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ABSTRACT: Screening mammography has a high detection efficiency for microcalcifications. In
a mammogram, morphological characteristics are used to distinguish benign and potentially ma-
lignant changes. In this study, we propose a new method to distinguish malignant and benign
microcalcifications using only mammographic images based on the dual-energy method. A photon-
counting spectral mammography system was simulated using the Geant4 Application for Tomo-
graphic Emission (GATE) simulation tool. The dual-energy images were obtained using two
energy bins. Microcalcifications of type I (calcium oxalate) and type II (calcium hydroxyapatite)
were studied. For statistical analysis, the microcalcifications were classified as type I or type II
based on a score calculated using the dual-energy images. The score values were calculated using
the ratio of values at low energy and high energy because the attenuation difference was small in
the high-energy region and large in the low-energy region. In other words, the classification of
microcalcifications associated with pathogenesis was performed using the attenuation ratio as a
discrimination criterion. For the appropriate dual-energy images, the effects on the energy spectra
of microcalcifications were evaluated. We confirmed that the contrast and the noise were affected
because the classification method used in this study is based on the pixel values of the images. In
addition, we suggested the possibility of automatic classification for malignant microcalcifications
using segmentation methods and the minimum and maximum thresholds of score values.

Keyworbps: X-ray mammography and scinto- and MRI-mammography; X-ray radiography and
digital radiography (DR)
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1 Introduction

Breast microcalcifications are present in approximately 30% of all malignant breast lesions [1],
and screening mammography has a high detection efficiency for microcalcifications. There are
well-described patterns that help to distinguish between benign and potentially malignant changes
in mammography. The current approaches for interpretation include the characteristics of the
extent, morphology, and distribution of the calcifications [2, 3]. As new approach, we propose
a method to distinguish between malignant and benign microcalcifications using mammographic
images based on the dual-energy method. In previous studies, Kim et al. [4] evaluated the feasibility
of microcalcification classification using dual-energy method according to combinations of energy
spectra and various breast phantoms. In this study, the effects on the position and width of the energy
range in the low-energy region were evaluated to improve classification performance. Furthermore,
we propose an improved method for the automatic detection of malignant lesions using the scores
obtained with the dual-energy method.

Two types of microcalcifications were investigated in this study: type I consists of cal-
cium oxalate dihydrate (CaC,04—2H;0) or weddellite, which is commonly found in benign duc-
tal cysts. Type II deposits consist of calcium phosphates, specifically calcium hydroxyapatite
(Cas(PO4)3(0OH)). Type II microcalcifications are associated with benign and malignant lesions,
and their presence usually indicates signs of malignant breast cancer [5, 6]. Therefore, quantita-
tive analysis criteria are needed to distinguish two types of microcalcifications depending on their
chemical composition in mammograms. In this study, spectral mammography based on a photon-
counting detector (PCD) was used. The PCD system can measure the photon energy deposited



in each event using application-specific integrated circuits (ASIC), thereby providing useful spec-
tral information. The energy discrimination capabilities enable the acquisition of energy-resolved
images in a single exposure [7]-[9]. By setting the appropriate threshold energy, the quantitative
identification of microcalcifications can be performed effectively.

2 Materials and methods

2.1 Simulation set-up

We modeled a photon-counting spectral mammography system using the Geant4 Application for
Tomographic Emission (GATE) simulation tool. The detector used CdZnTe (CZT) material, char-
acterized by high quantum efficiency with a low thickness [10]. The dimensions of the detector
were 25.6 mm X 25.6 mm X 1 mm, and the pixel pitch was 0.1 mmx 0.1 mm. The detector contained
256 x 256 pixels.

