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We demonstrate a simple adaptation of the venerable Hilger—Watts gauge-block interferometer
capable of performing automated, traceable calibrations of gauge block length by
phase-stepping interferometry (PSI). We discuss the selection of robust PSI filtering algorithms
to counteract in software the flaws of the hardware implementation, including markedly
non-sinusoidal fringes and inhomogeneous phase step size. We find that the length measurement
errors attributable to the phase measurement can be reduced to 0.6 nm, even with a simple

retrofit to an instrument not originally designed for PSI.
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1. Background

The central task in an interferometric measurement of length
is to estimate the phase representing the path-length differ-
ence to be measured. When the path-length difference var-
ies across an image, phases can be estimated from the spatial
position of the resulting interference fringes. Such estimates
require only a single interferogram and can be performed by
a trained human operator without electronic assistance. How-
ever, once it became possible to record interferograms elec-
tronically, it was soon recognized that stepping or scanning the
path-length difference and recording the interference intensity
several times at a given spatial position offered several advant-
ages [1, 2]. Such phase-stepping interferometry (PSI) is easy
to automate because the data-taking requires no operator judg-
ment or image processing [1], is insensitive to spatial intensity
gradients in the image since the phase can be assessed inde-
pendently at each position, and generalizes straightforwardly
to the measurement of 2D phase maps for assessing surface
form [3].

PSI works best with perfectly sinusoidal interference
fringes and known, uniform step sizes. When designing a
new instrument, careful engineering can ensure that only
two optical paths interfere, that the detector response is
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linear—keeping the fringes sinusoidal—and that the phase
steps are uniform and accurate [4]. However, when refit-
ting and automating older interferometers [5, 6], the optical
design of the original instrument may make it impractical
to achieve ideal phase-stepping behaviour. Such instruments
can benefit from numerical techniques developed for auto-
mated inspection of optical surfaces [3], where the use of
Fizeau interferometers leads to non-sinusoidal fringes [7]
and where high numerical apertures lead to inhomogeneous
phase step sizes [8]. Here we describe our experience with
this approach while modernizing a Hilger—Watts gauge-block
interferometer.

We are not the first to use PSI in a Hilger—Watts interfero-
meter, but the only previous implementation of which we are
aware, that of [9], is based on sweeping the wavelength of the
illuminating laser. While this is now the recommended phase-
stepping method in surface-inspection applications [10], it is
ill-suited to gauge-block length measurements which involve
the simultaneous measurement of two different optical paths
(one for each end of the gauge) whose phases vary differ-
ently with wavelength. It is also challenging, when sweeping
the wavelength, to maintain a suitably low wavelength uncer-
tainty for measuring distances of several cm. Accordingly, [9]
describes the use of PSI only for tests of form and parallelism
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Figure 1. Upper left: Camera view under incoherent lighting,
showing the automatically-determined block position. The green dot
marks the gauging point and the two filled green rectangles mark the
regions of the platen used to establish the reference plane. Upper
right: Same view under laser illumination, showing interference
fringes aligned for measurement. A series of such images are
recorded, displacing the flat to shift the fringes for each image.
Lower left: Resulting phase map. Lower right: Phase map after
unwrapping and removing an overall tilt. The greyscale for both
phase maps covers a full fringe, or 272 nm.

of the gauging faces, whereas calibration of the gauge block
length is still determined from spatial fringe offsets [6].

The system we describe here uses fixed-frequency light
sources and PSI for gauge block length measurements. No
additional hardware is needed for phase-stepping and the data-
processing required to extract the phase at each pixel is simple
addition and multiplication by fixed constants, with no need
for heuristics to distinguish interference fringes from other
lines in the image and with no ambiguity as to whether heights
are increasing or decreasing from one fringe to the next. A
single measurement produces the phase needed for length
calculations, a height map useful for assessments of form
errors [9, 11], and a vectorial estimate of the angle between
the optical flat and the surfaces beneath it. The fact that a
single easily-implemented PSI measurement can simultan-
eously provide the information needed for length calculations,
assessments of surface form, and automatic realignment of
the optical flat and interference fringes in unsupervised oper-
ation, makes this an attractive approach for upgrading widely-
deployed but elderly instruments such as the Hilger—Watts.

