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Abstract

®
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This paper aims at investigating periodic wave solutions for the (24 1)-dimensional KP-BBM
equation, from its bilinear form, obtained using the Hirota operator. Two major cases were
studied from two different ansatzes. The 3D, 2D and density representation illustrating some
cases of solutions obtained have been represented from a selection of the appropriate parameters.
The modulation instability is employed to discuss the stability of got solutions. That will be
extensively used to report many attractive physical phenomena in the fields of acoustics, heat

transfer, fluid dynamics, classical mechanics and so on.
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1. Introduction

Nonlinear phenomena play a very important role in the fields
of mathematics, chemistry, biology, and physics sciences.
These phenomena are for the most part modeled by nonlinear
mathematical equations. For instance, in nonlinearphysics,
physical mechanisms of natural phenomena in the field of
applied sciences and engineering, especially inplasma phy-
sics, elastic media, optical fibers, fluid dynamics, quantum
mechanics, chimerical physics, biotechnology,signal proces-
sing, solid state physics, shallow water wave theory, are
modeled by nonlinear partial differential equations(NLPDEs).
However, the quest for the exact explicit solutions of these
equations remains a hot topic. Moreover,looking for localized
solutions and more specifically the solitary wave solutions
[1-9], the lumps-type solutions [10-36], the interaction soli-
ton-soliton, soliton-kink and kink-kink [37, 38], the interac-
tions between solitary wave solutionsand lump solutions
[39—41], as well as the periodic wave solutions [42—44]
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remains a very interesting subject forresearchers. Several
mathematical methods are used in the search for these solu-
tions. For example, the Exp-function method [45, 46], the
Homotpy perturbation technique [47], the inverse scattering
method [48] and so on. For getting the lump solutions and
their interactions authors have conjugated sufficient time to
search the exact rationalsoliton solutions, for example, the
nonlinear evolution equations [14], the Kadomtsev-Petviash-
vili (KP) equation [15], the reduced pgKP and pgbKP
equations [17], the (2+1)-dimensional KdV equation [18], the
(241)-dimensionalSawada-Kotera equation [34], the (2+1)-
dimensional bSK equation [35, 36], the (2 + 1)-dimensional
generalized fifthorderKdV equation [37], the (2+1)-dimen-
sional Burger equation [38], the generalized (3+1)-dimen-
sional Shallowwater-like equation [40], and the B-Kadomtsev-
Petviashvili equation [46].Various types of work for finding the
periodic solitary wave solutions on the interaction between
lump and otherkinds of solitary, periodic and kink solitons for
the (2+41)-dimensional Breaking Soliton equation [19], lump
andinteraction between different types of those on the variable-
coefficient Kadomtsev-Petviashvili equation [20], and periodic

© 2020 IOP Publishing Ltd  Printed in the UK
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type and periodic cross-kink wave solutions [21], and the
(2+1)-dimensional extended Jimbo-Miwa equations [42] are
achieved through the Hirota bilinear operator. Baskonus and
co-authors constructed a family of wave solutions for some
of nonlinear equations such as doublydispersive equation
[22], the GilsonPickering model [23], a (2+1)-dimensional
coupling system with KdV equation [24], the Lonngren-
Wave equation [25], the Ablowitz-Kaup-Newell-Segur
equation [26], the Wu-Zhang system [27],the longitudinal
wave equation in a magneto-electro-elastic circular rod [28],
the generalized double combined Sinh-Cosh-Gordon
equation [29], the Sharma-Tasso-Olver equation [30], by
utilizing the extended sinh-Gordon equationexpansion
method, the modified exp(-p(())-expansion function method
and the improved Bernoulli sub-equation functionmethod.
In [31], Yukus and co-authors used the modified
exp(-p(Q))-expansion function method to constructingsome
new analytical solutions with novel structure such as the
trigonometric and hyperbolic function solutions. Shafiq,
Rashidi, Hammouch and Khan [32] investigated the mixed
convective stagnation point flow of Williamson liquid overa
vertical stretched plate and convergent solutions for the
temperature and velocity were constructed and analyzed.The
bilinear method was employed to investigate the rogue wave
solutions and the rogue type multiple lump wavesolutions of
the (241)-dimensional Benjamin-Ono equation by Zhao,
He, and Gao [33].

