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Abstract
The large N generating functions for the counting of chiral operators in 
N = 1, four-dimensional quiver gauge theories have previously been obtained 
in terms of the weighted adjacency matrix of the quiver diagram. We introduce 
the methods of multi-variate asymptotic analysis to study this counting in the 
limit of large charges. We describe a Hagedorn phase transition associated 
with the asymptotics, which refines and generalizes known results on the 
2-matrix harmonic oscillator. Explicit results are obtained for two infinite 
classes of quiver theories, namely the generalized clover quivers and affine 
C3/Ân orbifold quivers.

Keywords: quiver gauge theory, asymptotic analysis, Hagedorn phase 
transition

(Some figures may appear in colour only in the online journal)

1.  Introduction

The Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence gives an equiva-
lence between four dimensional gauge theories and ten dimensional string theories [21]. 
Generalizations of the correspondence involve four dimensional quiver gauge theories [11] 
and a six-dimensional non-compact Calabi–Yau (CY) space in the transverse directions. The 
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dictionary between N = 1 four-dimensional quiver gauge theories and the Calabi–Yau geom-
etry has been developed, in the case of toric CY [15], using brane tilings [14, 17, 19].

Chiral gauge invariant operators, which are annihilated by supercharges of one chirality, 
play a central role in identifying the CY space for a given quiver gauge theory. These operators 
form a chiral ring and their expectation values are independent of the positions of insertion of 
the operators [7].

The combinatorics of the chiral ring at non-zero super-potential has been studied using 
generating functions and Hilbert series in the plethystic program [2, 12, 18]. The asymptotics 
of the counting formulae have also been studied [2, 9, 12, 20]. These studies have primarily 
used one-variable methods appropriate for special cases of the asymptotics, although a few 
results in the multi-variable case are also available [9, 20].

The holographic duals of free scalar field theories have been conjectured to be higher spin 
gravity theories [10, 30]. The chiral rings of free quiver gauge theories provide observables for 
a large class of theories, which can be studied as instances of this type of holography. Some 
special quivers, associated to 2-matrix systems, arise as sectors of N = 4 SYM, and have 
been recently discussed in connection with black holes in the dual of AdS5 × S5 [5, 6]. For 
quivers corresponding to orbifolds of AdS5 × S5, the free limit has a known holographic dual 
as a strongly coupled limit from the gravity side. For the case of conifold, it is known that the 
free UV fixed point theory flows to a known limit of the IR moduli space of conformal theo-
ries, which also includes the semiclassical gravity limit [24, 29]. For general quivers corre
sponding to toric CY spaces, the relation between the free UV fixed points at zero potential to 
the moduli space of IR fixed points is in general not well understood. These IR moduli spaces 
have been studied for example in [3]. The zero coupling quiver gauge theory chiral rings have 
also been discussed in connection with free fermions and generalized oscillators in [4].

General results on the counting of chiral ring operators in the free limit of zero superpo-
tential were obtained in [22, 24]. The generating function for chiral operators in this free limit 
is an infinite product of inverse determinants involving the weighted adjacency matrix of the 
quiver diagram. This weighted adjacency matrix is a function of multiple variables associated 
with the edges of the quiver, and corresponding charges. The asymptotic behaviour of the free 
quiver counting in the limit of large charges naturally requires multi-variate complex analysis. 
In this paper, we will study the asymptotics of these generating functions using the methods of 
multi-variate asymptotics recently developed by Pemantle and Wilson [26, 27]. These meth-
ods allow systematic algorithmic derivation of asymptotics associated to a rational generating 
function in several variables, and apply directly to the generating function of chiral operators.

We find that the asymptotic counting of the chiral operators for any free quiver gauge 
theory is given by a compact general formula (20). To make this general formula more explicit 
for different quivers requires, at present, symbolic computer tools. For two infinite classes of 
examples, we analytically derive the explicit asymptotic results. These two classes are the 
generalized clover quivers and the affine C3/Ân orbifold quivers. These results are the asymp-
totic formulas (24) and (39).

The rest of the paper is organized as follows. In section 2, we define a thermodynamics of 
the chiral operators in a free quiver gauge theory, based on the counting problem of the chiral 
operators. We discuss associated phase transitions and a generalized Hagedorn hyper-surface 
related to the asymptotic analysis. In section 3, we present an adapted version of multivariate 
asymptotic techniques for our quiver gauge theory problem. In section 4, we apply the devel-
oped method to two (infinite) classes of examples and obtain explicit results for the asymptot-
ics. Section 5 discusses some possible directions for future studies.
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2. Thermodynamics of chiral ring in free CY3 quiver theories

In this section, we will consider generating functions for the counting of chiral ring operators 
in free quiver gauge theories as generalizations of thermal partition functions in AdS/CFT. 
We will define a generalized Hagedorn hyper-surface. We will observe that it controls the 
asymptotics of these generating functions, a point which will be developed in more detail in 
subsequent sections.