2. Apparatus

The Hilger—Watts interferometer, designed in the 1930s at
NPL [12] and commercially available into the 1960s, is still
used in some laboratories for the interferometric calibration

Figure 2. Layout of the key components of the modified
Hilger—Watts interferometer. A collimated horizontal light beam is
deflected downward by a 45° mirror M, goes through an optical flat
F whose coated lower face reflects a reference wavefront, and then
illuminates a gauge-block B wrung to a rotating platen P.
Reflections from the flat, block, and platen travel back up the beam
to the imaging optics (not shown). The optical flat is mounted to a
tilting column C, allowing fine adjustment of its angle with respect
to the platen (as indicated by the curved black arrows). As the pivot
point O for the column is outside the beam, angular adjustments
also displace the optical flat along the beam.

of gauge blocks. Although originally designed for completely
manual operation, with Cd and Hg discharge lamps as the
wavelength standards, several of these instruments have been
updated to use laser sources and to automate the estimation
of fringe positions [5, 6]. We have undertaken a similar mod-
ernization, using HeNe lasers at 633 nm and 544 nm as the
wavelength standards, adding a spinning diffuser to suppress
the transverse coherence of the laser beam and the result-
ing diffraction rings, motorizing the operator controls, and
mounting a camera to the former eyepiece. The resulting sys-
tem operates unattended, measuring as many blocks as can be
wrung to its rotating platen (typically around 12, but up to 18
with care [12]). Each block in turn is automatically positioned
in the measurement beam aperture (figure 1 upper left). PSI-
derived height maps are then used to align the interference
fringes (figure 1 upper right), map the surfaces of the block
and platen (figure 1 lower phase maps), and extract the phase
differences for each laser corresponding to the block length.
The reliability of this automatic operation comes in part from
the determinism and robustness of PSI.

To allow straightforwardly-traceable PSI-based length
measurement, we need to vary the optical path length differ-
ence between interfering beams while maintaining a known
wavelength. Figure 2 is a schematic depiction of the relevant
portion of the instrument. Light travelling downward toward
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the gauge block first crosses an optical flat (F) whose coated
lower surface reflects a portion of the beam as a reference
wavefront. The transmitted portion is reflected by the platen
(P) and gauge block (B). The optical flat is mounted to a tilting
column (C), which is used to align the flat quasi-parallel with
the platen. A deliberate misalignment of 60 prad introduces
the fringe pattern seen in the upper-right image of figure 1.
Crucially, the pivot point for the tilting column lies ~ 70 mm
away from the beam axis, so small angular adjustments also
raise and lower the optical flat, changing the distance between
flat and platen by ~ 70 nm/urad. The angle of the column is
controlled by a fine-pitch screw at the end of a 0.8 m lever arm.
A servo-motor driving this screw through a reduction gearbox
can thus step the phase. This system requires no additional
hardware beyond what would already be necessary to auto-
mate the optical flat alignment, and is free of the non-linear dis-
placement errors often seen in solid-state phase shifters using
piezo-electric actuators or liquid-crystal modulators [13]. On
the other hand, it introduces a large spatial inhomogeneity in
the phase steps: for a given angular step of the column, the
vertical displacement of the flat varies by ~ 4 30% depending
on the distance from each portion of the beam to the column’s
axis of rotation (O).

Note that, as seen in figure 2, the same motion that raises
and lowers the flat along the beam also traverses it across the
beam. A typical PSI scan requiring a ~600 nm displacement
along the beam leads to an undesired transverse displacement
of ~1.7 um. However, while the relevant scale for vertical dis-
placements is the optical wavelength, that for transverse dis-
placements is the resolution of the camera images, which is
diffraction-limited to hundreds of micrometers. Thus, while
the transverse displacements are larger in absolute terms, their
effect on the recorded camera images is negligible.

