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Abstract

A Green’s function formalism for describing the decoherence of a ‘central spin’ in inhomogeneous
media is developed. By embedding the ‘central spin’ in a background medium and performing real-
cavity, local-field corrections on the macroscopic fields at the location of the ‘central spin’ one can
show that the Green’s function splits up into two main contributions, a contribution that is related to
the bulk properties of the background medium and a contribution that is related inhomogeneities
within the background medium. As an example, the coherence time of a shallow NV center in
diamond close to a planar interface, both in the absence and presence of surface spins, is computed. It
is found that the coherence time of the NV center increases as it moves away from the interface and, at
distances greater than ~1 nm, the interaction with the interface is negligible with the main source of
decoherence coming from the interaction with the surface spins. Above ~50 nm the interaction with
the surface spins is also negligible and one recovers the bulk coherence time.

1. Introduction

Owing to their ability to generate and maintain coherent superpositions, single spin qubits show much promise
as a platform for realizing quantum computing and quantum information processing [ 1, 2]. However, as these
spins are unavoidably coupled to the environment, the coherence times of these superposition states is finite
and, ifleft to freely evolve, the spin will ‘decohere’ to a mixed state of the two eigenstates [3, 4]. This finite
coherence time is a major limiting factor in the realization of many quantum information protocols.

For many spin systems the main source of decoherence is the interaction with nuclear spins in the
surrounding material. For example, the main source of decoherence for phosphorus donors in silicon are the *Si
isotopes that are present at a concentration of about 4.7% in natural silicon [5] and, likewise, 13C, ata
concentration of about 1.1%, are the primary source of decoherence for NV centers in diamond [6]. The main
technique for modeling decoherence is to use a microscopic spin-bath model [4] where one couples the ‘central
spin’ individually to a bath nuclear spins. Further interactions couple the nuclear spins within the bath inducing
intrabath correlations which also affect the coherence properties of the ‘central spin’ [7]. The coherence time can
then be computed by applying one of the usual cluster-expansion techniques by which one can obtain a
numerically tractable expression. Despite this, for large systems, these methods can be computationally
intensive. Furthermore, although one can specify the exact position of the bath spins within the spin bath, this
technique proves awkward when one needs to consider inhomogeneities in the medium in which the ‘central
spin’ is embedded. An example of this can be seen when one considers a ‘central spin’ located close to an
interface (shallow NV centers, which can be located within several nanometers of the diamond surface, would be
an example of such a system). Naively, one may think that as the ‘central spin” approaches the surface the
coherence time will increase as the number of nearby nuclear spins decreases. However, experimental work has
shown that this is not the case and, in fact, the coherence time decreases dramatically close to the surface [8, 9]. A
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number of phenomenological models have been constructed to account for this effect [10, 11] but a general
framework for studying such systems is absent.

Previously, it was shown that, by considering a spin-boson model and expanding the bosonic modes of the
environment using the macroscopic quantum electrodynamics formalism [12, 13], one can obtain an expression
for the decoherence of a ‘central spin’ in terms of the electromagnetic Green’s function of the surrounding
material [14]. By substituting the homogeneous Green’s function into the general expression, the coherence
time for a spin in an infinitely extended medium can be found. However, the Green’s function formalism applies
to any general material geometry and by replacing the homogeneous Green’s function with the appropriate
inhomogeneous Green’s function the coherence time within an inhomogeneous medium can also be computed.

Here, we extend the Green’s function formalism of spin decoherence from homogeneous media to
inhomogeneous media and compute analytical expressions for the coherence time for a ‘central spin’ close to a
surface and in the presence of surface spins. Although we only consider planar layered geometries here, the
Green’s function formalism is general and, hence, applicable to any material configuration. Analytical
expressions for the coherence time can be obtained for regular geometries (planes, cylinders, spheres, etc) where
aclosed form expression for the Green’s function are known. For non-regular geometries, numerical methods
for computing the Green’s function for arbitrary media are well developed. For example, similar computation
techniques are required to compute Casimir and Casimir—Polder interactions, which have been implemented in
the computational package SCUFF-EM [15]. Hence, numerical methods are already available to implement the
following theory, which would allow one to calculate spin coherence under any material geometry.

