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Abstract
The three-body boundary-corrected continuum intermediate state method is used to compute total
cross sections for single charge exchange in ion-atom collisions at intermediate and high impact
energies. Detailed illustrations are given for several scattering systems: H++Li, He2++Li,
H++C, He2++C, H++N, H++O and H++Ne, He2++Ne. An independent particle model
and the frozen-core approximation are employed with only one target electron taken as being active.
The initial ground state of the active electron in a multi-electron target is described by five wave
functions. These are two Roothaan-Hartree-Fock (RHF) wave functions, the single- as well as double-
zeta functions and the hydrogen-like functions. Comparisons among the resulting cross sections are
made to check their sensitivity to the choice of the initial target wave functions. In the case of a lithium
target, the separate cross sections for electron capture from the K-shell and L-shell are reported. The
present theoretical total cross sections are compared with the available experimental data and overall
good agreement is found, especially when using the RHF wave functions for multi-electron targets.
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1. Introduction

Over the years, charge exchange in energetic collisions
between heavy ions (bare or electron bearing) and multi-
electron atoms has received much attention from both theor-
etical and experimental standpoints [1–47]. These processes
(also known as electron capture or electron transfer) find
important applications in basic and applied sciences across
interdisciplinary fields (plasma physics, astrophysics, surface
physics, medical physics, hadron therapy, etc). Also a notable
role of charge exchange is for plasma diagnostics (line
emissions) in thermonuclear fusion research.

In general, various existing theoretical methods can yield
reliable cross sections for electron transfer depending on
impact energies. At higher impact energies, charge exchange
can reliably be described by these methods: the continuum
distorted wave (CDW) [1], the boundary-corrected continuum
intermediate state (BCIS) [19, 46], the first Born with correct
boundary conditions (CB1) [8, 12–15, 17, 18], the second
Born with correct boundary conditions (CB2) [16], their
hybrids and other perturbative methods reviewed in [4]. In

particular, the presently used three-body version of the BCIS
method is an appropriate adaptation [46] of the earlier intro-
duced and implemented four-body variant of this theory for
double electron capture [19].

At lower and intermediate impact energies, the expansion
methods of the close-coupling type are appropriate using atomic
and/or molecular basis set functions. Such formalisms are var-
ious adiabatic, hyperspherical, and molecular-orbital close-cou-
pling methods [48, 49]. Electron capture, excitation and
ionization can also be described by the three variants of the
convergent close coupling (CCC) methods: the quantum-
mechanical (QM-CCC) [50], the semi-classical (SC-CCC) [51]
and the wave-packet (WP-CCC) [52, 53]. For example, algor-
ithmically, the QM-CCC method involves the coupled-channel
Lippmann-Schwinger equations for the transition amplitudes in
the momentum-space. With sufficiently large sets of the expan-
sion functions, the CCC methods can comprehensively cover not
only lower and intermediate, but also higher impact energies.

Theories for describing single charge exchange in colli-
sions of e.g. bare ions with multi-electron atoms are usually
formulated by means of the independent particle model.
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Herein, only the electron to be transferred is considered as
active. In such a case, the transition amplitudes (prior and
post) deal explicitly with the wave functions and the pertur-
bation potentials of the active electron alone. In these
T-matrix elements, except for a screening effect, there is no
trace whatsoever from the remaining electrons of the given
multi-electron atomic target. The only role of the non-parti-
cipating (passive) electrons is to merely screen the target
nuclear charge seen by the active electron and the projectile
nucleus. For this to occur, an additional assumption is
necessary. It is called the frozen-core approximation which
assumes that all the passive electrons occupy the same orbi-
tals before and after the collision.

The simplest manner to describe the ground state of a
multi-electron target is to use a screened nuclear charge and
the hydrogen-like wave function for the active electron. A
physically more satisfactory approach is to utilize the Hartree-
Fock (HF) wave functions for multi-electron atomic targets.
Among the HF wave functions, the most convenient are those
represented by certain closed forms. Such are the Roothan-
Hartree-Fock (RHF) wave functions [54, 55] available as the
analytical expressions. The most frequently employed RHF
wave functions are those from [56] given by linear combi-
nations of the Slater-type orbitals (STOs). All the needed
coefficients in these linear combinations are listed in [56] for
many elements of the periodic table.

This makes the efforts in the calculations of the T-matrix
elements with the RHF wave function [56] comparable to those
with the hydrogen-like wave functions. The main difference is
that, for the given transition, there are more integrals to cal-
culate with the RHF than with the hydrogen-like wave func-
tion. However, all the integrals with the RHF wave functions in
the T-matrix elements are of the same typical forms as those
employing the hydrogen-like wave functions. This is due to the
said STO basis set in the analytical RHF wave functions [56].
As is well-known, even the hydrogen-like wave function itself
can be expressed as a sum of the STOs.

The systematic use of the RHF model for one electron
capture by bare or dressed ions from multi-electron targets has
been suggested in [8] with the illustrations in the CDW
method [1]. Thus, in [8], for e.g. bare ions as projectiles, a
purely Coulombic target potential has been employed toge-
ther with the RHF binding energy and the RHF wave function
from [56] for the initial orbital of the active electron. For a
multi-electron atomic system, the RHF orbital energy (as
computed by means of the self-consistent-field method) is
known to be generally in close agreement with the corresp-
onding experimental binding energies. However, this does not
automatically imply that the resulting cross sections would
also be adequate. Therefore, explicit computations are desir-
able to test the sensitivity of the cross sections to different
choices of the target wave functions and the corresponding
binding energies of the ground-states of multi-electron tar-
gets. Here, we shall accomplish this task by using the avail-
able two RHF functions [56–59], the single- and double-zeta
functions [56], as well as the hydrogen-like wave functions.

