
1

Journal of Physics A: Mathematical and Theoretical

Large deviation analysis of function 
sensitivity in random deep neural networks

Bo Li  and David Saad

Non-linearity and Complexity Research Group, Aston University, Birmingham,  
B4 7ET, United Kingdom

E-mail: b.li10@aston.ac.uk and d.saad@aston.ac.uk

Received 14 October 2019, revised 21 December 2019
Accepted for publication 10 January 2020
Published 20 February 2020

Abstract
Mean field theory has been successfully used to analyze deep neural networks 
(DNN) in the infinite size limit. Given the finite size of realistic DNN, we utilize 
the large deviation theory and path integral analysis to study the deviation of 
functions represented by DNN from their typical mean field solutions. The 
parameter perturbations investigated include weight sparsification (dilution) 
and binarization, which are commonly used in model simplification, for both 
ReLU and sign activation functions. We find that random networks with ReLU 
activation are more robust to parameter perturbations with respect to their 
counterparts with sign activation, which arguably is reflected in the simplicity 
of the functions they generate.

Keywords: large deviation theory, path integral, deep neural networks, 
function sensitivity

(Some figures may appear in colour only in the online journal)

1.  Introduction

Learning machines realized by deep neural networks (DNN) have achieved impressive success 
in performing various machine learning tasks, such as speech recognition, image classification 
and natural language processing [1]. While DNN typically have numerous parameters and 
their training comes at a high computational cost, their applications have been extended also 
to include devices with limited memory or computational resources, such as mobile devices, 
thanks to compressed networks and reduced parameter precision [2]. Most supervised learn-
ing scenarios are of DNN functions representing some input–output mapping, on the basis 
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of input–output example patterns. DNN parameter estimation (training) aims at obtaining a 
network that approximates well the underlying mapping. Despite their profound engineering 
success, a comprehensive understanding of the intrinsic working mechanism [3, 4] and the 
generalization ability [5–8] of DNN are still lacking. The difficulty in analyzing DNN is due 
to the recursive nonlinear mapping between layers they implement and the coupling to data 
and learning dynamics.

A recent line of research utilizes the mean field theory in statistical physics to investigate 
various DNN characteristics, such as expressive power [9], Gaussian process-like behaviors of 
wide DNN [10–12], dynamical stability in layer propagation and its impact on weight initiali-
zation [13–15] and function similarity and entropy in the function space [16]. By assuming 
large layer-width and random weights, such techniques harness the specific type of nonlinear-
ity used and many degrees of freedom to provide valuable analytical insights. The Gaussian 
process perspectives of infinitely wide DNN also facilitates the analysis of training dynamics 
and generalization by employing established kernel methods [17, 18].

To study the entropy of functions realized by DNN [16], we adopted similar assumptions 
but employed the generating functional analysis [19, 20], which is more general and can be 
applied to sparse and weight-correlated networks. The analysis of function error incurred by 
weight perturbations exhibits an exponential growth in error for DNN with sign activation 
functions, while networks with ReLU activation function are more robust to perturbations. We 
have also found that ReLU activation induces correlations among variables in random con-
volution networks [16]. The robustness of random networks with ReLU activation is related 
to the simplicity of the functions they compute [21, 22], which may converge to a constant 
function in the large depth and width limit [15], although, in principle, they admit high capac-
ity with arbitrary weights. However, DNN used in practice are of finite size and finite depth, 
therefore it is essential to analyze the deviation of finite-size systems with respect to the typi-
cal mean field behavior, and characterize its rate of convergence with increasing size. An 
example of a recent study along these lines [23] investigates the deviation in performance of 
finite size neural networks with a single hidden layer from the Gaussian process behavior.

In this work, we adopt the large deviation approach and the path integral formalism of 
[16] to derive the deviation of function sensitivity of finite systems from their infinite system 
counterparts, which is applicable to a range of DNN structures. We analyze the effect of 
sparsifying (diluting) and binarizing DNN weights, commonly used for model simplification 
[24–27]. Although the dependence on data and training are not considered, the analysis of 
random DNN provides valuable insights and baseline comparisons. We will also investigate 
the sensitivity of functions to input perturbation [9, 13], which is related to function complex-
ity and generalization [21, 22, 28, 29]. The paper is organized as follows. In sections 2 and 3, 
we introduce the random DNN model and review the basic results of generating functional 
analysis,respectively. In sections 4 and 5, we derive the large deviation of function sensitivity 
to weight and input perturbations, respectively, based on the path integral formalism. Finally, 
in section 6, we discuss the results and their implications.

2. The model

Following [16], we consider two coupled fully-connected DNN. One of them serves as the 
reference function under consideration, and the other as its perturbed counterpart, either in 
the weights or input variables. As shown in figure 1, each network consists of L  +  1 layer; 
layer l has Nl neurons, which can be layer dependent. The reference network is parameterized 

B Li and D Saad﻿J. Phys. A: Math. Theor. 53 (2020) 104002



3

by the weight variables1 {ŵl}L
l=1, while the perturbed network is parameterized with {wl}L

l=1. 
Similarly, variables with a circumflex are associated with the reference network. In the follow-
ing, wl represents the Nl × Nl−1 weight matrix at layer l, and wl

i represents the Nl−1 dimen-
sional weight vector of the ith perceptron at layer l. Denoting the input dimension as N  =  N0, 
we assume the sizes of all layers scale linearly with N as Nl = αlN .

A deterministic feed-forward network is defined by the recursive mapping ∀ 1 � l � L

hl
i =

1√
Nl−1

Nl−1∑
j=1

wl
ijs

l−1
j ,� (1)

sl
i = φl(hl

i

)
,� (2)

where {wl
ij} are the weights, hl

i and sl
i are pre- and post-activation field and variable, respec-

tively, and φl(·) is the activation/transfer function at layer l. The scaling factor of 1/
√

Nl−1  
in equation (1) is introduced for normalization. We primarily focus on networks with either 
sign [φs(x) = sgn(x)] or ReLU [φr(x) = max(x, 0)] activation functions in the hidden layers, 
and consider binary input and output variables s0

i , sL
i ∈ {1,−1} by applying the sign activa-

tion function at the output layer sL
i = sgn(hL

i ) for a fair comparison across architectures. The 

resulting feed-forward DNN implements a Boolean mapping f : {1,−1}N0 → {1,−1}NL
, 

where each output node sL
i

(
s0
)
 computes a Boolean function. In the following, we call the 

two architectures sign-DNN and relu-DNN respectively, keeping in mind that sign activation 
function is always applied in the output layer.

