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Abstract

The large N generating functions for the counting of chiral operators in
N = 1, four-dimensional quiver gauge theories have previously been obtained
in terms of the weighted adjacency matrix of the quiver diagram. We introduce
the methods of multi-variate asymptotic analysis to study this counting in the
limit of large charges. We describe a Hagedorn phase transition associated
with the asymptotics, which refines and generalizes known results on the
2-matrix harmonic oscillator. Explicit results are obtained for two infinite
classes of quiver theories, namely the generalized clover quivers and affine

C3 /A, orbifold quivers.

Keywords: quiver gauge theory, asymptotic analysis, Hagedorn phase
transition
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1. Introduction

The Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence gives an equiva-
lence between four dimensional gauge theories and ten dimensional string theories [21].
Generalizations of the correspondence involve four dimensional quiver gauge theories [11]
and a six-dimensional non-compact Calabi—Yau (CY) space in the transverse directions. The
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dictionary between A/ = 1 four-dimensional quiver gauge theories and the Calabi—Yau geom-
etry has been developed, in the case of toric CY [15], using brane tilings [14, 17, 19].

Chiral gauge invariant operators, which are annihilated by supercharges of one chirality,
play a central role in identifying the CY space for a given quiver gauge theory. These operators
form a chiral ring and their expectation values are independent of the positions of insertion of
the operators [7].

The combinatorics of the chiral ring at non-zero super-potential has been studied using
generating functions and Hilbert series in the plethystic program [2, 12, 18]. The asymptotics
of the counting formulae have also been studied [2, 9, 12, 20]. These studies have primarily
used one-variable methods appropriate for special cases of the asymptotics, although a few
results in the multi-variable case are also available [9, 20].

The holographic duals of free scalar field theories have been conjectured to be higher spin
gravity theories [10, 30]. The chiral rings of free quiver gauge theories provide observables for
a large class of theories, which can be studied as instances of this type of holography. Some
special quivers, associated to 2-matrix systems, arise as sectors of N =4 SYM, and have
been recently discussed in connection with black holes in the dual of AdSs X S5 [5, 6]. For
quivers corresponding to orbifolds of AdSs x S°, the free limit has a known holographic dual
as a strongly coupled limit from the gravity side. For the case of conifold, it is known that the
free UV fixed point theory flows to a known limit of the IR moduli space of conformal theo-
ries, which also includes the semiclassical gravity limit [24, 29]. For general quivers corre-
sponding to toric CY spaces, the relation between the free UV fixed points at zero potential to
the moduli space of IR fixed points is in general not well understood. These IR moduli spaces
have been studied for example in [3]. The zero coupling quiver gauge theory chiral rings have
also been discussed in connection with free fermions and generalized oscillators in [4].

General results on the counting of chiral ring operators in the free limit of zero superpo-
tential were obtained in [22, 24]. The generating function for chiral operators in this free limit
is an infinite product of inverse determinants involving the weighted adjacency matrix of the
quiver diagram. This weighted adjacency matrix is a function of multiple variables associated
with the edges of the quiver, and corresponding charges. The asymptotic behaviour of the free
quiver counting in the limit of large charges naturally requires multi-variate complex analysis.
In this paper, we will study the asymptotics of these generating functions using the methods of
multi-variate asymptotics recently developed by Pemantle and Wilson [26, 27]. These meth-
ods allow systematic algorithmic derivation of asymptotics associated to a rational generating
function in several variables, and apply directly to the generating function of chiral operators.

We find that the asymptotic counting of the chiral operators for any free quiver gauge
theory is given by a compact general formula (20). To make this general formula more explicit
for different quivers requires, at present, symbolic computer tools. For two infinite classes of
examples, we analytically derive the explicit asymptotic results. These two classes are the
generalized clover quivers and the affine C /An orbifold quivers. These results are the asymp-
totic formulas (24) and (39).

The rest of the paper is organized as follows. In section 2, we define a thermodynamics of
the chiral operators in a free quiver gauge theory, based on the counting problem of the chiral
operators. We discuss associated phase transitions and a generalized Hagedorn hyper-surface
related to the asymptotic analysis. In section 3, we present an adapted version of multivariate
asymptotic techniques for our quiver gauge theory problem. In section 4, we apply the devel-
oped method to two (infinite) classes of examples and obtain explicit results for the asymptot-
ics. Section 5 discusses some possible directions for future studies.
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2. Thermodynamics of chiral ring in free CY3 quiver theories

In this section, we will consider generating functions for the counting of chiral ring operators
in free quiver gauge theories as generalizations of thermal partition functions in AdS/CFT.
We will define a generalized Hagedorn hyper-surface. We will observe that it controls the
asymptotics of these generating functions, a point which will be developed in more detail in
subsequent sections.