2. Theory

2.1. The spin-boson model

Consider a spin-boson model where a two-level, ‘central spin’, described by the spin operator, S, is placed in a
magnetic field, orientated in the z-direction, and coupled to an ‘environment’ consisting of magnetic
fluctuations described by a bath of bosonic operators, b(r, £). The dynamics of a ‘central spin’ subject to a
magnetic field are governed by the Zeeman Hamiltonian

Hy = woS., e))

with the two energy levels, corresponding to the ‘spin up’ and ‘spin down’ eigenstates, separated by an energy
AE = 2wy. The interaction with the magnetic fluctuations can be described by an interaction term of the form

[4]
H; =S8 - b, 1), )

where we assume the energy of the fluctuations described by the operator b(r, t) are much smaller than the
energy splitting of the spin eigenstates, AE, and hence the interaction with the environment can be treated as a
small perturbation. Here, the coupling strength between the ‘central spin’ and the magnetic fluctuations is given
by the gyromagnetic ratio v = gup/h, where gis the landé g-factor and yu5 is the bohr magnaton.

The transverse part of the interaction Hamiltonian induces spin flips which relaxes the higher energy spin
state to the lower energy spin state, or equivalently leads to the decay of the certain diagonal elements of the
spin’s density matrix. This class of Hamiltonian has been extensively studied (notably in [3]) and, from the
dynamics of the ‘central spin’ subject to such an interaction, a characteristic time for this relaxation process,
usually designated T, can be computed.

The longitudinal part of the interaction Hamiltonian induces pure dephasing which leads to loss of
coherence of the two spin states, i.e. the decay of the off-diagonal elements of the spin’s density matrix. The
characteristic time for this process is usually designated T5, and is usually less than T; (T, < T). Here, we will
consider the longitudinal problem as this is the main limiting process for quantum technology. The longitudinal
problem also has the advantage that the interaction Hamiltonian commutes with the Zeeman Hamiltonian and
hence the eigenstates of the S, are unchanged by the interaction.

To simplify the analysis one can remove the free evolution of the spin by moving to the interaction picture. It
also proves to be convenient to write the magnetic fluctuations as a sum of their modes. In this new frame the
‘central spin’ evolves under the Hamiltonian

A =8, fo Y dwlbo e w 1)+ b (5w D). 3)

The coherence, L(t), of a ‘central spin’ can be found by taking the expectation value of the coherence operator
= St iS,
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L(t) = (S,) = L(0)e¢®, 4)

with the function, ¢(¢), giving the decoherence rate as a function of time, ¢.

2.2. Magnetic fluctuations
We wish to find a bosonic operator that correctly describes the magnetic fluctuations of the environment. In any
dissipative system, the act of dissipation results in the generation of noise. This is formally described by the
fluctuation-dissipation theorem which relates the power spectrum of the noise to the imaginary part of the
response function. An example of this would be Johnson noise in a resistor. The energy dissipated by the resistor
when a current flows leads to heating and the resulting thermal fluctuations, in turn, drive noise currents. Thus,
noise is generated in the resistor by the dissipation process. Similar processes generate noise in all absorbing
media. As absorption is a necessary consequence of the Kramers—Kronig relations, which themselves are a
consequence of causality [16], then one would expect absorption, and hence noise, in any responding system.
Itis possible to derive a quantum field theory description of such noise by considering a three part coupled
system where an external electromagnetic field interacts with a matter field which, in turn, is coupled to a bath of
oscillators that models absorption. This system can be quantized from first principles to give a set of bosonic
operators that describe collective excitations of the field-matter-bath system (the somewhat lengthy calculation
is documented in detail in [17, 18]). When one substitutes the expressions for these bosonic operators into the
expressions for the macroscopic electromagnetic fields one finds that the displacement field, D(r, w), gains
extra terms that can be shown to have the properties of Langevin noise sources. This noise term originates from
the coupling to the oscillator bath and, hence, is a result of the absorptive properties of the system. This
absorption driven noise can therefore be identified with the noise predicted by the fluctuation dissipation
theorem. Separating these extra terms from the usual expression for the displacement field, ﬁ(r, w), leads to two
new ‘noise’ fields which are associated with the electric and magnetic fluctuations respectively. The quantization
scheme described above allows one two write these two ‘noise’ fields in terms of two sets of canonical bosonic
operators, fe(r, w) and fm (r, w),as

Pu(r, w) = i 22 Ime(r, w) £.r, w), 5)
s
My (r, w) = ilmu—(r,w) fm(r, w). (6)
\ o |p(r, w)?

