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Abstract
The synthesis of high-performance computing (particularly graphics proces-
sing units), cloud computing services (like Google Colab), and high-level deep
learning frameworks (such as PyTorch) has powered the burgeoning field of
artificial intelligence. While these technologies are popular in the computer
science discipline, the physics community is less aware of how such inno-
vations, freely available online, can improve research and education. In this
tutorial, we take the Hopfield network as an example to show how the con-
fluence of these fields can dramatically accelerate physics-based computer
simulations and remove technical barriers in implementing such programs,
thereby making physics experimentation and education faster and more
accessible. To do so, we introduce the cloud, the GPU, and AI frameworks
that can be easily repurposed for physics simulation. We then introduce the
Hopfield network and explain how to produce large-scale simulations and
visualizations for free in the cloud with very little code (fully self-contained in
the text). Finally, we suggest programming exercises throughout the paper,
geared towards advanced undergraduate students studying physics, bio-
physics, or computer science.
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1. Introduction

Computation is critical to calculate physical properties of modeled systems. Some experi-
ments are impossible to perform but can be simulated if the theory known and sufficient
computational tools are available. Concepts that feel abstract to students can become tangible
when simulated on a computer. Although computation is a component of most undergraduate
physics curricula, it is commonly under-emphasized, and educators must keep pace with the
rapidly improving technology to produce the most capable students [1]. In this paper, we
discuss innovations that have improved accessibility to numerical computations (via the
cloud), and accelerated the performance of large-scale simulations (via the graphics proces-
sing unit (GPU)).

Frequently the bottleneck of numerical computations involves matrix operations. Such
examples include matrix diagonalization to solve the Schrödinger equation and solving
systems of linear or differential equations to perform Finite Element Analysis. These com-
putations are generally of O(N3) complexity (i.e. scaling the dimensions of the input matrix by
10×results in a 1000×performance hit). In the absence of high-performance hardware, most
numerical computations cannot scale well, which slows if not entirely precluding simulations
beyond a certain size. To perform simulations, students commonly use scripting languages
such as MATLAB or Python in the classroom and laboratory. Using a personal machine
involves an up-front cost of programming environment setup, and the speed of simulations is
limited by the hardware (typically two or four CPUs). Workstations with high-performance
hardware are available only in the most well-funded labs. To help address limitations in
the computational aspects of current physics curricula, we show that the software and
hardware innovations that have accompanied the rise of deep learning can dramatically
enhance the runtime performance and accessibility of computational physics. We start with a
brief introduction to deep learning.

The past decade has seen a meteoric rise in artificial intelligence research, and the bulk of
this progress is from deep learning—which aims to solve complex problems by constructing
computational models that learn from a high volume of data [2]. For example, deep learning
models can classify thousands of objects in images with very little error, synthesize speech
from text, and detect anomalies in financial transactions to stop fraud. Although the key
algorithm for training deep learning models—backpropagation—has been known since 1986
[3], it was only in the past decade or so that researchers recognized the value of collecting vast
amounts of data, and corporations such as NVIDIA created hardware that could feasibly train
large-scale deep learning models via the GPU [4]. From personal computing to industrial data
centers, most computers hold between 2–96 CPU cores. A single GPU has embedded within
it thousands of processing cores—which, although each GPU core individually is slower than
a CPU core, the sheer quantity of cores in a GPU enables it to dwarf the performance of
multiple CPU cores in tasks that can be parallelized. For example, when performing matrix
multiplication, each element of the product can be computed independently and in parallel.
Hence for large matrices, matrix multiplication can be performed significantly faster on a
GPU than on a CPU. In fact, several problems can benefit from the GPU such as back-
propagation (in which gradients of millions of variables can be computed in parallel),
rendering [5] (in which thousands of pixel colors on a screen can be computed in parallel),
and the simulation of natural phenomena like fluids [6], cloth [7], and hair [8] (which are
commonly GPU-accelerated in the film and games industries). A typical simulation will
involve the GPU(s) and CPU(s) working together, whereby general-purpose instructions
(like loading data or plotting graphs) run on the CPU, and parallelizable, compute-intensive
parts of the application (like matrix calculations) run on the GPU.
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While the GPU enjoys several use-cases, initially only researchers with a computer
science background could access its benefits, as strong knowledge of a low-level program-
ming language like CUDA would be required. With the open-sourcing of deep learning
frameworks such as PyTorch [9] and TensorFlow [10], physicists no longer face such pro-
gramming language barriers. These frameworks allow developers to code in a high-level
scripting language (usually Python) and abstract away low-level CUDA function calls. The
mathematical underpinnings of most physics simulations including sampling, linear algebra,
numerical optimization, signal processing, and differentiation are implemented in these fra-
meworks in an aggressively optimized manner, using MATLAB/NumPy-like syntax that is
intuitive to non-programmers. Additionally, these frameworks are supported by extensive
function manuals and numerous high-quality courses such as fast.ai. The physicist, as a result,
reaps the benefits of the rapidly improving technology and can remain focused on the sci-
entific aspects of the simulation, instead of implementation details.