In the context of the AdS/CFT correspondence, type IIB string theory on AdS5 × S5 is 
dual to N = 4 Super Yang–Mills (SYM) theory on four dimensional Minkowski space R1,3. 
Conformal field theories have a symmetry of scaling of the space-time coordinates. Their 
quantum states are characterized by a scaling dimension, which is the eigenvalue of a scaling 
operator. In the AdS/CFT correspondence, the scaling operator of the CFT corresponds to the 
Hamiltonian for global time translations in AdS [31]. The eigenvalues of this Hamiltonian are 
the energies of quantum states obtained from the quantum theory of gravity in Anti-de-Sitter 
space.

For free CFTs in four space-time dimensions, the scaling dimension for any scalar field is 
1. For a composite field (also called composite operator), which is a monomial function of 
the elementary scalar fields, the scaling dimension is the number of constituent scalar fields.

The thermal partition function of the AdS theory is a function of β, the inverse temperature, 
given by

F(β) = Tr e−βH .� (1)

For a system with a discrete spectrum of energies, as in the case at hand, this is a sum over 
energy eigenvalues

F(β) =
∑

E

a(E) e−βE,� (2)

where a(E) is the number of states of energy E. For a free CFT, the partition function becomes

F(x) =
∑

r

ar xr,� (3)

where x = e−β, ar is the number of composite fields with r constituent elementary scalars 
and r is being summed over the natural numbers. In a case where we have multiple types of 
scalar fields, as in quiver gauge theories, the above partition function can be generalized to a 
multi-variable function

F(x1, · · · , xd) =
∑

r1,··· ,rd

ar1,··· ,rd xr1
1 · · · xrd

d ,� (4)

where xi = e−βi and ar1,··· ,rd is the multiplicity of composite operators with specified num-
bers r1, · · · , rd of the different types of scalar fields. The multivariate generating functions 
(4) are refined versions of the partition function (3). We will refer to ri as charges and the 
variables xi as fugacity factors for each field. Using the vector notation β = (β1, · · · ,βd) and 

r = (r1, · · · , rd), with |r| =
√

r2
1 + · · ·+ r2

d  and r̂ = r
|r|, we define

xr :=
d∏

j=1

xrj
j .� (5)

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401
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We can then write equation (4) as

F(x) =
∑

r

ar xr.� (6)

The 1-variable partition function (3), for systems which have an exponential growth of the 
number of states ar ∼ eαr  in the large r limit, has regions of convergence and divergence meet-
ing at a critical β = α. The partition function converges for β > α and diverges for β < α. 
This type of behaviour occurs in string theory, where it is associated with the Hagedorn phase 
transition [16].

Similarly, in the multi-variable case, assuming that the function F(x1, · · · , xd) has an expo-
nential growth of the multiplicity factor ar1,··· ,rd for large ri, then there is a hyper-surface 
separating convergence and divergence regions for the multi-variable partition function. This 
hyper-surface is given by the equation

1
|r|

log ar = β · r̂ .� (7)

In the quiver examples we will be studying in this paper, there is indeed this type of expo-
nential behaviour and a corresponding hyper-surface. This may be viewed as a generalized 
Hagedorn hyper-surface.

This Hagedorn hyper-surface was studied in the case of a 2-matrix model in [1]. The 
2-matrix model problem is associated with a quiver consisting of a single node and 2-directed 
edges. We consider this model and the generalised Hagedorn hyper-surface for more general 
partition functions associated with quivers [24].

A quiver diagram is a directed graph G = (V , E) with a set V  of nodes and a set E of 
directed edges; self-loops at a node are explicitly allowed. A quiver gauge theory has a product 
gauge group of the form 

∏
a U(Na), where each U(Na) is associated with a node, and matter 

fields in the bi-fundamental representation of the gauge group are associated with the edges. 
The interactions between the matter fields are described by a superpotential W which is a 
gauge-invariant polynomial in the matter fields. In our study, we focus on the zero superpo-
tential case W  =  0.

The observables of quiver gauge theories are gauge invariant operators and their correla-
tion functions. An interesting class of observables is formed by chiral operators, which form a 
ring, called the chiral ring. For the definition and properties of the chiral ring, see for example 
[7, 18]. The space of chiral operators in the zero-superpotential limit is typically much larger 
than that at non-zero superpotential.

The generating function for the chiral operators in the large N limit in an arbitrary free 
(with zero superpotential W  =  0) quiver gauge theory was derived in [22–24] and is given by

F(x) =
∑

r

arxr =

∞∏
i=1

det(I− X(xi))−1,� (8)

where x = (x1, ..., xd) is the fugacity factor, r = (r1, ..., rd) is the charge associated with 
the edges, X(x) = X(x1, · · · , xd) is the weighted adjacency matrix of the quiver and 
X(xi) = X(xi

1, · · · , xi
d). The multivariate generating function (8) is an example of equation (6), 

i.e. a refined version of the partition function (3). The degeneracy ar  is the number of chiral 
operators with charge vector r in the chiral ring of the free quiver gauge theory. In this paper, 
we will be interested in the asymptotic behaviour of ar  for large (r1, r2, · · · , rd).