The aim of this study is to construct the invariant solu-
tions of the (241)-dimensional Kadomtsev—Petviashvili—
Benjamin—Bona—Mahony (KP-BBM) equation of the form

(1.1

where «, 0 and -y the arbitrary constants. Equation (1.1) is
formulated using the Kadomtsev—Petviashviii (KP) equation
in which reads as [15]

(”t + 6uux + um)x — Uy = 0,

Uy + Up + a(uz)m + Bty + Tyy = 0,

(1.2)

and also derived from the standard BBM equation [49] with
below form

(1.3)

u; + Uy + Uy — Uy = 0.

For equation (1.2), Ma [15] obtained the lump solutions by
using the following transformation

u = 2(Inf)x,

and also Manakov et al [50] acquired subclass of the lump
solutions in which involving two free parameters. Besides,
Zhao and Ma [51] used the Hirota bilinear form of the KP
equation and gained twelve classes of the lump-kinksolutions.
Sufficient literature for KP-BBM equation (1.1) is provided
here notably Wazwaz [52] constructed the newcompact and
noncompact of the KP-BBM and the ZK-BBM equations
with the aid of extended tanh method in whichconstitutes the
analytical method containing the expansion of tanh series.
Saut and Tzvetkov [53] obtained localizedsolitary solutions
via global well-posedness structures from the conservation

(1.4)

law and generated some soliton solutionsdepending upon the
appropriate choice of the arbitrary functions. Continuing,
Alam and Akbar [54] proposed thegeneralized (G’/G)-
expansion method of Riccati equation and used it to establish
the soliton-like solutions with theaid of symbolic computa-
tion. Later on, Tang et al [55] employed bifurcations of the
travelling wave solutions to theKP-BBM equation and
obtained the exact solutions. Some the exact lump solution,
lump-kink solutions, lum-solitonsolutions, and breather-wave
solutions were examined in [56] by means of symbolic
computation and the Hirota bilinearmethod. As remarkable
work, the Landau-Lifshitz-Gilbert equation had been con-
sidered to study the propagationand interaction of magnetic
solitons in a ferromagnetic thin film with the interfacial
Dzyaloshinskii-Moriya interactio [57] and found the analy-
tical forms for magnetic breathers and the first- to third-order
rogue wave solutions [58]. Likewise, Deng and coauthors
[59] studied the interaction phenomenon between the lump
waves and stripe solitons tothe (2+1)-dimensional Caudrey-
Dodd-Gibbon-Kotera-Sawada equation by making use of the
Hirota bilinear method. In [60], Dai and co-authors proved the
existence of multi-wave solutions and obtianed three-wave
solution, periodictwo-solitary-wave solutions, for the (142)-
D Kadomtsev-Petviashvili equation via the extended three-
soliton method.

Consider the Bell polynomial of Kadomtsev—Petviash-
vili-Benjamin—-Bona—Mahony equation as follows

Pxp_eMU) = Uy + Uy + a(uz)xx + B + Ty = 0.
(1.5)

Let the Hirota derivatives in terms of the functions fand g can
be written as

3 P 3 (8 ) )5,- )
||D*f g = || _— - — !
i=1 ifg =1\ 9 ;' 080

l

. (1.6)

=)

where the vectors j = (4, 1, 3) = (G Y, 1), ) = (1. 72, 7/3) =
&', ¥, t') and (31, B,, B3 are the arbitrary nonnegative inte-
gers, and its corresponding bilinear formalism equals. It is
known that the KP-BBM equation possesses a Hirota bilinear
form:

Bkp-sem(f) = (DD; + D} + BD}D,
+9D] + aD; — 36D.D)f f
=2[(1 = 3B, — f. /)
+ 0+ — D+ Wy — )

Use the following transformation between the function f
and u:

u = 2(Inf)x. (1.8)
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Employing the Bell polynomial theories of soliton equations,
we achieve to the following relation as

IEBKPBBM(f)] .

