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Abstract.  In this paper we study equations  of fluctuating non-linear 
hydrodynamics (FNH) for a liquid in which the constituent particles follow 
Brownian dynamics (BD). Here the microscopic-level dynamics are dissipative 
as compared to the case of fluids with reversible Newtonian dynamics (ND). 
The implications of non-linearities in FNH equations for an ND liquid on its 
long-time dynamics and the possibility of an ideal ergodicity–non-ergodicity 
(ENE) transition at high density have been widely investigated in literature. 
It is known that in an ND fluid, dynamics described by FNH equations do not 
support a sharp ENE transition. In the present paper we demonstrate that, as a 
consequence of the fluctuation–dissipation constraints, an ideal ENE transition 
is also not supported from the FNH equations for BD fluid.
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1.  Introduction

In understanding the development of extremely slow dynamics in a many-particle sys-
tem, the self-consistent mode-coupling theory (MCT) [1–3] has played an important 
role. Central to the MCT for liquids is a non-linear feedback mechanism due to the cou-
pling of slowly decaying density fluctuations in the supercooled state. In the simplest 
version proposed initially [4–6] a sharp ergodic to non-ergodic (ENE) transition of the 
supercooled liquid into a glassy phase was predicted. This transition occurs at a criti-
cal density or the corresponding value of another suitable thermodynamic parameter. 
Beyond the ENE transition point the auto-correlation fluctuations freeze at a nonzero 
value over a long time. Hence the order parameter in this transition is taken to be the 
long time limit f(q) of the density correlation function [7] ψ(q, t). In the ergodic liquid 
state f(q) = 0 for all q. The packing fraction at which all the f(q)’s jump discontinu-
ously to a nonzero value [8] marks the transition point. Subsequently it was demon-
strated that the sharp transformation to a non-ergodic state at a critical density as 
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predicted in the original MCT [9] is rounded. The absence of a sharp ENE transition 
in supercooled liquids was supported by the work in [10–12] using similar theoretical 
models. These models are generally termed as extended MCT.

The original treatment of the extended MCT presented in [9] was based on equa-
tions of fluctuating non-linear hydrodynamics (FNH) [13, 14]. This formulation was 
developed for a fluid in which the particles follow reversible Newtonian dynamics (ND) 
[9, 15, 16]. The same FNH equations were recently obtained [17] for a system of par-
ticles following Brownian dynamics (BD), which is dissipative [18]. The respective 
forms of the FNH equations for fluids in which the particles follow ND and BD are 
similar with some subtle dierences. The set of hydrodynamic variables considered here 
in FNH formulation are {ρ,g}, respectively denoting mass and momentum densities. 
The equation of motion for mass density ρ(x, t) is the continuity equation. The equa-
tion for the momentum density g(x, t) is a generalised Langevin equation with noise. 
For ND fluid, the dissipative term of this generalised Navier–Stokes equation involves 
1/ρ non-linearity. The stochastic term represents simple noise and the noise correla-
tion is defined with constant bare transport coecients [19]. On the other hand, for 
the Brownian system, with intrinsically dissipative dynamics, the noise is multiplica-
tive [20] and the corresponding bare transport coecient [21] is dependent on the 
fluctuating density. However, in this case, the dissipative term of the g equation  is 
linear in g. It does not contain the 1/ρ non-linearity which is essential for removing the 
ideal ENE transition of MCT [9, 22] in the Newtonian case. In the present work we 
analyse implications of these FNH equations for the Brownian system on the asymp-
totic behaviour of the order parameter (density–density correlation function) for the 
ENE transition and compare the results with those for Newtonian systems.

The paper is organised as follows. In the next section we summarise the deductions 
and basic features of the FNH equations  corresponding to the collective hydrody-
namic modes {ρ,g} respectively for fluids with ND and BD. In section  3 we sum-
marise the non-perturbative formulation of the Martin–Siggia–Rose (MSR) field theory 
[23–25] and renormalisation scheme for a Brownian system. In section 4 we analyse 
the corresponding set of fluctuation–dissipation relations (FDRs) between correlation 
and response functions of MSR field theory. In section 5 we study the implications for 
multiplicative noise on the asymptotic dynamics of the fluid. In particular our focus 
is on the feasibility of an ENE transition at high density within the constraints of the 
FDRs. We end the paper with a brief discussion and summary of conclusions. The pres-
ent analysis in terms of the MSR field theories is technically rather involved. A lot of 
the machinery used here is already available in the literature and hence we have kept 
the description to a minimum level and shifted the technical parts in the appendices 
which are therefore long. The informed reader can skip those. We briefly describe in 
appendix A the deduction of the corresponding FNH equations  for the BD system. 
In appendix B the formulation of the renormalised MSR field theory is described for 
FNH equations with multiplicative noise. Here we discuss deduction of the appropri-
ate MSR action functional, calculation of renormalised correlations functions using the 
so-called Dyson equation and finally the time reversal operator that keeps the MSR 
action invariant.

https://doi.org/10.1088/1742-5468/ab684c
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2. Fluctuating nonlinear hydrodynamics: Newtonian versus Brownian fluid

In the FNH description the dynamics of a system are formulated in terms of the time 
evolution of a set of local densities {ψa(x, t)}. These equations of dynamics originate 
from a corresponding set of underlying conservation laws, or as a representation of 
Nambu–Goldstone modes which occur due to the breaking of continuous symmetry in 
the system [26]. In some situations the slow mode can result due to some specific prop-
erty, like the high inertia of a Brownian particle. For an isotropic fluid in which the 
particles follow reversible ND, conservation laws of mass, momentum and energy in the 
fluid give rise to a corresponding set of balance equations for microscopically defined 

collective densities {ψ̃a}.

∂ψ̃a

∂t
+∇ · j̃a = 0,� (1)

with j̃a being the current density corresponding to ψ̃a. The index a runs over a set of 
conserved properties. For example, in a fluid, at a microscopic level the mass density 
ρ̃(x, t) and momentum density g̃(x, t) are defined in terms of the phase space coordi-
nates of the individual particles {xα,pα}.

ρ̃(x, t) =
N∑

α=1

δ(x− xα(t))� (2)

g̃i(x, t) =
N∑

α=1

piαδ(x− xα(t)).� (3)

We have adopted the usual notation that the Greek indices correspond to the particle 
labels while the Roman indices are for the Cartesian components of a vector. In dealing 
with the non-linear dynamics of the density field we take the mass m of the particles 
as unity to keep the notations simple. This makes the number density ñ(x) and mass 
density ρ̃(x) the same. The microscopic densities defined above are averaged over all 
possible phase space coordinates for a suitable non-equilibrium ensemble to obtain the 
corresponding coarse-grained functions with smooth spatio-temporal dependence. Thus

〈ψ̃a(x, t)〉n.e = ψa(x, t).� (4)

The set of balance equations (1), when averaged over a suitable non-equilibrium distri-
bution, obtains the corresponding equations for the coarse-grained densities {ψa(x, t)}. 
These equations with smooth spatio-temporal dependence are obtained using standard 
methods of statistical mechanics [27, 28]. With an intrinsic time scale separation in 
the dynamics, divergence of the averaged current ja is split into a regular (slow) and 
a stochastic (fast) part. The time evolution of the coarse-grained local density ψa(x, t) 
in an FNH description is obtained in terms of a generalised Langevin equation  [29] 
consisting of regular parts and noise with the two parts having widely dierent time 
scales [20]. These stochastic partial dierential equations are treated as the actual time 
evolution of the respective local densities and a plausible generalisation of the standard 
hydrodynamic laws.

https://doi.org/10.1088/1742-5468/ab684c
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For both ND and BD the coarse-grained mass density ρ(x, t) satisfies the continuity 
equation (5) with the momentum density g(x, t) as its current.

