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Abstract
We present a 3D extension of the Autoprogressive Method (AutoP) for quantitative quasi-static
ultrasonic elastography (QUSE) based on sparse sampling of force-displacement measurements.
Compared to current model-based inverse methods, our approach requires neither geometric nor
constitutive model assumptions. We build upon our previous report for 2D QUSE and
demonstrate the feasibility of recovering the 3D linear-elastic material property distribution of
gelatin phantoms under compressive loads. Measurements of boundary geometry, applied surface
forces, and axial displacements enter into AutoP where a Cartesian neural network constitutive
model (CaNNCM) interacts with finite element analyses to learn physically consistent material
properties with no prior constitutive model assumption. We introduce a new regularization term
uniquely suited to AutoP that improves the ability of CaNNCMs to extract information about
spatial stress distributions from measurement data. Results of our study demonstrate that
acquiring multiple sets of force-displacement measurements by moving the US probe to different
locations on the phantom surface not only provides AutoP with the necessary information for a
CaNNCM to learn the 3D material property distribution, but may significantly improve the
accuracy of the Young’s modulus estimates. Furthermore, we investigate the trade-offs of
decreasing the contact area between the US transducer and phantom surface in an effort to increase
sensitivity to surface force variations without additional instrumentation. Each of these
modifications improves the ability of CaNNCMs trained in AutoP to learn the spatial distribution
of Young’s modulus from force-displacement measurements.

1. Introduction

Quantitative elasticity imaging of breast tissue in vivo is inherently a three-dimensional (3D) inverse
problem. Ophir et al first described quasi-static ultrasonic elastography (QUSE) whereby radio frequency
(RF) echo frames are acquired as an ultrasound (US) transducer is slowly pressed into the surface of
tissue (Ophir et al 1991). Application of a correlation-based speckle-tracking algorithm to pre- and
post-deformation frames provides estimates of tissue displacements within the field of view. Calculating
gradients of the displacements along the beam axis to estimate strain fields is a qualitative form of QUSE
often referred to as ‘strain imaging’. Quantitative estimates of tissue mechanical properties require the
displacement or strain measurements be input to an inverse problem to estimate parameters of a pre-selected
constitutive model. In these model-based approaches, stresses can be eliminated using the selected
constitutive model or assumed to be approximately uniform when a large compressor applies the force
load (Ophir et al 1991).

Clinical US breast imaging exams are typically performed with one-dimensional (1D) linear arrays,
meaning the B-mode images—and displacement estimates—are two-dimensional (2D) (Szabo and
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Lewin 2013). Furthermore, displacements can be estimated sensitively only in the direction of wave
propagation where signal phase is available, thus limiting measurements to 1-D (axial) displacements in a 2D
plane (Lubinski et al 1999). Even though 2D QUSE has demonstrated feasibility for improving detection and
differential diagnosis of malignant breast lesions (Schaefer et al 2011, Zhi et al 2007, Athanasiou et al 2010,
Liu et al 2016, Barr 2010, Barr et al 2012), improper but often necessary 2D plane-stress or plane-strain
assumptions in the inverse problem may lead to artifacts when the assumptions are violated, thus limiting
the diagnostic value of elastograms (Doyley 2012).

Several methods for estimating strain or material parameters within a 3D tissue volume have been
proposed. Perhaps the most straight-forward technique is a free-hand sweep of a 1-D linear array in the
elevational direction to estimate displacements at regularly spaced intervals throughout the volume. The set
of RF echo frames can be ‘stitched’ together into a 3D data set upon which speckle-tracking algorithms can
operate to estimate 3D displacements all through the scanned volume (Foroughi et al 2013). Alternatively,
speckle-tracking methods can operate on pairs of pre- and post-compression frames at each location. Axial
strains computed as the gradient of the each displacement estimate can be concatenated to form a 3D strain
volume (Lindop et al 2006, Lee et al 2018). The latter fails to make use of 3D echo data whereas the former
suffers from severe decorrelation effects arising from uncertainty in estimated probe position, a common
problem in swept synthetic aperture imaging (Bottenus et al 2016). Richards et al automated the data
acquisition process by attaching a US transducer to a positioning system and collecting volumetric RF data
after compression with platens (Richards et al 2009), greatly reducing jitter errors between successive RF
frames while utilizing full 3D echo information for displacement estimation. Similarly, other investigators
adapted an automated breast volume scanning (ABVS) system to collect pre- and post-compression RF
data (Wang et al 2017, Hendriks et al 2016, Hendriks et al 2018, Tyagi et al 2017). Even though these
automated methods reduce decorrelation caused by uncertainty of the US probe position, they require long
acquisition times and are thus susceptible to motion artifacts in displacements estimated via speckle-tracking.
Other methods of acquiring 3D RF echo data include the use of a mechanically swept 1D array (Sayed et al
2013, Sayed et al 2014, Fisher et al 2007, Bharat et al 2008, Treece et al 2008, Housden et al 2011) or a 2D
matrix array (Deprez et al 2009, Papadacci et al 2016b, Papadacci et al 2016a, Gijsbertse et al 2016,
Fisher et al 2010). Compared to data acquisition via free-hand scanning or an ABVS system, these methods
are less susceptible to motion artifacts between pre- and post-deformation frames. Generally, measurements
for 3D QUSE are densely sampled to estimate material parameters throughout a continuous volume.

We previously developed 2D Cartesian neural network constitutive models (CaNNCMs) capable of
learning the spatially varying stress-strain relationship of linear-elastic materials from force-displacement
measurements without prior model assumptions (Hoerig et al 2019). Unlike other quantitative QUSE
approaches, CaNNCMs are capable of learning material properties from a sparse sampling of measurement
data. Considering that CaNNCMs provide a non-parametric description of mechanical behavior, further
development of this method may provide the tools needed to discover which material properties are most
relevant to clinical imaging simply by improving the accuracy of material property estimates. Accurate
estimates provide device-independent results that can minimize instrumentation contributions to
inter-patient variability.

Barbone and Gokhale previously proved the Young’s modulus distribution can be estimated only
up to a multiplicative constant using displacement measurements when force measurements are
unavailable (Barbone and Gokhale 2004). Tyagi et al later proposed methods for incorporating force
measurements into QUSE (Tyagi et al 2014). The force boundary conditions (BCs) considered in Tyagi et al
(2014) were equivalent to a single axial force measured as a probe was pressed into part of the object surface;
i.e. there were no measurements of the force distribution across the phantom surface. Similarly, in this
report, we collect force-displacement measurements in independent planes throughout the volume of a
heterogeneous gelatin cube as an ultrasound probe compressively loads one surface. As the load is applied,
surface force is measured while pre- and post-deformation RF echo data are acquired. Measurements
resulting from one compressive load step are the applied force and an estimate of axial displacements within
the US image plane. The important distinction is that full interior displacement data were used in Tyagi et al
(2014) whereas we only consider displacements within a plane for each compressive load. We will
demonstrate how a single measurement of surface force and interior displacements limited to one plane can
be a detriment to AutoP, but a new regularization term uniquely suited to AutoP can extract additional
information encoded within measurement data to improve the ability of CaNNCMs to learn material
properties. We then compare the effect of compressor size on Young’s modulus estimates. Finally, we evaluate
the effect of US probe force-displacement measurement errors on Young’s modulus estimates and propose
sampling strategies for effective 3D elastography using CaNNCMs trained in AutoP.
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Figure 1. (a) Geometry of the linear-elastic gelatin phantom. Three stiff inclusions are embedded in a soft background material
(8.9± 0.2 kPa). The spherical inclusions are the same stiffness (24.2± 0.8 kPa) whereas the cylindrical inclusion is slightly softer
(20.5± 0.3 kPa). The bottom row compares the large and small probe compressor sizes relative to the phantom. Gray squares
within the phantom indicate the scan plane of the US probe when centered in both the lateral and elevational directions relative to
the beam axis. (b) The two compressor geometries are shown. (c) Representation of the 3D Young’s modulus distribution within
three orthogonal planes. Plane 3 (black) spans x1 − x2, Plane 2 (blue) spans x1 − x3, and Plane 1 (red) spans x2 − x3. The number
for each plane was chosen to indicate the direction of the normal vector to the plane. For example, the normal vector to Plane 3 is
x3. (d) An alternative method of visualizing the Young’s modulus to observe the shape of the inclusions along all three spatial
dimensions simultaneously. The circle circumscribed on Plane 3 (left) indicates the boundary of a cylinder that extends through
the phantom in the x3 direction. Computing the Young’s modulus on this boundary and ‘unrolling’ the cylinder yields the surface
plot on the right.