= (1.9)

Pxp_pm(u) = [

Theorem 1.1. f solves (1.8) if and only if u = 2(Inf),,
demonstrate a solution to the KP-BBM equation (1.5)

(DD, + D; + 3D]D, + 4D} + aD;}

= 36D Dff =210 = 3B)(ff,, — . f)

+ (L + O — £ + 1y — )

+ B(foer — 3 few T S — fi Sl = 0.

Our purpose here is to discover the exact solutions of the
KP-BBM equation under consideration the Hirota bilinear

(1.10)

method for getting the novel periodic solutions in which can
be arisen with twenty one classes. Discussion about the
nonlinear KP-BBM equation and the Hirota bilinear method
are given. Also, the modulation instability of the KP-BBM
equation is offered. In the continuation, we will offer the
graphical illustrations of some solutions of the considered
model along with the obtained solutions. After that, we will
deal with the probe of solutions and we will finish by a
conclusion.

2. New periodic-waves solutions for KP-BBM
equation

Here, we will compose the periodic-waves solutions of
equation (1.1), next three waves hypothesis can be discovered
through employing the Hirota operator [47]. The solution can
be expressed in the below as:

f=aH + aH, + a3Hz + asH,, 2.1)
Hy = exp(1x + Ly + 1),

Hy = exp(—Qix — Qpy — O31),

H; = cos(Qx + Qsy + Qet),

H,; = cosh({7x + Qgy + Qot), 2.2)

Hs = sin(Q4x + st + Q6l),
Hg = sinh(;x + Qgy + Qot),

2
u= 2% In(f)
s a P H, + ay B Hy — asH3Q3 + asHy Q3
f
_9 (a3 H, — a W Hy — 26131‘1594 + asHe)? ’
f

(2.3)

where Q;, i =1, ...,9a;,j = 1, ..., 4, are free parameters in
which are to find later. Plugging (2.3) into equation (1.10)
and then collecting the coefficients, we get to the following
results:

(W0 6w M2+ w O+ 400 — 30 — 400 +302 =0

W 6w NP+ w40 +30F 4% +303=0

2w — 2w WU + 2 WU — 300 + 2% =0,

2w B +2w NP — 20 + 3% — 2% =0

W — 6w +w Q) —4UG+3W 44U 3% =0

2w B — 2w — 200 + 3 MW — 2% =0

16wt ajay + 4wQia? + 4wQia} — 160 a1as + 12Q3a1a: + 40 Qeai — 30%a} — 40Q0ai + 3Q%ai = 0.

2.4)
Solving the equations we get:
Case I:
w=2 alQfHy + ayHyQ3 5 (a4 H, + asHe$r)?
f f?
S =aiH + asH,, (2.5)
7B AGaB-a+35-1 3O (a+l)
leeﬂ'H R Tapai-ase,
-3 Q-3 1
Hy - cosh V3G -36+ 1)
33
3QZ(a + 1) n 2.6)
4601 —365+1
Also, the existence condition of the solution is that
BB -3+ 1) <0,
ByB8apf—-—a+38-1)<0,
4ﬂ§212—3ﬁ+1¢0.
Case II:
W = 2 —a3HgQi + a4H4Q%
f
_ 2
-2 ( a3HSQ4f—Z d4Ho(ly) , f=a3H3 + asHa,
2.7
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3(a + 1)

= [\/

V(B Wai — 4 BDai —3 a3 +35ai +ai —ai)

as Q%y]a

(aa32 — oza42 + a32 — a42)Q7

H, = cosh [Q7x -
g 97‘1%

Also, the existence condition of the solution is that

v(B 9703 4597‘14 35‘132
+3ﬂa4 +a3 fa4)ﬂ(oz+1)<0.

Case III:
H, 03 2
uy =2 & ; T2 (04};6297) , f=a3H3 + asHy, (2.8)

m:w{W%@aﬁ—a+3ﬁ—U
By

H4=cosh( V6B 6~ 1)x+ aaf—aaf—&—afz— ai ]
g VBB B = Da;

Also, the existence condition of the solution is that
BvBaf—-—a+38—-1)>0, BBA-1)>0.

