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Introduction

Plots of so called energy bands are the most basic and used tool 
in interpreting the calculated electronic structure of simple 
crystals. Such plots represent the energy of the Bloch orbitals 
as a function of their crystal momentum in the primitive 
Brillouin zone (PBZ), that is, E (k). These theoretical bands 
can be obtained within the tight-binding approximation, the 
density functional theory (DFT) or other electronic structure 
methods, and they are directly connected to results of angle 
resolved photoemission spectroscopy (ARPES) experiments. 
However, the simplicity of this approach disappears when the 
calculations involve large supercells with many atoms. As the 
size of the cell in real space increases, the first Brillouin zone 
in reciprocal space shrinks and more lines populate the band 
structure, hindering the extraction of useful information and 
the comparison with experiments.

Several authors have already explored the unfolding 
problem and developed specific techniques to unfold the 
supercell Brillouin zone into the PBZ. Some of the existing 
works focus on algorithms within the tight-binding approxi-
mation [1–4] or first principles calculations, employing as 
basis sets linear combinations of atomic orbitals [5], plane 
waves [6] or Wannier functions [7]. Another methodology 
studies the electronic structures of alloy systems [8, 9]. Other 

authors have delved into the theory of the problem and they 
have developed general reformulations of it [10–14].

Most of these methods focus on obtaining a direct rela-
tionship between the Brillouin zones of the primitive crystal 
cell and of the simulation supercell, by expanding the super-
cell states in a basis set with the periodicity of the crystal. In 
contrast, we aim to simplify the procedure and provide a link 
between existing methods by dividing the problem in two 
steps. First, we consider the fully unfolded bands, extended to 
the whole reciprocal space, through a Fourier decomposition 
of the Bloch wave functions of the system [14]. This yields 
a non-periodic description, interesting by itself. Second, by 
what we call refolding into the crystal PBZ, we recover the 
result that other authors refer to as unfolded bands.

Method

The basic steps of our unfolding method are schematically 
summarized in figure 1. We start by considering the energy 
bands not just as dispersion relations, but as the density of 
states in the (first) simulation Brillouin zone (SBZ), the recip-
rocal of the real-space simulation (super) cell (SC):

nSBZ(K, ε) =
∑

i

δ(ε− εK,i)� (1)
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where K is a wave vector in the SBZ, and εK,i  is the eigenvalue 
of its ith Bloch state, that is, band energy1.

The normalization of nSBZ(K, ε), as well as those of other 
densities defined below, is such that they are densities of states 
per unit of macroscopic volume (as well as per unit of their 
respective independent variables), what facilitates the com-
parison between simulation cells of different volumes.

Next, we split the normalized weight δ(ε− εK,i) according 
to the squared Fourier coefficients of the corresponding wave 
function. Summing over Bloch states, we construct the fully 
unfolded bands as the spectral density, which can also be 
considered as the local density of states in reciprocal space 
(qLDOS):

n(q, ε) =
∑

i

∫

SBZ
dK |ψ̃K,i(q)|2 δ(ε− εK,i)� (2)

where ψ̃K,i(q) is the Fourier transform of a Bloch wave func-
tion (normalized in the SC), ψK,i(r) = uK,i(r)eiKr:

ψK,i(r) =
1

(2π)3/2

∫

∞
dq ψ̃K,i(q) eiqr,� (3)

ψ̃K,i(q) = (2π)3/2
∑

G

δ(K + G − q) ũK,i,G,� (4)

ũK,i,G =
1

VSC

∫

SC
dr uK,i(r) e−iGr,� (5)

with VSC the volume of the SC and G its reciprocal wave vec-
tors. Then, we can write n(q, ε) as

n(q, ε) =
∑

i

|ũKq,i,Gq |2 δ(ε− εKq,i),� (6)

where Kq and Gq are the unique vectors such that: Kq is within 
the SBZ; Gq is a reciprocal wave vector; and Kq + Gq = q. 
A state ψK,i will contribute to n(q, ε) at points q = K + G for 
all G = πN/a vectors, due to Bloch’s theorem. We empha-
size that q extends to infinity and n(q, ε) is not periodic in q: 
although the energies at which n(q, ε) can be nonzero are peri-
odic, these ‘bands’ have a different weight at each Brillouin 
zone (figure 1(c)).

