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Abstract

We report the discovery and the analysis of the short (tg < 5 days) planetary microlensing event, OGLE-2015-
BLG-1771. The event was discovered by the Optical Gravitational Lensing Experiment, and the planetary
anomaly (at 1 ~ 19) was captured by The Korea Microlensing Telescope Network. The event has three
surviving planetary models that explain the observed light curves, with planet-host mass ratio g ~ 5.4 x 1077,
4.5 x 107> and 4. 5 x 1072, respectlvely The first model is the best- ﬁt model, while the second model is
disfavored by Ax? ~ 3. The last model is strongly disfavored by Ax? ~ 15 but not ruled out. A Bayesian
analysis using a Galactic model indicates that the first two models are probably composed of a Saturn-mass
planet orbiting a late M dwarf, while the third one could consist of a super-Jovian planet and a mid-mass brown
dwarf. The source-lens relative proper motion is i) ~ 9 masyr ', so the source and lens could be resolved by
current adaptive-optics instruments in 2020 if the lens is luminous.

Unified Astronomy Thesaurus concepts: Gravitational microlensing exoplanet detection (2147)
Supporting material: data behind figure

1. Introduction intrinsic faintness of the host stars. At the time of Wr1t1ng, more
Early observations using ALMA (Testi et al. 2016) than 4000 confirmed exoplanets have been detected,'® but only
. 21 of them are orbiting an My, < 0.1 M, star.
and Herschel (Daemgen et al. 2016) suggest that disks around A

. mong the 21 such known planets, four of them were found

brown dwarfs and M-dwarfs with mass below 0.1 M. are . . . . .
p Searchi f J dvi ) © d by direct imaging method: 2MASS 1207-3932 (Chauvin et al.
requent.  Searching - for and - studying  planets aroun 2004), 2MASS 0441-2301 (Todorov et al. 2010), VHS 1256-

such ultracool dwarfs (Myoy < 0.1Mo) are important for the 1557 Gy et al. 2015), and CFBDSIR 145841013 (Liu et al.
conditions for planet formation theories (e.g., Ida & Lin

2005; Boss 2006) at the low-mass end. However, the detection
of planets around ultracool dwarfs is challenging due to the 19 http:/ /exoplanetarchive.ipac.caltech.edu as of 2019 October 31.
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2011). All of these planets are super-Jovian planets (>4 My)
and have a planet-host mass ratio ¢ > 0.15, which indicates
that these systems may form similarly to binary systems. In
addition, seven temperate terrestrial planets were discovered
around the nearby ultracool dwarf stars TRAPPIST-1 (Gillon
et al. 2017) via the transit method, and two similar planets
around Teegarden’s Star were detected by the radial velocity
method (Zechmeister et al. 2019), which suggests that
terrestrial planets should be frequent around ultracool dwarfs.

Microlensing opens a powerful window for probing planets
around ultracool dwarfs because it does not rely on the light from
the host stars but rather uses the light from a background source
(Mao & Paczynski 1991; Gould & Loeb 1992). Microlensing has
detected three planets orbiting an M.y < 0.1 M, star with
unambiguous mass measurements. Bond et al. (2017) and
Shvartzvald et al. (2017) detected a g ~ 6 x 10~ planet in the
micolensing event OGLE-2016-BLG-1195, and a joint analysis of
ground-based and Spitzer data (Shvartzvald et al. 2017) revealed
that this planetary system is composed of an Earth-mass
(~1.4Mg) planet around a ~0.078 M., ultracool dwarf. Han
et al. (2013) discovered a ~2 Mj planet orbiting a ~0.02 M, very
low-mass brown dwarf (BD) in the event OGLE-2012-BLG-0358,
and Bennett et al. (2008) detected a ~3 M, super-Earth planet
around a ~0.08 M, ultracool dwarf (Kubas et al. 2012) in the
event MOA-2007-BLG-192. For the planets using Bayesian
analysis to estimate the host mass, Jung et al. (2018a) reported a
super-Jovian planet orbiting an M}, < 0.1 M, star with a ~90%
probability. Jung et al. (2018b) reported a Jovian-mass planet
around a BD, but the host star also has a ~30% probability to be
an M dwarf or K-dwarf. In addition, there are three events with
degenerate solutions. Bayesian analysis shows that one of the
solutions of MOA-2015-BLG-337 (Miyazaki et al. 2018) and
KMT-2016-BLG-1107 (Hwang et al. 2019) probably consist of a
giant planet orbiting a BD. Sumi et al. (2016) found three
degenerate planetary models in the event MOA-2013-BLG-605,
two of which suggest a super-Earth orbiting a BD. For the five
events using Bayesian analysis to estimate the host mass and/or
that have degenerate solutions, we can verify that the host is an
ultracool dwarf by adaptive-optics (AOs) instruments in the future.