Case IV:

Yy + Qel}

w =2 aiH — a:H: 5 (@uH — a3 Hs Q)
b 12
f=aH + azHs,
(2.9)
Qg PRI 3t
H=¢e CE T 4s0i-38+1
V3BBQ -38+1)
H3 X

36

ﬁﬁ@ﬂz—wuwxa+n
BABQ —38+1)

Moreover, the existence condition of the solution is that

BB 38+ 1) >0,
ByBaB—-—a+35-1)<0.

Case V:
2 2
us =2 aiHlal; 2 (@4Hs ) , = a3H3z + a4Hy,
f f?

(2.10)

4 /B Q7a4

tl.
36a§+36a3+a§a3]

H; = cos (1),

H, = cosh[i‘ﬂggl)x

Jﬂv@aﬂ—a+3ﬁ—n
B

Moreover, the existence condition of the solution is that

BBB-1)>0, ByBaB—-a+33—1)<0.

Case VI:

) al QT Hy + ax O Hy — asH QG + as 3
f

) (a4 Hy — a4 Hy — azHs )?
f2

U5 =

, (2.11)

f=aH + ayH, + azHz + ay,

Q(a+1)

H = Q'xidntz 1
e
JBGA-1
I—I3 = COS M.}C
B
L ABrBaf-at35-D

By

L@+ DY-BGI-TD |
s —3p+n S

Moreover, the existence condition of the solution is that

6B3B8—-1)<0, fyBaf—-—a+33-1)>0.
Case VII:
w = ) alleHl + szlez + a4H4Q%
f
) (iS4 H, — azﬂ}ifz + a4HéQ7)2’ 2.12)
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38a2 —38a}—a} +af Moreover, the existence condition of the solution is that
T 4eB2 38+ Day
+ ar)H, + azHsy + asHy, 6(35 -1 >0,
- |36 50F+60F-3a pta-35+1) a4, A3 /6’ le -9 ﬂ +3)(3 ﬂ -1 <0,

H=¢" EERY TR 02 _ 3 DO =0

3875 03+6 930 5+a=35+1)  2(a+1) (ﬂ 1 6 + D&y = 0.
H, = o 334 Y3gq,

/B33 —1 Case IX:
H, = cosh (%x}

By

2 JByGaf—a+38- D\ —387(B + B —3aB+ a — 33+ 1) t
3 B (B2 - 36 + DY '

b COS(Jm(aa,@ —a+33-D

Moreover, the existence condition of the solution is that

QBN — 38+ Day =0, (ng ¥ ayHy + a4H4)Q%
BryBaf—-a+33-1)>0, wp=2-— 7
BB +8% -3af+a—-38+1) <0. i )
(%QlHl — a,\WHy + a4H6QI)
Case VIII: -2 f2 ’
2
g — 2 a0 Hy + ayHy Q) f= %HI + axHy + agHy, (2.14)
f 2
5 (—ax0H, + asHeSY)? . - L
’ 4809909+2 a QF -3 8 Q1Q9+2 5 f28+2§ll+ﬁllﬂg
12 H — Qux+Qgy———1 YTy t
=€ 145073 3+1) s
f=ayH, — ayHs + asHy, (2.13) O ey tP 29+2 0 023 5 Q1 09+2 7 F+2 07+
H, = e 1Sy WEBR 35+ Y
7QIX+,/7<3;3511279;3+3)(3¢3f1)<L\+1) 2a+tl,
H,=c¢ 3JBvB a f—a+3-1) 38N, H4 — COSh(le + ng + le‘),
Hg = sinh(Q1x + Qgy + Qot),
JBrGaB-a+38-1) QA BW -33+1)=0.
H; = cos 7y y
Case X:
2V-GA2 -95+ 3B - D+ ) i X X
3 3 Q% "33+ hog > o = 2 a, Q1 Hy — azH3$Yy + agHy Q)3
f
Hy = cosh Mx . _2 (—aleHz — 613HSQ4 + (14HGQ7)2
B £2 ’
f=a H, + azH; + a4Hy, (2.15)
Q6 aBOF+A70F+6 39360 F+20-6F+2) —36 B2 (a+1)2 4+ 5+ 5+ 53454
o —ux— 3087 3 24 Y- 2022 / ’ 2 2 4
H,=e 186(4 B Qi =3 B+ 1)y BB B -3 f+1) |
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(2)

—100

10 20 30
t

Figure 1. Diagram of periodic-waves (2.5) using values a; = .5, a, =1, Q; =15, a=1,3=2,v= —1,y = —4, and (a) 3D plot, (b)
density plot, and (c) 2D plot with (red x = —10, blue x = 0, and green x = 10).

