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Abstract
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Isotope dilution is among the most accurate quantitation approaches in chemical analysis. This
calibration method is often employed using a plurality of mathematical formulations. While
most analysts find the calibration curve approach most appealing, there is a lack of rigorous
general procedures involving calibration curves in isotope dilution and analysts resort to
empirical polynomial calibration functions. In this contribution we discuss the adoption of
regression analysis, commonly known as least squares methods, to solve isotope dilution
equations of varied complexity. This manuscript introduces general regression-based methods to
isotope dilution applicable to all known variants of classical isotope dilution known to date,
including the fusion of the isotope dilution and standard additions methods.

Supplementary material for this article is available online
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1. Introduction

Isotope dilution is often the method of choice in high-quality
quantitation of chemical substances [1, 2]. This method has
a rich history with beginnings in the form of the mark-and-
recapture method to count fish at the turn of the 20th century.
Early applications of this method in chemistry involved the use
of isotopes as tracers to study chemical processes, as epitom-
ized with the 1943 Nobel Prize in chemistry to de Hevesy.

In its simplest form, quantitation of substances using iso-
tope dilution proceeds by taking an aliquot of the sample (A)
which is then mixed with a known amount of isotopic stand-
ard (B). After an appropriate equilibration period, the isotopic
composition (isotope ratio, Rag) of the resulting blend (AB)
is measured. From here, the mass fraction of the analyte in the
sample can be obtained if the isotopic compositions of A and
B (Ra, Rg) are known beforehand:

wa =wp— ————g(*A,*B) (1
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Here, g(*A,*B) = (x, ;M5 ")/ (x, \M, ') and k refers to the
denominator (reference) isotope in measured ratios Ra, Rp,
Rap. Standard symbols are used for quantities as explained in
table 1.

The above expression contains three variables whose val-
ues are typically unknown to the analyst: Ra, Rg, and wa. The
equation (1) can be solved for the isotope ratio of the blend,
R AB-

(Rgwpgap) -1 + (Rywy) -my

(WBgA,B) g A+ (W) -my

@

Rpap =

The equation (2) can be recast in the form of a three-
parameter hyperbolic relationship between the mass ratios of
A and B by dividing its numerator and denominator with the
factor wgga smaB:

Ryp= 27 A3)

where m = ma /mg. This expression can be used to build the
calibration function by measuring the isotopic composition
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Table 1. Notation of materials and quantities.”

Symbol Description

Materials

A Sample

A Natural standard

B Isotopic standard (enriched spike)

E A, A«,or B

AB Binary mixture of materials A and B

AA+B Trinary mixture of materials A, A+, and B
Quantities

WE Mass fraction of the analyte in the solution of E
mg Mass of solution of E having mass fraction wg
Mg Molar mass of the analyte in the material E

ng Total amount of E, ng = mgwg /Mg

niE Amount of isotope i in E

XiE Abundance of isotope i in E, x; g = ni g/ng
Re Isotope amount ratio in E, Rg = n('E) /n(“E)

2We use symbol IDVMS to distinguish various isotope dilution strategies
where N denotes the number of binary blends (of A or A= mixed with B)
measured and SA-IDVMS to denote standard additions strategies involving
trinary blends (of A and A= mixed with B).

of mixtures of the natural and isotopic standards [3, 4]. In
practice, isotopic standards are significantly different from
the analyte in terms of their isotopic patterns which leads to
c3 =~ 0 and a linear relationship between the mass ratio and
the resulting isotope ratio in their mixture (see figure 1 for
A+C). This contribution explores the mathematical framework
to enable accurate isotope dilution analysis using regression-
based methods. In particular, this work builds on the con-
cepts introduced in our previous study [5] by extending the
regression models to three-component mixtures which enable
isotope-based measurements with matrix matching.

