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Abstract

The residual current density in monolayer graphene driven by an intense few-cycle chirped laser pulse
is investigated via numerical solution of the time-dependent Schrodinger equation in the light-field-
driven regime. Strikingly, it is found that a purely chirped laser pulse breaks the inversion symmetry in
graphene, generating a residual directional current, which is absent for a Fourier-transform limited
pulse (2017 Nature 550 224) and is attributed to the chirp-dependent Landau—Zener—Stiickelberg
interference among different quantum pathways in the reciprocal space. Moreover, the directionality
of such a current changes with laser chirp rate following a sine-functional way, which possibly
provides a novel application in ultrafast photo-electronics based on two-dimensional materials.

1. Introduction

Quite recently with the occurrence of atomically-thin materials, the interaction of a strong electric field with
transparent materials early introduced by Zener [1] and later developed by Keldysh [2] and others, has drawn a
renewed attention [3], especially in the light-field-driven regime [4—7], where electron interband transitions are
fundamentally influenced by electron intraband dynamics, and the instantaneous light field (waveform), instead
of the cycle-averaged light intensity, dominates the electron dynamics [8—17].

For example, in zero-bandgap atomically-thin graphene [7], a non-monotonic increase of carrier-envelop-
phase (CEP)-dependent current with field strength, quite different from the monotonic one under a weak field
[18],is disclosed. Since the CEP influences the light-field waveform and thus the electron dynamics, delayed
pulse-superposition [19] and pulse shaping techniques [20, 21] could take the similar role of CEP.

Therefore, here an chirped few-cycle pulse [22] instead of the transform-limited one [7] is again to
investigate the current in monolayer graphene to check whether such a non-monotonic increase pattern still
keeps or not. The detailed simulation and theoretical analysis disclose that a purely chirped laser pulse breaks the
inversion symmetry in graphene, generating a residual directional current. The behind mechanism is the chirp-
dependent Landau—Zener—Stiickelberg (LZS) [23] interference among different quantum pathways in the
reciprocal space on the sub-cycle timescale. Moreover, such a residual current is sensitive to the exact light field
waveform and its directionality can be controlled by the chirp rate, following a sine-functional way, which
possibly finds novel application in ultrafast photo-electronics based on two-dimensional materials.

2. Theory and model
2.1. Band structure of graphene

The whole light-field-driven electron dynamics in monolayer graphene is investigated using a nearest-neighbor
tight-binding model [7, 21]. The lattice structure of graphene in the position space and the reciprocal vector
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Figure 1. Lattice structure of monolayer graphene in (a) position space or (b) reciprocal vector space. A unit cell contains two carbon
atoms at subsides A and B, and the positions of three nearest atoms neighboring around A are §; = (——= %), 6, = (%, 0) and

237
b3 = — §)~ The first Brillouin zone (BZ) around I is indicated by dashed lines.
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space are described in figures 1(a) and (b), respectively. The positions of the nearest three atoms neighboring
1 — (__4 a _ (9 _(__a _a . .

around a carbon atom at subsite A are §; = ( 5 2), 6, = (ﬁ , 0)and 65 = ( 5 2)w1th alattice

constanta = 0.246 nm. In order to obtain the electronic band structure, the p, atomic orbital is generally

adopted to form a Bloch wave function. Thus, the corresponding field-free electron Hamiltonian is written as