-

20

Figure 2. Diagram of periodic-waves (2.8) using values a3 =2.5,a,=1,Q;, =13, a=-2,8=1,y7= 1,y = —4, and (a) 3D plot,
(b) density plot, and (c) 2D plot with (red x = —2, blue x = 0, and green x = 2).

S=-606@+1)
x (11 By —12aB+4a— 123+ 4),
Sy =y UNRLQR6[Y R+ 147a 8 — 49 a + 147 B),

5= —01(36 23> + 49 3y QF — 24?8
+72aB*+40? —48aB+363>+8a — 246+ 4),
Ea=-97RBB-DHBy K +3af-—a+35-1),

=BG 3641 0
B 97
(30807 + By — 3807 +3aB — a + 38— b,
3JBBAY — 38+ 1) (482 — 38+ 1)

H; = cos

k]

J—ﬂ(3ﬂﬂ%—3ﬁ+1)x
3

H, = cosh + Qgy

—3af07 + By — 360 + 306 — o + 38 — |
3J-BGAY — 36+ 1)} — 38+ 1)

Case XI:

a QT Hy + agHy Q3

_|_

1111:2
f
_ 5 @Sk + asHeSl)?
I? ’
50280 +33 - DALY =38+ 1
ey N3O0 30 DERAE 35+ D)
2808 + 33— 1
+ asHy,

(2.16)
H2 _ eQ]erszJrQ;t’
H; = cos(Qsy + Qgt),
Hy = cosh(Cyx + Qgy + Qot),
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(@

ut

1o a

Figure 3. Diagram of periodic-waves (2.8) using values az = 1.1,a, = 1,0, =13, a = —-1,0= - 2,7v= —1,y = —4, and (a) 3D plot,
(b) density plot, and (c) 2D plot with (red x = —1.3, blue x = 0, and green x = 1.3).

@ (©

20 40 60
t

Figure 4. Diagram of periodic-waves (2.9) using values a; = 0.5,a3; =1, Q; =15, a=-2,8=2,7= 1,y = —4, and (a) 3D plot,
(b) density plot, and (c) 2D plot with (red x = —1, blue x = 0, and green x = 1).

(@

> —

TSI D e —

.
—— 4

Figure 5. Diagram of periodic-waves (2.10) using values a3 = 0.2y, a, =1, Qs = 1.5, a = =2, =2, vy= 1,y = —4, and (a) 3D plot,
(b) density plot, and (c) 2D plot with (red x = —1, blue x = 0, and green x = 1).

(BB + 3520 — 1208%Q7 + 40827 — 12 B2Q7 + 908 + 48 — 608+ 952 + a — 65+ DYy

0, = -
687 — 38+ 1)By (s

b
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(a)

©

H 3
Figure 6. Diagram of periodic-waves (2.11) using values a, = 0.5,a3 = 1.5,a, = 1,Q; =15, a= 1,8 = %, v=—1,y = —4, and (a) 3D
plot, (b) density plot, and (c) 2D plot with (red x = —1, blue x = 0, and green x = 1).

-80

-100+

-120-

Figure 7. Diagram of periodic-waves (2.12) using values a, = 0.5,a3 = 1.5,a, =1,Q;, = 1.5,a = -2, = %, v=1,y= —4,and (a) 3D
plot, (b) density plot, and (c) 2D plot with (red x = —1, blue x = 0, and green x = 1).