We simulated two breast phantoms: a simple-shaped breast phantom with a homogeneous
background and an extended cardiac-torso (XCAT) phantom with a heterogeneous background.
The thickness of the simple-shaped breast phantom was 3 cm, and it had a 50/50 ratio for the
adipose/glandular tissue. The XCAT phantom is an excellent tool to study the effects of anatomy
and patient motion. This phantom was generated from dedicated breast CT data of several human
subjects by post-processing and segmenting them into skin, adipose tissue, and fibroglandular
tissues according to density, which can be compressed to various thicknesses [11, 12]. In this study,
we simulated the XCAT breast phantom [13] compressed to 3 cm with a heterogeneous background.
The pixel array of the XCAT phantom was 256 X 256, and the pixel pitch was 1 mm X 1 mm.
Microcalcifications were used as type I (calcium hydroxyapatite, Cas(PO4)3(OH), denoted as HA)
and type II (calcium oxalate, CaC, 04, denoted as CO) for malignant and benign microcalcifications,
respectively [5, 6]. Furthermore, these sizes ranging from 150-550 um were embedded in the two
simulated breast phantoms. The microcalcification sample images were randomly obtained for
various sizes and locations: 230 images of the simple-shaped phantom and 60 images of the XCAT
phantom.

2.2 Dual-energy method

The energy spectrum was obtained using a combination of a tungsten anode and an Al filter of
thickness 2 mm. Spectra were acquired using the Tungsten Anode Spectral Model using Interpo-
lating Polynomials (TASMIP) X-ray spectral model [14]. In addition, two energy bins were used to
obtain dual-energy images. The simulated detector signal S has the following form [4, 5]:
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The parameter Iy(E) represents the blank scan energy spectrum, and i is one of the two energy
bins (low or high). The parameters ., pg, and u. represent the linear attenuation coefficients
of adipose tissues, glandular tissues, and the two types of microcalcifications, respectively. The
parameters [y, [, and /. represent the propagation path lengths of X-rays through adipose tissues,
glandular tissues, and the two types of microcalcifications, respectively. The parameter Q; is the
efficiency of the detector; the simulation was performed assuming an ideal detector with high
efficiency. The parameters Spackg and Scac were estimated from the pixels near the microcalcifi-
cation and microcalcification pixels, respectively. Subsequently, the logarithmic signal function
D; was calculated for the low- and high-energy bins. It was assumed that the pixel values in the
microcalcification region and their neighboring pixels were only affected by the attenuation of
microcalcifications. For statistical analysis, the microcalcifications were classified as either HA or
CO based on the calculated score. The score values were calculated using the ratio of values at low
energy and high energy because the attenuation difference was small in the high-energy region and
large in the low-energy region.

2.3 Image analysis

The contrast-to-noise ratio (CNR) for microcalcification was used to set the appropriate low-energy
region. This parameter was calculated using the following equation [15].
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where Sc and Sp are the mean values of the microcalcification region and the breast region,
respectively; o¢ and op are the standard deviations in the microcalcification region and the breast
region, respectively.

To evaluate the performance of classification, area-under-the-ROC-curve (AUC) assessments
were performed. The AUC was calculated using the Wilcoxon-Mann-Whitney statistic nonparamet-
ric method [16]. Furthermore, a binary classification task with m and n samples was considered.
We denoted the scores of the calcium oxalate samples by xi, ..., x,, and the scores of the calcium
hydroxyapatite samples by yi, ..., V.

1 n m
AUC = — D H(xy)) (2.6)
i=1 j=1

where H(x;, y;) = {l if x; > yj; % if x; = y;;0ifx; < y; } Moreover, the AUC is closely related to
the ranking of the classification. All positive samples ranked higher than their negative counterparts,
and AUC = 1. AUC indicates the probability of selection of a positive sample over a negative sample.

3 Results

3.1 Effect of dual-energy spectrum

To obtain optimal dual-energy images, various energy thresholds were set in the low-energy region
based on the PCD system. The low-energy region was set at 22-23 keV, 24-25 keV, 26-27 keV,