B 0 —enf (k)
H°‘[ehf*<k) 0 ] v

in which e, = 3.0 eV is the hopping integral, k = [k,, k,] is the initial wave vector, and f (k)=exp (iak, / J3)+2
exp(—iak, / 24/3) cos(k,a / 2) determining the symmetric property of a lattice structure. The eigen-energies of
conduction and valence bands, E. (k) = &;| f (k)|and E, (k) = —&p| f (k)|, can be directly obtained by
diagonalizing H, with the corresponding basis functions of

o L exp(ify /2) v L —exp(ifk /2) Q)
T 2 exp(—itk/2) [ TE T V2 |exp(—ifk/2) |
Here, 0y is phase factor and defined as 6, = I J{ 83 g
2.2. Electron dynamics under external field
The electron dynamics under an ultrashort external field, linearly polarized along the x direction, is coherent,
and can be well described by the time-dependent Schrédinger equation (TDSE)
Ly = HY 3)
dt

with H = Hy,—eE(¢)r. Itis convenient to solve the TDSE on the basis of Houston states ®y [24]. The solution can
be first expanded as ¥, = ZBZC’Vaﬂ,k(t)exp(fj; Eg(k(t"))dt") D (k(1)), with k(t) = k — % j:toc E.(tdt',
following the Bloch acceleration theory. Then, after substituting Wy into equation (3), the temporal evolution of
probability amplitude a s x(#) is obtained as

G (1) = ~ie(kO)exp(—— [* VEA()diha (),

() = ~i% K exp(- [ VERGE) (1), )

Here, Qr(k(t)) = w is Rabi frequency, in which d, (k(t)= (¥}, |ex|¥}) is the wavenumber-dependent
transition dipole matrix element and has the following form of
ak « 3 aky ak,
ea 1+ cos(Ty) [cos(%k -2 cos(T’)]

dx (k) =

) (5)
23 1+ 4cos(a7ky)[cos(@ + cos(%)]

VE(k) = E (k) — E,(k)is the characteristic energy difference between conduction band and valence band.

In the undoped graphene before laser excitation, all states in the valence band are completely occupied and
those in the conduction band are empty. One can numerically solve the above differential equations
(equation (4)) to obtain the dynamic occupation of electrons in conduction band as p{ (¢) = |ay (¢) |*. The

2 j}; ) Py (ts) e dk [6, 7], with v, being the velocity

Cenp

investigated residual current density is defined as j, =

along the k, direction in momentum space, given by the slope of the conduction band v,, = %. The

magnitude of this residual current is determined by the integration of the residual occupation of electrons in
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conduction band over the first Brillouin zone (BZ), indicating that the more asymmetric the occupation is, the
larger its magnitude is.

2.3. Dirac approximation

However the above proposed numerical simulation is much complicated and time-consumption, it is not a good
choice for clarifying the complex phenomena disclosed as follows, an approximate treatment to the form factor
f (k) is quite necessary. Now the Dirac approximation [25, 26] is adopted and f (k) can be approximated as the
first order term of the Taylor series expansion at the valley point K(0, A;—:) with f(K) = 0. The field-free
Hamilton is then rewritten as

o= 7 0 ke — ik, p k, —ki .
T ik, 0 | T ke =k | ©
VF:% (~1e® m s~1) is Fermi velocity around K point. Because here the external field is x-directional
polarized, only k, is influenced by external field, and thus the time-dependent Hamilton changes as
k —k (1)
H(t) = 7 ¢ , 7
() VF[—kx(t) iy ] %)

similar with those for a series of two-level atomic systems with different eigen-energy differences, whose
bandgapis A = 2/wpk, and the time-dependent Rabi frequencyis Qg(t) = /vpk,(t) ~ evpA.(t), with 4, being
the vector potential of the external field.

3. Results and discussion

As for the numerical simulation, the external chirped laser pulse [27] is presently defined as

2 2
E, =E, exp[—t—z] cos (wot + arr + (,DO), (8)
T 2

without loss of generality, linearly polarized along the x direction. Here Eg, wy, and 7, indicate the field strength,
central frequency and pulse duration, respectively. ¢, is the CEP. avis the chirp rate and it makes the carrier-wave
frequency being time-dependent. If &« > 0, the laser pulse is up-chirped, otherwise down-chirped. Thus, tuning
the chirp rate, the light-field waveform will be broadened or compressed in the sub-cycle time scale, compared
with that for a transform-limited pulse. It can be expected that this chirp-dependent laser waveform would and
should show a significant influence on the current generated in graphene, however whether this influence is or
not similar to that from CEP [7]. In the following investigation, the chirp rate is tuned within the range from
—0.07 t0 0.07 fs~ > but setting ¢, (CEP)as zero in order to make difference from those in [7].