(a)

Figure 8. Diagram of periodic-waves (2.13) using values a = 0.5,a4, = 1.4,Q; = 1.5, a = - 2,6=2,v= —1,y = —4, and (a) 3D plot,
(b) density plot, and (c) 2D plot with (red x = —1, blue x = 0, and green x = 1).
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Figure 9. The dispersion relation between frequency W(M, N) and wave number M under the various values « = 1, 3 =2,v=3, g = 1.
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10001 201
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-3000-
-4000- 601
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[=——N=1 =—— N=5 —— N=10] [=——N=0.1 == N=0.5 —— N=1]

Figure 10. The dispersion relation between frequency W(M, N) and wave number M under the various values (left) « = =3, =1, vy =3,
g=1@igh) a=1,=2,v=-3,g=1.
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Figure 11. The dispersion relation between frequency W(M, N) and wave number M under the various values (left) a« = —1, 8 = 2,y = -3,

g=—1(@ighy a =1,3=02,7v=-3,¢g=—1.
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_ 2a+ DB 364+ 1)
3B(IB —38+1)
Ei(a + DYy

_-BGAR 38+ D)

97
B
N V2873 +380 —3a8+a — 38+ 1)
8: b
By
Qy — 3a69f+3ﬁﬂf—3aﬂ+a—3ﬁ+l‘

3004680 —338+1)

_ Js Y768 — 36+ DBaBY + 369 — 308+ a — 38+ DHY

Y(189F =38+ 1)

_23am% +360F —3af+a—36+1

B8 — 38+ 1)

=[] = %\/—1862(2? 902 1 3502 + 2757 — 186 + 3.

Qs = 5 ,
(7897 — 38+ )
_ Sia + 1)
QBB — 38+ 1)
o, \=BGB% -3+ 1
/8 9
Qg
Qo=
Case XII:
2 2 2
a2Q1H2 — a3H3Q4 + a4H4Q7
Up = 2
f
5 (—arxQ4Hr — asHsQy + asHey)?
f? ’

f=axH, + a3H; + a4Hy, (2.17)

H2 — eﬂlier}'JrQ;t,
H; = cos(x + st + Qet),
Hy = cosh($x + Qgy + Qot),

:in(3aﬁQ,2+3ﬁle—3aﬁ+a—3ﬁ+ 1)
3 97%19726; |

0 (28390 — 27 B+ 9(a + 1)

180,480 — 33+ 1)

9

_ JBGBAY - 38+ 1)

We obtained forty sets of solutions as mentioned above,
we neglect to bring those category of solutions. The three-
dimensional dynamic graphs of the wave and corresponding
density plots, and two-dimensional plots were successfully
depicted in figures 1-8 with the help of the Maple. We can see
that the exponential function, the cosine function, and the
hyperbolic cosine function react with each other and move
forward. Due to analyze the dynamics properties briefly, we
would like to discuss the evolution characteristic. By selecting
the suitable values of parameters, the analytical treatment of
periodic wave solution is presented in 1 and 3 including 3D
plot, density plot, and 2D plot, when three spaces arise at spaces
x = —10,x =0, and x = 10. In 1, in origin two lines interact
together. But in 3, the periodic wave only move in the direction
of the negative #-axis to positive f-axis in the (x, f)-plane. And
also, by choosing the given values for 1 and 3, respectively

a) = 05, ag = 1,

QI—I.S,Q—I,
8=2, vy=—-1, y=—4,
a3—1.1, as = 1,

(2.18)

£ 3 it is worth mentioning that this periodic wave solutions have the
) N following features as
30.0@8% — 36+ 1) ’ o 2B =E RIS
Q. — ) aB*Qt + 9 3207 — 18a5%0] + 6080 — 1832QF + 9aB% + 6 B0 — 6aB + 93> +a — 63+ 1
5 = b

Y3208
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By increasing x and 7 to large sufficient value, then the value of
u(x, t) will vanish. By considering az = 2.5, a, = 1, {}; = 1.3,
a=—2,0=1,v=1,y = — 4, the solution u,(x, y, f) given
by (2.8) expresses the move two parallel (x, f)-periodic
breathers as line x =+¢ By plugging a; =0.5, a3 =1,
Q=15 a=-2,8=2,y=1,y=—4,in 4, we can see
that in origin two lines interact together. In 5, the x-periodic
breather is presented. In 6 b, by inserting a, =05,a;3 =15,
az=1,Q =15, a=1, 6—4, y=—-1,y=—4,
lump solutions there are in direction of (x,f)-periodic breathers.
Finally in 7 and 8 the periodic breather move in directions of (x,
f)-periodic breathers and #-periodic breathers, respectively.