To facilitate a path integral calculation, we consider stochastic dynamics between succes-
sive layers. For the layer with sign activation function, the activation sl

i is disturbed by thermal 
noise according to the following probability

1 2 3 N 0

1 2

1 2 3 N 1

NL3

1 2 3 N 0

1 2

1 2 3 N 1

NL3

· · · · · ·

· · · · · ·

· · · · · ·
· · · · · ·

· · · · · ·

ŝ0

ŝ1

ŝL−1

ŝL

s0

s1

sL−1

sL

ŵ1

ŵL

w1

wL

Figure 1.  The reference and perturbed fully-connected DNN, parameterized by {ŵl} 
(black edges) and {wl} (blue edges), respectively. Each layer l has Nl = αlN  nodes.

1 The usual bias variables are omitted for simplicity, but it can be easily accommodated within the current frame-
work.
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P
(
sl

i|hl
i(w

l, sl−1)
)
=

exp
(
βsl

ih
l
i(wl, sl−1)

)

2 cosh
(
βhl

i(wl, sl−1)
) ,� (3)

while for relu activation function, sl
i is disturbed by additive Gaussian noise

P
(
sl

i|hl
i(w

l, sl−1)
)
=

√
β

2π
exp

{
− β

2

[
sl

i − φ
(
hl

i(w
l, sl−1)

)]2}
.� (4)

In the limit β → ∞, we recover the deterministic model. The evolution of the two systems 
follows the joint distribution

P({ŝl
i, sl

i}) = P(ŝ0, s0)
L∏

l=1

Nl∏
i=1

P
(
ŝl

i|ĥl
i(ŵ

l, ŝl−1)
)
P
(
sl

i|hl
i(w

l, sl−1)
)
.� (5)

To probe the difference between the functions implemented by the two networks, we feed 

in the same single input s0 = ŝ0 to the two systems such that P(ŝ0, s0) = P(ŝ0)
∏N0

i=1 δŝ0
i ,s0

i
, and 

study the resulting output difference due to parameter perturbation. For continuous weight 
variables, one useful choice for the weight perturbation is

wl
ij =

√
1 − (ηl)2ŵl

ij + ηlδwl
ij,� (6)

which ensures that wl
ij has the same variance of ŵl

ij as long as δwl
ij follows the same distribu-

tion of ŵl
ij, and effectively rotates the high dimensional vector ŵl

i by an angle θl = sin−1 ηl  as 
demonstrated schematically in figure 2.

In probing the sensitivity of a function due to input perturbations, the weights of two net-
works are kept the same w = ŵ and a fixed fraction of input variables are flipped randomly. 
The resulting output difference of the two systems reflects the sensitivity and complexity of 
the underlying DNN.

ŵl
i

δwl
i

wl
i

θ

Figure 2.  A geometric representation of perturbations on the parameter vector ŵl
i 

defined in equation (6), resulting in a rotated vector wl
i at an angle θl = sin−1 ηl .
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3.  Generating functional analysis for typical behavior

Viewing the weights {ŵl
ij, wl

ij} as quenched random variables, a generating functional analysis 
has been proposed [16] to derive the typical behavior of DNN. It starts with computing the 
disorder-averaged generating functional

Γ(ψ̂,ψ) = Eŵ,wEŝ,s exp

(
− i

∑
l,i

(ψ̂l
i ŝ

l
i + ψl

is
l
i)

)
,� (7)

where the average Eŝ,s is taken with respect to the joint probability equation (5). Assume the 
layer widths are the same Nl  =  N for all l. Upon averaging over the disorder ŵ, w, the gener-
ating functional can be expressed through a set of macroscopic order parameters such as the 
overlaps ql = 1/Nl ∑

i〈ŝl
is

l
i〉 and magnetizations m̂l = 1/Nl ∑

i〈ŝl
i〉, ml = 1/Nl ∑

i〈sl
i〉 as

Γ =

∫
{dqdQ . . .} exp

[
NΨ(q, Q, . . .)

]
� (8)

where Q is the conjugate variable of the order parameter q. In the large system size limit 
N → ∞, the generating functional Γ is dominated by the saddle point of the potential func-
tion Ψ(q, Q, . . .). It gives rise to typical overlaps that dominate in probability, which facilitates 
analytical studies of random DNN.

Assume the weight perturbation follows the form of equation (6), and both weight and per-
turbation are independent of each other and follow a Gaussian distribution ŵl

ij, δwl
ij ∼ N (0,σ2

w). 
It is found that for the layer with sign activation function in the limit β → ∞, the overlap 
evolves as [16]

ql =
2
π
sin−1

(√
1 − (ηl)2ql−1

)
, 1 � l � L.� (9)

Similarly, for ReLU activation function in the deterministic limit, if the weight standard devia-
tion is chosen as σw =

√
2, the magnitude of the activations remains stable and the overlap 

evolves as

ql =
1
π

{√
1 −

[
1 − (ηl)2

]
(ql−1)2

+
√

1 − (ηl)2ql−1
[
π

2
+ sin−1

(√
1 − (ηl)2ql−1

)]}
,

�
(10)

while the output layer L follows equation (9) due to the use of the sign activation function. The 
restriction s0 = ŝ0 leads to q0  =  1 in both cases.

4.  Large deviations in parameter sensitivity of functions

The generating functional analysis above gives typical behaviors of random DNN in the limit 
N → ∞. However, practical DNN always have finite sizes. Therefore, it is worthwhile to 
understand the deviation to the most probable behaviors under finite N. In the following, we 
adopt the large deviation analysis to tackle this problem. An introduction of large deviation 
theory and its application to statistical mechanics can be found in [30]. In essence, a continu-
ous observable O in a system of size N (assumed to be large) is said to satisfy the large devia-
tion principle if the probability of finding O follows
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ProbN(O ∈ [x, x + dx]) � e−NI(x)dx,� (11)

where I(x) is the rate function of the observable. It implies that the probability density of O 
scales as PN(O = x) � e−NI(x), which is concentrated at the minimum of the rate function 
x∗ = argminxI(x) in large systems and the profile of I(x) quantifies the fluctuation of the 
observable.

In this work the overlap of the output layer qL := 1/NL ∑
i ŝL

i sL
i  is at the focus of our study. 