2. Experimental methods

2.1. Measurements on linear-elastic gelatin phantom
We manufactured a phantom using a mixture of deionized water, gelatin powder, and corn starch added to
provide acoustic scattering. The phantom was a 50× 50× 50 mm3 cube comprised of a soft background
material and three embedded inclusions. Two of the inclusions were spheres with radii of 5 and 7.5 mm
whereas the third inclusion was a cylinder with 5 mm radius and 50 mm length. Separate macro-indentation
measurements were performed on a sample of each material manufactured under the same conditions to
provide an independent Young’s modulus estimate (Altahhan et al 2016). For these indentation
measurements, a 5 mm spherical probe was pressed into the sample surface up to 1 mm while acquiring
force measurements. The force-displacement loading curves were fit to a Hertzian contact model to estimate
the Young’s modulus of the tissue sample. Indentation measurements were performed using a TA.XTPlus
texture analyzer (Texture Technologies, Hamilton, MA). Using this procedure, the Young’s modulus
values of the background gelatin material, spherical inclusions, and cylindrical inclusion were estimated
to be 8.9± 0.2 kPa, 24.2± 0.8 kPa, and 20.5± 0.3 kPa, respectively. A diagram of the phantom
geometry is shown in figure 1(a). Images in the top row of figure 1(a) are three different views of the
phantom.

Measurements were acquired using the same experimental setup described in (Hoerig et al 2017, Hoerig
et al 2019). Compressive loads were applied by the US probe to induce 3% total strain over four load
increments. Axial force, probe position and orientation, and a RF echo frame were acquired after each load
increment. A Siemens Sonoline Antares ultrasound system (Siemens Healthcare USA, Mountainview, CA)
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Table 1.Description of the force-displacement data sets. The field ‘x3 Position’ indicates the offset of the US probe in elevation relative to
the center plane of the phantom. The addition of ‘S’ before the set number indicates simulated data. Simulated data were limited to 3%
strain, hence no maximum force values are reported for S1–S3, S9–S11 for 7% applied strain.

Phantom Max. Force (mN) Max. Force (mN)
Set # Rotation x3 Position (3% Strain) (7% Strain)

1 0◦ 0 mm 943 2345 Large Compressor
2 0◦ –4 mm 929 2337
3 0◦ +4 mm 1053 2545
4 0◦ –8 mm 881 2203
5 0◦ +8 mm 863 2230
6 0◦ –12 mm 825 2084
7 0◦ +12 mm 836 2141
8 90◦ 0 mm 1012 2478
9 0◦ 0 mm 509 1281 Small Compressor
10 0◦ –4 mm 501 1284
11 0◦ +4 mm 481 1248
12 0◦ –8 mm 463 1214
13 0◦ +8 mm 455 1200
14 0◦ –12 mm 428 1131
15 0◦ +12 mm 417 1103
16 90◦ 0 mm 518 1332
S1 0◦ 0 mm 714 N/A Simulated Large Compressor
S2 0◦ –4 mm 697 N/A
S3 0◦ +4 mm 697 N/A
S9 0◦ 0 mm 427 N/A Simulated Small Compressor
S10 0◦ –4 mm 419 N/A
S11 0◦ +4 mm 418 N/A

with a VF10-5 linear array probe at 8 MHz center frequency was used for RF data collection. The
speckle-tracking algorithm GLobal Ultrasound Elastography (GLUE) (Hashemi and Rivaz 2017) operated on
the echo data to estimate axial displacements within the echo acquisition region. We refer to a data set as the
collection of axial forces applied by the US probe, axial probe displacement, and internal displacements
measured over all load increments in an experiment.

Two different rigid holders were used to attach the US probe to the positioning system. We denote these
as large and small compressors (figure 1(b)). For the large compressor, the holder completely encased the
probe and extended the transducer face in both x1 and x3 dimensions to 73× 42 mm2. Conversely, the small
compressor probe holder encased only the transducer handle, leaving the face of the probe at its native
46× 11 mm2. Images in the bottom row of figure 1(a) compare the relative size of the large and small
probe compressors with the phantom surface. Measurements acquired with both compressor sizes
allowed us to explore how the shape of the applied force influences training and elasticity imaging
accuracy.

Eight data sets were acquired with each compressor and are compiled in table 1. Before each set of
measurements a small compressive pre-load was applied by the US transducer. Gravity loading and body
forces caused a slight initial deformation of the phantom. The pre-load was intended to offset the effects of
these body forces to provide a known initial configuration and ensure complete contact between the
compressor and phantom surface. After the applying the pre-load, the phantom height was reduced to
48 mm. Data sets 1–7 were acquired by positioning the large compressor at x3 = 0, –4,+4, –8,+8 mm, –12,
and+12 mm. Each of these data sets was separated by at least 5 elevational beam widths, ensuring no
correlation in the RF echo signals. Measurements for data set 8 were collected by rotating the phantom 90◦

about the x3-axis and positioning the probe at x3 = 0. Rotating the phantom in this way places the cylindrical
inclusion closest to the probe. Data sets 9–16 were acquired in the same manner as sets 1–8 except the large
compressor was exchanged for the small compressor.

Experiments 1–16 were repeated by increasing the magnitude of the applied load to induce 7% global
strain over a total of six load increments. The extra two load increments were added to avoid decorrelation
errors during speckle tracking and numerical instability in later finite element analyses (FEAs). Gelatin
phantoms remain linear in their elastic response up to≈10% strain (Hall et al 1997) and so there should be
no distortion arising from material non-linearity. We denote these additional data sets using the same
numbers in table 1 with an additional ‘L’; e.g. data set 1 was acquired under 3% total strain whereas data
sets 1 L implies 7% total strain.
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Figure 2. (a) Finite element mesh of the gelatin phantom used in AutoP and to generate simulated data sets. Interior
nodes residing in an ultrasonic scan plane at x3 = 0 are highlighted. (b) Architecture of a 3D CaNNCM. Variables v and w
indicate network weights, while N andM are numbers of nodes in corresponding layers. Stresses and strains are
expressed in Voigt notation and map from the original tensors as [σ11 σ22 σ33 σ12 σ13 σ23]→ [σ1 σ2 σ3 σ4 σ5 σ6] and
[ε11 ε22 ε33 2ε12 2ε13 2ε23]→ [ε1 ε2 ε3 ε4 ε5 ε6]. The material property network (MPN) accepts a scaled strain vector as input
and returns a scaled stress vector at the output. Sεx and Sσ are scale factors weighting the inputs and outputs of the MPN.
Together, the MPN and spatial network (SN) learn the spatial distribution of material properties. (c) Flow diagram summarizing
the AutoP training process briefly described in section 2.5. More details can be found in Hoerig et al (2019).

2.2. Finite element model
A finite element (FE) model of the gelatin phantom and US probe was created in ABAQUS 6.13 commercial
finite element software to generate simulated, noise-free force-displacement data sets using a linear-elastic
constitutive model with known Young’s modulus and Poisson’s ratio. This same mesh was later used to train
CaNNCMs in AutoP using both simulated and experimentally acquired measurement data. The FE mesh
used for experimental modeling is shown in figure 2(a). This mesh was comprised of 14043 10-node
tetrahedral elements (20354 nodes). Points highlighted in figure 2(a) correspond to mesh nodes located in
the scan plane when the US probe is positioned at x3 = 0 mm. Internal displacement measurements applied
in FEAε (described in section 2.5) are imposed at these nodes. We chose to model the phantom in its
pre-strained state; thus, the phantom mesh spanned 51 mm in both the x1 and x3 directions but only 48 mm
in x2. The extension of the phantom in the lateral and elevational directions was to account for
incompressibility of the gelatin phantom. Both the large and small compressor FE models consisted of eight
8-node hexahedral elements characterized by a very large shear modulus to approximate a rigid body.
Contact between the probe and phantom FE meshes was defined to be frictionless and small sliding, the
latter to increase stability of the contact mechanics. The bottom nodes of the phantom were constrained by a
‘pinned’ boundary condition for all FEAs. Any force BCs were applied as point loads to the top-middle node
of the probe model. Motion of the probe was constrained to only the x2 direction to avoid rigid body motion
in the lateral or elevational directions.

In section 2.4, we will describe AutoP, wherein force and displacement BCs are applied in separate FEAs.
Internal deformation of the phantom volume as estimated via speckle-tracking is limited to axial
displacements within the scan plane. We measured displacements at up to seven parallel planes in the
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phantom during AutoP training. To accommodate as many as seven ultrasound scan planes, we made sure
there were meshed planes at x3 =−12,−8,−4,0,+4,+8,+12 mm. All FEAs were computed in
ABAQUS 6.13.