Furthermore, the advantage of using frameworks that garner strong adoption like
PyTorch and TensorFlow is that with greater usage, bugs are caught sooner, and robust
documentation and support are further justified. Crucially, with more users, online pro-
gramming help communities like StackOverflow become filled with questions and solutions
to common (and uncommon) programming errors, aiding physics students and researchers in
rapidly fixing their own bugs by benefitting from crowdsourced knowledge.

Yet obstacles remain—GPUs cost hundreds to thousands of dollars, often impractical for
students and schools in developing countries. Further, installing an optimized deep learning
framework with GPU support is non-trivial and hardware-specific, often requiring several
days to complete even for experts. Although most personal computers on sale today ship with
a GPU, they are typically limited in memory, and the user still runs into environment setup
challenges. Cloud computing solves these problems. With high-end GPUs and pre-built deep
learning environments available over the Internet, anyone can write simulations on their
personal computer, remotely execute their code on a cloud-based machine, and visualize the
results in real-time.

In the remainder of this tutorial, we first show how to set up a GPU instance in the cloud,
pre-loaded with PyTorch. We then introduce the foundations of the Hopfield neural network
(HNN)—including its theoretical roots in condensed matter physics and its applications in AI.
From there, we guide the reader through simulating the HNN on the GPU with few lines of
code, showing the drastic improvement in performance as compared with the CPU. We
conclude with suggested programming exercises to reproduce famous results of the HNN.

2. Colab and PyTorch environment setup

For this article, we take Google Colab [11] as our (currently free) cloud provider of choice,
although Kaggle, Azure Notebooks, Paperspace Gradient, and Amazon Sagemaker are among
the alternatives we are aware of. We use the PyTorch deep learning library here, and note that
TensorFlow is an outstanding alternative. CuPy [12] is a package for purely numerical
computing that is also worth considering. Our hardware of choice are NVIDIA GPUs, as
these chips benefit from the strongest support in the deep learning community. We note that
certain matrix operations can be further accelerated with tensor processing units [13] (TPUs),
freely available on Colab, but such hardware is outside the scope of this paper.

To access Colab, navigate tohttps://colab.research.google.com. Sign in with a Google
account, and then click connect to request an instance. To obtain a GPU, click Runtime 
Change Instance Type  GPU for Hardware Accelerator. In our experience, GPUs are
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available immediately upon request. The user then has access to a pre-built Python
environment with PyTorch, TensorFlow, and common scientific computing packages like
NumPy, SciPy, and Matplotlib pre-installed. Additional packages from GitHub or the Python
Package Index can easily be installed in-browser to augment the pre-built environment. For
example, a biophysics student studying protein interactions may wish to use the pypdb
package. Installing this package is as simple as !pip install pypdb. Within Colab, the
user can write Python code in-browser using a robust Integrated Development Environment
(IDE) with tab completion and code formatting. All code is automatically backed-up in
Google Drive, which allows for easy code sharing/collaboration and the ability to work from
any machine connected to the Internet. We note that although the details of how to access a
particular cloud provider will change over time and based on which service provider is used,
the concept of leveraging this trifecta of technologies (HPC, Cloud, AI) will become
increasingly important in performing computer simulations in the years to come. We further
note that the present article focuses on using GPU-accelerated numerical libraries contained in
deep learning frameworks, as opposed to using deep learning itself in physics research.
Although AI algorithms have started to enjoy a symbiotic relationship with data-heavy
physical simulations [14–16], such applications are beyond the scope of this paper.