Here, we report the analysis of the microlens planetary event
OGLE-2015-BLG-1771. The observed data are consistent with
three planetary models, and a Bayesian analysis suggests the
host star is likely an ultracool dwarf (M, < 0.2 M.). The
paper is structured as follows. In Section 2, we introduce data
acquisition and processing of this event. We then describe the
light-curve analysis in Section 3 and estimate the physical
parameters of the planetary system in Section 4. Finally, we
discuss the implications of our work in Section 5.

2. Observations

OGLE-2015-BLG-1771 was discovered by the Optical
Gravitational Lensing Experiment (OGLE; Udalski et al.
2015) using its 1.3 m Warsaw Telescope at the Las Campanas
Observatory in Chile and alerted by the OGLE Early Warning
System (Udalski et al. 1994; Udalski 2003) at UT 00:46 on
2015 August 2. The event was located at equatorial coordinates
(o, O)yoooo = (17:55:11.76, —28:51:45.9), corresponding to
Galactic coordinates (/, b) = (1.14, —1.76). It therefore lies in
OGLE field BLG505, monitored by OGLE with a cadence
of I'=3hr'. The event was also observed by the Korea
Microlensing Telescope Network (KMTNet; Kim et al. 2016).
KMTNet consists of three 1.6 m telescopes, equipped with 4
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deg’® field-of-view cameras at the Cerro Tololo Interamerican
Observatory (CTIO) in Chile (KMTC), the South African
Astronomical Observatory (SAAO) in South Africa (KMTS),
and the Siding Spring Observatory (SSO) in Australia (KMTA).
The event was located in the KMTNet BLGO2 field, which was
observed in 2015 with a cadence of I' = 6 hr~'. The majority of
observations by OGLE and KMTNet were taken in the I-band,
with some V-band images taken for the color measurement
of microlens sources. For the light-curve analysis, the /-band
magnitude is instrumental magnitude, but the difference to the
standard I-band magnitude is within 0.2 mag (Udalski et al.
2015). During 7230 < HID' < 7237 (HID’ = HID — 2450000),
the Moon was <70deg away from the target and the sky
background was brighter than V = 20 mag arcsec 2, while the
target was only V ~ 22 mag during the peak. Thus, the V-band
data have a signal-to-noise ratio (S/N) too low to determine
the source color. The photometry of OGLE and KMTNet was
extracted using custom implementations of the difference image
analysis technique (Alard & Lupton 1998): Wozniak (2000;
OGLE) and Albrow et al. (2009; KMTNet).

3. Light-curve Analysis

Figure 1 shows the observed data together with the best-fit
models. The light curve shows a “U” shape bump at HID' ~
7235.1, which is generally produced by a caustic crossing in a
binary-lensing (2L1S) event, so we fit the data with the 2L1S
model in Section 3.1. We also check the binary-source (1L2S)
model in Section 3.2.

