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Abstract
Mean field theory has been successfully used to analyze deep neural networks
(DNN) in the infinite size limit. Given the finite size of realistic DNN, we utilize
the large deviation theory and path integral analysis to study the deviation of
functions represented by DNN from their typical mean field solutions. The
parameter perturbations investigated include weight sparsification (dilution)
and binarization, which are commonly used in model simplification, for both
ReLU and sign activation functions. We find that random networks with ReLU
activation are more robust to parameter perturbations with respect to their
counterparts with sign activation, which arguably is reflected in the simplicity
of the functions they generate.

Keywords: large deviation theory, path integral, deep neural networks,
function sensitivity
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1. Introduction

Learning machines realized by deep neural networks (DNN) have achieved impressive success
in performing various machine learning tasks, such as speech recognition, image classification
and natural language processing [1]. While DNN typically have numerous parameters and
their training comes at a high computational cost, their applications have been extended also
to include devices with limited memory or computational resources, such as mobile devices,
thanks to compressed networks and reduced parameter precision [2]. Most supervised learn-
ing scenarios are of DNN functions representing some input—output mapping, on the basis
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of input—output example patterns. DNN parameter estimation (training) aims at obtaining a
network that approximates well the underlying mapping. Despite their profound engineering
success, a comprehensive understanding of the intrinsic working mechanism [3, 4] and the
generalization ability [5—8] of DNN are still lacking. The difficulty in analyzing DNN is due
to the recursive nonlinear mapping between layers they implement and the coupling to data
and learning dynamics.

A recent line of research utilizes the mean field theory in statistical physics to investigate
various DNN characteristics, such as expressive power [9], Gaussian process-like behaviors of
wide DNN [10-12], dynamical stability in layer propagation and its impact on weight initiali-
zation [13-15] and function similarity and entropy in the function space [16]. By assuming
large layer-width and random weights, such techniques harness the specific type of nonlinear-
ity used and many degrees of freedom to provide valuable analytical insights. The Gaussian
process perspectives of infinitely wide DNN also facilitates the analysis of training dynamics
and generalization by employing established kernel methods [17, 18].

To study the entropy of functions realized by DNN [16], we adopted similar assumptions
but employed the generating functional analysis [19, 20], which is more general and can be
applied to sparse and weight-correlated networks. The analysis of function error incurred by
weight perturbations exhibits an exponential growth in error for DNN with sign activation
functions, while networks with ReLU activation function are more robust to perturbations. We
have also found that ReLU activation induces correlations among variables in random con-
volution networks [16]. The robustness of random networks with ReLLU activation is related
to the simplicity of the functions they compute [21, 22], which may converge to a constant
function in the large depth and width limit [15], although, in principle, they admit high capac-
ity with arbitrary weights. However, DNN used in practice are of finite size and finite depth,
therefore it is essential to analyze the deviation of finite-size systems with respect to the typi-
cal mean field behavior, and characterize its rate of convergence with increasing size. An
example of a recent study along these lines [23] investigates the deviation in performance of
finite size neural networks with a single hidden layer from the Gaussian process behavior.

In this work, we adopt the large deviation approach and the path integral formalism of
[16] to derive the deviation of function sensitivity of finite systems from their infinite system
counterparts, which is applicable to a range of DNN structures. We analyze the effect of
sparsifying (diluting) and binarizing DNN weights, commonly used for model simplification
[24-27]. Although the dependence on data and training are not considered, the analysis of
random DNN provides valuable insights and baseline comparisons. We will also investigate
the sensitivity of functions to input perturbation [9, 13], which is related to function complex-
ity and generalization [21, 22, 28, 29]. The paper is organized as follows. In sections 2 and 3,
we introduce the random DNN model and review the basic results of generating functional
analysis,respectively. In sections 4 and 5, we derive the large deviation of function sensitivity
to weight and input perturbations, respectively, based on the path integral formalism. Finally,
in section 6, we discuss the results and their implications.

2. The model

Following [16], we consider two coupled fully-connected DNN. One of them serves as the
reference function under consideration, and the other as its perturbed counterpart, either in
the weights or input variables. As shown in figure 1, each network consists of L + 1 layer;

layer / has N’ neurons, which can be layer dependent. The reference network is parameterized
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Figure 1. The reference and perturbed fully-connected DNN, parameterized by {w’}
(black edges) and {w'} (blue edges), respectively. Each layer / has N' = /N nodes.

by the weight variables' {W' L |, while the perturbed network is parameterized with {w'}£_.
Similarly, variables with a circumflex are associated with the reference network. In the follow-
ing, w' represents the N’ x N'~! weight matrix at layer /, and w! represents the N'-! dimen-
sional weight vector of the ith perceptron at layer /. Denoting the input dimension as N = N°,
we assume the sizes of all layers scale linearly with N as N = o/N.