In addition, we choose that the central photon energy Awy is 1.5 eV (~800 nm wavelength) and the pulse
duration, 7, is 5 fs, much shorter than the characteristic electron scattering time of several tens femtoseconds
for graphene [3]. Such few-cycle pulses have already occurred routinely in laboratory or commercially [28, 29]
via the well-developed self-phase modulation technique via rare-gas-filled hollow fiber or capillary combined
with dispersion compensation via chirped mirrors quite early for a relatively high intensity enough for strong
laser physics. Beyond photon frequency and pulse duration, another essential parameter is laser field strength E,,,
which is adopted as 2.4 V nm ™' in the following, larger enough to ensure the electron dynamics in graphene well
within the so-called light-field-driven regime [7], where 2z > wy is a prerequisite and simultaneously the
perturbative theory loses efficacy. Thus a defined critical field strength E,. when 2 = wy, can be estimated as

-2
Ey. = %~ 1.8V nm™". This value is consistent with that numerically demonstrated in figure 2(a), at which

evp
the residual current reverses its direction.

3.1. Non-monotonic increase of residual current

Now we start to investigate the influence of initial laser chirp rate on the residual current in graphene. In figure 2,
we plot the residual current as a function of field strength under different chirp rates. From this figure (especially
the inset of (a)), one can easily find that when the field strength increases,the current first increases, and then
decreases until to around 1.8 V nm ™! at which the current reverses its direction, and further increase in the
opposite direction. As a whole, the current versus field strength exhibits a non-monotonic increase pattern. Such
anon-monotonic increase pattern in graphene is quite different from those under weak-field excitation [6],
where a monotonic increase pattern is induced due to the one-photon and two-photon absorption interference,
indicated by| j | ocE{ in figure 2(b). In addition, one can see that when the field strength exceeds 1.8 Vnm ', the
variance of residual current with field strength is more sensitive to chirp rate. Since the chirp-dependent current
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Figure 2. (a) Residual current as a function of the peak electric field strength E, for different chirp rates in the range of 0-2.5V nm ™.

The direction of residual current evidently reverses at Ey ~ 1.8V nm ™", clear shown in the drawing of partial enlargement. Such the
field strength is not dependent on the chirp rate. (b) Log-log plot of residual current | j,| (solid line) versus E,, when field strength is
weak, |j | ocE¢ (dashed line). When the field strength is strong, the cubic dependence is broken.

*
kx*a l(x a

Figure 3. Simulated distribution of residual conduction population p¢p for different initial chirp rates. Population distribution in
(a) full Brillouin zone for @ = 0.00 and in single valley K’ point for (b) & = 0.00, (c) &« = — 0.05 fs7% and (d) o = 0.05 fs %

in graphene is our main focus of investigation, this is another reason why we set the field strength E, as
2.4Vnm™ ',

To understand why the residual current is sensitive to chirp rates under enough high field strength, one can
refer to investigate the residual occupation of electrons in conduction band, because the magnitude of current is
determined by the integration of the residual occupation of electrons over the first BZ and the more asymmetric
the occupation is, the larger the magnitude of current is. Therefore, we investigated the residual population of
electrons under different chirp rates, as shown in figure 3.