The upper graph of figure 3 shows intensity values at a
single camera pixel, taken from 96 images recorded at intervals
of 1/16 of a fringe. Camera data is averaged for 200 ms for each
point, to average out a vibration in the frame of the interfero-
meter. The markedly non-sinusoidal character of the fringes
is a consequence of the basic optical design of the Hilger—
Watts interferometer: the space between the optical flat and the
platen forms a planar Fabry—Pérot cavity like that of a Fizeau
interferometer, and multiple reflections between the surfaces
are unavoidable. We therefore fit the fringes to a model of the
form

a 1Ccos(wt+¢>0)>- M

[(I) = (AO +A1wt) (1
This is a slight modification of the Airy formula used for
Fizeau interferometers [14—16], with an additional allowance
for linear intensity drift. Here ¢ labels camera frames and is
interpreted as a time in units of phase steps, w is the size of
a phase step and thus the fringe frequency in rad/step, and ¢q
represents the phase of the fringe at t=0. Ag and A corres-
ponds to the incident intensity and its drift, while
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Figure 3. Above: Interferogram recorded at a single image pixel
while moving the optical reference flat through 3 wavelengths of the
544 nm laser. Solid line shows a fit to a Fizeau fringe as described in
the text. Below: Corresponding Fourier amplitude spectra.

depend on the reflections coefficients r| and r; of the two sur-
faces forming the cavity and together determine the visibility
and form of the fringes.

Taking the Fourier transform of the interferogram (data and
fit) yields the amplitude spectra shown in the lower graph of
figure 3. To either side of the DC peak corresponding to the
average intensity, we see the fundamental fringe oscillation
(£ 1 on the graph’s abscissa), followed by the higher harmon-
ics associated with the deformation of the fringe. The amp-
litude ratio between successive harmonics, which corresponds
to the geometric mean of the reflectances of the optical flat and
platen [16], is rir, = (1 —+/1—C?)/C=0.22. The second
and third harmonics, with amplitudes 22% and 5% of the fun-
damental, are clearly visible in the spectrum.

3. PSI algorithm design

The higher harmonics in the interferogram make it unusable
for the 4-frame Carré algorithm traditionally employed in
gauge-block interferometers [2, 17]. That algorithm, designed
for the sinusoidal fringes of Twyman-Green interferometers,
produces half-radian (~25 nm) phase errors and even unphys-
ical imaginary phase solutions when applied to the distorted
fringe of this instrument. A PSI algorithm intended specifically
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for Fizeau interferometers, accounting for harmonics of all
orders, has been known for three decades [14—16], but it is
numerically ill-behaved in the presence of step-size errors and
can give divergent results at certain phases [ 15]. Because of the
spatially inhomogeneous step size in our PSI implementation,
we need a more robust PSI algorithm.

A variety of general formalisms, differing in their math-
ematical approach and suitable for different classes of exper-
imental imperfections, have been used to design and analyze
robust PSI algorithms [13, 18-21]. Since we are concerned
with non-sinusoidal fringes and spatially inhomogenous step
sizes, but not time-varying step sizes (frequency chirp), we use
essentially the same framekwork as Surrel [20]. Consider a
general periodic intensity function

I(l): Z ameimwt7 (3)

m=—0o0

where m labels the harmonics and o, = a ,, are their com-
plex Fourier amplitudes. The phase to be measured is the com-
plex argument of the amplitude «; and a PSI algorithm can
be understood as a filter intended to isolate this amplitude.
Conventional PSI algorithms involve a linear combination of
regularly-spaced intensity readings

M—1
S=Ycd(r). )
=0

Decomposing the complex coefficients ¢, into real and ima-
ginary parts, we can interpret this as a pair of real-valued filters
for the quadratures of the signal:
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The phase is estimated as the complex argument of the
filtered signal S

¢ = arg(S) = arctan (;) . 7

Thus, calculating the phase at runtime is a simple matter of
multiplying the intensities in the different readings by known
constants, adding up the results to obtain the quadrature sig-
nals X and Y, and converting the result from Cartesian to polar
coordinates. The harder problem, which must be solved in
advance, is to choose a good set of coefficients c;.

Surrel pointed out that it is convenient to combine the coef-
ficients into a characteristic polynomial

M—1
P()= (8)
t=0

in terms of which equations (3) and (4) can be combined as
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The design of the filter reduces to choosing the roots of
P. Alternatively, following Servin ef al [21], one can treat
H(—w) =P (e">) as the Fourier spectrum of the filter and
design this spectrum as a product of sinusoidal factors, whose
time-domain representations correspond to regularly spaced
samples of /(¢). The polynomial approach simplifies filter syn-
thesis and algebraic manipulation, while the spectrum is con-
venient for visualizing the effects of filter design choices.