2. Theory

Consider the sample (A), natural standard (A~), and the iso-
topic standard (B). Analyzing the isotopic composition of the
various mixtures of these three materials forms the conceptual
landscape for the isotope-based methods of quantitation. In
general, we have the following equation for the balance of the
chemical amount of isotope i of the analyte, n(‘A) +n(*Ax) +
n(‘B), in any mixture of these materials:

_ —1
N AAxB = Z X; gWg mg Mg “)

E€A,Ax,B

Although most isotope-based quantitation approaches are
confined to the analyses of binary mixtures, the analysis of
trinary mixtures affords experimental designs where all meas-
urements are performed in the presence of identical amounts
of the sample in order to minimize the effects of the sample
matrix on the measurements.

Given that all isotope ratios are expressed relative to the
same denominator isotope (“E), the isotopic abundances x; g
and x g are related: Rg = x; g /X g. With this in mind, equation
(4) provides the isotope amount ratio, Raa«p, in any ternary
mixture of A, A-, and B:
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Figure 1. Relationship between the mass ratio of substances and the
isotopic composition of their mixtures. Consider substance A and its
isotopic analogues B and C. Overlap between the isotope patterns
generally leads to curved relationship (as in A+B) whereas larger
difference between the isotopic patterns of the analyte and spike

(as in A+C) exhibit nearly linear relationship. Note that the shape of
this curve depends also on the relative amounts of the substances
with some parts being more linear than others.

—1
E , X; pWg g My

EE€A,Ax,B
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Rypg =

The equation (5) forms the basis for the generalized isotope
dilution equations which rely upon the analysis of multiple
binary or ternary mixtures of the sample (A), natural stand-
ard (A~), or isotopic standard (B). Analytical solutions of this
equation with respect to w, are available for various isotope
dilution models. These include IDVMS where N=1...4[6, 7]
and SA-ID"MS where N=1...3 [8]. Although such solutions
are rigorous and provide explicit measurement models, they
have drawbacks. For one, analysts must choose the mathem-
atical equation which is tailored to the particular experimental
design. Thus, variations in the experimental design require
new mathematical measurement models, such as the double
isotope dilution (ID*MS) or triple isotope dilution (ID*MS)
among others. In addition, explicit mathematical measurement
models cannot easily accommodate situations where there are
more measurements than necessary (overdetermined systems).

The above issues notwithstanding, the most notable draw-
back of the analytical solutions of IDMS equations is the
rapid rise in the algebraic complexity with the number of mix-
tures analysed. The simplest of all isotope dilution methods
is ID'MS (which relies on measuring the isotopic composi-
tion of a single binary mixture). When fully expanded, this
equation (equation (1)) contains 46 indivisible subexpressions,
known as the leaf count. The algebraic complexity of higher-
order IDYMS equations rises rapidly with the number of mix-
tures measured as shown in table 2. Such algebraic complex-
ity is prohibitive for adoption of higher-order IDMS methods
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Table 2. Algebraic complexity of IDMS model equations.”

Binary models Complexity Trinary models Complexity
ID'MS 46 SA-ID'MS 85
ID*MS 129 SA-ID*MS 431
ID’MS 295 SA-ID’MS 1065
ID*MS 1221 SA-ID*MS 8917

*The complexity is measured as the leaf count (Mathematica) and assuming
identical isotopic composition of A and Ax.

and the purpose of this article is to describe affordable numer-
ical alternatives to solve IDMS equations of arbitrary com-
plexity. Special cases where analyte is formed during the ana-
lysis are not considered here but have been treated at length
elsewhere [9].

2.1 Regression method

Numerical approaches to solve equation (5) for wa can be
devised and may be preferable over the analytical solutions for
a variety of reasons. We have discussed the application of the
least squares method to provide solutions of standard isotope
dilution models which rely on binary mixtures [5]. Indeed,
it appears that many analysts do prefer numerical methods
over analytical expressions which has led to the adoption of
various empirical models to construct the calibration curves,
including the quadratic fits [10—12]. Empirical fitting functions
are approximations to the underlying theoretical measurement
models and it is inevitable that such approximations lead to
biases. Here we propose the adoption of non-empirical fitting
models over the polynomial functions.

