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Abstract
The residual current density inmonolayer graphene driven by an intense few-cycle chirped laser pulse
is investigated via numerical solution of the time-dependent Schrödinger equation in the light-field-
driven regime. Strikingly, it is found that a purely chirped laser pulse breaks the inversion symmetry in
graphene, generating a residual directional current, which is absent for a Fourier-transform limited
pulse (2017Nature 550 224) and is attributed to the chirp-dependent Landau–Zener–Stückelberg
interference among different quantumpathways in the reciprocal space.Moreover, the directionality
of such a current changes with laser chirp rate following a sine-functional way, which possibly
provides a novel application in ultrafast photo-electronics based on two-dimensionalmaterials.

1. Introduction

Quite recently with the occurrence of atomically-thinmaterials, the interaction of a strong electric fieldwith
transparentmaterials early introduced byZener [1] and later developed byKeldysh [2] and others, has drawn a
renewed attention [3], especially in the light-field-driven regime [4–7], where electron interband transitions are
fundamentally influenced by electron intraband dynamics, and the instantaneous lightfield (waveform), instead
of the cycle-averaged light intensity, dominates the electron dynamics [8–17].

For example, in zero-bandgap atomically-thin graphene [7], a non-monotonic increase of carrier-envelop-
phase (CEP)-dependent current with field strength, quite different from themonotonic one under aweak field
[18], is disclosed. Since theCEP influences the light-fieldwaveform and thus the electron dynamics, delayed
pulse-superposition [19] and pulse shaping techniques [20, 21] could take the similar role of CEP.

Therefore, here an chirped few-cycle pulse [22] instead of the transform-limited one [7] is again to
investigate the current inmonolayer graphene to checkwhether such a non-monotonic increase pattern still
keeps or not. The detailed simulation and theoretical analysis disclose that a purely chirped laser pulse breaks the
inversion symmetry in graphene, generating a residual directional current. The behindmechanism is the chirp-
dependent Landau–Zener–Stückelberg (LZS) [23] interference among different quantumpathways in the
reciprocal space on the sub-cycle timescale.Moreover, such a residual current is sensitive to the exact light field
waveform and its directionality can be controlled by the chirp rate, following a sine-functional way, which
possibly finds novel application in ultrafast photo-electronics based on two-dimensionalmaterials.

2. Theory andmodel

2.1. Band structure of graphene
Thewhole light-field-driven electron dynamics inmonolayer graphene is investigated using a nearest-neighbor
tight-bindingmodel [7, 21]. The lattice structure of graphene in the position space and the reciprocal vector
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space are described infigures 1(a) and (b), respectively. The positions of the nearest three atoms neighboring
around a carbon atomat subsite A are δ1=( )- ,a a

2 3 2
, ( )d = , 0a

2 3
and δ3=(- -,a a

2 3 2
)with a lattice

constant a=0.246 nm. In order to obtain the electronic band structure, the pz atomic orbital is generally
adopted to form aBlochwave function. Thus, the corresponding field-free electronHamiltonian is written as
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inwhich εh=3.0 eV is the hopping integral, k=[kx, ky] is the initial wave vector, and f (k)= ( )akexp i 3x +2
( ) ( )- ak k aexp i 2 3 cos 2x y determining the symmetric property of a lattice structure. The eigen-energies of

conduction and valence bands, ( ) ∣ ( )∣e=E fk kc h and ( ) ∣ ( )∣e= -E fk kv h , can be directly obtained by
diagonalizingH0 with the corresponding basis functions of
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.

2.2. Electron dynamics under externalfield
The electron dynamics under an ultrashort externalfield, linearly polarized along the x direction, is coherent,
and can bewell described by the time-dependent Schrödinger equation (TDSE)

( )Y = Yi
t

H
d

d
3

withH=H0−eE(t)r. It is convenient to solve the TDSE on the basis ofHouston statesΦk [24]. The solution can
befirst expanded as ( ) ( ( ( )) ) ( ( ))òY = å ¢ ¢ Fb b b b= -¥

¥
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following the Bloch acceleration theory. Then, after substitutingΨk into equation (3), the temporal evolution of
probability amplitude aβ, k(t) is obtained as
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∇E(k)=Ec(k)−Ev(k) is the characteristic energy difference between conduction band and valence band.
In the undoped graphene before laser excitation, all states in the valence band are completely occupied and

those in the conduction band are empty. One can numerically solve the above differential equations
(equation (4)) to obtain the dynamic occupation of electrons in conduction band as ( )r tc

k = ∣ ( )∣a tc
k

2. The

investigated residual current density is defined as jx=
BZ

( )
( ) ò r-
p ¥t v kde c

xk
2

2 2 [6, 7], with vx being the velocity

along the kx direction inmomentum space, given by the slope of the conduction band vx= ( )¶
¶
E k

k
c x

x
. The

magnitude of this residual current is determined by the integration of the residual occupation of electrons in

