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Abstract
AGreen’s function formalism for describing the decoherence of a ‘central spin’ in inhomogeneous
media is developed. By embedding the ‘central spin’ in a backgroundmedium and performing real-
cavity, local-field corrections on themacroscopic fields at the location of the ‘central spin’ one can
show that theGreen’s function splits up into twomain contributions, a contribution that is related to
the bulk properties of the backgroundmedium and a contribution that is related inhomogeneities
within the backgroundmedium.As an example, the coherence time of a shallowNV center in
diamond close to a planar interface, both in the absence and presence of surface spins, is computed. It
is found that the coherence time of theNV center increases as itmoves away from the interface and, at
distances greater than≈1 nm, the interactionwith the interface is negligible with themain source of
decoherence coming from the interactionwith the surface spins. Above≈50 nm the interactionwith
the surface spins is also negligible and one recovers the bulk coherence time.

1. Introduction

Owing to their ability to generate andmaintain coherent superpositions, single spin qubits showmuch promise
as a platform for realizing quantum computing and quantum information processing [1, 2]. However, as these
spins are unavoidably coupled to the environment, the coherence times of these superposition states isfinite
and, if left to freely evolve, the spinwill ‘decohere’ to amixed state of the two eigenstates [3, 4]. Thisfinite
coherence time is amajor limiting factor in the realization ofmany quantum information protocols.

Formany spin systems themain source of decoherence is the interactionwith nuclear spins in the
surroundingmaterial. For example, themain source of decoherence for phosphorus donors in silicon are the 29Si
isotopes that are present at a concentration of about 4.7% in natural silicon [5] and, likewise, 13C, at a
concentration of about 1.1%, are the primary source of decoherence forNV centers in diamond [6]. Themain
technique formodeling decoherence is to use amicroscopic spin-bathmodel [4]where one couples the ‘central
spin’ individually to a bath nuclear spins. Further interactions couple the nuclear spins within the bath inducing
intrabath correlations which also affect the coherence properties of the ‘central spin’ [7]. The coherence time can
then be computed by applying one of the usual cluster-expansion techniques bywhich one can obtain a
numerically tractable expression. Despite this, for large systems, thesemethods can be computationally
intensive. Furthermore, although one can specify the exact position of the bath spinswithin the spin bath, this
technique proves awkwardwhen one needs to consider inhomogeneities in themedium inwhich the ‘central
spin’ is embedded. An example of this can be seenwhen one considers a ‘central spin’ located close to an
interface (shallowNVcenters, which can be locatedwithin several nanometers of the diamond surface, would be
an example of such a system). Naively, onemay think that as the ‘central spin’ approaches the surface the
coherence timewill increase as the number of nearby nuclear spins decreases. However, experimental work has
shown that this is not the case and, in fact, the coherence time decreases dramatically close to the surface [8, 9]. A
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number of phenomenologicalmodels have been constructed to account for this effect [10, 11] but a general
framework for studying such systems is absent.

Previously, it was shown that, by considering a spin-bosonmodel and expanding the bosonicmodes of the
environment using themacroscopic quantum electrodynamics formalism [12, 13], one can obtain an expression
for the decoherence of a ‘central spin’ in terms of the electromagnetic Green’s function of the surrounding
material [14]. By substituting the homogeneousGreen’s function into the general expression, the coherence
time for a spin in an infinitely extendedmedium can be found.However, theGreen’s function formalism applies
to any generalmaterial geometry and by replacing the homogeneousGreen’s functionwith the appropriate
inhomogeneousGreen’s function the coherence timewithin an inhomogeneousmedium can also be computed.

Here, we extend theGreen’s function formalism of spin decoherence fromhomogeneousmedia to
inhomogeneousmedia and compute analytical expressions for the coherence time for a ‘central spin’ close to a
surface and in the presence of surface spins. Althoughwe only consider planar layered geometries here, the
Green’s function formalism is general and, hence, applicable to anymaterial configuration. Analytical
expressions for the coherence time can be obtained for regular geometries (planes, cylinders, spheres, etc)where
a closed form expression for theGreen’s function are known. For non-regular geometries, numericalmethods
for computing theGreen’s function for arbitrarymedia arewell developed. For example, similar computation
techniques are required to computeCasimir andCasimir–Polder interactions, which have been implemented in
the computational package SCUFF-EM [15]. Hence, numericalmethods are already available to implement the
following theory, whichwould allow one to calculate spin coherence under anymaterial geometry.