In the context of the AdS/CFT correspondence, type IIB string theory on AdSs x S° is
dual to N = 4 Super Yang-Mills (SYM) theory on four dimensional Minkowski space R'?>.
Conformal field theories have a symmetry of scaling of the space-time coordinates. Their
quantum states are characterized by a scaling dimension, which is the eigenvalue of a scaling
operator. In the AdS/CFT correspondence, the scaling operator of the CFT corresponds to the
Hamiltonian for global time translations in AdS [31]. The eigenvalues of this Hamiltonian are
the energies of quantum states obtained from the quantum theory of gravity in Anti-de-Sitter
space.

For free CFTs in four space-time dimensions, the scaling dimension for any scalar field is
1. For a composite field (also called composite operator), which is a monomial function of
the elementary scalar fields, the scaling dimension is the number of constituent scalar fields.

The thermal partition function of the AdS theory is a function of 3, the inverse temperature,
given by

F(B) = Tre "X, ey

For a system with a discrete spectrum of energies, as in the case at hand, this is a sum over
energy eigenvalues

F(B) = ZEj a(E) e PF, )

where a(E) is the number of states of energy E. For a free CFT, the partition function becomes
F(x) = Z a, x', 3)

where x = e~?, a, is the number of composite fields with r constituent elementary scalars
and r is being summed over the natural numbers. In a case where we have multiple types of
scalar fields, as in quiver gauge theories, the above partition function can be generalized to a
multi-variable function

s 'y
F(xl’... ’xd) — Z arl,“.‘rd x]l ...xdd’ (4)
iy T
where x; = e % and a,, ... ,, is the multiplicity of composite operators with specified num-
bers r,--- ,ry of the different types of scalar fields. The multivariate generating functions
(4) are refined versions of the partition function (3). We will refer to r; as charges and the
variables x; as fugacity factors for each field. Using the vector notation 3 = (i, - , 84) and
r=(ri,--,rg), with|r| = /ri+ -+ rland F = ﬁ,wedeﬁne
d
r.__ Tj

X = ij’. (5)

j=1
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We can then write equation (4) as
F(x) = Zar x". )
r

The 1-variable partition function (3), for systems which have an exponential growth of the
number of states a, ~ e*” in the large r limit, has regions of convergence and divergence meet-
ing at a critical 8 = a. The partition function converges for 5 > « and diverges for 5 < a.
This type of behaviour occurs in string theory, where it is associated with the Hagedorn phase
transition [16].

Similarly, in the multi-variable case, assuming that the function F(xy, - - - , x4) has an expo-
nential growth of the multiplicity factor a,, ... ,, for large r;, then there is a hyper-surface
separating convergence and divergence regions for the multi-variable partition function. This
hyper-surface is given by the equation

1
—loga, =03 -1 . 7
Ir| (7

In the quiver examples we will be studying in this paper, there is indeed this type of expo-
nential behaviour and a corresponding hyper-surface. This may be viewed as a generalized
Hagedorn hyper-surface.

This Hagedorn hyper-surface was studied in the case of a 2-matrix model in [1]. The
2-matrix model problem is associated with a quiver consisting of a single node and 2-directed
edges. We consider this model and the generalised Hagedorn hyper-surface for more general
partition functions associated with quivers [24].

A quiver diagram is a directed graph G = (V,E) with a set V of nodes and a set E of
directed edges; self-loops at a node are explicitly allowed. A quiver gauge theory has a product
gauge group of the form Ha U(N,), where each U(N,) is associated with a node, and matter
fields in the bi-fundamental representation of the gauge group are associated with the edges.
The interactions between the matter fields are described by a superpotential W which is a
gauge-invariant polynomial in the matter fields. In our study, we focus on the zero superpo-
tential case W = 0.

The observables of quiver gauge theories are gauge invariant operators and their correla-
tion functions. An interesting class of observables is formed by chiral operators, which form a
ring, called the chiral ring. For the definition and properties of the chiral ring, see for example
[7, 18]. The space of chiral operators in the zero-superpotential limit is typically much larger
than that at non-zero superpotential.