28-29keV, 30-31 keV. We evaluated the energy region with high contrast for microcalcifications
in the low-energy region. Figure 1 shows the CNR evaluation for two types of microcalcifications
according to the energy spectra. Although the CNR depends on the region-of-interest (ROI),
the high CNR values were, on average, in the 26-27keV region. In addition, the smaller size
of microcalcifications makes it more difficult to distinguish the two types of microcalcifications
because of the noise in the image. An ideal breast imaging should provide high contrast, resolution,
and efficiency to detect breast lesions because of the low attenuation characteristic of X-rays.
Therefore, the energy range threshold should be set properly for dual-energy acquisition. Based
on figure 1, two energy bins were used, as presented in table 1. Case 1 included a high contrast
of 26-27keV in the high energy region, whereas Cases 2 and 3 were included in the low energy
region. In PCD systems, dual-energy is acquired without overlapping the energy spectra, and the
image quality is affected by the bin position and the width of the energy spectra [17]. Therefore,
the wide width of the bin was set based on Case 2, and the narrow width of the bin was set based on
Case 3 at low energy. Thus, selecting the appropriate energy bin combination is important because
it affects the classification performance.

Figure 2 shows the classification of the two types of microcalcifications according to the energy
combinations. The x-axis represents the score difference of the two microcalcifications, and the
y-axis represents the score value of each microcalcification. The center of the samples is indicated
by k-means clustering, which calculates the Euclidean distance of each sample [18]. As shown
in figure 2(b), the classification performance was improved when a high contrast of 26-27 keV
was included in the low-energy region. In addition, the classification performance was better in
the wide width of the bin than in the narrow width of the bin. Thus, this result could provide an
optimal compromise between the signal, noise, and detector electronics. These results indicate that
the energy threshold for dual-energy image acquisition is important to discriminate between two
similar materials [15]. Therefore, this classification exhibited better performance with high energy
of 50kVp and an energy threshold of 30 keV.

The classification performance was evaluated based on the dual-energy combination of the
above-mentioned results using the simple-shaped and the XCAT phantoms (table 2). Figure 3
shows the results classified as a combination of a high energy of 50kVp and an energy threshold
of 30keV. As shown in figure 3(a) and 3(b), the two curves are clearly separate, with only a
little overlap. The simple phantom exhibited better performance because of its homogeneous
background. Although microcalcifications are superimposed on dense breast tissue, as shown in
figure 3(c) and 3(d), the XCAT phantom, which is modeled similar to the human breast, indicated the
possibility of classification. Based on these results, the score values obtained using the dual-energy
method can provide a quantitative evaluation indicator between the two types of microcalcifications.

Table 1. Specifications of dual-energy acquisition.

Tube Voltage Bin 1 (low-energy image) Bin 2 (high-energy image)
Case 1 50kVp 15-25 keV 26-50keV
Case 2 50kVp 15-30keV 31-50keV
Case 3 50kVp 25-30keV 31-50keV
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Figure 1. CNR evaluation using bin images obtained by setting various energy thresholds based on the PCD
system. This figure represents two types of microcalcifications (HA: calcium hydroxyapatites, CO: calcium
oxalate): the largest and the smallest.
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Figure 2. Assessment of classification according to energy combination (HA: calcium hydroxyapatites, CO:
calcium oxalate). The x-axis represents the score difference of the two microcalcifications, and the y-axis
represents the score value of each microcalcification. The center of the samples is indicated by k-means
clustering, which calculates the Euclidean distance of each sample.

Table 2. Evaluation of the classification performance based on dual-energy combination.

AUC performance
Simple-shaped breast phantom XCAT breast phantom

Dual-energy combinations

Case 1 0.89 0.79
Case 2 0.98 0.88
Case 3 0.97 0.86

3.2 Detection of malignant lesion

Based on the results obtained in section 3.1, only the malignant lesion can be automatically detected
using the score obtained from the dual-energy image. Figure 4 shows a simple workflow that
automatically displays only the calcium hydroxyapatite region. For this part of the study, we
modeled a simulated breast phantom with two types of microcalcifications. In addition, we used
a simple-phantom with a homogeneous background and an XCAT phantom with a heterogeneous
background. Furthermore, the microcalcifications were modeled as either single or clustered, as
shown in figure 5(a) and 5(b).
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Figure 3. Evaluation of classification based on dual-energy combination using: (a) and (b) simple-shaped
phantom, (c) and (d) XCAT phantom (HA: calcium hydroxyapatites, CO: calcium oxalate). (a) and (c) scatter
plots show the classification scores of microcalcifications. (b) and (d) Gaussian distributions demonstrate
the ability to distinguish between the two types of microcalcifications.