A deterministic feed-forward network is defined by the recursive mapping V 1 </ < L

Nl—l

1
hl = Zwlusl.il (1)
i — ij >
VN1 = J
" ®

where {wf]} are the weights, /! and s! are pre- and post-activation field and variable, respec-
tively, and ¢'(-) is the activation/transfer function at layer L. The scaling factor of 1/v/N/~!
in equation (1) is introduced for normalization. We primarily focus on networks with either
sign [¢s(x) = sgn(x)] or ReLU [¢,(x) = max(x, 0)] activation functions in the hidden layers,
and consider binary input and output variables s?,s* € {1, —1} by applying the sign activa-
tion function at the output layer s* = sgn(hF) for a fair comparison across architectures. The
resulting feed-forward DNN implements a Boolean mapping f : {1, —1}1\’0 — {1, —1}NL,
where each output node s* (so) computes a Boolean function. In the following, we call the
two architectures sign-DNN and relu-DNN respectively, keeping in mind that sign activation
function is always applied in the output layer.

To facilitate a path integral calculation, we consider stochastic dynamics between succes-
sive layers. For the layer with sign activation function, the activation s' is disturbed by thermal
noise according to the following probability

! The usual bias variables are omitted for simplicity, but it can be easily accommodated within the current frame-
work.
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Figure 2. A geometric representation of perturbations on the parameter vector Wf

defined in equation (6), resulting in a rotated vector w' at an angle §' = sin~!yl.

exp (Bsthl(w',s'=1))
2 cosh (Bhi(w!,s'=1))’

P(sini(w's'")) = 3)

while for relu activation function, sf is disturbed by additive Gaussian noise

P ) =/ 2 exp{ - 5]t~ ¢<hé<whs“>)r}- @)

In the limit 5 — oo, we recover the deterministic model. The evolution of the two systems
follows the joint distribution

L N

P({s}s}) = PG%,s") [T TT PGHRO. 8™ ) P (s’ s'—1)). ®)

I=1 i=1
To probe the difference between the functions implemented by the two networks, we feed

0
in the same single input s° = §° to the two systems such that P(s°,5°) = P(s°) [T, dp 0, and

study the resulting output difference due to parameter perturbation. For continuous weight
variables, one useful choice for the weight perturbation is

wf.j =4/1— (77’)2171/5]- + nléwfj, 6)

which ensures that w has the same variance of % w as long as 5w’ follows the same dlstnbu-
tion of WU, and effectlvely rotates the high dlmensmnal vector w; by an angle @' = sin~' 7/ as
demonstrated schematically in figure 2.

In probing the sensitivity of a function due to input perturbations, the weights of two net-
works are kept the same w = w and a fixed fraction of input variables are flipped randomly.
The resulting output difference of the two systems reflects the sensitivity and complexity of
the underlying DNN.
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3. Generating functional analysis for typical behavior
Viewing the weights {Wﬁj, wf]} as quenched random variables, a generating functional analysis
has been proposed [16] to derive the typical behavior of DNN. It starts with computing the
disorder-averaged generating functional

T(1, 1) = Eg B exp < Py (s + fo)> 7)
Li
where the average [E is taken with respect to the joint probability equation (5). Assume the
layer widths are the same N = N for all .. Upon averaging over the disorder w, w, the gener-
ating functional can be expressed through a set of macroscopic order parameters such as the
overlaps ¢’ = 1/N'}".(3!s!) and magnetizations 7' = 1/N'>",(s0),m' = 1/N' Y (s!) as

T = /{dqu. ..}exp [NU(q.Q,...)] (8)

where @ is the conjugate variable of the order parameter ¢q. In the large system size limit
N — 0o, the generating functional T is dominated by the saddle point of the potential func-
tion ¥(q, Q, .. .). It gives rise to typical overlaps that dominate in probability, which facilitates
analytical studies of random DNN.

Assume the weight perturbation follows the form of equation (6), and both weight and per-
turbation are independent of each other and follow a Gaussian distribution ij, 5wfj ~ N(0,02).
It is found that for the layer with sign activation function in the limit 8 — oo, the overlap
evolves as [16]

2
q = 7Tsm—l( 1(nl)2q’1>, 1<I<L 9)
Similarly, for ReLU activation function in the deterministic limit, if the weight standard devia-
tion is chosen as o,, = v/2, the magnitude of the activations remains stable and the overlap
evolves as

== ey
+/1 = (1)2g"™! B +sin”! ( 1 - (n’)qu”) } } (10)

while the output layer L follows equation (9) due to the use of the sign activation function. The
restriction s° = §° leads to ¢° = 1 in both cases.

4. Large deviations in parameter sensitivity of functions

The generating functional analysis above gives typical behaviors of random DNN in the limit
N — oo. However, practical DNN always have finite sizes. Therefore, it is worthwhile to
understand the deviation to the most probable behaviors under finite N. In the following, we
adopt the large deviation analysis to tackle this problem. An introduction of large deviation
theory and its application to statistical mechanics can be found in [30]. In essence, a continu-
ous observable O in a system of size N (assumed to be large) is said to satisfy the large devia-
tion principle if the probability of finding O follows
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Proby (O € [x,x + dx]) ~ e MWy, (11)

where I(x) is the rate function of the observable. It implies that the probability density of O
scales as Py(O = x) ~ e~M®_which is concentrated at the minimum of the rate function
x* = argmin /(x) in large systems and the profile of I(x) quantifies the fluctuation of the
observable.

In this work the overlap of the output layer g~ := 1/N* 3" 5%s* is at the focus of our study.
The path integral techniques adopted in the generatlng functlonal framework [16] can be
adapted to tackle the large deviation analysis. We start with computing the probability density?

