
f The sum of the valence 

electrons
ve1,ve2, ve3

g Valence electron 
concentration

n

h Lattice constant a

Table 1.  The data set used in this work.

Size Source Purpose Caption

a 64 935 OQMD Model training A- and B-site atoms from 3d, 4d, 5d periods and 
C-site atoms from groups III–VI

b 3450 DFT Model training A- or B- site atoms include Sc, Ti, V, Cr, Mn, Fe, 
Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, and 
used Al, Si, P, S, Mg, Ar, Ga, Ge, As, Se, B, In, Sn, 
Sb as the C-site atoms

c 10 577 By ourselves Search for HM This database only contains the names of material. 
A- and B-site atoms are 3d, 4d, 5d transition metals 
excluding radioactive elements, and Al, Si, P, S, 
Mg, Ar, Ga, Ge, As, Se, B, In, Sn, Sb as C-site 
atoms

d 1506 OQMD Test set The overlap of set a and set c
e 119 DFT Test set Randomly selected from 10 577 materials

J. Phys.: Condens. Matter 32 (2020) 205901
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3.  Results and discussion

3.1.  Performance of models

For different targets, we chose three models that performed 
best during training to further evaluate their predictive perfor-
mance, named Model A, Model E and Model P. The value of 

the Pearson correlation coefficient (Pearson’s R) is considered 
a score for the predictive performance of the three models, 
showing the correlation between the predicted value and the 
real value of a random test sample set. Pearson’s R of Model 
A, Model E and Model P are 0.99, 0.98 and 0.94, respectively. 
As shown in figure 3, the value of the validation loss function 
is always lower than the training loss function, and decreases 

Figure 3.  The value of Train- and Validation- loss function vary with generation number: (a) Model A; (b) Model E; (c) Model P. (d) The 
absolute error distribution of Model P.

Table 3.  Neural network structure and training information of three models.

Details Model A Model E Model P

Structure Type Neural Network (NN) NN NN
Input 
(Descriptors)

z1, e1, s1, p1, eg1, z2, e2, s2, p2, 
eg2, z3, e3, s3, p3, eg3

z1, e1, s1, p1,eg1, z2, e2, s2, p2,  
eg2, z3, e3, s3, p3, eg3,a

z1, e1, ve1, eg1, z2, e2, 
ve2, eg2, z3, e3, ve1, 
eg3, n

Number of hidden 
layers

5 7 5

Number of nodes 150, 120, 90, 45, 15 200, 180, 160, 120, 90, 45, 25 50, 100, 90, 45, 15
Output Lattice constant Formation energy Spin polarization
Activation 
function

ReLu ReLu ReLu

Loss function L2 L2 L2
Train Data set size ∼63 000 ∼63 000 3450

Split train/
validation set

99%/1% 99%/1% 99%/1%

Validation set 634 634 34
Test set 1506 1506 119
Learning rate 0.001 0.001 0.001
Batch size 120 100 50

J. Phys.: Condens. Matter 32 (2020) 205901
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with the increase of generation number, which means that 
their training process are not overfitting. When the loss func-
tion reduces to a value and does not change after some gen-
erations to make sure that each sample is trained, the training 
process stops.

Next, we need to further evaluate the accuracy of these 
models. Figure  4 reveals the effectiveness of Model A and 
Model E in validation set and test set. The predicted results 
by ML were compared with the results of validation set 
(including 634 materials) and test set (including 1506 mat
erials), and more information about data set can be found in 
tables  1 and 3. As can be observed in figures  4(a) and (b), 
Model A and Model E performed well in validation set, and 
this is the result of the last generation of the training process. 
The MAE of Model A is 0.07 ̊A , MAE of Model E is 0.069 eV/
atom. The robustness and accuracy of model training may not 
be fully demonstrated only by analyzing validation set, so we 
also used a larger test set including 1506 materials. These data 
are overlaps between candidate materials and 65 000 materials 
in OQMD, which are eliminated during training and used for 
testing the performance of model. As shown in figures 4(c) 
and (d), the MAE of Model A rose slightly to 0.12 Å , that 
of Model E also rose to 0.085 eV/atom. In previous studies 
[28], the average absolute error range of prediction formation 
energy was in the range of 0.04–0.08 eV/atom. Our Model 
E is not prominent, but given the brevity of the descriptors 

used, the result seems acceptable. It is worth mentioning that 
Kirklin et  al [19] reports that the MAE of the DFT calcul
ation with respect to experimental measurements in OQMD 
is 0.081–0.136 eV/atom depending on whether the energies of 
the elemental reference states are fitted.