If chirp-free (o« = 0), that is the incident laser pulse is transform-limited, the population distribution is
mirror symmetric along the laser polarization direction. Thus, the obtained residual current after integration
over the first BZ is zero. Moreover, from inner to outside, clear ring-shaped but intensity-modulated
distributions are presented in figures 3(a) and (b) which corresponding to one-photon absorption, two-photon
absorption, and so on. However, when an initial chirp rate is introduced, such as « = + 0.05 572, the
population distribution becomes asymmetric along the k, axis, manifested especially in the dashed square areas
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Figure 4. (a) Simulated residual current versus chirp rate, which is perfectly fitted by a sinusoidal function of sin(ka) (k is around
31.13 for the simulation parameters here). (b) Residual population difference of pcg(0.05 fs~2)— pcp(—0.05 fs~2).

in figures 3(c) and (d), where the residual population distributions present clear slope, and the slope values for
positive chirp (o = 0.05 fs~?) and negative chirp (o = —0.05 fs~?) are with the opposite sign but the same
magnitude (figure 4(a)).

With a small step change of chirp rate in the range of from —0.07 to 0.07 fs %, one can get a more clear
relationship between the residual current and chirp rate, as shown in figure 4(a). It is obviously that the current is
very sensitive to chirp rate. More interesting, the whole chirp-dependence can be well fitted by a perfect
sinusoidal function, sin () with & is a suitable fitting factor. If chirp rate is small enough (o < 0.02 fs~?), this
chirp-dependence is simplified further as ¢, indicating that the residual current is directly proportional to
chirp rate, referring to the eye-guiding line in figure 4(a).

3.2. Chirp dependent Landau—Zener—Stiickelberg interference

There naturally occur two questions, one is why the residual current is chirp-dependent, and the other is why
this chirp-dependence follows a sinusoidal function pattern. In the following, the underlying mechanism for
them is disclosed in three steps.

Step 1: as in the above demonstration, the residual conduction band population distribution is mirror
asymmetric along the k, axis when an initial chirp rate is introduced (figure 3), and this asymmetry is chirp-rate-
dependent. This point will be more clear if one making the chirp-dependent conduction band population
difference, for example, between o = 0.05 fs >and o = —0.05 fs > [figure 4(b)]. In this condition, the
population in —k, direction is larger than that in +k, direction, especially in regions around points M and P,
leading to a negative current along x direction.

Step 2: considering these two points P and M as examples, because they play the dominant contributions to
the final asymmetric population distributions. Beyond this, the LZS interference is investigated to find the clues
for the chirp-rate-dependence of residual current. In case of graphene, the transition probability can be
estimated as exp(—mw A% /472w k) [7, 23]. The electron dynamics driven by the external field follow the LZ
formula, especially under condition of A = \/w_QR ,in which the electrons tend to pass the avoided crossings (
i.e. bandgap minima), one part jumps non-adiabatically into the conduction band, while the rest still stays
adiabatically in the valence band. As for a linearly polarized excitation, electrons can always repeatedly pass the
avoided crossings within one optical period, leading the different excitation quantum pathways. These quantum
pathways can interfere and thus the final distribution of population in the conduction would be sensitively
dependent on the phase relationship among these pathways. To obtain the insight of LZS interference in light-
field-driven regime, we need know the information of temporal evolution of the conduction band population
and phase accumulation at P and M point. The case of LSZ interference is determined by two-phase terms One is
the transition phase A¢r (known as stokes phase) for a single LZ process between valence and conduction band,
and the other is the propagation phase describedas A, = 1/7% ft; E E.(k(t")) — E,(k(t"))dt'.Heret; and t,
refer to the moments of two LZ transition events, and E, and E, represent the momentum-dependent energies of
conduction and valence band states. Figure 5 shows the conduction band population and the propagation phase
as a function of time for two different initial point M and P. For the trajectory starting from point M, the two
mainly transition events at approximately f, = —0.12 fsand t, = 1.51 fsin figure 5(a). The propagation phase
accumulation from #; to t, is 7 (figure 5(b)), and then plus the additional transition phase 7 from the LZ
transition, the total phase accumulation would be 27. Therefore, a constructive interference is induced. A larger
population in conduction band occurs (figure 5(c), M point). In contrast, the total phase accumulation is 37
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Figure 5. (a) Two representative electron trajectories starting from points M and P in figure 4 with circle and square points
representing that moments at which electrons reach band minima and transit between valence band and conduction band.