P(qL)_<5< SNTE >>

= E;,, Trss P(5%) Hésgj? HP(§I|WI,§1_1)P(sl|wl,sl h (NL Zs, st—gq )
=1 =1
’ (12)
where the operation Tr; s is understood as an integration or summation depending on the nature
of variables. The input distribution follows P(s°) = [], P(s?) = H,‘(%és?,l + %(53?’,1). To deal
with the non-linearity of the pre-activation fields in the conditional probability, we introduce
auxiliary fields {&/,x!} through the integral representation of delta-function

1:/ A} i (= 5, ‘)’ 1:/°° dhzfdxfe”f(”f T ) (13)

7 7

which allows us to express the quenched random variables w and w linearly in the
exponents, leading to

L N
P(QL) = EW,WTrf,sé ( —q ) HP (5 0 " /HH hldxl dhldxl
=1 i=1

L N
o Zz<logp i) + log P(s lh’)+1xlhl+1.xlhl>

L . N NT!
i
Al alal—1 11]—1
X exp | — g e g (wijxisj + wix;s; ) . (14)

Assuming self-averaging [31] we exchange the order of summation and integration, and first
carry out the average over the disorder variables. Specifically, we consider the weights of the
reference network to be independent and follow a Gaussian distribution w ~ N(0,02) as
before, and three types of perturbations

N
2Here we assume g© = 1/NE Y7 3EsE to be a continuous variable by considering large N-. Instead, one can view

g" as a discrete variable by definition (since the inputs are binary variables), where §(-) should be understood as the
Kronecker delta function.
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(i) rotation of the weight vector ﬁ)f following equation (6);
(ii) sparsification of the weight matrix W by randomly dropping connections with probability

p' and rescaling the remaining weights by 1/4/1 — p' to ensure the same weight strength

1 0, with probability p/,
wij = \%w;, with probability 1 — p, (1)
— Vi
(iii) binarization of weight element y};
Wﬁj = sgn(fvﬁj)aw, (16)

[

where o, is introduced for keeping the variance of wfj the same as wy;.

4.1. Macroscopic order parameters
For perturbation of type (i), the disorder average of the third line of equation (14) yields
RS C o LN BN IC S0 IR
Hexp {_Uvzv [2()65)2]1\,/1 + E(Xf)z;vlij,, +4/1- (Ul)zxfxfjl\';zi,lj . (17)
Li

To decouple equations (14) and (17) over sites we introduce three sets of order parameters by
inserting the identity

P B Y R K\ A Sy
27 /N! ’ 27 /N! ’

dQ'dq’ V'O [¢— 4 5, !
1= ! 4=y 2 A!sl}’ VI#£L,
/ 27 /N! ¢ " 7

(18)

and by expressing the output constraint as

1 Al R dot Nt EREEE V2
i=1

Upon introducing these macroscopic order parameters, equation (17) becomes
[T, exp{—1/2[&}xl] - % - [}, x]] T} with the covariance matrix ¥,
(! "
1= (1 2q" o1 : (20)
The probability density in equation (14) involves N’ identical integration and summation at
each layer /, which can be performed individually [16], yielding

El = O’vzv [
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L L=l 51 aal vl 300,
P(qL) :/ do dv'de* dVidv' dQ'dg
27 /NF - 27 /N! 27 /N! 27t /N!

L—1 pard (i al  svdool ol 1 L:~L L 0 (704 0 1 :00

™ ez,:o N (1Vv +iVv' +iQ'q )+N iQ ¢ e—N (1v‘ +iV+iQ )
1:[ le LT
pis VACZIRM

|: (HL)TZ Iyt

N
Trs’s’P |hl) ( |hl)ei‘71(3’)2iV’(v1)2iQ’31s1:|

\/ 27T |ZL|

where we have integrated out the auxiliary fields {i/,x'} and introduced the field doublet
T:= [, W] T. We further write P(q") as

L L=l 50 al 1y 3.0 40l
P(qL) :/ dQ dV'do' dvidv' dQ'dg o
2m/NE - 27 /N! 2w /N! 27 /N!

NL
TrgL,SLP(&LVAzL)P(sL|hL)eiQL&LSL} , (21)

xp[~N®(Q.q, V.5, V, 0lq"),

(22)
where —N®(Q, ¢, V, 0,V, v|qL) is equal to the logarithm of the integrand in equation (21).
Similar to the analysis in [16], the probability density P(¢") is dominated by the saddle point
(Q*,q*,...) of the potential function ®(...) in the large N limit (N = o!N with o/ as a
constant)

P(q") ~ exp[-N®(Q".q",...|q")], (23)

where I(qF) = ®(Q*,q", . ..|q") is the desired rate function.

While this set-up is based on computing the deviation in function similarity with a single
input ¢g* = 1/N* 3", 55, one may argue that it requires testing on more than one input for
obtaining a robust estimation, e.g.

M Nt

- s &

p=1 i=1

where M is the number of independent patterns used. Assuming that representation of differ-
ent patterns are uncorrelated, we show in appendix C that for small M, the rate function I(G")
is approximately related to the single input case through a simple scaling

1(7") ~ M®(Q*.q",...|7"). (25)

This assumption is valid for sign-DNN but not for relu-DNN. We also confirm this scaling
relation by numerical experiments (see below and in appendix C).

