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1.  Introduction

Topological states of matter have become one of the most 
studied topics for several years. A topological insulator (TI) 
is characterized by gapped bulk states and gapless boundary 
states or edge states. Time reversal symmetry (TRS) breaking 
TI’s are known as Chern insulator [1], where each energy 
band is associated with a definite Chern number [2], while 
time reversal invariant TI’s are characterized by a nontrivial 
Z2 invariant [3]. Bulk-boundary-correspondence (BBC) rule 
[4, 5] determines the relation between the bulk and boundary 
properties of such systems and gives topological protection to 
the edge states. Also, there are topological crystalline insula-
tors [6], where mirror Chern number acts as the topological 
index.

Recently, the concept of higher order TI’s (HOTI) [7–12] 
has been introduced where a d dimensional nth order TI 
shows (d − n) dimensional boundary states contrary to the 
conventional or first order TI’s when n  =  1. For instance, 

a two-dimensional second order TI (SOTI) will show zero-
dimensional corner states but will not show one-dimensional 
gapless edge states [13–21]. In those HOTI’s, the conven-
tional BBC rule may not be applicable. Obviously, different 
types of topological invariants like polarization [13], ZQ Berry 
phase [21, 22], nested Wilson loop [8], mirror Chern number 
[14] etc have been introduced depending on the symmetry of 
the system to characterize the topological property of the bulk. 
Origin of lower dimensional edge states can be attributed to 
quantization of dipole or quadrupole moment as observed in 
two-dimensional phononic and electric quadrupole topolog-
ical insulators [7, 23, 24].

In recent times, besides electronic TI, topological magnon 
insulators (TMI) [25] are being studied, where the quasipar-
ticle excitation (magnon) is bosonic in nature. It has been 
known that the topological nature of a system is independent 
of the statistics of the quasiparticles. Topological magnons 
are found before in honeycomb lattice [26, 27], kagome lat-
tice [25, 28], Lieb lattice [29], etc. Those topological phases 
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have been experimentally observed in kagome ferromagnets, 
Lu2V2O7 [30, 31], Cu(1,3-benzenedicarboxylate (bdc)) [32], 
and honeycomb ferromagnet, CrI3 [33]. Topological magnons 
give rise to thermal magnon Hall effect (MHE), in which a 
temperature gradient transports a dissipationless heat current 
which has been verified experimentally [34]. Generally, in 
those spin systems, ferromagnetic (FM) Heisenberg model is 
considered where Dzyaloshinskii–Moriya interaction (DMI) 
is incorporated to trigger non-zero berry curvature. Spin 
models without DMI have also been shown to possess non-
trivial topology. For example, FM Heisenberg models with 
Kitaev and spin-anisotropic interactions (HKSA) are found 
to host a number of topological phases [35, 36]. Thus, topo-
logical magnons have promising applications in the field of 
dissipationless spin transport, magnon spintronics and magn
etic data storage.

On the other hand, HOTI’s have been studied so far in fer-
mionic systems in terms of tight-binding models on square 
and cubic lattice [7–9, 12], breathing kagome [13, 37], pho-
tonic systems [19, 38], non-Hermitian systems [16], etc. In 
addition, Kitaev model on Shastry–Sutherland lattice and 
magnetic vortex model on kagome lattice exhibit HOTI phases 
[17, 18]. Higher order topological Mott insulating phase has 
been demonstrated in a Hubbard model on the kagome lattice, 
where the topological state is characterized by Z3 spin-Berry 
phase [39]. Besides, SOTIs have been experimentally realized 
using quantized dipole or quadrupole polarization [23, 24] and 
implemented in mechanical systems [23], electrical circuits 
[40], microwave systems [41], photonic [42] and phononic 
crystals [37]. However, no report on higher order topological 
phase in the FM Heisenberg systems is available till date.