Consider a set of mixtures made by combining A, A~, and B
in various proportions. Equation (5), governs the resulting iso-
tope ratios of such mixtures as a function of masses of the con-
stituent components and the mass fractions of the substances
in these solutions. Thus, the isotopic composition of any such
mixture can be expressed in a form of a rational function as
follows:

_ kymy +ky my, + kg my

hymy b, by mg

(6)

Here, kg and hg represent a grouping of variables whose
values depend solely on the characteristics of the material E
and are therefore unchanged during the experiment. As an
example, ky =x; AWaMy'. Consequently, we can consider
these six variables (ky 4, p and hy 4, p) as nuisance paramet-
ers and equation (6) can be rewritten in the linear rational form
by dividing both the numerator and denominator with /g:

amy + aymy, ~+azmg

agmy + asmy, +1-my

R =

@)

In the following sections we shall demonstrate the utility
of this expression and how the coefficients a relate to the mass
fraction of analyte, wa.

2.2. Measurement models

The coefficients a; — as in equation (7) provide a mathemat-
ical link between the mass fractions of the analyte in sample,
natural standard or isotopic standard. As an example, consider
the ratio a, /as:

—1
@k _ NiaWaMa ®)

—1
Clz kA* xi,A*WA*MA*

Thus, when the quantitation of substance A is traceable
through a standard of natural isotopic composition (A~), the
mass fraction of the analyte in the sample, w,, is related to the
regression coefficients as dictated from equation (8) and alike:

a L
Wy = wA*a—lg(’A,’A*) 9)
2

a
WA = Wax fg(kA7kA*)
5

(10)

where the parameter ga a. accounts for the possible discrep-
ancy between the molar masses and isotopic composition of A
and A-:

—1
_ xA*,zMA*

gUA*A%) = (11)

1
xA,jMA

Typically, the isotopic compositions of A and A+are nearly
identical. As a result, the numerical value of g(/A,*Ax) is close
to 1 when j =z and this factor therefore plays a minor role in
practice.

Note that equation (7) affords several estimates for the mass
fraction w, depending on the choice of the regression coef-
ficients. In the absence of measurement errors, these estim-
ates will be identical. In practice, however, the solution with
the smallest uncertainty ought to be selected and typically
will involve the numerator coefficients a,, a,, or a; (as in
equation (9)).

In cases when the mass fraction of B (wg) in the isotopic
standard is known, it can be used to obtain the mass fraction
of A:

Ay vip i
Wa :Wng( A,'B)
3

12)

wa =wgay - 8(“A,B) (13)
Here, ga g accounts for the discrepancy between the molar
masses and isotopic composition of A and B:
—1

xB,zMB

gUA*B) = (14)

1
)CAX]-MA

Given that the isotopic compositions of A and B are
markedly different by design, the value of ga g will not be
close to 1 and this factor therefore cannot not be overlooked.
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In the case of near-zero overlap between the isotope patterns
of A and B, xp ; ~ x, ; and the following model is useful:

wy =wga, - g(A,'B) mwya, - Ma /Mg (15)

2.3. Linear least squares fitting

Equation (7) provides regression-based path to obtain the mass
fraction of analyte, wy, using the method of isotope dilution.
This non-linear five-parameter model can be fitted to the data
using a variety of computational methods. More conveniently,
linear regression can also be used to obtain the coefficients of
equation (7) [5, 13, 14]. For this, it can be rewritten as follows:

Rmg = ay -ma +ay -may +az -mp

—a4-RmA—a5 -RmA* (16)

The, above parametrization is not unique but it eschews
mass ratios to avoid potential division by zero. If only the mix-
tures of A and B are employed, as in ID'MS, the equation (16)
becomes (with regression coefficients renumbered to maintain
unbroken sequence):