3.1. Binary-lens Model

Standard binary lens models require seven parameters to
calculate the magnification, A(¢). The first three are point-lens
parameters (7o, ug, tg; Paczyniski 1986): the time at which the
source passes closest to the center of lens mass, the impact
parameter normalized by the angular Einstein radius fg, and the
Einstein radius crossing time, respectively. The next three (g, s,
«) define the binary companion: the mass ratio, the projected
separation between the binary components scaled to 6g, and the
angle between the source trajectory and the binary axis in the
lens plane, respectively. The last one p is the angular source
radius 0, scaled to O (p = 0x/0g). We use the advanced
contour integration code (Bozza 2010), VBBinaryLen-
sing,” to compute the binary-lens magnification A(f). In
addition, for each data set i, we introduce two flux parameters
(fs;» fp) to represent the flux of the source star and any
additional blend flux. The observed flux, fi(¢), calculated from
the model, is

5 (@) = fs; A + fg ;- (D

We locate the y? minima by searching over a grid of
parameters (logs, log g, «, p). The grids consist of 41 values
equally spaced between —1 < logs < 1, 10 values equally
spaced between 0° < « < 360°, 51 values equally spaced
between —5 < log g < 0 and 8 values equally spaced between
—3 < logp < —1. For each set of (logs, loggq, a, p), we fix
lozg g, log s and p, but free g, ug, tg, &. We find the minimum
X~ by Markov chain Monte Carlo (MCMC) x* minimization
using the emcee ensemble sampler (Foreman-Mackey et al.
2013). The upper panel of Figure 2 shows the > distribution in
the (logs, logg) plane from the grid search, which indicates

20 http:/ /www.fisica.unisa.it/GravitationAstrophysics / VBBinaryLensing.htm
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Figure 1. The data of OGLE-2015-BLG-1771 together with the best-fit 2L.1S and 1L2S models. Data points for different data sets and light curves for different models

are shown with different colors.

(The data used to create this figure are available.)

that the distinct minima are within —0.5 < logs < 0.5 and
—4 < logg < —1. We therefore conduct a denser grid search,
which consists of 101 values equally spaced between
—0.5 < logs < 0.5, 10 values equally spaced between 0° <
a < 360° and 41 values equally spaced between —4 <
log g < 0. As shown in the lower panel of Figure 2, we find
five distinct minima (labeled as “A,” “B,” “C,” “D,” and “E” in
the lower panel Figure 2).

We then investigate the best-fit model with all parameters set
free using MCMC. The MCMC results show that the Model
“A” provides the best fit to the observed data, while the Models
“B,” “C,” “D,” and “E” are disfavored by AXZ ~ 3, 15,
54, and 134, respectively (see Table 1 for the parameters and

their 68% uncertainty range from MCMC). Figure 3 shows the
lens-system configurations of the individual degenerate models.
In Figures 4 and 5, we find that most of the \* difference of
Models “D” and “E” are from the anomalous region. Together
with the relatively large Ay?, we only investigate Models “A,”
“B,” and “C” in the following analysis. In addition, all of the
surviving models (A, B, and C) have very low mass ratios,
indicating that the companion is a planetary-mass object.

In some cases, the microlens parallax 7z can be measured by
considering the orbital motion of Earth around the Sun in the
light-curve analysis (Gould 1992; Alcock et al. 1995).
However, this method is generally feasible only for events
with long timescales fg = year/27 (e.g., Udalski et al. 2018)
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that introduce significant deviation from rectilinear motion in

A N 3.2. Binary-source Model
the lens-source relative motion. For OGLE-2015-BLG-1771,

the timescale 75 < 5 days, so the parallax effect should be A binary-source event is the superposition of two point-lens
negligible. As a result, the addition of parallax to the models events. Gaudi (1998) first pointed out that a 1L2S event can
only provides Ax? < 2, and the upper limit of the microlens mimic a 2L1S event if the binary source (labeled as “S1” and
parallax as the 1o level is 15 < 100 for all three models. The “S2”) has a large flux ratio g = fg; /fs, and the second source
microlens parallax should be <10 for typical microlensing “S2” passes much closer to the lens. We therefore search for
events (see Table 2 of Zhu et al. 2017), so the light-curve 1L2S solutions using MCMC, which shows that the best-fit
analysis gives no useful constraint on the microlens parallax. 1L2S model is disfavored by Ax? ~ 86 compared to the best-
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Table 1

0.1

of
NL

S
&)