∂ρ

∂t
+∇.g = 0.� (5)

Note that this equation is invariant under time reversal and does not contain a dissipa-
tive term or noise. The equation of motion for the momentum density g has important 
dierences for ND and BD. We describe the two cases below.

2.1. Newtonian dynamics

The Langevin equation for the density ψa is obtained in the generalised form

∂ψa

∂t
+

∑
{ψb}

[
Qab + L0

ab

]
δF

δψb

= ζa.� (6)

Qab is the classical Poisson bracket (PB) between the densities ψa and ψb.

Qab = {ψ̃a, ψ̃b},� (7)

and finally the {ψ̃a} is replaced by the corresponding coarse-grained quantity {ψa}. The 
noise ζa in the generalised Langevin equation is assumed to be Gaussian with the fol-

lowing FDR with the bare transport coecients L0
ij,

〈ζa(x, t)ζb(x′, t′)〉 = 2β−1L0
ab(x− x′)δ(t− t′).� (8)

Here β = 1/(kBT ) is the Boltzmann factor. Both Qij and L0
ij are symmetric under 

exchange of its indices. The Langevin equation  (6) in the equivalent Fokker–Planck 
description [30, 31] has a stationary solution ∼ exp[−F ], where F is identified as a 
coarse-grained free energy functional [32].

For the ND case, the equations for microscopic dynamics are reversible. The Poisson 
brackets Qab are calculated [33, 34] in terms of the fundamental PB, {xi

α, p
j
ν} = δανδij. 

The generalised Langevin equation (6) for momentum density gi is written in the useful 
form

∂gi
∂t

+∇j

[
gigj
ρ

]
+ ρ∇i

δFU

δρ
− L0

ij

gj
ρ

= θi.� (9)

F [ρ, g] appearing is expressed as a sum of two parts

F [ρ, g] = FK[ρ, g] + FU[ρ].� (10)
The so-called kinetic part FK[ρ, g] [35] is

FK[ρ, g] =

∫
dx

[
g2(x)

2ρ(x)

]
.� (11)

The momentum density equations include dissipation in a phenomenological way. The 
dissipative terms are obtained by maintaining positive entropy production [28]. The 

bare transport matrix is L0
ij for the isotropic system and is obtained as

https://doi.org/10.1088/1742-5468/ab684c
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L0
ij = (ζ0 +

η0
3
)∇i∇j + η0δij∇2,� (12)

where ζ0, η0 etc are the corresponding bulk and shear viscosities of ND fluid. The noise 

θi≡ζgi relates to the bare dissipative matrix L0
ij through the FDR:

〈θi(x, t)θj(x′, t′)〉 = 2β−1L0
ij(x− x′)δ(t− t′).� (13)

2.2. Brownian dynamics

In the case of BD, the equation of motion of a single constituent particle is dissipa-
tive and has an intrinsic noise component. For position variables the time derivative is 
ẋα = pα. For the ith component of pα the equation of motion is

dpiα(t)

dt
= f i

α − γ0
ijp

j
α + ξiα(t).� (14)

The force on particle α (where α = 1, .,N ) has a regular part f i
α due to interaction with 

other particles and a stochastic part described with a random noise ξiα. The frictional 

force is γ0
ijp

j
α where the kinetic coecient γ0

ij [36] has the dimension of inverse time. We 
treat the dynamics in Markovian approximation of widely dierent time scales for the 
regular and stochastic components of equation (14). The fast part constitutes the noise 
ξαi  which is assumed to be white and Gaussian. Correlation of the noise is related to 
the dissipative coecient γij through the FDR:

〈ξiα(t)ξ j
ν (t

′)〉 = 2mβ−1γ0
ijδανδ(t− t′),� (15)

where m is the mass of the particle, and set to unity. In appendix A we discuss how by 
averaging equation (14) over a local equilibrium distribution [37] we obtain the coarse-
grained equation of FNH for the momentum density g(x, t):

∂gi
∂t

+ Γi[ρ,g]− γ0
ijgj = ϑi.� (16)

The reversible component of the regular part of the equation of motion is

Γi[ρ,g] ≡ ∇j

[
gigj
ρ

]
+ ρ∇i

δFU

δρ
.� (17)

The bare transport matrix of friction coecients γ0
ij thus represents a tensor kine-

matic viscosity and has to be multiplied with a factor of density to obtain the corre
sponding bare viscosity tensor involving ζ0 and η0, respectively denoting the bulk and 
shear viscosities of BD fluid. Note that in order to conserve momentum the dissipative 

coecient matrix γ0
ij has ∇i∇j operators associated with it.

2.3. Primary distinctions

We summarise here the primary dierences between the respective FNH equations for 
the ND and BD systems. In both cases, the corresponding FNH equations for the local 
densities ψa∈{ρ,g} have the same generalised form described in (6)–(8). In the case 

https://doi.org/10.1088/1742-5468/ab684c
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of BD, the bare transport coecient is γ0
ij and the frictional term in equation (16) is 

L0
ij(δF/δgj), where the kinetic coecient L0

ij is dependent on the local densities ρ(x, t):

L0
ij = γ0

ijρ(x, t).� (18)

Equations (9) and (16) are stochastic partial dierential equations of FNH, respectively 
corresponding to fluids following ND and BD. The term ∇j[gigj/ρ] present in both 
equations is essential for Galilean invariance of the FNH equations and is termed as a 
convective non-linearity. For the ND case however, the 1/ρ non-linearity also appears 
in the dissipative term. In order to take into account this non-linearity for a fluid with 
ND, another fluctuating field v has been introduced [9, 22] and was linked to {ρ,g} 
through the non-linear constraint

g = ρv.� (19)
This makes the dissipative term, the last one on the left-hand side of equation (9), lin-

ear in the v(x, t) field, i.e. L0
ijvj. For BD, unlike ND, in the corresponding generalised 

Langevin equation (16) for gi, the dissipative term is linear in g. The noise in this case 
is multiplicative and so the noise correlation involves the density factor ρ(x, t).

For an ND system the MCT of glassy dynamics has been obtained from the corre
sponding set of FNH equations which includes the continuity equation (5), the generalised 
Langevin equation (9) and the non-linear constraint (19). In the BD case, equation (16) 
replaces equation (9) for the momentum density. Both these equations include the key 
non-linear couplings of the hydrodynamic modes which give rise to the slow dynam-
ics of MCT. Partial treatment of the non-linearities predicts an ENE transition in the 
metastable liquid. A detailed analysis [9, 22] of the renormalised theory involving FNH 
equations (5) and (9) for an ND system showed that, unlike the predictions of simple 
MCT, a sharp ENE transition is not supported in the full analysis. This holds within 
requirements of the existing FDRs [38–40] in the model. However, this was primarily 
a result for the FNH equation described above for fluids in which the particles follow 
reversible ND. In this paper we focus on the FNH equation (16) for BD fluids.

3. Field theoretic model for renormalised dynamics

The time correlation of density fluctuations or the dynamic structure factor is a key 
quantity studied in liquid-state physics. This correlation function is treated as the order 
parameter for ENE transition predicted in self-consistent MCT of glassy dynamics [3, 
5]. It is conveniently obtained from FNH formulation by performing averages over the 
associated noise. The renormalised perturbation theory for the dynamics is developed 
following the standard approach of the MSR field theory [23]. It is particularly suitable 
for the discussion of MCT since the renormalised dynamics are formulated in a self-
consistent manner in the MSR approach. The related methodology provides a recipe for 
calculating noise-averaged correlation and response functions involving a set of fields 
{ψa} whose dynamics are given by stochastic partial dierential equations of FNH. In 

the MSR field theory a set of conjugate or hatted fields {ψ̂a} are introduced such that 

https://doi.org/10.1088/1742-5468/ab684c
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the matrix of two point correlation functions between original and hatted fields repre-
sent response functions. The response functions are by definition time-ordered.