A useful filter must, at a minimum, suppress the DC offset
o and the counter-rotating amplitude «v_j, so P should have
roots at 0 and e . Additional roots can suppress higher-order
harmonics a.t,,, if the fringes are non-sinusoidal, or extend the
range of step sizes w for which the suppression of undesired
components is effective.

As a starting point, we consider the 9-frame broadband fil-
ter described by Servin et al [21], which has recently been
adopted for use in gauge-block interferometers at NRC and
MIKES [22]. Designed for a sinusoidal fringe with a nominal
step size wo = /2, it uses a single root at 7 = e’ to suppress
the DC component, and double roots at z = ein/ 4, e~ im/2 and
e B/ to suppress the counter-rotating «v_; component even
in the presence of large step-size errors (60% or more). How-
ever, the aL, harmonics are suppressed only by a single root
at z =™, meaning that they leak through the filter as soon
as w differs from 7/2. The o_3 harmonic is not suppressed at
all, being indistinguishable from the «; signal due to Nyquist
aliasing (see figure 4, top).

The fixed frequency response of linear PSI filters limits the
achievable robustness to step-size errors when the second har-
monic is significant [10]. Consider a 50% reduction in step
size which tunes the second harmonic to the same frequency
2w = wy as the design frequency for the fundamental signal.
Any filter which successfully suppressed the former would
also suppress the latter, and one cannot broaden the stopband
for i, without restricting the passband for «;. The allowable
step-size errors being thus limited, we should invest effort
in suppressing higher harmonics for modest step-size errors
rather than aiming for broad bandwidth. This leads us to con-
sider a PSI algorithm which Surrel calls WDFT [20, 23], other-
wise known as Surrel’s 2N —1 algorithm [24, 25]. For a design
step size wg = 27/N, the corresponding characteristic polyno-
mial P has double roots at all but one of the Nth roots of
unity, and suppresses harmonics out to a4 (y—»). Because all
roots are doubled, so that the spectral response approaches
zero quadratically near all undesired frequency components,
the filter is linearly insensitive to small step-size errors. The
double root at 1 (DC) makes it insensitive to linear intensity
drift. Surrel’s 2N —1 is the minimal PSI algorithm combining
robustness to harmonics up to a given order, to step size errors,
and to linear intensity drift [23]. The time domain coefficients
¢, for this filter are those of a discrete Fourier transform with
a triangular windowing function.

The lower three graphs of figure 4 show the spectra for
three instances of Surrel’s 2N—1 with N =5, 6, 7. The first of
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Figure 4. Fourier amplitude spectra [21] (left) and characteristic
diagrams [20] (right) for four PSI algorithms tested in this work. The
DC or background signal is indicated by a black line. Blue arrows
mark the nominal carrier frequency to be detected. Grey lines indicate
the other harmonics of the nominal frequency. In the characteristic
diagrams, a small circle represents a single root (a simple zero of the
filter spectrum) while a pair of concentric circles represents a double
root (a second-order zero of the filter spectrum). From the top,

the four algorithm’s are Servin’s 9-frame broadband algorithm [21]
and Surrel’s 2N—1 algorithm [20] with 9, 11, and 13 frames.

these, which uses 9 frames like Servin’s filter, yields poorer
suppression of the counter-rotating ov_; component far away
from the design frequency (more ripple in the stopband), but
suppresses the second and third harmonics which Servin’s fil-
ter does poorly or not at all. Increasing the number of frames
successively suppresses the fourth and fifth harmonics, and
has the secondary benefit of reducing the residual sensitivity
between the lower harmonics.