The path integral techniques adopted in the generating functional framework [16] can be 
adapted to tackle the large deviation analysis. We start with computing the probability density2

P(qL) =

〈
δ

(
1

NL

∑
i

ŝL
i sL

i − qL
)〉

= Eŵ,wTr̂s,sP(ŝ0)
N0∏
i=1

δs0
i ,̂s0

i

L∏
l=1

P(ŝl|ŵl, ŝl−1)P(sl|wl, sl−1)δ

(
1

NL

∑
i

ŝL
i sL

i − qL
)

,

� (12)
where the operation Tr̂s,s is understood as an integration or summation depending on the nature 

of variables. The input distribution follows P(ŝ0) =
∏

i P(ŝ0
i ) =

∏
i(

1
2δŝ0

i ,1 +
1
2δŝ0

i ,−1). To deal 
with the non-linearity of the pre-activation fields in the conditional probability, we introduce 
auxiliary fields {x̂l

i, xl
i} through the integral representation of delta-function

1 =

∫ ∞

−∞

dĥl
idx̂l

i

2π
e

îxl
i

(
ĥl

i− 1√
Nl−1

∑
j ŵl

ij ŝ
l−1
j

)

, 1 =

∫ ∞

−∞

dhl
idxl

i

2π
e

ixl
i

(
hl

i− 1√
Nl−1

∑
j wl

ijs
l−1
j

)

,� (13)

which allows us to express the quenched random variables ŵl
ij and wl

ij linearly in the  
exponents, leading to

P(qL) = Eŵ,wTr̂s,sδ

(
1

NL ŝL
i sL

i − qL
) N0∏

i=1

P(ŝ0
i )δs0

i ,̂s0
i

∫ L∏
l=1

Nl∏
i=1

dĥl
idx̂l

i

2π
dhl

idxl
i

2π

× exp




L∑
l=1

Nl∑
i=1

(
logP(ŝl

i|ĥl
i) + logP(sl

i|hl
i) + ix̂l

iĥ
l
i + ixl

ih
l
i

)


× exp


−

L∑
l=1

i√
Nl−1

Nl∑
i=1

Nl−1∑
j=1

(
ŵl

ijx̂
l
iŝ

l−1
j + wl

ijx
l
is

l−1
j

)
 .

�

(14)

Assuming self-averaging [31] we exchange the order of summation and integration, and first 
carry out the average over the disorder variables. Specifically, we consider the weights of the 
reference network to be independent and follow a Gaussian distribution ŵl

ij ∼ N (0,σ2
w) as 

before, and three types of perturbations

2 Here we assume qL = 1/NL ∑NL

i=1 ŝL
i sL

i  to be a continuous variable by considering large NL. Instead, one can view 
qL as a discrete variable by definition (since the inputs are binary variables), where δ(·) should be understood as the 
Kronecker delta function.
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	 (i)	�rotation of the weight vector ŵl
i following equation (6); 

	(ii)	�sparsification of the weight matrix ŵl by randomly dropping connections with probability 
p l and rescaling the remaining weights by 1/

√
1 − pl  to ensure the same weight strength

wl
ij =

{
0, with probability pl,

1√
1−pl

ŵl
ij, with probability 1 − pl,� (15)

	(iii)	�binarization of weight element ŵl
ij

wl
ij = sgn(ŵl

ij)σw,� (16)

		 where σw is introduced for keeping the variance of wl
ij the same as ŵl

ij.

4.1.  Macroscopic order parameters

For perturbation of type (i), the disorder average of the third line of equation (14) yields

∏
l,i

exp

{
−σ2

w

[
1
2
(x̂l

i)
2

∑
j(ŝ

l−1
j )2

Nl−1 +
1
2
(xl

i)
2

∑
j(s

l−1
j )2

Nl−1 +
√

1 − (ηl)2x̂l
ix

l
i

∑
j ŝl−1

j sl−1
j

Nl−1

]}
.� (17)

To decouple equations (14) and (17) over sites we introduce three sets of order parameters by 
inserting the identity

1 =

∫
dV̂ ldv̂l

2π/Nl eiNlV̂l[v̂l− 1
Nl

∑
j (̂sl

j)
2], 1 =

∫
dVldvl

2π/Nl eiNlVl[vl− 1
Nl

∑
j(sl

j)
2],

1 =

∫
dQldql

2π/Nl eiNlQl[ql− 1
Nl

∑
j ŝl

js
l
j], ∀ l �= L,

� (18)

and by expressing the output constraint as

δ

(
1

NL

NL∑
i=1

ŝL
i sL

i − qL
)

=

∫
dQL

2π/NL eiNLQL[qL− 1
NL

∑
j ŝL

j sL
j ].� (19)

Upon introducing these macroscopic order parameters, equation  (17) becomes ∏
l,i exp{−1/2[x̂l

i, xl
i] · Σl · [x̂l

i, xl
i]
�} with the covariance matrix Σl

Σl := σ2
w

[
v̂l−1

√
1 − (ηl)2ql−1

√
1 − (ηl)2ql−1 vl−1

]
.� (20)

The probability density in equation (14) involves Nl identical integration and summation at 
each layer l, which can be performed individually [16], yielding

B Li and D Saad﻿J. Phys. A: Math. Theor. 53 (2020) 104002
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P(qL) =

∫
dQL

2π/NL

L−1∏
l=0

dV̂ ldv̂l

2π/Nl

dVldvl

2π/Nl

dQldql

2π/Nl

× e
∑L−1

l=0 Nl
(

iV̂ lv̂l+iVlvl+iQlql
)
+NLiQLqL

e−N0
(

iV̂0+iV0+iQ0
)

×
L−1∏
l=1

[∫
dHl e−

1
2 (Hl)�Σ−1

l Hl

√
(2π)2|Σl|

Tr̂sl,sl P(ŝl|ĥl)P(sl|hl)e−iV̂ l (̂sl)2−iVl(vl)2−iQlŝlsl

]Nl

×

[∫
dHL e−

1
2 (HL)�Σ−1

L HL

√
(2π)2|ΣL|

Tr̂sL,sL P(ŝL|ĥL)P(sL|hL)e−iQLŝLsL

]NL

,

�

(21)

where we have integrated out the auxiliary fields {x̂l, xl} and introduced the field doublet 
Hl := [ĥl, hl]�. We further write P(qL) as

