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Abstract
In this paper, we give the general interaction solution to the (3+1)-dimensional Jimbo–Miwa
equation. The general interaction solution contains the classical interaction solution. As an
example, by using the generalized bilinear method and symbolic computation by using Maple
software, novel interaction solutions under certain constraints of the (3+1)-dimensional Jimbo–
Miwa equation are obtained. Via three-dimensional plots, contour plots and density plots with
the help of Maple, the physical characteristics and structures of these waves are described very
well. These solutions greatly enrich the exact solutions to the (3+1)-dimensional Jimbo–Miwa
equation found in the existing literature.

Keywords: generalized bilinear equation, interaction solution, dynamical characteristics, (3+1)-
dimensional Jimbo–Miwa equation, symbolic computation
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1. Introduction

In recent years, nonlinear partial differential equations have been
widely applied to many natural systems, for instance, in biology,
chaos theory and ecology. Moreover, the exact analytical solu-
tions to nonlinear partial differential equations play a key role in
several research directions, for example, descriptions of different
kinds of waves as an initial condition for simulation processes.
Thus, a great deal of attention is paid to this important research
area. The various exact solutions to nonlinear evolution
equations (NLEEs) can be obtained via some effective methods,
such as solitons [1–6], rogue waves [7, 8], breathers [9], periodic
waves [10–13], optical solutions [14], lump solutions [15], etc.
Recently, based on the Hirota bilinear method, Ma and Zhou
introduced a new way to get the lump solutions to NLEEs by
using symbolic computation and provided theoretical proof
[16, 17]. By using this method, researchers have successfully
obtained the lump solutions, lump-type solution and interaction
solutions of NLEEs [18–50].

In the present paper, we will give the general interaction
solution to the (3+1)-dimensional Jimbo–Miwa equation.
The general interaction contains the classical interaction
solution, such as the lump–kink solution and the lump–soliton
solution. The rest of the paper is organized as follows. In
section 2, we will give the bilinear form and general inter-
action solution to the (3+1)-dimensional Jimbo–Miwa
equation. In section 3, by using symbolic computation Maple,
we will obtain the novel interaction solutions between the high-
order lump-type solution and other functions. In section 4, via
three-dimensional plots, contour plots and density plots with
the help of Maple, the physical characteristics and structures of
these waves are described very well. In section 5, a few of the
conclusions and outlook will be given.

2. General interaction solutions to the (3+1)-
dimensional Jimbo–Miwa equation

We consider the (3+1)-dimensional Jimbo–Miwa equation
[51]

( )+ + + - =u u u u u u u3 3 2 3 0. 1xxxy y xx x xy yt xz

Equation (1) is the second equation in the well-known
Kadomtsev–Petviashvili hierarchy of integrable systems
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[51, 52], which is used to describe certain interesting (3+1)-
dimensional waves in physics. Although Equation (1) is non-
integrable, the exact solutions to the Jimbo–Miwa equation
have been investigated by using various methods [53, 54].
Recently, researchers studied the solitary wave solutions to
Equation (1) in [3–6]. Based on the bilinear method, we
obtained several interaction solutions and the periodic lump
wave solutions for Equation (1) [12, 13]. The classes of lump
solutions, lump-type solutions, general lump-type solutions
and interaction solutions for Equation (1) were presented in
[24–30].

2.1. Bilinear form

Under the Cole–Hopf transformation:

( ) [ ( )] ( )=u x y z t f x y z t, , , 2 ln , , , , 2x

Equation (1) becomes the generalized bilinear equation

( ) ( ) ·
( )

= + - =f D D D D D D f fGB : 2 3 0,

3
JM p x p y p y p t p x p z,

3
, , , , ,

where p is an arbitrarily natural number, often a prime
number. D is a generalized bilinear differential operator as
follows [55],
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where ( ) ( )a = -m n, 0, 1p
s r sp , if ( )ºs r sp mod p.

When taking p=3, we can obtain the generalized
bilinear Jimbo–Miwa equation

( ) ≔ ( ) ·
[ ( )
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By using transformation (2), Equation (5) is transformed
into the following form
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where uy = vx. Transformation (2) is also a characteristic one
in establishing Bell polynomial theories of soliton equations
[56], and an accurate relation is
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Hence, if f solves generalized bilinear Jimbo–Miwa
Equation (5), Jimbo–Miwa Equation (6) will be solved.

2.2. General interaction solution

In order to obtain the general interaction solution, we take its
main steps as follows:

Step 1. By using the transformation (2), Equation (1) is
transformed into generalized bilinear equation (5).