two

3. Stability analysis of KP-BBM equation

In this section, the concept of linear stability analysis will be
applied to study the stability analysis for the giving
equation (1.5). The perturbed solution of the KP-BBM
equation given by

ux,y,t) =q+ AU, y, 1), 3.1

in above the relation constant g is a steady state solution of
equation (3.1). Substituting (3.1) into equation, one can obtain

2
2(%U(x, v, t))U(x, ¥, Ha A
a 2 82
+ Z(aU(x, v, t)) a X+ 2(@[]()@ Y, t))a q

il

+

94
Ux,y,t
Ox30t oy ))ﬁ
92
WU()C v, t) +

2

0x0

U(x, v, 1)
2

— (3.2)

by linerization equation (3.2), we get

Jora

Ux,y, t))ﬂ

2

0
2(@(](}(} y, t)

i

+

4

0
Ox30t
2

0
WU(X y, t) +

2

0x0

U(x, v, 1)

P Uy —o.

o (3.3)

Theorem 3.1. Presume that the solution of equation (3.3) has
the bellow form

i(Mx+Ny+Wr)
9’

Uk, y,z,t) =p, € (3.4)

where M, N is the normalized wave numbers, by inserting
(3.4) into equation (3.3), then by solving for W, we can get

11

the following relation
2M?*a q + N2y + M?

MO = s —

3.5)

Proof. By substituting the relation (3.4) in the linear PDE

(3.3), we get
4
Joa |

63 Ulx,y, t))ﬁ
t

2
2(6—2U<x, )

19) 0x°0
0? 0?
+ Ulx,y, 1+ Ux, y, 1
Vaz(xy o ) 82(xy)
— el(MerNerWt)p1
x (MPWB — 2 M?a g — N>y — M?> — MW) = 0.
(3.6)

By solving and simplifying we can find the value of W(M, N,
P) as form

2M?a g + N>y + M?

WML N, P) = =

(3.7)

Therefore, we get to the required solution. Then the proof of
the theorem is complete. O

The relations for the propagation in equation (3.5) is
investigated. The sign of W(M, N) proposes either the solution
will become larger or decay in a given period of time. When
the sign of W(M, N) is negative for all value of M, then any
superposition of solutions of the form e!™*+M+W) will come
to decay and the steady state is stable. In other hand, if the W
(M, N) is positive for some values of M, then with time some
components of a superposition will become bigger rapidly,
the steady state is unstable. If the maximum W(M, N) of the is
exactly O, the dispersion is called marginally stable.

4. Conclusion

In this paper, the periodic wave solutions of the KP-BBM
equation have been constructed. From the bilinear form of
this equation, two test functions or ansatzes have been cho-
sen. At first, we chose the ansatz as a combination of the
exponential, cosine and hyperbolic cosine functions. The 3D,
2D, and density graphs illustrating some solutions were
represented, showing different periodic waveforms As a
consequence, some new solutions, which include the new
multi wave, breather wave, periodic, cross-kink wave solu-
tions were catched. Through of Maple, the evolution
phenomenon of these waves is seen in figures 1-11, respec-
tively. Mainly, by choosing specific parameter constraints all
cases the two-dimension, and three-dimension in solitons can
be captured from the multi wave and periodic wave solutions.
The obtained solutions are extended with numerical simula-
tion to analyze graphically, which results into multi wave,
breather wave, periodic, cross-kink wave solutions. More-
over, we studied the linear stability analysis of the KP-BBM
equation in the previous section. That will be extensively used



Phys. Scr. 95 (2020) 065203

J Manafian et al

to report many attractive physical phenomena in the fields of
acoustics, heat transfer, fluid dynamics, classical mechanics
and so on.
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