The present study is concerned with charge exchange in
several collisions such as H++Li, He2++Li, H++C,

He2++C, H++N, H++O, H++Ne and He2++Ne.
Computations of total cross sections are carried out by means of
the BCIS method in its three-body formulation. Note that, as
opposed to the symmetric treatment of both channels in the
three-body CDW method, the formalism of the BCIS method is
asymmetric. It involves only one electronic Coulomb wave
function in either the entrance or exit channel wave functions for
the post or prior form of the transition amplitudes, respectively.
We employ the independent particle model and the mentioned
five different wave functions of the considered ground-state
target systems. Thorough comparisons of the obtained results
with the available experimental data are performed, and the
validity of the BCIS method is thereby assessed.

Atomic units will be used throughout unless otherwise
stated.

2. Theory

We begin by considering charge exchange between a com-
pletely stripped projectile (P) and a neutral multi-electron
target atom (T) of nuclear charge ZP and ZT, respectively:

+ + +Z i Z eT , T . 1fP P( ) ⟶ ( ) ( )

The independent particle model will be used in which, as
stated, only the electron to be captured is considered as active.
Moreover, this is the only electron which explicitly appears
throughout the formalism. The remaining, non-captured
electrons are viewed as passive in the sense that they occupy
the same orbitals before and after the collision (the so-called
frozen-core approximation) [8].

Index i in T(i) from (1) denotes the initial orbital of the
target atom from which the active electron is to be captured.
As a consequence of the frozen-core approximation, the final
state of the target T+ does not intervene at all in the single-
particle formalism. Let s


(x

) be a position vector of the

electron relative to the projectile (target nucleus), respec-
tively. Further, let R


denotes the position vector of the pro-

jectile with respect to the target nucleus. The initial and final
unperturbed states are jF = xei

ik r
i

i i ( )·  
and Ff = j- se ik r

f
f f ( )·  

where ki


and kf


are the initial and final momentum, respec-

tively. Here, ri


rf{ } is the position vector of ZP {ZT} relative to
T(i) {(ZP, e)f}.

The prior form of the transition amplitude for process (1)
in the BCIS method can be represented by the following six-
dimensional integral [46]:
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where v

is the incident velocity vector along the Z−axis and r

is the vectorial component of R

in the XOY-plane r = 0 .v( · ) 

Further, N−(νT)=eπνT/2 Γ(1+iνT), n = ZT T
eff v, ξ=ZP/v

and ZT
eff is the target effective nuclear charge. Here, Γ is the
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standard gamma function and F a b z, ,1 1( ) is the regular con-
fluent hypergeometric (Kummer) function. The wave function of
the hydrogen-like system (ZP, e)f in the exit channel is denoted
by j sf ( ) and its corresponding binding energy is Ef. Function
j xi ( ) represents the initial bound-state wave function of the
active electron in the multi-electron target T(i) with the binding
energy E .i

RHF The exponential b -ei R i sv· ·
   

in (2)comes from the
eikonal approximation +k r k ri i f f· ·

   
≈b -R sv· ·

   
, where

b


is the momentum transfer vector b h= - - +2v(
 

DE v v) ̂ with D = -E E Ei f
RHF and = 1 .v v vˆ ( ) 

Moreover,
h is the transverse momentum transfer vector h = h fhcos ,(
h fhsin , 0) which is perpendicular to v


, so that h = 0.v· 

In the prior form of the BCIS method, the intermediate
channel for describing transient ionization of the captured
electron in the exit channel is included in the same way as in
the corresponding CDW method [1, 8]. These two treatments
differ in the entrance channel of the prior transition amplitude,
where the BCIS method employs the total scattering wave
function of the boundary-corrected first Born (CB1)
method [8, 12].

The physical interpretation of the prior form of the
T-matrix element in the BCIS method runs as follows. In the
entrance channel, the impinging projectile ZP interacts with
Z e, iT

eff( ) through the asymptotic residual Coulomb potential
-Z Z R1 .P T

eff( ) Such a circumstance leads to the compound
or collective logarithmic Coulomb phase factor

= - -D R i Z Z R Rexp 1 lni P T
effv v v( ) [( ) ( ) ( · )]

  
as the sole

modification of the initial unperturbed state Φi. This is the
phase for the entire colliding system (projectile-target or
aggregate-aggregate) and, therefore, it does not include the
modifying factor due to the explicit electronic motion in the
Coulomb field of the nuclear charge ZP.

Contrary to this, in the exit channel, the BCIS method
allows the scattered projectile to perturb separately the
nuclear and electronic motions. Therein, the repulsive
Coulomb interaction between nuclear charges ZP and
ZT

eff yields the nucleus-nucleus phase factor D Rf ( )


=
- +i Z Z R Rexp ln .P T

effv v v[ ( ) ( · )] 
Simultaneously, the

Coulomb interaction of ZP with the active electron e leads to
transient ionization of the target system Z e, .T

eff( ) This is a
continuum intermediate state of the electron in the field of its
parent nucleus of charge ZT

eff . In the BCIS method, the ejected
electron does not propagate in the Coulomb field of the point
charge ZT

eff with a whole spectrum of possible momenta k .