As can be seen by comparing with equation (2), the qLDOS 
is the Fourier-space equivalent of the real-space local density 
of states (rLDOS),

n(r, ε) =
VSC

(2π)3

∑
i

∫

SBZ
dK |ψK,i(r)|2 δ(ε− εK,i).� (7)

The total density of states (DOS) can be obtained by integra-
tion of either n(r, ε) or n(q, ε):

n(ε) =
1

VSC

∫

SC
dr n(r, ε) =

1
(2π)3

∫

∞
dq n(q, ε).� (8)

Since |ψ̃K,i(q)|2 is the probability of measuring momentum 
q of a given electron, n(q, ε) is the probability of finding an 
electron (or an empty state) in the system with energy ε and 
momentum q, and it can thus be directly related with ARPES 
results if matrix element effects are taken into account  
[14, 15, 16].

The qLDOS, that we call fully unfolded bands, is the same 
as the spectral weight of other authors [10, 12, 13] and the 
plane-wave unfolded spectra introduced by Kosugi et al [14]. 
Therefore, our approach is a different description, rather than 
a new method that yields different results. Our emphasis is to 
provide a clear and simple link with previous methods through 
the (L)DOS, as well as to generalise band structure analysis to 
non periodic systems.

The last step in our method is to refold n(q, ε) into a 
refolding Brillouin zone (RBZ) as

nRBZ(k, ε) =
∑

g

n(k + g, ε),� (9)

Figure 1.  Scheme of the unfolding method. (a) 1D model of a 
chain of pseudo-atoms (dots) with an attractive gaussian potential 
(line). The atoms are paired, with a Peierls distortion of 2% relative 
to their undistorted distance a. The energy origin is the average 
potential and its units are �2/(a2me). The unit cell of the distorted 
chain is shaded. (b) First two bands of the distorted chain, with its 
PBZ shaded. A random K point is singled out (dashed line). The 
(normalized) weights of the Bloch states at this K (black dots), are 
split according to the squared Fourier coefficients of their respective 
wave functions (red dots), appearing at q  =  K  +  G. Dot areas 
are proportional to weights. (c) Fully unfolded bands, obtained 
through the procedure described in (b) for all Ks in the PBZ. The 
non-periodic unfolded weights are the local DOS in Fourier space 
(qLDOS) n(q, ε). (d) Bands refolded into the PBZ of the undistorted 
chain (shaded region). The weight at each k (blue dots) is the sum 
over g of the unfolded weights in (c), at points q  =  k  +  g. The 
continuous line is the first band of the undistorted chain.

1 Following conventional practice, we write the Bloch wave vector K as a 
subscript, even though it is a continuous variable.
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where k is within the RBZ and g = πn/a are its reciprocal 
lattice vectors. Notice that, since 

∑
G |ũK,i,G|2 = 1, then ∑

G n(K + G, ε) = nSBZ(K, ε), that is, refolding n(q, ε) back 
into the SBZ recovers the original bands.

Frequently, the simulation cell will be a supercell of the 
refolding cell. In these cases, the RBZ will be a supercell of the 
SBZ, and vectors g will belong to the set of Gs (figure 1(d)). 
Nevertheless, this condition is not necessary in our method, 
and in fact it will not be true in many cases, as for simula-
tion cells of liquids or amorphous systems, or of defects that 
induce strong deformations2.

The above full unfolding/refolding method can be imme-
diately applied in a plane wave DFT code, since the Fourier 
coefficients of the Bloch wave functions are then directly 
available. The slow decay with momentum of all-electron 
wavefunctions can be addressed by using pseudopotentials 
or by introducing a momentum cutoff. For a basis of atomic 
orbitals, we expand the Bloch states as

ψK,i(r) =
∑

R

∑
µ

cK,i,µ φµ(r − R − rµ) eiK(R+rµ),� (10)

where cK,i,µ are expansion coefficients and φµ are atomic 
orbitals centered at position R + rµ (R  being SC lattice vec-
tors). Substituting into equation (5) we find

ũK,i,G =
(2π)3/2

VSC

∑
µ

cK,i,µ φ̃µ(K + G) e−iGrµ ,� (11)

where φ̃µ(q) is the Fourier transform of the numerical atomic 
orbital φµ(r), with well defined angular momentum quantum 
numbers (lµ, mµ), that can be decomposed into radial and 
angular parts:

φµ(r) = φµ(r) Ylµ,mµ
(r̂)� (12)

φ̃µ(q) = φ̃µ(q) Ylµ,mµ
(q̂)� (13)

φ̃µ(q) =

√
2
π
(−1)lµ

∫ ∞

0
r2dr jlµ(qr) φµ(r),� (14)

with Yl,m(r̂) spherical harmonics and j l(x) spherical Bessel 
functions.