Most FEAs in this study adopted the right-hand coordinate system shown in figure 1(a) where the origin
is placed at the center of the phantom. All force-displacement measurements are acquired with reference to
this fixed coordinate system (e.g. the axial direction is always along x2 regardless of phantom rotation).
However, the phantom was rotated before acquiring Data Sets 8 and 16. We account for this by rotating the
phantom mesh to match experimental conditions before solving the relevant FEA. Then, computed
stress-strain fields are rotated back to the fixed coordinate system before further
processing.

2.3. Simulated noise-free data
Noise-free force displacement data sets were generated by simulating some of the experiments described in
section 2.1. Using the Young’s modulus values of the phantom estimated via macro-indentation, Poisson’s
ratio ν= 0.3, and the previously described FE mesh1, we first performed displacement controlled FEAs by
applying displacement BCs to the US probe in the FE model to induce 3% compressive strain over four equal
load increments (1.43 mm total axial displacement). We chose ν= 0.3 to match the Poisson’s ratio selected
for CaNNCM pre-training, described in appendix A. Selecting a Poisson’s ratio near or equal to 0.5 can cause
difficulty in generating physically realizable stress-strain pre-training data and numerical instabilities in a
FEA. As later shown in section 3, pre-training a CaNNCM as a compressible material does not inhibit the
ability of network to accurately estimate Young’s modulus values even for incompressible gelatin
phantoms.

Contact forces were estimated in the displacement-controlled FEAs to simulate noise-free force values.
Then, to ensure consistency in the simulated data, the computed contact forces were applied as a point load
to the probe in separate FEAs to simulate noise-free displacements. This method was used to generate
simulated versions of data sets 1–3 and 9–11. We label the simulated data sets S1–S3 and S9–S11 to remain
consistent with the naming convention of the experimental data sets. Two additional data sets derived from
S1 and S9 utilized axial displacements at all nodes in the phantom mesh. We label these S1′ and S9′ and their
purpose is to test AutoP and 3D CaNNCMs under nearly ideal conditions.

2.4. Autoprogressive method with 3D CaNNCMs
The Autoprogressive (AutoP) method is a supervised machine learning technique that learns spatial
distributions of stresses and strains as force-displacement measurements interact with finite-element
algorithms and neural network structures (Ghaboussi et al 1998). AutoP is a fundamentally different
approach to the inverse problem in elastography. Force-displacement measurements and knowledge of
external object shape are combined with artificial neural networks (ANNs) and finite element analysis to
iteratively produce increasingly accurate estimates of all stresses and strains free from prior constitutive
model assumptions. The power of AutoP lies in the combination of physical modeling through FEA and
machine learning that extracts stress-strain information from force-displacement measurements. By tightly
coupling the ANNs with FEA, principles of mechanics—stress equilibrium and deformation compatibility
conditions—constrain the material behavior learned by the networks to lead to physically consistent
soft-computational constitutive models. After an ANN learns the stress-strain relationships, material
parameters can be estimated from any chosen constitutive model applied in a separate process. Even though
prior research has shown neural networks trained in AutoP can learn the mechanical behavior of fairly
complex materials (e.g. Hashash et al (2006a), Hashash et al (2006b), Jung and Ghaboussi (2006), Jung and
Ghaboussi (2010), Kim et al (2012)), tests of AutoP using CaNNCMs have so far been limited to
linear-elastic materials.

As we described for 2D elasticity imaging (Hoerig et al 2019), CaNNCMs are comprised of a material
property network (MPN) that learns a spatially averaged mapping from strain to stress (Rm : ε→ σ) and a
spatial network (SN) that maps coordinate input to a spatially varying strain-scaling vector (Rs : x→ Sεx).
These two networks cooperate to learn the spatially-varying stress-strain relationship exhibited by an object.
Figure 2(b) illustrates the 3D CaNNCM architecture.

1 The FE mesh does not match the internal phantom geometry. Therefore, to create the spherical inclusions, we utilized a user-defined
field (USDFLD) in Abaqus.
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The MPN in a 3D CaNNCM has Nc = 6 components at the input and output. The lth component of a
stress vector σn

l computed by the MPN for the nth input strain vector ε(xj) at spatial location xj can be
expressed as

σn
l (ε(xj)) = Sσ tanh

 Nh2∑
c=1

wlc tanh

 Nh1∑
b=1

wcb tanh

(
Ni∑
i=1

wba tanh

(
εi(xj)

Sεixj

)) , (1)

where 1≤ (l, i)≤ Nc = Ni = 6. Nh1 = Nh2 = 10 are the number of nodes in the first and second hidden
layers, respectively, and tanh(·) denotes a hyperbolic tangent function. Spatial scaling values Sεixj for the ith
strain component are computed by the SN with input xj,

Sεixj =

ϕ

Mh5∑
f=1

vif tanh

Mh4∑
e=1

vfe tanh

Mh3∑
d=1

ved tanh

Mh2∑
c=1

vdc tanh

Mh1∑
b=1

vcbϕ

(
Mx∑
a=1

vbaxa

) . (2)

We removed the subscript j in (2) to avoid confusion with indexing the coordinate vector x as xa. As shown
in figure 2(b), connection weights for the MPN are denoted by {wlc,wcb,wba} ∈ RM×N and weights of the SN
are
{
vba,vcb,vdc,ved,vfe,vif

}
∈ RM×N, where the dimensionsM and N are determined by the number of

nodes in the hidden layers associated with a connection weight. The first and last layers of the SN use the
logistic activation function ϕ(x) = 1/(1+ e−x) instead of tanh(x) because the output Sεx is always positive
and a negative valued coordinate input will map to a positive number. Our choice of activation functions for
the SN is important since we do not implement node biases. Similar to the MPN, coordinate inputs of the SN
are shifted and scaled to reside within±0.8. Spatial scaling values at the output of the SN are shifted and
scaled to [0.1, 0.8] before training.

Fixing values for the activation functions and Sσ , the output of the MPN for a given strain vector input
can be altered by adjusting the connection weights of either the MPN or SN (the latter also changes Sεx). The
inverse problem of estimating material properties from force-displacement measurements is often posed as
an optimization problem. The parameters of a pre-selected constitutive model are identified to match unk ,
which are displacements computed in a forward FEA, to ûnk that are measured experimentally. We replace the
constitutive model with a CaNNCM and train the network (i.e. find weights of the MPN and SN) to
minimize the objective function in (3). Given Np load increments and displacements estimated at Nd nodes
in the FE mesh, the objective function minimized by training the MPN and SN in AutoP (Rm and Rs,
respectively) is the L1 norm of the difference between displacement vectors unk and û

n
k :

Rm,Rs = argmin
Rθm ,Rθs∈R

Np∑
n=1

Nd∑
k=1

|unk{Rm,Rs}− ûnk |, (3)

where Rθm and Rθs correspond to the weights of the MPN and SN, respectively. A thorough description of
how AutoP minimizes (3) is provided in Hoerig et al (2019) and is summarized in figure 2(c). Here we briefly
review the AutoP training process in order to introduce a new regularization term.

2.5. AutoP iterations
Two FEAs are solved in every iteration of AutoP to generate stress-strain training data from
force-displacement measurements. Briefly, the stress equilibrium requirement of FEA relates forces to
stresses and the compatibility requirement relates displacements to strains. In FEAσ , measured forces from a
given load increment are applied as BCs to the FE mesh. We can be confident the stresses computed in FEAσ

are physically consistent estimates of the actual stress in the material because of stress equilibrium
requirements. Similarly, measured displacements are applied as constraints in FEAε and the computed
strains are assumed to be physically consistent estimates of the actual strain due to compatibility
requirements. The MPN is then retrained during the kth AutoP iteration using stresses σ̂n

l (xj) computed in
FEAσ and strains ε̂(xj) computed in FEAε at N′

x mesh integration points2:

Rk+1
m = argmin

Rθm∈R

1

2

N′
x∑

j=1

Nσ∑
n=1

Nc∑
l=1

(σ̂n
l (xj)−σn

l (ε̂(xj));R
k
θm ,S

ε
xj))

2, (4)

2 Nx refers to the total number of integration points in the FE mesh and N′
x ⊆ Nx.
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where a semicolon indicates the term is parameterized by the following values and Nσ refers to the number
of stress-strain training pairs at xj. Nσ > 1 when implementing a training window and frame invariance
(see Hoerig et al (2019) or appendix A). Note that (4) refers to backpropagation training.

The objective function in (4) is further minimized by adjusting the spatial scaling values Sεx ,

Ŝεxj = argmin
Sεxi∈R

1

2

Nx∑
j=1

Nσ∑
n=1

Nc∑
l=1

(σ̂n
l (xj)−σn

l (ε̂(xj));R
k+1
θm

,Sεxj))
2. (5)

The retrained MPN Rθm is used in (5) so that any information about the spatially-varying stress-strain
relationship that cannot be captured by the MPN connection weights—in this case the spatial
distribution—will be captured by the spatial scaling values (and therefore the SN connection weights). An
algorithm for minimizing (5) is given in Hoerig et al (2018). We later devised a significantly faster version of
the algorithm that is presented in appendix F of Hoerig (2018). Our initial algorithm was sufficient for
training 2D CaNNCMs in a reasonable amount of time. However, the same algorithm operating on the
amount of data generated in 3D would require several hours to complete. Because the spatial values are
recomputed during every iteration of AutoP, the creation of a faster algorithm was paramount to reducing
AutoP computation time and to make training 3D CaNNCMs feasible.