How to determine the stability of the material is the main 
problem to be solved in the screening of a large number of 
candidate materials. A common criterion [39] for stability is 
the difference between the total energy of the compound and 
that of its elementary constituents is less than 0:

EA2BC =
ETOT − 2EA − EB − EC

4
.� (3)

In fact, A2BC can be broken down into stabler binary or 
ternary compounds, so the most rigorous way is to con-
struct a ternary convex hull diagram. It takes about 10 000 
prototypes to construct a phase diagram of a binary alloy 
information diagram, and at least 30 000 to construct a 
ternary alloy [16, 40]. Considering that we need to screen 
a large number of materials, it is impossible to carry out 
such a huge amount of calculations. In addition, the record 
of convex hull energy in various databases is limited, so 
we still choose formation energy as a criterion for thermal 
stability. Perhaps after narrowing down the scope of the 
search, we can use the existing database for further ana-
lyzing convex hull energy.

Figure 4.  Comparison of lattice constants from OQMD and ML in validation set (a) and test set (c). Comparison of formation energy from 
OQMD and ML in validation set (b) and test set (d).

J. Phys.: Condens. Matter 32 (2020) 205901
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Now, we begin to analyze the performance of Model P. 
Spin polarization [41–43] reflects the ability of a metal to 
maintain spin-polarized currents. The spin polarization of 
3450 materials was calculated based on DFT using the fol-
lowing equation:

PF =
n↑F − n↓

F

n↑F + n↓
F

� (4)

wherein nσF(σ =↑, ↓) is the density of state at the Fermi level, 
and the up and down arrows indicate different spin direc-
tions. We got the third model by training the spin polarization 
of 3450 materials until the loss function value drops below 
0.005, and remains stable within 500 generations without 
over-fitting as shown in figure 3(c). At the same time, the cor-
relation coefficient of test results was 0.94. We also used a data 
set containing 119 materials to verify the model and got the 
absolute error distribution diagram (figure 3(d)). The MAE of 
the model is 0.13, which is one of the reasons why we set the 
screening value of HSP materials as 0.87. Because of HM has 
100% spin polarization (PF = 1), the search cut-off of high 
spin-polarization materials was set to 0.87 to ensure that as 
much HM materials were found as possible. The process of 
searching HSP or HM materials is accelerated by checking 
the value of PF.

3.2.  Discovery of high spin polarization ferromagnets

Different from those high-throughput screening methods in 
which the whole chemical space should be searched at DFT 
level, we developed ML and DFT combined scheme only needs 
to compute the most promising candidate at DFT level, which 
greatly saves the computational resources. With these trained 
models, the stable HSP materials could be discovered in any 
target data set, including 10 577 candidates in our case. As 
shown in figure 1(c), the lattice constants of all materials were 
predicted firstly, further the predicted results were added to 
the second model as new descriptors to forecast the formation 
energy, which benefits from the small MAE of model A. The 
spin polarization of candidate materials are given by Model P. 
Finally, we found 238 of all candidate materials with PF > 0.87, 

and 192 stable materials with the formation energy less than or 
equal to 80 meV. Here, we use the tolerance of E � 80 meV/
atom to evaluate stability for two reasons: first, the MAE of 
Model E is close to 0.08 eV/atom; second, this criterion is used 
in previous study [44], which is further supported by the mat
erials known to be stable in experiments. All predicted stable 
Heulser alloys are listed in supplementary information (stacks.
iop.org/JPhysCM/32/205901/mmedia). By analyzing the com-
position of these materials as shown in figure 5, obviously, the 
A-site atoms are more likely to be Cr, Mn, Fe, Co, Ru, Rh, 
while the B-site atoms are mostly elements in the early trans
ition metal.