P(qL) =

∫
dQL

2π/NL

L−1∏
l=0

dV̂ ldv̂l

2π/Nl

dVldvl

2π/Nl

dQldql

2π/Nl exp[−NΦ(Q, q, V̂, v̂, V, v|qL)],

� (22)

where −NΦ(Q, q, V̂, v̂, V, v|qL) is equal to the logarithm of the integrand in equation (21). 
Similar to the analysis in [16], the probability density P(qL) is dominated by the saddle point 
(Q∗, q∗, . . .) of the potential function Φ(. . .) in the large N limit (Nl = αlN  with αl as a 
constant)

P(qL) ≈ exp[−NΦ(Q∗, q∗, . . . |qL)],� (23)

where I(qL) = Φ(Q∗, q∗, . . . |qL) is the desired rate function.
While this set-up is based on computing the deviation in function similarity with a single 

input qL = 1/NL ∑
i ŝL

i sL
i , one may argue that it requires testing on more than one input for 

obtaining a robust estimation, e.g.

q̃L :=
1

NLM

M∑
µ=1

NL∑
i=1

ŝL,µ
i sL,µ

i ,� (24)

where M is the number of independent patterns used. Assuming that representation of differ-
ent patterns are uncorrelated, we show in appendix C that for small M, the rate function I(q̃L) 
is approximately related to the single input case through a simple scaling

I(q̃L) ≈ MΦ(Q∗, q∗, . . . |q̃L).� (25)

This assumption is valid for sign-DNN but not for relu-DNN. We also confirm this scaling 
relation by numerical experiments (see below and in appendix C).

4.2.  Unifying three types of weight perturbations

The other two types of perturbations can be treated similarly. For network sparsification (15), 
the disorder average of equation (14) has the following form in the large Nl limit (see appendix 
A for details)

∏
l,i

exp

{
−σ2

w

[
1
2
(x̂l

i)
2

∑
j(ŝ

l−1
j )2

Nl−1 +
1
2
(xl

i)
2

∑
j(s

l−1
j )2

Nl−1 +
√

1 − plx̂l
ix

l
i

∑
j ŝl−1

j sl−1
j

Nl−1

]}
,� (26)
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which has the same form of equation (17) when p l is replaced by (ηl)2. Introducing the same 
order parameters, we obtain the covariance of the fields ĥl and hl in the form of

Σs
l := σ2

w

[
v̂l−1

√
1 − plql−1

√
1 − plql−1 vl−1

]
.� (27)

Hence, diluting connections with probability p l at layer l in a random DNN corresponds to 
rotating each of the weight vector ŵl

i by an angle θl = sin−1
√

pl .
Similarly, for network binarization in equation (16), the disorder average of equation (14) 

yields (see appendix B for details)

∏
l,i

exp

{
−σ2

w

[
1
2
(x̂l

i)
2

∑
j(ŝ

l−1
j )2

Nl−1 +
1
2
(xl

i)
2

∑
j(s

l−1
j )2

Nl−1 +

√
2
π

x̂l
ix

l
i

∑
j ŝl−1

j sl−1
j

Nl−1

]}
,

� (28)
which corresponds to the covariance matrix of the fields ĥl and hl to be in the form

Σb
l := σ2

w


 v̂l−1

√
2
πql−1

√
2
πql−1 vl−1


 .� (29)

Comparing to type (i) perturbation, one finds that binarizing weight elements in a random DNN 

corresponds to rotating each of the weight vectors ŵl
i by a fixed angle θl = cos−1

√
2
π ≈ 37◦. 

This phenomenon has been observed in [32] and is linked to the practical success of binary 
DNN. It is argued [32] that 37◦ is a very small angle in high dimensional spaces where two 
randomly sampled vectors are typically orthogonal to each other; therefore weight binariza-
tion approximately preserves the directions of the high dimensional weight vectors, which 
contributes to the success of binary DNN.

Therefore, we establish that the three types of perturbations on random DNN can be unified 
in the same framework developed in section 4.1.

4.3.  Saddle point equations

For networks with a generic activation function, the large deviation potential function Φ(. . .) 
can be express as

Φ = −α0[iV̂0(v̂0 − 1) + iV0(v0 − 1) + iQ0(q0 − 1)
]
−

L−1∑
l=1

αl(iV̂ lv̂l + iVlvl + iQlql)

− iQLqL −
L∑

l=1

αl log

∫
dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl),

� (30)

Ml(ŝl, sl, ĥl, hl) :=
e−

1
2 (Hl)�Σ−1

l Hl

√
(2π)2|Σl|

P(ŝl|ĥl)P(sl|hl)e−iV̂ l (̂sl)2−iVl(vl)2−iQlŝlsl
, 1 � l < L,� (31)

ML(ŝL, sL, ĥL, hL) :=
e−

1
2 (HL)�Σ−1

L HL

√
(2π)2|ΣL|

eβŝLĥL

2 cosh(βĥL)

eβsLhL

2 cosh(βhL)
e−iQLŝLsL

,

� (32)
where α0 = 1 since N0  =  N.
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Setting the derivatives with respect to the conjugate order parameters ∂Φ/∂iV̂ l, ∂Φ/∂iVl, 
∂Φ/∂iQl to zero yields the saddle point equations

v̂0 = v0 = 1, q0 = 1,� (33)

v̂l =

∫
dĥldhlTr̂sl,sl

(
ŝl
)2Ml(ŝl, sl, ĥl, hl)∫

dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl)
= 〈

(
ŝl)2〉Ml , vl = 〈

(
sl)2〉Ml , 1 � l < L,� (34)

ql =

∫
dĥldhlTr̂sl,sl

(
ŝlsl

)
Ml(ŝl, sl, ĥl, hl)∫

dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl)
= 〈ŝlsl〉Ml , 1 � l � L,� (35)

in which Ml(ŝl, sl, ĥl, hl) bears the meaning of an effective measure [33]. Notice that qL is 
an input parameter imposing a nonlinear end point constraint on iQL, which differs from the 
generating functional analysis calculation of typical behaviors [16], where qL is a dynamical 
variable and iQL = 0 at the saddle point.