Rather, this method (similarly to the CDWmethod) imposes the
specific velocity matching condition which constrains the free
electron to travel only in a restricted direction with the particular
momentum =k v

 
. Such an imposition produces the explicit

purely electronic modifying factor j= - -d x xef
i xv

v( ) ( )·  
 where

j n n= - - -- -x N F i i x i xe , 1,i x
T 1 1 T v vv

v( ) ( ) ( · )·  


 
is the

electronic continuum Coulomb wave function in the attractive
electrostatic field = -V Z xT T

eff . Therefore, the combined
modifying function (for the nucleus-nucleus and nucleus-elec-
tron degrees of freedom) of the final unperturbed state Φf is the
product D R d x .f f( ) ( )

 
The electronic plane wave ei xv·  from the

Coulomb wavej- xv ( ) is incorporated into the term -e ik rf f·
 

from

Φf. It is for this reason that ei xv·  is absent from d xf ( ) which,
therefore, appears in (2) as the reduced Coulomb continuum
wave function n n= - - --d x N F i i x i x, 1, .f T 1 1 T v v( ) ( ) ( · )  

Finally, capture of the electron occurs from this latter
intermediate ionizing state (capture from continuum), because
the electron e travels with the velocity vector v


as does the

scattered projectile P of charge ZP. As a consequence, the
attractive Coulomb potential between ZP and e is sufficient to
bind them together into the newly formed hydrogen-like
atomic system (ZP, e)f.

Returning to (2), the last line therein follows from:
-i Z Zexp 1P T

effv[( ) ( ) -R Rln v v( · )] 
- i Z Zexp P T

effv{ [ ( )
+R Rln *v v( · )]} 

= r -iZ Z2 1P T
effv v( ) ( ) + xR R iv v( · ) 

where
ξ=ZP/v as in (2). Since r -iZ Z2 1P T

effv v( ) ( ) does not contribute
to the total cross section Qif [8], it can be dropped from (2).
Thus, concerning Qif, it is merely the phase + xR R iv v( · ) 

which remains in (2) from the overall modifying factor
D R D Ri f

*( ) ( )
 

of the relative motion of the heavy scattering
aggregates.

Regarding the confluent hypergeometric function
n +F i i x i x, 1,1 1 T v v( · ) 

from equation (2), the following
integral representation is useful:

ò
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where an infinitesimally small negative imaginary part
−iò (ò>0) is assumed to be implicitly added to the para-
meter νT via νT→νT−iò in order to secure convergence of the
integral. Upon carrying out the calculation, the limit ò→0+ is
taken, where the plus superscript indicates that ò tends to zero
through positive numbers. Then, for the purpose of Qif, we
can ignore the nucleus-nucleus term r -iZ Z2 1P T

effv v( ) ( ) in (2) so
that:

òh tt t t
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Using [56–59], we made two choices of the target initial
ground-state RHF wave function j xi ( ) as the fixed linear
combinations of normalized STOs. Presently, the calculation
of total cross sections will be performed for single electron
capture separately from the K- and L-shells of a lithium atom
by protons and alpha particles. For the other atomic targets
(carbon, nitrogen, oxygen and neon), only capture from their
K-shells will be taken into account. For all these targets, the
wave function j xi ( ) reads as [56]:
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where the values of the parameters ci, Nj, ζi, λj and Ei
RHF from

[56] are summarized in tables 1 and 2. Here, imax and jmax

denote the numbers of the 1s and 2s STOs, respectively, in the
RHF wave functions (presently imax=2 and jmax=4).

The following hydrogenic relation will be used for the
effective charge ZT

eff , as suggested in [8]:

= -Z n E2 , 8iT
eff RHF ( )

where n is the principal quantum number of the target initial
orbital from which the active electron is transferred to the
projectile.

Employing equation (7) and the hydrogen-like wave
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For the analytical part of our calculation, we will utilize the
following Fourier transforms:

ò
m
p m

=
+

z t- + +
-

q
q

e d
e

, 14x i x x i
iq x

i
2

1
2 2 2

i v v

( )
( )( · )

· 
 

òp
m

m m

=

´
+

-
+

l t- + + -x q

q q

e
1

d e

4 1
, 15

x i x x iq x

j

j j

2

2

1
2 2 3

1
2 2 2

j v v

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

( )

( · ) ·   

where t= +q q1 v  
, μi=ζi−ivτ and μj=λj−ivτ. Also

needed is the Feynman parametrization integral:
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These preliminaries enable an analytical reduction of the
quantities WR1, WR2, Ws1 and Ws2 to the following one-
dimensional integrals over a real variable t:
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Table 1. Expansion coefficients for orbitals and the RHF orbital energies of the target atoms. Notation ±1.2345, −n implies
±1.2345×10−n.

Li S2( ), j s1 Li S2( ), j s2 C P3( ), j s1 N S4( ), j s1 O P3( ), j s1 Ne S1( ), j s1

c1 3.499 67 −0.57021 11.820 14 15.388 48 19.858 01 27.375 67
c2 1.133 72 −0.15441 2.023 88 2.184 13 1.730 34 3.008 63
N1 −4.20671,−6 1.982 41,−4 5.510 72,−4 1.166 80,−3 −7.37761,−4 1.805 20,−3
N2 2.293 09,−4 2.007 54 −2.91479,−3 −4.86689,−3 1.347 98,−2 −5.13026,−3
N3 −1.47690,−3 7.501 45,−2 3.810 21,−2 6.324 58,−2 −1.08333,−1 1.627 05,−1
N4 1.736 57,−2 −2.16501 7.977 63,−2 3.217 50 1.771 14 1.956 29
Ei

RHF −2.47773 −0.19632 −11.32554 −15.62909 −20.66866 −32.77248

Table 2. Damping factors in the exponentials of the orbitals in the target atoms.