The ‘noise’ fields Py (r, w) and My (r, w) are termed the noise polarization and noise magnetization fields,
respectively, and describe the electric and magnetic fluctuations within the material. Here, e(r, w) and u(r, w) are

. e . - . 2 ot
the electric permittivity and magnetic permeability of the background medium and f)(r, w) and f,(r, w) obey
the usual bosonic commutation relation

B\, W), Euly w)] = B (r — F)6(w — o). 7

To compute how the fluctuations in the material affect the ‘central spin” one needs to find the macroscopic
fields that the Langevin noise generates. To do this one can return to Maxwell’s equations and, by using the new
‘noise’ fields as source terms, the electromagnetic fields generated by the fluctuations can be found. The resulting
equations read

V- B(r,w) =0, (8)

V x E(r, w) — iwB(r, w) = 0, 9)

V - D(r, w) = py(r, w), (10)

V x H(r, w) + iwD(r, w) = Jn(r, w), (11)

with the noise charge density and noise current density defined by py, (r, w) = V - Py and
@, w) = —iwPy(r, w) + V x My(r, w), respectively. Resubstituting equations (5) and (6) into Maxwell’s
equations, one can show that the magnetic field operator, which describes longitudinal magnetic fluctuations
within the medium, is given by [12, 13]
R iwt
bor, w, 1) = <

> [arz v x G, o B . (12)

=e,m

iw

Here, the coefficients G, (r, 1/, w) are defined as

2
G,(r, v, w) = i‘*’—z /ilms(r', W) G(r, ¥, w), (13)
c TEY
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/
Gt ¥ ) = & [ L IMEE 9 e v ) < T, (14)
¢\ mep |u@', W)

with the backward arrow referring to the fact that the operator acts on the right-hand variable (here 7). The
function, G(r, r/, w), is the electromagnetic Green’s function, which is the solution to the Helmholtz equation
for a point source

2
V x VX Gt w) — e, )G, ¥, w) = 8(r — 1), (15)
1(r, w) c?

2.3.Spin decoherence
Substituting the operator for the magnetic fluctuations in equation (12) into the Hamiltonian in equation (3)
and using it to evaluate the expression for the spin coherence in equation (4) leads to [ 14] (see supplementary
information, which is available online at stacks.iop.org/NJP/22/033017/mmedia)
© dw t—
o(t) = ﬁuofyztzj; p sinc®(wt/2) coth (/iw/2kyT)2 -V x Im G(r, 1, w) X V - 2. (16)

Here, the ‘sinc’ function is the usual free-induction decay noise filter function and the ‘coth’ function is the
thermal boson occupation number. The imaginary part of the double curl of the Green’s function gives the local
density of states and, hence, the decoherence rate is proportional to the density of magnetic fluctuations at r, the
location of the ‘central spin’.

For systems whose coherence evolves exponentiallyas L = ¢~ /, the coherence time is easily defined as
T, = 1/T i.e. the time when the coherence has droppedto L = ¢~ ' = 36.8%. From equation (16) it is easy to
see that the coherence dynamics of a ‘central spin’ is a complicated function of time, t and, hence it is not possibly
to simply define the coherence time in terms of a simple exponential decay parameter. However, in the long time
limit the ‘sinc’ function becomes nascent d-function

lim t sinc(wt/2)

t—00

= §(w/2). (17)

Thus, in the long time limit the coherence reduces to a simple exponential decay with the decay rate, I, given by
T = /ipyy*lim [coth (fw/2k,T)2 - V x Im G(ry 1, w) X V - 2]. (18)
w—0

However, as coth(aw) ~ 1/aw as w — 0, this limit only converges if the imaginary part of the double curl of
the Green’s function scalesas Z - V x Im G(x,, 1, w) X ‘V - Z ~ wwiths > 1lasw — 0. Although this
result can give an reasonable estimate of the coherence time in some cases, it neglects the short time dynamics
and hence will be a poor approximation in situations where the behavior of the ‘central spin’ around the initial
time is important. In light of this, the results presented here will not use this approximation and for practical
purposes the coherence time will be taken to be the time in which the coherence dropsto L = e~ ' = 36.8%.

2.4. Regularization via local-field corrections

There is one last issue that needs to be addressed, namely that the double curl of the Green’s function for a
homogeneous medium in the coincident limit diverges if the absorption in the medium is non-zero. As
previously mentioned, vanishing absorption over the full frequency range is forbidden by the Kramers—Krénig
relations which, themselves, are a result of causality [ 16]. Hence, to properly model the coherence properties of a
‘central spin’ embedded in a realistic medium, a further step is required.

The divergences of the Green’s function can be regularized by performing local-field corrections on the
electromagnetic field at the location of the ‘central spin’ [14]. To perform these corrections one assumes that the
spin is located at the center of a spherical cavity whose radius, R,, is much smaller than the characteristic
wavelength of the system [19, 20]. This procedure is the quantum mechanical equivalent of the Onsager model
[21,22], which is often used in physical chemistry to compute the effects of a dielectric medium on a polarizable
molecule [23, 24]. The cavity is considered to be vacuum and hence free of noise sources and the interface with
the surrounding material to be a simple ‘step function’ interface devoid of gradients, roughness or impurities. It
is important to stress that the cavity used in this procedure is merely mathematical technique for computing the
field corrections and does not represent anything physical. Essentially, the presence of a cavity introduces an
‘ultraviolet’ cutoff on the wavevector atk = 27/R.and, hence, regularizes the Green’s function.