The generating function for the chiral operators in the large N limit in an arbitrary free
(with zero superpotential W = 0) quiver gauge theory was derived in [22-24] and is given by

F(x)=> ax" =[] det(I - X(x) ™", 8)
r i=1

where x = (xq,...,x4) is the fugacity factor, r = (ry,...,ry) is the charge associated with
the edges, X(x) = X(x1, - ,x4) is the weighted adjacency matrix of the quiver and
X(x") = X(x4, -+ ,xi,). The multivariate generating function (8) is an example of equation (6),
i.e. a refined version of the partition function (3). The degeneracy a, is the number of chiral
operators with charge vector r in the chiral ring of the free quiver gauge theory. In this paper,
we will be interested in the asymptotic behaviour of a, for large (ry,r2, -+, ry).

In order to study the asymptotics, with the methods of [25-27], it will be useful to write F
as aratio
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where
H(x) = det(I — X(x)), G(x)= Hdet(]l — x(x)), o

In fact, we observe that, with the parameterization x = exp (—3), F(x) is convergent in the
domain H(x) > 0 for small enough (and positive) x; > O for all i . The boundary between
the convergence and divergence domains is the phase transition hyper-surface, characterized
by H(x) = 0. We will see some examples of this in section 4. The asymptotic regime of the
generating function is obtained by approaching the H = 0 hyper-surface inside the domain
of convergence. Thus this hyper-surface controls the phase structure of the theory and also
determines the leading asymptotic behavior of a,. The asymptotic analysis will be developed
in sections 3 and 4.

2.1. Entropy

The logarithm of the degeneracy ay is the thermodynamic entropy S, := log a,. For conve-
nience, sometimes we consider the leading term of the entropy, which we denote by S;.

Following the general result (7), in the chiral ring of the free quiver gauge theories, the
Hagedorn-type transition can be seen as a result of the competition between the leading term
of the entropy Sy obtained from the logarithm of the multiplicity and the temperature term
— - r in the generating function (8). The generalized Hagedorn hyper-surface is given by

Ss—pB-r=0. (10)

Using equation (10), the critical couplings can be simply obtained as 5; = 9;S;. We will see
explicit equations for this hyper-surface in some classes of examples in section 4.

3. Method of asymptotic analysis

In this part we adopt a novel technique of asymptotic analysis of the multivariate generating
functions, and apply it to the counting problem for the corresponding quiver gauge theories.
First, we review some known material from the asymptotic analysis of multivariate generating
functions and then in the second part, we present an ongoing development on the evaluation
of certain Hessian determinants specified at some critical points. In the third part, the phase
structure of the quiver theories is explained and the relations between the entropy and critical
couplings are discussed.

3.1 Multivariate asymptotic counting

In this section, we answer the question of asymptotic counting for the multivariate generating
functions that appear in the chiral ring of the quiver gauge theories. We will not review the
details of the proofs from multivariate asymptotic analysis in this article and only present the
main result in the following. For a comprehensive presentation of such analysis see [25-27].
We now briefly summarize the general results for asymptotics of multivariate generating
functions obtained by Pemantle and Wilson [26], applied to our situation of interest. In the
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present paper, we encounter generating functions that only require the smooth point analysis
of [26]. We present an adapted and extended version of these results, in four steps suitable for
quiver gauge theories. In the next section we apply these results to some infinite classes of
examples of quivers.

The basic steps of the analysis of [26] are as follows.

(i) We consider a generating function in d variables x = (xi, ..., xz),

(1D

where G and H are holomorphic in some neighbourhood of the origin, H(0) # 0, and all
coefficients are nonnegative.

(i1) For a given r we find the contributing points to the asymptotics in direction parallel to r.
To do this we first find the critical points of H. A smooth critical point x* is a solution of
the following set of equations

H(x*) =0, raxfOH(X") = rixg0gH (X") for(1<j<d—-1). (12)

From general theory [27] there is a solution x* to these equations that has only positive
coordinates and which is a contributing point. Generically, this is the unique solution to
the critical point equations. Furthermore all other contributing points, if they exist, lie on
the same torus. We require F' = G/H to be meromorphic in a neighbourhood of the closed
polydisk containing x*, defined by the condition that |x;| < x for all i. The point is usually
strictly minimal — no other point in the polydisk is a pole of F.