2. Theory

2.1. The spin-bosonmodel
Consider a spin-bosonmodel where a two-level, ‘central spin’, described by the spin operator, Ŝ, is placed in a
magnetic field, orientated in the z-direction, and coupled to an ‘environment’ consisting ofmagnetic
fluctuations described by a bath of bosonic operators, ˆ ( )tb r, . The dynamics of a ‘central spin’ subject to a
magnetic field are governed by the ZeemanHamiltonian

ˆ ( )w=H S , 1z0 0

with the two energy levels, corresponding to the ‘spin up’ and ‘spin down’ eigenstates, separated by an energy
ΔE=2ω0. The interactionwith themagnetic fluctuations can be described by an interaction termof the form
[4]

ˆ · ˆ ( ) ( )g=H tS b r, , 2I

wherewe assume the energy of the fluctuations described by the operator ˆ ( )tb r, aremuch smaller than the
energy splitting of the spin eigenstates,ΔE, and hence the interactionwith the environment can be treated as a
small perturbation.Here, the coupling strength between the ‘central spin’ and themagnetic fluctuations is given
by the gyromagnetic ratio γ=gμB/ÿ, where g is the landé g-factor andμB is the bohrmagnaton.

The transverse part of the interactionHamiltonian induces spin flips which relaxes the higher energy spin
state to the lower energy spin state, or equivalently leads to the decay of the certain diagonal elements of the
spin’s densitymatrix. This class ofHamiltonian has been extensively studied (notably in [3]) and, from the
dynamics of the ‘central spin’ subject to such an interaction, a characteristic time for this relaxation process,
usually designatedT1, can be computed.

The longitudinal part of the interactionHamiltonian induces pure dephasingwhich leads to loss of
coherence of the two spin states, i.e. the decay of the off-diagonal elements of the spin’s densitymatrix. The
characteristic time for this process is usually designatedT2, and is usually less thanT1 (T2<T1). Here, wewill
consider the longitudinal problem as this is themain limiting process for quantum technology. The longitudinal
problem also has the advantage that the interactionHamiltonian commutes with the ZeemanHamiltonian and
hence the eigenstates of the Ŝz are unchanged by the interaction.

To simplify the analysis one can remove the free evolution of the spin bymoving to the interaction picture. It
also proves to be convenient towrite themagnetic fluctuations as a sumof theirmodes. In this new frame the
‘central spin’ evolves under theHamiltonian

ˆ ( ) ˆ [ ˆ ( ) ˆ ( )] ( )
†

òg w w w= +
¥

H t S b t b tr rd , , , , . 3z z s z s
0

The coherence, L(t), of a ‘central spin’ can be found by taking the expectation value of the coherence operator
ˆ ˆ ˆ= ++S S Six y,
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( ) ˆ ( ) ( )( )= á ñ = f
+

-L t S L 0 e , 4t

with the function,f(t), giving the decoherence rate as a function of time, t.

2.2.Magneticfluctuations
Wewish tofind a bosonic operator that correctly describes themagnetic fluctuations of the environment. In any
dissipative system, the act of dissipation results in the generation of noise. This is formally described by the
fluctuation-dissipation theoremwhich relates the power spectrumof the noise to the imaginary part of the
response function. An example of this would be Johnson noise in a resistor. The energy dissipated by the resistor
when a currentflows leads to heating and the resulting thermal fluctuations, in turn, drive noise currents. Thus,
noise is generated in the resistor by the dissipation process. Similar processes generate noise in all absorbing
media. As absorption is a necessary consequence of theKramers–Krönig relations, which themselves are a
consequence of causality [16], then onewould expect absorption, and hence noise, in any responding system.

It is possible to derive a quantum field theory description of such noise by considering a three part coupled
systemwhere an external electromagnetic field interacts with amatterfieldwhich, in turn, is coupled to a bath of
oscillators thatmodels absorption. This system can be quantized from first principles to give a set of bosonic
operators that describe collective excitations of the field-matter-bath system (the somewhat lengthy calculation
is documented in detail in [17, 18]).When one substitutes the expressions for these bosonic operators into the
expressions for themacroscopic electromagnetic fields onefinds that the displacementfield, ˆ ( )wD r, , gains
extra terms that can be shown to have the properties of Langevin noise sources. This noise termoriginates from
the coupling to the oscillator bath and, hence, is a result of the absorptive properties of the system. This
absorption driven noise can therefore be identifiedwith the noise predicted by thefluctuation dissipation
theorem. Separating these extra terms from the usual expression for the displacement field, ˆ ( )wD r, , leads to two
new ‘noise’ fields which are associatedwith the electric andmagnetic fluctuations respectively. The quantization
scheme described above allows one twowrite these two ‘noise’ fields in terms of two sets of canonical bosonic
operators, ˆ ( )wf r,e and ˆ ( )wf r,m , as