In this work, we focus on the realization of second order 
topological magnon insulating (SOTMI) phase in a spin 
system with and without DMI. Here, FM Heisenberg model 
is formulated on the breathing kagome lattice in the presence 
of DMI along the nearest neighbor (NN) bonds. The system 
reveals the existence of simultaneous first and second order 
TMI phases in different parameter regimes when DMI is 
non-zero. When DMI is zero, only second order TMI can be 
realized as the Chern number (C), the first order topological 
invariant, is always zero for all the bands. In other case, polari-
zation is used as the bulk topological index to characterize the 
HOTI phase due to the mirror symmetry of the system [13]. 
So, polarization plays the crucial role to distinguish between 
the nontrivial and trivial SOTI phase in the same way C distin-
guishes between the nontrivial and trivial TMI phases in case 
of first order. One dimensional gapless edge states are found 
for nontrivial TI phase, while gapped edge states along with 
zero dimensional corner states are found for nontrivial SOTMI 
phase. For certain values of DMI strength, both type of phases 
are found to exist simultaneously. Transition between dif-
ferent topological phases are shown in the parameter-space. 
In addition, thermal Hall conductivity is calculated for all the 
TMI phases.

The article is organized in the following way. In section 2, 
breathing kagome lattice is described and the linear spin-wave 
Hamiltonian is formulated. We describe the topological phases 

for zero DMI strength in the following section 3. Topological 
phases for non-zero DMI strength are explained in the subse-
quent section 4. The values of thermal Hall conductivities are 
available in section 5. Finally, section 6 contains the discus-
sion along with the summary of the results.

2.  Formulation of Heisenberg Hamiltonian with DM 
interaction

A FM Heisenberg Hamiltonian is formulated on the breathing 
kagome lattice with DMI along NN bonds. Breathing kagome 
lattice is composed of three identical triangular sublattices. 
As a result, the unit cell comprises of three sites A, B and C 
forming a downward triangle (figure 1). The spin operators on 
those three sites are denoted by Sa

n, Sb
n and Sc

n, respectively. 
The coordinates of a unit cell are denoted by n = (n1, n2). So, 
the Hamiltonian of this system can be written as

H = HNN + Hmag + HDM,� (1)

where

HNN = −Jα
∑
〈n,n′〉

(
Sa

n · Sb
n′ + Sb

n · Sc
n′ + Sc

n · Sa
n′

)
,

Hmag = −h
∑

n

(
Saz

n + Sbz
n + Scz

n

)
,

HDM = −Dα

∑
〈n,n′〉

(
Sa

n × Sb
n′ + Sb

n × Sc
n′ + Sc

n × Sa
n′

)
· ẑ.

Jα, α = 1 (2) is the NN exchange interaction strength 
between upward (downward) triangles and Dα, α = 1 (2) is 
the DMI strength, pointing towards z (−z) direction, between 
upward (downward) triangles. 〈·〉 denotes the summations 
over NN pairs. Considering the FM case, we fix Jα > 0 
throughout the paper. h = gµBH, where H is the strength of 
the external magnetic field along z direction, which helps to 

Figure 1.  A triangular replica of breathing kagome lattice is 
shown. Three sites A, B and C are denoted by green, blue and 
red spheres, respectively. The notation of the unit cells is also 
shown. The Heisenberg interaction strength is J1 for the red lines 
(upward triangles) and J2 for the blue lines (downward triangles). 
Considering DMI along z direction, coupling strength of two 
sites along the arrow will be J1 (J2) + iD1 (D2) and opposite 
to the arrow will be J1 (J2)− iD1 (D2). The lattice vectors, 
n1 = (1, 0), n2 = (1/2,

√
3/2) are shown in the side diagram.
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align the localized spins ferromagnetically along z direction 
when h is assumed greater than zero.