(iii) Near each contributing point x* we can solve the equation H(x*) = 0, without loss of
generality x; = g(x’) with X’ = (xy,...,x4—1). However, the asymptotic is independent
of which coordinate we solve for. Then we define the function ¢ = log g(x’) locally
parametrizing the hyper-surface {H = 0} in logarithmic coordinates. The Hessian H of

¢ is an essential part of the asymptotic formula, and we can compute it in terms of the
d—1

original data as follows. We construct the Hessian matrix H := (’HU) o with elements
ij=
Hij= %. The diagonal and off-diagonal matrix elements can be written explicitly in
terms of g:
0ig(x’ 07g(x 0ig(x')\2 .
= 8 s F8(x) xiz( g()f )) diagonal,
8(x’) 8(x’) (13)
0,0,8(x 0;g(x")0ig(x’ .
Hy = —x,-x-( ’gEX ) _ 9glx ), f(x )) off-diagonal.
8(x) 8(x)
Thus we can write the Hessian matrix as
X (020, O d=1
M= (”’ <gfg - a,ajg) -k ’ga,»,) : (14)
8 8 8 ij=1

The above holds for all values of the variables. We are only interested in the evaluation of
the Hessian determinant at each contributing point, and this allows further simplification
which we now carry out. The critical equation H = 0 implies

d—1 d—1
dH = Z O:H dx; + OgH dxg = Z {&H + OqH

i=1 i=1

8xd
Ox i

] dx; =0, (15)



J. Phys. A: Math. Theor. 53 (2020) 105401 S Ramgoolam et al

where we omitted the star for the critical points for simplicity. It implies the following
relation forany j=1,....d — 1:

OH

— = —0g. 1
Putting this relation together with (12), we obtain
X:0: i
A (17)
Xd rd

Applying identity (17) to the Hessian matrix (14) we obtain the elements of the Hessian
matrix evaluated at critical points,

Vil x;-*x?‘a,»a-g i
Hj=—3 — =+ 0 (18)
Ty 8 ra

. I x;0; . .. .. .
The computation of w depends on the relative positions of the loops i, j and d in the

quiver diagram.
(iv) The final step is to derive the asymptotic formula for a, from the critical points and
Hessian determinant. The Cauchy integral formula yields

1 —rp( )dx 19

@ =——= [ X X)—,
"2y )y X (19
where the torus 7 is a product of small circles around the origin in each coordinate and

& — (xy--xg)"'dxy A--- Adxg. In the asymptotic regime |r| — oo, the following

smooth point asymptotic formula is obtained in [26, Theorem (1.3)]. We write simply x
for x*(r).

The smooth point formula states that if G(x) # 0 then

—(d— _ G(x —(d— r
ar e (27) Vet () B (0)

where x ' := H;l:l xj_r’. The expansion is uniform in the direction ¥ := r/|r| provided
this direction is bounded away from the coordinate axes.
We want to apply the above procedure in our case of interest. For any connected quiver with
generating function (8), we have functions H(x) and G(x) as in equation (9). For x sufficiently
close to the origin, G and H are holomorphic and H does not vanish at the origin.
Our next observation is the rediscovery of a folklore result in graph theory [8], that H(x) in
equation (9) can be expanded graphically in terms of the loops in the quiver,

d
H=Y" > (=)‘hh--I, 1)

k=0 LiulLU...Ll

where [y, b, ..., [y are loops which meet each node of the quiver diagram at most once, d is
the total number of the loops of the quiver diagram, and loops in the second sum are disjoint.
Notice that each loop variable in the above expansion (21) is the product of x; edge variables
in the determinant formula (9), around each loop of the quiver diagram.

To summarize, given a quiver diagram, one can easily find the function H and solve the
critical equations to obtain the critical points. Then, by computing the Hessian determinant

7
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Figure 2. d-Kronecker Quiver.

evaluated at a critical point and inserting these results into equation (20), one can obtain the
asymptotic for any quiver diagram. However, owing to the multidimensional nature of the
problem, some of the computations, such as solving the critical equations and computing the
Hessian determinant, require symbolic mathematical software. On the other hand, as we will
present in this paper, alternatively, one can try to find an explicit analytic form of the asymp-
totic formula for some infinite classes of quivers, with the hope of finding a general analytic
result for larger classes of quivers.