In order to study the asymptotics, with the methods of [25–27], it will be useful to write F 
as a ratio

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401
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F(x) =
∞∏

i=1

det(I− X(xi))−1 =
G(x)
H(x)

,

where

H(x) = det(I− X(x)), G(x) =
∞∏

i=2

det(I− X(xi))−1.� (9)

In fact, we observe that, with the parameterization x = exp (−β), F(x) is convergent in the 
domain H(x) � 0 for small enough (and positive) xi  >  0 for all i . The boundary between 
the convergence and divergence domains is the phase transition hyper-surface, characterized 
by H(x) = 0. We will see some examples of this in section 4. The asymptotic regime of the 
generating function is obtained by approaching the H  =  0 hyper-surface inside the domain 
of convergence. Thus this hyper-surface controls the phase structure of the theory and also 
determines the leading asymptotic behavior of ar . The asymptotic analysis will be developed 
in sections 3 and 4.

2.1.  Entropy

The logarithm of the degeneracy ar  is the thermodynamic entropy Sr := log ar. For conve-
nience, sometimes we consider the leading term of the entropy, which we denote by S∗

r .
Following the general result (7), in the chiral ring of the free quiver gauge theories, the 

Hagedorn-type transition can be seen as a result of the competition between the leading term 
of the entropy S∗

r  obtained from the logarithm of the multiplicity and the temperature term 
−β · r in the generating function (8). The generalized Hagedorn hyper-surface is given by

S∗
r − β · r = 0.� (10)

Using equation (10), the critical couplings can be simply obtained as βi = ∂iS∗
r . We will see 

explicit equations for this hyper-surface in some classes of examples in section 4.

3.  Method of asymptotic analysis

In this part we adopt a novel technique of asymptotic analysis of the multivariate generating 
functions, and apply it to the counting problem for the corresponding quiver gauge theories. 
First, we review some known material from the asymptotic analysis of multivariate generating 
functions and then in the second part, we present an ongoing development on the evaluation 
of certain Hessian determinants specified at some critical points. In the third part, the phase 
structure of the quiver theories is explained and the relations between the entropy and critical 
couplings are discussed.

3.1.  Multivariate asymptotic counting

In this section, we answer the question of asymptotic counting for the multivariate generating 
functions that appear in the chiral ring of the quiver gauge theories. We will not review the 
details of the proofs from multivariate asymptotic analysis in this article and only present the 
main result in the following. For a comprehensive presentation of such analysis see [25–27].

We now briefly summarize the general results for asymptotics of multivariate generating 
functions obtained by Pemantle and Wilson [26], applied to our situation of interest. In the 
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present paper, we encounter generating functions that only require the smooth point analysis 
of [26]. We present an adapted and extended version of these results, in four steps suitable for 
quiver gauge theories. In the next section we apply these results to some infinite classes of 
examples of quivers.

The basic steps of the analysis of [26] are as follows.

	 (i)	�We consider a generating function in d variables x = (x1, ..., xd),

F(x) =
G(x)
H(x)� (11)

		 where G and H are holomorphic in some neighbourhood of the origin, H(0) �= 0, and all 
coefficients are nonnegative.

	(ii)	�For a given r we find the contributing points to the asymptotics in direction parallel to r. 
To do this we first find the critical points of H. A smooth critical point x∗ is a solution of 
the following set of equations

H(x∗) = 0, rdx∗j ∂jH(x∗) = rjx∗d∂dH(x∗) for (1 � j � d − 1).� (12)

		 From general theory [27] there is a solution x∗ to these equations that has only positive 
coordinates and which is a contributing point. Generically, this is the unique solution to 
the critical point equations. Furthermore all other contributing points, if they exist, lie on 
the same torus. We require F  =  G/H to be meromorphic in a neighbourhood of the closed 
polydisk containing x∗, defined by the condition that |xi| � x∗i  for all i. The point is usually 
strictly minimal — no other point in the polydisk is a pole of F.

	(iii)	�Near each contributing point x∗ we can solve the equation  H(x∗) = 0, without loss of 
generality xd = g(x′) with x′ = (x1, ..., xd−1). However, the asymptotic is independent 
of which coordinate we solve for. Then we define the function φ = log g(x′) locally 
parametrizing the hyper-surface {H  =  0} in logarithmic coordinates. The Hessian H of 
φ is an essential part of the asymptotic formula, and we can compute it in terms of the 

original data as follows. We construct the Hessian matrix H :=
(
Hij

)d−1

i,j=1
 with elements 

Hij =
∂2φ
∂xi∂xj

. The diagonal and off-diagonal matrix elements can be written explicitly in 
terms of g:

Hii = −xi
∂ig(x′) + xi∂

2
i g(x′)

g(x′)
+ x2

i

(∂ig(x′)
g(x′)

)2
diagonal,

Hij = −xixj

(∂i∂jg(x′)
g(x′)

−
∂jg(x′)∂ig(x′)

g(x′)2

)
off-diagonal.