4.2. Unifying three types of weight perturbations

The other two types of perturbations can be treated similarly. For network sparsification (15),
the disorder average of equation (14) has the following form in the large N limit (see appendix
A for details)

.S‘l 1\2 l— 1 Al 1{ 1
Hexp{—U { 5)272;\(,/1) +%( )’ ZA(,, , +ﬁ”7ZN, r H (26)
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which has the same form of equation (17) when p' is replaced by (n)%. Introducing the same
order parameters, we obtain the covariance of the fields h' and A in the form of

S Hi-1 = plg!
1= Ow V1= plg! o1 :

Hence, diluting connections with probability p’ at layer / in a random DNN corresponds to

27)

rotating each of the weight vector Wf by an angle #' = sin~! \/]7 .
Similarly, for network binarization in equation (16), the disorder average of equation (14)
yields (see appendix B for details)

[T DS LS B S & 2 gt
o { o2 o 20 4 Jr B 2= 0 |
Li

(28)
which corresponds to the covariance matrix of the fields h! and A to be in the form
Hl-1 \/Z 4!
=02 r . (29)

2 -1

2 /—1
=L v

Comparing to type (i) perturbation, one finds that binarizing weight elements in arandom DNN
corresponds to rotating each of the weight vectors Wf by a fixed angle #' = cos™! \/% ~ 37°.

This phenomenon has been observed in [32] and is linked to the practical success of binary
DNN. It is argued [32] that 37° is a very small angle in high dimensional spaces where two
randomly sampled vectors are typically orthogonal to each other; therefore weight binariza-
tion approximately preserves the directions of the high dimensional weight vectors, which
contributes to the success of binary DNN.

Therefore, we establish that the three types of perturbations on random DNN can be unified
in the same framework developed in section 4.1.

4.3. Saddle point equations

For networks with a generic activation function, the large deviation potential function ®(. . .)
can be express as

L1
O =—a’[iV°(0° — 1) +iV°(0” - 1) +10°(¢° — 1)] = > o/ (V%' +iV'd' +i0'q)

=1

L (30)
—i0*q" =) a'log / dn'dn' Trg g M (3, s', 1 1),
=1
~ efé(Hl)TzlilHl ~ S aN2 sl (N2 ol L
MI(SJ,SI,]’Z[, hl) — 7P(S,I|hl)P(sl|hl)e—1V ) =ivi(v) —1st’ 1< [ < L, (31)
(2m)2 ()]
CLgINTs—lgL SLAL Ll
MEGE b R ) = e~ 2(H) T H eBsh eBs i
V(2m)2[SL| 2cosh(Bht) 2 cosh(BhL)
(32)

where a® = 1 since N’ = N.
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Setting the derivatives with respect to the conjugate order parameters d®/diV', d® /9iV,
0®/0iQ' to zero yields the saddle point equations

V=0"=1 =1, (33)

g [ iR Teg o (3)° MG o', B R

A\ 2 2
J A dniTeg MG SR W) R R G

L iR Trg g (3! MU (3L s, I )

bl
[ dhldR! Ty g MI(3, s, Bl ht) = s I<ISL (%3)

in which ./\/ll(fv’, sl,izl,h’) bears the meaning of an effective measure [33]. Notice that qL is
an input parameter imposing a nonlinear end point constraint on iQ%, which differs from the
generating functional analysis calculation of typical behaviors [16], where g* is a dynamical
variable and iQ" = 0 at the saddle point.
Setting O® /d¢q’ to zero yields the saddle point equations for the conjugate order parameters

iof

of [ AW dn ey g 58 MUE, o' 1 1)
o=t [ dhdRITrg g MI(3, s, Bl ht)

0! = 1<I<L (36)
Similar relations holds for iV/ and iV’. While the conjugate order parameters {V’, V!, Q'}
are defined on the real axis, they can be extended to the complex plane and evaluated on the
imaginary axis in the saddle point approximation, in which case {iVI ,iV%,iQ'} are real vari-
ables. Other observables can be computed by resorting to the effective measure M’ once the
saddle point is obtained, e.g. the mean activations are given by [33]

it = e, mh = (") (37)

Since the covariance matrix ¥;(¢'~!,...) depends on the order parameters of layer [ — 1,
the effective measure M at layer / depends on the order parameters {g'~",...} of the previous
layer, while it depends on the conjugate order parameters {iQ’, ...} of the current layer. We
then observe that the order parameters {¢', ...} propagate forward in layers, while {iQ, ...}
encoding the randomness leading to the desired deviation propagate backward, which resem-
bles the structure in optimal control problem [34]. Therefore, we solve the saddle point equa-
tions in a forward-backward iteration manner until convergence. Another feature to notice in
equation (36) is the dependence of the saddle point solution on the layer-shape parameters
{a'}, which does not play a role in the mean field solutions where all the conjugate order
parameters {iQ’, ...} vanish [16].