Now, based on the classical ground state in which all the 
spins point along the  +z direction, we obtain FM magnon dis-
persion relation by expressing the spin operators, Sη

n, in terms 
of bosonic creation (η†) and annihilation operators (η) by 
using the standard Holstein–Primakoff (HP) transformation:

Sηz
n = S − η†nηn, Sη+

n �
√

2S ηn, Sη−
n �

√
2S η†n,

where η = a, b and c for the respective sublattices A, B and 
C. Sη±

n = Sηx
n ± iSηy

n . Now, following linear spin wave theory 
(LSWT) and using Fourier transformation of the operators in 

the form ηn = 1√
N

∑
k ηkeik·n (N is the total number of unit 

cells in the lattice), the Hamiltonian in the momentum space 
can be written as

H = E0 + HSW ,� (2)

where E0 = −h
∑

n S − 3(J1 + J2)
∑

〈n,n′〉 S2, is the classical 
ground state energy. HSW can be written as (retaining terms 
only up to second order in bosonic operators)

HSW = S
∑

k

ψk
†M(k)ψk,� (3)

where k = (kx, ky), ψk = (ck, ak, bk) and M(k) is a 3 × 3 
matrix which is given by

M(k) =




m11 m12 m13

m∗
12 m22 m23

m∗
13 m∗

23 m33


 ,� (4)

with the components, mij, given by

m11 = m22 = m33 = 2(J1 + J2) + h/S,

m12 = −(J1 + iD1)− (J2 + iD2)e−ik1 ,

m13 = −(J1 − iD1)− (J2 − iD2)e−ik2 ,

m23 = −(J1 + iD1)− (J2 + iD2)ei(k1−k2),

�

(5)

where k1 = k · n1 = kx and k2 = k · n2 = kx/2 +
√

3ky/2. 
Magnetic field only appears in each of the diagonal terms of 
M(k) with a fixed value, h/S, which means that topological 
properties of this system are totally insensitive to the value 
of H. We have assumed a very small positive value of h only 
to ensure the FM ground state. As the Hamiltonian HSW is 
number conserving, the magnon dispersion relation can be 
obtained by diagonalizing it. The results are valid for any 
value of S, while accuracy increases with the magnitude of S.

3. Topological properties with zero DMI

While kagome ferromagnet (J1 = J2) is topologically trivial 
in the absence of DMI, FM breathing kagome (J1 �= J2) with 
zero DMI is found nontrivial. In this section, topological 
nature of the system will be discussed by studying both bulk 
and boundary properties of it in terms of suitable topological 
invariants to characterize them. Henceforth, the value of J2 
is fixed at unity while exploring the variation of topological 
phases with respect to the parameter J1. Three sets of bulk 
dispersion relation are shown in figures  2(a)–(c), where 
J1  =  0.2 for the region 0.0  <  J1  <  0.5, J1  =  0.7 for the region 
0.5  <  J1  <  1.0, and J1  =  1.0, respectively. Note that the upper-
most band is always flat and it touches the lower band at four 
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Figure 2.  Dispersion relation of breathing kagome system for zero DMI strength with J2  =  1 and (a) J1  =  0.2, (b) J1  =  0.7, (c) J1  =  1.0. 
Edge state diagram for finite lattice with 70 unit cells along k2 direction with same parameter values as the corresponding bulk band 
structures in the upper row. The diagrams (d)–(f) show the evolution of the in-gap edge modes (indicated by red lines) and depicts the way 
it affects the existence of corner states of the system. Density of states are shown in the side panel of each edge state diagram.

J. Phys.: Condens. Matter 32 (2020) 205601



A Sil and A K Ghosh﻿

4

corners of the Brillouin zone spanned by (k1, k2), which are 
essentially the equivalent points. At this moment, the system 
is an insulator at 1/3 filling as the lower two bands are sepa-
rated. The gap decreases with the increase of J1 and vanishes 
at J1  =  1.0. The gap again opens up for J1  >  1.0.