ˆ ( ) ( ) ˆ ( ) ( )w
e
p

e w w=


P r r f r, i Im , , , 5N e
0

ˆ ( ) ( )
∣ ( )∣

ˆ ( ) ( )w
m p

m w
m w

w=


M r
r

r
f r,

Im ,

,
, . 6N m

0
2

The ‘noise’fields ˆ ( )wP r,N and ˆ ( )wM r,N are termed the noise polarization and noisemagnetization fields,
respectively, and describe the electric andmagnetic fluctuationswithin thematerial. Here, ε(r,ω) andμ(r,ω) are
the electric permittivity andmagnetic permeability of the backgroundmedium and ˆ ( )wlf r, and ˆ ( )

†
wlf r, obey

the usual bosonic commutation relation

[ ˆ ( ) ˆ ( )] ( ) ( ) ( )
†

dw w d d w w¢ ¢ = - ¢ - ¢l l ll¢ ¢f r f r r r, , , . 7

To compute how thefluctuations in thematerial affect the ‘central spin’ one needs tofind themacroscopic
fields that the Langevin noise generates. To do this one can return toMaxwell’s equations and, by using the new
‘noise’fields as source terms, the electromagnetic fields generated by thefluctuations can be found. The resulting
equations read

· ˆ ( ) ( )w =B r, 0, 8

ˆ ( ) ˆ ( ) ( )w w w ´ - =E r B r 0, i , , 9

· ˆ ( ) ˆ ( ) ( )w r w =D r r, , , 10N

ˆ ( ) ˆ ( ) ˆ ( ) ( )w w w w ´ + =H r D r J r, i , , , 11N

with the noise charge density and noise current density defined by ˆ ( ) · ˆr w =r P,N N and
ˆ ( ) ˆ ( ) ˆ ( )w w w w= - + ´J r P r M r, i , ,N N N , respectively. Resubstituting equations (5) and (6) intoMaxwell’s
equations, one can show that themagnetic field operator, which describes longitudinalmagnetic fluctuations
within themedium, is given by [12, 13]

ˆ ( ) ˆ · ( ) · ˆ ( ) ( )òåw
w

w w= ¢ ´ ¢ ¢
w

l
l l

=

Gb t r zr r r f r, ,
e

i
d , , , . 12z

t

e m

i

,

3

Here, the coefficients ( )w¢lG r r, , are defined as

( ) ( ) ( ) ( )w
w

pe
e w w¢ = ¢ ¢


G G

c
r r r r r, , i Im , , , , 13e

2

2
0
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m w

m w
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¢ ´
¬¾

¢


G G
c

r r
r

r
r r, , i

Im ,

,
, , , 14m

0
2

with the backward arrow referring to the fact that the operator acts on the right-hand variable (here r′). The
function, ( )w¢G r r, , , is the electromagnetic Green’s function, which is the solution to theHelmholtz equation
for a point source

( )
( ) ( ) ( ) ( ) ( )

m w
w

w
e w w d ´ ´ ¢ - ¢ = - ¢G G

cr
r r r r r r r

1

,
, , , , , . 15

2

2

2.3. Spin decoherence
Substituting the operator for themagnetic fluctuations in equation (12) into theHamiltonian in equation (3)
and using it to evaluate the expression for the spin coherence in equation (4) leads to [14] (see supplementary
information, which is available online atstacks.iop.org/NJP/22/033017/mmedia)

( ) ( ) ( ) ˆ · ( ) · ˆ ( )òf m g
w
p

w w w = ´ ´
¬¾¥

  Gt t t k T z zr r
d

2
sinc 2 coth 2 Im , , . 16b s s0

2 2

0

2

Here, the ‘sinc’ function is the usual free-induction decay noisefilter function and the ‘coth’ function is the
thermal boson occupation number. The imaginary part of the double curl of theGreen’s function gives the local
density of states and, hence, the decoherence rate is proportional to the density ofmagnetic fluctuations at rs, the
location of the ‘central spin’.