Li S2( ), j s1 Li S2( ), j s2 C P3( ), j s1 N S4( ), j s1 O P3( ), j s1 Ne S1( ), j1s

ζ1 2.476 73 2.476 73 5.435 99 6.457 39 7.614 13 9.484 86
ζ2 4.698 73 4.698 73 9.482 56 11.172 00 13.757 40 15.565 90
λ1 0.383 50 0.383 50 1.057 49 1.364 05 1.698 24 1.961 84
λ2 0.660 55 0.660 55 1.524 27 1.897 34 2.480 22 2.864 23
λ3 1.070 00 1.070 00 2.684 35 3.252 91 4.311 96 4.825 30
λ4 1.632 00 1.632 00 4.200 96 5.082 38 5.865 96 7.792 42
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With the help of the results from (17)–(20) and by
employing (9), the quantity tif ( ) from (5) can be expressed
in terms of the typical integral:
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Making use of the analytical results for In (n=0, 1, 2, 3)
from [20], we arrived at the final expression for the transition
amplitude Tif which is given by this two-dimensional integral
over the real variables t and τ:
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The expressions for the quantities νi, νj, δi and δj are listed in the
Appendix. The remaining two-dimensional integral in (22) is
computed numerically to obtain the transition amplitude hTif ( )

from (4).
Then with the T−matrix element (22) at hand, the total

cross section denoted by Qif is represented by this formula:
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As such, the total cross section in the BCIS method is gen-
erated by way of three numerical integrations (over τ, t and η)
for which we employ the Gauss-Legendre quadrature. Before
performing these numerical integrations, the Cauchy reg-
ularization [19] is used for the τ−quadrature to avoid the
double singularity of the function f (τ) at τ=0 and τ=1
arising from the representation (3) of the hypergeometric
function. Also, an appropriate change of variable [15] is made
in the η−integration according to z=(η2−2)/(η2+2)
which scales the integrand toward the dominant region of the
narrow forward cone of scattering (appropriate for heavy
particle collisions within the eikonal approximation [8]).

The explicit computations are carried out only for the initial
and final ground states. The obtained theoretical results are

multiplied by a factor of 1.202 which is an approximate
contribution (∼20%) from all the excited states according to the
-nf

3 Oppenheimer scaling law. At every impact energy for all the
considered processes, a total of 368 integration points was used
for each of the three quadratures. Convergence rate as a function
of the number of the integration points is also examined.

3. Results and discussion

Here, we shall present the new cross sections obtained by
means of the BCIS method within the RHF model. Specifi-
cally, we consider the following scattering processes:
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In the present computations, we have not accounted for the
final states of the target ion after collision. As mentioned, these
disappear altogether from the T-matrix elements on account on
the independent particle formalism, the frozen-core approx-
imation and the fact that only one electron is taken as active.
The configurations in the exit channels from (26) and (27) are
written only to indicate the K-shell capture 1s2 → 1s.

First, we shall consider the H++Li and He2++Li
collisions for which the obtained results are displayed in
figures 1 and 2. For a lithium target atom, when the separately
computed cross sections QK and QL for capture from the K-
and L-shell, respectively, are added the result is denoted by
QK+L i.e. QK+L=QK+QL where, for brevity, Qif≡Q.
Moreover, the cross sections for capture from the K-shell are
multiplied by 2 because each of the two electrons from this
shell can be captured with equal probabilities. No such a
multiplication is made for capture for the L-shell which has
only one electron in a lithium atom.

As can be seen from figures 1 and 2, at lower impact
energies, the total capture cross sections are dominated by
capture from the L-shell of Li. However, when the projectile
energy increases, capture from the K-shell begins to play the
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dominant role. The cross sections for capture from the K-shell
in the H++Li collisions are found in figure 1 to be relatively
small for energies lower than 50 keV. In general, the contrib-
ution for the L-shell electron capture increases with decreased
projectile energy. A comparison for capture from any shell (full
curve) with a number of measurements [60–64] shows excel-
lent agreement throughout the considered impact energy range.

The total cross sections Q Q,K L and +QK L in in the BCIS
method for single electron capture by He2+ from the L-, K-
and (K+L)-shells of Li S2( ), computed in a wide range of
energies between 10 keV/amu and 2 MeV/amu, are

displayed in figure 2. Therein, it can be seen that, above 30
keV/amu, the cross sections +QK L for electron capture from
any shell, i.e. from the (K+L)-shell, are in very good agree-
ment with the experimental data from [61, 62, 65–67]. At
lower impact energies, the theoretical curve lies below the
data from the measurements. This situation would be
improved by an explicit inclusion of the contribution from
capture into the excited states (i.e. not roughly through the
Oppenheimer scaling rule -nf

3 as done presently).
The cross sections shown in figure 3 for single electron

capture by protons from the K-shell of C P3( ) are computed for a
range of impact energies between 100 keV and 5 MeV. Herein,
the two versions of the BCIS method are presented, depending
on the wave function used for the ground-state of the target (one
with the hydrogen-like and the other with the RHF wave
function). The effective nuclear charge ZT

eff is used in both the

hydrogen-like wave function, j p= -x Z ei
Z x

T
eff 3 2 T

eff( ) [( ) ]
,

and the associated eigen-energy, = -E Z 2.i T
eff 2( ) For the

hydrogenic model, ZT
eff is taken to be the screened target

nuclear charge, = -Z Z 5 16T
eff

T , where 5/16 is the Slater
screening factor.

For comparisons with the present results, figure 3 also
displays the cross sections from the CB1 method [18] (dotted
curve) as well as from the two versions of the three-body
Coulomb-Born distorted wave (CBDW) method [23]: prior
(dash-dotted curve) and post (dash-double dotted curve). In [23],
the single-zeta wave function [56] has been used to describe the
initial target wave function of the active electron. On the other
hand, in [18] the RHF wave function [56] has been utilized. It is
clear from figure 3 that the prior cross sections are lower than
their post counterparts from the CBDW method. In [18], the

Figure 2. Total cross sections Qif≡Q (in cm2) for one electron capture
from all the shells of lithium by alpha particles: + ++ +He Li He2 ⟶

+Li . The dashed, dotted and full curves are the present results for the
total cross sections Q Q,K L and +QK L in the prior version of the BCIS
method within the RHF model [56] for electron capture from the K-, L-
and (K + L)-shells of Li, respectively. Experimental data: + DuBois
and Toburen [61], ◦ Shah et al [62], Sassao et al [65], • McCullough
et al [66],  Murray et al [67].