4. Some infinite classes of quivers

Having introduced and discussed a general procedure of the asymptotic methods for quiver
diagrams, in this section, we implement these methods in two infinite classes of examples
and obtain explicit analytic results for the entropy and phase structure of these quiver gauge
theories.

4.1. Generalized clover quivers

As the first class of examples, we consider a generating function of the following form:

—1
d

G(x r M :
F(x)HixizarxH le;xj ,

i=1

(22)
with H(x) =1- Y0 x5 and G(x) = [[;o, He(x) = [[25,(1 — X0 &)~ This is the
Generalized Clover Quiver class, see figure 1. It is interesting to notice that the d-Kronecker

quivers, consisting of d loops, shown in figure 2, have also the same generating function.

It is easy to observe that for direction (ry, ..., r;) the unique critical point is
rer T
X* = (7]9 729 eeey i),
R’ R R

with R = Z;l:l r;. This point is strictly minimal. To see this, we first show that there are no
more zeros of H; in the closed polydisk defined by x*. This is clear because for every such
point X we must have 2?21 x; = 1 while |x;| < x}, and this can only happen when all x; = x.

8
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We then handle possible poles arising from the other factors H for k > 2. To do this, note that
0 < xf < 1for all i. Thus if |x;| < x} for all i and k > 2 we have

d
I—fo-‘

i=1

d

d d
1= I >1-) |l=1-> x =0
i=1

i=1 i i=1

Note that the second inequality is strict unless all x; = 0, in which case the third inequality
is strict. Thus we can choose a polydisk with radii f; slightly more than x}, such that for all
k=25 fik < 1 and so each factor in the product defining G is analytic. Thus F = G/H has
the desired form as a quotient of analytic functions in an appropriate polydisk, and x* is a
strictly minimal critical point for the given direction.

To compute the Hessian, we observe thatg = x; = 1 — Zf’:ll x; 1s linear and so the second
partial derivatives are zero. Thus from (18) we have

r,»rj ri
rd rq

By changing to the variables r;/r, the determinant of this matrix is easily computed (see
appendix) to be

d
detH = r;(Hd)RHr,-. (23)
i=1

By implementing the above explicit formula for the determinant of the Hessian matrix, in
equation (20), it is straightforward to obtain the asymptotic result. By using equation (20),
for the asymptotics of a, of the generating function (22), in the ‘central region’, as R — oo
and r;/r; (for each i,j = 1 to d) bounded away from zero, we obtain the following explicit

asymptotic formula,

~ G R’”%ﬁ_”—% 24
ar m T . (24)

i=1

The entropy of the generalized clover quiver is obtained in the following Shannon form:
. 1 1
Sy =log G(x*) + (R + 2> logR — Z <ri + 2) log r;. (25)

o Univariate case

In this part we characterize a special type of quiver whose asymptotics cannot be studied
with the methods above. This is the one-variable case of the generalized clover quiver and
is called the Jordan Quiver (see figure 3). In fact, the generating function of this type of
quiver is the generating function of the (integer) partitions and derivation of its asymp-
totics is a classical problem in analytic combinatorics. The reason that the asymptotic
method of this paper does not apply is that the relevant singularities in the one-variable
case occur at all possible roots of unity, 1 — x' = 0, and each factor in the product contrib-
utes to the asymptotic, while for example in the two-variable case the exponential order
of the contribution of 1 — x — y = 0 is higher than that of 1 — x> — y?> = 0, etc.

All the oriented cycle graphs with no multiplicity (multiple edges) and no loop of length
one, can be reduced to a quiver consisting of a single node and single loop. This loop
variable is a product of edge variables for the cycle graph. The simplest example of this
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class is the two node graph with two oppositely directed edges. The asymptotics for this
class of quivers follows the asymptotics of partitions.

e Bivariate case

In the bivariate case (d = 2), for Bi-Clover Quiver in figure 4, the generating function is

G(x,y - P - r
F(x,y)z ( y> :H(l_'x_y) 1:Zars-Xys
r,s

where G(x,y) = [[Z,(1 =¥ =)~ H(x,y) = (1 —x — ).