Models A B C D E Binary Source
fo.1 (HID') 7235.60 + 0.01 7235.62 + 0.01 7235.51 + 0.01 7235.61 + 0.01 7234.74 + 0.23 7235.77 + 0.02
fo2 (HID') aE S - e . 7235.06 & 0.03
o1 0.121 + 0.008 0.114 + 0.006 0.242 + 0.009 0.273 + 0.016 0.024 + 0.016 0.112 + 0.024
U ce e . e e 0.001 + 0.025
fg (days) 428 +0.24 453 4+ 0.18 2.49 + 0.10 2.62 £+ 0.12 8.64 + 0.98 5.39 + 0.85
s 1.202 + 0.010 0.998 + 0.008 1.119 + 0.006 0.850 + 0.008 2.216 + 0.090

g (107%) 5.38 + 0.64 447 + 0.51 455+ 4.5 3.39 £ 0.35 709 £ 9.8

a (deg) 2237 £ 12 2224 + 0.4 191.9 + 0.4 38.6 £ 0.4 146.8 + 0.8 -
p,(1073) 441 + 046 3.64 + 0.34 8.27 + 0.80 9.15 + 0.78 4.41 +0.50 131 + 27
p,(1073) 10 +2
qr - v e “ h 0.080 + 0.012
Is 21.77 + 0.08 21.86 + 0.06 2091 + 0.05 20.82 + 0.08 22.86 + 0.13 2225 + 0.24
Iy 21.03 + 0.04 20.99 + 0.03 22.04 £+ 0.14 22.36 + 0.30 20.74 + 0.02 20.85 + 0.06
x2/dof 3489.8/3481 3492.7/3481 3505.1/3481 3543.5/3481 3624.1/3481 3575.4/3480

fit 2LL1S model (see Table 1 for the parameters). In Figure 5, we
find that most of the x* difference comes from the anomalous
region, in which the 1L.2S model cannot fit the “U” shape of the

anomalous region. Thus, we exclude the 1L2S solution.

4. Physical Parameters

Uniquely determining the total lens mass M; and distance

Dy requires two observables: the angular Einstein radius 0g and
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W Red Clump

141 —— Model A

—— Model B
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201 . :

Figure 6. Color-magnitude diagram of a 2’ x 2’ square centered on OGLE-2015-BLG-1771. The black dots show the stars from the OGLE catalog, which are
roughly calibrated to the standard filter using the formula of Udalski et al. (2015). The green dots show the HST CMD of Holtzman et al. (1998) whose red-clump
centroid is adjusted to OGLE’s using the Holtzman field red-clump centroid of(V — I, I) = (1.62, 15.15; Bennett et al. 2008). The red asterisk shows the centroid of
the red clump, and the blue, magenta, and yellow dots represent the position of the source of different models.

the microlens parallax 7z (Gould 1992, 2000)

R . @
KRTE TE GE + 7y

where k = 4G/(c?au) = 8.144 mas/M., 75 = au/Ds is the
source parallax, and Dyg is the source distance. We estimate the
angular Einstein radius by 0g = 60/p in Section 4.1. However,
the observed data give no useful constraint on the microlens
parallax (see Section 3.1). Thus, we conduct a Bayesian
analysis in Section 4.2 to estimate the physical parameters of
the planetary system.

4.1. Color-Magnitude Diagram

We estimate the angular source radius 6y based on the de-
reddened brightness and color of the source (Yoo et al. 2004). We
construct the color—magnitude diagram (CMD) using OGLE stars
within a 2/ x 2’ square centered on the position of the event (see
Figure 6). We measure the centroid of the red giant clump as
V-1 D4 = (265 =% 0.01, 16.68 + 0.01), and compare it to the
intrinsic centroid of the red giant clump (V — I, )0 = (1.06,
14.39; Bensby et al. 2013; Nataf et al. 2016), which yields an
offset A(V — I, I)q = (1.59 £+ 0.02, 2.29 £ 0.03).