For systemswhose coherence evolves exponentially as L=e−Γ t, the coherence time is easily defined as
T2=1/Γ i.e. the timewhen the coherence has dropped to L=e−1=36.8%. From equation (16) it is easy to
see that the coherence dynamics of a ‘central spin’ is a complicated function of time, t and, hence it is not possibly
to simply define the coherence time in terms of a simple exponential decay parameter. However, in the long time
limit the ‘sinc’ function becomes nascent δ-function

( ) ( ) ( )w
p

d w=
¥

t t
lim

sinc 2
2 . 17

t

Thus, in the long time limit the coherence reduces to a simple exponential decaywith the decay rate,Γ, given by

[ ( ) ˆ · ( ) · ˆ] ( )m g w w G = ´ ´
¬¾

w
  Gk T z zr rlim coth 2 Im , , . 18b s s0

2

0

However, as ( )aw aw~coth 1 as w  0, this limit only converges if the imaginary part of the double curl of

theGreen’s function scales as ˆ · ( ) · ˆw w ´ ´
¬¾

~Gz zr rIm , ,s s
s with s�1 as w  0. Although this

result can give an reasonable estimate of the coherence time in some cases, it neglects the short time dynamics
and hencewill be a poor approximation in situationswhere the behavior of the ‘central spin’ around the initial
time is important. In light of this, the results presented herewill not use this approximation and for practical
purposes the coherence timewill be taken to be the time inwhich the coherence drops to L=e−1=36.8%.

2.4. Regularization via local-field corrections
There is one last issue that needs to be addressed, namely that the double curl of theGreen’s function for a
homogeneousmedium in the coincident limit diverges if the absorption in themedium is non-zero. As
previouslymentioned, vanishing absorption over the full frequency range is forbidden by theKramers–Krönig
relationswhich, themselves, are a result of causality [16]. Hence, to properlymodel the coherence properties of a
‘central spin’ embedded in a realisticmedium, a further step is required.

The divergences of theGreen’s function can be regularized by performing local-field corrections on the
electromagnetic field at the location of the ‘central spin’ [14]. To perform these corrections one assumes that the
spin is located at the center of a spherical cavity whose radius,Rc, ismuch smaller than the characteristic
wavelength of the system [19, 20]. This procedure is the quantummechanical equivalent of theOnsagermodel
[21, 22], which is often used in physical chemistry to compute the effects of a dielectricmediumon a polarizable
molecule [23, 24]. The cavity is considered to be vacuum and hence free of noise sources and the interface with
the surroundingmaterial to be a simple ‘step function’ interface devoid of gradients, roughness or impurities. It
is important to stress that the cavity used in this procedure ismerelymathematical technique for computing the
field corrections and does not represent anything physical. Essentially, the presence of a cavity introduces an
‘ultraviolet’ cutoff on thewavevector at k≈2π/Rc and, hence, regularizes theGreen’s function.

With this construction, theGreen’s function can be split up into three parts [25, 26]

( ) ( ) ( ) ( ) ( )( ) ( ) ( )w w w w¢ = ¢ + ¢ + ¢G G G Gr r r r r r r r, , , , , , , , . 191 2 3

Thefirst term is proportional to the reflective part of the cavity Green’s function and gives the bulk decoherence
rate that was studied in [14]. The second term is proportional to the transmissive part of the cavity Green’s
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function and gives the decoherence rate owing to the scattering from inhomogeneities external to the cavity. The
final term gives the contribution frommultiple scatting between the external side of the cavity and other
inhomogeneities. As this last contribution scales as≈ωRc/c and the cavity radius,Rc, is assumed to bemuch
smaller than the characteristic wavelength of the interaction, this term is negligible compared to the bulk and
scattering contributions and, hence, will be neglected in the following. These contributions are shown
schematically infigure 1(a).

2.5. TheGreen’s function
Consider a ‘central spin’ located at the center (r=0) of a spherical cavity embedded in an inhomogeneous
medium. TheGreen’s function for thewholemedium, including the spherical cavity, reads

( ) ( )
( )

( )!
( )!

[ ˜ ( ) ( ) ( ) ˜ ( ) ( ) ( )] ( )

( ) w
p

d

w w

¢ = å å å -
+
+

-
+

´ Ä ¢ + Ä ¢

Î =
¥

=G

M M N N

k l

l l

l m

l m

R k k R k k

r r

r r r r

, ,
i

4
2

2 1

1

, , , , , 20

i
n e o l m

l
l

TE TM

, 1 0 0

mln mln mln mln

where R̃TE and R̃TM are the generalized reflection coefficients for theTE andTM polarizedwaves respectively
and the ( )M k r,mln and ( )N k r,mln dyads are given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( ) ( ) ( ) ( )

q
q

f
f

q
q

f
f

= -q fM k
m

j kr P
m

m
e j kr

P m

m
er,

sin
cos

sin

cos
d cos

d

cos

sin
, 21ml e

o l l
m

l
l
m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )

[ ( )] ( ) ( ) ( )

q
f
f

q
q

f
f q

q
f
f

=
+

+ q f

N k
l l

kr
j kr P

m

m
e

kr r
rj kr

P m

m
e

m
P

m

m
e

r,
1

cos
cos

sin

1 d

d

d cos

d

cos

sin sin
cos

sin

cos
, 22

ml e
o l l

m
r

l
l
m

l
m

where jl(x) are spherical Bessel functions of thefirst kind and ( )P xl
m are the associated Legendre polynomials.