4. Phase-mapping performance

To assess the performance of our implementation of these
PSI algorithms, we compare an ensemble of phase maps of a
static platen. If the measurements were perfect, the phase maps
would differ only by rigid-body rotations due to alignment
changes of the flat. To ensure that periodic errors due to the
multi-beam interference are detected in the comparison, we tilt
the flat differently for each map (in increments of ca. 30 prad)
to change the fringe patterns. An example set of 15 phase maps
(before unwrapping) is shown at the top of figure 5. Unwrap-
ping, removing global tilts and offsets, taking the standard
deviations of the phases across maps, and pooling them over
all pixels in some region gives an estimate of the single-pixel
errors in the phase maps. The results depend on the size of
the region used for the analysis: larger regions include greater
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g ’
a ™)
g a ‘ 5 ]
w2r B ®
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12 14 16 18 20 22 24 26

Radius of disc / mm

Figure 5. Above: 15 phase maps of the same platen

surface at different angles of the reference flat. After unwrapping
and removing global tilts and offsets, these maps describe the same
surface and the discrepancies between them are a measure of errors
(including periodic errors) in the PSI system. Below: Standard
deviation between maps as a function of the radius of the region
over which they are compared, for Servin’s 9-frame algorithm (red
triangles) and Surrel’s 2N —1 algorithm with 9 frames (blue squares),
11 frames (black filled circles), and 13 frames (green open circles).

spatial variations in the step size and are eventually affected
by diffraction artifacts at the edge of the beam. We use a cir-
cular disc centred in the beam as the analysis region, and plot
the result as a function of increasing disc radius in the lower
half of figure 5. We see a marked improvement in the con-
sistency of the maps when going from Servin’s 9-frame filter
(red triangles) to Surrel’s 9-frame filter (blue squares), thus
suppressing the second and third harmonics in the spectrum.
Suppressing the fourth harmonic with 11 frames (black filled
circles) has a modest effect, but going further, to 13 frames
(green open circles), brings no further benefit beyond the aver-
aging of random noise to be expected from the additional data.
Since the fifth harmonic is expected to have an amplitude only
0.2% that of the carrier, this is unsurprising.

Qualitatively, all four of the filters encounter a similar lim-
itation at the left edge of the beam, close to the pivot point,
where the step size is reduced and the «; harmonic shifts
down into the filter passband intended for the « signal. This
is visible as a coarse ripple in the lower-right phase map of
figure 1. Servin’s 9-step filter fares particularly poorly at the
right side of the beam, because the cv_, harmonic shifts into
the aliased passband at «_3 and is no longer suppressed.
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In practice we use Surrel’s 2N—1 with N=6, i.e. 11
frames, and it is instructive to contrast this choice with
that of the wavelength-scanning PSI implementation of [9].
Because their wavelength-tuning system involved a piezo with
a slightly non-linear response, they used an 11-frame fil-
ter designed to be robust to non-linear (i.e. chirped) phase
shifts [13, 26]. With a step size of wg = 27/5, this filter is robust
to harmonics out to ar4-3. While our system suffers from greater
spatial inhomogeneity of the step size, temporal chirp is not
a concern for us and so we sacrifice chirp-resistance to sup-
press an additional order of harmonics with the same num-
ber of frames. The performance of the two systems, designed
for different purposes, is not directly comparable, but we note
that the 0.005\ resolution claimed for their system would cor-
respond to =~ 3 nm in ours, which is the single-pixel stand-
ard deviation we obtain over the whole usable beam (figure 5,
black circles, 22.5 mm radius). Thus, with PSI filters chosen
to match their respective instrumental limitations, the two sys-
tems perform similarly.

5. Length-measurement performance

We have used each of the PSI algorithms of figure 4 to
perform 104 length measurements on 13 gauge blocks with
nominal lengths ranging from 1 mm to 40 mm, where each
measurement involves two separate readings collected at
633 nm and 544 nm. Because the phases measured at the two
wavelengths differ, they are affected differently by periodic
phase-estimation errors. Discrepancies between the lengths
obtained from the two readings are thus sensitive to sys-
tematic phase estimation errors as well as to random meas-
urement noise. Pooling these discrepancies across all blocks
and measurements thus yields an estimate of the uncertainty
attributable to the PSI reading.