The asymptotics for a,s as r + s — oo and r/s,s/r are bounded away from zero, can be
obtained as a special case of the computations above. Let A = r/(r +s) € (0,1). This
yields the first order asymptotic

; G =X) (r4 )0+ [r4s
s 2r s rs

This is uniform in A as long as it stays in a compact subinterval of (0, 1) (alternatively, the
slope r/s lies in a compact interval of (0, co)—note that /s = A/(1 — X)). In particular
for the main diagonal r = s, corresponding to A = 1/2, we obtain

LG22,
nn \/ﬁ .

The exact value of G at the critical point is not completely explicit, being given by an
infinite product. It is a positive real number greater than 1, since each factor satisfies
those same conditions. The minimum value of G(\) over all A occurs when A = 1/2 and
equals the reciprocal of the Pochhammer symbol (1/2;1/2) . This has the approximate
numerical value 3.46275. The value of G(\) approaches co as A — 0 or A — 1.

Phase structure

We start with the simplest example of the class, which is the bivariate clover quiver.
Following the discussion in the paragraph after equation (9) in section 2, the phase trans-
ition line in this example is 1 — x; — x, = 0 and the phase diagram is depicted in figure 5.
In the case x; = x,, we obtain the critical coupling 8* = log 2. In the unrefined case of the

generalized clover quiver, we have 5* = logd. Similarly the phase diagram of the other
examples in this class is a hyper-plane obtained from H(xy,...,x;) = 1 — Z]fd:l x;=0.

Using equation (25), up to leading order, the entropy and couplings on the critical hyper-
surface are obtained as

d d
Sy :RlongZrilogri:Zr,wﬂi*,
i=1 i=1 (26)
oSy
L =logR —logr, = —logx] = §.
ar,-

10
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Figure 3. Jordan Quiver.

ZQC o 311

Figure 4. Bi-Clover Quiver.
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0.0 0.2 0.4 0.6 0.8 1.0

X1

Figure 5. Phase Diagram of Bi-Clover Quiver.

Notice that critical points obtained as above are the same as the solutions of critical equa-
tion (12) in the case of generalized clover quivers. The basic physical example in the class
of generalized clover quivers is the C* quiver gauge theory with three loops in the quiver.

4.1.1. Oriented cycle quivers with multiplicity. An oriented cycle quiver with multiplicity is
an oriented cycle graph with multiple edges between any two adjacent nodes and no loop of
length one. The generating functions of these quivers reduce to those of the generalized clover
quiver where the number of the loops in the clover quiver is determined by the number of the
cycles in the cycle graph. In the following, we present some important examples of oriented
cycle quivers with multiplicity.

1
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e conifold C

The conifold quiver is an oriented cycle graph with multiplicity, and with two nodes and
two couples of parallel edges between the nodes. This is a special case of the generalized
clover quiver with four variables. The determinant of the adjacency matrix of the conifold
is

H=1-11 —bL 13—, 27
where [, [, I3, and I, are product of edge variables in the conifold quiver, see [24, sec-

tion 2]. By direct computation, the critical points and Hessian determinant with the choice
of l; =l are

4
I = %’, det# = r; R [ r (28)
i=1

where R = 2?21 r;. The asymptotic and the dominant terms in entropy can be obtained
from the result for the generalized clover quiver,

* 4 4
ar ~ 3/2 H S =— rilogr;+ RlogR, (29)

= i=1

where G(I*) = [[2°,(1 — I — I — I — ;1) ™!

e Hirzebruch F, and del Pezzo dP, (C?/Z5)

As other examples of this class we can mention Hirzebruch Fj and del Pezzo dP, see
figure 6 (middle) and figure 1 in [13]. The generating function of Hirzebruch F is the 16
loop variable case of the generalized clover quiver and del Pezzo dPy is the generalized
clover quiver with 27 loop variables. Their asymptotics can be obtained as special cases
of equation (24).

4.2. Affine C3 /A, orbifold quivers

The next infinite class of examples consists of the affine C3 /An orbifold quiver theories, see
figure 6. The first observation is that by equations (9) and (21), the denominator H for this
quiver can be written in terms of the elementary symmetric functions e; (K15 eer Xn)s

H(X1y ooy Xy Xe) = —Xe + Z V(X1 Xy) = —Xc + H(l -X),  (30)

where xi, ..., x, are the loops of length one at the nodes 1, ...,n, and x. is the central loop in
figure 6. Thus the generating function of this quiver can be written as

x):Zarxr:H(—x +Z )ej( xl,...,x"))il. 31)

First, we choose g function to be the central loop, i.e. x; = x.. We denote the other loops in
the quiver by x; for i = 1, ..., n. We have as above
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Figure 6. Affine C?/A, Orbifold Quivers.