After solving (5), the last two steps in AutoP are to train the SN with the newly computed spatial scaling
values and check for AutoP convergence. Completion of all five steps—solve FEAσ and FEAε, train MPN,
compute Sεx , train SN, convergence check—constitutes one AutoP iteration. One step in AutoP is comprised
of one or more iterations for force-displacement measurements corresponding to a given load increment.
Cycling over all load increments/steps is one pass. Multiple passes over the force-displacement data are
usually required for a CaNNCM to learn the correct material properties. In these study, 5 to 12 passes are
implemented, depending on the number of data sets input to AutoP during training. Once fully trained, the
weights in SN and MPN form a nonparametric model of the experimental behavior captured by the
ultrasonic echo data and surface force measurements.

Further investigations with AutoP and CaNNCMs revealed shortcomings not encountered in our
previous report. Specifically, material property distributions that result in regions of stress-strain
concentrations are not well captured by CaNNCMs trained in AutoP. For example, the region of background
material between two stiff inclusions aligned along the loading direction can appear significantly softer. We
found this behavior to be caused at least in part by the inability to measure the distribution of forces at the
contact surface between the probe and phantom. More fundamentally, the single measurement of axial force
applied by the probe during compressive loading does not supply enough information about the distribution
of stresses within the object.

2.6. Stress-matching regularization
A new regularization term introduced to (5) helps extract spatial information from measurement data. We
note that both stresses and strains are computed in FEAε, although the former are not physically consistent
with the true stresses, at least in early iterations of AutoP. Nonetheless, stresses σ̄n

l (xj) computed in FEAε do
contain a significant amount of information pertaining to the spatial distribution of stresses. We thus add a
regularization term, which we refer to as a σ-matching term, that forces the spatial values to match σ̂n

l (ε(xj))
and σ̄n

l (ε(xj)). We first compute the magnitude of the stress differences:

∆σn
l (xj) =

∣∣σ̂n
l (xj)− σ̄n

l (xj)
∣∣ · sign(σ̂n

l (xj)
)
. (6)

We then adjust the values in (6) to have zero spatial mean in each component of stress before adding the
σ-matching term to (5):

µn
l =

1

Nx

Nx∑
j=1

∆σn
l (xj), (7)

R(∆σn
l (xj)) = ∆σn

l (xj)−µn
l , (8)

Ŝεxj = argmin
Sεxj∈R

1

2

Nx∑
j=1

Nσ∑
n=1

Nc∑
l=1

σ̂n
l (xj)−σn

l

(
ε̂(xj);R

k+1
θm

,Sεxj

)
+βσ

σ−matching︷ ︸︸ ︷
R(σ̂n

l (xj), σ̄
n
l (xj))


2

, (9)
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Table 2. Description of the AutoP analyses. Data sets are summarized in table 1. The addition of ‘L’ to a data set number signifies large
(7%) strain applied by compressor.

Test # Data Sets Passes Pβ/βσ ησ Nσ Np Nd

1 S1′ 5 0 0.5 150 4 19113
2 S9′ 4
3 S1′ 2/1 4
4 S9′ 4

5 S1 5 2/1 0.5 150 4 210
6 S9 4
7 S1, S2, S3 7 4/1 400 12 630
8 S9, S10, S11 12

9 1 5 2/0.5 0.5 150 4 225
10 9 2/1 4
11 4 2/0.5 4
12 16 2/1 4

13 1, 8 5 3/0.5 0.5 250 8 450
14 9, 16 3/1 8
15 1, 2, 3 7 4/0.5 400 12 675
16 9, 10, 11 4/1 12

17 1 L 5 2/0.5 0.2 200 6 225
18 9 L 2/1 0.2 200 6
19 8 L 2/0.5 0.1 250 6
20 16 L 2/1 0.1 250 6

21 1 L, 8 L 5 3/0.5 0.1 450 12 450
22 9 L, 16 L 3/1 0.1 12
23 1 L, 2 L, 3 L 7 4/0.5 0.2 600 18 675
24 9 L, 10 L, 11 L 4/1 0.2 18

25 1–7 12 8/0.5 0.5 800 28 1575
26 9–15 8/1 28
27 1 L–7 L 8/0.5 42
28 9 L–15 L 8/1 42

where µn
l in (7) is the spatial mean stress andR(·) in (8) is the σ-matching term. Recall that Nx refers to the

total number of integration points in the FE mesh. The free parameter βσ is a constant scalar that controls
the influence of σ-matching regularization. Much like the decision to use the L1 norm in the objective
function of (3), the absolute difference is utilized in the σ-matching term of (6) to mitigate the effects of large
outliers. Furthermore, neither stress value is explicitly dependent on Sεx and the term in (8) is constant,
meaning it has no effect on the gradient during the optimization procedure. Hence why the σ-matching term
is included within the L2 norm of (9). Finally, we add the sign(σ̂n

l (xj)) component because the absolute value
is always positive.

Adjusting the σ-matching term in (8) helps ensure the spatial mean magnitude of σ̂n
l (ε(xj)) does not

change. A shift in the mean stress would alter the stress-strain relationship, causing the CaNNCM to learn
incorrect material properties. Preliminary studies revealed that we could skip the adjustment in (8) and still
recover the Young’s modulus from the CaNNCM if βσ was reduced. However, CaNNCMs trained in this
manner typically required additional passes in AutoP and thus longer training time. Interestingly, our
preliminary investigations also revealed that it is not necessary to impose σ-matching for the entire duration
of AutoP training. Several different methods of choosing βσ were explored, including more sophisticated
approaches similar to learning rate scheduling used in deep learning. We found that setting βσ > 0 for the
first Pβ passes in AutoP and then reducing it to βσ = 0 is simple and effective. The choice of Pβ is dependent
on the number of data sets used for training and should increase with the number of separate sets of
measurements input to AutoP. We also found that the value of βσ should be reduced as the level of
noise/error in the force-displacement measurements increases.

2.7. AutoP analyses
3D QUSE using data acquired with a 1D linear array probe introduces a unique sampling problem. In this
study, we begin to explore sampling requirements to accurately characterize linear-elastic materials in 3D and
reconstruct the Young’s modulus distribution with CaNNCMs. Table 2 summarizes the AutoP parameters
and data sets used to train 28 different CaNNCMs. Also included are two free parameters ησ and Nσ used in
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Figure 3. (a) Contrast ratios were computed by sampling the inclusions (black points) and a region of the background
surrounding each inclusion (green points). Young’s modulus values were estimated at each point using (11). Contrast values were
calculated as the mean Young’s modulus estimated at the black points for each inclusion divided by the mean Young’s modulus of
the green points surrounding said inclusion. (b) To obtain an estimate of the Young’s modulus for the background material, we
sample the space uniformly (white points) and computed the mean Young’s modulus. The white bounding box indicates the
image region in which interior displacements are estimated via speckle-tracking. Inclusions are labeled ‘1’, ‘2’, and ‘3’ to more
easily identify regions.

the algorithm to compute Sεx (Hoerig et al 2018). The notation Pβ/βσ denotes the number of AutoP passes
for which βσ is equal to the given value. After Pβ passes we set βσ = 0, which removes the σ-matching term
from training. Values selected for Pβ were based on preliminary testing, but the general guide is to increase
its value as the number of data sets input to AutoP increases. Training parameters common to all tests are
described in appendix A.

After training each CaNNCM, the Young’s modulus was reconstructed over the entire domain of the
phantom by first defining a strain vector εtest = [0.0035,−0.01,0.0035,0.001,0.001,0.001]. Values for εtest
were chosen to represent a compressive load within the range of training data. This strain vector was then
used to compute the stiffness matrix D̂ij from the connection weights of the MPN (appendix B of Hoerig et al
(2019)). Relating D̂ij to the linear-elastic constitutive model and rearranging the equations, one can arrive at
an expression for Poisson’s ratio and Young’s modulus E at location x,

ν̂(x) =

D̂11

S
ε1
x
+ 2 D̂12

S
ε2
x

D̂11

S
ε1
x
+ D̂12

S
ε2
x

− 1 (10)

Ê(x) = Sσ
(
D̂11

Sε1x
− D̂12

Sε2x

)
(1+ ν̂(x)) . (11)

Sε1x and Sε2x denote the lateral and axial components of Sεx , respectively, and change as x varies over the
domain of the phantom.