We can verify the environment setup with the following example. In Code Sample 1, we
first import the PyTorch and timing packages. We then construct a large random matrix
A16000×16000 sampled from a uniform distribution Aijä[0, 1] on the specified hardware. Note
that the device variable in line 3 defines whether a tensor should be stored on the GPU
(device="cuda") or CPU (device="cpu"). We finally compute the matrix inverse
in line 5:

The code executes in 2.98 s on the GPU and 53.4 s on the CPU. To show the ease of
performing matrix multiplication, we take an example use-case where a modeled linear
system has more unknowns than observations, and a least-squares solution is desired. We
construct a large random matrix A8000×10000 sampled from a uniform distribution Aijä[0, 1]
on the specified hardware (GPU or CPU), and initialize a random vector b8000×1. To solve the
underdetermined linear system Ax= b, we use the Moore–Penrose pseudoinverse in line 13,
x=(AA)−1Ab.

On the GPU, the code executes in 1.46 s. On the CPU, it requires 45.1 s. We encourage
the reader to reproduce our timings, and observe that as matrix inversion and matrix
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multiplication are of O(N3) complexity, the timings scale as such. These brief examples show
the order of magnitude superior performance of the GPU in scientific computing, and its ease
of access. As an exercise, generate a random square matrix sampled from a Gaussian dis-
tribution and diagonalize the matrix. Plot how the performance scales with the input size, and
compare the CPU versus GPU timings. You can use the PyTorch documentation to obtain the
syntax and the Matplotlib package for visualization.

To illustrate the value of the GPU in studying physical systems, we take the Hopfield
network as a specific example (see figure 1). In the next section, we introduce the theory behind
the HNN.

3. The Hopfield network

The Hopfield neural network is a two-state information processing model first described in
1982 [17]. The dynamical system exhibits numerous physical properties relevant to the study
of spin glasses (disordered magnets) [18], biological neural networks [19], and computer
science (including circuit design [20], the traveling salesman problem [21], image segmen-
tation [22], and character recognition [23]).

The network consists of N fully-connected neurons that can store N-tuples of ±1ʼs. Each
pair of neurons has an associated weight stored in a symmetric synaptic weight matrix Jij with
i, jä1...N. The binary state of a neuron represented by Si is mapped onto a classical Ising
spin [24], where Si=+1 (−1) represents a neuron that is firing (at rest). In the binary
representation, such a neuron fires when its potential exceeds a threshold Ui that is inde-
pendent of the state Si of the neuron. The state of the neuron at time t+1 is determined solely
by the sum total of post-synaptic potential contributions from all other neurons at time t. This
assumption, where the time evolution of a neural state is determined by the local field
produced by other neurons, allows us to associate a classical Hamiltonian [24] (or energy
functional) consistent with the discrete, asynchronous time evolution of the neural network.
The neural network is, thus, mapped onto an Ising model with long-ranged, generically

Figure 1. A fully-connected Hopfield neural network with N= 6 and instantaneous
state S={+1, +1, −1, +1, −1, −1}, starting from the top and indexing clockwise.
The synaptic weights are stored in the 6× 6 matrix Jij.
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frustrated interaction. Spin glass approaches have been highly fruitful in investigating the
properties of such Hopfield neural networks near criticality [18]. In particular, they have
quantified the critical memory loading αc∼ 0.144, such that when p patterns are imprinted on
a network with N neurons, the network has no faithful retrieval for α=p/N>αc whereas
when α<αc, the memory retrieval is accompanied by a small fraction of error (for example,
no more than 1.5% of bits flipped) [18].

We consider a network of N two-state neurons Si=±1 trained with p=α N random
patterns ξμk where μ=1, K, p, k=1, K, N, and N?1. The symmetric synaptic matrix is
created from the p quenched patterns:

( )å x x= = ¹
m

m m

=
J

N
J i j

1
. 1ij

p

i j ji
1

With symmetric neural interconnections, a stable state is ultimately reached [25]. Further,
we note that the neural interconnections are considered fixed after training, and Jii= 0 in the
traditional interpretation. However, previous work has shown that the hysteretic (or self-
interaction) terms enhance retrieval quality, especially in the presence of stochastic noise
[26–29]. Hysteresis is a property found in biological neurons (via a refractory period after a
neuron fires) and is inherent in many physical, engineering, and economic systems. Thus, in
this paper we set Jii=λαto probe the effects of self-action, with λ= 0 representing the
traditional model.