In figure 4, the dual-energy images are obtained (a), and all microcalcifications are detected
using threshold-based segmentation (b). In this study, we used a segmentation technique based on
the appropriate k-means clustering algorithm, which is one of the simplest methods to classify a
given dataset according to the number of clusters. This method aims to minimize the sum of the
distances of every pixel point in the cluster to the K center [18]. Because microcalcifications exhibit
relatively high-intensity values in the image, the microcalcification region is separated from the
breastimage. After extracting the microcalcification region, the score values are calculated using the
low- and high-energy images, as shown in eq. (2.4). Then, the pixel values of the microcalcification
are converted into score values (c). The malignant lesion is segmented based on the minimum and
maximum thresholds of the score obtained in the results in section 3.1 (figure 3(b) and 3(d)). The
minimum and maximum thresholds can be set based on the score values obtained from the same
geometry and energy spectrum [4]; then, only the malignant lesions can be extracted (d). Finally,
the malignant lesion area is automatically displayed by bounding boxes using the region-growing
segmentation (e). The seeded region growing method used in this study initially specifies one seed
pixel and extends the size of the region to the neighboring pixels based on the intensity of the seed
pixel [19]. As shown in figure 5, both the simple-shaped and the XCAT phantoms showed high
performance.

4 Discussion

This study suggests two important points. First, we proposed a scoring method using the attenuation
ratio to classify the microcalcifications associated with pathogenesis. This method is proposed as a
quantitative analysis involving the discrimination criteria to classify malignant and benign lesions
noninvasively. The comparison of score values of malignant and benign lesions is expected to be
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Figure 4. Flowchart showing the process of automatic displaying of the areas of calcium hydroxyapatites.

(a) HA, 400 ym HA, 400pm

.
o HA, 300um o o *
HA, 300 ym * tg.zuopm LR

CO, 400pm

CO, 300 pm
CO, 350 ym

CO, 350pm

Figure 5. Simulated breast phantoms with two types of microcalcifications: (a) single and (b) cluster (HA:
calcium hydroxyapatites, CO: calcium oxalate). Automatic displaying of the areas of malignant lesions
(bounded box) using: (c) and (d) simple-shaped phantom, (e), and (f) XCAT phantom.

further improved based on large amounts of datasets obtained from the same system. However, the
energy ranges to improve the classification performance should be set appropriately, as discussed
in the results in section 3.1, because breasts exhibit a relatively large contrast difference in the
low-energy region. In addition, spectral optimization for dual-energy is required for factors, such
as breast type, detector characteristics, and X-ray system.

Second, to distinguish malignant and benign lesions in conventional mammograms, the mor-
phological characteristics, such as the size, shape, number, cluster, and distribution, were used
via a computer-aided diagnosis (CAD) system. As new approach, we suggested the possibility
of automatic classification of malignant microcalcifications using segmentation methods and the
minimum and the maximum thresholds of score values. Further, we demonstrated the possibil-
ity of classification using the XCAT breast phantom, whose structure is similar to that of actual
breast tissues. However, because distinguishing the microcalcifications of dense tissues with high
glandularity is difficult due to superposition, further research is required based on glandularity.

These analytical factors, which can be determined for malignant lesions, are expected to further
improve the accuracy of early breast cancer detection. Furthermore, the proposed method requires
an accurate detection of microcalcifications, and it calculates a score according to the pixel values
of the microcalcification region. Thus, an improved classification performance is expected when
using noise reduction methods for microcalcifications in image processing.

5 Conclusion

This study demonstrated the possibility of classifying microcalcifications based on a dual-energy
method using mammograms, to determine whether microcalcifications are malignant or benign.
We also confirmed that the two types of microcalcifications were distinguished by automatic



classification using the score difference and the segmentation method. For improved performance,

future studies are necessary to optimize the related parameters using more sample cases.
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