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Abstract
First principles calculations of structural and magnetic properties of the Fe2MnGa Heusler alloy
with face-centered cubic, have been studied using a full potential linearized augmented plane
wave within the density-functional theory. Partial and total magnetic moments of Fe, Mn and Ga
have been determined as well the bulk modulus using the generalized gradient approximation
proposed by Wu and Cohen. Ferromagnetic interactions between next-nearest neighbors, (Fe-Fe,
Mn-Mn; JFe-Fe>0 and JMn-Mn>0) in addition to the ferrimagnetic Fe-Mn (JFe-Mn<0) within
FMG Heusler alloy are considered. Fe2MnGa exhibits spin compensation temperatures and a
first-order reentrant behavior. The studied system undergoes a first-order phase transition
between an ordered ferrimagnetic to a paramagnetic. Transition TC, compensation TComp and
first order phase transition, Tt points have been determined using Monte Carlo simulation; they
are around 750, 400, 684 K, respectively. Magnetic hysteresis cycle has been found for different
temperatures; it has been 190, 210 and 230 K.

Keywords: Fe2MnGa heusler alloy, DFT, monte carlo simulation, first-order reentrant behavior
and magnetic hysteresis cycle
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1. Introduction

Heusler materials are used in the electronics industry and in
various current technical applications such as sensors,
actuators, as spintronic materials, ferromagnetic shape mem-
ory alloy, energy conversion, etc [1–5]. Several materials with
Heusler type structure present a half-metal features [6, 7].
Electronic structure and magnetic properties of different
heuslers materials are investigated by [8]. In other hand,
theoretically [9] and experimentally [10, 11], show that the
L12-type structure is the stable configuration with group
space Pm3m. It has been shown that, unlike most Heusler
stoichiometric alloys, bulk Fe2MnGa crystallizes in the

face-centered cubic lattice of the L12 (Cu3Au) type with a
transition temperature of 800 K [9].

The magnetic moment of Fe2MnGa is 2 μB (μB is Bohr
magneton) [12, 13] and it is interesting to look for its
magnetic properties at low temperature and to compare them
with the theoretical results. In previous works, the magnetic
and electronic properties of Ni2MnGa [14] and Mn2NiAl
[15, 16] compounds, have been investigated. The physical
properties of Zr2MnIn and Zr2MnGa are studied using density
functional theory (DFT) based first principle calculations
[17, 18]. In recent work [19], ground state total energy
calculations confirms the structural stability of anti-
ferromagnetic phase of Zr2MnAl over ferromagnetic phase.
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In the present work, the electronic and magnetic prop-
erties of Fe2MnGa heusler have been investigated using full
potential-linearized augmented plane wave (FP-LAPW)
method and Monte Carlo simulation.

The paper is organized as follows: sections 2, 3 and 4
describe the calculations method, the adopted model and
Monte Carlo simulations respectively. 5 presents the results
and discussion and conclusion is given in section 6.

2. Ab initio calculations

The FP-LAPW method [20] performing DFT calculations
was used to calculate the structural and magnetic properties of
Fe2MnGa Heusler alloy using the local density approx-
imation. FP-LAPW method is used to evaluate the Kohn–
Sham equation and energy functional. The space was divided
into interstitial and non-overlapping muffin mold spheres
centered on the atomic site. The basic function used within
each atomic sphere was considered as a linear expansion of
the radial solution of a spherical potential multiplied by
spherical harmonics. The wave function was taken as an
expansion of the plane waves and no potential shape
approximation was introduced in the interstitial region, which
is consistent with the full potential method. The muffin-tin
radii RMT were assumed to be 1.98, 1.85 and 2 a.u for Fe,
Mn and Ga, respectively. The plane wave cut off of

Kmax =8.0/RMT (RMT is the smallest muffin-tin radius) is
chosen for the expansion of the wave functions in the inter-
stitial region, while the charge density was Fourier expanded
up to Gmax =12 (Ryd)

1/2. The number of special k points in
the irreducible Brillouin zone is 104. To ensure proper
convergence of the self-consistency calculation, the calculated
total energy of the crystal converged to less than 0.1 mRy.
The results of crystalline structure parameters for e Fe2MnGa
Heusler of interest are compared with the available exper-
imental and theoretical predictions in table 1.