Accuracy of the Young’s modulus reconstructions were quantified two different ways. First, the contrast
ratio between each inclusion and the surrounding background material was computed. Figure 3(a) depicts
the sample points where Ê(x) was estimated using (11). The mean calculated from each set of Ê(x) was the
estimated Young’s modulus for the corresponding inclusion. Then, the mean Young’s modulus was
computed for a portion of the background material surrounding each inclusion (figure 3(a), green dots). The
size of the surrounding strips were chosen to have approximately the same area as the related inclusion.
Contrast ratios were determined as the Young’s modulus of the inclusion divided by the Young’s modulus of
the surrounding background material. We also estimate the mean Young’s modulus for the background
material from points sampled in figure 3(b) (white dots). This value is later reported as the Young’s modulus
for the background but is not used for computing the contrast ratios. The background was sampled
differently for computing contrast ratios and estimating Young’s modulus because the former compares each
inclusion to its immediate surrounding whereas the latter should be an average value over the scan plane.

The second metric we chose to quantify the accuracy of Young’s modulus estimates was the normalized
mean absolute error (NMAE). For this, mean of the estimated Ê(x) values for each region was compared to
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the target value Ei estimated via macro-indentation measurements,

eEi =
|Ei −⟨Êi(x)⟩|

Ei
, (12)

where i= 0, 1, 2, 3 indicates region number (0 corresponds to background, 1–3 are the inclusions as labeled
in figure 3(b)) and ⟨·⟩ is used to indicate the mean. We report the mean and standard deviation of these four
error values for each trained CaNNCM. Measuring regional moduli and their associated contrast values
reveals the accuracy of the estimates as well as the relative appearance of inclusions in images.

3. Results

3.1. Simulated force-displacement measurements
Data sets S1′ and S5′ were used to train CaNNCMs in Tests 1–4. Here, we demonstrate the need for the
σ-matching term by testing AutoP under nearly ideal circumstances: axial displacement measurements are
available at every point in the FE mesh, not just within the scan plane beneath the US probe. Comparing the
results for a large US transducer compressing the phantom (Tests 1, 3) to a small probe (Tests 2, 4) will help
reveal any fundamental differences or limitations to acquiring data with a smaller probe.

CaNNCMs trained in Tests 5–8 also utilized simulated, noise-free data, albeit displacements were limited
to only within the scan plane. A single data set was input to AutoP for Tests 5 and 6 whereas three data sets
were input for Tests 7 and 8. Results from these analyses demonstrate the effect additional data has on the
ability of CaNNCMs to accurately estimate material properties throughout a larger region of the phantom. It
is expected that a CaNNCM trained with a single data set whose displacements are constrained to a plane
will be able to accurately estimate both material parameters and geometry only within said plane. Adding
additional data sets by moving the probe to acquire data in parallel planes should provide the additional
information necessary for a CaNNCM to estimate material properties throughout more of the volume.

Young’s modulus images reconstructed by CaNNCMs trained in Tests 1–8 using (10) and (11) are
displayed in figure 4. We show the image Planes 1–3 and a surface plot the Young’s modulus, both described
in figures 1(c) and (d), respectively. A surface plot of the target distribution, shown as a translucent gray
surface, is included to enable direct comparison with the CaNNCM estimates. Young’s modulus and
Poisson’s ratio estimates for the phantom material, contrast ratios, and mean absolute error as computed
with (12) are compiled in table 3.

Comparing Tests 3 and 4 where βσ = 1 with Tests 1 and 2 where βσ = 0 clearly demonstrates an
improvement gained by adding σ-matching. Without this term, the spaces between and around the
inclusions coinciding with regions of high stresses and strains appear too soft. In turn, the estimated
modulus values for the inclusions are too low.

Reducing the amount of available displacement data to only the image plane has a significant effect, as
demonstrated by the results for Tests 5–8. We observe that, within the image plane, the CaNNCM accurately
estimates the inclusion shapes and the Young’s modulus of the background (Tests 5 and 6) but estimates of
the inclusion stiffness are too large. Including additional data sets during training with interior displacement
data in adjacent image planes not only extends the volume over which the CaNNCM learns the inclusion
geometries (Tests 7 and 8), but also generally improves the Young’s modulus estimates.

These results reveal a limitation of the method when using a smaller compression surface: limited
imaging depth. It is already known that adding a force plate to the US probe for QUSE increases the possible
image depth. Our results confirm this limitation for the current formulation of AutoP and CaNNCMs. The
limited imaging depth is a result of the decreased deformation far away from where the compressive load is
being applied. Even for cases like Test 4 where noise-free axial displacements are known at all points in the
mesh, away from the US probe the Young’s modulus reconstructed by the CaNNCM contains errors in the
estimated inclusion shape. As the available displacement data is reduced to the RF echo scan plane (Tests 6
and 8), the CaNNCM captures the shape of Inclusion 1 but significantly underestimates the Young’s
modulus.

3.2. Experimental force-displacement measurements
All remaining tests were performed using force-displacement measurements acquired experimentally on a
gelatin phantom. Tests 9–12 each accept a single data set as input to AutoP for a large/small probe
compressing a phantom from one of two sides (0◦ or 90◦ phantom rotation). Then, multiple data sets are
used for training in Tests 13–16. Compared to the preceding tests, the use of experimentally acquired data
introduces noise and measurement uncertainty.

Young’s modulus reconstructions in the bottom half of figure 4 were produced by CaNNCMs trained
with force-displacement measurements acquired experimentally on a gelatin phantom. CaNNCMs in Tests 9,
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Figure 4. Young’s modulus images reconstructed by CaNNCMs trained in Tests 1–16. Images in the left column are results from
tests where a large compressor was used whereas the right column corresponds to the analogous tests using a small compressor.
The number in the top-right corner of each image set identifies the test number from table 2. Explanations of Planes 1–3 and the
Young’s modulus surface plot are in figures 1(c) and (d), respectively. The white box in Plane 3 indicates the boundary of the scan
plane. The dotted white lines in Planes 1 and 2 of Test 7 denote the locations of all three scan planes.

10, 15, and 16 were trained using nearly identical parameters (difference in βσ) as those trained in Tests 9, 10,
11, and 12, except the measurement data input to the former contain echo noise and force and displacement
errors. Nonetheless, similar characteristics are observed. Training in AutoP using data from a single
measurement plane, as done for Tests 9 and 10, is insufficient for a CaNNCM to learn the 3D shape.
Including data from other loading locations and image planes (Tests 15 and 16) increases the volume over
which the CaNNCM accurately estimates material properties and geometry. Directly comparing Young’s
modulus reconstructions from CaNNCMs trained with simulated versus experimentally acquired data, we
note the latter significantly overestimates the Young’s modulus of the background outside of the scan plane,
especially for when a large compressor is used. This may be partly attributed to errors in force measurements
and is studied in section 3.3.
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Table 3. Quantitative estimates of Young’s modulus values, Poisson’s ratio, contrast ratios, and mean absolute error (NMAE) for all
CaNNCMs. Also included are AutoP training times. ‘Target’ values are those estimated via macro-indentation methods. Inc. 1–3 refer to
the inclusions as identified in figure 3. Values in bold are those closest to the target value and only consider CaNNCMs trained with
measurement data acquired experimentally. Spatial standard deviation of the Poisson’s ratio estimated at multiple points using (10) is at
least two orders of magnitude less than the spatial mean and therefore not included.

E Estimate (kPa) Contrast Ratio

Test # Back. Inc.1 Inc. 2 Inc. 3 Inc. 1 Inc. 2 Inc. 3 ν Estimate NMAE

Target 8.92 24.17 20.53 24.17 2.71 2.30 2.71 0.3 µ±σ Training Time (min.)