Rmpg =ay -ma +ar-mg —az - Rmp 17

The ordinary least squares estimates of coefficients a are
given as

a=(X"X)"'X"Y (18)
where Y is a column vector of Rmp values and X is the exper-
imental design matrix:

X = {ma,ma«,mp, —Rma, —Rma. } (19)
or, in the case of measurements involving mixtures of A and
B only,

X = {mA,mB, —RmA} (20)

Regression coefficients can be readily obtained by solv-
ing equation (18) using common spreadsheet software capable
of performing basic matrix manipulations (see supplementary
information (stacks.iop.org/MET/57/025016/mmedia)).

The linearized version of the rational measurement model
allows us to employ linear least squares. However, strictly
speaking, ordinary least squares fit might not always be an
appropriate method. First, the stimulus variables cannot be
regarded as exact. In addition, not all variables are independ-
ent of each other: there are correlations among the stimu-
lus variables as between ma and Rmy in equation (16), for
example. Furthermore, there are correlations between some of
the stimulus variables and the response variable (for example,
between mp and Rmg). When considering the various fitting
algorithms, the impact of these correlations has to be eval-
uated, for example, by using the generalized distance linear
regression which can take into account the covariance struc-
ture. One can also consider Bayesian methods and fully model

the relationships between the fitting variables. The uncertainty
propagation of isotope dilution results can be performed using
the Monte Carlo method [15] with tutorial examples of such
evaluations readily available [16].

2.4. Simplified cases

The simplest case, and perhaps one that is most encountered
in laboratory practice, corresponds to a situation of negligible
isotopic overlap between the analyte and the isotopic stand-
ard. This scenario leads to h, = 0,h,, = 0,kz =0 and, con-
sequently, equation (6) simplifies to

RmB :almA+a2mA* (21)
where a, =k, /hg and a, =k, /hg. In table 3 we provide a
summary of regression models applicable for isotope dilution.

Note that such simplification might not be justified in practice
when affordable spikes are poorly enriched.

2.5. Validation

Regression-based (graphical) solutions of the various isotope
dilution designs are derived from first principles and these
expressions can be further validated by comparing them with
the corresponding analytical solutions. To evaluate the gen-
eric five-parameter regression model (M1, table 3), we have
developed an explicit analytical measurement model tailored
for five isotope ratio measurements from trinary mixtures, sim-
ilar to the models which we have developed previously for
less complex experimental designs [8]. The compact form of
this equation fills an entire page and is given in the Supple-
mentary Information. Both measurement models (‘analytical’
and ‘graphical’) provide identical results on synthetic data
(see supplementary information).

3. Tutorial examples

To add further familiarity with the regression-based isotope
dilution methods we provide several practical examples.

3.1. Example 1: Simple measurement of meloxicam

In 2018 the NRC released a Certified Reference Material of
veterinary drug residues in bovine muscle, BOTS-1 [17]. In
short, the method relies on taking beef sample aliquots which
were spiked with either known amounts of natural or isotopic
standard (or both). Samples were then subjected to extraction
followed by liquid chromatography (LC) and the eluting sub-
stances were detected using mass spectrometry (MS). Among
the simplest ways to perform isotope-based quantitation is to
use isotopic standard with the measurement results shown in
table 4. To obtain the mass fraction of meloxicam in BOTS-1
sample, wa, we use the linearized two-parameter measurement
model (table 3, M4) which gives a; =0.228 from ordinary
least squares fitting. Assuming ga g = Ma /Mg and wg = 13.3
ng/g, we obtain the following result:
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Table 3. Summary of regression models applicable for isotope dilution.