With this construction, the Green’s function can be split up into three parts [25, 26]

G r,w) =GV, v, w) + GO0, v, w) + GO, v, w). 19)

The first term is proportional to the reflective part of the cavity Green’s function and gives the bulk decoherence
rate that was studied in [14]. The second term is proportional to the transmissive part of the cavity Green’s

4
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Noisy medium in which ( ) Real interface between
the “central spin' is embedded different materials.
e.g. diamond fo NV centres.

Idealized interface used
to compute bulk contribution
to the local-field corrections.

Noise free cavity used
to perform local-field
corrections.

Noisy media external to the
medium in which the “central
spin' is embedded.

Ryf

Figure 1. The interaction of a ‘central spin’ with an inhomogeneous background medium (a) schematic of the Green’s function for a
local-field corrected ‘central spin’ for general inhomogeneous media: (1) gives the bulk contribution and is proportional to the
reflective part of the cavity Green’s function, (2) gives the scattering part and is proportional to the transmissive part of the cavity
Green’s function and (3) gives the contribution from multiple scattering between the external side of the cavity and other
homogeneities. This last term (3) is negligible. (b) and (c) Schematics of the interaction of a ‘central spin’ with a planar interface, a
planar interface with a layer of surface spins (which results in a surface magnetization, M(x, y)), respectively, which are the specific
examples of inhomogeneous media considered here.

function and gives the decoherence rate owing to the scattering from inhomogeneities external to the cavity. The
final term gives the contribution from multiple scatting between the external side of the cavity and other
inhomogeneities. As this last contribution scales as ~wR_/c and the cavity radius, R,, is assumed to be much
smaller than the characteristic wavelength of the interaction, this term is negligible compared to the bulk and
scattering contributions and, hence, will be neglected in the following. These contributions are shown
schematically in figure 1(a).

2.5. The Green’s function
Consider a ‘central spin’ located at the center (r = 0) of a spherical cavity embedded in an inhomogeneous
medium. The Green’s function for the whole medium, including the spherical cavity, reads

| " 2+ 1 (= m)!
G(l) s /’ = 1— OE l = 2 - A+ m)!
(r, v/, w) 4ﬂzn63,021712m70( )1(1 + 1) {+ m)!

X [ﬁTE(W)Mmln(k: 1‘) ® Mmln(k: 1‘/) + RTM(W)len(k: 1‘) ® len(k) rl)]> (20)

where Rr and Ry, are the generalized reflection coefficients for the TE and TM polarized waves respectively
and the M1, (k, r) and Ny, (k, r) dyads are given by

. i . dp” 0
e = 5 2 o o SO ),
Id+1
le(g)(k, r) = (lj; ) ji(kr)P/" (cos@)( ;:z]_,
1d._ . dP/"(cos 0) [ cos me inmg)
* Eﬁ[r]’(km[ do (sm md)] T PI (co )( mgb) em], (22)

where jj(x) are spherical Bessel functions of the first kind and ;" (x) are the associated Legendre polynomials.
Taking r, ¥ — 0 one finds that the only contribution is from [ = 1and m = 0. Hence, the TM mode vanishes
and the only contribution is from the TE mode. Thus, the Green’s function reduces to
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. = . 3ik ~
Z2-VXxGr,w) x V 2w o= S—RTE(W)Z%M V X Moiu(k, 1) @ Mo,(k, t')
T
— . WS ~
XV lei—0 = i Ryp (). (23)
67c

2.6. The bulk contribution

The bulk contribution is given by G (r, r’, w) which describes reflection from the walls of the spherical cavity
(see figure 1(a)). In this case the generalized reflection coefficient is just the reflection coefficient for the spherical
cavity Rpg(w) = Ryp(w) which is given by the Mie scattering coefficient

P (z0) 21" ()] — p(w)h{P (@) [zoh" (z0)]!