Setting ∂Φ/∂ql to zero yields the saddle point equations for the conjugate order parameters 
iQl

iQl−1 =
αl

αl−1

∫
dĥldhlTr̂sl,sl

∂
∂ql−1 Ml(ŝl, sl, ĥl, hl)

∫
dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl)

, 1 � l � L.� (36)

Similar relations holds for iV̂ l and iVl. While the conjugate order parameters {V̂ l, Vl, Ql} 
are defined on the real axis, they can be extended to the complex plane and evaluated on the 
imaginary axis in the saddle point approximation, in which case {iV̂ l, iVl, iQl} are real vari-
ables. Other observables can be computed by resorting to the effective measure Ml once the 
saddle point is obtained, e.g. the mean activations are given by [33]

m̂l = 〈ŝl〉Ml , ml = 〈sl〉Ml .� (37)

Since the covariance matrix Σl(ql−1, . . .) depends on the order parameters of layer l  −  1, 
the effective measure Ml at layer l depends on the order parameters {ql−1, . . .} of the previous 
layer, while it depends on the conjugate order parameters {iQl, . . .} of the current layer. We 
then observe that the order parameters {ql, . . .} propagate forward in layers, while {iQl, . . .} 
encoding the randomness leading to the desired deviation propagate backward, which resem-
bles the structure in optimal control problem [34]. Therefore, we solve the saddle point equa-
tions in a forward-backward iteration manner until convergence. Another feature to notice in 
equation (36) is the dependence of the saddle point solution on the layer-shape parameters 
{αl}, which does not play a role in the mean field solutions where all the conjugate order 
parameters {iQl, . . .} vanish [16].

4.4.  Explicit solutions for sign and ReLU activation functions

For networks with sign activation function the order parameters satisfy v̂l = vl = 1, such that 
the only meaningful order parameters are {ql, Ql}. The potential function Φ can be computed 
analytically, taking the form
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Φ(Q, q|qL) = −α0iQ0(q0 − 1)−
L∑

l=1

αliQlql

−
L∑

l=1

αl log

[
cosh(iQl)− sinh(iQl)

2
π
sin−1(

√
1 − (ηl)2ql−1)

]
,

� (38)
while the saddle point equations become

q0 = 1,� (39)

ql =
− sinh(iQl) + cosh(iQl) 2

π sin−1(
√

1 − (ηl)2ql−1)

cosh(iQl)− sinh(iQl) 2
π sin−1(

√
1 − (ηl)2ql−1)

, ∀1 � l � L,� (40)

iQl−1 =
2
π sinh(iQl)

cosh(iQl)− sinh(iQl) 2
π sin−1(

√
1 − (ηl)2ql−1)

×
αl
√

1 − (ηl)2

αl−1
√

1 − [1 − (ηl)2](ql−1)2
, ∀1 � l � L.

�

(41)

Note that qL in equation (40) is an input parameter.
For networks with ReLU activation function the potential function Φ also admits an explicit 

expression

Φ(Q, q, V̂, v̂, V, v|qL) = −α0[iV̂0(v̂0 − 1) + iV0(v0 − 1) + iQ0(q0 − 1)
]

−
L−1∑
l=1

αl(iV̂ lv̂l + iVlvl + iQlql)− iQLqL

−
L−1∑
l=1

αl log

{
1

2π
√
|Σl|

[
1√
|Al|

(
π

2
− tan−1

(
Al

12√
|Al|

))
+

1√
|Bl|

(
π

2
+ tan−1

(
Bl

12√
|Bl|

))

+
1√
|Σ−1

l |


π

2
− tan−1


 Σ−1

l,12√
|Σ−1

l |




+

1√
|Cl|

(
π

2
+ tan−1

(
Cl

12√
|Cl|

))




− αL log

[
cosh(iQL)− sinh(iQL)

2
π
tan−1

(
ΣL,12√
|ΣL|

)]
,

�

(42)

where Al, Bl, Cl  are 2 × 2 matrices defined as

Al = Σ−1
l +

[
2iV̂ l iQl

iQl 2iVl

]
, Bl = Σ−1

l +

[
0 0
0 2iVl

]
, Cl = Σ−1

l +

[
2iV̂ l 0

0 0

]
.� (43)

The saddle point equations also admit a close-form expression accordingly.

5.  Large deviations in input sensitivity of functions

In probing the sensitivity of a function to the flipping of input variables, the weights of two 
networks considered are taking the same values w = ŵ, which is done by setting ηl = 0 in 
equation (6). We constrain the input s0 of the perturbed system to have a pre-defined over-
lap q0 (or Hamming distance N0(1 − q0)/2) with the input ŝ0 of the reference system. The 
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sensitivity of the output overlaps to input perturbations is investigated through the conditional 
probability

P(qL|q0) =
P(qL, q0)

P(q0)
=

〈
δ

(
1

NL

∑
i ŝL

i sL
i − qL

)
δ

(
1

N0

∑
i ŝ0

i s0
i − q0

)〉

〈
δ

(
1

N0

∑
i ŝ0

i s0
i − q0

)〉 .� (44)

Without loss of generality, we choose a decoupled input distribution 

P(̂s0, s0) =
∏

i P(ŝ0
i )P(s

0
i ) =

∏
i(

1
2δŝ0

i ,1 +
1
2δŝ0

i ,−1)(
1
2δs0

i ,1 +
1
2δs0

i ,−1) while the delta function 
involving q0 in equation (44) constrains the systems to have the desired input correlation. The 
probability of input overlap P(q0) can be computed as

P(q0) = Tr̂s0,s0

∏
i

P(ŝ0
i )P(s

0
i )

∫
dQ0

2π/N0 eiN0Q0
(

q0− 1
N0

∑
i ŝ0

i s0
i

)

=

∫
dQ0

2π/N0 exp

[
N0(iQ0q0 + log cosh(iQ0)

)]

≈ exp

[
N0(iQ0∗q0 + log cosh(iQ0∗)

)]

=: exp
[
− NΦP(iQ0∗|q0)

]
,

�

(45)

ΦP(iQ0|q0) := −α0(iQ0q0 + log cosh(iQ0)
)
,� (46)

iQ0∗ := − tanh−1(q0),� (47)

where we have made use of the saddle point approximation of P(q0) in the large N0 limit, with 
the corresponding potential function defined in equation (46) and the saddle point solution 
iQ0∗ given in equation (47).