Model Components Full regression model Measurement model for wa
M1 A, Ax,B Rmp = ay-ma + ay-ma« + az-mp — as-Rma — as-Rmpa . wa = wax-(a1/a2)- g(’A ’A*)

wa = wax-(aa/as)- g(kA *Ax)
M2 A,B Rmp = aj-ma + ay-mg — az-Rmap WA:WB~((11/L12) ( )

wa =wg-(a3)-g( A7kB)
Model Components Simplified regression model (linear approximation) Measurement model for wa
M3 A, Ax,B Rmp = ay-ma + a-max WA :wA*-(al/ag)-g(iA,'A*)
M4 A,B Rmp = aj-ma WA = WB-(al)-g(’A,kB)

Table 4. Determination of meloxicam in bovine muscle Certified
Reference Material BOTS-1 using LC-MS.

Table 5. Determination of meloxicam in bovine muscle Certified
Reference Material BOTS-1 using LC-MS.

Nr. ID mA/g mg/g R Nr. ID ma /g mA*/g mg/q R

1 AB 0.5073 0.0924 1.270 1 A 0.4956 0.0000 0.0000 155

2 AB 0.5022 0.0926 1.246 2 Ax 0.0000 0.1845 0.0000 155

3 AB 0.5029 0.0914 1.245 3 B 0.0000 0.0000 0.1827 0

4 AB 0.5044 0.0945 1.206 4 AB 0.5073 0.0000 0.0924 1.270
5 AB 0.5006 0.0929 1.216 5 AxB 0.0000 0.1852 0.1845 0.972
The mass fraction of meloxicam-d3 (B) in the standard solution is 6 AAxB 0.4967 0.1839 0.2786 1.052
wp = 13.3 ng/g. Molar mass of meloxicam is Ma = 351 gmolfl and The mass fraction of meloxicam in the standard solution is wasx = 13.03
Mg = 354 gmol ™ 1 Isotope ratio, R, is the average measured ratio from ng/g.

MS-MS transitions of m/z 352 — 115 and m/z 355 — 115 from three
replicate measurements.

'% =13.3-0.228- ol

WAZWB A 354

=3.0ng/g (22)

3.2. Example 2: Elaborate measurement of meloxicam

The above example relies on isotopic standard and uses lin-
earized measurement model. A set of more elaborate meas-
urements are summarized in table 5

The mass fraction of meloxicam in BOTS-1 can be cal-
culated using the conventional ID’MS measurement model
(assuming ga 4, =1) which does not require the mass fraction
of meloxicam-d3 standard to be known:

—R4)(Ry — Rs)
—R3)

Max,s mp 4(R3
ma 4 mg 5(Rs — Ry ) (Rs

WA = WA (23)

Using measurements Nr. 1-5 from table 5, we obtain wp =
3.12 ng/g for meloxicam in BOTS-1. Identical result can be
obtained using regression method when same input data are
used. For this, we use the full 5-parameter measurement model
(table 3, M1). The regression coefficients a;, a, or a4, as
provide the mass fraction of the analyte:

0.2333

WA_WA*az 13. 0309745 =3.12ng/g (24)
0.00150

Wa = wA* " =13. 030.00629 =3.12ng/g (25

An advantage of using regression methods over custom-
tailored IDMS equations is that one can readily accommodate

additional measurements which would be otherwise incompat-
ible with the IDMS equations at hand. As an example, if one
wishes to incorporate measurement Nr. 6 from table 5, new
measurement model equation needs to be developed specific-
ally for this case as it contains a mixture of three components.
Such equations are unwieldy and incorporating all six meas-
urements shown in table 5 leads to expressions that are far too
complex for them to be useful. Thus, ignoring measurement
Nr. 5 leads to measurement model equation

—mp 4 Max6(R3 — Ry)(R2 — Re)
+ma 4 mpe(Ry— Ri)(R3 — R)
R4)(R — Re)

(26)

WA = WAx
+mp 4 mae(R3 —

whereas omitting result Nr. 3 leads to a significantly more
complex measurement model equation

+mpxa mps mpe(Rs — Rg)(Rs — Ry)
— Maxs M4 Mpe(Rs — Re)(Rs — Ry)
+mpx6 mpa mps(Rs —Rs)(Re — Ry)