Rpp(w) = - - , (24)
(@)’ (2)[z0j" (z0)]" — j (z0) 21" (2)]/
where zy = wR./candz = n(w)wR,./c, with R the radius of the cavity, and j;(z) and h; (2), respectively, the
spherical Bessel and Hankel functions of the first kind for I = 1
. sin(z cos(z
o) = ) cos®) (25)
z z
1 i) .
h(z) = (— + —z)e‘z- (26)
z oz
Following [14], we will assume that R, is small compared to the main wavelengths associated with the
decoherence process (in fact the free induction decay filter is the square of the ‘sinc’ function and, hence, is
strongly peaked around w = 0 so the main wavelength —00) and we expand Ryg(w) in powers of wR,/c
3 -3 ic? 9 2[5e(w) — 1] — 3pu(w) — 11| ic
R (i) — ) L 9 [ pePlsew) = 1) = dutw) 1 e
2p(w) + 1] w’R; 5 [2p(w) + 1] wR,
5/2 3/2
_ e O( ”R”). 27)
2u(w) + 177 ¢
By taking the reflection coefficient to leading order and substituting the result into equation (23), one finds
5V X GOy w) x Yz L L) (28)
27R 1 + 2p(w)
Substituting the result into equation (16) leads to
Fpigy*t? foc dw . 1 — p(w)
)= ———— — sinc*(wt /2) coth (Jaw/2ky T) Im | ————— | 29
o (1) R Jo 2m (wt/2) (fw/ 2k T) T 20 (29)

2.7. The scattering contribution

In inhomogeneous media, one obtains a further contribution to the decoherence rate which is cause by
scattering off surfaces external to the spherical cavity (see figure 1(a)). This contribution is given by G (r, v/, w)
which describes waves that are transmitted through the surface of the spherical cavity, scatter off an external
inhomogeneity and are then transmitted back into the cavity. In this case the generalized reflection coefficient is
given by Ry = TR Ry Ti where TR is the transmission coefficient for outgoing waves through the wall of
the spherical cavity, T1% is the transmission coefficient for incoming waves through the wall of the spherical
cavityand Ryy; is the generalized reflection coefficient for all other interfaces external to the cavity. The
appropriate Mie scattering coefficients read

Tout(L) — —ipW) , 30
() 20" (20) [2h" ()] — ()" (@) [20h{" (20)]") G0
and
) —1
T (w) = . 31
) 20 (20 [2hM (@)1 — pw)hD (@) [20h{ (z0)]) D
As before we expand these coefficients for small values of wR /¢ to give
3 wR
Tout _ 2 4 O(_C), 32
e (W) T 200 (w)u(w)n(W) C (32)
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and

: 3 wR
Tln - - _K ,
TE(W) y (w)n(w) + O( ; ) (33)

where n(w) = /e (w)p(w) is the refractive index. Thus, this part of the Green’s function to zeroth order in w
R./cbecomes

N ‘& A 3 5 ex
Z'VX(WmsﬂWWKV'ﬂm@oz'_____[ (>““W fi- (34)
14+ 2u(w)
The term in square brackets is just the scattering Green’s function in the coincident limit for a medium without
the spherical cavity, hence we can write

3

2V X GO, v, w) X V - Slopg = | ————
1+ 2p(w)

2 . -

2. VXG9O, 1w x V -2, (35)
where GO(r, r/, w)is the scattering Green’s function for the medium without the spherical cavity. Thus, the
decoherence owing to inhomogeneities in the background medium is given by

1

_ 20 [P dw .,
o (t) = oy y°t L/; P sinc?(wt/2) coth (faw/ 2k, T) Im[[1 PSR

-
2-VXGOUr,w) x V 2]

(36)

The expression in equation (36) is valid for any geometry—one just needs to substitute in the appropriate
Green’s function. As an example, we will now compute the coherence time of a ‘central spin’ for a specific
inhomogeneous medium, namely a planar half-space.

3. Decoherence close to a surface

3.1. Decoherence from the interface

A “central spin’ inside a medium close to a surface can be modeled by considering a planar half-space with a
single interface atz = 0. Here, the upper half plane, labeled 1, consists of a medium within which the spin is
located and the lower half plane, labeled 2, corresponding to an external environment (see figure 1(b)). Taking
the coincident limit of the double curl of the single half-space Green’s function [13, 27], converting to polar
coordinates and computing the angular part of the integral leads to (see supplementary information)

avmm@me¢=%Mf dky e IR, (37)

with k,; = [k} — k‘f , ki = n{w)w/cand the reflection coefficient for the TE mode given by
My (w) kz,l - My (w) kz,2
Ho (w) kz,l + 1y (w) kz,2

Once again we see that only the TE component of the wave contributes. Owing to the highly oscillatory nature of
the Greens’ function as a function of frequency, computing both the integral over k, in equation (37) and win
equation (36) numerically is computationally highly intensive. Furthermore, as the ‘sinc’ function diverges at

w — o0 itis not possible to convert the frequency integral to the usual Matsubara summation. However, the
free induction decay filter is strongly peaked aboutw = 0 (A — 00) and the distance from the ‘central spin’ to
the surface is typically on the order of tens of nanometers. This means that the ‘central spin’ is within a
wavelength of the surface and, hence, one can use a near field expansion to obtain an analytical approximation
for the Green’s function. In this limit z; < A = 27wn(w)/k. Thus, k < k,and we can expand k as