We focus here on the formulation of renormalised dynamics for a Brownian system, 
based on the FNH equations (5) and (16). The associated noise in this case is multipli-
cative and the noise correlation is proportional to the fluctuating density field ρ. In the 
MSR theory correlations of the various fields {ψa} involve averages defined in terms of 
the action A, which is a functional of the field variables {ψa} and the corresponding 

conjugate hatted fields {ψ̂a}. Generally, the MSR action A is evaluated for the case of 
additive noise. For the case of multiplicative noise [41, 42] it has been shown [43] that 
the form of the action remains similar to that  obtained in the case in which the bare 
transport coefficients are field-dependent. With the choice of proper time discretisation, 
it is possible to treat the Jacobian of transformation between variables involving noise 
and fields as constant [43]. Formulation of the MSR theory corresponding to the FNH 
equations following a path integral approach is briefly outlined in the appendix B. We 
list the specific result for the BD system here. The action A is obtained as a functional 
of the fields ψa ∈ {ρ,g} and their hatted conjugates [9, 43],

A[ρ,g, ρ̂, ĝ] =

∫
dt

∫
dx

{
β−1ĝiL

0
ij[ρ]ĝj + iĝi

(
∂gi
∂t

+ Γi[ρ,g]− γ0
ijgj

)

+ iρ̂

(
∂ρ

∂t
+∇jgj

)}
.

�

(20)

The noise is multiplicative, or in other words, the transport coecient L0
ij which deter-

mines the noise correlation depends on the hydrodynamic field ρ(x, t) as shown in 
equation (18).

We denote the matrix of correlation functions involving the combined group of 

fields {ψa, ψ̂a} as G and it is calculated in terms of the action functional A[ψa, ψ̂a]. For 
completely linear dynamics the functional A is quadratic in the fields and the corre
sponding G matrix is denoted as G0. The correction due to non-linearities (in the 
dynamics) are included in the theory in terms of the self-energy matrix Σ introduced 
through the Dyson equation:

G−1 = G−1
0 − Σ.� (21)

For the present formulation, the action A gives G−1 and G−1
0  in a block diagonal 

form. In appendix B.1, the inverse of G0 is obtained for the isotropic system in terms 
of matrices B0, C0 introduced in equation (B.21). In the present case of BD with fields 
{ρ,g} the matrices B0, C0 are of size 2× 2. Using (20) for MSR action, we obtain the 
matrix B0 from the equations of linear dynamics as

B0(q,ω) =

[
ω −q

−qc20 ω + iL0

]
� (22)

where L0 = q2ρ0γ0. We have taken here the γij as diagonal, γ0
ij = ρ0γ0δij, where γ0 

is a kinematic viscosity. Next, we consider the corresponding self-energy matrix Σ. 
Using basic symmetries and the tensorial structure of the various elements for Σ, we 

https://doi.org/10.1088/1742-5468/ab684c
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identify their respective wave vector dependences. The self-energies Σĝiρ and Σĝigj are 
respectively identified as

Σĝiρ = qiγĝρ , Σĝigj = qiqjγĝg, Σĝiĝj = qiqjγĝĝ.� (23)
Since there is no non-Gaussian term in the MSR action functional (20) with a ρ̂ field, 
the corresponding vertex functions with this field are absent and hence Σab is zero if 
either of the a or b indices correspond to ρ̂. Hence the matrix C0 has only one nonzero 
element corresponding to both indices being ĝ, and is equal to 2β−1L0. The corre
sponding renormalised matrix element of C is

Cĝg = 2β−1L0 − Σĝg≡2β−1γ̃R(q,ω).� (24)

The inverse of the full Green’s function matrix is obtained using the Dyson equa-
tion (21) in the block diagonal form with matrices (22) and (24). The correlation and 
functions between two unhatted fields are obtained in the symmetric form

Gαβ = −
∑
µν

Gαµ̂Cµ̂ν̂Gν̂β,� (25)

which is obviously real. The response functions are expressed in the general form,

Gab̂(q,ω) =
Nab̂(q,ω)

D(q,ω)
,� (26)

where Nab̂ and D are respectively the co-factors and determinant of matrix B defined 
in appendix B.2. The matrix Nα̂β in the expression (26) for the response function is 
obtained as

Nαβ̂(q,ω) =

[
ρ0ω + iq2γR(q,ω) −ρ0q

−ρ0qc
2 ρ0ω

]
.� (27)

The denominator D of the expression given in (26) is obtained as

D(q,ω) = ρ0(ω
2 − q2c2) + iq2ωγR(q,ω).� (28)

We have in terms of single-hatted or response self-energies, the following renormalised 
quantities to leading order in wave number q:

γR(q,ω) = ρ0γ0 + iγĝg(q,ω)� (29)

c2(q,ω) = c20(q) + γĝρ(q,ω).� (30)

Note that γR has the dimension of viscosity while that of γ0 is of kinetic viscosity. 
c0(q) represents the speed of sound in the equations  for linear dynamics of density 
fluctuations and is related to the static structure factor S(q) of the fluid.

4. Fluctuation dissipation relations

A set of relations between the correlation and response functions is reached by con-
sidering how the MSR action (20) changes under time reversal [9, 40]. This is closely 

https://doi.org/10.1088/1742-5468/ab684c
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linked to the time reversal property of the associated Langevin equations of the FNH 
description. We define the time reversal operation on the field ψa as

T ψa(x, t) = εaψi(x,−t)� (31)
where εa = ±1. The MSR action functional A[ψ, ψ̂] is invariant [40] under the transfor-
mation T  defined as

ψa(x,−t) → εaψa(x, t)� (32)

ψ̂a(x,−t) → −εa

[
ψ̂a(x, t)− iβ

δF

δψb(x, t)

]
.� (33)

This time invariance property leads to FDRs between the response and correlation 

functions. Using (33) and (32) for the fields {ψ̂a,ψb} we obtain

〈ψ̂a(x, t)ψb(x
′, t′)〉 − iβ〈κa(x, t)ψb(x

′, t′)〉 = 0,� (34)

where the field κa is defined as

κa(x, t) =
δF

δψa(x, t)
.� (35)

The response function is time-ordered and is nonzero for t > t′. The FDT which follows 
from equation (34) is expressed as

Gψ̂aψb
(t, t′) = iβΘ(t− t′)Gκaψb

(t, t′),� (36)

where Θ(t) is the step function. Note that the FDT relation (36) provides a closed set of 
relations if newly defined (see equation (35) above) κb ∈ {ψa}. For compressible liquid 
this is achieved by extending the set of fluctuating fields to include the current field v 
to be specified below. The set of field variables involved in the FDT (36) for the MSR 
theory goes beyond {ρ,g} and includes a new fluctuating field v defined with the non-
linear constraint (19).

In the appendix B.3 we show that for the MSR action A in equation  (20), the 

invariant properties (33) and (32) are maintained even if the transport coecients L0
ij 

are field-dependent, as is the case for multiplicative noise. For ψa≡gi, the functional 
derivative of the driving free energy is

κa =
δF

δψa

≡δF

δgi
=

gi
ρ
.� (37)

This follows from the kinetic part FK[ρ,g] given in equation (11) for the driving free 
energy functional. It is important to note here that the specific form FK leads to the 
continuity equation (5) for ρ(x, t) and it also gives rise to the term ∇j{gigj/ρ} which is 
essential for maintaining the Galilean invariance of the equation (9). Both these are key 
aspects of hydrodynamic description. The response functions involving ĝ links through 
the FDT to correlations with the current field v:

Gviψa(q,ω) = −2β−1ImGĝiψa(q,ω).� (38)
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It is important to note that the fluctuating field v(x, t) only enters the theory through 
a constraint and does not have an independent FNH equation describing its dynamics.