Figure 1. Lattice structure ofmonolayer graphene in (a) position space or (b) reciprocal vector space. A unit cell contains two carbon
atoms at subsides A andB, and the positions of three nearest atoms neighboring aroundA are δ1=( )- ,a a

2 3 2
, ( )d = , 0a

2 3
and

δ3=(- -,a a

2 3 2
). The first Brillouin zone (BZ) aroundΓ is indicated by dashed lines.
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conduction band over the first Brillouin zone (BZ), indicating that themore asymmetric the occupation is, the
larger itsmagnitude is.

2.3.Dirac approximation
However the above proposed numerical simulation ismuch complicated and time-consumption, it is not a good
choice for clarifying the complex phenomena disclosed as follows, an approximate treatment to the form factor

( )f k is quite necessary. Now theDirac approximation [25, 26] is adopted and f (k) can be approximated as the

first order termof the Taylor series expansion at the valley point ( )pK 0,
a

4

3
with f (K)=0. Thefield-free

Hamilton is then rewritten as
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h (» -e1 m s6 1) is Fermi velocity aroundK point. Because here the externalfield is x-directional

polarized, only kx is influenced by externalfield, and thus the time-dependentHamilton changes as
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similar with those for a series of two-level atomic systemswith different eigen-energy differences, whose
bandgap isD = v k2 F y and the time-dependent Rabi frequency is ( ) ( ) ( )W = »t v k t ev A tR F x F x , with Ax being
the vector potential of the external field.

3. Results and discussion

As for the numerical simulation, the external chirped laser pulse [27] is presently defined as
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without loss of generality, linearly polarized along the x direction.HereE0,ω0, and τp indicate thefield strength,
central frequency and pulse duration, respectively.j0 is the CEP.α is the chirp rate and itmakes the carrier-wave
frequency being time-dependent. Ifα>0, the laser pulse is up-chirped, otherwise down-chirped. Thus, tuning
the chirp rate, the light-fieldwaveformwill be broadened or compressed in the sub-cycle time scale, compared
with that for a transform-limited pulse. It can be expected that this chirp-dependent laserwaveformwould and
should show a significant influence on the current generated in graphene, howeverwhether this influence is or
not similar to that fromCEP [7]. In the following investigation, the chirp rate is tunedwithin the range from
−0.07 to 0.07 fs−2 but settingj0 (CEP)as zero in order tomake difference from those in [7].

In addition, we choose that the central photon energy ÿω0 is 1.5 eV (∼800 nmwavelength) and the pulse
duration, τp, is 5 fs,much shorter than the characteristic electron scattering time of several tens femtoseconds
for graphene [3]. Such few-cycle pulses have already occurred routinely in laboratory or commercially [28, 29]
via thewell-developed self-phasemodulation technique via rare-gas-filled hollowfiber or capillary combined
with dispersion compensation via chirpedmirrors quite early for a relatively high intensity enough for strong
laser physics. Beyond photon frequency and pulse duration, another essential parameter is laser field strength E0,
which is adopted as 2.4V nm−1 in the following, larger enough to ensure the electron dynamics in graphenewell
within the so-called light-field-driven regime [7], whereΩR>ω0 is a prerequisite and simultaneously the
perturbative theory loses efficacy. Thus a defined criticalfield strength E0cwhenΩR=ω0, can be estimated as

E0c= w
evF

0
2

≈1.8V nm−1. This value is consistent with that numerically demonstrated in figure 2(a), at which
the residual current reverses its direction.

3.1. Non-monotonic increase of residual current
Nowwe start to investigate the influence of initial laser chirp rate on the residual current in graphene. Infigure 2,
we plot the residual current as a function offield strength under different chirp rates. From thisfigure (especially
the inset of (a)), one can easily find thatwhen the field strength increases,the currentfirst increases, and then
decreases until to around 1.8V nm−1 at which the current reverses its direction, and further increase in the
opposite direction. As awhole, the current versus field strength exhibits a non-monotonic increase pattern. Such
a non-monotonic increase pattern in graphene is quite different from those underweak-field excitation [6],
where amonotonic increase pattern is induced due to the one-photon and two-photon absorption interference,
indicated by ∣ ∣jx µE0

3 infigure 2(b). In addition, one can see that when the field strength exceeds 1.8 V nm−1, the
variance of residual current withfield strength ismore sensitive to chirp rate. Since the chirp-dependent current

3

New J. Phys. 22 (2020) 033016 EWu et al



in graphene is ourmain focus of investigation, this is another reasonwhywe set the field strength E0 as
2.4V nm−1.