Step 2. To search for general interaction solutions of
Equation (1), we suppose that generalized bilinear Jimbo–
Miwa equation (5) has the following solution:
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where (  = = =a a b m i N j M k, , , 1, , ; 1, , ; 0 ,ik jk j0

)1, , 4 are arbitrary real constants, and x1=x, x2=y,
x3=z, x4=t.

Step 3. By substituting (8), (9) into Equation (5) and
collecting all terms with the same order of

( ) ( ) ( )h h h¢  ¼x g g g, , , ,i j j j j j j together, the left-hand side of
Equation (3) is converted into another polynomial in

( ) ( ) ( )h h h¢  ¼x g g g, , , ,i j j j j j j . Equating each coefficient of these
different power terms to zero yields a set of nonlinear alge-
braic equations for a0, aij, bjk, mj. With the aid of Maple, we
solve above nonlinear algebraic equations.

Step 4. By substituting a a b m, , ,ij jk j0 into (8) and using
bilinear transformation (2), we can obtain the general inter-
action solution (8) of Equation (1).

Remark 2.1. When choosing ni=1, N=2, M=1 and
gj(ηj)=eηj or gj(ηj)=cosh(ηj), the general interaction
solution (8) is reduced to the classical interaction solution,
such as the lump–kink solution and the lump–soliton solution
[26–29, 31, 36, 37, 45–48].

Remark 2.2. When choosing ni=1, N=2, M=1 and
( )h h=g cosj j j or ( )h = +h h-g c ce ej j 1 2j j or ( ) ( )h h=g sinhj j j

or ( ) ( )h h=g sinj j j , we obtain the interaction solutions of
[31, 32, 36, 50] respectively.

Remark 2.3. When mj=0, the general interaction solution
(8) is reduced to the general lump-type solution
which contains the lump solution, the general lump solution,
high-order lump solutions, the lump-type solution, etc
[18–50].

Remark 2.4. In step 3, the connection between gj(ηj) and
( ) ( )h h¢  ¼g g, ,j j j j must be considered when we get each

coefficient of different power terms to ( ) ( ) ( )h h h¢  ¼g g g, , ,j j j j j j .
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3. Novel interaction solutions

In the section, we will search for novel interaction solutions
between the high-order lump-type solution and other func-
tions of the (3+1)-dimensional Jimbo–Miwa equation.

In order to obtain the interaction solution between the
high-order lump-type solution and the double-exponential
function, the trigonometric function and the hyperbolic
function of the (3+1)-dimensional Jimbo–Miwa equation (1),
we suppose

( )= = = =N n n n3, 2, 1, 1, 101 2 3

( ) ( )
( ) ( ) ( )

h h
h h h h

= = =
= =

h h-M g g

g g
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1 2

The interaction solution to the generalized bilinear
equation (5) is written in the following form
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where x = + + + +a a x a y a z a ti i i i i i0 1 2 3 4 (i=1, 2, 3),
h = +b b xj j j0 1 + +b y b zj j2 3 + b tj4 ( j=1, 2, 3, 4).

By substituting (12) into Equation (5), collecting all
terms with the same order of hh h-x y z t, , , , e , e , cos ,31 2

h hsin , cosh ,3 4 hsinh 4 together, the left-hand side of
Equation (5) is converted into another polynomial in

h hh h-x y z t, , , , e , e , cos , sin ,3 31 2 h hcosh , sinh4 4. Equating
each coefficient of these different power terms to zero yields a
set of nonlinear algebraic equations for a0, aij, bjk, mj.

Solving the algebraic equations by using Maple yields
the following sets of solutions.

I. Between lumps and three-wave solutions:
When h h h= = = ¹ = =m m m m 0,2 3 4 1 2 3 1 in (12),

solution (12) represents the interaction solutions between the
high-order lump-type solution and three-wave solutions =f
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where other parameters are arbitrary real constants.

II. Between lumps and breather solutions:
When h h= = = ¹ =m m m m, 0, 02 1 3 2 1 4 in (12),

solution (12) represents the interaction solutions between the
high-order lump-type solution and the breather solutions
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where other parameters are arbitrary real constants.
III. Between lumps and solitary wave solutions:
When h h= = = ¹ =m m m m, 0, 02 1 4 2 1 3 in (12),

solution (12) represents the interaction solutions between the
high-order lump-type solution and solitary wave solutions
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Case 3.5: 0,
3

2
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0, 0, 0, 0,
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, 0, 0,

, 0 33

11 12
13 31

34
14

21 22 23 24

32 33 12 13

14
34 11

31
42 43

44
34 41
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31 34

where other parameters are arbitrary real constants.