4.4. Explicit solutions for sign and RelLU activation functions

For networks with sign activation function the order parameters satisfy &' = ¢/ = 1, such that
the only meaningful order parameters are {g’, Q'}. The potential function ® can be computed
analytically, taking the form

10
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L
2(0.4/g") = —a"iQ°(¢° — 1) = Y _ aliQ'¢'
=1

L
=2 olleg [COSh(in) - Sinh(in)% sin ™! (/1 - (nl)qufl)},

=1

(38)
while the saddle point equations become
¢ =1, (39)
-1
= —sinh(iQ') + cosh(iQ') 2 sin ™' (/1 N2g=1) CVI<I<L 4o
cosh(iQ') — sinh(iQ') 2 sin™' (/1 — (77) g
0 = 2 sinh(iQ')
i
cosh(iQ') — sinh(iQ') 2 sin™' (/1 H2gi=1)
1= (n])2
() VI<i<L (1)

X b
a’*lw —T— 0l
Note that ¢* in equation (40) is an input parameter.

For networks with ReLU activation function the potential function ® also admits an explicit
expression

(Q,q.V,9,V,0|q") = —a[iV'(8° — 1) +iV°(° — 1) +iQ°(¢" — 1)]
L—1

_ Z Oél(i‘/\/lf)l + ivl,vl 4 lqul) _ iQLqL
=1

‘;0‘ {Mﬁl [IF ( S ( A(z[')) - (g“anl <j?|>>

. ( ( r)) e (5 Cfé)ﬂ}

2 %
cosh(iQ") — sinh(iQ") = tan™! ( L2 )} , (42)
m \/ |EL‘

where Al, B!, C! are 2 x 2 matrices defined as

o 2V g 4, [0 o0 S, [2ivhoo
l 1 [ 1 l 1
A= +LQ’ avt |0 BEE o iy |0 CFE O g o]0 @)

3

— ot log

The saddle point equations also admit a close-form expression accordingly.

5. Large deviations in input sensitivity of functions

In probing the sensitivity of a function to the flipping of input variables, the weights of two
networks considered are taking the same values w = W, which is done by setting ' = 0 in
equation (6). We constrain the input s of the perturbed system to have a pre-defined over-
lap ¢° (or Hamming distance N°(1 — ¢°)/2) with the input §° of the reference system. The

1
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sensitivity of the output overlaps to input perturbations is investigated through the conditional

probability
Lo Pldhq%) <6(N1L ig’LsiL_qL)(S(NlO ig?s?_qo)>
Plqlg’) = P - (44
<5(1\}0 i 80s) — CIO> >
Without loss of generality, we choose a decoupled input distribution
P(E°,s%) = [1, P()P(s?) = IT:(305, + 300 1) (38,01 + 30,0 _1) while the delta function

involving ¢° in equation (44) constrains the systems to have the desired input correlation. The
probability of input overlap P(¢") can be computed as

do°® . T
P(qo) = Try g0 H P(S?)p(so) / 0 elNOQO (qo Ly S?b?)
i

i) 2w /NO

dQO :n0 0 )
= /Wexp {NO(IQ q° + logcosh(iQ ))]

A exp [NO (iQO*q0 + log cosh(iQO*))]

=:exp [ — N®p(i0™*|¢")], (45)
®p(i0°¢°) := —a° (iQOq0 + log cosh(iQO)), (46)
iQ% := —tanh™'(¢°), 47)

where we have made use of the saddle point approximation of P(¢°) in the large N° limit, with
the corresponding potential function defined in equation (46) and the saddle point solution
i0% given in equation (47).

The computation of the joint probability P(g",q°) is analogous to that of P(q") in earlier
sections,

N° L
P(¢",q") = B TrssPE°) [ [ 600 [ PG5 P(s 1w, s')
i=1 =1

dQO dQL iNOQU(lIU—N% Z[A:f-’s?)-&-iNLQL(qL—N]T E/gh[L)
27 /NO 27T/NLe

= /{deq- . }exp[-N®;(Q.q....|q" 4")]. (48)

Oy = —a’[iV0(2° — 1) +iV°(v° — 1) + (1Q°%" + log cosh(iQ%)) ] — iQ"q"
L—1
=3 (V' +iVi' +i0'q") = a'log / dildh! Try g M (8, s 1 ).
=1 I=1
(49)
The saddle point of iQ° satisfies iQ%* = — tanh™! (g°), which coincides with the one of P(¢")
in equation (47). So the conditional distribution satisfies
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Figure 3. Weight sparsification of random DNN. In (a)—(c), we set L = 4 and p' = 1/2;
solid lines correspond to theory while dashed lines with circle markers correspond to
estimation from simulation. The estimation of the rate function from simulations are
obtained by 100000 samples and the corresponding curve has been shifted such that
the minimum is at zero. (a) The rate function ® versus ¢ for sign activation function.
(b) The rate function ® versus ¢" for ReLU activation function. (c) The rate function
1(g%) of output overlap ¢* defined by M patterns; the theoretical results are given by
equation (25), while the simulation results are obtained on systems with N = 64. (d)
Mean field solutions of output overlap g% as a function of system depth L. Inset: ¢k,

versus p' for different depths.