5. The ergodicity nonergodicity transition

Using the above expressions for the correlation and response functions we consider 
the validity of an ENE transition in the present model for a BD system. Let us first 
consider the basic requirements of the ENE transition on the correlation and corre
sponding memory functions or the generalised transport coecient for the fluid. In 
the following we suppress the position or wave vector arguments as a simplification of 
notations. A key point of this analysis is the self-consistent feedback mechanism which 

makes respective Fourier transforms of both the density auto-correlation G̃ρρ(ω) and 
the corresponding transport coecient γ̃R(ω) diverge at the ENE transition. The int
egral relation between γR(ω) and Gρρ(t) gives rise to the non-linear feedback mechanism 
referred to above. At the ENE transition in MCT the long time limit of the density 
auto-correlation function Gρρ(t) changes discontinuously to a nonzero value. In this case 
the one-sided Laplace transform of Gρρ(t) follows a singular behaviour Gρρ(z) ∼ 1/z in 

the small z limit. Hence the two-sided Fourier transform G̃ρρ(ω) ∼ δ(ω). The definition 
of Gρρ(z) in terms of the generalised transport coecient γR(z) will imply that the lat-
ter will also have a 1/z pole or equivalently, γ̃R(ω) have a δ function peak. Therefore 
an ENE transition implies a diverging viscosity or equivalently the blowing up of the 
self-energy Σĝĝ at small frequencies. This conforms to the physics of viscosity blowing 
up as one enters the non-ergodic phase.

In MCT, correlation functions are expressed in terms of generalised transport 
coecients. Perturbative expressions for renormalised transport coecients due to non-
linear couplings of the hydrodynamics modes are obtained using diagrammatic methods 
of quantum field theory [44]. In the following we will consider the implications of mode 
couplings from a non-perturbative approach. The renormalised transport coecients 
are obtained in terms of the so-called self-energy matrix Σ introduced through the 
Dyson equation [9]. By setting both α and β respectively equal to ρ in equation (25) 
it follows that the correlation function Gρρ contains a δ function contribution through 
couplings to Σĝĝ. Thus, the divergence of viscosity or that of the self-energy γĝĝ at small 
frequencies implies

γĝĝ = −Aδ(ω) + {Regular Terms for ω → 0}.� (39)
This is also supported from a perturbative approach, since one loop contribution to Σĝĝ 
involves convolution of Gρρ(t). The singular contribution of Gρρ comes from Σĝĝ in the 
form

Gρρ = GρĝΣĝĝGĝρ + {Regular Terms for ω → 0}.� (40)
Therefore for an ENE transition to occur it is necessary that the response function Gρĝ 
does not vanish as ω → 0. We test these conditions for Brownian dynamics fluids for 
which the renormalised model was discussed above in terms of the FNH equations for 
the field’s mass and momentum densities {ρ,g}. The matrix element Nρĝ = −ρ0q given 
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in equation (27) leads to a singular term involving δ(ω) in the correlation Gρρ. On the 
other hand, since Ngĝ = ρ0ω, the corresponding correlation Ggg(ω) or Gρg(ω) involving 
a g field does not have any divergence by linking with Σĝĝ as shown in equation (40). 
The ENE transition therefore would appear to be supported in this model for BD fluid. 
However, a crucial quantity in calculating Gρρ starting from equation (25) is Gĝρ and 
the FDR (38) links it to Gvρ. The behaviour of the latter has not been considered in the 
matrix of correlations involving the set {ρ,g}. To include the FDR requirements in the 
analysis, we need to extend the set of slow modes in the formulation. This is discussed 
next.

5.1.  Implications of fluctuation dissipation relations

In order to check implications of the FDR of equation  (38), we extend in the MSR 
theory with fields {ρ,g} to include the field v(x, t) through the non-linear constraint 
(19). The action functional A of equation (20) has an additional term

Ã[ρ,g,v] = A[ρ,g] +

∫
dt

∫
dx {iv̂.(g − ρv)} ,� (41)

where the constraint (19) is implemented with inclusion of a new hatted field v̂ in 
the theory. For this definition of the MSR action, the corresponding Gaussian part, 
denoted with the inverse matrix G−1

0 , is given in table 1. For the self-energy matrix Σ, 
the additional elements, over those described in equation (23) are obtained as follows:

Σv̂iρ = qiγv̂ρ, Σĝivj = qiqjγĝv, Σv̂v = iγv̂v.� (42)
To simplify matters we have replaced in all non-linear terms in equation (16) involving 
the gi fields with ρvi and hence the self-energy matrix Σab, vanishes if at least on of the 
indices a or b is the momentum density gi. Using the above described form of the self-
energy matrix in Dyson equation (21), the inverse of the full Green’s function matrix G 
with the extended set of slow modes {ρ,g,v} is obtained. The correlation and response 
functions are respectively obtained using the relations (25) and (26). The matrix Nα̂β in 
the expression (26) for the response function is given in table 2. The denominator D in 
the right-hand side of equation (26) involves the matrix element γv̂ρ and is obtained as

D(q,ω) = ρL(ω
2 − q2c2) + iq2γR(ω + iq2γv̂ρ).� (43)

The various quantities in the right-hand side of equation  (43) are organised similar 
to the linear theory. Thus ρL, c

2 and γR are identified as the respective renormalised 
quantities for the bare density ρ0, speed of sound squared c20 and longitudinal (kine-
matic) viscosity ρ0γ0. Equations (29) and (30) respectively define γR and c20. In writing 

Table 1.  Elements of matrix [G−1]α̂β defined in terms of the associated 
parameters.

ρ g v

ρ̂ ω −q 0
ĝ −qc2R ω + iγRq

2 −γĝvq
2

v̂ −qγv̂ρ i −iρL
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the renormalised expression for c2(q,ω) order q2 contributions in (30) are ignored. The 
average density is renormalised in terms of single-hatted or the response self-energies. 
To leading order in wave number q, we write

ρL(q,ω) = ρ0 + γv̂v(q,ω).� (44)
Using the above expressions for the correlation and response functions, we now consider 
the validity of the basic feedback mechanism of MCT that drives the ENE transition.

In the previous section we have already discussed the self-consistent feedback mech
anism by which respective Fourier transforms of both the density auto-correlation Gρρ 
and the corresponding self-energy matrix element γĝĝ develop their respective singular 
contributions involving a δ(ω) term. Setting both α and β in equation (25) respectively 
equal to ρ, v, etc it follows that all three correlation functions Gρρ, Gρv and Gvv contain 
a δ function contribution through couplings to Σĝĝ. On examining (25) it is clear that 
the self-consistent mechanism is viable only if Gρĝ and Gvĝ are both nonzero. Using 
the explicit form of Gvĝ from table 2, this requires γv̂ρ to be nonzero in the ω→0 limit. 
However, the FDR (38) implies that if Gvρ and Gvv blow up, then the imaginary parts 
of the response functions Gĝρ and Gĝv should respectively blow up. For this to happen, 
considering the explicit form of these response functions, as presented in table 2, D 
must blow up in the small ω limit. But in that case Gρĝ will go to zero, which is a con-
tradiction of the initial assumption. Thus, maintaining a nonzero Gĝρ is not compatible 
with preserving the fluctuation–dissipation constraints while having a non-vanishing 
Σv̂ρ.

The self-energy element Σv̂ρ originates from the non-linear constraint (19) included 
in the field theoretic formulation and is the key quantity in this analysis. If for some 
reason this self-energy Σv̂ρ vanishes at zero frequency, then equation (25) implies that 
Gρv and Gvv vanish as ω goes to zero and do not show a δ(ω) component. Then the 
determinant D can be finite. In this case one may have an ENE transition in this 
model. Alternatively, if the validity of an FDR like (38) is ignored, then the element 
γv̂ρ is not involved, and all three correlations Gρρ, Gvv and Gvv respectively develop a 
finite long time limit which is characteristic of the non-ergodic state. In this case the 
ENE transition is characterised by the divergence of viscosity and vanishing of the self-
diusion coecient [45–47]. Hence for a BD system, if the FDRs are enforced then the 
ENE transition is not supported since there is no a priori reason for the self-energy Σρv̂ 
to become zero.