(b), (d) The propagation phase accumulated from initiation to the above respective transition moment. Conduction band population
pcs (€) for point M resulting from constructive interference mainly determined by phase difference between ¢, and t,, and (e) pcg for
point P from destructive interference mainly by phase difference between ¢ and t;. Here chirp rate « = 0.05 fs ™.

from the start point P (figure 5(d)), resulting in a destructive interference and thus a smaller population in
conduction band (figure 5(e), P point). This kind of quantum phase difference for start points M and P finally
lead to the occurrence of asymmetric population distribution in the strong field regime.

Step 3: now let us answer why the relation between residual current versus chirp rate follows a sinusoidal
function. As demonstrated above, the chirp-dependent residual asymmetric conduction-band population
distribution originate in the pathways interference. In the following, we will explicitly write the chirp-dependent
phase analytically. We define the magnitude D of residual population in conduction band in single k state (i.e. M
or P point in figure 4(b)) in condition of two pathways D = |Aj| + |A;| + 2|A||A;| cos(f), with A; and A,
indicating pathways probability amplitude between (—o0, ) and (—o0, f,) and 8 = Ay + App. D depends
on their relative phase 6. The transition phase Ay is 7, determined by the sign of electric field, which presents
the avoided crossings [6], does not have difference with or without chirp rate. Therefore, we only focus on the
propagation phase. If the laser field is x polarized and the Dirac approximation is assumed

N -~ & 2 2
bgp =2 f |f KGN [de! = 2e,ve [ JE2@) + k2dr, )

41
only k, is time dependent and k, is assumed as 0, the A¢p can be rewritten as

t) 12}
sop 26w [ leldr = 26w [ Ik — Acede (10)

f 41

the integration term presents variation of electron momentum between transitions at time t; and #,, and only has
the same sign (positive or negative). Thus, the absolute sign can be ignored, and assume initial wave vector

k. = 0. Since the vector potential 4,(¢) takes the form A, (¢) = i—zg (t)sin(wyt + %tz), the above formula for
propagation phase can be expanded as

App = 26,VF j:z %g(r’) [sin(wot’)cos(%t’z)
0

+ Cos(wot’)sin(%t’z)]dt’, (11)

where g(t) is envelop of the laser pulse, which does not depends on chirp rate. If the chirp rate is small, one can
further rewrite it as
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Figure 6. (a) GDD and CEP as a function of thickness of fused silicon d; (b) pulse duration and field strength as a function of GDD; (c)
simulated chirp-dependent residual current in graphene with (solid line) and without GD (dashed—dotted line); (d) simulated chirp-
dependent residual current but with only phases integer number of 27 selected from (c), where the current only depends on the chirp
rate.

E . E
App = 26theE00fﬁt2 g(t")sin(wot’)dt’ + thFaeE(:) f: g (")t cos(wpt’)dt!
=q+ an X, (12)

with ¢; and ¢, are some constants. Thus, D is qualitatively proportional to cos(c). Based on the definition of
residual current j,, the magnitude of j, is determined by the asymmetry of the distribution of residual population,
i.e. mainly determined the difference between critical k points(e.g. P and M point). Therefore, the residual
current follows sinusoidal function shape.

Above all, via these three steps, the origin for the sinusoidal of chirp-rate-dependence of residual current is
clarified. The questions of why the residual current is chirp-dependent and why this chirp-dependence follows a
sinusoidal function pattern have been completely answered.

3.3. More practical introduction of chirp rate

In all the above investigation, the carrier-envelope phase is fixed as zero but just the chirp rate is tuned. However,
in reality, this is not true. For example, when the chirp rate is introduced via dispersive media and characterized
by group delay dispersion (GDD), the CEP is also simultaneously introduced [30], as shown in figure 6(a). Thus
electron dynamics in graphene would and should be influenced by both CEP and chirp rate, and the
investigation of the isolated role of chirp or CEP is made complicated. Therefore it is necessary to investigate
them simultaneously. Taking fused silicon as an example of dispersive media, and how the chirp rate and CEP as
well as the residual current change with the thickness of fused silicon [30], is demonstrated in details.