. k? .
k, = Jk? — k; =ik, [1 — k_; e ik,. (39)

Hence, the reflection coefficient simplifies to

Rrg = (33)

(W) — (W)

R
@) + @)

(40)

and the integral to

—
Q'VXG(I‘E)I‘S)W)X V.z=

py (W) poy (W) — pay(w) f“ dk, k2e~2kolzd, (41)

4 (W) + (W)
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which can be integrated analytically to give

(W) py(Ww) — (W)
167z 11y (w) + (W)

-
2-VXxG,r,w)x V -2= (42)

Essentially, the Green’s function comprises of two contributions, a propagating contribution and an evanescent
(decaying) contribution. The near-field expansion neglects the propagating contribution in favor of the
dominant evanescent contribution.

Substituting equation (42) into (36) one finds that the surface contribution to the spin coherence reads

242 00 _
(1) = 2P [ czl_w sinc2(wt,/2) coth (/w/ 2k, T) Im[ M pw - p l(w)]. (43)
™

167z Jo [+ 2P @) + (@)

The result exhibits the same z, ? scaling that was found in previous phenomenological models [11]. However,
here we find the decoherence rate is also a function of the frequency dependent permeabilities y; and y, of the
upper and lower layers. Hence, not only are the magnetic properties of the layer in which the spin is embedded
important when determining the coherence time of the spin but the magnetic properties of the neighboring layer
also playarole.

3.2. Decoherence from surface spins

Another effect that has been discussed [10] is the effect of spins that lie on the surface of the medium in which the
‘central spin’ is embedded. One can model the effect of spins located on the surface of the medium by assuming
that they induce a surface magnetization (see figure 1(c)). This surface magnetization can then, in turn, be
modeled as being generated by an ‘effective’ bound current. Here, we assume that the surface spins are,
primarily, a source of static magnetization rather than an additional noise source but are able respond to
perturbations in the magnetic field owing to noise fluctuations in the bulk. The traditional expression of a bound
currentis, K,, = M X 7, where 7 is the unit vector normal to the surface. This implies that both the current and
the magnetization is in the plane of the surface. However, surface spins are not inhibited by such restrictions and
can orientate themselves at any angle to the surface. This means that the ‘effective’ current need not orientated in
the plane of the surface. The fluctuating fields that cause decoherence are those that are orientated parallel to the
spin, which in this case is the z-direction. Hence, we write our ‘effective’ spin magnetization current as

K; = M x X. This ‘effective’ spin magnetization current leads to an extra term in the electromagnetic jump
conditions at the interface and, hence, an extra term in the reflection coefficients for the surface.

The spins on the surface of the material can respond to an applied magnetic field. In the linear response
regime, one can related the magnetization of the surface spins to the applied magnetic field viaM = x(w)H,,
where x(w) is the 2D surface susceptibility of the surface spins and H; is the magnetic field at the surface.
However, H, is, a priori, unknown. As an approximation, we can use the magnetic field at the interface in the
absence of surface spins make an estimate of Hy. In analogy with quantum mechanics, this would be equivalent
to a first order Born approximation with the magnetic field without the surface spins equivalent to the
unperturbed ‘free’ field state and surface spins acting as the scattering potential. This approximation is valid
when the scattering is small. Here, we assume that the density of the spins on the surface of the medium is smaller
than those in the bulk and, hence, the susceptibility, y(w) < x1(w), x2(w) and, therefore, the ‘scattering’ of the
magnetic field owing to the surface spins is small.

The presence of this extra magnetization field the reflection coefficient at the surface becomes (see
supplementary information)

ket @) = k(@) 2ikg kX (@) i (@) (@)
kioity (W) + Kooty (@) TKipty (W) 4 Koopty (W)

TE (44)

The first term in equation (44) is the usual reflection coefficient for a surface without surface spins and the
second term gives the reflection owing to the magnetization field of the surface spins. In this case the Green’s
function has the same form as before (equation (37)) except with the reflection coefficient of the surface
(including the surface spin layer) now given by the (44). Applying the same near field approximation and
analytically integrating the result leads to

e W) — @) 3 (W) X (W) (W) py (W)

Q-VXG(rS,rS,w)XV-fz 3 " xR
16wz pry(w) + py(w)  167zd* [ (W) + py(w)]

(45)

The first term is the same as for the case of a single interface with no surface spins. The second term gives the
contribution from the surface spins alone. Thus, the surface spin contribution to the spin coherence reads
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Again, we see that the expression displays both the z; * scaling and the linear dependence in the surface spin
susceptibility that has been found in previous phenomenological models [10]. Note that, in this case the
imaginary term is, in general, negative so the coherence still exponentially decays.