Taking ¢ r r, 0 one finds that the only contribution is from l=1 andm=0.Hence, theTMmode vanishes
and the only contribution is from theTEmode. Thus, theGreen’s function reduces to

Figure 1.The interaction of a ‘central spin’with an inhomogeneous backgroundmedium (a) schematic of theGreen’s function for a
local-field corrected ‘central spin’ for general inhomogeneousmedia: (1) gives the bulk contribution and is proportional to the
reflective part of the cavityGreen’s function, (2) gives the scattering part and is proportional to the transmissive part of the cavity
Green’s function and (3) gives the contribution frommultiple scattering between the external side of the cavity and other
homogeneities. This last term (3) is negligible. (b) and (c) Schematics of the interaction of a ‘central spin’with a planar interface, a
planar interface with a layer of surface spins (which results in a surfacemagnetization,M(x, y)), respectively, which are the specific
examples of inhomogeneousmedia considered here.
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2.6. The bulk contribution
The bulk contribution is given by ( )( ) w¢G r r, ,1 which describes reflection from thewalls of the spherical cavity
(see figure 1(a)). In this case the generalized reflection coefficient is just the reflection coefficient for the spherical
cavity ˜ ( ) ( )w w=R RTE TE which is given by theMie scattering coefficient

( ) ( )[ ( )] ( ) ( )[ ( )]
( ) ( )[ ( )] ( )[ ( )]

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )w
m w

m w
=

¢ - ¢
¢ - ¢

R
h z zh z h z z h z

h z z j z j z zh z
, 24TE

1
1

0 1
1

1
1

0 1
1

0

1
1

0 1
1

0 1
1

0 1
1

where z0=ωRc/c and z=n(ω)ωRc/c, withRc the radius of the cavity, and j1(z) and h1(z), respectively, the
spherical Bessel andHankel functions of the first kind for l=1

( ) ( ) ( ) ( )= -j z
z

z

z

z

sin cos
, 251 2

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )= +h z

z z

1 i
e . 26z

1 2
i

Following [14], wewill assume thatRc is small compared to themainwavelengths associatedwith the
decoherence process (in fact the free induction decay filter is the square of the ‘sinc’ function and, hence, is
strongly peaked aroundω=0 so themainwavelength¥) andwe expandRTE(ω) in powers ofωRc/c
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By taking the reflection coefficient to leading order and substituting the result into equation (23), one finds
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Substituting the result into equation (16) leads to
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2.7. The scattering contribution
In inhomogeneousmedia, one obtains a further contribution to the decoherence ratewhich is cause by
scattering off surfaces external to the spherical cavity (seefigure 1(a)). This contribution is given by ( )( ) w¢G r r, ,2

which describes waves that are transmitted through the surface of the spherical cavity, scatter off an external
inhomogeneity and are then transmitted back into the cavity. In this case the generalized reflection coefficient is
given by ˜ ˜=R T R TTE TE TE TE

out ext in whereTTE
out is the transmission coefficient for outgoingwaves through thewall of

the spherical cavity, TTE
in is the transmission coefficient for incomingwaves through thewall of the spherical

cavity and R̃TE
ext

is the generalized reflection coefficient for all other interfaces external to the cavity. The
appropriateMie scattering coefficients read
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As beforewe expand these coefficients for small values ofωRc/c to give
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and
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where ( ) ( ) ( )w e w m w=n is the refractive index. Thus, this part of theGreen’s function to zeroth order inω
Rc/c becomes
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The term in square brackets is just the scatteringGreen’s function in the coincident limit for amediumwithout
the spherical cavity, hencewe canwrite
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where ( )( ) w¢G r r, ,S is the scatteringGreen’s function for themediumwithout the spherical cavity. Thus, the
decoherence owing to inhomogeneities in the backgroundmedium is given by
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The expression in equation (36) is valid for any geometry—one just needs to substitute in the appropriate
Green’s function. As an example, wewill now compute the coherence time of a ‘central spin’ for a specific
inhomogeneousmedium, namely a planar half-space.