To understandwhy the residual current is sensitive to chirp rates under enough highfield strength, one can
refer to investigate the residual occupation of electrons in conduction band, because themagnitude of current is
determined by the integration of the residual occupation of electrons over thefirst BZ and themore asymmetric
the occupation is, the larger themagnitude of current is. Therefore, we investigated the residual population of
electrons under different chirp rates, as shown infigure 3.

If chirp-free (α=0), that is the incident laser pulse is transform-limited, the population distribution is
mirror symmetric along the laser polarization direction. Thus, the obtained residual current after integration
over thefirst BZ is zero.Moreover, from inner to outside, clear ring-shaped but intensity-modulated
distributions are presented infigures 3(a) and (b)which corresponding to one-photon absorption, two-photon
absorption, and so on.However, when an initial chirp rate is introduced, such asα=±0.05 fs−2, the
population distribution becomes asymmetric along the kx axis,manifested especially in the dashed square areas

Figure 2. (a)Residual current as a function of the peak electric field strength E0 for different chirp rates in the range of 0–2.5V nm−1.
The direction of residual current evidently reverses atE0≈1.8V nm−1, clear shown in the drawing of partial enlargement. Such the
field strength is not dependent on the chirp rate. (b) Log–log plot of residual current ∣ ∣jx (solid line) versus E0, when field strength is
weak, ∣ ∣jx µE0

3 (dashed line).When the field strength is strong, the cubic dependence is broken.

Figure 3. Simulated distribution of residual conduction population ρCB for different initial chirp rates. Population distribution in
(a) full Brillouin zone forα=0.00 and in single valley ¢K point for (b)α=0.00, (c)α=−0.05 fs−2, and (d)α=0.05 fs−2.
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infigures 3(c) and (d), where the residual population distributions present clear slope, and the slope values for
positive chirp (α=0.05 fs−2) and negative chirp (α=−0.05 fs−2) arewith the opposite sign but the same
magnitude (figure 4(a)).

With a small step change of chirp rate in the range of from−0.07 to 0.07 fs−2, one can get amore clear
relationship between the residual current and chirp rate, as shown infigure 4(a). It is obviously that the current is
very sensitive to chirp rate.More interesting, thewhole chirp-dependence can bewellfitted by a perfect
sinusoidal function, sin (κα)withκ is a suitable fitting factor. If chirp rate is small enough (∣ ∣a  0.02 fs−2), this
chirp-dependence is simplified further asκα, indicating that the residual current is directly proportional to
chirp rate, referring to the eye-guiding line infigure 4(a).

3.2. Chirp dependent Landau–Zener–Stückelberg interference
There naturally occur two questions, one is why the residual current is chirp-dependent, and the other is why
this chirp-dependence follows a sinusoidal function pattern. In the following, the underlyingmechanism for
them is disclosed in three steps.

Step 1: as in the above demonstration, the residual conduction band population distribution ismirror
asymmetric along the kx axis when an initial chirp rate is introduced (figure 3), and this asymmetry is chirp-rate-
dependent. This point will bemore clear if onemaking the chirp-dependent conduction band population
difference, for example, betweenα=0.05 fs−2 andα=−0.05 fs−2 [figure 4(b)]. In this condition, the
population in−kx direction is larger than that in+kx direction, especially in regions around pointsM and P,
leading to a negative current along x direction.

Step 2: considering these two points P andMas examples, because they play the dominant contributions to
thefinal asymmetric population distributions. Beyond this, the LZS interference is investigated tofind the clues
for the chirp-rate-dependence of residual current. In case of graphene, the transition probability can be
estimated as ( )p w- D Wexp 4 R

2 2 [7, 23]. The electron dynamics driven by the externalfield follow the LZ

formula, especially under condition of wD » WR , inwhich the electrons tend to pass the avoided crossings (
i.e. bandgapminima), one part jumps non-adiabatically into the conduction band, while the rest still stays
adiabatically in the valence band. As for a linearly polarized excitation, electrons can always repeatedly pass the
avoided crossings within one optical period, leading the different excitation quantumpathways. These quantum
pathways can interfere and thus the final distribution of population in the conductionwould be sensitively
dependent on the phase relationship among these pathways. To obtain the insight of LZS interference in light-
field-driven regime, we need know the information of temporal evolution of the conduction band population
and phase accumulation at P andMpoint. The case of LSZ interference is determined by two-phase termsOne is
the transition phaseΔjT (known as stokes phase) for a single LZ process between valence and conduction band,