4. Results

4.1. Permeability models
In order to validate the theoretical results we will compute the depth dependence of the decoherence of a shallow
NV center in diamond, which was measured experientially in [8, 9].

First, consider the case of a single interface without the presence of surface spins such as depicted in
figure 1(b). Here, the material with permeability 111 in which the spin is located is diamond. The interface at
z = 0 depicts an interface with another material with permeability, y,. For the experiments documented in
[8, 9] this other medium is just the vacuum (u, = 1).

In this system the main source of decoherence comes from the '>C nuclear spins, which are present at a
concentration of ~1.1% in the electronic-grade diamond used in the experiments. In this formalism, the effect
of the nuclear spins is described by the magnetic permeability, 1;. We can use the common frequency dependent
paramagnetic permeability model [28]

=— +1, (47)

to model the magnetic response in ith layer. Here,  is the magnetic susceptibility of the nuclear spins and 7 is the
magnetization relaxation time (i.e. the time it takes the background spins to de-align when the magnetic field is
switched off). In this model the static permeability (w — 0)is give by x; + 1 and at high frequencies (w — 00)
1 (w) — land, hence, the medium becomes transparent. The vacuum (¢ (w) — 1) occurs when y; = 0.

Although, we do not know the susceptibility of the '>C nuclear spins in layer i = 1 precisely, we can make an
order of magnitude estimate by noting that the susceptibility of unpaired electrons in paramagnetic atoms is on
the orderof y ~ 1 x 10~°. However, the coupling of electron spins to magnetic fields is much stronger than
that of nuclear spins. The difference is quantified by the square of the gyromagnetic ratio. The gyromagnetic
ratio for an electronisy = 1.76 x 10'' radss~' T~ ' whereas the gyromagnetic ratio for '*C nuclear spins is
over three orders of magnitude smaller, v; = 6.73 x 10” radss~ ' T~ . Scaling the paramagnetic susceptibility
with regard to the weaker coupling and lower concentration of nuclear spins leads to an estimate the nuclear
susceptibility on the order of y; ~ 1.6 x 10~ '*. The relaxation time is estimated to be 7; ~ 3 ms from NMR
linewidth measurements [29]. For the i = 2 layer we take X, and 7, to be variables of a similar order of
magnitude to represent materials with different magnetic responses.

In the second case, consider a single interface with the presence of surface spins such as depicted in
figure 1(c). The material parameters of the diamond can be estimated in the same way as before. In addition, we
can estimate the susceptibility of the surface spins in a similar way by assuming that they respond in the same
manner as the nuclear spins and hence they obey the same frequency dependent model

X,

X (48)
1+ 1wt

Xs(w) =
Reference [10] found the density of surface spins to be pyyins = 0.04 nm 2, which is about two orders of
magnitude smaller than the density of the bulk 13C nuclear spins, hence we take X2 ~ 107 ', Reference [10] also
gives the surface spin relaxation rate tobe 7, = 5 us.
Finally, when computing the bulk coherence time, a value of R, ~ 0.8 nm was used, which is the average
distance from the ‘central spin’ to the nearest nuclear spin and the temperature in all cases was taken to be 40 K.

4.2. Decoherence from the interface

Figure 2 shows the coherence time for an NV center as a function of distance for interfaces between diamond and
various magnetically responding materials. In figures 2(a) and (b) 7, = 7, = 3 msand x;, is varied. x, = 0
models the interface of diamond with the vacuum, where as y, > 0 models the interface of diamond materials
with ever increasing magnetic responses. Figure 2(a) shows that for y, < x; the coherence time decreases as the
NV center moves closer to the interface. Conversely, as the NV center moves away from the interface the
coherence time approaches the homogeneous medium coherence time and, at distance greater of over 1 nm the
effect of the interface is negligible. Furthermore, as the value of x, approaches the value of x; the coherence time
increases. This is because, as the magnetic responses of the two materials becomes closer, the reflection
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Figure 2. NV center decoherence close to an interface (a) and (b) decoherence of an NV center in diamond close to a interface for
various magnetic susceptibilities, x,, of the adjoining material. (a) Show the case for x, < x; and (b) shows the case where x, > x;.
In both cases 7, &~ 3 ms. The gray dashed line indicates the coherence time of an NV center in homogeneous bulk diamond with