The blue circles in figure 6 show the RMS block-length
error attributable to a single PSI reading when the optical flat is
kept parallel to the platen, the so-called ‘flat fringe’ or ‘fluffed-
out fringe’ condition. In this case the interference phase is
roughly constant across the platen and, with a different phase,
across the gauging face. The residual phase-dependent non-
linear errors thus appear as uncorrelated but global errors on
the platen and gauging face heights. PSI filters which suppress
these errors more effectively reduce the block-length noise,
which falls from 3 nm when using Servin’s 9-frame algorithm
to 1 nm when using Surrel’s 2N—1 with 13 frames. If the
optical flat is deliberately tilted by 60 prad to introduce a phase
gradient across the image, one obtains a fringe pattern like the
one of figure 1. Phase-dependent errors now vary periodically
across the image. If a sufficiently large area is used to fit the
reference plane to the platen surface, this periodic variation
can be averaged out by the plane fit, reducing the sensitiv-
ity to non-linear errors. In this configuration (black triangles
in figure 6), the RMS block-length noise falls to 0.6 nm for
all four filters tested here. In practice it is easy to combine
both approaches, choosing a filter with low residual non-linear
errors and tilting the optical flat to reduce sensitivity to those
errors. The resulting phase estimation errors of 0.01 rad or

RMS dev. / nm
— \S)
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°
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Figure 6. RMS errors attributable to PSI for gauge-block length
measurements with each of four PSI filters. Filled blue circles: with
optical flat parallel to platen. Open black triangles: with optical flat
tilted by 60 prad relative to platen.

0.2% of a fringe for a single reading are an order of magnitude
better than could be achieved by visual estimation of fringe
offsets in the original instrument.

Note that even NMI-level length calibrations of short
gauge blocks rarely have total standard uncertainties much
below 10 nm [27], so the phase measurement noise is far
from dominating the final measurement uncertainty for gauge
block length. The low noise of the PSI system’s readings
does, however, reduce the chance of blunders when choos-
ing integer fringe orders by the method of exact fractions,
and thus recovers some of the robustness and reliability lost
by replacing the 4 — 6 measurement wavelengths of the ori-
ginal Hilger—Watts instrument’s discharge lamps by only two
lasers. The reduced noise also corresponds to improved short-
and medium-term repeatability, which is valuable both when
investigating potential sources of error that might otherwise
be masked by measurement noise and when monitoring the
performance of the instrument using process-control meas-
urements on check gauges.

6. Outlook

We have shown that even a simple phase-stepping system
with obvious imperfections suffices for state-of-the-art calib-
rations of gauge block length, provided that suitable PSI fil-
ters are employed. Servin’s broadband 9-step filter performs
adequately for length measurements, provided that care is
taken to tilt the reference plane and average over periodic
errors due to multi-path interference. Surrel’s 2N—1 filter,
which is explicitly designed for non-sinusoidal signals and
better-suited to the particular imperfections of our apparatus,
yields phase maps with reduced periodic errors. The improved
quality of the phase maps would be helpful for automatic
assessment of the deviation from flatness and variation in
length of the gauge blocks as specified in ISO 3650 [9, 11].
Even for simple measurements of central length, however, we
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find that better phase maps are valuable because they relax the
requirements on optical flat alignment while simultaneously
allowing more accurate automatic determination of the align-
ment. They also allow a more stringent automatic validation
of the measurement results, by reducing the expected devi-
ation from flatness of the measured platen surface. Together,
all these small advantages make for a more reliable instrument,
one which can perform many hundreds of unsupervised gauge-
block measurements without a fault or blunder.

If even higher-quality phaseenlargethispage-100pt maps
were needed, for instance if the instrument were to be adap-
ted for surface-flatness assessments, a number of improve-
ments could be made with no hardware changes. The simplest
would be to use triple or even quadruple roots instead of the
double roots of Surrel’s 2N —1 algorithm. Such 3N —2 [24] and
4N —3 [25] filters provide cubic or quartic suppression of the
spectral leakage due to small step-size errors, and have been
shown to reduce errors in optics-inspection applications [28].
If computational cost is no object, an iterative least-squares fit
of a parametric model of the instrument imperfections [29, 30]
can be used instead of a traditional PSI algorithm. This avoids
altogether the limitations of a linear filter with a fixed fre-
quency response, but the convergence of the fit depends on
initial estimates of model parameters and of the phase map.
While we prefer the simplicity and determinism of conven-
tional PSI for automation purposes, a final reanalysis of the
collected data by an iterative fit might improve precision in
some cases.
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