� (13)

		 Thus we can write the Hessian matrix as

H =

(
xixj

g

(
∂ig∂jg

g
− ∂i∂jg

)
− xi∂ig

g
δij

)d−1

i,j=1
.� (14)

		 The above holds for all values of the variables. We are only interested in the evaluation of 
the Hessian determinant at each contributing point, and this allows further simplification 
which we now carry out. The critical equation H  =  0 implies

dH =

d−1∑
i=1

∂iH dxi + ∂dH dxd =

d−1∑
i=1

[
∂iH + ∂dH

∂xd

∂xi

]
dxi = 0,� (15)

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401
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		 where we omitted the star for the critical points for simplicity. It implies the following 
relation for any j = 1, ..., d − 1:

∂jH
∂dH

= −∂jg.� (16)

		 Putting this relation together with (12), we obtain

xj∂jg
xd

= −
rj

rd
.� (17)

		 Applying identity (17) to the Hessian matrix (14) we obtain the elements of the Hessian 
matrix evaluated at critical points,

H∗
ij =

rirj

r2
d
−

x∗i x∗j ∂i∂jg
g

+
ri

rd
δij.� (18)

		 The computation of 
x∗i x∗j ∂i∂jg

g  depends on the relative positions of the loops i, j  and d in the 

quiver diagram.
	(iv)	�The final step is to derive the asymptotic formula for ar  from the critical points and 

Hessian determinant. The Cauchy integral formula yields

ar =
1

(2πi)d

∫

T
x−rF(x)

dx
x

,� (19)

		 where the torus T is a product of small circles around the origin in each coordinate and 
dx
x = (x1 · · · xd)

−1dx1 ∧ · · · ∧ dxd. In the asymptotic regime |r| → ∞, the following 
smooth point asymptotic formula is obtained in [26, Theorem (1.3)]. We write simply x 
for x∗(r).

		 The smooth point formula states that if G(x) �= 0 then

ar ∼ (2π)−(d−1)/2(detH(x))−1/2 G(x)
−xd∂H/∂xd(x)

r−(d−1)/2
d x−r,� (20)

		 where x−r :=
∏d

j=1 x−rj
j . The expansion is uniform in the direction r̂ := r/|r| provided 

this direction is bounded away from the coordinate axes.

We want to apply the above procedure in our case of interest. For any connected quiver with 
generating function (8), we have functions H(x) and G(x) as in equation (9). For x sufficiently 
close to the origin, G and H are holomorphic and H does not vanish at the origin.

Our next observation is the rediscovery of a folklore result in graph theory [8], that H(x) in 
equation (9) can be expanded graphically in terms of the loops in the quiver,

H =

d∑
k=0

∑
l1�l2�...�lk

(−1)kl1l2 · · · lk,� (21)

where l1, l2, ..., lk are loops which meet each node of the quiver diagram at most once, d is 
the total number of the loops of the quiver diagram, and loops in the second sum are disjoint. 
Notice that each loop variable in the above expansion (21) is the product of xi edge variables 
in the determinant formula (9), around each loop of the quiver diagram.

To summarize, given a quiver diagram, one can easily find the function H and solve the 
critical equations to obtain the critical points. Then, by computing the Hessian determinant 
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evaluated at a critical point and inserting these results into equation (20), one can obtain the 
asymptotic for any quiver diagram. However, owing to the multidimensional nature of the 
problem, some of the computations, such as solving the critical equations and computing the 
Hessian determinant, require symbolic mathematical software. On the other hand, as we will 
present in this paper, alternatively, one can try to find an explicit analytic form of the asymp-
totic formula for some infinite classes of quivers, with the hope of finding a general analytic 
result for larger classes of quivers.

4.  Some infinite classes of quivers

Having introduced and discussed a general procedure of the asymptotic methods for quiver 
diagrams, in this section, we implement these methods in two infinite classes of examples 
and obtain explicit analytic results for the entropy and phase structure of these quiver gauge 
theories.

4.1.  Generalized clover quivers

As the first class of examples, we consider a generating function of the following form:

F(x) =
G(x)
H(x)

=
∑

r

arxr =

∞∏
i=1


1 −

d∑
j=1

xi
j




−1

,

� (22)

with H(x) = 1 −
∑d

j=1 xj and G(x) =
∏

k�2 Hk(x) =
∏∞

i=2(1 −
∑d

j=1 xi
j)
−1. This is the 

Generalized Clover Quiver class, see figure 1. It is interesting to notice that the d-Kronecker 
quivers, consisting of d loops, shown in figure 2, have also the same generating function.