Remark 3.1. In addition to the above results in Case3.1–
Case3.5, we can also get the same solutions as in Cases1.1,
1.2, 1.6, 1.8 and the special results of Cases1.3, 1.4, 1.5
when b11=b41, respectively.

IV. Between lumps and cos–cosh solitary wave
solutions:

When mi=0(i=1,2), m4=m3 in (12), solution (12)
represents the interaction solutions between the high-order
lump-type solution and cos–cosh solitary wave solutions

x x x h h= + + + + +f a m mcos cosh0 1
4

2
2

3
2

3 3 3 4.

( )
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= = =
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a
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Case 4.2: 0, 0, , 0,
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2
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3

2
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12 33
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Case 4.3: 0, 0,
3

2
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0, 0, 0, 0,
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, 0 36

10 11 12
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where other parameters are arbitrary real constants.

Remark 3.2. In addition to the above results in Cases4.1–4.3,
we can also get the special results of Cases1.2, 1.3,
1.4(b41=b31) and 1.9 when η3=η1, a10=0, respectively.

V. Lump–soliton solutions between lumps and soli-
tary wave solution:

When mi=0(i=1, 2, 3) in (12), solution (12) repre-
sents the lump–soliton solutions between the high-order
lump-type solution and the solitary wave solution

x x x h= + + + +f a m cosh0 1
4

2
2

3
2

4 4.
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Case 5.1: 0, 0, , 0,
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Case 5.2: 0, 0,
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3
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3
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Case 5.6: 0, 0, , 0,

2

3
, 0,

0, 0, 0, 0,

0,
3

2
0 42

10 11 13
12 33

32
14

21
24 32

33
22

23 31 34 42

43 44
33 41

32
32 33

· ( ) ( )

= = = =

= = =

= = = =

= ¹

a a a a
a a

a

a a a
a a

a
a a b b

b
a b

a
a a

Case 5.7: 0, 0, 0,
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Case 5.8: 0, 0,
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where other parameters are arbitrary real constants.
VI. Between lumps and cos periodic wave solutions:
When mi=0(i=1,2,4) in (12), solution (12) represents

the interaction solutions between the high-order lump-type
solution and the cos periodic wave solutions x= + +f a0 1

4

x x h+ + m cos2
2

3
2

3 3.
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where other parameters are arbitrary real constants.
These sets of solutions for the parameters generate 33

classes of combination solutions  f i, 1 33i to the gen-
eralized bilinear Jimbo–Miwa equation (5), and then the
resulting combination solutions present 33 classes of inter-
action solutions  u i, 1 33i to Equation (1) under trans-
formation (2). Therefore, various kinds of interaction
solutions could be constructed explicitly this way.

Remark 3.3. It is interesting that we can obtain the same
solutions to Case 1.1–1.9 when ( ) ( )h h h= =g gsin ,3 3 3 4 4

hsinh 4. Due to the lack of space, we omit the expression of
interaction solution between the high-order lump-type solu-
tion and the periodic cross-kink wave solutions, namely

x x x h= + + + + + + +h h-f a m m me e sin0 1
4

2
2

3
2

1 2 3 31 2

hm sinh4 4.

4. Dynamical characteristics

In this section, to analyze the dynamical characteristics of the
interaction solutions, we plot various three-dimensional,
contour and density plots for the (3+1)-dimensional Jimbo–
Miwa equation.

4.1. Three-dimensional and contour plots of the interaction
solutions to Case 1.2

As an example, if we substitute the coefficient of Case 1.2
into (12), we can get f1 as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

( )h h

= + + +

+ + +

+ + +

+ + + +h h-

f a a a y a z

a
a a

a
x a t

a
a a

a
x a t

m m m m

2

3

2

3
e e cos cosh , 53

1 0 10 12 13
4

20
12 24

13
24

2

30
12 34

13
34

2

1 1 1 1 1 41 1

where a a a a, , ,0 10 12 13, a a a a, , ,20 24 30 34, b b b b, , ,10 11 40 41,

( )¹m m a a 01 1 12 13 are arbitrary real constants, and h =1

+ +b b x
a b

a
t

3

2
10 11

13 11

12
, h = + +b b x

a b

a
t

3

24 40 41
13 41

12
.