Below the bulk spectrum, we present the band structure 
of the corresponding finite strip of the system for every case. 
They are shown in figures 2(d)–(f). The finite strip is prepared 
by breaking the periodic boundary condition (PBC) along 
the k2 direction. In the region, 0.0  <  J1  <  0.5, two gapped 
edge modes are found to exist between the lower two gapped 
bands, which do not decay into the bulk anymore. These are 
the signature of corner states, as proved in the previous studies  
[13, 14]. For 0.5  <  J1  <  1.0, two edge modes are found to 
cross each other twice, without decaying into the bulk again. 
For J1 � 1.0, there are no such edge modes. From this edge 
state spectrum, it is confirmed that the system is topologically 
trivial in first order since there is no gap between the upper 
two bands in the region 0.0  <  J1  <  1.0. Instead, the system is 
found to host a nontrivial second order topological phase in 
the above region.

For the characterization of topological phases, bulk topo-
logical invariant has been formulated by following the pro-
cedure developed in the article [13]. In this formulation, a 
particular quantity, polarization along the ni axis is defined by

pi =
1
S

∫ ∫

1BZ
d2kAi,� (6)

where Ai = −i〈ψ|∂ki |ψ〉 is the Berry connection with i = 1, 2 
and S = 4π2 being the area of the first Brillouin zone (1BZ) 
spanned by k1 and k2. The set of polarization ( p1, p2) is iden-
tical to the coordinates of the Wannier center [13]. The dis-
tance of the Wannier center from the origin can be taken as the 
bulk topological invariant as it changes its value only if the gap 
closes. For simplicity, we take p 1 as the topological index as it 
is protected by the mirror symmetry along the n1 axis and it is 
also quantized. As we will see, it is non-zero in the topological 
phase and zero in trivial phase. It can be calculated analyti-
cally in extreme cases when either J1 = 0, J2 �= 0, ( p1 = 1/3) 
or J2 = 0, J1 �= 0, ( p1 = 0) as for the characterization of 

topological and trivial phases, respectively. For example, 
when J1 = 0, J2 �= 0 the exact ground state wave function 

turns out to be ψ = (1, eik1 ,−eik2)
T
/
√

3 . So, the Berry con-

nection, A1, as well as polarization, p 1, becomes equal to the 
value 1/3, following the formula (6).

Values of p i have been obtained numerically for every non-
zero value of J1, J2 and DMI strength. To evaluate the integral, 
equation (6), we discretize the Brillouin zone and redefine p i as 
p in (n being the band index) and Ai as Ain = −i〈ψnk|∂ki |ψnk〉. 
The value of p 1n has been calculated for every band, n. In this 
case, as the gapped edge states exist between the lower two 
bands, p 1 should have a quantized value for the lowest band. 
Numerical evaluation obtains the value of p 1  =  1/3 for 
0.0  <  J1  <  1.0, and p 1  =  0 for J1  >  1.0, for the lowest band. 
Hence, the non-zero value of topological invariant confirms 
the nontrivial second order topological phase of the system for 
the region mentioned above.

In order to investigate the existence of corner states in 
this system, we consider a triangular replica of the breathing 
kagome lattice, as shown in figure 1, whose size is defined 
by the number of small triangles, L, along every edge. The 
triangular replica preserves the three-fold rotation symmetry, 
C3, of the breathing kagome lattice as well as it has the min-
imum number of corners, which is three in this case. Different 
shapes of the finite lattice can be considered for this purpose. 
In figure 3(a), we plot the energy spectrum as a function of 
J1 for L  =  15, which shows that corner states do exist for the 
region 0.0  <  J1  <  0.5.