It is easy to observe that for direction (r1, . . . , rd) the unique critical point is

x∗ = (
r1

R
,

r2

R
, ...,

rd

R
),

with R =
∑d

i=1 ri. This point is strictly minimal. To see this, we first show that there are no 
more zeros of H1 in the closed polydisk defined by x∗. This is clear because for every such 
point x we must have 

∑d
i=1 xi = 1 while |xi| � x∗i , and this can only happen when all xi = x∗i . 

Figure 1.  Generalized Clover Quiver.

Figure 2.  d-Kronecker Quiver.

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401
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We then handle possible poles arising from the other factors Hk for k � 2. To do this, note that 
0 < x∗i < 1 for all i. Thus if |xi| � x∗i  for all i and k � 2 we have

∣∣∣∣∣1 −
d∑

i=1

xk
i

∣∣∣∣∣ � 1 −
d∑

i=1

|xi|k � 1 −
d∑

i=1

|xi| � 1 −
d∑

i=1

x∗i = 0.

Note that the second inequality is strict unless all xi  =  0, in which case the third inequality 
is strict. Thus we can choose a polydisk with radii f i slightly more than x∗i , such that for all 
k � 2, 

∑
i f k

i < 1 and so each factor in the product defining G is analytic. Thus F  =  G/H has 
the desired form as a quotient of analytic functions in an appropriate polydisk, and x∗ is a 
strictly minimal critical point for the given direction.

To compute the Hessian, we observe that g = xd = 1 −
∑d−1

i=1 xi is linear and so the second 
partial derivatives are zero. Thus from (18) we have

Hij =
rirj

r2
d
+

ri

rd
δij.

By changing to the variables ri/rd the determinant of this matrix is easily computed (see 
appendix) to be

detH = r−(1+d)
d R

d∏
i=1

ri.� (23)

By implementing the above explicit formula for the determinant of the Hessian matrix, in 
equation (20), it is straightforward to obtain the asymptotic result. By using equation (20), 
for the asymptotics of ar  of the generating function (22), in the ‘central region’, as R → ∞ 
and ri/rj  (for each i, j = 1 to d) bounded away from zero, we obtain the following explicit 
asymptotic formula,

ar ∼
G(x∗)

(2π)(d−1)/2 RR+ 1
2

d∏
i=1

r−ri− 1
2

i .� (24)

The entropy of the generalized clover quiver is obtained in the following Shannon form:

Sr = logG(x∗) +
(

R +
1
2

)
logR −

∑
i

(
ri +

1
2

)
log ri.� (25)

• Univariate case

		  In this part we characterize a special type of quiver whose asymptotics cannot be studied 
with the methods above. This is the one-variable case of the generalized clover quiver and 
is called the Jordan Quiver (see figure 3). In fact, the generating function of this type of 
quiver is the generating function of the (integer) partitions and derivation of its asymp-
totics is a classical problem in analytic combinatorics. The reason that the asymptotic 
method of this paper does not apply is that the relevant singularities in the one-variable 
case occur at all possible roots of unity, 1  −  xi  =  0, and each factor in the product contrib-
utes to the asymptotic, while for example in the two-variable case the exponential order 
of the contribution of 1  −  x  −  y   =  0 is higher than that of 1 − x2 − y2 = 0, etc.

		  All the oriented cycle graphs with no multiplicity (multiple edges) and no loop of length 
one, can be reduced to a quiver consisting of a single node and single loop. This loop 
variable is a product of edge variables for the cycle graph. The simplest example of this 

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401



10

class is the two node graph with two oppositely directed edges. The asymptotics for this 
class of quivers follows the asymptotics of partitions.

	 •	 Bivariate case

		  In the bivariate case (d  =  2), for Bi-Clover Quiver in figure 4, the generating function is

F(x, y) =
G(x, y)
H(x, y)

=
∞∏

i=1

(1 − xi − yi)−1 =
∑

r,s

arsxrys

		  where G(x, y) =
∏∞

i=2(1 − xi − yi)−1, H(x, y) = (1 − x − y).

		  The asymptotics for ars as r + s → ∞ and r/s, s/r  are bounded away from zero, can be 
obtained as a special case of the computations above. Let λ = r/(r + s) ∈ (0, 1). This 
yields the first order asymptotic

ars ∼
G(λ, 1 − λ)√

2π
(r + s)(r+s)

rrss

√
r + s

rs
.

		  This is uniform in λ as long as it stays in a compact subinterval of (0, 1) (alternatively, the 
slope r/s lies in a compact interval of (0,∞)—note that r/s = λ/(1 − λ)). In particular 
for the main diagonal r  =  s, corresponding to λ = 1/2, we obtain

ann ∼ G(1/2, 1/2)√
πn

4n.