3.Decoherence close to a surface

3.1.Decoherence from the interface
A ‘central spin’ inside amedium close to a surface can bemodeled by considering a planar half-spacewith a
single interface at z=0.Here, the upper half plane, labeled 1, consists of amediumwithinwhich the spin is
located and the lower half plane, labeled 2, corresponding to an external environment (see figure 1(b)). Taking
the coincident limit of the double curl of the single half-spaceGreen’s function [13, 27], converting to polar
coordinates and computing the angular part of the integral leads to (see supplementary information)
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with = -k k kz i i p,
2 2 , ki=ni(ω)ω/c and the reflection coefficient for the TEmode given by
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Once againwe see that only theTE component of thewave contributes. Owing to the highly oscillatory nature of
theGreens’ function as a function of frequency, computing both the integral over kp in equation (37) andω in
equation (36)numerically is computationally highly intensive. Furthermore, as the ‘sinc’ function diverges at
w  +¥ it is not possible to convert the frequency integral to the usualMatsubara summation.However, the
free induction decay filter is strongly peaked aboutω=0 (l  ¥) and the distance from the ‘central spin’ to
the surface is typically on the order of tens of nanometers. Thismeans that the ‘central spin’ is within a
wavelength of the surface and, hence, one can use a near field expansion to obtain an analytical approximation
for theGreen’s function. In this limit zs=λ=2πn(ω)/k. Thus, k=kp andwe can expand kz as

( )= - = - »k k k k
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p
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2

Hence, the reflection coefficient simplifies to
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which can be integrated analytically to give
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Essentially, theGreen’s function comprises of two contributions, a propagating contribution and an evanescent
(decaying) contribution. The near-field expansion neglects the propagating contribution in favor of the
dominant evanescent contribution.

Substituting equation (42) into (36) onefinds that the surface contribution to the spin coherence reads
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The result exhibits the same -zs
3 scaling thatwas found in previous phenomenologicalmodels [11]. However,

here wefind the decoherence rate is also a function of the frequency dependent permeabilitiesμ1 andμ2 of the
upper and lower layers. Hence, not only are themagnetic properties of the layer inwhich the spin is embedded
important when determining the coherence time of the spin but themagnetic properties of the neighboring layer
also play a role.

3.2.Decoherence from surface spins
Another effect that has been discussed [10] is the effect of spins that lie on the surface of themedium inwhich the
‘central spin’ is embedded. One canmodel the effect of spins located on the surface of themediumby assuming
that they induce a surfacemagnetization (see figure 1(c)). This surfacemagnetization can then, in turn, be
modeled as being generated by an ‘effective’ bound current. Here, we assume that the surface spins are,
primarily, a source of staticmagnetization rather than an additional noise source but are able respond to
perturbations in themagnetic field owing to noisefluctuations in the bulk. The traditional expression of a bound
current is, ˆ= ´ nK Mm , where n̂ is the unit vector normal to the surface. This implies that both the current and
themagnetization is in the plane of the surface. However, surface spins are not inhibited by such restrictions and
can orientate themselves at any angle to the surface. Thismeans that the ‘effective’ current need not orientated in
the plane of the surface. Thefluctuating fields that cause decoherence are those that are orientated parallel to the
spin, which in this case is the z-direction.Hence, wewrite our ‘effective’ spinmagnetization current as

ˆ= ´ xK Ms . This ‘effective’ spinmagnetization current leads to an extra term in the electromagnetic jump
conditions at the interface and, hence, an extra term in the reflection coefficients for the surface.

The spins on the surface of thematerial can respond to an appliedmagnetic field. In the linear response
regime, one can related themagnetization of the surface spins to the appliedmagnetic field viaM=χs(ω)Hs,
whereχs(ω) is the 2D surface susceptibility of the surface spins andHs is themagnetic field at the surface.
However,Hs is, a priori, unknown. As an approximation, we can use themagnetic field at the interface in the
absence of surface spinsmake an estimate ofHs. In analogywith quantummechanics, this would be equivalent
to afirst order Born approximationwith themagnetic fieldwithout the surface spins equivalent to the
unperturbed ‘free’field state and surface spins acting as the scattering potential. This approximation is valid
when the scattering is small. Here, we assume that the density of the spins on the surface of themedium is smaller
than those in the bulk and, hence, the susceptibility,χs(ω)=χ1(ω),χ2(ω) and, therefore, the ‘scattering’ of the
magnetic field owing to the surface spins is small.