We have implemented this algorithm in the Siesta package 
[17]. After a converged DFT Siesta calculation, the hamilto-
nian and overlap matrices, in the atomic basis set, are calcu-
lated and written in a file. This file, as well as those specifying 
the radial numerical atomic orbitals, are read by an external 
utility program that calculates the fully unfolded and refolded 
spectra at the desired q and k band lines. Some Siesta sub-
routines are also used by the unfolding/refolding program to 
obtain the wave function coefficients at each required K point 
of the SBZ, as well as to perform the Fourier transforms in 
equation (14).

Applications

We apply our previously described Siesta implementation to 
a Si FCC crystal with a single vacancy, a model of amorphous 
Si (a-Si), a monolayer of graphene with a (585) divacancy, 
and a rotated graphene bilayer under pressure. We employed 
the GGA-PBE [18] functional for exchange and correlation 
and double-ζ  +  polarization (DZP) basis sets (double-ζ (DZ) 
for a-Si).

Vacancy in Si crystal

We model a vacancy in a Si FCC crystal using a 63-atom 
supercell. Its refolded bands into the crystal PBZ vectors are 
depicted in figure 2(a), and can be compared with the bands 
of the periodic crystal, in figure  2(b). Changes are appreci-
ated at a careful sight. The refolded bands become blurred and 

Figure 2.  (a) Refolded bands, into the crystal PBZ, of a single 
vacancy in bulk Si. The darkness is proportional to the LDOS. 
Energies are relative to the Fermi level, set at zero (horizontal 
dotted line). Vertical dotted lines mark high symmetry points of 
the PBZ; (b) (conventional) bands of Si FCC crystal; (c) difference 
between the refolded LDOS of the defective Si and the pristine 
crystal, zoomed in the gap region, near the Γ point. States arising 
(vanishing) due to the vacancy appear in hot (cold) colours. The 
black (red) dashed line is the Fermi level of the perfect (defective) 
system.

2 In these cases, however, the vector K such that K + G = k + g, will 
depend not only on k but also on g. This will make the calculation of 
nRBZ(k, ε), at given k points, considerably more expensive.
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widened due to the appearance of small splittings. Some of 
these are a consequence of the supercell approach and they 
become smoother in a larger SC.

The most relevant changes occur around the Fermi level. 
A new state arises within the gap, with higher weight around 
the Γ point. The top of the valence band, around Γ, decreases 
in energy and in weight. We show the difference between the 
crystal and defective refolded spectra in figure 2(d) around Γ, 
at the gap, to remark these changes.

Amorphous Si

A clear example of disorder is an amorphous solid. In this 
case, we cannot talk about a proper band structure, but yet the 
energy dispersion of the electron states provides interesting 
results. We studied the fully unfolded and refolded bands of 
a-Si using supercells of 216, 512 and 1024 atoms, modelled 
by Igram et al [19], obtaining equivalent results for all cases. 
We present the results for the 512-atom supercell.

In figure 3(a) we show those corresponding to the L − Γ 
and Γ− X directions of the FCC crystal, up to the second 
Brillouin zone. As expected from the isotropic character of the 
amorphous solid, its unfolded bands are essentially identical 
in all directions, with a radial symmetry, yielding a widened 
free-electron dispersion with an effective mass m*  =  1.1 and a 
gap of 1.5 eV, consistent with existing values [19, 20].

The same bands, refolded to the PBZ of the crystal, are 
shown in figure 3(b). At close magnification and inspection, 
a few localised states appear in the gap due to defects in the 

a-Si model [19]. Interestingly enough, despite its isotropic 
and non-periodic structure, and the incommensurability of its 
simulation cell with that of the crystal, the refolded bands of 
a-Si appear as a blurred version of the crystalline silicon (c-Si) 
bands, specially at low energies. Also, higher LDOS of a-Si 
can be appreciated in regions of c-Si band degeneracies. This 
similarity is independent of the size of the a-Si simulation cell 
employed. We attribute it to the similarity of the local struc-
ture in a-Si and c-Si in bond distances and angles [19].

Divacancy in graphene

Graphene is a material with unique electronic properties, but 
highly sensitive to structural disorder. The presence of defects 
leads to significant changes on its bands, specially around 
the Fermi level. Many types of defects have been studied by 
theorists, such as adatoms, vacancies or Stone–Wales defects, 
with the aim of predicting their properties and, potentially, 
using them to tailor the functionalities of graphene. Hence, 
unfolding their band stuctures will shed light on how they 
modify the original graphene bands.