		  The exact value of G at the critical point is not completely explicit, being given by an 
infinite product. It is a positive real number greater than 1, since each factor satisfies 
those same conditions. The minimum value of G(λ) over all λ occurs when λ = 1/2 and 
equals the reciprocal of the Pochhammer symbol (1/2; 1/2)∞. This has the approximate 
numerical value 3.46275. The value of G(λ) approaches ∞ as λ → 0 or λ → 1.

		  Phase structure

		  We start with the simplest example of the class, which is the bivariate clover quiver. 
Following the discussion in the paragraph after equation (9) in section 2, the phase trans
ition line in this example is 1 − x1 − x2 = 0 and the phase diagram is depicted in figure 5. 
In the case x1 = x2, we obtain the critical coupling β∗ = log 2. In the unrefined case of the 
generalized clover quiver, we have β∗ = log d. Similarly the phase diagram of the other 

examples in this class is a hyper-plane obtained from H(x1, ..., xd) = 1 −
∑d

j=1 xj = 0. 
Using equation (25), up to leading order, the entropy and couplings on the critical hyper-
surface are obtained as

S∗
r = R logR −

d∑
i=1

ri log ri =

d∑
i=1

ri · β∗
i ,

∂S∗
r

∂ri
= logR − log ri = − log x∗i = β∗

i .

� (26)
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		  Notice that critical points obtained as above are the same as the solutions of critical equa-
tion (12) in the case of generalized clover quivers. The basic physical example in the class 
of generalized clover quivers is the C3 quiver gauge theory with three loops in the quiver.

4.1.1.  Oriented cycle quivers with multiplicity.  An oriented cycle quiver with multiplicity is 
an oriented cycle graph with multiple edges between any two adjacent nodes and no loop of 
length one. The generating functions of these quivers reduce to those of the generalized clover 
quiver where the number of the loops in the clover quiver is determined by the number of the 
cycles in the cycle graph. In the following, we present some important examples of oriented 
cycle quivers with multiplicity.

Figure 3.  Jordan Quiver.

Figure 4.  Bi-Clover Quiver.

Figure 5.  Phase Diagram of Bi-Clover Quiver.
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	 •	 conifold C

		  The conifold quiver is an oriented cycle graph with multiplicity, and with two nodes and 
two couples of parallel edges between the nodes. This is a special case of the generalized 
clover quiver with four variables. The determinant of the adjacency matrix of the conifold 
is

H = 1 − l1 − l2 − l3 − l4,� (27)

		  where l1, l2, l3, and l4 are product of edge variables in the conifold quiver, see [24, sec-
tion 2]. By direct computation, the critical points and Hessian determinant with the choice 
of ld = l4 are

l∗i =
ri

R
, detH = r−5

4 R
4∏

i=1

ri� (28)

		  where R =
∑4

i=1 ri. The asymptotic and the dominant terms in entropy can be obtained 
from the result for the generalized clover quiver,

ar ∼
G(l∗)
(2π)3/2 RR+ 1

2

4∏
i=1

r−ri− 1
2

i , S∗
r = −

4∑
i=1

ri log ri + R logR,� (29)

		  where G(l∗) =
∏∞

i=2(1 − l∗i
1 − l∗i

2 − l∗i
3 − l∗i

4 )
−1.

	 •	 Hirzebruch F0 and del Pezzo dP0 (C3/Z3)

		  As other examples of this class we can mention Hirzebruch F0 and del Pezzo dP0, see 
figure 6 (middle) and figure 1 in [13]. The generating function of Hirzebruch F0 is the 16 
loop variable case of the generalized clover quiver and del Pezzo dP0 is the generalized 
clover quiver with 27 loop variables. Their asymptotics can be obtained as special cases 
of equation (24).

4.2.  Affine C3/Ân  orbifold quivers

The next infinite class of examples consists of the affine C3/Ân orbifold quiver theories, see 
figure 6. The first observation is that by equations (9) and (21), the denominator H for this 
quiver can be written in terms of the elementary symmetric functions ej(x1, ..., xn),

H(x1, ..., xn, xc) = −xc +

n∑
j=0

(−1) jej(x1, ..., xn) = −xc +

n∏
j=1

(1 − xj),� (30)

where x1, ..., xn are the loops of length one at the nodes 1, ..., n, and xc is the central loop in 
figure 6. Thus the generating function of this quiver can be written as

F(x) =
∑

r

arxr =

∞∏
i=1

(
− xi

c +

n∑
j=0

(−1) jej(xi
1, ..., xi

n)
)−1

.� (31)

First, we choose g function to be the central loop, i.e. xd = xc. We denote the other loops in 
the quiver by xi for i = 1, ..., n. We have as above

S Ramgoolam et alJ. Phys. A: Math. Theor. 53 (2020) 105401
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G(x1, . . . , xn, xc) =
∏
k�2

Hk(x) :=
∞∏

i=2


−xi

c +

n∑
j=0

(−1) jej(xi
1, ..., xi

n)


 .