2

G(x1,. .o Xy Xe) = HHk(X) -

k=2 i

U
)

—xe Y (1) g ()
j=0

Suppose that r;/r. and r./r; are fixed and bounded away from zero as r;, r. — oo. We claim
that the unique critical point and Hessian determinant evaluated at this point are

n n
* Ti * e —2n
Xi = ——» Xe = = detH:rc ri(ri +re).
re+ri T (re + 1) ll;[l ( ) (32)

The proof that this point satisfies H = 0 follows from the following identity for elementary
symmetric function e;(ry, ..., 7y,

n

[I0e+m) =" riein, or). (33)
i=0

i=1
For the proof of the other critical equations, r X ViogH = 0, first observe that
OH = 0;g, O4H=—1, (34)
and denoting the g function of the quiver with n surrounding loops by g,, we observe that
Djgn = —8n—1. (35)
Using the above observation we can prove that the ansatz for x; and x} in equation (32), satisfy
rexiOH = rix;O4H. (36)
The formula for the Hessian determinant in equation (32) follows from the observation that
the Hessian matrix evaluated at the critical point x* is diagonal, since
%&'g@g = rinyrs
(37

XiX;j -2
2 00,8 = rirjrs ",
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and moreover, because of the choice g = x. we have 9?g = 0, and thus by inserting the critical
points in equation (32), the Hessian matrix, equation (14) becomes

M= (ri2 + 0 38
i =05+ ) (38)
and therefore the result follows.

We now show that the critical point x* is strictly minimal and ¥ = G/H has the appropriate
form. As in the generalized clover example, this amounts to showing that there are no other
zeros of any Hj on the closed polydisk defined by x*. First note that for each Hy, if there is a
zero X then it is a pole of 1/Hy, and since 1/H; has nonnegative coefficients, [22, section (2.1)],
the coordinatewise modulus x* = (|x1], ..., |x,|, |x.|) is also a pole, so that|x| is a zero of H;.

We first consider the case k > 2. Suppose that 0 < x; < x for all 7, that 0 < x, < x. Then
if —xk + T, (1 — x¥) = 0, then using the fact that —x} + H, (1 —xf) = 0 we obtain

e | (EEE | ({5
i=1 i=1

However x! — x* > 0 because 0 < x, < x! < 1, whereas

[T0 - <TI0 -,

n n
i=1 i=1
yielding a contradiction. Finally when k = 1 a similar argument holds: there is no other
solution (x # x*) of H;(x) = 0 inside the polydisk. To see this, assume to the contrary that

—x.+ [[-,(1 —x) =0 and —x} + []i_, (1 — x;') = 0. This leads to two possibilities:

e x. —x; =0, which yields []}_,(1 —x) =[],(1 —x;) and thus the contradiction
X = x*;

e x. —x; < 0, which implies [T, (1 —x}) — [Ti_, (1 — x;) > 0, again yielding a contra-
diction because x; < x; for all 7.

Hence the asymptotic approximation and the entropy of the general case can be obtained from
equation (20),

Gx*,(l",‘_,l L
a4y ~ (27(T),,/)2r€ n(r+2)i1—llri r z(ri+rc)(,+L+i), (39)
1 1
Sy = log G(x Z —ri— = logr,—i—(r,-—&—rc—i—E)log(r,-—i—rc) —n(rc—i—i)logrc,

where G(x*) = 175, H(x{', x50, ..., x xx) L,

n’c

4.2.1. Phase structure. We start with the simplest example of the class, which is affine
C3/Z,, see figure 7. As we discussed in the paragraph after equation (9) in section 2, the
phase transition hyper-surface in this example is 1 — x; — x, — x3 + x1x, = 0 and the phase
diagram is depicted in figure 8. In the general case, the phase diagram of this class is a hyper-

surface obtained from H(xy, ..., X, x.) = 0 which implies x. = Z;ZO(—l)fej(xl, <0 Xp ). From
equation (39) and equation (32), the critical relation on the phase transition hyper-surface, up
to leading order, for the affine C3 /A,,, yields

14
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Figure 8. Phase Diagram of C3/Z,. The filled volume which is the convergent domain
is separated from the divergent domain by the phase transition hyper-surface.

n

Sy = Z(— rilogr; + (ri—l—rc)log(r,-—i-rc)) —nr.logr, = Zr,wﬁi* +re- B,
i=1

i=1

oS*

3 L =logr; —log(ri +r.) = —logx = B}, fori =1,2,...,n, (40)
i

aS: - .