P(q"q") ~ exp [ - N®(Q*.q",...|1¢".4")] =exp [ - N(®] — @
(0.4, lg".4") = —a’[iV°(@° — 1) +i1V°(2° - 1)]

L—1
=) al(iVo +ivi +i
=1

—iQq

L

»)]

L
0'q) - > a'log / dildh'Trg y MU(8!, o', 1 D),
=1

(50)

where the saddle point solution {Q*,¢*, ...} have the same form as those in section 4.3,
except that ¢° = 1 in equation (33) is replaced by the pre-defined value ¢° under investigation.
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6. Results

6.1. Weight sparsification

We first consider the effect of weight perturbation by sparsifying connections as in equa-
tion (15). For a concrete example, we consider DNN with L = 4, uniform layer width o = 1
and disconnection probability p’ = 1/2, for which we compute the large deviation rate func-
tion I1(qg") = ®(Q*,q*, . ..|q") by solving the saddle point equation in section 4.3 and com-
pare it to numerical experiments. For relu-DNN, we always set o,, = V2. The results are
shown in figures 3(a) and (b), which exhibit a perfect match between the theory and simula-
tion. The most probable g*, located at the minimum of ® corresponds to the mean field solu-
tion, where gk . ~ 0.047 for sign-DNN and g% =~ 0.266 for the relu-DNN. However, in finite
systems they have a non-zero probability of admitting a higher value of ¢* due to fluctuations.
We can compute the probability from the rate function by P(g*) = exp(—N®*(¢*))/Z> and
estimate the tail probability of output mismatch. As an example we consider N = 64 and find
that P(q* > 1/2) = 0.055% for sign-DNN and P(¢" > 1/2) ~ 3.8% for relu-DNN, which is
non-negligible especially for ReLU activation®.

In figure 3(c), we also demonstrate that the approximation of rate function /() of output
overlap g, estimated for M patterns by employing equation (25), is accurate for DNN with sign
activation, while the approximation does not hold for deep ReLU networks (see appendix C).
Therefore in sign-DNN, the probability of finding perturbed DNN agreeing on all M patterns
with the reference DNN decays exponentially with M (at least for small M values). This may
not be the case in relu-DNN which requires further exploration in a future study.

In figure 3(d), we compare the mean field output overlaps g% between DNN with sign and
ReL.U activations for different system depths and disconnection probability p’. It is shown
that relu-DNN are more robust to weight sparsification perturbation, as expected; the per-
turbed relu-DNN have residual correlations with the reference networks even after removing
90% of the weights. The robustness of relu-DNN to weight dilution was also observed and
theoretically analysed in [35]. Finally, we remark that our scenario is different from the practi-
cal methods used to prune networks trained on specific data; in this case particular heuristic
rules have been developed to disconnect weights instead of the random removal used here.
The success of weight pruning in practice hightlights the weight-redundancy in real trained
networks [24, 35] but may also be influenced by properties of the data used and training meth-
ods. This behaviour is absent in random networks with random data, as indicated in the inset
of figure 3(d), where even a small dilution probability can deteriorate the overlap. Additional
modelling considerations are needed to address practical scenarios.

6.2. Weight binarization

We then consider the effect of perturbation by binarization of weight variables as in equa-
tion (16). Also here we consider uniform layer width a! = 1. The results shown in figure 4,

3 For finite N, the output overlap is a discrete variable g© € {1,1 — %, 11— %, ...,—1}, so it is convenient to
consider the discretized probability distribution of ¢* as Prob(g") = P(¢")Ag* = exp(—N®*(¢%))/Z; the normal-
ization constant is computed as Z = Y, exp(—N®*(g§)) Ag", where the summation runs over all possible values
of ¢- and Agt = % Although we could not find the saddle point solution of ®(...|g") in the vicinity of ¢* = —1
for relu-DNN (see figure 3(b)), the contribution from that region to the cumulative probability of the overlap is
negligible .

#Notice that such estimation is obtained by saddle point approximation in equation (22) and by keeping the leading
order contribution, which may be slightly biased for small N.
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Figure 4. Weight binarization of random DNN. (a) ® versus ¢" for sign activation
function. (b) ® versus ¢~ for ReLU activation. (c) The rate function I(g") of output
overlap g* defined by M patterns; solid lines are theoretical results while dashed lines
with circle markers are estimated by simulation. (d) Mean field solutions of output
overlap ¢k, as a function of system depth L.

are very similar to the effect of weight sparsification. As pointed out in section 4.2, bina-
rizing weights of random DNN corresponds to rotating the weight vector ﬁ:f- by an angle

0" = cos™! \/g [32], or equivalently, disconnecting weights with a particular probability
pl =1- % The matches between theory and simulation in figures 4(a)—(c) validates the large
deviation-based analysis in both sign and relu-DNN and the scaling relation of equation (25)
in sign-DNN. The relu-DNN are more biased to the regime of positive correlation and more
robust to binarizing perturbation as seen in figure 4(d).

6.3. Sensitivity to input perturbation

We have shown that relu-DNN with random weights are robust to parameter perturbations
such as weight sparsification and weight binarization, which is a desired property for better
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Figure 5. Mean field solutions gL, versus ¢° in the scenario of input perturbation
where w = w. In all architectures, sign activation function is applied at the output
layer. (a) DNN with sign activation functions and uncorrelated random weights. (b)
DNN with ReLU activation at the hidden layers, with uncorrelated random weights,
and sign activation at the output layer. (c) Relu-DNN with positive weight correlation
¢ =2/(3N). (d) Relu-DNN with negative weight correlation ¢ = —2/(3N).

generalization. On the other hand, such network ensembles typically represent simple func-
tions as studied in [21, 22]. The simplicity of the functions generated is one reason accounting
for the observed robustness to parameter perturbation.