Suppose that ri/rc and rc/ri are fixed and bounded away from zero as ri, rc → ∞. We claim 
that the unique critical point and Hessian determinant evaluated at this point are

x∗i =
ri

rc + ri
, x∗c =

rn
c∏n

i=1(rc + ri)
, detH = r−2n

c

n∏
i=1

ri(ri + rc).� (32)

The proof that this point satisfies H  =  0 follows from the following identity for elementary 
symmetric function ei(r1, ..., rn),

n∏
i=1

(rc + ri) =

n∑
i=0

rn−i
c ei(r1, ..., rn).� (33)

For the proof of the other critical equations, r ×∇logH = 0, first observe that

∂jH = ∂jg, ∂dH = −1,� (34)

and denoting the g function of the quiver with n surrounding loops by gn, we observe that

∂jgn = −gn−1.� (35)

Using the above observation we can prove that the ansatz for x∗i  and x∗c in equation (32), satisfy

rcx∗i ∂iH = rix∗c∂dH.� (36)

The formula for the Hessian determinant in equation (32) follows from the observation that 
the Hessian matrix evaluated at the critical point x∗ is diagonal, since

xixj

g2 ∂ig∂jg = rirjr−2
c ,

xixj

g
∂i∂jg = rirjr−2

c ,
� (37)

1

2

3

i

n − 1

n

Figure 6.  Affine C3/Ân Orbifold Quivers.
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and moreover, because of the choice g  =  xc we have ∂2
i g = 0, and thus by inserting the critical 

points in equation (32), the Hessian matrix, equation (14) becomes

Hij = δij(
r2

i

r2
c
+

ri

rc
),� (38)

and therefore the result follows.
We now show that the critical point x∗ is strictly minimal and F  =  G/H has the appropriate 

form. As in the generalized clover example, this amounts to showing that there are no other 
zeros of any Hk on the closed polydisk defined by x∗. First note that for each Hk, if there is a 
zero x then it is a pole of 1/Hk, and since 1/Hk has nonnegative coefficients, [22, section (2.1)], 
the coordinatewise modulus x∗ = (|x1|, . . . , |xn|, |xc|) is also a pole, so that |x| is a zero of Hk.

We first consider the case k � 2. Suppose that 0 � xi � x∗i  for all i, that 0 � xc � x∗c . Then 
if −xk

c +
∏n

i=1(1 − xk
i ) = 0, then using the fact that −x∗c +

∏n
i=1(1 − x∗i ) = 0 we obtain

x∗c − xk
c =

n∏
i=1

(1 − x∗i )−
n∏

i=1

(1 − xk
i ).

However x∗c − xk
c > 0 because 0 < xc � x∗c < 1, whereas
n∏

i=1

(1 − x∗i ) �
n∏

i=1

(1 − xk
i ),

yielding a contradiction. Finally when k  =  1  a similar argument holds: there is no other 
solution (x �= x∗) of H1(x) = 0 inside the polydisk. To see this, assume to the contrary that 
−xc +

∏n
i=1(1 − xi) = 0 and −x∗c +

∏n
i=1(1 − x∗i ) = 0. This leads to two possibilities:

	 •	�xc − x∗c = 0, which yields 
∏n

i=1(1 − x∗i ) =
∏n

i=1(1 − xi) and thus the contradiction 
x = x∗; 

	 •	�xc − x∗c < 0, which implies 
∏n

i=1(1 − x∗i )−
∏n

i=1(1 − xi) > 0, again yielding a contra-
diction because xi � x∗i  for all i.

Hence the asymptotic approximation and the entropy of the general case can be obtained from 
equation (20),

ar ∼
G(x∗)
(2π)n/2 r−n(rc+

1
2 )

c

n∏
i=1

r−ri− 1
2

i (ri + rc)
(ri+rc+

1
2 ),

Sr = logG(x∗) +
n∑

i=1

(
(−ri −

1
2
) log ri + (ri + rc +

1
2
) log(ri + rc)

)
− n(rc +

1
2
) log rc,

�

(39)

where G(x∗) =
∏∞

i=2 H(x∗i
1 , x∗i

2 , ..., x∗i
n , x∗i

c )
−1.