Table 2.  The matrix of the coecients Nαβ̂ in the numerator on right-hand side 
of equation (26) for the response functions.

ρ̂ ĝ v̂

ρ ωρL + iq2γR ρLq iq3γĝv
g q(ρLc

2 + iγv̂ρq
2γĝv) ρLω iωq2γĝv

v q(c2 + iγv̂ρ(ω + iq2γR)) ω + iq2γv̂ρ i(ω2 − q2c2 + iωq2γR)
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6. Discussion

This present work focuses on the collective behaviour of a fluid in which the constitu-
ent particles follow BD. The microscopic-level time evolution is described in terms of 
dissipative equations. We analyse the viability of a sharp transition of this liquid into 
a non-ergodic state as a consequence of mode-coupling eects. The modes here refer to 
collective processes which signify conservation laws for a many-particle system. The 
non-ergodic state of the fluid is characterised by the property that the time correla-
tion function of collective density fluctuations remain nonzero in the long time limit. 
Correlations functions for the fluid are calculated here using equations of motion for 
the local densities {ρ,g} of mass and momentum, respectively. These equations have 
smooth spatio-temporal dependence and contain stochastic noise. The equation for ρ 
is the continuity equation, which is invariant under time reversal. The equation for 
momentum density g for the BD fluid has a dissipative term which is linear in g. The 
associated noise in this generalised Langevin equation for the time evolution of g is 
multiplicative. Time correlation of density fluctuations is calculated by averaging over 
the noise. The renormalised theory is formulated in terms of correlation functions 
which include the role of non-linear couplings of the hydrodynamic modes in the FNH 
equations.

We make a non-perturbative analysis of the renormalised model using the Dyson–
Schwinger equations of the associated MSR field theory that is based on the equa-
tions of FNH. The corresponding MSR action functional obeys time reversal symmetry 
rules that give rise to FDRs between correlation and response functions. These are 
given in equation (38). In the present case of BD, the kinetic coecients appearing in 
the MSR action functional have linear dependence [39] on the fluctuating field ρ, the 
associated noise being multiplicative. However, the set of time reversal transformations 
for invariance of the MSR action is the same as that for ND fluid. Hence the associated 
FDR stated in equation (38) is also the same for the two dynamics.

In the model involving {ρ,g} fields, the response functions like Gρĝ etc with one 
hatted field are related to correlation functions between two unhatted fields through 
fluctuation–dissipation constraints (38). However, within the set {ρ,g} these are not 
linear relations. To preserve the FDR in a self-consistent manner, the MSR theory is 
formulated with the extended set of fields {ρ,g,v}, where the current field v is related 
to the primary fields through the non-linear constraint (19). In the corresponding MSR 
action functional, a new conjugate field v̂ is introduced to enforce the non-linear con-
straint (19) between the fluctuating fields and as a result elements like Σv̂ρ of the self-
energy matrix Σ enter the model. Our analysis shows that nonzero values of Σv̂ρ are 
not compatible with the self-consistent feedback mechanism essential for driving the 
fluid from an ergodic to a non-ergodic state. Since there is no a priori reason for Σv̂ρ 
to become zero, the dynamics which preserve FDR self-consistently do not support an 
ENE transition in the model.

The present work treats the dynamics in terms of collective modes, which includes 
both fluctuating variables {ρ,g}. It is useful to discuss here the equivalent description 
in terms of only ρ. For Brownian systems, the equation of motion for a single particle 
is obtained in the over-damped limit with a first-order stochastic partial dierential 
equation, known as a Smoulchowski equation  [48], which involves only the position 
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variables. An exact representation of these dynamics has been obtained [49–51] in 
terms of a balance equation for the microscopic density ρ̃(x, t). The corresponding FNH 
description for the coarse-grained density involves a single Langevin equation for ρ(x, t) 
[17]. This stochastic partial dierential equation has a noise which is multiplicative and 
a driving free energy F [ρ] which is same as the standard Ramakrishnan–Youssu func-
tional [63] in terms of direct correlation functions [7]. For the case of an ND fluid with 
reversible dynamics at the microscopic level, the same equation for ρ is obtained by 
applying the over-damping approximation to FNH equations with {ρ,g} and integrating 
out the g field [52]. This formulation of the dynamics in terms of ρ constitutes the so-
called dynamic density functional model (DDFT) [53–59]. The eects of non-linearities 
and the feasibility of the ENE transition in this DDFT model have been studied using 
MSR field theory [68] and it was shown that ENE transition [69] is not supported in 
the reduced description as well. For the DDFT model, the role of 1/ρ terms in the field 
theory gives rise to similar constraints to those we discussed for the {ρ,g} case in the 
present work. The feasibility of an ENE transition in the DDFT model would require 
ignoring the presence of 1/ρ non-linearities [60]. It will also be useful to note here that 
in both types of model, in terms of ρ and {ρ,g}, the presence of a functional derivative 
term ρ∇i{δF [ρ]/δρ} in the respective FNH equations constitutes the key non-linearity 
driving the slow dynamics. Even for a F [ρ], quadratic in density fluctuations, there 
is a dynamic non-linearity in the respective FNH equations. For simpler dynamics in 
which the factor of ρ in front of the functional derivative (δF [ρ]/δρ) is simply changed 
to ρ0, non-Gaussian Hamiltonians are required for generating the crucial coupling for 
slow dynamics. Moreover, in DDFT models, it has been demonstrated that F [ρ], which 
is non-linear only in the ideal gas term (with the standard logarithmic term), proves 
insucient [70] for producing the very slow dynamics typical of ideal MCT. However, 
a similar replacement (of ρ with ρ0) in the free energy functional (11), making it com-
pletely Gaussian in the {ρ,g} formulation, does not aect the basic conclusions of the 
original model [9, 11, 12].
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Appendix A. Fluctuating nonlinear hydrodynamics equations for fluids with 
Brownian dynamics

We present here the fluids with interacting Brownian particles. The force on each par-
ticle has a regular part due to interaction with other particles in the fluid through a 
two-body potential U(r) and a stochastic part described with a random noise. In the 
present work we apply the Markovian approximation of widely dierent time scales of 
the two dynamics. The fast part constitutes the noise, which is assumed to be white 
and Gaussian. The microscopic dynamics are described in terms of the time evolution 
of the position xα and that of the momentum pα of the αth (α = 1, ...N) particle. For 
pα, the equation of motion has a regular component due to the interaction potential, a 
dissipative or frictional term and noise, respectively.

https://doi.org/10.1088/1742-5468/ab684c


Dynamic transition in a Brownian fluid: role of fluctuation–dissipation constraints

16https://doi.org/10.1088/1742-5468/ab684c

J. S
tat. M

ech. (2020) 023208

dpi
α(t)

dt
= −

N∑
ν=1

∇i
αU(xα(t)− xν(t)) + γ0

ijp
j
α + ξiα(t),� (A.1)

where γ0
ij is a dissipative coecient having the dimension of inverse time. A realistic 

example of the system is a set of solute particles with eective interaction U(xα − xν). 
The solvent is a liquid at temperature T, which produces the noise ξ. Correlation of the 
noise is related to the dissipative coecient γij through the FDR:

〈ξiα(t)ξ j
ν (t

′)〉 = 2β−1γ0
ijδανδ(t− t′).� (A.2)

A.1. Exact balance equations

The balance equations for the collective densities {ρ̃, g̃} obtained above are exact rep-
resentations of the microscopic dynamics. Deduction of the balance equations for {ρ̃, g̃} 
has been described in [61]. For mass density we have the continuity equation

∂ρ̃

∂t
+∇.g̃ = 0.� (A.3)

For momentum density g is a generalised Langevin equation:

∂

∂t
g̃i(x, t) +

∑
α

piαp
j
α

m
∇ j ρ̃(x, t) + ρ̃(x, t)∇i

x

∫
dx′U(x− x′)ρ̃(x′, t)

− γ0
ij g̃i(x, t) = ϑ̃i(x, t).