To probe the function complexity, we study the function sensitivity under input perturba-
tion while keeping w = w [28]. Flipping n input variables corresponds to the input overlap
P =1- % In figures 5(a) and (b) we depict the overlap g%, of the final output as a func-
tion of input overlap ¢° (keeping in mind that we always apply the sign activation in the
output layer). While the outputs become more de-correlated in deeper layers of sign-DNN,
the relu-DNN induce correlation at deeper layers. Therefore, random relu-DNN tend to forget
the input structure at deeper layers, generating increasingly simpler functions that are robust
to parameter perturbation. This phenomenon has been noticed in the Gaussian process-like
analysis of DNN [10-12].
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Figure 6. Large deviation of output similarity g* under input perturbation where
w = w. Sub-figures (c) and (d) are the same as (a) and (b), except for the shifted x-

coordinates. (a) and (b) ® versus ¢ for sign- and relu-DNN, respectively. (c) and (d) ®
versus g= — gk for sign- and relu-DNN, respectively. (¢) The dominant trajectories of
overlap {¢'} leading to particular deviation in sign-DNN. (f) The dominant trajectories
of correlation coefficient {p'} leadifig to particular deviation in relu-DNN.
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In [16], we investigated the effect of weight correlation in the form of
P(Wh) = exp(—%(ﬁ)ﬁ)TA_'wg/ (2m)N'A|, with A = 02 (I — ¢J) where I is the identity
matrix and J the all-one matrix. We found that DNN with ReL.U activation functions and nega-
tive weight correlation ¢ < 0 are more sensitive to parameter perturbation. Here we examine
the sensitivity of relu-DNN to input perturbation by employing the same results developed in
[16]. In figures 5 (c) and (d), we depict the mean field output overlap gL as a function of input
overlap ¢°. It is observed that negative weight correlation corresponds to a higher sensitivity to
input perturbation, indicating that the relu-DNN with negatively correlated weights generate
more complex functions than those with random or positively correlated weights. We con-
jecture that negative weight correlation develops in very deep ReLU networks when they are
trained to performed complex task where a high expressive power is needed, a phenomenon
that has been observed in [36].

In figure 6, we further investigate deviations from the typical behaviors in the presence
of input perturbations for the specific example with L = 4, o/ = 1. The rate functions ®(g")
depicted in figures 6(a) and (b) dictate the rate of convergence to the typical behaviors with
increasing N by the large deviation principle, for both sign and ReLU activations, respectively.
In figure 6(c), we observe that the rate functions have similar trends in the vicinity of the mean
field solution g% for different levels of input perturbation (corresponding to different ¢°) in
sign-DNN, while they are more distinctive in relu-DNN as seen in figure 6(d). In relu-DNN,
smaller input perturbation (larger ¢°) leads to smaller variance of g* around ¢ ;. The rate func-
tion of relu-DNN is also more asymmetric around g% ;, suggesting that large deviations will be
more often observed below gL than above it. This indicates that random relu-DNN of finite
size may produce functions that are slightly more complex than what would be expected by
the mean field solutions, which remains to be verified.

We also examine the dominant trajectories across layers leading to particular deviations by
monitoring the correlations of activations between the two systems across layers. The relevant
quantity is the correlation coefficient

1 g — ilm!

p= VT — ()2 /ol = (m))?’
where the mean activations 72 and m' are computed by equation (37). We find that sign-DNN
satisfy ! = m' = 0,0/ = v/ = 1, such that p' = ¢’ in this case. The results are shown in fig-
ures 6(e) and (f), which suggest that the deviations of ¢" from the typical value g% are mainly

contributed by the deviations at later layers.
Lastly, we investigate the effect of DNN architecture on the deviation. In particular, we con-

(S1)

sider a single bottleneck layer at a particular hidden layer I (0 < I’ < L) with of = % while
all other layers satisfy o/ = 1,VI # I'. Placing the bottleneck at later layer introduces a higher
variability of output overlap ¢* by observing smaller values of the rate function in figure 7; this
effect is more prominent in sign-DNN, while it is much less noticeable in relu-DNN.
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Figure 7. Effect of a single bottleneck layer on the rate function in the scenario of input
perturbation. The bottleneck layer // has width parameter of = % while all other layers
have o = 1. (a) Sign-DNN. (b) relu-DNN.

7. Discussion

By utilizing the large deviation theory coupled with the path integral analysis, we derive the
sensitivity of finite size random DNN under parameter and input perturbations. Random DNN
with sign or ReLU activation function are shown to satisfy the large deviation principle, where
the rate functions govern an exponential decay of the deviation to the mean field behaviors as
the size of the system increases. We also investigate the effects of weight sparsification and
binarization of random DNN, and uncover their equivalence to rotation of weight vector in
high dimension. Random DNN with ReLU activation function are found to be robust to these
parameter perturbations, which is caused by the low complexity of the corresponding function
mappings. Random initializing the weights of ReLU DNN places a prior for simple functions,
while they have the capacity to compute more complex functions with specifically trained
weights. The next important question is how the networks adapt to perform complex tasks by
the training processes.
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Appendix A. Disorder average for weight sparsification

For network sparsification (15), the disorder average in equation (14) can be computed as
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where we have made use of the large N’ approximation.