We compute the simulated memory capacity by flipping some fraction of bits less than a
Hamming distance N/2 away from each imprinted pattern, time evolving the corrupted probe
vectors through the network until some convergence criterion, and then measuring the quality
of recall. The Hamming distance is defined as the number of different bits between two
patterns. The zero-temperature network dynamics are as follows:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )å+ =

¹
S t J S t1 sign . 2i

j i

N

ij j

The network evolving under this deterministic update rule behaves as a thermodynamical
system in such a way as to minimize an overall energy measure defined over the whole
network [30]. These low energy states are called attractor states. When α<αc, the imprinted
patterns are the attractors. Above criticality, non-imprinted local minima, called spurious
memories, also become dynamically stable states. The basin of attraction is defined as the
maximal fraction of bits that can be flipped such that the probe vector still relaxes to its
intended imprint within a small fraction of error [19]. At low memory loading, the basin of
attraction of imprinted patterns is very high, near N/2, and beyond criticality αc, the basin of
attraction vanishes. We let m0 be the normalized dot-product between an imprinted pattern
and its corrupted probe vector, and let mf represent the final overlap between a time-evolved
probe vector and its intended imprint. Therefore, an imprint with 0.1N bits flipped would have
an overlap of m0= 0.8. We note that asynchronous update refers to each neuron updating
serially (in random order, per time step), and synchronous update refers to all neurons updated
at once per time step.

Despite the simplicity of the Hopfield network, considerable computational power is
inherent in the system. We find numerous interesting properties like Hebbian learning,
associative recall (whereby similar to the human brain, whole memories can be recovered
from parts of them), and robustness to thermal and synaptic noise [19].
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In the next section, we demonstrate how to simulate the Hopfield network on the GPU
with a large system size (N= 32 K) and very few lines of code.

4. Implementing simulations on the GPU

Here we show with code how to implement a Hopfield network simulation. After setting up a
PyTorch environment in Google Colab as specified in the Introduction, we start by defining
functions to construct the set of imprinted memories, the synaptic weight matrix (as defined in
equation (1)), and probe vectors perturbed from the imprints.
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We then import key packages in line 79 and specify that our code should run on the GPU.
The same code can be run on the GPU or CPU by simply switching the dst variable between
‘cuda’ and ‘cpu’ in line 80. In subsequent lines, we define the system parameters including
the network size N, memory loading α, initial overlap m0, and self-interaction term λ.

Eur. J. Phys. 41 (2020) 035802 V S Vavilala

8



Using these parameters, we are ready to construct the set of imprinted memories (line
100), the synaptic weight matrix (line 103, as defined in equation (1)), and probe vectors
perturbed from the imprints (line 107). Finally, the probe vectors are repeatedly updated
according to equation (2) until either convergence or the max time steps are reached
(line 121).

Figure 2. Comparing the performance of Hopfield network simulation on the GPU
versus CPU. For large N, the GPU version executes 50–80 times faster than the CPU.
Note that the CPU timing for N= 32 K is an estimate based on cubic scaling and not
actually simulated.
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With our code complete, we are ready to demonstrate the advantages of using the GPU
over CPU. In figure 2 we compare timings for a simulation with (α, λ, m0,
max_steps)=(0.12, 0, 0.8, 100). For CPU timings, we use two Intel Xeon CPUs @
2.20 GHz. For GPU timings, we use one NVIDIA Tesla T4 GPU with 15 GB allocated RAM.
In the author’s experience, such a GPU has consistently been available in the USA. For large
N, the GPU-accelerated simulations execute 50–80 times faster than the CPU mode. As the
bottleneck of a Hopfield network simulation is matrix multiplication, we observe that the
asymptotic complexity scales O(N3) with the input size.

5. Visualizations and extensions

We now execute large-scale simulations and plot the results in figures 3 and 4. In figure 3,
we visualize the network with zero self-coupling terms (λ=0), αä{0.13, 0.15},
Nä{1k, 4k, 16k}, and initial overlap m0=0.9. To study network recall quality,
we can plot the probability distribution of overlaps P(mf), shown in figures 3(a) and (b).
Below criticality, the weight at m= 1 increases with increasing N. Above criticality, the
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weight at m= 1 decreases with N and we instead observe a two-peak structure with weight
emerging near m=0.35. We conclude that for λ=0, 0.13<αc<0.15. In figures 3(c)
and (d) we plot how the fraction of converged states evolves over time. Near criticality, a

Figure 3. Dynamics of the Hopfield network with zero self-coupling terms (λ=0),
Nä{1k, 4k, 16k}, and initial overlap m0=0.9. In (a), (c), and (e) we show dynamics
for α=0.13. In (b), (d), and (f) we show α=0.15. We plot the probability
distribution of overlaps P(mf) with mean μ(mf) after 100 time steps in (a) and (b).
Below criticality, the overlap at the m=1 weight increases with N, suggesting the
memory loading is below criticality αc. In (b), the loading at m=1 decreases with N,
implying that α>αc. In (c) and (d) we observe that with increasing N and
synchronous update, patterns do not converge to a steady state and instead fluctuate in
2-cycles. In (e) and (f) we show how the overlap m (represented by the colorbar)
evolves over time.
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vanishingly small number of states truly converge and states instead relax into 2-cycles, a
known result accompanying synchronous update. We leave it as an exercise for the reader
to show that with asynchronous update, the 2-cycle behavior is eliminated while the
memory capacity remains the same.