and the other is the propagation phase described as ( ( )) ( ( ))òjD = ¢ - ¢ ¢ E t E t tk k1 dP t

t
c v

1

2 . Here t1 and t2

refer to themoments of two LZ transition events, and Ec andEv represent themomentum-dependent energies of
conduction and valence band states. Figure 5 shows the conduction band population and the propagation phase
as a function of time for two different initial pointMand P. For the trajectory starting frompointM, the two
mainly transition events at approximately t2=−0.12 fs and t2=1.51 fs infigure 5(a). The propagation phase
accumulation from t1 to t2 isπ (figure 5(b)), and then plus the additional transition phaseπ from the LZ
transition, the total phase accumulationwould be 2π. Therefore, a constructive interference is induced. A larger
population in conduction band occurs (figure 5(c),Mpoint). In contrast, the total phase accumulation is 3π

Figure 4. (a) Simulated residual current versus chirp rate, which is perfectly fitted by a sinusoidal function of sin(κα) (κ is around
31.13 for the simulation parameters here). (b)Residual population difference of ρCB(0.05 fs

−2)−ρCB(−0.05 fs−2).
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from the start point P (figure 5(d)), resulting in a destructive interference and thus a smaller population in
conduction band (figure 5(e), P point). This kind of quantumphase difference for start pointsMand P finally
lead to the occurrence of asymmetric population distribution in the strong field regime.

Step 3: now let us answerwhy the relation between residual current versus chirp rate follows a sinusoidal
function. As demonstrated above, the chirp-dependent residual asymmetric conduction-band population
distribution originate in the pathways interference. In the following, wewill explicitly write the chirp-dependent
phase analytically.We define themagnitudeD of residual population in conduction band in single k state (i.e.M
or P point infigure 4(b)) in condition of two pathways ∣ ∣ ∣ ∣ ∣ ∣∣ ∣ ( )q= + +D A A A A2 cos1 2 1 2 , withA1 andA2

indicating pathways probability amplitude between ( )-¥ t, 1 and ( )-¥ t, 2 and θ=ΔjT+ΔjP. D depends
on their relative phase θ. The transition phaseΔjT isπ, determined by the sign of electric field, which presents
the avoided crossings [6], does not have difference with orwithout chirp rate. Therefore, we only focus on the
propagation phase. If the laserfield is x polarized and theDirac approximation is assumed

∣ [ ( )]∣ ( ) ( )ò òj = ¢ ¢ » ¢ + ¢



 f t t k t k tk v2 d 2 d , 9P
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2

only kx is time dependent and ky is assumed as 0, the!jP can be rewritten as

∣ ( )∣ ∣ ( )∣ ( )ò òj » ¢ ¢ = - ¢ ¢  k t t k A t tv v2 d 2 d , 10P h F
t

t

x h F
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t
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2

the integration termpresents variation of electronmomentumbetween transitions at time t1 and t2, and only has
the same sign (positive or negative). Thus, the absolute sign can be ignored, and assume initial wave vector
kx=0. Since the vector potential Ax(t) takes the form ( ) ( ) ( )w= +

w
aA t g t t tsinx

E
0 2

20

0
, the above formula for

propagation phase can be expanded as
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where g(t) is envelop of the laser pulse, which does not depends on chirp rate. If the chirp rate is small, one can
further rewrite it as

Figure 5. (a)Two representative electron trajectories starting frompointsM and P infigure 4with circle and square points
representing thatmoments at which electrons reach bandminima and transit between valence band and conduction band.
(b), (d)The propagation phase accumulated from initiation to the above respective transitionmoment. Conduction band population
ρCB (c) for pointM resulting from constructive interferencemainly determined by phase difference between t1 and t2, and (e) ρCB for
point P fromdestructive interferencemainly by phase difference between ¢t1 and ¢t2 . Here chirp rateα=0.05 fs−2.
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with c1 and c2 are some constants. Thus, D is qualitatively proportional to ( )acos . Based on the definition of
residual current jx, themagnitude of jx is determined by the asymmetry of the distribution of residual population,
i.e.mainly determined the difference between critical k points(e.g. P andMpoint). Therefore, the residual
current follows sinusoidal function shape.

Above all, via these three steps, the origin for the sinusoidal of chirp-rate-dependence of residual current is
clarified. The questions of why the residual current is chirp-dependent andwhy this chirp-dependence follows a
sinusoidal function pattern have been completely answered.