3. Model and monte carlo simulation

The Hamiltonian of Ising with external magnetic field h is
given by:

å å= - -
á ñ

H J S S h S 1
i j

ij i j
i

i
,

( )

where á ñi j, stands for the first and second nearest neighbor
sites (i and j). Si(or Sj) spins moments and take the values
SFe=1 and SMn=3/2. The Jij is the exchange interactions
can take JFe-Fe, JFeMn and JMn-Mn as given in figure 1. The
values of exchange interactions and magnetic moments are
obtained by Ab-initio calculations and are given in table 1.

Table 1. Calculated lattice parameter, bulk modulus and values of exchanges interactions of Fe2MnGa Heusler.

Fe2MnGa Heusler a (Ǻ) B (GPa) JFe-Fe(K) JFe-Mn(K) JMn-Mn(K)

Our results 3.60 207.232 +63.2 −53.3 +69.3
Experimental 3.697 [4], 3.701 [8] — — — —

Theoretical 3.644 [21] — — — —

Figure 1. Fe2MnGa Heusler alloys.
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4. Monte carlo simulations

Monte Carlo is a computational method that uses random
sampling to characterize the system behavior. This metho-
dology is helpful when the system characteristics are
unknown or there is no practical solution through determi-
nistic methods [21]. The Fe2MnGa Heusler is assumed to
reside in the unit cell and the system consists of the total
number of spins N=2xNFe+NMn with NFe=4096 and
NMn=2048. The Monte Carlo simulations are applied to
model the Hamiltonian. In this section, the cyclic boundary

conditions is used on the lattice. The flips are accepted or
rejected according to a heat-bath algorithm under the standard
Metropolis approximation.

Internal energy per site E is,

= á ñE
N

H
1

2( )

The total magnetization of Fe2MnGa Heusler is given by:

å=M
N

S
1

3
i

i ( )

The total magnetic susceptibility of Fe2MnGa Heusler is
defined as:

c
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where b = ,1

k TB
kB denotes the Boltzmann constant which is

fixed at its unit value, in this work.

5. Results and discussion

Obtained data from Ab initio calculations are used as input for
the Monte Carlo simulations to compute other magnetic
parameters. The stability of the magnetic phase (Ferromag-
netic, FM and antiferromagnetic, AFM) of bulk face centered
cubic structure with space group Pm-3m (No. 123) for FMG
is studied in this section. The optimization of energy in both
magnetic configurations FM and AFM using first principal
calculations is illustrated in figure 2(a). It is evident that the
FM configuration has a low energy than AFM configuration
which indicates that the FM is more stable, which in good
agreement with the experimental results reported by [9]. On
the other hand, the experimental results indicated that the
Fe2MnGa heusle has a large curie temperature around 750 K
and that FM-to-AFM phase transformation occurred at room
temperature [4]. The calculated values of lattice parameter
and bulk modulus compared with other theoretical and
experimental values, are given in table 1 [4]. It is clear that the
obtained values for lattice parameter are underestimated then
experimental and theoretical results reported in the literature,
while no values for bulk modulus have been not reported in
the literature and thereby can be used as reference for future
studies.

The calculated values of total and local magnetic spin
moment of the face-centered-cubic ferromagnetic Fe2MnGa
Heusler are reported in table 2, while including some theor-
etical and experimental data from literature. The total spin
magnetic moments (Mtot) of the considered compounds,
which satisfies a Slater–Pauling type rule proposed by Gala-
nakis and Dederichs [8], for localized magnetic moment
systems Mtot=Zt−24, where Zt is the number of valence
electrons in the primitive cell. The obtained value of total

Figure 2. Energy optimization (a) and total and partial densities of
state (b) for Fe2MnGa Heusler.
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magnetic moment by GGA-08 is 5.82μB, whereas the
obtained value from Slater–Pauling is 2 μB. This difference is
due: in our case, we choose the spins are ferrommagnetic but
in Slater–Pauling type rule proposed by Galanakis they
choose the spins ferrimagnetic. Our value is near to that
obtained by experiment results 6.107 μB with face-centered
cubic lattice [9]. On the other hand, the values for local
magnetic moment of (Fe, Mn and Ga) are underestimated in
comparison to the theoretical [8] and overestimated than other
experimental values [4, 22]. In table 2, it can be noted that the
majority contribution in magnetic moment is given in the first