We consider a (585) divacancy in a graphene monolayer, a 
defect that has been synthesised and characterised by Ugeda 
et  al [21]. The (585) defect is formed by two adjacent C 
vacancies rearranged into two pentagons and one octagon, as 
shown in figure 4(a), with no dangling σ bonds. We modelled 
the divacancy in simulation cells of different sizes, from 7 × 7 
to 14 × 14. Here we report the 11 × 11, 12 × 12 and 13 × 13 
as representative.

The conventional bands of the supercell calculations within 
their SBZs, figure 5, reveal that the former six-fold symmetry 
of the Brillouin zone is broken, leading to inequivalent K 
and M points and two emerging mirror planes, figure  4(b), 
as happens in the atomic structure. The K and K′ points no 
longer present a Dirac cone, although all of them present a 
band crossing of EF at different points in their Brillouin zones: 
near K′ for the 11 × 11 SC, around Γ for the 12 × 12 SC and 
between M′ and K for the 13 × 13 SC. Besides this, it is hard 
to find similarities between them. To relate these overcrowded 
spectra with the band structure of graphene, we compute the 
refolded bands into the PBZ in the surroundings of K and K′ 
points of graphene.

Figure 3.  (a) Fully unfolded bands of a 512-atom cubic cell of 
amorphous silicon, along the (111) and (1 0 0) directions. Vertical 
lines indicate high symmetry points of the first and second Brillouin 
zones of the crystal. They are shown for reference but they are not 
special in the a-Si simulation cell. The red line is a fit to a free-
electron dispersion relation with an effective mass m*  =  1.1; (b) 
refolding of the a-Si bands into the PBZ of crystalline silicon. Solid 
lines are the crystal bands. The refolded free-electron dispersion 
relation is shown with dashed lines.

Figure 4.  (a) Relaxed structure of the (585) divacancy in graphene. 
The dashed lines are the mirror planes of the defect. (b) PBZ of 
graphene, its symmetry modified by the (585) defect.

J. Phys.: Condens. Matter 32 (2020) 205902
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Figures 6(a) and (c) show the 11 × 11 and 13 × 13 SC 
bands refolded into the PBZ. The Fermi level crossing is 
located around K′ of graphene, which corresponds to a K′ 
point in both SBZs. One of the bands conforming the former 
Dirac cone stays almost unaltered, while the other one is 
split, forming two cone tips shifted in the kx direction and 
connected by a state. In the 2D bands plot of figures 7(a) and 
(c) this is seen with more clarity. The Fermi level decreases 
from its original value, being coincident with the tip of the 
lower cone.

In the case of the 12 × 12 SC, figure 6(b), we see a sim-
ilar behaviour, with slight differences. One band of the cone 
remains almost unaltered, with a small gap of 0.04 eV opening 
at K′. The other one is split, with one of its fragments con-
forming a flat state at the Fermi level, leading to a single band 
crossing. In figure 7(b) this flat state and the cone tips can be 
appreciated. Here, the K′ of graphene coincides with a Γ point 
of the 12 × 12 SBZ.

Despite the differences between the three sizes, a general 
trend is clearly identified after refolding into the PZB of gra-
phene, which is not the case in the traditional bands description 
of figure 5. All cases present a splitting and a shift in kx of the 
Dirac cone, as well as a single band between the two cone tips 
as the lowest unoccupied electronic state. The Fermi level is 
located at the tip of the lower cone. We remark that, in 3n × 3n 
SCs, the K′ of the PBZ corresponds to a Γ point in the SBZ, 
unlike in the (3n + 1)× (3n + 1) and (3n + 2)× (3n + 2) 
cases. This is consistent with the formal differences existing 
between both kinds of supercells [22]. Finally, the refolded 
bands obtained around K are inverted in ky  compared to the 
refolded bands around K′ shown above.

Pressure in rotated graphene bilayers

Another path to modify the electronic behaviour of graphene 
is given by rotated graphene bilayers. These are defect-free 

Figure 5.  Conventional bands of a (585) divacancy in graphene modelled in (a) 11 × 11, (b) 12 × 12 and (c) 13 × 13 simulation cells, in 
their respective SBZs.

Figure 6.  Bands around the Fermi level of a (585) divacancy in graphene, refolded into the PBZ, obtained from (a) 11 × 11, (b) 12 × 12 
and (c) 13 × 13 simulation cells. K′g denotes the K′ point of the PBZ of graphene. K′n indicates a K′ point of the (n × n) SBZ.