From the light-curve modeling, the source apparent bright-
ness is Is o = 21.77 £ 0.08, Iy = 21.86 = 0.06 and ¢ =
2091 £ 0.05 for Models “A,” “B,” and “C,” respectively.
Howeyver, in this case, we have no color measurements of the

Table 2

De-reddened Source Color and Magnitude, the Values of 0., 0 and i
Models Unit A B C
Lo mag 19.48 + 0.09 19.57 4+ 0.07 18.62 + 0.06
V—=1Dsp mag 092 + 0.14 0.95 £ 0.16 0.78 £+ 0.09
Oy [as 0.49 + 0.08 0.48 + 0.08 0.65 + 0.07
0 mas 0.111 +£0.022  0.132 £ 0.025 0.079 £+ 0.011
el mas yrfl 9.5+ 20 10.6 £+ 2.1 11.6 £ 1.7

source due to too low S/N in V-band. Nevertheless, it is still
possible to estimate the source color following the method of
Bennett et al. (2008) and Kondo et al. (2019). We first calibrate
the CMD of Holtzman et al. (1998) Hubble Space Telescope
(HST) observations to the OGLE CMD using its red-clump
centroid of (V — I, g pusr = (1.62, 15.15) (Bennett et al.
2008). We then estimate the source color by taking the average
color of the calibrated Holtzman field stars whose brightness
are within 30 of the microlens source star. Using the derived
offset of the red giant clump, the de-reddened brightness Is o
and color (V — I)g o of the source can be measured. Finally, we
apply the color/surface-brightness relation of Adams et al.
(2018) to estimate the angular source radius 0. We summarize
the values of the source and the derived angular Einstein radius
0k and the lens-source relative proper motion fi in Table 2.
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Table 3
Physical Parameters for OGLE-2015-BLG-1771
ap = —4.0 ap = 0.6
Lens Parameters Unit Model A Model B Model C Model A Model B Model C
Mg M. 0.077*0 043 0.0860037 0.055 0,03 00760043 0.085* 057 0.049100%3
Mplanet M 04335957 04017053 2634130 04274993 03973559 23314135
Dy kpc 7.0741%9 6.861% 6.96:938 7.04+19 6.8371% 6.857142
r au 0.85701¢ 0.787013 0.56:00¢ 0.855018 0.77+512 0.5550%
0k mas 0.100:39%8 0.114+3%) 0.072+3919 0.100:39%8 0.11559%21 0.071+3919
fhre mas yr~! 8.541¢ 9.2%17 104514 8.541¢ 9.2517 10414

4.2. Bayesian Analysis

Our Bayesian analysis is based on the Galactic model of
Jung et al. (2018b) derived from the models of Han & Gould
(1995, 2003). Because the timescale of the event is <5 days,
we expect that objects in the planetary-mass regime are also
plausible lenses (e.g., Miyazaki et al. 2018). We therefore
adopt a broken power-law mass function as follows:

dN/dM = apM—»  (0.001 < M/M. < 0.013)  (3)

dN/dM = a,M~°3 (0.013 < M/M < 0.08) 4)
dN/dM = a,M~!3 (0.08 < M/M; < 0.5) 5)
dN/dM = asM~%3 05 < M/M, < 1.3) ©)

where the last three terms are the Kroupa mass function
(Kroupa 2001) used in Zhu et al. (2017), (ao, ai, a,, as) are
normalizing coefficients, and o, is the slope of the planetary-
mass regime. We create a sample of 10° simulated events for
ap = —4.0 and 0.6, respectively. The planetary slope
ap = —4.0 is similar to that of Mr6z et al. (2017) for unbound
or wide-orbit Jupiter-mass planets. o, = 0.6 has 1 : 0.26 for
the relative fractions of number between main-sequence stars
and planetary-mass objects, which is just slightly higher than
the result of Mréz et al. (2017) who found that the upper limit
on the frequency of Jupiter-mass free-floating or wide-orbit
planets is 0.25 per main-sequence star at 95% confidence. For
each simulated event i of model k, the weight is given by

Waalik = LixLlix(te) Lix(Op), @)

where TGy oc O X fi;, is the microlensing event rate,
L;x(tg) and L; x(0g) are the likelihood of its derived parameters
(tg, Or)ix given the error distributions of these quantities for
that model

exp[—(X; — X)?/20%,]

LX) =
x(X) Fomox,

X=tgorX = 0.