It should be mentioned that 57 of these HSP stable mat
erials have been investigated in the literature as HM or nearly 
HM, and 18 materials are semiconductors. The model identi-
fies the semiconductor as HM mainly because n↑

F and n↓
F of 

the semiconductor are both 0. According to the formula, the 
spin polarization is denoted as 1. Semiconductors and HMs 
can be further classified in other ways. Subsequently, we per-
formed more systematic DFT calculations to investigate their 
properties with different magnetic states. In the end, we found 
6 promising HMs with a calculated half-metallic gap above 
0.1 eV, which are Co2NbAl, Fe2CrGe, Co2ScSi, Co2CrB, 
Co2ZrAl and Co2ZrGa.

It is confirmed that Co2NbAl, Co2CrB, Co2ZrGa, Co2ZrAl, 
and Co2ScSi behave FM ground state. As for Fe2CrGe 
(figure 6(c)), although the electronic structure of FM state 
shows half-metallic behavior with a half-metal gap size of 
0.346 eV, it is found that the total energy of AFM Fe2CrGe is 
energy favorable. However, it is found that the ground state 
of Fe2CrGe could transform to the FM state under ±1.61% 
stress on a-axis, which means that Fe2CrGe may achieve half-
metallic ferromagnetism on the thin film due to the stress 
induced by the substrate. It is needed to point out that the total 
energy difference between the FM and AFM ground states of 
Fe2CrGe is only 6.4 meV/atom, which is lower than the MEA 
of energy ML model. Therefore, we do not consider using ML 
model to determine whether FM or AFM state is more stable, 
which would be distinguished after the screening process. The 
method of distinguishing different magnetic states is expected 
to be solved in future work.

Figure 5.  The distribution of components of high spin polarization materials in the Periodic Table of Elements, predicted by the DNN model. 
The A-site atoms are more likely to be Cr, Mn, Fe, Co, Ru, Rh, while the B-site atoms are mostly elements in the early transition metal.

J. Phys.: Condens. Matter 32 (2020) 205901
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Figure 6.  Band structure and DOS of Co2NbAl, Co2CrB and Fe2CrGe by first-principle electronic structure calculations. The left panel 
shows the band structure of the minority spin channel and the right one displays the majority spin channel. The left side of middle panel 
shows the PDOS of the minority spin channel and the right one is majority spin channel. The zero energy is assigned to the Fermi level.

Table 4.  The ground state, half-metallic gap and Curie temperature (TC) of the six half-metal Heusler alloys are provided by DFT 
calculations. The formation energy (EForm) are obtained from OQMD, and EForm−ML  is predicted by Model E. Note: the estimated TC of 
Fe2CrGe responds to a distorted structure with FM states with ±1.61% stress on a-axis.

Name Ground state Gap (eV) TC (K) EForm  (eV/atom)
EForm−ML  
(eV/atom)

Co2NbAl FM 0.594 671 −0.424 −0.401
Co2CrB FM 0.385 1066 0.134 0.011
Fe2CrGe AFM 0.346 393 −0.041 −0.052
Co2ScSi FM 0.223 255 −0.589 −0.582
Co2ZrAl FM 0.163 649 −0.520 −0.511
Co2ZrGa FM 0.113 584 −0.440 −0.450
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For Co2NbAl and Co2CrB, with the assistance of DFT 
calculations, they indicate a good half-metallic FM ground 
states. Their half-metallic gaps are 0.594 and 0.385 eV, 
respectively, which are comparable to the famous HM, 
Co2MnSi [15]. The spin-polarized band structures and partial 
density of states (PDOS) are shown in figure 6. The PDOS of 
majority spin channel is metallic, while minority spin channel 
is semiconductor-like around the Fermi level, showing the 
half-metallic behavior. As for Co2NbAl, the valence band 
maximum (VBM) in the minority-spin band is located 
at  −0.477 eV and the conduction band minimum (CBM)is 
at 0.117 eV at G point, thereby the gap is 0.594 eV. As we 
known, GGA often underestimates the width of the band gap 
[45], therefore the gap of Co2NbAl should be bigger than the 
calculated value. We have highlighted the PDOS of Co d, Nb 
d and Al p  electrons for Co2NbAl. Below the Fermi energy, 
the total densities of states (TDOS) are predominantly due to 
Co d electrons and Co atoms have the principle contribution to 
the total DOS. As for Co2CrB, VBM is located at  −0.202 eV 
and CBM is at 0.183 eV, thereby the gap is 0.385 eV. As shown 
in table 4, we found that the formation energy of Co2CrB is 
0.134 eV/atom in OQMD , which means it is very likely to be 
decomposed in nature. This result largely limits the applica-
tion of Co2CrB.