The presence of this extramagnetization field the reflection coefficient at the surface becomes (see
supplementary information)
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Thefirst term in equation (44) is the usual reflection coefficient for a surfacewithout surface spins and the
second term gives the reflection owing to themagnetization field of the surface spins. In this case theGreen’s
function has the same form as before (equation (37)) except with the reflection coefficient of the surface
(including the surface spin layer)now given by the (44). Applying the same near field approximation and
analytically integrating the result leads to
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Thefirst term is the same as for the case of a single interface with no surface spins. The second term gives the
contribution from the surface spins alone. Thus, the surface spin contribution to the spin coherence reads
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Again, we see that the expression displays both the zs
−4 scaling and the linear dependence in the surface spin

susceptibility that has been found in previous phenomenological models [10]. Note that, in this case the
imaginary term is, in general, negative so the coherence still exponentially decays.

4. Results

4.1. Permeabilitymodels
In order to validate the theoretical results wewill compute the depth dependence of the decoherence of a shallow
NV center in diamond, whichwasmeasured experientially in [8, 9].

First, consider the case of a single interface without the presence of surface spins such as depicted in
figure 1(b). Here, thematerial with permeabilityμ1 inwhich the spin is located is diamond. The interface at
z=0 depicts an interface with anothermaterial with permeability,μ2. For the experiments documented in
[8, 9] this othermedium is just the vacuum (μ2=1).

In this system themain source of decoherence comes from the 13Cnuclear spins, which are present at a
concentration of≈1.1% in the electronic-grade diamond used in the experiments. In this formalism, the effect
of the nuclear spins is described by themagnetic permeability,μi.We can use the common frequency dependent
paramagnetic permeabilitymodel [28]

( ) ( )m w
c
wt

=
+

+
1 i

1, 47i
i

tomodel themagnetic response in ith layer. Here,χ is themagnetic susceptibility of the nuclear spins and τ is the
magnetization relaxation time (i.e. the time it takes the background spins to de-alignwhen themagnetic field is
switched off). In thismodel the static permeability (w  0) is give byχi+1 and at high frequencies (w  ¥)

( )m w  1and, hence, themediumbecomes transparent. The vacuum ( ( )m w  1) occurs whenχi=0.
Although, we do not know the susceptibility of the 13C nuclear spins in layer i=1 precisely, we canmake an

order ofmagnitude estimate by noting that the susceptibility of unpaired electrons in paramagnetic atoms is on
the order ofχ≈1×10−5. However, the coupling of electron spins tomagnetic fields ismuch stronger than
that of nuclear spins. The difference is quantified by the square of the gyromagnetic ratio. The gyromagnetic
ratio for an electron is γ=1.76×1011 rads s−1 T−1 whereas the gyromagnetic ratio for 13Cnuclear spins is
over three orders ofmagnitude smaller, γI=6.73×107 rads s−1 T−1. Scaling the paramagnetic susceptibility
with regard to theweaker coupling and lower concentration of nuclear spins leads to an estimate the nuclear
susceptibility on the order ofχ1≈1.6×10−14. The relaxation time is estimated to be τ1≈3 ms fromNMR
linewidthmeasurements [29]. For the i=2 layer we takeχ2 and τ2 to be variables of a similar order of
magnitude to representmaterials with differentmagnetic responses.

In the second case, consider a single interface with the presence of surface spins such as depicted in
figure 1(c). Thematerial parameters of the diamond can be estimated in the sameway as before. In addition, we
can estimate the susceptibility of the surface spins in a similar way by assuming that they respond in the same
manner as the nuclear spins and hence they obey the same frequency dependentmodel

( ) ( )c w
c

wt
=

+1 i
. 48s

s

s

0

Reference [10] found the density of surface spins to be ρspins=0.04 nm−2, which is about two orders of
magnitude smaller than the density of the bulk 13C nuclear spins, hencewe takeχs

0≈10−16. Reference [10] also
gives the surface spin relaxation rate to be τs=5 μs.

Finally, when computing the bulk coherence time, a value ofRc≈0.8 nmwas used, which is the average
distance from the ‘central spin’ to the nearest nuclear spin and the temperature in all cases was taken to be 40 K.

4.2.Decoherence from the interface
Figure 2 shows the coherence time for anNV center as a function of distance for interfaces between diamond and
variousmagnetically respondingmaterials. Infigures 2(a) and (b) τ1=τ2=3 ms andχ2 is varied.χ2=0
models the interface of diamondwith the vacuum,where asχ2>0models the interface of diamondmaterials
with ever increasingmagnetic responses. Figure 2(a) shows that forχ2�χ1 the coherence time decreases as the
NV centermoves closer to the interface. Conversely, as theNV centermoves away from the interface the
coherence time approaches the homogeneousmedium coherence time and, at distance greater of over 1 nm the
effect of the interface is negligible. Furthermore, as the value ofχ2 approaches the value ofχ1 the coherence time
increases. This is because, as themagnetic responses of the twomaterials becomes closer, the reflection
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coefficient at the interface is smaller and, hence, fewermagnetic fluctuations are reflected.Note that, if the two
magnetic responses are equal then thematerial in the two layers is the same and there is no interface at all, and
the coherence time is equal to the the homogeneousmediumvalue.