� (A.4)

The noise ϑ̃i is defined in terms of the noise ξα in the micro-dynamic equations:

ϑ̃i(x, t) =
∑
α

δ(x− xi
α(t))ξ

i
α(t).� (A.5)

The correlation of noise ϑ̃i(x, t) is obtained using the definition (A.2) of the average of 
noise ξα in the microscopic equations of motion.

〈ϑ̃i(x, t)ϑ̃j(x
′, t)〉T = 2β−1γ0

ij ρ̃(x, t)δ(x− x′)δ(t− t′).� (A.6)

The pair of angular brackets 〈..〉T in equation (A.6) represents an average over the bath 
variables which maintain the microscopic dynamics of the Brownian particles, given 
by stochastic equation (A.1) at a constant temperature T. A typical example of such a 
case are the stochastic dynamics of the solute particles in a solvent, which are in equi-
librium at temperature T. The average in equation (A.6) is implied over the positions 
and momenta of the solvent particles [62].

A.2. Fluctuating nonlinear hydrodynamics with multiplicative noise

Averaging the exact balance equations we obtain the time evolution of the coarse-
grained densities {ρ(x, t),g(x, t)}. For the mass density we obtain the continuity equa-
tion (5) with the momentum density g as its current. For the momentum density g 
we average the equation  (A.4) reducing it to a stochastic partial dierential equa-
tion which involves the fields ρ(x, t) and g(x, t) and a stochastic component called 

https://doi.org/10.1088/1742-5468/ab684c


Dynamic transition in a Brownian fluid: role of fluctuation–dissipation constraints

17https://doi.org/10.1088/1742-5468/ab684c

J. S
tat. M

ech. (2020) 023208

noise. The primary task in obtaining the coarse-grained equations is to evaluate the 
non-equilibrium averages of the last two terms on the left-hand side of (A.4). This has 
been presented in [17] and for the sake of completeness we briefly review it below.

The second and third terms on the left-hand side of equation (A.4) are evaluated by 
replacing the non-equilibrium average with that over the local equilibrium ensemble. 
We transform to a frame moving with the fluid. This co-moving frame (denoted by 
prime) has the local velocity v(r, t) in a continuum description and obeys the following 
rules of transformation:

xα = x′
α, and pα = p′

α +mv(x′
α).� (A.7)

In a co-moving frame the fluid is locally at rest. Using the concept of Gibbsian ensem-
ble, the distribution is written as

fle(Γ
′
N , t) = Q−1

l exp
[
− β

{
H ′ −

∫
dxµ(x, t)ρ̃′(x)

}]
≡Q−1

l exp
(
− βH̃ ′

)
,

�

(A.8)

where Γ′
N symbolises the phase space coordinates and H ′ is a Hamiltonian in the local 

rest frame in terms of primed coordinates p′
α. The temperature T is taken to be con-

stant and the chemical potential µ(x, t) represents the local thermodynamic property 
in the local equilibrium ensemble. We obtain the average with respect to the local 
equilibrium distribution as

∇j

〈∑
α

{p
i
αp

j
α

m
δ(x− xα(t))}

〉

l.e

= β−1∇iρ(x, t) +∇j

[
gi(x, t)gj(x, t)

ρ(x, t)

]
.� (A.9)

Substituting the above result in the coarse-grained equation (A.4), we obtain the equa-
tion of motion for the coarse-grained momentum density gi(x, t) as

∂gi
∂t

+ γ0
ijgj +∇j

[
gigj
ρ

]
+ I[ρ] = ϑi� (A.10)

where the term I[ρ] is defined as

I[ρ] = β−1∇iρ(x, t) +

〈
ρ̃(x, t)∇i

x

∫
dx′U(x− x′)ρ̃(x′, t)

〉

le

.� (A.11)

The integral I[ρ] through some simple algebra reduces to 〈−iLg̃′(x, t)〉l.e. where L is the 
Liouville operator [17]. Using the derivative form of operator L, the integral I further 
simplifies [17]).

I[ρ] = 〈−iLg̃′i(x)〉l.e = β

∫
dx′µ(x′)〈g̃′i(x)iLρ̃(x′)〉l.e

= −β

∫
dx′µ(x′)〈g̃′i(x)∇′

j g̃
′
j(x

′)〉
l.e

= ρ(x)∇iµ(x).

�

(A.12)

The right-hand side of equation (A.12) is expressed in terms of the hydrodynamic fields 
by appealing to a corresponding thermodynamic relation. We make note here that the 
Helmholtz free energy F is expressed as a functional of the inhomogeneous density 
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ρ(x). Using the equilibrium relation F −G = Ω ≡ −PV , where Ω is the thermody-
namic potential, we have in the density functional formalism [28, 63]

FU[ρ(x)] ≡ Ω[ρ(x)] +

∫
dxρ(x)µ(x).� (A.13)

Ω[ρ] is a functional of the density obtained from the equivalent result of grand canoni-
cal ensemble partition function Ω[ρ(r)] ≡ −kBT ln Ξ. The density functional theory 
identifies the equilibrium density by minimising the grand potential [δΩ/δρ(x)] = 0. 
Using the above relations it then follows that the corresponding Helmholtz free energy 
functional satisfies

δFU[ρ]

δρ(x)
= µ(x).� (A.14)

Using the results (A.12) and (A.14) in equation (A.11), we obtain an equation for the 
momentum density g with a coupling to the collective density fluctuations.

∂gi
∂t

+∇j

[
gigj
ρ

]
+ ρ∇i

δFU

δρ
+ γ0

ijgj = ϑi.� (A.15)

The noise ϑi(x, t) in the right-hand side of the generalised Langevin equation (A.15) is 
obtained by coarse-graining of the noise ϑ̃i(x, t) defined in equation (A.5). Obtaining 
the correlation of coarse-grained noise ϑi at two dierent points requires consideration 
of the following two steps. First, we average ξiα in the microscopic equations over the 
dierent configurations of the Brownian particles so as to obtain the coarse-grained 
noise ϑi(x, t). Second, the product of the respective noise at two dierent space time 
points is averaged over states in which the equilibrium temperature of the bath is 
maintained at T. These two averages are respectively denoted as 〈...〉C and 〈...〉T. The 
noise correlation in the present case is estimated by interchanging the order of the two 
operations stated above in the following way:

〈ϑi(x, t)ϑj(x
′, t′)〉 =

〈〈
ϑ̃i(x, t)

〉
C

〈
ϑ̃j(x

′, t′)
〉
C

〉
T

≈
〈〈

ϑ̃i(x, t)ϑ̃j(x
′, t′)

〉
C

〉
T
= 2kBTγ

0
ij〈ρ̃(x, t)〉Cδ(x− x′)δ(t− t′).

≡ 2β−1L0
ij[ρ]δ(x− x′)δ(t− t′).

�

(A.16)

We have defined L0
ij[ρ] = γ0

ijρ(x, t). In the Markovian approximation for large separa-
tion of time scales we assume that correlating the noise is independent of the coarse-
graining process. To summarise, the equations  (5), (A.15) and (A.16) constitute the 
basic set of FNH equations for a fluid whose microscopic-level dynamics are Brownian.