As astart, the laser pulse after propagating through fused silicon can be expressed in frequency-domain as,
Echirp (W) = Erp(w, @,)exp(—ip(w)). Here, By describes the transform-limited pulse and ¢, is just the initial
CEP (here is set as zero). ¢(w) is the phase induced by dispersion in fused silicon and can be expanded as a Taylor
series, ¢(w) = ¢y + (W — wp) ¢y + %(w — Wy )2¢>2, up to the second-order approximation. ¢ is a constant
phase shift and can be set as zero without loss of generality. ¢, is group delay (GD) which is related to the change
of CEP when propagating through media. In contrast, ¢, is group delay dispersion (GDD), which introduces the
linear chirp. The propagation distance or the thickness of fused silicon can influence the values of GD and GDD,
and thus one can change the thickness to tune the chirp rate of the incident laser pulse.

After the definition of the chirped pulse in frequency-domain, we can get the expression of the electric field
in time-domain via the fast Fourier transformation (FFT) algorithm. Then we add some new calculations, as
shown in figure 6, where how the chirp rate and CEP as well as the residual current change are investigated in
detail when tuning the thickness of fused silicon in the range of d = [—200, 200] m. One point needs to point
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outis thatin order to check the similarity or difference with our previous calculation, the parameters for field
strength, pulse duration, central wavelength, and so on (before propagating through fused silicon) are
kept same.

As shown in figure 6(a), the CEP and GDD versus the thickness of fused silicon d follows a linear
proportional way, and when the thickness of fused silicon d change by 100 pim, the CEP will changes by 47 and
GDD by 3.6 fs* approximatively. From the above new definition of chirped laser, one easily obtain the variance
of field strength and pulse duration with GDD (figure 6(b)). When the thickness d increases, the field strength E,
decreases and pulse duration increases, as expected from energy conservation. The residual current j, of main
focus is recalculated shown in figure 6(c). Without GD (or CEP is fixed as zero as before), the residual current
shows a sine-functional dependence on GDD (dashed—dotted line), which is qualitatively consistent with that in
figure 3(a) and if with GD (solid line), sine-functional dependence pattern is modulated by CEP, which is
disclosed experimentally [7].

Further, if one want to isolate the influences of CEP and chirp rate on the current in graphene. For example,
to investigate the only chirp- dependent current without the influence of CEP, one feasible way is to suitably
control the thickness of fused silicon to ensure the phase equal to 2n7 (1 is an integer, n = 0, 1,---), due to the
fact that the residual current would be zero if for a transform-limited (without chirp rate) laser pulse. So that the
influence of CEP can be eliminated if we only focus on the influence from chirp rate. The corresponding
simulation to the only-chirp dependent current is shown in figure 6(d). The residual current versus GDD also
exhibit a sine-functional pattern.

From this new calculation, one can see that the original sine-functional dependence of residual current on
chirp rate is reproduced under a more practical situations and the conclusion obtained above is kept invariant.

4, Conclusion

In conclusion, we have numerically demonstrated that the electron dynamics in graphene can be controlled by
adjusting the chirp rate of a few-cycle driving laser. In the light-field-driven regime, the chirp-dependent LZS
interference causes the occurrence of an asymmetric residual current. Moreover, the directionality of such a
chirp dependent residual current changes in a sine-functional way. Note that the feasibility of experiment is also
discussed. Even to consider a more realistic situation, the main conclusions keep invariant. This theoretical
demonstration of ultrafast current control on the sub-cycle timescale will provide a meaningful guidance in the
future experimental confirmation and development of solid-state petahertz optoelectronic metrology.
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