Figure 2(b) shows that forχ2�χ1 the coherence time increases as theNV centermoves closer to the
interface. This is because the phase shift that occurs on reflection from a stronglymagnetically responding
material leads to destructive interference of themagnetic fluctuations close to the interface. This effectmight
contribute to the suppression of decoherence at very short distances from the interface thatwas observed in [9].
Similarly, the largerχ2 the longer the coherence time because the phase shift is greater and, hence, the incident
and reflectedmagnetic fluctuations are further out of phase and, thus, the destructive interference is stronger.

Infigures 2(c) and (d)χ2=1.6×10−14 in both layers and τ2 is varied. Again, we see that the coherence
time decreases as theNV centermoves closer to the interface when τ2�τ1 and increases for τ2�τ1. This is,
again, owing to the phase shift of the reflected fluctuations. For τ2�τ1 the longer the relaxation time the shorter
the coherence time. This is because themagnetic fluctuations persist for longer and, hence, havemore of an
effect on theNV center.

4.3.Decoherence from surface spins
Figures 3(a) and (b) show the coherence time for anNV center as a function of distance froman interface
between diamond and the vacuum (χ2=0) in the presence of surface spins. Infigure 3(a) τs=5 μs andχs is
varied. The susceptibility of the surface spins is taken to be between 1%and 4%of the bulk nuclear spin
susceptibility. As ever, the coherence time decreases as theNV centermoves closer to the interface and the larger
the surface spin susceptibility the shorter the coherence time. Infigure 3(b)χs=1.6×10−16 m and τs is varied.
Here, as before, the coherence time decreases as theNV centermoves closer to the interface and the longer the
relaxation time the shorter the coherence time. An important feature to note is that the distance overwhich the
surface spins effect theNV center; the coherence time approaches the homogeneousmedium coherence time at
a depth of 50 nm,which is between 1 and 2 orders ofmagnitude larger than the distance range overwhich the
interface alone interacts. Hence for shallowNV centers with depths greater than 1 nm the dominant
decoherencemethod is the interactionwith the surface spins. The interactionwith the interface itself is
negligible. These distances are the same order ofmagnitude as those found experimentally in [8, 9].

Figure 2.NV center decoherence close to an interface (a) and (b) decoherence of anNV center in diamond close to a interface for
variousmagnetic susceptibilities,χ2, of the adjoiningmaterial. (a) Show the case forχ2�χ1 and (b) shows the case whereχ2�χ1.
In both cases τ2≈3 ms. The gray dashed line indicates the coherence time of anNV center in homogeneous bulk diamondwith
χ1=χ2=1.6×10−14 and τ1=τ2=3 ms. (c) and (d)Decoherence of anNV center in diamond close to a interface for various
magnetic relaxation rates, τ2, of the adjoiningmaterial. (c) Show the case for τ2�τ1 and (d) shows the case where τ2�τ1. In both
casesχ2=1.6×10−14. Again, the gray dashed line indicates the coherence time of anNV center in homogeneous bulk diamond
withχ1=χ2=1.6×10−14 and τ1=τ2=3 ms. In all casesχ1=1.6×10−14 and τ1=3 ms. The coherence time is taken to be
the time taken for the coherence to drop to L=e−1=36.8%.
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5. Summary

Here, we have extended theGreen’s function formalism for spin decoherence in a bulkmaterial that was
developed in [14] to inhomogeneousmedia. To validate the theorywe have computed the decoherence rate of a
shallowNV center in diamond placedwithin 50 nm from the surface. In the presence of surface spins, the
coherence time decreases as one approaches the surface from a value of≈240 μs at 50 nm to a value on the order
of 10 μs for distances less than 10 nm. These coherence times are a similar order ofmagnitude to those found
experimentally in [8, 9]. For amore precise estimate of the coherence times onewould needmore sophisticated
permeabilitymodels andmore accurate values for themagnetic properties of the 13C spins in diamond and of
any adjoiningmaterials. However, these results show that theGreen’s function formalism is able tomodel
decoherence in inhomogeneous spins systems. The formalism also shows that at distances greater than 1 nm it is
the interactionwith the surface spins that is dominant as opposed to the interactionwith the interface itself.
Experimental work in [9] showed that the influence of the interface falls off for distances>8 nmand hence the
Green’s function formalism also gives the correct order ofmagnitude result for this feature as well.
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