The computation of the joint probability P(qL, q0) is analogous to that of P(qL) in earlier 
sections,

P(qL, q0) = Eŵ,wTr̂s,sP(ŝ0)

N0∏
i=1

δs0
i ,̂s0

i

L∏
l=1

P(ŝl|ŵl, ŝl−1)P(sl|wl, sl−1)

×
∫

dQ0

2π/N0

dQL

2π/NL eiN0Q0
(

q0− 1
N0

∑
i ŝ0

i s0
i

)
+iNLQL

(
qL− 1

NL
∑

i ŝL
i sL

i

)

=

∫
{dQdq . . .} exp[−NΦJ(Q, q, . . . |qL, q0)],

�

(48)

ΦJ = −α0[iV̂0(v̂0 − 1) + iV0(v0 − 1) +
(
iQ0q0 + log cosh(iQ0)

)]
− iQLqL

−
L−1∑
l=1

αl(iV̂ lv̂l + iVlvl + iQlql)−
L∑

l=1

αl log

∫
dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl).

� (49)

The saddle point of iQ0 satisfies iQ0∗ = − tanh−1(q0), which coincides with the one of P(q0) 
in equation (47). So the conditional distribution satisfies
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P(qL|q0) ≈ exp
[
− NΦ(Q∗, q∗, . . . |qL, q0)

]
= exp

[
− N(Φ∗

J − Φ∗
P)
]

Φ(Q, q, . . . |qL, q0) = −α0[iV̂0(v̂0 − 1) + iV0(v0 − 1)
]
− iQLqL

−
L−1∑
l=1

αl(iV̂ lv̂l + iVlvl + iQlql)−
L∑

l=1

αl log

∫
dĥldhlTr̂sl,slMl(ŝl, sl, ĥl, hl),

� (50)
where the saddle point solution {Q∗, q∗, . . .} have the same form as those in section  4.3, 
except that q0  =  1 in equation (33) is replaced by the pre-defined value q0 under investigation.

Figure 3.  Weight sparsification of random DNN. In (a)–(c), we set L  =  4 and p l  =  1/2; 
solid lines correspond to theory while dashed lines with circle markers correspond to 
estimation from simulation. The estimation of the rate function from simulations are 
obtained by 100 000 samples and the corresponding curve has been shifted such that 
the minimum is at zero. (a) The rate function Φ versus qL for sign activation function. 
(b) The rate function Φ versus qL for ReLU activation function. (c) The rate function 
I(q̃L) of output overlap q̃L defined by M patterns; the theoretical results are given by 
equation (25), while the simulation results are obtained on systems with N  =  64. (d) 
Mean field solutions of output overlap qL

mf  as a function of system depth L. Inset: qL
mf  

versus p l for different depths.
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6.  Results

6.1.  Weight sparsification

We first consider the effect of weight perturbation by sparsifying connections as in equa-
tion (15). For a concrete example, we consider DNN with L  =  4, uniform layer width αl = 1 
and disconnection probability p l  =  1/2, for which we compute the large deviation rate func-
tion I(qL) = Φ(Q∗, q∗, . . . |qL) by solving the saddle point equation in section 4.3 and com-
pare it to numerical experiments. For relu-DNN, we always set σw =

√
2. The results are 

shown in figures 3(a) and (b), which exhibit a perfect match between the theory and simula-
tion. The most probable qL, located at the minimum of Φ corresponds to the mean field solu-
tion, where qL

mf ≈ 0.047 for sign-DNN and qL
mf ≈ 0.266 for the relu-DNN. However, in finite 

systems they have a non-zero probability of admitting a higher value of qL due to fluctuations. 
We can compute the probability from the rate function by P(qL) = exp(−NΦ∗(qL))/Z 3 and 
estimate the tail probability of output mismatch. As an example we consider N  =  64 and find 
that P(qL > 1/2) ≈ 0.055% for sign-DNN and P(qL > 1/2) ≈ 3.8% for relu-DNN, which is 
non-negligible especially for ReLU activation4.

In figure 3(c), we also demonstrate that the approximation of rate function I(q̃L) of output 
overlap ̃qL, estimated for M patterns by employing equation (25), is accurate for DNN with sign 
activation, while the approximation does not hold for deep ReLU networks (see appendix C).  
Therefore in sign-DNN, the probability of finding perturbed DNN agreeing on all M patterns 
with the reference DNN decays exponentially with M (at least for small M values). This may 
not be the case in relu-DNN which requires further exploration in a future study.

In figure 3(d), we compare the mean field output overlaps qL
mf  between DNN with sign and 

ReLU activations for different system depths and disconnection probability p l. It is shown 
that relu-DNN are more robust to weight sparsification perturbation, as expected; the per-
turbed relu-DNN have residual correlations with the reference networks even after removing 
90% of the weights. The robustness of relu-DNN to weight dilution was also observed and 
theoretically analysed in [35]. Finally, we remark that our scenario is different from the practi-
cal methods used to prune networks trained on specific data; in this case particular heuristic 
rules have been developed to disconnect weights instead of the random removal used here. 
The success of weight pruning in practice hightlights the weight-redundancy in real trained 
networks [24, 35] but may also be influenced by properties of the data used and training meth-
ods. This behaviour is absent in random networks with random data, as indicated in the inset 
of figure 3(d), where even a small dilution probability can deteriorate the overlap. Additional 
modelling considerations are needed to address practical scenarios.

6.2.  Weight binarization

We then consider the effect of perturbation by binarization of weight variables as in equa-
tion (16). Also here we consider uniform layer width αl = 1. The results shown in figure 4, 

3 For finite NL, the output overlap is a discrete variable qL ∈ {1, 1 − 2
NL , 1 − 4

NL , . . . ,−1}, so it is convenient to 
consider the discretized probability distribution of qL as Prob(qL) = P(qL)∆qL = exp(−NΦ∗(qL))/Z ; the normal-
ization constant is computed as Z =

∑
k exp(−NΦ∗(qL

k ))∆qL, where the summation runs over all possible values 
of qL and ∆qL = 2

NL . Although we could not find the saddle point solution of Φ(. . . |qL) in the vicinity of qL  =  −1 
for relu-DNN (see figure 3(b)), the contribution from that region to the cumulative probability of the overlap is 
negligible .
4 Notice that such estimation is obtained by saddle point approximation in equation (22) and by keeping the leading 
order contribution, which may be slightly biased for small N.