The numerical evaluation of the topological index p 1 shows 
that it bears the value 1/3 for the entire region 0.0  <  J1  <  1.0, 
which indeed should be the case as the insulating phase exists 
up to J1  =  1.0 and the invariant has no scope to change its value 
since no phase transition occurs in the intermediate point. On 
the other hand, corner states cease to show its existence as 
soon as the gapped edge modes are found to cross each other. 
And it occurs in this system, when J1 becomes greater than 0.5, 
which is illustrated in figure 2(e). As a result, no corner states 
are found beyond J1  =  0.5. But, the system hosts the second 
order topological phase in the entire region 0.0  <  J1  <  1.0, 
even though the corner states are topologically protected only 
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Figure 3.  (a) Energy spectrum of breathing kagome lattice with varying J1 for L  =  15. Upto J1  =  0.5, zero dimensional corner states 
(indicated by red dots) show its existence and beyond this value, it seems to decay into the bulk. (b) Energy of the same system is plotted 
with respect to energy levels for J1  =  0.3. Three red dots at same energy, E  =  2.6 show the states at the three corners of the finite triangle. 
The diagram is truncated to 100 energy levels (instead of 164 for L  =  10) for better resolution of the three corner states. (c) Probability 
distribution of a particular eigenstate corresponding to a corner state energy for J1  =  0.2 and L  =  5. It shows that the states are indeed 
localized at the corners.
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up to J1  =  0.5. It implies that bulk-corner-correspondence is 
satisfied for the region 0.0  <  J1  <  0.5, and violated for the 
region 0.5 � J1 < 1.0. However, the system becomes trivial 
beyond the limit, J1  =  1.0. In figure 3(b), the energy spectrum 
is plotted with respect to the energy levels for a particular 
value of J1, which clearly shows the existence of three degen-
erate corner states at energy 2.6J2 which correspond to the 
three different corners of the triangular replica. The number of 
corner states may vary with the shape of replica with different 
number of corners. The distribution of probability density for 
a particular parameter value in this topological phase is shown 
in figure 3(c), which clearly exhibits that the corner states are 
truly localized at each corner.

4. Topological properties with non-zero DMI

The kagome ferromagnet (J1 = J2 and D1 = D2) exhibits an 
unique first order TMI phase in the presence of DMI [25]. 
On the other hand, FM breathing kagome with non-zero DMI 
(J1 �= J2 and D1 �= D2) exhibits a rich topological phase 
diagram which includes distinct first and second order TMI 
phases as well as coexistence of both phases. In this section, 
effect of DMI on the topological properties will be discussed. 
DMI is turned on within upward and downward triangles with 
strenghts D1 and D2, respectively. For some specific values 
of J1, D1 and D2, coexistence of both first and second order 
topological phases is found. Two such cases will be described 
extensively, where both edge and corner states are found 

simultaneously. Otherwise, distinct first or second order topo-
logical phases appear in different regions for the nontrivial 
cases.

Now, to characterize the first order topological phase, 
Chern number Cn for the nth band has been evaluated which is 
defined as the integration of the Berry curvature, Ωn(k), over 
the 1BZ, i.e.

Cn =
1

2π

∫ ∫

1BZ
d2kΩn (k) ,� (7)

where Ωn (k) = −i (〈∂1ψn,k|∂2ψn,k〉 − 〈∂2ψn,k|∂1ψn,k〉). Here 
|ψn,k〉 are the eigenvectors of h(k) and ∂i =