1 8.6± 0.9 18.4± 0.7 17.9± 1.0 18.0± 0.7 2.14 2.09 2.09 0.28 0.16± 0.10 160
2 9.0± 0.1 23.5± 0.5 19.8± 1.0 23.7± 0.8 2.61 2.20 2.64 0.29 0.02± 0.01 160
3 8.4± 0.8 17.5± 0.8 17.0± 0.9 19.3± 0.6 2.08 2.02 2.30 0.27 0.18± 0.09 145
4 8.8± 0.2 23.1± 0.7 18.8± 1.0 24.4± 1.4 2.63 2.14 2.78 0.28 0.04± 0.03 145

5 9.2± 0.5 25.8± 1.5 26.0± 2.0 28.5± 1.2 2.79 2.82 3.09 0.30 0.14± 0.11 151
6 8.7± 0.7 22.0± 2.5 25.4± 2.8 28.0± 2.3 2.52 2.91 3.21 0.31 0.13± 0.09 135
7 9.3± 0.5 20.8± 2.0 22.1± 1.7 20.9± 1.5 2.24 2.38 2.26 0.30 0.10± 0.05 710
8 8.8± 0.6 18.9± 2.1 22.5± 2.1 24.1± 2.5 2.15 2.55 2.73 0.32 0.08± 0.10 659

Target 0.5

9 11.4± 1.6 26.5± 3.6 25.3± 2.3 27.5± 1.8 2.32 2.21 2.41 0.32 0.19± 0.08 177
10 9.8± 2.9 18.6± 2.5 20.9± 2.9 26.1± 1.7 1.91 2.14 2.67 0.39 0.10± 0.09 141
11 13.1± 3.2 28.1± 4.5 27.3± 4.3 30.4± 3.2 2.15 2.08 2.32 0.33 0.31± 0.13 151
12 10.5± 3.7 25.7± 5.3 17.4± 2.6 25.1± 3.8 2.45 1.65 2.39 0.39 0.11± 0.07 142

13 11.7± 3.1 25.1± 4.6 22.2± 4.0 26.1± 2.9 2.15 1.90 2.23 0.32 0.13± 0.12 459
14 8.8± 1.3 24.6± 5.1 18.6± 3.5 25.3± 2.9 2.81 2.13 2.89 0.37 0.04± 0.04 285
15 12.2± 1.3 21.9± 2.6 20.4± 1.5 20.8± 1.6 1.80 1.68 1.71 0.34 0.15± 0.15 718
16 9.4± 2.4 16.9± 2.1 20.2± 2.9 20.4± 2.9 1.79 2.13 2.16 0.39 0.13± 0.13 675

17 11.1± 1.6 23.7± 3.5 22.8± 2.4 23.8± 2.5 2.13 2.05 2.14 0.34 0.10± 0.11 223
18 9.8± 3.0 21.6± 2.6 20.8± 3.8 22.1± 3.9 2.21 2.13 2.26 0.38 0.07± 0.04 239
19 13.4± 4.1 26.9± 4.6 24.1± 3.0 27.4± 2.9 2.00 1.79 2.04 0.36 0.23± 0.18 210
20 10.5± 4.2 30.1± 5.3 19.7± 2.5 32.8± 5.3 2.86 1.87 3.12 0.41 0.21± 0.13 251

21 11.1± 3.1 22.0± 2.9 17.7± 2.0 19.8± 1.8 1.99 1.60 1.79 0.33 0.16± 0.06 412
22 9.4± 1.9 22.3± 3.7 17.8± 3.1 23.7± 3.1 2.37 1.89 2.51 0.37 0.07± 0.05 540
23 11.6± 1.5 21.6± 3.1 20.2± 2.3 20.2± 2.3 1.86 1.74 1.74 0.35 0.15± 0.12 899
24 9.3± 2.4 18.2± 2.8 19.5± 3.8 20.8± 4.9 1.96 2.10 2.25 0.38 0.12± 0.10 1258

25 12.1± 1.3 18.9± 1.8 19.0± 2.5 18.5± 1.7 1.56 1.57 1.53 0.36 0.22± 0.12 1759
26 8.5± 2.0 12.1± 1.7 16.5± 2.9 17.5± 3.4 1.42 1.95 2.06 0.40 0.26± 0.19 1824
27 11.6± 1.6 18.7± 2.3 17.0± 2.5 17.1± 2.5 1.61 1.46 1.47 0.34 0.25± 0.06 3527
28 8.4± 2.2 11.7± 2.3 14.6± 2.7 16.0± 4.5 1.39 1.74 1.90 0.39 0.30± 0.19 3184

For all CaNNCMs trained with experimental measurements, the Young’s modulus reconstruction has
bands just above and below the image region where the background appears much stiffer. This artifact also
appears in 2D. Biased errors in the internal displacement estimates limits the compression of the region
between the scan plane and compressor, decreasing the strain in FEAε and thus appearing stiffer. Conversely,
the band below the image region is largely the result of a mismatch in the pre-training Poisson’s ratio and
compressibility of the actual material. Recall that we chose ν= 0.3 to generate pre-training data using (A1) to
avoid numerical instabilities. We tested the effect of Poisson’s ratio mismatch separately by generating a data
set like S1 with the exception that ν= 0.495. Using this data set and training a CaNNCM using the same
parameters as Test 1, the Young’s modulus image (not shown) displays a background modulus that is greater
than the true value just below the image region but no significant artifacts above.

Tests 11–14 do not have simulated counterparts. Force-displacement measurements acquired after
rotating the phantom 90◦ provides new information and measurement errors uncorrelated with prior data
sets. As such, results for Tests 11 and 12 (after 90◦ rotation) have notable differences when compared to Tests
9 and 10 (0◦ rotation). First, even when compressing with the small probe, the CaNNCM is able to fully
capture the geometry of each inclusion that resides within the image region. Compare the estimated shape of
Inclusion 1 in Tests 10 and 12. In the latter, the shape of the inclusion is clearly circular. Second, the relative
stiffness of each inclusion is preserved in Test 12 even though the Young’s modulus magnitudes are fairly
inaccurate. Training with data sets acquired on both sides of the phantom improved the accuracy of the
Young’s modulus estimates for the large compressor (Test 13) compared to either case where a single data set
was used for training. Similarly, the NMAE for Test 14 is decreased when compared to Test 10, but slightly
larger than Test 12. As we discuss later, we believe this is due to force measurement errors.
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Figure 5. Young’s modulus reconstructions by CaNNCMs trained in Tests 17–24 where the total compressive load induced up to
7% strain. The number in the top-right corner of each image set identifies the test number from table 2.

Tests 17–24 repeat Tests 9–16 except with 7% total applied strain as opposed to 3% (see tables 1 and 2).
Results of these tests will show the effect of larger deformation on the resulting Young’s modulus images.
Young’s modulus distributions reconstructed by CaNNCMs trained in Tests 17–24 are displayed in figure 5.
In general, increasing the applied load led to reduced NMAE when measurement data were acquired with a
large compressor but had no significant effect on the NMAE when data were acquired with the small
compressor. However, when the small compressor applied surface loads for a phantom with 0◦ rotation,
increasing the force load resulted in more accurate Young’s modulus estimates for inclusion 1. This was
expected because due to the increased deformation deeper in the phantom with the larger force load, thus
increasing the SNR of the displacement estimates.

CaNNCMs in the final four tests (Tests 25–28 in table 2) were trained with measurement data acquired in
seven parallel scan planes, spanning from x3 =−12 to x3 = 12 mm in 4 mm increments. Young’s modulus
images reconstructed by these four CaNNCMs are displayed in figure 6. Force-displacement data input for
tests 25 and 26 were measured under 3% maximum strain with a large and small compressor, respectively.
The imposed strain was 7% in tests 27 and 28. As expected, the additional measurement data provides the
information necessary for the CaNNCMs to learn the internal phantom geometry over a larger region.
Furthermore, data acquired under larger deformation did not greatly affect the modulus estimates, although
we expected more accurate for inclusion 1 when the small compressor was used (Test 28 in figure 6).

3.3. Effect of probe force and displacement measurement errors
Results of Tests 9–24 are affected by errors in the internal displacements estimated via speckle-tracking and
measurements of applied force. Given the precision of the positioning system, there is insignificant error in
the exact position and orientation of the US probe/compressor over time (probe displacement errors).
However, applied force and probe displacement are boundary conditions and errors affecting these
measurements will likely have a global impact on training. Conversely, speckle-tracking errors are local and
will only significantly affect the material properties learned in a limited region. Thus, it is important to
independently study the effect of probe displacement and applied force errors on training in AutoP

The effects of probe displacement errors were tested using data set S1 and adding –0.143 to 0.143 mm
offset to the total probe displacement in fourteen linearly-spaced increments. We chose a maximum
magnitude of 0.143 mm error because it corresponds to 10% of the total 1.43 mm axial probe displacement.
Fourteen CaNNCMs were trained in AutoP (same parameters as Test 5) using data set S1, the large
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Figure 6. Young’s modulus images reconstructed by CaNNCMs trained with 7 data sets. The number in the top-right corner of
each image set identifies the test number from table 2. The dotted white lines in Planes 1 and 2 of Test 27 denote the locations of
all seven scan planes.

compressor, and up to 10% error in the probe displacement. The tests were repeated to train another
fourteen CaNNCMs with data set S9, where the small compressor is used. Similar tests were performed to
investigate the influence of force measurement errors. Another fourteen CaNNCMs were trained for both
large and small compressors in AutoP again using data sets S1 and S9; however, –70 mN to 70 mN (in
fourteen linearly-spaced increments) was added to the applied force. Because the force necessary to induce
3% total strain is different for large and small compressors, the same magnitude force offset added to data set
S9 is a larger relative error compared to the offset added to S1. We chose to investigate the effects of force
measurement errors in this way because the magnitude of the error observed experimentally is systematic
and not tied to the measured value.