Figure 3. The K-shell electron capture cross sections (in cm2) as a
function of the laboratory incident energy E(MeV) for the collisional
process: + ++ +H C H C .⟶ The full curve is for the present
results in the BCIS method within the RHF model [56] for one
electron capture from the K-shell. The dashed curve represents the
cross sections in the BCIS method with the hydrogen-like wave
function for the target [46]. The dotted curve represents the cross
sections from the CB1 method [18]. The dash-dotted and dash-
double dotted curves are cross sections from the prior and post
version of the CBDW method [23], respectively. Experimental data:
◦ Rødbro et al [68].

Figure 1. Total cross sections Qif≡Q (in cm2) for one electron capture
from all the shells of lithium by protons: + ++ +H Li H Li .⟶ The
dashed, dotted and full curves are the present results for the total cross
sections Q Q,K L and +QK L in the prior version of the BCIS method
within the RHF model [56] for electron capture from the K-, L- and (K
+ L)-shells of Li, respectively. Experimental data: Il’in et al [60],
DuBois and Toburen [61], ◦ Shah et al [62], • Grüebler et al [63], +
D’yachkov [64].

6

Phys. Scr. 95 (2020) 065403 I Mančev et al



post-prior discrepancy has been avoided by the introduction of
the average T-matrix, = +- +T T T 2.if if if( ) The ensuing aver-
aged cross sections from the CB1 method are depicted in
figure 3. As can be seen in figure 3, the two versions of the
CBDW method and the averaged cross sections from the CB1
method overestimate both the results from the BCIS method and
the experimental data, especially at lower impact energies.

It should be noted, that the CBDW and CB1 methods obey
the correct boundary conditions. However, there are two main
differences between these two methods. One is that the former
and the latter employ the full Coulomb wave functions and the
corresponding Coulomb logarithmic phases, respectively, for
the relative motion of heavy particles. The other difference is
that the CB1 method uses the forward-angle simplification,
whereas the CBDW method does not. In other words, the CB1
method is the eikonal version of the CBDWmethod. Otherwise,
the CBDW and CB1 methods have the same perturbation
potential in the prior and post forms of the transition amplitudes.
For the same initial target wave function, the use of either the
full Coulomb wave function for the relative motion of heavy
nuclei or its Coulomb logarithmic phase should give the same
total cross sections in the CBDW and CB1 methods. The dif-
ferences seen in figure 3 between the CBDW and CB1 methods
should be due only to the use of two different initial target wave
functions: the single-zeta and the RHF functions, respectively.

On a wide interval of impact energies, the results from the
BCIS method within the RHF model [56] for electron capture
by protons from the K-shell of nitrogen N( S4 ) and oxygen
O( P3 ) are seen in figures 4 and 5, respectively, to be in good
agreement with the experimental data from [69–77]. Herein,
only the measurements of Cocke et al [69] correspond to cap-
ture from the K-shell of the target. All the other measured data
displayed in figures 4 and 5 are for capture from any shell of
nitrogen and oxygen. Moreover, here and throughout this study,
the theory is for atomic targets, whereas all the experimental
results shown in figures 4 and 5 are for molecular targets (N2

and O2). However, at high energies, the K-shell cross sections
for these molecular targets can be converted to the atomic tar-
gets N and O by means of the scaling rule QN=Q 2N2

and
=Q Q 2.O O2

As in figure 3, also shown in figures 4 and 5 are
the cross sections from the CB1 method [15] as well as from the
post and prior versions of the CBDW method [23].

The cross sections for formation of the atomic hydrogen
in the ++H Ne S1( ) collisions (proton-neon) are shown in
figure 6 alongside the experimental data [68, 69]. The present
results obtained with the RHF wave function [56] for the
target ground state are observed to overestimate the measured
data at lower energies. However, at higher impact energies
(above 2 MeV), very good agreement is seen between our
findings and the measurements. The cross sections from the
CDW method [8] with the RHF wave function [56] and from
the prior version of the CBDW method [23] with single zeta
function [56] are also given in figure 6 by the dash-dotted and
dotted curves, respectively.

For electron capture by alpha particles from the K-shell
of carbon C( P3 ) and neon Ne( S1 ), the theories and measure-
ments are compared in figures 7 and 8, respectively. Within
the BCIS method, there is significant discrepancy at lower

impact energies between the results obtained by using the
RHF [56] and the hydrogen-like wave functions. A satisfac-
tory agreement is obtained for the He2++C collisions
between the BCIS with the RHF function [56] and the
experimental data. As to the He2++Ne collisions,
throughout the entirely impact energy range from 300 keV/
amu to 30.5 MeV/amu, the measured cross sections [68, 78]
are excellently reproduced by the BCIS method with the RHF
wave function [56]. Moreover, the maximum in figure 8
predicted by the BCIS method with the RHF function [56]
occurs at the same energy as in the experimental data from
[68]. As can be seen from figures 7 and 8, the results of the
CDW method [8] (dash-dotted curve) overestimate those due
to the BCIS method and measurements.

The results from the BCIS method with the hydrogen-
like wave function [46] are shown by the dashed curves in

Figure 4. The same as in figure 3, except for the process
+ ++ +H N H N⟶ and for a different set of measurements.