3.3.More practical introduction of chirp rate
In all the above investigation, the carrier-envelope phase isfixed as zero but just the chirp rate is tuned.However,
in reality, this is not true. For example, when the chirp rate is introduced via dispersivemedia and characterized
by group delay dispersion (GDD), the CEP is also simultaneously introduced [30], as shown infigure 6(a). Thus
electron dynamics in graphenewould and should be influenced by bothCEP and chirp rate, and the
investigation of the isolated role of chirp or CEP ismade complicated. Therefore it is necessary to investigate
them simultaneously. Taking fused silicon as an example of dispersivemedia, and how the chirp rate andCEP as
well as the residual current changewith the thickness of fused silicon [30], is demonstrated in details.

As a start, the laser pulse after propagating through fused silicon can be expressed in frequency-domain as,
( ) ( ) ( ( ))w w j f w= -E E , exp iChirp TL 0 . Here,ETL describes the transform-limited pulse andj0 is just the initial

CEP (here is set as zero).f(ω) is the phase induced by dispersion in fused silicon and can be expanded as a Taylor
series, ( )) ( ) (f w f w w f w w f= + - + -0 0 1

1

2 0
2

2, up to the second-order approximation.f0 is a constant
phase shift and can be set as zerowithout loss of generality.f1 is group delay (GD)which is related to the change
of CEPwhen propagating throughmedia. In contrast,f2 is group delay dispersion (GDD), which introduces the
linear chirp. The propagation distance or the thickness of fused silicon can influence the values of GD andGDD,
and thus one can change the thickness to tune the chirp rate of the incident laser pulse.

After the definition of the chirped pulse in frequency-domain, we can get the expression of the electric field
in time-domain via the fast Fourier transformation (FFT) algorithm. Thenwe add some new calculations, as
shown infigure 6, where how the chirp rate andCEP aswell as the residual current change are investigated in
detail when tuning the thickness of fused silicon in the range of d=[−200, 200] μm.One point needs to point

Figure 6. (a)GDDandCEP as a function of thickness of fused silicon d; (b)pulse duration and field strength as a function ofGDD; (c)
simulated chirp-dependent residual current in graphenewith (solid line) andwithoutGD (dashed–dotted line); (d) simulated chirp-
dependent residual current but with only phases integer number of 2π selected from (c), where the current only depends on the chirp
rate.
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out is that in order to check the similarity or difference with our previous calculation, the parameters forfield
strength, pulse duration, central wavelength, and so on (before propagating through fused silicon) are
kept same.

As shown infigure 6(a), the CEP andGDDversus the thickness of fused silicon d follows a linear
proportional way, andwhen the thickness of fused silicon d change by 100 μm, theCEPwill changes by 4π and
GDDby 3.6 fs2 approximatively. From the above new definition of chirped laser, one easily obtain the variance
offield strength and pulse durationwithGDD (figure 6(b)).When the thickness d increases, thefield strength E0
decreases and pulse duration increases, as expected from energy conservation. The residual current jx ofmain
focus is recalculated shown infigure 6(c).WithoutGD (orCEP isfixed as zero as before), the residual current
shows a sine-functional dependence onGDD (dashed–dotted line), which is qualitatively consistent with that in
figure 3(a) and if withGD (solid line), sine-functional dependence pattern ismodulated byCEP, which is
disclosed experimentally [7].

Further, if onewant to isolate the influences of CEP and chirp rate on the current in graphene. For example,
to investigate the only chirp- dependent current without the influence of CEP, one feasible way is to suitably
control the thickness of fused silicon to ensure the phase equal to pn2 (n is an integer, n=0, 1,L), due to the
fact that the residual current would be zero if for a transform-limited (without chirp rate) laser pulse. So that the
influence of CEP can be eliminated if we only focus on the influence from chirp rate. The corresponding
simulation to the only-chirp dependent current is shown infigure 6(d). The residual current versusGDD also
exhibit a sine-functional pattern.

From this new calculation, one can see that the original sine-functional dependence of residual current on
chirp rate is reproduced under amore practical situations and the conclusion obtained above is kept invariant.

4. Conclusion

In conclusion, we have numerically demonstrated that the electron dynamics in graphene can be controlled by
adjusting the chirp rate of a few-cycle driving laser. In the light-field-driven regime, the chirp-dependent LZS
interference causes the occurrence of an asymmetric residual current.Moreover, the directionality of such a
chirp dependent residual current changes in a sine-functional way.Note that the feasibility of experiment is also
discussed. Even to consider amore realistic situation, themain conclusions keep invariant. This theoretical
demonstration of ultrafast current control on the sub-cycle timescale will provide ameaningful guidance in the
future experimental confirmation and development of solid-state petahertz optoelectronicmetrology.
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