B Li and D Saad﻿J. Phys. A: Math. Theor. 53 (2020) 104002



15

are very similar to the effect of weight sparsification. As pointed out in section 4.2, bina-
rizing weights of random DNN corresponds to rotating the weight vector ŵl

i by an angle 

θl = cos−1
√

2
π  [32], or equivalently, disconnecting weights with a particular probability 

pl = 1 − 2
π . The matches between theory and simulation in figures 4(a)–(c) validates the large 

deviation-based analysis in both sign and relu-DNN and the scaling relation of equation (25) 
in sign-DNN. The relu-DNN are more biased to the regime of positive correlation and more 
robust to binarizing perturbation as seen in figure 4(d).

6.3.  Sensitivity to input perturbation

We have shown that relu-DNN with random weights are robust to parameter perturbations 
such as weight sparsification and weight binarization, which is a desired property for better 

Figure 4.  Weight binarization of random DNN. (a) Φ versus qL for sign activation 
function. (b) Φ versus qL for ReLU activation. (c) The rate function I(q̃L) of output 
overlap q̃L defined by M patterns; solid lines are theoretical results while dashed lines 
with circle markers are estimated by simulation. (d) Mean field solutions of output 
overlap qL

mf  as a function of system depth L.
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generalization. On the other hand, such network ensembles typically represent simple func-
tions as studied in [21, 22]. The simplicity of the functions generated is one reason accounting 
for the observed robustness to parameter perturbation.

To probe the function complexity, we study the function sensitivity under input perturba-
tion while keeping w = ŵ [28]. Flipping n input variables corresponds to the input overlap 
q0 = 1 − 2n

N0 . In figures 5(a) and (b) we depict the overlap qL
mf  of the final output as a func-

tion of input overlap q0 (keeping in mind that we always apply the sign activation in the 
output layer). While the outputs become more de-correlated in deeper layers of sign-DNN, 
the relu-DNN induce correlation at deeper layers. Therefore, random relu-DNN tend to forget 
the input structure at deeper layers, generating increasingly simpler functions that are robust 
to parameter perturbation. This phenomenon has been noticed in the Gaussian process-like 
analysis of DNN [10–12].

Figure 5.  Mean field solutions qL
mf  versus q0 in the scenario of input perturbation 

where w = ŵ. In all architectures, sign activation function is applied at the output 
layer. (a) DNN with sign activation functions and uncorrelated random weights. (b) 
DNN with ReLU activation at the hidden layers, with uncorrelated random weights, 
and sign activation at the output layer. (c) Relu-DNN with positive weight correlation 
c = 2/(3N). (d) Relu-DNN with negative weight correlation c = −2/(3N).
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Figure 6.  Large deviation of output similarity qL under input perturbation where 
w = ŵ. Sub-figures (c) and (d) are the same as (a) and (b), except for the shifted x-
coordinates. (a) and (b) Φ versus qL for sign- and relu-DNN, respectively. (c) and (d) Φ 
versus qL − qL

mf for sign- and relu-DNN, respectively. (e) The dominant trajectories of 
overlap {ql} leading to particular deviation in sign-DNN. (f) The dominant trajectories 
of correlation coefficient {ρl} leading to particular deviation in relu-DNN.
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In [16], we investigated the effect of weight correlation in the form of 
P(ŵl

i) = exp(− 1
2 (ŵ

l
i)
�A−1ŵl

i)/
√
(2π)Nl−1 |A|, with A = σ2

w(I − cJ) where I is the identity 
matrix and J the all-one matrix. We found that DNN with ReLU activation functions and nega-
tive weight correlation c  <  0 are more sensitive to parameter perturbation. Here we examine 
the sensitivity of relu-DNN to input perturbation by employing the same results developed in 
[16]. In figures 5 (c) and (d), we depict the mean field output overlap qL

mf  as a function of input 
overlap q0. It is observed that negative weight correlation corresponds to a higher sensitivity to 
input perturbation, indicating that the relu-DNN with negatively correlated weights generate 
more complex functions than those with random or positively correlated weights. We con-
jecture that negative weight correlation develops in very deep ReLU networks when they are 
trained to performed complex task where a high expressive power is needed, a phenomenon 
that has been observed in [36].

In figure 6, we further investigate deviations from the typical behaviors in the presence 
of input perturbations for the specific example with L = 4,αl = 1. The rate functions Φ(qL) 
depicted in figures 6(a) and (b) dictate the rate of convergence to the typical behaviors with 
increasing N by the large deviation principle, for both sign and ReLU activations, respectively. 
In figure 6(c), we observe that the rate functions have similar trends in the vicinity of the mean 
field solution qL

mf  for different levels of input perturbation (corresponding to different q0) in 
sign-DNN, while they are more distinctive in relu-DNN as seen in figure 6(d). In relu-DNN, 
smaller input perturbation (larger q0) leads to smaller variance of qL around qL

mf . The rate func-
tion of relu-DNN is also more asymmetric around qL

mf , suggesting that large deviations will be 
more often observed below qL

mf  than above it. This indicates that random relu-DNN of finite 
size may produce functions that are slightly more complex than what would be expected by 
the mean field solutions, which remains to be verified.

We also examine the dominant trajectories across layers leading to particular deviations by 
monitoring the correlations of activations between the two systems across layers. The relevant 
quantity is the correlation coefficient

ρl =
ql − m̂lml

√
v̂l − (m̂l)2

√
vl − (ml)2

,� (51)

where the mean activations m̂l  and ml are computed by equation (37). We find that sign-DNN 
satisfy m̂l = ml = 0, v̂l = vl = 1, such that ρl = ql in this case. The results are shown in fig-
ures 6(e) and (f), which suggest that the deviations of qL from the typical value qL

mf  are mainly 
contributed by the deviations at later layers.