Appendix B. The Martin-Siggia-Rose action with multiplicative noise

We briefly sketch developments of the MSR field theory for the FNH equations for the 
BD system in this appendix.
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B.1. Martin-Siggia-Rose action functional

We consider a functional f [ψ] of the set of fields f [ψ] written in the form

f [ψ] =

∫
Dψ′δ(ψ − ψ′) f [ψ′].� (B.1)

The functional integral with Dψ′ is defined as the multiple integral over the set {ψi} at 
all space points on a grid of size ε

D(ψ) ≡ lim
ε→0

∏
i

∫
dψ(i).� (B.2)

The functional δ function is defined as

δ(ψ − ψ′) = lim
ε→0

∏
i

δ(ψ(i)− ψ′(i))
� (B.3)

where i∈Λd+1 belongs to a (d+ 1)-dimensional lattice (including d  =  number of spatial 
dimensions and time). If ψ corresponds to the set of hydrodynamic fields ψ ≡ {ρ,g} for 
the fluids then they satisfy the equations of FNH written in the form

∂ψ(1)

∂t1
+ Γ[{ψ}] = θ(1).� (B.4)

The quantity Γ[ψ] represents the deterministic part of the equation of motion and is a 
shorthand way of writing [Qab + L0

ab](δF/δψb) in the equation of motion (6). The ran-
dom part or noise is denoted as θ and its correlation is related to the bare transport 
coecient {L0

ab} as indicated in equation (13). Since the noise in this case is multiplica-
tive, bare transport coecients are dependent on the local field variables ψ. Since ψ is a 
solution of the equation of motion (B.4) we replace the delta function in the right-hand 
side of equation (B.1) with a change of coordinates to

f [ψ] =

∫
DψJ [ψ, θ] f [ψ]δ (∂1ψ(1) + Γ[ψ]− θ(1))� (B.5)

where ∂1 refers to the time derivative with respect to t1 and J is the Jacobian of the 
transformation, due to the change of argument of the delta function.

J [ψ, θ] = det

∣∣∣∣
δθ

δψ

∣∣∣∣ .� (B.6)

Using a causal connection in the time discretisation the Jacobian of this transformation 
is treated as a constant C0. Finally, replacing the δ function in the right-hand side of 
(B.6) by its functional Fourier transform in terms of a conjugate field, we obtain

f [ψ] = C0

∫
Dψ

∫
Dψ̂f [ψ] exp

[
−i

∫
ψ̂(1)

{
∂ψ(1)

∂t1
+ Γ[ψ]− θ(1)

}]

.

� (B.7)

Next, we average over the randomness and obtain the corresponding noise-averaged 
quantity as
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〈 f [ψ]〉 = C0

∫
Dψ′

∫
Dψ̂f [ψ]

〈
exp

[
−i

∫
d1ψ̂(1)

(
∂ψ(1)

∂t1
+ Γ[ψ]− θ(1)

)]〉

.
�

(B.8)

Further simplification of the right-hand side will require the details of the nature of 
randomness described by θ. This should lead to an action functional A for develop-
ing an appropriate field theoretic model which takes into account the role of the non-
linearities in the equation of motion. Equation (B.8) is expressed in the form

〈 f [ψ]〉 = C0

∫
Dψ

∫
Dψ̂f [ψ] exp

[
−A[ψ, ψ̂]

]
� (B.9)

where the action functional A is obtained for the case of compressible fluid involving 
equations (5) and (A.15) as

A[ψ, ψ̂] =

∫
dt

∫
dx

{
iĝi

[
∂gi
∂t

+ ρ∇i
δFu

δρ
+∇j

(
gigj
ρ

)
− γ0

ijgj

]

+ iρ̂

[
∂ρ

∂t
+∇jgj

]}
+ C[ψ̂],

� (B.10)

where the cumulant C[ψ̂] is obtained as

C[ψ̂] =
∞∑
n=1

1

n

[
ψ̂(1)....ψ̂(n)

]
〈〈θ(1)....θ(n)〉〉� (B.11)

where 〈〈...〉〉 is the cumulant average of the random force. For Gaussian random forces 
we obtain

C[ψ̂] = ψ̂(1) 〈〈θ(1)〉〉+ 1

2
ψ̂(1)ψ̂(2) 〈〈θ(1)θ(2)〉〉 .� (B.12)

Applying the result (13) for noise correlation we obtain the MSR action function

A[ψ, ψ̂] =

∫
dt

∫
dx

{
β−1ĝiL

0
ij[ρ]ĝj + iĝi

[
∂gi
∂t

+ ρ∇i
δFu

δρ
+∇j

(
gigj
ρ

)
− γ0

ijgj

]

+ iρ̂

[
∂ρ

∂t
+∇jgj

]}
.

�

(B.13)

The quantity C0 in the right-hand side of equation (B.9) gives a normalisation constant 
which is fixed to ensure that 〈1〉 = 1.

〈 f [ψ]〉 =

∫
Dψ

∫
Dψ̂f [ψ] exp

[
−A[ψ, ψ̂]

]

∫
Dψ

∫
Dψ̂ exp

[
−A[ψ, ψ̂]

] .� (B.14)

B.2. Renormalised correlation functions

In this section, we briefly discuss the necessary MSR field theoretic analysis developed 
along the lines of earlier works [22] for ND fluids. In the following discussion we use 
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a functional integral formulation [43, 64–67] of the MSR theory. We adopt a compact 
notation in which the spatial coordinate x1 and time t1 for both the hatted and unhat-
ted fields are all incorporated into one single index 1 of the vector field variable Ψ(1). 
The partial dierential equations of the FNH involve only the unhatted fields, and 
include the non-linear couplings of the slow modes. The dynamics go beyond the linear 
level and the field theory is renormalised due to non-linear couplings of the fields Ψ in 
the equations of motion. Correlation of the slow variables averaged over the noise is 
computed from the functional derivatives of the generating functional ZU obtained in 
terms of an action AU as

ZU = I0

∫
Dψ

∫
Dψ̂ exp[−AU(ψ, ψ̂)]� (B.15)

with Io being a constant. The deduction of the MSR action functional AU involve 
[9] enforcing the FNH equations for the time evolution of the hydrodynamic fields ψ 

through introduction of the corresponding set of hatted fields ψ̂. In order to facilitate 
the discussion of the renormalisation scheme, the action functional is written in a poly-
nomial form,

AU[Ψ] =
1

2

∑
1,2

Ψ(1)G−1
o (12)Ψ(2) +

1

3

∑
1,2,3

V (123)Ψ(1)Ψ(2)Ψ(3)−
∑
1

Ψ(1)U(1).

�

(B.16)

The renormalised correlation functions are obtained in a systematic manner using the 
non-Gaussian part of the action functional presented in equation (B.16). Going by the 
form of non-linearities in equation (A.15) for a compressible liquid we have only indi-
cated a cubic term here in the action functional. The vertex functions V (123) in the 
MSR action functional are defined in a way so that they are symmetric under exchange 
of the indices. The one-point function G(1) = 〈Ψ(1)〉 is obtained from the generating 
function ZU in terms of the derivative

〈Ψ(1)〉 = δ

δU(1)
[lnZU] .� (B.17)

Including the density variable in the set of slow variables Ψ as δρ(1) = ρ(1)− 〈ρ(1)〉, it 
follows directly that G(1) vanishes as U → 0. The two-point function G(12) is given by

G(12) =
δ

δU(2)
G(1) = 〈δΨ(1)δΨ(2)〉,� (B.18)

where δΨ(1) = Ψ(1)− 〈Ψ(1)〉 ≡ Ψ(1). The inverse of the two-point correlation matrix 
G(12) is defined through the relation∑

3

G−1(13)G(32) = δ(12).
� (B.19)

The simplest level form of the correlation functions are zeroth-order quantities denoted 
by the matrix G0. The Gaussian part of the action which is quadratic order in the 
fields is expressed with G0. Contributions from all higher order terms in the action or 
so-called vertices are expressed with the self-energy matrix Σ. The full correlation func-
tions, including eects of the non-linearities, are denoted as the matrix G. The inverse 
of the full Green’s function matrix is expressed in terms of the Dyson equation
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G−1 = G−1
0 − Σ.� (B.20)

We note here the properties which follow from the general structure of G−1
0 .