(®)

The resulting posterior distributions of the lens host mass
Moy, the lens distance Dip, the planet mass Mpjanet, the
projected planet-host separation r, the angular Einstein radius
0g, and the lens-source relative proper motion f, for Models
“A,” “B,” and “C” are shown Figure 7 and Table 3. For each
parameter, the uncertainties are the 68% probability range
about the median of the probability distribution. For Models
“A” and “B,” the effects of different «, are negligible, and the
planetary system is probably composed of a Saturn-mass planet
orbiting a late M dwarf. For Model “C,” the distributions of
planetary host mass (M. < 13 Mjy) are different for the two

apl, with 3.2% probability distribution for oy, = —4.0 and
12.0% for ay,; = 0.6. Because both distributions indicate a mid-
mass BD host star, we adopt the distributions of oy, = —4.0 for
the final lens properties. The projected planet-host separation is
~0.5-1.0au for the three models, which indicates that the
planet is well beyond the snow line (assuming a snow line
radius rg;, = 2.7(M/M.,) au; Kennedy & Kenyon 2008).

5. Discussion

We have reported the discovery and analysis of the
microlens planet OGLE-2015-BLG-1771Lb. Our analysis
suggests that the planetary system probably consists of a gas-
giant planet and an ultracool dwarf. This conclusion is based on
a Bayesian analysis that shows that the lens has a ~65%
probability of being <0.1 M, and a ~85% probability of being
<0.2M. (for ap = —4.0). Of course, this still leaves a
significant possibility that the lens could be a more massive
star. For example, similar to this event, the Bayesian posterior
for the primary of OGLE-2014-BLG-0962 (Shan et al. 2019)
peaks at a mass of ~0.07 M, with an 84% probability that the
mass is <0.2 M. However, including the parallax measure-
ment for that event yields a measured mass of 0.2M. In the
present case, the measured source-lens relative proper motion
for the three models is quite large (see Table 2) and the source
is quite faint (/ > 20.7). This is similar to the case of OGLE-
2005-BLG-169 for which HST (Bennett et al. 2015) was able to
resolve the source and the lens when they were separated by
~48 mas. Thus, even for model A (which has the lowest proper
motion, fir ~ 8.5 mas yrfl), the source and lens will be
separated by ~50 mas as soon as 2020. If the host star is an
M < 0.1 M, star, the lens apparent magnitude should be I 2>
27, which cannot be observed. Thus, we can verify within a
few years that the host is an ultracool dwarf by excluding M 2,
0.1 M, hosts for OGLE-2015-BLG-1771 using high-resolution
imaging.

For many years (beginning with the second microlens planet,
OGLE-2005-BLG-071Lb; Udalski et al. 2005), most microlen-
sing planets were discovered based on the strategy advocated by
Gould & Loeb (1992) using a combination of wide-area surveys
for finding microlensing events and intensive follow-up observa-
tions for capturing the planetary perturbation. The second-
generation microlensing surveys, conducted by the Microlensing
Observations in Astrophysics (MOA; Sumi et al. 2016), OGLE,
Wise Observatory (Shvartzvald et al. 2016), and KMTNet, aim to
detect planets by wide-area, high-cadence observations, without
the need for follow-up observations. For the planet OGLE-2015-
BLG-1771Lb, the event timescale (<5 days) and the planetary
signal (~5 hr) are short, and the anomaly is faint (lynom ~ 19).
Because the detection limit of the microlens follow-up
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observations is I < 18 (Gould et al. 2010; Cassan et al. 2012), this
planet can only be detected by the second-generation microlensing
surveys. For those nine microlens planets that have a >50%
probability to orbit an My, < 0.1 M, host star, only OGLE-
2012-BLG-0358Lb was detected using the strategy of Gould &
Loeb (1992). Moreover, the rate of discovery of such planets is
much higher beginning with 2015 (i.e., the observations of
KMTNet), during which 6/9 planets were detected. In addition,
the typical timescale g for the microlensing events with an
M < 0.1 M, lens is <10 days. For the three planets detected
before 2015, all of them have g > 20 days, while 5/6 planets
beginning with 2015 have fz < 10 days, which suggests that the
current second-generation microlensing surveys are more sensitive
to the planets around ultracool dwarfs. Future statistical analyses
of the microlens sample of planets around ultracool dwarfs will
potentially reveal the properties of such planets and thus provide
stringent constraints on the planet formation theories.
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