Lastly, we investigate the effect of DNN architecture on the deviation. In particular, we con-

sider a single bottleneck layer at a particular hidden layer l′ (0 < l′ < L) with αl′ = 1
8 while 

all other layers satisfy αl = 1, ∀l �= l′. Placing the bottleneck at later layer introduces a higher 
variability of output overlap qL by observing smaller values of the rate function in figure 7; this 
effect is more prominent in sign-DNN, while it is much less noticeable in relu-DNN.
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7.  Discussion

By utilizing the large deviation theory coupled with the path integral analysis, we derive the 
sensitivity of finite size random DNN under parameter and input perturbations. Random DNN 
with sign or ReLU activation function are shown to satisfy the large deviation principle, where 
the rate functions govern an exponential decay of the deviation to the mean field behaviors as 
the size of the system increases. We also investigate the effects of weight sparsification and 
binarization of random DNN, and uncover their equivalence to rotation of weight vector in 
high dimension. Random DNN with ReLU activation function are found to be robust to these 
parameter perturbations, which is caused by the low complexity of the corresponding function 
mappings. Random initializing the weights of ReLU DNN places a prior for simple functions, 
while they have the capacity to compute more complex functions with specifically trained 
weights. The next important question is how the networks adapt to perform complex tasks by 
the training processes.
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Appendix A.  Disorder average for weight sparsification

For network sparsification (15), the disorder average in equation (14) can be computed as

Figure 7.  Effect of a single bottleneck layer on the rate function in the scenario of input 
perturbation. The bottleneck layer l′ has width parameter αl′ = 1

8 while all other layers 
have αl = 1. (a) Sign-DNN. (b) relu-DNN.
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Eŵ
∏
l,i,j

exp

(
−i√
Nl−1

ŵl
ijx̂

l
iŝ

l−1
j

)[
(1 − pl) exp

(
−i√

Nl−1
√

1 − pl
ŵl

ijx
l
is

l−1
j

)
+ pl

]

=
∏
l,i,j

[
(1 − pl) exp

[
− σ2

w

2Nl−1
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iŝ
l−1
j + xl

is
l−1
j /

√
1 − pl

)2]

+pl
[

1 − σ2
w

2Nl−1

(
x̂l

iŝ
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where we have made use of the large Nl approximation.

Appendix B.  Disorder average for weight binarization

For weight binarization in (16), the disorder average in equation (14) can be computed as
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where the large Nl approximation has been employed.

Appendix C.  Large deviation in the multiple-pattern scenario

Consider function similarity estimated for multiple patterns

q̃L =
1
M

M∑
µ=1

(
1

NL

NL∑
i=1

ŝL,µ
i sL,µ

i

)
=:

1
M

M∑
µ=1

qL,µ

� (C.1)
where ̂sL,µ

i (̂s0,µ) is the ith output of the reference network with the µth input ̂s0,µ drawn indepen-
dently and identically from the input distribution P(s0). In the small fluctuation regime, where 
each qL,µ is close to the mean field solution qL

mf , we have I(qL,µ) ≈ 1/2I′′(qL
mf)(q

L,µ − qL
mf)

2 
(both I(qL

mf) and I′(qL
mf) vanish [30]), i.e. P(qL,µ) can be approximated by a Gaussian density

P(qL,µ) ∼ exp

(
− N

2
I′′(qL

mf)(q
L,µ − qL

mf)
2
)

,� (C.2)

where the corresponding variance is 1/(NI′′(qL
mf)). Since the M inputs are independent, we 

also assume the outputs are also approximately independent (which holds in sign-DNN but 
does not necessary for relu-DNN since ReLU non-linearity can induce correlations among 
variables), such that the variance of q̃L is 1/(MNI′′(qL

mf)). Therefore, in the vicinity of qL
mf  we 

have

Figure C1.  The rate function I(q̃L) of output overlap q̃L defined for M patterns and 
DNN with different activation functions and system depths, in the scenario of weight 
sparsification with disconnection probability p l  =  1/2. Solid lines correspond to 
theoretical results and dashed lines with circle markers correspond to estimation from 
simulation.
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P(q̃L) ∼ exp

(
− MN

2
I′′(qL

mf)(q̃
L − qL

mf)
2
)

,� (C.3)

implying that the corresponding rate function differs from the one with single pattern by a 
factor of M.

More formally, one can directly compute the probability density P(q̃L) as
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i ĥl,µ
i + ixl,µ

i hl,µ
i

)


× exp


−

∑
µ,l

i√
Nl−1

∑
i,j

(
ŵl
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Since the weights {ŵl
ij, wl

ij} are shared among the M patterns, average over these variables on 
the last line of equation (C.4) leads to coupling between patterns on the pre-activation fields
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By introducing the following overlap matrices as macroscopic order parameters
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1
Nl
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j
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j sl,ν
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Equation (C.4) can be factorized over sites as before. However, we have O(LM2) order param
eters here, while there are only O(L) order parameters in the single pattern case. To further 
simplify the calculation, we assume a symmetric structure of the cross-pattern overlaps at the 
saddle point ql,µν = ql,‖δµν + ql,⊥(1 − δµν), where ql,‖, ql,⊥ are the diagonal and off-diagonal 
matrix elements respectively. Under this assumption, one can in principle evaluate the integral 
in (C.4), but the resulting calculation becomes rather involved.

Alternatively, since the M input patterns are independent, we expect the diagonal ele-
ments of the matrix ql,µν to be larger than the off-diagonal elements (sum of correlated 
variables versus sum of random variables). In particular, for sign activation we expect 

ql,‖ ∼ O(1), ql,⊥ ∼ O( 1√
Nl ) since ql,⊥ involves a summation over weakly correlated posi-

tive and negative numbers. We therefore approximate the summation 
∑

µν [. . .] in the expo-
nential of equation  (C.5) by 

∑
µ=ν [. . .], which yields MNl un-coupled identical integrals 

at each layer Nl. It eventually leads to the rate function of multiple-pattern overlap q̃L as 
I(q̃L) ≈ MΦ(Q∗, q∗, . . . |q̃L), where Φ(Q∗, q∗, . . . |qL) is the rate function of the single-pattern 
overlap qL. While the off-diagonal elements of ql,µν have smaller values, there are more of 
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these terms (M(M − 1) off-diagonal terms compared to M diagonal terms in the summation ∑
µν [. . .] in the exponential of equation (C.5)), so we expect the above approximation to hold 

only for small M. The above argument may fail for ReLU activation, since ̂sl,µ
j , sl,µ

j  are always 
positive, and therefore ql,⊥ ∼ O(1).

In figure C1, we compare the approximate theoretical results I(q̃L) ≈ MΦ(Q∗, q∗, . . . |q̃L) 
to numerical simulations in the scenario of weight sparsification with disconnection probabil-
ity p l  =  1/2. We observe a good match between the two approaches for sign-DNN, validating 
the de-correlation assumption of M patterns. For relu-DNN, the theory gives a good prediction 
on shallow networks with L  =  2 but deteriorates for deeper networks; it suggests the impor-
tance of cross-pattern order parameters ql,⊥ in this case, whose detailed treatment is beyond 
the scope of this work.
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