8r: =nlogr, — E log(ri +rc) = —logx = 3.

i=1
Notice that critical points obtained as above are the same as the solutions of critical equa-
tions equation (12), presented in equation (32).

5. Conclusions and forthcoming research

In this work we adapted recent results in the multivariate asymptotic analysis of generat-
ing functions to study the asymptotic counting of operators in the chiral ring of free N =1
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quiver gauge theories. We obtained an explicit asymptotic formula for two infinite classes of
examples. A next step is to consider other infinite classes of examples, e.g. L>, Y7 Sasaki—
Einstein spaces and three-dimensional ADE-type orbifolds such as C3/Z,. A general formula
for the asymptotics for general quivers, expressed in terms of the weighted adjacency matrix,
would be an interesting goal.

In this work, we only considered the first (leading) asymptotic term in the asymptotic
series. The current results in analytic combinatorics for the asymptotic counting of multivari-
ate generating functions [28] allow for the computation of sub-leading contributions in the
asymptotics. It would be interesting to apply these results to obtain the higher order asymptot-
ics in quiver gauge theories.

In this work, the matter content of the gauge theory is restricted to matter in bifundamental
representations. One can also consider fundamental matter and quiver gauge theories with
flavours. The generating functions for counting gauge invariant operators in quivers with fla-
vours are obtained in [22]. Thus it should be straightforward to generalize the method of this
work to quivers with flavours and obtain the asymptotic counting of chiral operators in these
theories.

In this paper, we considered the zero super-potential limit and exploited the availability of
general formula for the generating functions of the multi-trace chiral operators. However, as
we mentioned, the W # 0 sector of the quiver gauge theories and the counting of the chiral
operators have been studied vastly. Generating function technology has been introduced and
applied successfully to very general classes of quivers [2, 9, 12]. The multivariate asymptotic
analysis employed here would be useful in obtaining results for asymptotics of counting in
general quiver gauge theories.

The counting of states for the bi-clover quiver (section 4) is the 2-matrix counting which
has been recently discussed in the context of small black holes in AdS/CFT [5, 6]. We expect
that the consideration of higher order asymptotics will be relevant to this discussion. It would
also be interesting to explore the more general quiver asymptotics in the context of gauge/
gravity duality.
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Appendix. Hessian determinant of generalized clover quiver

Setn = d — 1, and consider the n X n matrix $),
Ny = xixj + X0, (A.1)

which is a rescaled version of H. The indices i, take values from 1 to n. We have
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det $H = €., 1i, 92, -+ = i, - (A.2)

Define the matrix X := diag(x;, Xz, - - - , Xn), or equivalently X;; = x;6;;. Using the expression
(A.1) in (A.2), we encounter terms where all the $) factors contribute the second term, linear
in x. The contribution of these terms in det § is

€iyrriy X101, X204, -+ XnOpi, = det X. (A.3)

Next there are terms where we pick, from one of the $’s in (A.2) the term quadratic in x’s,
and from the rest the linear term. Taking the distinguished $) to be the first one, we find the
contribution of such a term in det $), as

€iy.eeiyX1Xiy X202i, X3034, * - X 0pi,
= (det Z{)x,-l €i12,-.n
= (det X)x;. (A4)

Summing over all the possible choices of the $) factor contributing the quadratic term in x’s,
we find their contributions to det £, as

(det X)(trX). (A.5)

We also have to consider terms where we pick quadratic terms from two or more $’s. An
example of the case with two such quadratic terms, picked from the first two $) factors in
(A.2),1s

€iy-i (X1, ) (X223, ) (X36313 ) (Xa 0y ) o (X0 O, ) - (A.6)

This vanishes due to the symmetry of the x’s and the antisymmetry of the € under relabelling
of i; <+ ip. This symmetry argument holds whenever we pick two or more quadratic terms.
We therefore conclude that

det $ = (det X)(1 + trX). (A7)

It is now straightforward to obtain equation (23).
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