WA = Wax (27)

—ma4 mps mpe(Rs — Re)(Rs —Ry)
+mas mg4 mpe(Rs — Re)(Rs — Ry)

—mag mpa mps(Rs—Rs)(Re —R1)

In both cases we assume ga a« = 1. The former measure-
ment model provides wa = 3.12 ng/g whereas the latter gives
wa = 3.13 ng/g. While analytical expressions are far too com-
plex to accommodate all results shown in table 5, the regres-
sion method has little difficulty to do so, giving wa = 3.12
ng/g from either the coefficients a, a, or a4, as in the model
M1 (table 3).
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Table 6. Determination of nitrate in standard solution with known
mass fraction, wa = 50.6(1) mgkg~', using GC-MS.

Nr. 1D malg max/g mp/g R
1 AA+B 0.4995 0.4971 0.6947 0.5888
2 AA+B 0.6989 0.7962 0.5972 1.0478
3 AA-B 0.2999 1.6884 1.1911 0.8547
4 AA~B 0.4987 1.9895 0.4959 2.4670
5 AA-B 0.6966 2.2896 0.3972 3.5663
6 AA-B 0.6981 3.7811 0.7947 2.8261
7 AA+B 0.4976 4.4727 0.4962 5.0209

The mass fraction of nitrate in the primary standard solution is
was = 107.3(2) mgkg ! and the isotope ratio, R, is the ratio of fragment
ions m/z 46 (*NO;") and 47 (SNO;).

In summary, data presented in table 5 can be evaluated
using several IDMS equations depending on which subset
of the measurements is employed. In contrast, regression-
based methods can accommodate a variety of data with a
single general equation that can be applied to all three scen-
arios. Moreover, the same regression model can be used to
obtain results from overdetermined system of measurements
involving measurements Nr. 1-6.

3.3. Example 3: Elaborate measurement of nitrate

We have performed determination of nitrate using triethylox-
onium derivatization and gas chromatography mass spectro-
metry (GC-MS) [18]. Measurements were done on a stand-
ard solution with known mass fraction of nitrate and results
are shown in table. 6. While the experiment shown here is not
necessarily a ‘good’ design for isotope dilution, it aims to illus-
trate the flexibility of the underlying mathematical technique.

Applying all measurements from table 6, the ordinary
least squares fit of the full measurement model (M1) yields
a; =0.2711 and a, =0.5722 which, in turn, leads to the
following mass fraction of nitrate in the sample standard
solution:

wa = WA*ﬂ = 50.8 mgkg ™!
a»

(28)

When the experiment provides more data points than
regression parameters, as in table 6, the uncertainty of the
result can be estimated by propagating the uncertainty of the
regression coefficients. Thus, when all seven measurements
are taken into consideration, the ordinary least squares fit
yields coefficients with standard uncertainties u(a;) = 0.0067
mgkg~! and u(ay) =0.0026 mgkg~', and correlation coef-
ficient r(a;,a;) = 0.358. These uncertainties are then propag-
ated in accordance with the GUM (as implemented in the NIST
Uncertainty Machine at uncertainty.nist.gov) to yield a value
wa = 50.8 mgkg~! with standard uncertainty u(w,) = 1.2
mgkg~! which is in agreement with the known mass fraction
of nitrate in this sample, wa = 50.6(1) mgkg~!.

4. Conclusion

In this manuscript we present a general framework in sup-
port of regression-based approach for isotope dilution. This
method can be implemented in Excel as it is based on mul-
tiple linear regression and, more importantly, it avoids the
use of polynomial functions which can lead to percent-level
errors. Overall, the proposed regression method offers min-
imal algebraic complexity compared to analytical solutions,
has the ability to deal with overdetermined systems, and
can accommodate a variety of experimental designs under
a single underlying mathematical expression. Furthermore, a
key advantage of the regression-based method is that the math-
ematical complexity does not rise with the amount of data
considered.
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