Force errors have a fairly straight-forward effect, as shown by figure 7. Errors that increase the magnitude
of the applied force input to AutoP for the same probe displacement cause the CaNNCM to overestimate
Young’s modulus. Conversely, modulus values are underestimated when errors reduce the magnitude of the
measured force value input to AutoP. Probe displacement errors appear to have a more complex effect. For
small displacement errors but no force measurement error, the resulting Young’s modulus estimates are
affected in a predictable way: when the true probe displacement is under-reported during training, the
Young’s modulus is overestimated whereas the modulus is underestimated when the reported displacement is
larger than the true displacement. It appears that as the error magnitude surpasses≈5% fractional error, the
geometry of the inclusions estimated by the CaNNCM begins to distort, especially for inclusion 3. This
behavior is likely due to the extreme stiffening or softening of the area between the compressor and scan
plane that causes a sharp transition affecting the ability of the SN to learn the material property distribution
for the given training parameters. Errors that increase the compressive load (positive abscissa in figures 7(b)
and 7(c)) tend to increase the NMAE compared to errors that decrease total compression, as evidenced by
the asymmetry of the curves in the aforementioned figures. Considering the phantom geometry and BCs,
notably the no-slip bottom boundary, increasing the force or displacement compressive load too much may
elicit geometrically non-linear effects, leading to the observed asymmetry.

The black curve in figure 7(c) begins to decrease slightly after the force error surpasses≈+6%. The Young’s
modulus images corresponding to these three points are the+50 mN,+60 mN, and+70 mN labeled images
in the top portion of figure 7(a). Artifacts in regions coinciding with stress-strain concentrations become
increasingly prominent with the force error. These artifacts, as discussed before, cause a ‘softening’ of both
the background and inclusions. The effect is to rescale the modulus estimates closer to the true values given
that the CaNNCM is generally over-estimating the parameter values. As a consequence, the contrast ratios
decrease, as shown in the top-right plot of figure 7(d). The data in figure 7 provide some insights into the
effects on the accuracy and precision of modulus estimation from errors in probe position and applied force.

4. Discussion

This paper extends our data-driven approach to quantitative QUSE from 2D to 3D applications. Minor
adjustments to the CaNNCM architecture enable the network to learn the heterogeneous stress-strain
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Figure 7. (a) Young’s modulus images reconstructed by CaNNCMs trained with data sets S1 (top group) and S5 (bottom group).
The top and bottom rows of each group corresponds to added probe displacement and force error, respectively. The values above
each image indicate the error value added to the noise-free data. (b) Mean and standard deviation the Young’s modulus
reconstruction error computed in (12) as a function of fractional probe displacement error for both large and small compressors.
(c) Mean and standard deviation of Young’s modulus reconstruction error as a function of fractional force error for both size
compressors. (d) Normalized contrast ratios for all three inclusions plotted against force and displacement error. Values are
normalized by the inherent contrast specified as ‘Target’ in table 3.

relationship of material throughout a volume. The fundamentally different approach of AutoP, which
combines machine learning and computational mechanics to extract stress-strain information from
force-displacement data, is able to accurately estimate the Young’s modulus distribution from a sparse
sampling of independent measurements. This could have an advantage in clinical applications by allowing an
operator to strategically select sampling locations and reduce the effects of motion artifacts.

Preliminary investigations revealed our previous implementation of AutoP is not sufficient for 3D
imaging. A single measurement of surface force does not provide sufficient information about the stress
distribution. Even for the best case where all axial displacements are known for a phantom under
compression (Tests 1 and 2, figure 4), artifacts appear in the Young’s modulus reconstruction at locations
where stresses and strains are significantly increased, notably in regions between inclusions the material
appears softer than it is. The effect propagates and causes the inclusions to also appear softer. One approach
to correcting this shortcoming is the introduction of the σ-matching regularization term which regularizes
the optimization computed by the SN to make sure the stress information is spatially consistent. Enforcing
σ-matching during AutoP and returning to the case where all axial displacements are known (Tests 3 and 4),
we observe significantly more accurate Young’s modulus reconstructions and removal of softening artifacts
in regions where stress-strain build-ups occur. Additionally, in results not shown using simulated
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force-displacement data, we found that applying the known surface force distribution directly to the
phantom surface (and removing the US probe) did not have a significant effect on the result. This implies
that the spatial variations of force for a single compressive load do not supply sufficient information to infer
the spatial distribution of stresses, meaning σ-matching is still required.

It is possible that a different regularizer could be used in place of our proposed σ-matching term and
achieve the same results. Unlike other types of regularization, σ-matching relies on a fundamental principle
of mechanics: imposing force BCs or the equivalent displacement BCs will result in the same distribution of
stresses and strains. σ-matching exploits this principle to extract information about stress distributions
missing from the force measurements.

When interior displacement measurements are limited to the scan plane, the case for Tests 5–6, the
CaNNCM is able to learn the geometry and material properties of the inclusions only within the scan plane.
Interestingly, reducing the displacement data to the scan plane causes the CaNNCM to overestimate the
Young’s modulus of the inclusions but not the background. Adding force-displacement data from additional
scan planes (Tests 7–8) appears to rescale the Young’s modulus estimates of the inclusions closer to the true
values. Comparing images in figure 4 for Tests 6 and 8 where a small compressor was used to Tests 5 and 7,
we note that using the smaller compressor led to more accurate Young’s modulus estimates for inclusions 2
and 3 and a reduction in the background artifact, but the deeper inclusion 1 is more obscured. An analogous
effect is seen in Test 4 where the ends of inclusion 2 far away from the compressor are not well defined. This
is the result of decreased deformation away from the compressor as its size decreases.

Additional data sets generally improved the Young’s modulus estimates and increased the volume over
which a CaNNCM learns the internal phantom geometry at the cost of increased computational load. All
CaNNCMs in this study were trained on one of two standard desktop computers, albeit one computer
contained a NVIDIA TitanX GPU. At this time, the GPU was used only during the calculation of Sεx and
significantly reduced the solve time. Thus, Tests 25–28 (7 data sets) were run on the computer containing the
GPU. Training time was roughly proportional to the number of data sets. However, the required time to train
a CaNNCM with even a single data set makes clinical imaging infeasible. We expect to reduce training time
by running all FEAσ and FEAε for each AutoP iteration in parallel and taking advantage of GPU resources
for solving FEAs and network training. These tasks will require the development of a custom FEA solver.

We found that care must be taken when choosing βσ and the number of passes for which σ-matching is
enforced. For reference, 0≤ βσ ≤ 1, where βσ = 0 corresponds to no matching and βσ = 1 indicates
complete matching. Because the gradient of (9) is not affected by the σ-matching term, selecting a large value
for βσ can cause a positive feedback effect and lead to severe overcorrection of the stresses. On the other
hand, setting βσ too small requires more AutoP passes in order to be effective, increasing the total training
time. Preliminary results suggested βσ is sensitive to measurement noise and modeling errors. Therefore, we
chose βσ = 0.5 for CaNNCMs trained with experimental measurement data acquired with a large
compressor. Tests not shown revealed that increasing the value of βσ in these cases would result in
significantly larger NMAE due to the CaNNCM overestimating Young’s values.

Interestingly, parameter estimates were most accurate when βσ = 1 for all CaNNCMs trained with
simulated, noise-free data sets and experimental measurements acquired using a small compressor. We note
that estimates of the background material are more accurate in locations away from the scan plane(s) when
training with data acquired using a small compressor. To the best of our knowledge, this is a result of
incorrect FE modeling of the contact area between the large compressor and phantom for a pre-strained
state. We expect similar levels of noise in the experimentally acquired force-displacement measurements
when using a large or small compressor, leaving FE modeling as a variable source of error. Unfortunately, we
are unable to accurately measure the pre-strained phantom geometry, nor the contact area between the
phantom and large compressor. In such cases it is therefore advantageous to acquire data with a small
compressor due to the unchanging contact conditions.

Force-displacement measurements acquired experimentally have errors that impact the material
properties learned by a CaNNCM in different ways. We previously showed that noise added to the internal
displacement estimates can distort the estimated geometry and result in the band of increased stiffness just
above the scan plane. Comparing Young’s modulus reconstructions by CaNNCMs from Tests 9–10 with their
counterparts trained with simulated data (Tests 5–6), we note increased artifacts and erroneous stiffening of
the background material, particularly in the spaces between inclusions and edges of the scan plane (Hoerig
et al 2019). Rotating the phantom and acquiring force-displacement measurements from a different side
results in Young’s modulus reconstructions (Tests 11, 12, 19, 20) with different artifacts. Training a
CaNNCM with both data sets, as done in Tests 13, 14, 21, and 22, appears to reduce the influence of noise,
implying the errors were uncorrelated between data sets. More fundamentally, rotating the phantom and
applying compressive loads on a different surface represents a completely different set of BCs that increases
the variation in the total set of stress-strain data. As a consequence, the CaNNCMs trained with data sets
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acquired under completely different loading conditions tend to more accurately learn the linear-elastic
properties of the gelatin phantom. This finding emphasizes the need for diversity in the training data.