∂
∂ki

. In this article, 
to calculate the Chern number, we use the discretized version 
of the integration, equation (7), developed by Fukui and others 
[43]. For nontrivial first order topological insulating phase, 
Chern numbers of two or more bands must be non-zero while 
it will be identically zero for all the bands for the trivial insu-
lating phase. Chern numbers are undefined when the bands 
either touch or overlap. To confirm the existence of this first 
order topological phase, we construct the edge state energy 
diagram by breaking PBC along k2 direction, diagonalizing 
the resulting Hamiltonian and plotting the energy spectrum 
with respect to the good quantum number k1. Likewise, for 
the characterization of second order topological phase, value 
of polarization is obtained in association with the prediction 
of corner states. To find the corner states, a triangular rep-
lica of breathing kagome lattice with L  =  15 is considered by 
breaking PBC along both the directions.
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Figure 4.  Dispersion relation of breathing kagome system for non-zero DMI strength with J2  =  1.0, D1  =  0.1, D2  =  1.5 and (a) J1  =  0.2, 
(b) J1  =  1.7, (c) J1  =  2.0. Chern numbers of respective bands are also specified. Edge state diagram for finite lattice with 70 unit cells 
along k2 direction with same parameter values as the corresponding bulk band structures in the upper row. The diagrams (d)–(f) show the 
evolution of the gapless and gapped edge modes and depicts the way it affects the existence of corner states of the system. Pair of in-gap 
edge modes (denoted by red lines) indicates the existence of second order topological phase, while chiral edge modes (blue lines) signify 
the existence of first order topological phase. Density of states are shown in the side panel of each edge state diagram.
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In the presence of DMI, the kagome ferromagnet exhibits 
a particular TMI phase with Cn  =  (1,0, −  1) [25]. Numbering 
of band index follows the ascending order starting from the 
lowest energy. For FM breathing kagome, the uppermost flat 
band for zero DMI is found to become dispersive as soon 
as DMI is non-zero. The bulk dispersion relations plotted 
in figures  4(a)–(c), with D1  =  0.1 and D2  =  1.5, reveal that 
the system is an insulator for this set of DMI in the region 
0.00 � J1 � 1.66, as true gap exists between all the bands. At 
a particular point, J1  =  1.67, the upper band gap vanishes and 
reopens thereafter. Therefore the system undergoes a phase 
transition at J1  =  1.67. Similar phase transition occurs at 
J1  =  1.92 when the lower band gap vanishes.

Calculating Cn for each of the cases, it is found that 
Cn  =  (−1,1,0) for 0.00 < J1 � 1.66. When J1 � 1.68, the 
Chern numbers are redistributed as Cn  =  (−1,0,1). Thus, the 
system undergoes topological phase transition through which 
the upper two bands exchange Chern number of ±1 since 
the upper two bands touch at a Dirac band touching point. 
Similar situation happens again at J1  =  1.92, where lower two 
bands touch at a Dirac band-touching point. At this time, they 
exchange Chern number of ±1 leading to new distribution, 
Cn  =  (0, −  1,1).

Figure 4(d) shows chiral gapless edge states connecting the 
lower two gapped bands according to the BBC rule since the 
Chern numbers are (−1, 1, 0). The pair of gapped edge modes 
in the upper band gap indicates the existence of corner states. 
But this time, they do not cross each other. Thus, there are 
simultaneous existence of first and second order topological 
insulating phases for 1/3 and 2/3 filling, respectively. In sim-
ilar fashion, figures 4(e) and (f), correspond to the existence 
of other topological phases. The nature of edge states supports 
the pattern of Chern numbers for the corresponding parameter 
regions satisfying the BBC rule.

To confirm the presence of SOTMI phase, existence of the 
corner states is investigated. Figure  5(a) shows the energy 
spectra with varying J1. It is evident that the SOTMI phase 
do exist up to J1  =  1.66. The calculation of polarization fur-
ther emphasizes our claim that TMI and SOTMI phase do 
simultaneously exist in the region 0.00 < J1 � 1.66. For this 

particular case, the topological invariant would be the value of 
p 1 of the uppermost band, since the gapped edge mode exist 
between the upper two bands. The value of p 1 remains fixed at 
1/3 for the whole region, which is same as the value of p 1 for 
zero DMI. But, in contrast to the zero DMI, here both corner 
states and non-zero polarization simultaneously persists for 
the region 0.00 < J1 � 1.66. This result can be implied from 
the fact that there is no crossover of in-gap edge modes in this 
insulating region. Thus, BBC as well as bulk-corner-corre-
spondence rules are jointly satisfied both for TMI and SOTMI 
phases, as evident from the diagram. For J1  >  1.66, the corner 
states decay into the bulk as well as polarization vanishes. 
Thus, SOTMI phase cease to exist beyond J1  >  1.66.