Furthermore, the magnetic exchange interactions could be 
calculated by mapping the total energy of different magnetic 
states into a Heisenberg model, further used to estimate the 
critical temperature:

H = −
∑

ij

JijSi · Sj,� (5)

where Si and Sj  are the spin vectors of Co, Cr ions at the sites 
i and j  in the case of Co2NbAl. Jij is the exchange interaction 
between the nearest-neighbor spin pair. The Jij was calculated 
using the energy difference of three different magnetic struc-
tures [FM; AFM-1(1 0 0); AFM-2(1 1 0)]:

EFM = E0 − 32JCo–NbSCoSNb − 24JCo–CoSCoSCo;� (6)

EAFM-1 = E0 − 8JCo–CoSCoSCo;� (7)

EAFM-2 = E0 + 8JCo–CoSCoSCo.� (8)

Then, TC can be estimated within the mean-field approx
imation (MFA) by solving the equation [46, 47]:

〈Sz
i 〉 =

Si(Si + 1)
3kBT

∑
j

Jij
〈
Sz

j

〉
.� (9)

The TC is given by the largest eigenvalue of the matrix

Θij =
Si(Si + 1)

3kB

∑
Jij� (10)

here kB is the Boltzmann constant. The estimated TC results 
are listed in table 4, in where it is found that the TC of Co2CrB 
is as high as 1066 K, followed by Co2NbAl at 671 K. There 
must be some differences between the TC calculated by the 
MFA and the experimental measurement, but such high value 
implies that the actual TC should be much higher than room 
temperature. Therefore Co2NbAl would be a promising FM 

HM for spintronics application. The TC of Co2ZrAl, Co2ZrGa, 
Fe2CrGe and Co2ScSi are 649 K, 584 K, 393 K and 255 K, 
respectively. Although the ground state of Fe2CrGe is AFM, 
the magnetic ground state change generated by the strain 
might be also a little attractive for applications.

Note that we became aware of similar studies in [48] 
showing Co2NbAl and Co2ZrAl are Half-metallic ferromagnet.

4.  Conclusions

To summarize, we have carried out an efficient ML workflow 
based on DNN for searching thermodynamic stable HSP fer-
romagnet in Heulser alloys. We used DNN models to screen 
10 577 candidate materials and then obtained 192 potentially 
stable and HSP materials. In addition, Co2NbAl, Fe2CrGe, 
Co2CrB, Co2ScSi, Co2ZrAl and Co2ZrGa were found to have 
half-metallic property, which are carefully evaluated using sys-
tematically DFT calculations. Moreover, some of them might be 
potential candidates for spintronic application as its TC is esti-
mated to be much higher than room temperature. In conclusion, 
our approach based on data of material databases and DNN pro-
vides an effective way for discovering the superior half-metallic 
ferromagnet, which could be applied to other structural families, 
opening up further possibilities for the discovery of innovative 
functional materials. In future work, we also encourage the 
exploration of novel materials using more interpretable machine 
learning methods to compose similar workflow, such as Random 
Forests, k-Nearest Neighbor and Kernel Ridge Regression.

5.  Data availability

The data sets generated during and/or analyzed during the 
current study are available from the corresponding author on 
reasonable request.

6.  Code availability

The codes used for preprocessing, model training, and invoca-
tion are available from the corresponding author on reason-
able request.
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