Experimental data: ◦ Cocke et al [69], Acerbi et al [70], Acerbi
et al [71], • Schryber et al [72], Welsh et al [73], ▿ Toburen et al
[74], + Berkner et al [75],  Allison et al [76].

Figure 5. The same as in figure 3, except for the process
+ ++ +H O H O⟶ and for a different set of measurements.

Experimental data: ◦ Cocke et al [69], Acerbi et al [70], Acerbi
et al [71], • Schryber et al [72], ▿ Toburen et al [74],  Varghese
et al [77].
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figures 3–8. At higher energies, both curves (full and dash)
from the BCIS method are very near each other and, moreover,
they closely follow the trend of the experimental data. How-
ever at lower energies, these theoretical curves display quite
different behaviors. Namely, the results within the RHF model
[56] overestimate those from the usage of the hydrogen-like
wave function. In general, however, as can be seen from
figures 3–8, the results from the BCIS method with the RHF
wave function [56] are in better agreement with experimental
data than the findings with the hydrogen-like wave function.

The main reason for the discrepancies between the cross
sections from the BCIS method with the hydrogen-like
(HYD) and the RHF wave functions [56] lies in very different

binding energies and the associated effective charges. For
example, in the case of carbon atom, within the HYD model,
the binding energy and the associated effective charge are

= -E 16.173828i
HYD and =Z 5.6875.HYD

eff In this case, the
corresponding values from the RHF model [56] are

= -E 11.32554i
RHF and =Z 4.7593RHF

eff . From the nature of
electron capture, it is expected that the effective charge should
be strongly influential through the Sommerfeld parameter
n = ZT

eff v in the Coulomb wave function for the continuum
intermediate states in the transition amplitude (2). The related
question is: how much influence could be attributed to the two
different forms of the target wave functions (the hydrogen-
like versus the RHF) for the same discussed target parameters.
To examine this feature, we used the BCIS method to perform
a numerical experiment for electron capture from the K-shell
of the carbon ground state in the H++C collisions. Namely,
we employed the RHF wave function with the expansion
coefficients and the exponential damping factors from [56],
but with the HYD binding energy = -E 16.173828i

HYD

instead of the RHF value = -E 11.32554.i
RHF Moreover,

within this setting, in the Sommerfeld parameter
n = ZT T

eff v, entering the continuum Coulomb wave func-
tion, the RHF effective target nuclear charge =Z 4.7593RHF

eff

is replaced by its HYD counterpart =Z 5.6875.HYD
eff For this

auxiliary model, provisionally called the RHF-HYD model,
the obtained total cross sections for all the impact energies
(100—5000 keV) were very close to those with the purely
HYD model. Hence, as opposed to the target binding energy
and effective charge, the specific form of the target wave
function is inconsequential.

In order to investigate the sensitivity of the total cross
sections to the choice of the target basis set, we employ two
different RHF wave functions: the RHF1 [56] and the RHF2
[57–59]. Thus far and throughout, whenever the acronym RHF
is used, it is by default referred to the RHF1 model [56]. The
parameters of the RHF1 wave function are given in tables 1 and
2. On the other hand, for the ground state of carbon, C P3( ), the
RHF2 wave function has five s1 and three 2s normalized STOs
with the parameters: c1=−6.29084, ζ1=9.23879,

Figure 6. The K-shell electron capture cross sections (in cm2) as a
function of the laboratory incident energy E(MeV) for the collisional
process: + ++ +H Ne H Ne⟶ . The full curve is for the present
results in the BCIS method within the RHF model [56] for one
electron capture from the K-shell. The dashed curve represents the
cross sections in the BCIS method with the hydrogen-like wave
function for the target [46]. The dotted curve represents the cross
sections from the prior version of the CBDW method [23]. The dash-
dotted curve is for the cross sections in the CDW method [8].
Experimental data: + Rødbro et al [68], ◦ Cocke et al [69].

Figure 7. The same as in figure 6, except for the process
+ ++ + +He C He C2 ⟶ and for a different set of measurements.

Experimental data: ◦ Rødbro et al [68].

Figure 8. The same as in figure 6, except for the process
+ ++ + +He Ne He Ne2 ⟶ and for a different set of measure-

ments. Experimental data: + Rødbro et al [68],  Katayama
et al [78].
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c2=−7.52355, ζ2=5.10037, = - ´ -c 2.41986 103
2, ζ3=

3.27663, = - ´ -c 2.64897 104
4, ζ4=1.19296, =c5

- ´ -5.91045 10 5, ζ5=0.93096, N1=−0.491606, λ1=
18.89045, N2=−13.04477, λ2 = 7.51751, = - ´N 4.968653

-10 3, λ3=2.27024 and the binding energy Ei=
−11.3255187. As can be seen from table 3, the total cross
sections computed with the RHF1 [56] and RHF2 [57–59]
target wave functions are nearly the same.

Additionally, we used also the single-zeta wave function
(SZF) with the parameters for C P3( ) [56]: c1=13.47608 ,
ζ1=5.67263, = ´ -N 2.16483 101

2, λ1=1.60833 with
Ei=−11.30156 and the double-zeta wave function (DZF) [56]:
c1=4.77121, ζ1=7.52232, c2=9.03253, ζ2=5.12306,

= - ´ -N 9.13684 101
3, λ1=1.83068, = ´N 2.191422

-10 3, λ2=1.15282 with Ei=−11.32343. The obtained results
for total cross sections with the SZF and DZF are very close to
those with the RHF1 [56] and RHF2 [57–59] target wave
functions (see table 3).