The estimated Poisson’s ratio in Tests 9–28 never approached the expected value of 0.5. We do observe,
though, that the Poisson’s ratio was closest to the expected value in tests where a small compressor was used
to compress the phantom in several locations. These results suggest the CaNNCMs are able to learn the shear
modulus from the available measurement data but have difficulty extracting the bulkmodulus, yet estimating
the Poisson’s ratio from the CaNNCM in (10) instead of imposing an incompressibility constraint (ν= 0.5)
for the gelatin phantom still allows for accurate estimation of the Young’s modulus. Additional studies will be
necessary to more fully investigate how different sampling strategies affect the learned shear and bulk
material properties.

Errors in the probe force and displacement measurements can have a significant effect on parameter
estimates because they are boundary conditions. Such errors propagate through to the stresses and strains
computed in FEAσ and FEAε. Therefore, the ‘reference’ material learned by a MPN will be most affected by
errors in the measured applied force and probe displacement. Because of the high precision of the
positioning system, we can be confident that Young’s modulus estimation errors for CaNNCMs trained with
experimental measurements are predominantly caused by errors in FE model, measured force, and local
displacements estimated via speckle-tracking. Nonetheless, these results demonstrate the importance of
accurate measurements of applied force and probe position during data acquisition.

Increasing the compressive load may increase the SNR of both the force measurements and internal
displacement estimates. As a consequence, the effect of systematic noise is reduced and the contrast increased
in the Young’s modulus image. Comparing Young’s modulus reconstructions in figure 5 to their counterparts
in figure 4 shows a reduction in the background artifacts and decrease in NMAE. Interestingly, the effect is
most pronounced when a large compressor was used. Results in figure 7 do not suggest data acquired with a
small compressor are more robust to noise than data acquired with a large compressor. Rather, it may be the
boundary conditions are better modeled in the FEA for a small compressor. As previously discussed, the FE
mesh was created to model the phantom in its pre-strained state. Whether the top surface of the phantom
was 50× 50 mm2 (no pre-strain) or 51× 51 mm2 (with pre-strain), the contact area between the phantom
and small compressor does not change. On the other hand, the contact area between the phantom and large
compressor will change based on mesh size and grow as the applied load increases. This is an example of a
non-linear effect not currently accounted for in AutoP.

We also observe increased distortion of the internal geometry estimated by CaNNCMs when trained with
data acquired under larger compression. This is evident when comparing Plane 1 of Tests 26 and 28 in
figure 6. Specifically, the shape of Inclusion 3 resembles a sphere under the small strain case but appears
oblong when the CaNNCM was trained with large deformation data. To the best of our knowledge, this is a
result of 1) summing multiple small displacement estimates to obtain an estimate of the total displacement
and 2) small-strain FEA instead of a geometrically non-linear FEA formulation. The former is required to
avoid decorrelation between RF echo frames and obtain valid displacement estimates with speckle-tracking.
It may be possible to avoid summing small displacement estimates by utilizing an updated Lagrangian FEA
formulation and imposing incremental displacement BCs instead of the total displacement Ghaboussi et al
(2017).

Despite the potential benefits, acquiring force-displacement data under large compressive loads will
almost surely induce a non-linear elastic material response from tissues and activate geometrically non-linear
effects. Previous studies using AutoP have shown the capabilities of neural network constitutive models to
model highly non-linear behaviors under small deformation (e.g. Hashash et al (2006a), Hashash et al
(2006b), Jung and Ghaboussi (2006), Jung and Ghaboussi (2010), Kim et al (2012)). Our future work with
CaNNCMs will aim to combine large deformation and material non-linearity to effectively capture the
mechanical properties of soft tissues.

5. Conclusions

3D Cartesian neural network constitutive models trained in the Autoprogressive Method can learn the
material properties of a volume from force-displacement measurements acquired in a sparse sampling of
scan planes. The previous implementation of AutoP is insufficient for CaNNCMs to accurately learn both
material properties and interior geometry. A new regularization term specific to AutoP and referred to as
σ-matching effectively extracts stress distributions from force-displacement measurements by coupling
spatial information encoded within displacement data to stress equilibrium requirements inherent to finite
element analysis. The ability of CaNNCMs to learn spatial material property distributions is further
improved when measurement data are diverse, which can be achieved by reducing the compressor size and
applying loads at a variety of surface locations. The method is currently only capable of characterizing
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linear-elastic mechanical properties and must be extended to non-linear, hyperelastic, and time-dependent
materials for effective clinical imaging.
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Appendix A. AutoP training parameters

A.1. Network specifications

Compared to 2D applications, three changes were made to the network architecture: 1) the number of input
and output nodes of the MPN increased from three to six; 2) the number of input and output nodes of the
SN increased to three and six, respectively; and 3) increased the number of hidden to layer nodes to 10 and 20
for the MPN and SN, respectively (Nh1 = Nh2 = 10 andMh1 =Mh2 =Mh3 =Mh4 =Mh5 = 20 in figure 2(b)).

In this study, the MPN had two hidden layers and all nodes used a hyperbolic tangent activation function
with no node biases. The last two points ensure that a zero-valued strain input produces a zero-valued stress.
Keeping the number of hidden layers small helps avoid overtraining The network was trained using a custom
implementation of the iRPROP+ algorithm Riedmiller and Braun (1993) for 15–50 epochs each AutoP
iteration. Because the hyperbolic tangent function saturates as the input increases beyond±1, stresses
computed at the MPN output are scaled by Sσ to ensure they remain within a range of±0.8. Sσ is checked
every iteration of AutoP but typically does not deviate from the value chosen during pre-training.
Conversely, the SN contained five hidden layers. A logistic activation function was used for the first and last
layers and a hyperbolic tangent was used for all other layers, as specified in (2). We chose to use a logistic
activation function at the input and output layers because a zero-valued coordinate input should not map to
a zero-valued output and the output is always positive. More modern activation functions like ReLU/ELU
were tried in preliminary testing, but we were unable to achieve satisfactory results. Inputs and outputs to the
SN were shifted and scaled to within±0.8 to avoid saturating the nodes. Full batch training of the SN was
implemented in TensorFlow using the Adam optimizer (with default settings) and a learning rate of 0.01 for
1000 epochs.

A four-load training window was implemented which includes the stress-strain data from the prior four
AutoP iterations during MPN retraining and Sεx calculation in the current iteration. Furthermore, we
enforced frame invariance by rotating the original stress-strain data (computed in FEAσ and FEAε) around
all three axes, effectively quadrupling the total amount of training data each iteration. We reduced the
number of data pairs used for MPN retraining by randomly selecting 400 elements each iteration and
collecting the stress-strain data from those elements only, leaving a maximum of 400× 4× 4= 6400 training
pairs. However, all 56172× 4× 4= 898752 stress-strain pairs were input to (5) every iteration to recompute
Sεx and all 56172 x–S

ε
x pairs were used for SN training. AutoP convergence criteria were the same as specified

in Hoerig et al (2019).

A.2. Linear-elastic Pretraining

Before training in AutoP, stress-strain data were generated using linear-elastic equations to pre-train each
CaNNCM. We assign Young’s modulus E and Poisson’s ratio ν, so the constitutive equation takes the form

σ11
σ22
σ33
σ12
σ13
σ23

=
E

(1+ ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1− 2ν 0 0
0 0 0 0 1− 2ν 0
0 0 0 0 0 1− 2ν





ε11
ε22
ε33
ε12
ε13
ε23

 . (A1)

We avoid a numerical singularity by setting ν= 0.3 and choose E= 5 kPa. Imposing (nearly) incompressible
material constraints results in stresses that are very large and not physical. A total of 8000 strain vectors were
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generated by randomly sampling each component of strain from a uniform distribution spanning
[−0.3, 0.3]. Corresponding stress vectors were then computed for each strain vector using (A1).
Furthermore, we initialize Sεx = 1 for all x. All 8000 stress-strain pairs were used to train the MPN. The
number of training pairs for the SN is fixed by the number of integration points in the FE mesh. Here, the FE
mesh we created contained 14043 10-node tetrahedral elements, each with four integration points. Thus,
there are 56172 total integration points in the phantom mesh and the same number of x–Sεx pairs.
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