This finding clearly predicts the existence of SOTMI phase 
as well as TMI phase in the region 0.00 < J1 � 1.66, when 
the strengths of DMI are fixed at D1  =  0.1 and D2  =  1.5. 
Therefore, DMI not only helps to extend the range of SOTMI 
phase from 0.0  <  J1  <  1.0 to 0.00 < J1 � 1.66, in addition, 
it favors the coexistence of first and second order topological 
phases. The system undergoes a phase transition in the vicinity 
of J1  =  1.67, hosting a new TMI phase thereafter.
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Figure 5.  (a) Energy spectrum of breathing kagome lattice with varying J1 for L  =  15. D1, D2 and J2 are kept constant at the values of 0.1, 
1.5 and 1.0, respectively. Upto J1  =  1.6, zero dimensional corner states exist (denoted by red dots) and beyond this, it decays into the bulk. 
(b) Energy of the same system is plotted with respect to energy levels for J1  =  0.3. Three red dots at same energy (same value as in the case 
with zero DMI) show the states at the three corners of the finite triangle. The diagram is truncated for better resolution of the three corner 
states. (c) Probability distribution of a particular eigenstate corresponding to a corner state energy for J1  =  0.2 and L  =  5. It shows that the 
states are indeed localized at the corners and introduction of DM interaction has not changed the distribution considerably.
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second order topological nontrivial phases.

J. Phys.: Condens. Matter 32 (2020) 205601



A Sil and A K Ghosh﻿

7

A topological phase diagram is presented in figure 6, which 
is drawn with respect to two parameters J1 and D2, where D1 
is kept fixed at 0.1. To explain the phase diagram, let us fix the 
value of D2 at 0.9. Along this line, the system is a topologically 
trivial insulator in first order in the region 0.00 < J1 � 0.41. 
Additionally, the system is found to host second order topo-
logical phase in the same region since there is a pair of in-gap 
edge modes in the upper band gap. At J1  =  0.42 lower gap 
vanishes. Thereafter, the system hosts a TMI phase with 
Cn  =  (−1,1,0) up to J1  =  0.97. Thus, the system becomes 
topologically nontrivial in first order for 0.42 < J1 � 0.97. 
But, at the same time, the gapped pair of edge mode in the 
upper band gap changes its shape in such a manner that the 
lower edge mode decays into bulk as it is shown in figure 7. 
Because of this fact, although the value of p 1 for upper band 
is 1/3 up to J1  =  0.97, but the corner states are topologically 
protected up to J1  =  0.41. So, violation of bulk-corner-corre-
spondence rule is noted again in the region 0.42 < J1 � 0.97. 
Thus, for D1  =  0.1 and D2  =  0.9, coexistence of both phases 
remains in the region 0.42 < J1 � 0.97. For J1  >  0.97, the 
upper band-gap vanishes and the system undergoes a topo-
logical phase transition where it is driven into a phase which 
is topologically trivial in second order but nontrivial in first 
order. This TMI phase is characterized by the Chern numbers 
(−1, 0, 1). With further increase of J1, another phase transi-
tion is observed at J1  =  1.57. The resulting TMI phase has the 
Chern number distribution (0,−1, 1).

So, it can be concluded that, although polarization, as a 
topological invariant, changes its value only when gap closes, 
its (d − 2) dimensional counterpart, the corner states will 
be found as long as the pair of in-gap edge modes survives 
distinctly without crossing each other or decaying into bulk 
band in (d − 1) dimension. Thus, there is an anomaly in the 
correspondence between two-dimensional bulk and its zero-
dimensional boundary for the SOTMI phase. In addition, this 
diagram clearly exhibits the occurrence of phase transitions 
between different topological phases with the variation of 
parameters, J1 and D2.