The function f1 is well defined, positive, analytical and
guarantees the localization of u in all directions in the (x, y)-
plane. The interaction solution to the (3+1)-dimensional
Jimbo–Miwa Equation (1) can be directly obtained via
transformation (2)

( )
( )

( )
( )=u x y z t

f x y z t

f x y z t
, , ,

2 , , ,

, , ,
, 54ix

i

where fi(x, y, z, t) is given in (53).
We choose the following parameters to illustrate the

interaction solution (54) between the high-order lump-type
solution and the three-wave solutions to the (3+1)-dimen-
sional Jimbo–Miwa equation (1),

( )

= = = = =
= = =
= = = = = =

a a a a a
a a a
b b b b m z y

3, 6, 10, 1.5, 2,
5, 2, 5,
1, 3, 1, 3, 1, . 55

0 10 12 13 20

24 30 34

10 11 40 41 1

The physical properties and structures for interaction
solution (54) are shown in figure 1. It shows the three-
dimensional dynamic graphs and contour plots in the (x, y)-
plane when = - - -t 60, 20, 10, 0, 10, 20, 40, 60 respec-
tively. The three-dimensional graphs reflect the localized
structures. We can see that the high-order lump-type wave,
double exponential function, trigonometric function and
hyperbolic function waves react with each other and keep
moving forward.

The wave consists of two parts, including a high-order lump-
type wave and an other functions wave (double-exponential
function, trigonometric function and hyperbolic function). The
lump wave moves in one direction to the other with the variable t.
The amplitude of the lump changes with the variable t, and
especially when t=0, the energy and amplitude of the lump–
soliton reaches the maximum. This phenomenon is very strange
and analogous to rogue waves. The process of interaction changes
the amplitudes, shapes and velocities of both waves. This type of
interaction solutions provide a method to forecast the appearance
of rogue waves, such as financial rogue waves, optical rogue
waves and plasma rogue waves, through analyzing the relations
between the lump wave part and the soliton wave part.

4.2. Three-dimensional, contour and density plots of the
interaction solutions to Case 4.1

If we substitute the coefficient of Case 4.1 into (12), we can
get f2 as follows:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( ) (

) ( )
( )

= + +

+ + +

+ + + + +

+ + + +

f a a y
a a

a
z

a
a a

a
y a z

a a x a t m b b y
a b

a
z m b b y

a b

a
z

2

3

3

2

cos
2

3
cosh

2

3
,

56

2 0 12
12 34

31

4

20
23 31

34
23

2

30 31 34
2

1 30 32

34 32

31
1 40 42

34 42

31
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where ( ¹a a a a a a a b b b b m a a, , , , , , , , , ,0 12 20 23 30 31 34 30 32 40 42 1 31 34

)0 are arbitrary real constants. By substituting (56) into (2),
we get interaction solution (54) to (3+1)-dimensional Jimbo–
Miwa Equation (1).

We choose the following parameters to illustrate the
interaction solution (54) between the high-order lump-type
solution and the cos–cosh solitary wave solutions of the (3
+1)-dimensional Jimbo–Miwa equation (1),

( )

=- = = - = -
= = - =

= = = = - = =

a a a a
a a a

b b b b m z y

1, 1, 1, 2,
3, 1, 2,

1, 2, 1.5, 2, 6, .

57

0 12 20 23

30 31 34

30 32 40 42 1

The physical properties and structures of the interaction
solution (54) are shown in figure 2. It shows the

three-dimensional dynamic graphs A1, B1, C1, corresponding
contour maps A2, B2, C2 and density plots A3, B3, C3 in the (x, y)-
plane when t=−20, 0, 20, respectively. The three-dimensional
graphs reflect the localized structures, and the density plots show
the energy distribution. We can see that the high-order lump-type
wave, trigonometric function and hyperbolic function wave react
with each other and keep moving forward.

5. Conclusion

In this paper, we gave the form of general interaction solution to
the (3+1)-dimensional Jimbo–Miwa equation. The general
interaction solution contained classical interaction solutions, such
as the lump–kink solution and the lump–soliton solution. As an

Figure 1. Three-dimensional plots and contour plots of the wave with the parameters (55) at times t=−60,−20,−10,0,10,20,40,60.
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example, by using the generalized bilinear method and symbolic
computation software Maple, we successfully construct novel
interaction solutions between the high-order lump-type solution
and other functions of the (3+1)-dimensional Jimbo–Miwa
equation, such as, three-wave solutions, breather solutions, soli-
tary wave solutions, cos–cosh solitary wave solutions, lump–
soliton solutions and cos periodic wave solutions. Three-dimen-
sional plots, contour plots and density plots of these waves may
be observed in figures 1–2, respectively. We can find the physical
structure and characteristics of the interactions between high-
order lump-type solutions and other function waves.

The new interaction solutions obtained in this paper will
greatly expand the exact solutions to the (3+1)-dimensional
Jimbo–Miwa equation in the existing literature [3–6, 12, 13,
24–30, 51–54]. These results are significant to understand the
propagation processes of nonlinear waves in fluid mechanics
and the explanation of some special physical problems.
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