	 (a)	� [G0
−1]ab = 0, which follows from the action functional obtained in the MSR 

field theory [28]. In addition we have the property that [G0
−1]ab̂ = −[G0

−1]âb. 
The structure of matrix G−1

0  involving the whole set of actual and hatted fields 
{ψa,ψâ} is of the form:

G−1
0 =

[
© B†

0

B0 C0

]
� (B.21)

		 where the matrix B†
0 is the transpose and complex conjugate of the matrix B0. C0 

presents the elements of G−1
0  whose indices are both hatted fields. The © in the 

right-hand side of equation (B.21) represents the null matrix with all its elements 
equal to zero.

	 (b)	� Correlation functions of the Gaussian theory correspond to linearised dynamics of 
the fields. Eects of non-linear dynamics are expressed in terms of the so-called 
‘self-energy’ matrix Σ, which is defined through the Schwinger–Dyson equation, 
(B.20). The so-called self-energy Σ is expressed in a perturbation series expan-
sion in terms of the corresponding vertices which appear in the non-Gaussian 
terms of the MSR action. Renormalised transport coecients in the model are 
obtained from the respective self-energy matrix elements, and correlation and 
response functions of the fully non-linear theory, i.e. elements of the G matrix 
are expressed in terms of these renormalised transport coecients. For the action 
functional (B.16) involving cubic vertices V (123), the self- energy matrix Σ is 
self-consistently expressed in terms of the correlation functions

Σ(12) =
∑
3,4,5,6

V (134)G(35)G(46)V (526).� (B.22)

		 From the causal nature of the response functions in MSR field theory, it follows 
that if both indices of Σ are unhatted, Σαβ = 0.

Inverting the matrix G−1 having the above structure, we obtain for the correlation 
functions of the physical, unhatted field variables

Gαβ = −
∑
µν

Gαµ̂Cµ̂ν̂Gν̂β� (B.23)

where Câb̂ denotes the elements of the matrix C defined in terms of C0 and the corre
sponding block of the Σ matrix.

Câb̂ = [C0]âb̂ − Σâb̂.� (B.24)
The response functions are expressed in the general form

Gab̂(q,ω) =
Nab̂(q,ω)

D(q,ω)
,� (B.25)
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where Nab̂ and D are respectively the co-factor and the determinant of matrix B which 
is defined in terms of the matrix B0 introduced in equation (B.21) and response block 
of the self-energy matrix Σ.

Bâb = [B0]âb − Σâb.� (B.26)
The various renormalised transport coecients which appear in the right-hand side of 
(B.25) are expressed in terms of the corresponding response elements Σâb of the self-
energy matrix.

For the case of compressible liquids, the bare viscosities {L0
ij} are renormalised due 

to non-linear coupling of the hydrodynamic modes in the FNH equations. The corre
sponding renormalising contributions are obtained in terms of the elements of the self-
energy matrix Σ. The latter is defined in the Schwinger–Dyson equation (B.20). Thus 
the renormalised longitudinal viscosity L(ω) is obtained from the self-energy Σĝĝ. In 
this work we discuss the structure of the renormalised theory from a non-perturbative 
approach.

B.3.  Invariance of the Martin-Siggia-Rose action

Consider the MSR action for a fluid with BD in the following form:

A[ψ, ψ̂] =

∫ t2

t1

dt
[
ψ̂i(t)β

−1L0
ijψ̂j(t) + iψ̂i(t)

(
∂ψi

∂t
+
{
Qij[ψ]− L0

ij

} δFt

δψj(t)

)]

�

(B.27)

where L0
ij = ρ(x, t)γ0

ij is the bare transport coecient with index i and j  referring to 
fields gi and gj . It is also dependent on the fluctuating density ρ. The time reversal 

property of the MSR action A[ψ, ψ̂] depends on how the fields ψ and ψ̂ change under 
T . We take

T ψa(t) = εaψa(−t).� (B.28)

We note that the action functional A involves other than ψa and ψ̂a the functional 
derivative δF/δψa. Therefore we use the following prescription for ψ̂a:

T ψ̂a(t) = −εa

[
ψ̂i(−t)− iβ

(
δF

δψi

)

−t

]
.� (B.29)

We now consider using (32) and (33) the eect of time reversal on the MSR action. As 
for the equations of motion, the continuity equation (5) is invariant under time reversal 
while equation (9) for momentum density has both reversible and dissipative parts. The 
transformations for these are controlled by the following relations for the PB Qab and 

bare transport matrix L0
ij:

Qab[ψ(−t)] = −εaεbQab[ψ(t)]� (B.30)

L0
ij(t)[ψ(−t)] = εaεbLij[ψ(−t)].� (B.31)

Using the above rules in the MSR action functional (B.27) we obtain the corresponding 
result for time-reversed functions as
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A[ψ(−t), ψ̂(−t)] = β−1

∫ t2

t1

dt

[
ψ̂i(−t)− iβ

(
δF

δψi

)

−t

]
L0
ij

[
ψ̂j(−t)− iβ

(
δF

δψj

)

−t

]

+ iεi

∫ t2

t1

dt

[
ψ̂i(−t)− iβ

(
δF

δψi

)

−t

] [
εi
∂ψi(−t)

∂(−t)
+ εiεj

{
Qij[ψ(−t)] + L0

ij

}
εj

(
δF

δψj

)

−t

]

≡ I1 + I2.

�

(B.32)

The two integrals I1 and I2 are evaluated in the following forms

I1 =

∫ t2

t1

dtL0
ij

[
ψ̂iβ

−1ψ̂j − 2iψ̂i

(
δF

δψj

)
− β

(
δF

δψi

)(
δF

δψj

)]
−t

� (B.33)

I2 = i

∫ t2

t1

dt
[
ψ̂i

{∂ψi

∂t
+
(
Qij[ψ] + L0

ij

) δF

δψj

}]
−t

+ β

∫ t2

t1

dt

[(
δF

δψi

)
∂ψi

∂t

]

−t

+

∫ t2

t1

dt

[
β
δF

δψi

{
Qij[ψ] + L0

ij

} δF

δψj

]

−t

.

� (B.34)

We have denoted in the right-hand side of both the equations with subscript ‘−t’, that 

the fields ψ and ψ̂ within the square bracket are evaluated at time  −t. Since Qij is odd 
under the exchange of indices i and j  both of which are summed over, it follows that

δF

δψi

Qij[ψ]
δF

δψj

= 0.� (B.35)

After some simple algebra we obtain from expression (B.33) and finally taking the limit 
t1 = −t2→∞:

A[ψ(−t), ψ̂(−t)] =

∫ t2

t1

dt

[
ψ̂iβ

−1ψ̂j + iψ̂i

(∂ψi

∂t
+ {Qij[ψ]− L0

ij}
δF

δψj

)]

−t

+ β [F−t1 − F−t2 ]−t

= A[ψ, ψ̂] + β [F−t1 − F−t2 ] .

�

(B.36)

Hence the time reversal transformation T  described by equations  (B.28) and (B.29) 
leaves the MSR action invariant. If F is a non-Gaussian functional of the fields {ψi} 
then the above transformations are non-linear. The important point to note here is that 

invariance of the MSR action does not change even when the bare transport matrix L0
ij 

is dependent on the fluctuating fields. The latter is the case with multiplicative noise. 
Hence the corresponding FDRs in the model are preserved even with multiplicative 
noise.
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