Appendix B. Disorder average for weight binarization

For weight binarization in (16), the disorder average in equation (14) can be computed as
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Figure C1. The rate function I(g*) of output overlap g~ defined for M patterns and
DNN with different activation functions and system depths, in the scenario of weight
sparsification with disconnection probability p’= 1/2. Solid lines correspond to
theoretical results and dashed lines with circle markers correspond to estimation from
simulation.

where the large N’ approximation has been employed.

Appendix C. Large deviation in the multiple-pattern scenario

Consider function similarity estimated for multiple patterns

L1 & 1
~L . Lo Lo\ . & L.y
=2 (e o) =i 2

pn=1 i=1 p=1 (C 1)
where S"iL‘“ (§O’“ ) is the ith output of the reference network with the pth input §%# drawn indepen-
dently and identically from the input distribution P(s). In the small fluctuation regime, where
each g™ is close to the mean field solution g%, we have I(g5*) =~ 1/21" (¢%;) (¢"* — ¢&;)?

(both I(g%;) and I'(gk;) vanish [30]), i.e. P(¢"*) can be approximated by a Gaussian density

N
P(g"") ~ exp ( - EIN((]ﬁlf) (¢ — anf)2>’ (€2

where the corresponding variance is 1/(NI”(gk;)). Since the M inputs are independent, we
also assume the outputs are also approximately independent (which holds in sign-DNN but
does not necessary for relu-DNN since ReLU non-linearity can induce correlations among
variables), such that the variance of g~ is 1/(MNI" (¢L)). Therefore, in the vicinity of g% we
have
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. MN |, i
P(g") ~ exp ( - (ghe) (" — qunf)2>, (C3)

implying that the corresponding rate function differs from the one with single pattern by a
factor of M.
More formally, one can directly compute the probability density P(g") as

P = <6(M}VL ot - q)>
i

1 . i dhb “dxl AR
= Ew,le'g,s5 (W %l: sf”“siL’p‘ ) H P(s0 M)6 0# A(lu / H o

.l

xexp [ <log PSP |Rb") + log P(s™[R) 4 ixhH b + ixf’“hﬁ’”)
| o Li

ll,u.llp llp,ll,u
X exp Z\mz(w I s ) . (C.4)

Since the weights {WU, u} are shared among the M patterns, average over these variables on
the last line of equation (C.4) leads to coupling between patterns on the pre-activation fields

2 7Al}tAlu Al lul 1,v llu Lv 1 llyl 1Lv
Hexp UZ[ i lNll TN T 2.5 TS
J

l - v
1_( )xluxfuNl : sjl lus]l 1, ] ) (C.S)
J

By introducing the following overlap matrices as macroscopic order parameters

ql,uu Alﬂ S,Jl usjl 1/’ ?A]l,uu _ ]\lﬂ gjl usjl V, L NZ Z Sl o lu

! ! (C.6)

Equation (C.4) can be factorized over sites as before. However, we have O(LM?) order param-

eters here, while there are only O(L) order parameters in the single pattern case. To further

simplify the calculation, we assume a symmetric structure of the cross-pattern overlaps at the

saddle point ¢ = ¢"1§,,, + ¢"*+(1 — §,,,,), where g"ll, g"* are the diagonal and off-diagonal

matrix elements respectively. Under this assumption, one can in principle evaluate the integral
in (C.4), but the resulting calculation becomes rather involved.

Alternatively, since the M input patterns are independent, we expect the diagonal ele-

ments of the matrix g“*¥ to be larger than the off-diagonal elements (sum of correlated

variables versus sum of random variables). In particular, for sign activation we expect
¢~ 0(1), 4" ~ O( \/}\7) since g"* involves a summation over weakly correlated posi-
tive and negative numbers. We therefore approximate the summation » uv[' ..] in the expo-
nential of equation (C.5) by >_,_,[...], which yields MN' un-coupled identical integrals
at each layer N'. It eventually leads to the rate function of multiple-pattern overlap g~ as
1(GF) ~ M®(Q*,q*, . ..|G"), where ®(Q*,q*, .. .|q") is the rate function of the single-pattern
overlap ¢". While the off-diagonal elements of g“*¥ have smaller values, there are more of
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these terms (M (M — 1) off-diagonal terms compared to M diagonal terms in the summation
>l - - in the exponential of equation (C.5)), so we expect the above approximation to hold

only for small M. The above argument may fail for ReLU activation, since :v]lf” , sjl-’“ are always

positive, and therefore g+ ~ O(1).

In figure C1, we compare the approximate theoretical results 1(g~) ~ M®(Q*,q*, . ..|g")
to numerical simulations in the scenario of weight sparsification with disconnection probabil-
ity p' = 1/2. We observe a good match between the two approaches for sign-DNN, validating
the de-correlation assumption of M patterns. For relu-DNN, the theory gives a good prediction
on shallow networks with L = 2 but deteriorates for deeper networks; it suggests the impor-
tance of cross-pattern order parameters ¢ in this case, whose detailed treatment is beyond
the scope of this work.
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