X1 = X2 = 1.6 x 107 and 7, = 7, = 3 ms. (c) and (d) Decoherence of an NV center in diamond close to a interface for various
magnetic relaxation rates, 7,, of the adjoining material. (c) Show the case for 7, < 7; and (d) shows the case where 7, > 7. Inboth
cases x» = 1.6 x 10~ '*. Again, the gray dashed line indicates the coherence time of an NV center in homogeneous bulk diamond
withy; = x» = 1.6 x 10" and 7, = 7, = 3 ms.Inallcases y; = 1.6 x 10~ "*and 7, = 3 ms. The coherence time is taken to be
the time taken for the coherencetodroptoL = e = 36.8%.

coefficient at the interface is smaller and, hence, fewer magnetic fluctuations are reflected. Note that, if the two
magnetic responses are equal then the material in the two layers is the same and there is no interface at all, and
the coherence time is equal to the the homogeneous medium value.

Figure 2(b) shows that for y, > x; the coherence time increases as the NV center moves closer to the
interface. This is because the phase shift that occurs on reflection from a strongly magnetically responding
material leads to destructive interference of the magnetic fluctuations close to the interface. This effect might
contribute to the suppression of decoherence at very short distances from the interface that was observed in [9].
Similarly, the larger x, the longer the coherence time because the phase shift is greater and, hence, the incident
and reflected magnetic fluctuations are further out of phase and, thus, the destructive interference is stronger.

In figures 2(c) and (d) x> = 1.6 x 10~ '*inboth layers and 7, is varied. Again, we see that the coherence
time decreases as the NV center moves closer to the interface when 7, < 7; and increases for 7, > 7;. This s,
again, owing to the phase shift of the reflected fluctuations. For 7, < 7, thelonger the relaxation time the shorter
the coherence time. This is because the magnetic fluctuations persist for longer and, hence, have more of an
effect on the NV center.

4.3. Decoherence from surface spins

Figures 3(a) and (b) show the coherence time for an NV center as a function of distance from an interface
between diamond and the vacuum (x, = 0) in the presence of surface spins. In figure 3(a) 7, = 5 usand x, is
varied. The susceptibility of the surface spins is taken to be between 1% and 4% of the bulk nuclear spin
susceptibility. As ever, the coherence time decreases as the NV center moves closer to the interface and the larger
the surface spin susceptibility the shorter the coherence time. In figure 3(b) x; = 1.6 x 10~ '® mand 7, is varied.
Here, as before, the coherence time decreases as the NV center moves closer to the interface and the longer the
relaxation time the shorter the coherence time. An important feature to note is that the distance over which the
surface spins effect the NV center; the coherence time approaches the homogeneous medium coherence time at
adepth of 50 nm, which is between 1 and 2 orders of magnitude larger than the distance range over which the
interface alone interacts. Hence for shallow NV centers with depths greater than 1 nm the dominant
decoherence method is the interaction with the surface spins. The interaction with the interface itself is
negligible. These distances are the same order of magnitude as those found experimentally in [8, 9].
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Figure 3. NV center decoherence in the presence of surface spins (a) decoherence of an NV center in diamond close to a interface with
the vacuum for various area densities of surface spins and 7, = 5 ps. The gray dashed line indicates the coherence time of an NV center
close to an interface with the vacuum in the absence of surface spins. (b) Decoherence of an NV center in diamond close to a interface
with the vacuum for various surface spin relaxation times and x; = 1.6 x 10~ '®m. The gray dashed line indicates the coherence time
of an NV center close to an interface with the vacuum in the absence of surface spins. In all cases y; = 1.6 X 107 71 = 3 ms,

X2 = 0and 7, = 0 ps. The coherence time is taken to be the time taken for the coherence todropto L = ¢~ ' = 36.8%.

5. Summary

Here, we have extended the Green’s function formalism for spin decoherence in a bulk material that was
developed in [14] to inhomogeneous media. To validate the theory we have computed the decoherence rate ofa
shallow NV center in diamond placed within 50 nm from the surface. In the presence of surface spins, the
coherence time decreases as one approaches the surface from a value of 7240 ps at 50 nm to a value on the order
of 10 us for distances less than 10 nm. These coherence times are a similar order of magnitude to those found
experimentally in [8, 9]. For a more precise estimate of the coherence times one would need more sophisticated
permeability models and more accurate values for the magnetic properties of the '°C spins in diamond and of
any adjoining materials. However, these results show that the Green’s function formalism is able to model
decoherence in inhomogeneous spins systems. The formalism also shows that at distances greater than 1 nm itis
the interaction with the surface spins that is dominant as opposed to the interaction with the interface itself.
Experimental work in [9] showed that the influence of the interface falls off for distances >8 nm and hence the
Green’s function formalism also gives the correct order of magnitude result for this feature as well.
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