5. Thermal Hall conductivity

The values of thermal Hall conductivity (THC) of the system 
have been calculated for first order TMI phases. THC is useful 

to study the occurrence of phase transitions, and, at the same 
time, these values can be verified experimentally. Resulting 
diagram is shown in figure 8. We have included THC values 
for some extra TMI phases those are not discussed before. 
Additional TMI phases with different combinations of Chern 
numbers are obtained by varying all the parameters. The 
transverse THC can be formulated in terms of Berry curva-
tures, Ωn(k) as [44],

κxy(T) = − kB
2T

4π2�
∑

n

∫ ∫

1BZ
c(ρn(k))dkxdkyΩn(k).� (8)

Here the sum runs over all bands, n. kB is the Boltzmann 
constant and � is the reduced Planck’s constant. 
ρn(k) = 1/(eEn(k)/kBT − 1) is the Bose distribution func-
tion with En(k) being the energy eigenvalue of the nth 

band. c(x) = (1 + x) ln ( 1+x
x )

2 − (ln x)2 − 2Li2(−x) where 

Li2(y) = −
∫ y

0 dz ln (1−z)
z . In high temperature limit, THC 

can be simplified as κxy = − kB
4π2�

∑
n CnEn  [29], where the 

k-dependent energy is replaced by the average energy of the 
respective band. By using this equation and the distribution of 
Chern numbers, one can anticipate the sign of saturated value 
of κxy at high temperature. For example, sign will be positive 
(negative) if the band with higher energy has lower (higher) 
value of Chern number considering one of the bands always 
has Cn  =  0 in this three-band system. The behavior of THC is 
reflected in figure 8.
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6.  Summary and discussions

We have investigated the properties of FM Heisenberg model 
with and without DMI on breathing kagome lattice and estab-
lished the simultaneous appearance of first and second order 
TMI phases for various values of the exchange and DMI 
strengths which have been taken of different magnitudes for 
upward and downward triangles. Topological phase diagram of 
breathing kagome ferromagnet is richer than that of kagome. 
Magnon dispersion relations are obtained following LSWT for 
any value of spin S. While only a single SOTMI phase exists 
when no DMI is present, either SOTMI or TMI or both of 
them are present for non-zero DMI strength. In order to char-
acterize the first order conventional TMI phases the Chern 
numbers of the insulating band as well as chiral edge states in 
strip geometry are obtained. The existence of different phases 
with different distribution of Chern numbers and the transition 
between them are studied. Transverse THC values for various 
TMI phases are also calculated. While SOTMI phases are char-
acterized by non-zero values of polarization or in terms of the 
coordinate of Wannier center, those are additionally verified 
by the existence of zero-dimensional corner states where the 
pair of in-gap edge modes are clearly found in one dimension 
without any crossing. In previous studies on breathing kagome 
lattice, SOTI phase was found in a fermionic tight binding 
model [13]. A TI phase was found on another tight binding 
model in the presence of spin orbit coupling [45].

Six different TMI phases and one SOTMI phase are found 
in this system. Since the TMI phase in kagome ferromagnet has 
been observed before in Lu2V2O7 [30, 31], these findings can 
also be verified experimentally in future. No material is avail-
able right now whose property can be explained in terms of 
FM breathing kagome lattice. DMI can be induced via external 
electric field if it is not present intrinsically [29]. Topological 
phases with higher Chern numbers may be obtained by intro-
ducing further neighbor interactions. Similarly, it would be 
more interesting to study the topological behavior of the FM 
models on three-dimensional pyrochlore lattice by following 
the same procedure. Violation of bulk-corner-correspondence 
rule found in some SOTMI phases demands more attention as 
well. Anomaly in bulk-corner-correspondence rule is reported 
before in a Hubbard model on kagome lattice, where gapless 
spin excitations around the corners are found in the presence of 
electron correlations instead of gapless charge excitations [39].
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