Figure 7.  2D bands of a (585) divacancy refolded into the PBZ, in the surroundings of the K′ point, obtained from (a) 11 × 11, (b) 12 × 12 
and (c) 13 × 13 simulation cells. The darkness times size of the dots is proportional to the LDOS, with weights smaller than a hundredth of 
the maximum neglected. The units for k are 1/a0, where a0 is the lattice parameter.

J. Phys.: Condens. Matter 32 (2020) 205902
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systems with a Moiré pattern, involving large periodicities. At 
small angles, the interaction between the two layers induces 
two saddle points in the band structure, along with two log-
arithmic van Hove singularities in the DOS. As the angle 
decreases, the singularities approach and, eventually, at the 
so called magic angles (θ = 1.1◦), they collapse into a single 
peak at the Fermi level [23]. The same effect has been recently 
reported to occur for larger angles, when external pressure is 
applied [24–27].

We study a bilayer rotated 5.08◦, at equilibrium under 
increasing pressures up to 1.63 GPa. We employ a GGA 
exchange-correlation functional including Van der Waals 
interactions [28, 29]. As none of the monolayers lattice ori-
entations has a prevalence over the other, refolding into the 
PBZ of one of them is not particularly informative. Therefore, 
we consider the fully unfolded bands as the adequate tool to 
analyze this system. We first show the fully unfolded bands 
of a graphene monolayer, figure 8, up to its second Brillouin 
zone, for comparison purposes. Two paraboloids with gaps 
opening along them and a six-fold symmetry and are clearly 
distinguished, and conform the dispersion relations of the σ 
and π orbitals. In the case of the bilayer, we will restrict the 
unfolding region to the surroundings of a K (and K5.08◦) point 
(red square).

In figure 9 we show the conventional band structures of the 
bilayer at the equilibrium distance, at a middle stage and under 
a pressure of 1.63 GPa, next to their corresponding DOS. The 
saddle points and van Hove singularities can be appreciated.

Figure 10 depicts the evolution of the fully unfolded 
spectra under increasing pressures. At equilibrium configu-
ration, figure  10(a) shows a neat picture of the interaction 
between the cones of both monolayers, as well as the saddle 

point emerging in between. The relative maximum intensities 
of the LDOS are homogeneous in energies, and the states pre-
sent high dispersion in energies. As pressure is applied, fig-
ures 10(b)–(e), the cones flatten and the saddle points move 
towards the Fermi level. We appreciate as well that the two 
pairs of bands immediately over and below the cones lower 
their energies and start to merge. Also, in figures 10(d) and (e), 
higher weights correspond to these merging bands, whereas 
the cone states around the Fermi level tend to be delocalized 
in many qs. In figure 10(f) the cones have collapsed into flat 
bands. We remark how their weight in this area of reciprocal 
space is small compared to that of the merging bands, despite 
the sharp peak on the DOS of figure 9(c). This is an indicator 
of delocalization in q, and is not unexpected, as these states 
are known to be well localized in the AA stacking region in 
real space [21, 24, 30].

Figure 8.  Fully unfolded bands of a graphene monolayer, up to the 
second Brillouin zone. The squared area marks a Dirac cone, region 
considered for further study in the bilayer case.

Figure 9.  Conventional bands in the SBZ and DOS of a graphene 
bilayer rotated an angle of 5.08◦, (a) at equilibrium geometry; (b) 
under a pressure of 0.70 GPa and (c) under 1.63 GPa.
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Conclusions

We have presented a simple formulation of the band unfolding 
problem, a tool necessary to extract useful information from 
the band structure of large supercell calculations. The idea of 
a full unfolding that expands the bands not only to the primi-
tive cell, but to the full reciprocal space, allows to treat this 
problem as a decomposition of the wave functions into its 
Fourier coefficients. A refolding recovers the conventional 
unfolded bands in the PBZ of the crystal. It is feasible for any 
eigenstate, regardless of the basis used. In the case of plane 
wave codes this implementation shall be almost immediate.

We have successfully applied our algorithm to obtain new 
characterizations of non-trivial physical systems. The fully 
unfolded bands provide a distribution of the states as a function 
of their energy and momenta, allowing a direct comparison 
with experimental photoemission spectra, as well as a way to 
determine a value of the effective mass of the system under 
study in a chosen direction of reciprocal space. Refolding into 
the primitive cell yields clear band spectra that allow com-
parison with the crystal bands, even identifying crystal-like 
patterns in an amorphous solid.

The outcomes of this work prove that the underlying state 
distribution in reciprocal space is much richer than what con-
ventional band structures can evince, transcending the exist-
ence of any real or imposed periodicity.
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