Figure 4. Dynamics of the Hopfield network with self-coupling (λ=1), Nä{1k, 4k,
16k}, and initial overlap m0=0.9. In (a), (c), and (e) we show dynamics for α=0.21.
In (b), (d), and (f) we show α=0.24. We plot the probability distribution of overlaps P
(mf) with mean μ(mf) after 100 time steps in (a) and (b). Below criticality, the overlap at
the m=1 weight increases with N, suggesting the memory loading is below criticality
αc. In (b), the loading at m=1 decreases with N, implying that α>αc. In (c) and (d)
we observe that with synchronous update, all patterns converge but the rate slows with
increasing N. In (e) and (f) we show how the overlap m evolves over time.
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In addition to asynchronous update, there are numerous avenues to further investigate the
Hopfield network, such as modifying the synaptic matrix (with disorder, non-local weights, or
dilution), asymmetric neural updating rules, and even using the Hopfield network to solve
problems in another domain. The extension we show for this paper is probing the effects of
non-zero self-action (λ¹0). We do so in line 90 of the code. In figure 4, we observe that
λ=1 produces useful recall as high as α=0.21, and its performance degrades more
gracefully in response to loading exceeding criticality (α=0.24, figures 4(a) and (b)).
However, with the introduction of self-coupling, the convergence time appears to increase
(figures 4(c) and (d)) [28].

6. Suggested exercises

1. Implement asynchronous update by introducing a parameter 0<k<1 such that at every
time step, kN neurons are updated. When k=1/N, this is purely asynchronous update.
When k=1, we have purely synchronous update. For all other k, we have hybrid
updating, which enjoys the massive parallelism inherent in synchronous update, while
avoiding 2-cycles.

2. In the large-N limit, the maximal number of memories stored such that all are recalled
perfectly [24] is p<N/4log(N). Derive this result with theory using a signal-to-noise
analysis [19, 24, 31] and test it with simulation.

3. Stochastic noise is typically implemented by using a probabilistic update rule [18, 24]
that modifies the time evolution of each neuron as follows:

( ) ( )å=
¹

h J S t 3i
j i

N

ij j

( ) ( ( )) ( )b+ + = +P t h1; 1 1 tanh 2 4S ii

( ) ( ) ( )- + = - + +P t P t1; 1 1 1; 1 , 5S Si i

where β=1/kBT tunes the strength of noise, T is the absolute temperature, and kB is the
Boltzmann constant. β=0 encodes totally random dynamics, and T=0 encodes the
usual deterministic update. Produce a T−α phase diagram to show the effect of these
two parameters on mf for varying m0 and large N.

7. Conclusion

In this tutorial, we have suggested the use of cloud computing, GPUs, and deep learning
frameworks to accelerate large-scale physical simulations and make high-performance
computing accessible to students and researchers. We demonstrated this by performing a
simulation of the Hopfield network with large system size (N=32 K) and realized a GPU
acceleration exceeding 50×as compared with CPU-only simulations—using only free cloud
resources. Our hope is that the rapid pace of development in the computer science discipline
can enable physicists to work faster, and help educators remove barriers between their stu-
dents and participation in research. We encourage the reader to modify the example code and
implement their own physical simulations.
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Appendix. Plotting code

To aid student learning, we show the reader the source code to reproduce the fraction of
converged states figures 3(c), (d), 4(c) and (d). The following code can be appended to the
simulation code for instant viewing of figures in the browser. We use the Matplotlib package
for creating publication-quality figures, and note that line 152 shows how to download any
file (here a pdf image) from the cloud machine onto a personal computer. Implementations of
the remaining figures look similar and we encourage students to reproduce them.

All source code in this paper can be found in this pre-populated Colab notebook:https://
colab.research.google.com/drive/1bS9V5GDzfeKe3Pu_yza8t66KjUNpMcFM
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