4.2.1.  Phase structure.  We start with the simplest example of the class, which is affine 
C3/Z2, see figure 7. As we discussed in the paragraph after equation  (9) in section 2, the 
phase transition hyper-surface in this example is 1 − x1 − x2 − x3 + x1x2 = 0 and the phase 
diagram is depicted in figure 8. In the general case, the phase diagram of this class is a hyper-

surface obtained from H(x1, ..., xn, xc) = 0 which implies xc =
∑n

j=0(−1) jej(x1, ..., xn). From 

equation (39) and equation (32), the critical relation on the phase transition hyper-surface, up 
to leading order, for the affine C3/Ân, yields
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S∗
r =

n∑
i=1

(
− ri log ri + (ri + rc) log(ri + rc)

)
− nrc log rc =

n∑
i=1

ri · β∗
i + rc · β∗

c ,

∂S∗
r

∂ri
= log ri − log(ri + rc) = − log x∗i = β∗

i , for i = 1, 2, ..., n,

∂S∗
r

∂rc
= n log rc −

n∑
i=1

log(ri + rc) = − log x∗c = β∗
c .

� (40)

Notice that critical points obtained as above are the same as the solutions of critical equa-
tions equation (12), presented in equation (32).

5.  Conclusions and forthcoming research

In this work we adapted recent results in the multivariate asymptotic analysis of generat-
ing functions to study the asymptotic counting of operators in the chiral ring of free N = 1 

Figure 7.  Affine C3/Z2 Quiver.

Figure 8.  Phase Diagram of C3/Z2. The filled volume which is the convergent domain 
is separated from the divergent domain by the phase transition hyper-surface.
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quiver gauge theories. We obtained an explicit asymptotic formula for two infinite classes of 
examples. A next step is to consider other infinite classes of examples, e.g. La,b,c, Yp ,q Sasaki–
Einstein spaces and three-dimensional ADE-type orbifolds such as C3/Zn. A general formula 
for the asymptotics for general quivers, expressed in terms of the weighted adjacency matrix, 
would be an interesting goal.

In this work, we only considered the first (leading) asymptotic term in the asymptotic 
series. The current results in analytic combinatorics for the asymptotic counting of multivari-
ate generating functions [28] allow for the computation of sub-leading contributions in the 
asymptotics. It would be interesting to apply these results to obtain the higher order asymptot-
ics in quiver gauge theories.

In this work, the matter content of the gauge theory is restricted to matter in bifundamental 
representations. One can also consider fundamental matter and quiver gauge theories with 
flavours. The generating functions for counting gauge invariant operators in quivers with fla-
vours are obtained in [22]. Thus it should be straightforward to generalize the method of this 
work to quivers with flavours and obtain the asymptotic counting of chiral operators in these 
theories.

In this paper, we considered the zero super-potential limit and exploited the availability of 
general formula for the generating functions of the multi-trace chiral operators. However, as 
we mentioned, the W �= 0 sector of the quiver gauge theories and the counting of the chiral 
operators have been studied vastly. Generating function technology has been introduced and 
applied successfully to very general classes of quivers [2, 9, 12]. The multivariate asymptotic 
analysis employed here would be useful in obtaining results for asymptotics of counting in 
general quiver gauge theories.

The counting of states for the bi-clover quiver (section 4) is the 2-matrix counting which 
has been recently discussed in the context of small black holes in AdS/CFT [5, 6]. We expect 
that the consideration of higher order asymptotics will be relevant to this discussion. It would 
also be interesting to explore the more general quiver asymptotics in the context of gauge/
gravity duality.
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Appendix.  Hessian determinant of generalized clover quiver

Set n  =  d  −  1, and consider the n × n matrix H,

Hij = xixj + xiδij,� (A.1)

which is a rescaled version of H. The indices i, j take values from 1 to n. We have
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detH = εi1···inH1i1H2i2 · · ·Hnin .� (A.2)

Define the matrix X := diag(x1, x2, · · · , xn), or equivalently Xij = xiδij . Using the expression 
(A.1) in (A.2), we encounter terms where all the H factors contribute the second term, linear 
in x. The contribution of these terms in detH is

εi1···in x1δ1i1 x2δ2i2 · · · xnδnin = detX.� (A.3)

Next there are terms where we pick, from one of the H’s in (A.2) the term quadratic in x’s, 
and from the rest the linear term. Taking the distinguished H to be the first one, we find the 
contribution of such a term in detH, as

εi1···in x1xi1 x2δ2i2 x3δ3i3 · · · xnδnin

= (detX)xi1εi1,2,··· ,n

= (detX)x1.
�

(A.4)

Summing over all the possible choices of the H factor contributing the quadratic term in x’s, 
we find their contributions to detH, as

(detX)(trX).� (A.5)

We also have to consider terms where we pick quadratic terms from two or more H’s. An 
example of the case with two such quadratic terms, picked from the first two H factors in 
(A.2), is

εi1···in(x1xi1)(x2xi2)(x3δ3i3)(x4δ4i4)...(xnδnin).� (A.6)

This vanishes due to the symmetry of the x’s and the antisymmetry of the ε under relabelling 
of i1 ↔ i2. This symmetry argument holds whenever we pick two or more quadratic terms. 
We therefore conclude that

detH = (detX)(1 + trX).� (A.7)

It is now straightforward to obtain equation (23).
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