Yet another illustration is reported in table 3 for a different
collision system (He2++Ne) and for a wider impact energy
interval. Here too, the obtained total cross sections with the
SZF and DZF are nearly the same as those with the the RHF1

[56] and RHF2 [57–59]. Moreover, we verified that the same
features also hold true for all the other collision systems
investigated in the present work. It can then be safely con-
cluded that the BCIS method is practically insensitive to the
examined choices of the target ground-state wave functions.

Description of the ground state of the active electron in
the multi-electron atomic targets under study (lithium, carbon,
nitrogen, oxygen and neon) amounts to using different
numbers of the 2s basis functions. Thus, for carbon atom, the
four wave functions denoted by RHF1, RHF2, DZF and SZF
contain four, three, two and one 2s−basis functions, respec-
tively. Since all the four wave functions give nearly the same
results, it can be concluded that the actual number of the 2s
basis orbitals does not impact noticeably on the values of the
computed total cross sections.

As per the Theory Section, the three-body BCIS method
used in this work accounts only for one active electron of a
multi-electron target. All the other target electrons are con-
sidered as being passive (not participating to the capture
probability of the active electron) within the accompanying
frozen-core approximation. As such, the present version of

Table 3. The present total cross sections (in cm2) in the prior version of the BCIS method for electron capture from the target K-shells in the
H++C and He2++Ne collisions for different ground-state wave functions: the single-zeta function, SZF [56]; the double-zeta function,
DZF [56]; the RHF1 [56], RHF2 [57–59].

H++C collision

E(MeV) SZF DZF RHF1 RHF2

0.1 4.5310,−20 4.3135,−20 4.3343,−20 4.3328,−20
0.15 8.7174,−20 8.7117,−20 8.7020,−20 8.7022,−20
0.2 1.1083,−19 1.1363,−19 1.1321,−19 1.1323,−19
0.3 1.1388,−19 1.1770,−19 1.1748,−19 1.1747,−19
0.5 7.3225,−20 7.4527,−20 7.4401,−20 7.4396,−20
0.75 3.4883,−20 3.6139,−20 3.6095,−20 3.6091,−20
1 1.7803,−20 1.8246,−20 1.8197,−20 1.8199,−20
1.5 5.6545,−21 5.5697,−21 5.5817,−21 5.5816,−21
2 2.1699,−21 2.0852,−21 2.0982,−21 2.0975,−21
3 4.6590,−22 4.4025,−22 4.4317,−22 4.4318,−22
4 1.3869,−22 1.3143,−22 1.3180,−22 1.3187,−22
5 5.1010,−23 4.8813,−23 4.8753,−23 4.8784,−23

He2++Ne collision

E(MeV/amu) SZF DZF RHF1 RHF2

0.3 3.1073,−20 2.9698,−20 2.9756,−20 2.9750,−20
0.5 6.6168,−20 6.6309,−20 6.6252,−20 6.6259,−20
0.75 8.0571,−20 8.2230,−20 8.2391,−20 8.2388,−20
1 7.4433,−20 7.5723,−20 7.5856,−20 7.5856,−20
2 2.9805,−20 2.9813,−20 3.0596,−20 3.0595,−20
3 1.1814,−20 1.1996,−20 1.1996,−20 1.1997,−20
4 5.3208,−21 5.2902,−21 5.2920,−21 5.2924,−21
5 2.6381,−21 2.5804,−21 2.5868,−21 2.5865,−21
7.5 6.1790,−22 5.9362,−22 5.9629,−22 5.9618,−22
10 1.9430,−22 1.8643,−22 1.8700,−22 1.8703,−22
15 3.2557,−23 3.1644,−23 3.1576,−23 3.1589,−23
20 8.3412,−24 8.2298,−24 8.1889,−24 8.1904,−24
30 1.0991,−24 1.1120,−24 1.1043,−24 1.1038,−24
40 2.4545,−25 2.5300,−25 2.5110,−25 2.5094,−25
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the BCIS method includes no correlation effects. To investi-
gate these latter effects, the correlated wave functions (e.g.
within the representation of configuration interactions) would
be appropriate. However, this is outside of the scope of the
present study, as it would necessitate a considerably more
involved four-body version of the BCIS method for multi-
electron targets.

Special attention has been paid to convergence during
numerical integrations. In table 4, as an illustration, the results
for the total cross sections for the H++O collisions are
shown at four impact energies for different sets of the quad-
rature order NGL associated with some 8–400 integration
points per each integration axis (NGL denotes the number of
integration points of Gauss-Legendre quadrature). As expec-
ted, at lower impact energies fewer integration points are
required to achieve good convergence. At the highest impact
energies (40 MeV), cross sections as a function of NGL are
seen in table 4 to slightly oscillate. This occurs because with a
large increase in the incident velocity v, the Sommerfeld
parameter n = ZT T

eff v becomes very small and this causes

rapid oscillations of the function t t t= -n n- -f 1i i1T T( ) ( )
from the integral representation of the hypergeometric func-
tion within the integral (22).

Note that, as usual, in the eikonal approximation adopted
in the present work, all the computed cross sections should be
given only with two decimal places. Tables 3 and 4 are an
exception with four decimals that are quoted merely to
monitor the convergence pattern with the increasing value
of NGL.

4. Conclusions

Using the three-body boundary-corrected continuum inter-
mediate state method, BCIS, we have investigated single
electron capture from multi-electron atomic targets (lithium,
carbon, nitrogen, oxygen and neon) colliding with fast pro-
tons and alpha projectiles. Within the independent particle
model, the initial ground state of the captured electron is
described by five analytical wave functions: the Roothan-
Hartree-Fock, RHF, the single- and double-zeta and the
hydrogen-like. Each wave function is used with its corresp-
onding binding orbital energies of the active target electron.
The captured electron is described in an asymmetric manner
in the entrance and exit channels. Namely, the presently
applied prior form of the BCIS method is a hybrid formalism,
which is the combination of the continuum distorted wave
method, CDW, in the exit channel and the boundary-cor-
rected first Born method, CB1, in the entrance channel. The
associated initial perturbation potential (the entrance channel)
in the prior form of the transition amplitude coincides with the
corresponding interaction encountered in the CB1 method.

The prior version of the BCIS method includes the
continuum intermediate states of the captured electron in the
exit channel through the use of the full Coulomb wave
function centered on the screened target nucleus charge.
There is no explicit purely electronic -s


dependent Coulomb

modifying factor in the entrance channel in the prior BCIS
method. Such a factor (a Coulomb logarithmic phase) is
included only asymptotically via its -R


dependence in the

overall compound aggregate-aggregate modifying term of the
initial unperturbed state. Special attention is presently paid to
the lithium target for which the cross sections are computed
separately for single electron capture from the tightly bound
K-shell and also from the loosely bound valence electron in
the L-shell. For the other targets, the K-shell capture cross
sections alone are reported. Detailed comparisons of the
obtained results in the BCIS method with the available
experimental data are made and overall good agreement is
systematically recorded, particularly with the RHF wave
functions.

The sensitivity of the computed total cross sections is
thoroughly tested with respect to the mentioned five different
target wave functions. The outcome is appealing: the total
cross sections in the BCIS method are practically the same for
four wave functions, the two analytical forms of the RHF
functions and the two zeta functions. These results are also

Table 4. The present total cross sections (in cm2) in the prior version
of the BCIS method for electron capture from the target K-shell for
the H++O collisions as a function of the number of integration
points used per each axis of the numerical quadrature for different
incident proton energies. The initial ground-state (K-shell) of an
oxygen atom is described by the RHF1 [56]. The first column
denoted by NGL represents the number of integration points of the
Gauss-Legendre quadrature. The notation e.g. 8.8902,−27 means
8.8902× -10 27.

NGL 300 keV 2000 keV 10 000 keV 40 000 keV

8 9.3494,−19 2.2015,−21 3.2019,−24 8.8902,−27
16 7.0508,−20 2.1625,−21 4.6702,−24 3.1019,−27
24 5.1647,−20 1.8212,−21 5.4976,−24 3.7035,−27
32 2.9848,−20 1.8957,−21 3.7785,−24 4.2000,−27
40 1.7645,−20 1.9068,−21 3.5385,−24 4.9320,−27
48 1.3011,−20 1.9000,−21 3.9826,−24 6.3040,−27
64 1.2722,−20 1.8974,−21 4.1716,−24 2.7268,−27
80 1.4628,−20 1.8969,−21 4.0251,−24 3.0885,−27
96 1.5871,−20 1.8970,−21 4.0985,−24 3.8573,−27
112 1.6385,−20 1.8972,−21 4.0664,−24 4.1701,−27
128 1.6473,−20 1.8975,−21 4.0783,−24 3.1924,−27
144 1.6368,−20 1.8977,−21 4.0741,−24 3.2460,−27
160 1.6198,−20 1.8979,−21 4.0753,−24 3.6415,−27
176 1.6026,−20 1.8980,−21 4.0749,−24 3.7203,−27
192 1.5879,−20 1.8982,−21 4.0749,−24 3.4081,−27
208 1.5764,−20 1.8983,−21 4.0749,−24 3.3761,−27
224 1.5679,−20 1.8983,−21 4.0749,−24 3.5406,−27
240 1.5622,−20 1.8984,−21 4.0748,−24 3.5790,−27
256 1.5586,−20 1.8985,−21 4.0748,−24 3.4707,−27
272 1.5566,−20 1.8985,−21 4.0748,−24 3.4473,−27
288 1.5558,−20 1.8986,−21 4.0748,−24 3.5083,−27
304 1.5559,−20 1.8986,−21 4.0748,−24 3.5267,−27
320 1.5565,−20 1.8986,−21 4.0748,−24 3.4888,−27
336 1.5575,−20 1.8986,−21 4.0748,−24 3.4771,−27
352 1.5587,−20 1.8987,−21 4.0748,−24 3.4991,−27
368 1.5601,−20 1.8987,−21 4.0748,−24 3.5071,−27
384 1.5615,−20 1.8987,−21 4.0748,−24 3.4938,−27
400 1.5628,−20 1.8987,−21 4.0748,−24 3.4887,−27
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similar to those from the hydrogen-like wave functions but
only at sufficiently high impact energies with notable dis-
crepancies occurring at intermediate energies. This latter
discrepancy could, in principle, be due to different forms of
the wave functions or to different binding energies (or both).
To separate these two origins of the discrepancy, we per-
formed a numerical experiment with a hybrid model (the RHF
model plus the hydrogenic model). Namely, we used the form
of the RHF wave function (with its expansions coefficients for
the constituent Slater-type orbitals and the pertinent expo-
nential damping factors), but with the binding energy of the
hydrogen-like wave function (the latter energy is employed in
the target nuclear effective charge). The resulting cross
sections of this hybrid model are remarkable since they are
nearly coincident with those of the purely hydrogen-like
model. This clearly shows that the form of the target wave
functions is not essential and that the principal origin of
having different total cross sections in the RHF and hydro-
genic models is due to the use of different target binding
energies.

From the present results, it can be concluded that at
intermediate and high impact energies, the BCIS method,
implemented with the target ground-state RHF wave func-
tions, is reliable in predicting a vast variety of the examined
cross sections for single electron capture from multi-electron
atomic targets by bare nuclei.
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Appendix
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