order from the Mn atom. Fe atom has the second contribution,
while the Ga atom has a very high low contribution. The total
and partial densities of states (DOS) of Fe2MnGa Heusler
spin directions are displayed in figure 2(b), where all energies
are relative to respective Fermi level. It can be seen that DOS
has a very small inhomogeneity between the up and down
spins and the s and p states of the Ga atom have a very small
contribution in the upper valence band. The bottom of the
valence band is occupied only by the state s of Ga included.
In the case of X2YZ Heusler, the state s-Z is generally located
in the lowest energy band of the state d of the transition metal
atoms (X and Y), which is important because they accept the
charges of transition metal atoms, thus effectively reducing d
electrons and resulting in the stability of the crystal structure
[9]. The main contribution of the resulting DOS comes
mainly from the 3d hybridization of Fe and Mn atoms. It is
clear that the Fermi level of this compound in the majority
spin configuration is almost entirely occupied by the 3d states
of the transition metal atoms, with the majority contribution
coming from the Fe state, so the strong 3d hybridization −3d
is presented in the Fermi Level, indicating that this material
has a metallic character in this direction and the Fermi level in

Table 2. Calculated of magnetic moment and spin polarization in Fermi level.

Fe2MnGa Heusler MFe (μB) MMn (μB) MGa (μB) Mtot (μB) P %

Our results (Ab initio calculations) 1.820 2.004 −0.02 5.82 0.089
Experiment [9] — — — 4.86 —

Theoretical [9] 1.97 2.292 −0.092 6.01 0.089

Figure 3. Temperature dependence of magnetization, M(T),
calculated in a magnetic field of h=0 T for Fe2MnGa Heusler
compound.

Figure 4. Temperature dependence of normalize magnetic suscept-
ibility,χ/χmax, calculated in a magnetic field of h=0 T for
Fe2MnGa Heusler compound.

Figure 5. Magnetic hysteresis cycle of Fe2MnGa Heusler compound
with different temperatures T=190, 210 and 230 K.

Table 3. The obtained values of hC, Mr a several temperatures
T=700, 720 and 750 K.

Temperatures T(K) 700 720 750

hC(T) 13.21 6.84 0.53
Mr(T) 0.56 0.53 0.02
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the minority spin configuration exhibited 3d-3d interaction, so
that the Fe2MnGa Heusler is a metal.

The thermal total magnetization is given in figure 3 for a
zero magnetic field. The nature of the magnetic phase transition
is of second order. The paramagnetic to ferrimagnetic phase
transition is observed at transition temperature TC=750 K.
The obtained value of TC is comparable with that given in
[9, 11]. In figure 3, the compensation temperature (i.e., tem-
peratures below the critical point for which the total magneti-
zation is zero while the individual system remain magnetically
ordered [22]) and first order phase transition (corresponds to a
transition temperature when the system toward from the
ordered phase to the disordered phase [23]), the points are
noted as TComp=400 K and Tt=684 K, respectively. It can
be observed the appearance of a reentrant phenomenon at
T=Tt, which is similar to that found in previous works
[24, 25]. The compensation temperature appears only due to
the different dependences on temperature of the two magnetic
atoms Fe and Mn with the magnetizations MFe and MMn and
does not exhibit any special singularity.

The peak of magnetic susceptibility is situated at the
compensation temperature and first order phase transition and
transition points corresponding to a transition temperature are
deduced from the temperature dependence of magnetization
such as given in figure 4. The values obtained are the same as
those found in figure 3.

The magnetic hysteresis cycle of Fe2MnGa Heusler is
shown in figure 5 for different temperatures value.

The values of coercivity, hC, and remanence, Mr, are
deduced for different temperatures value (see table 3).

In the previous works [26–28], the monotonic decrease
observed on coercivity and remanence generally corresponds to
the previously predicted dependencies observed experimentally
and may be due to the coexistence of blocked and unblocked
particles. The presence of superparmagnetism behavior due to
coexistence with thermal fluctuations and also with blocked
grains linked to a complex crystal structure of this system.

6. Conclusions

In this study, the magnetic moments carried by Fe, Mn and Ga
atoms in Fe2MnGa Heusler were computed using FP-LAPW
calculations and were revealed in accordance with the values
previously reported. A detailed study of the spin compensation
and reentrant phenomena of Fe2MnGa Heusler compound has
been performed. First order phase transition was revealed,
which is due to a reentrant phenomenon produced by the
sudden inversion of the magnetic moments, as manifested by
the total magnetization. First-order phase transition between an
ordered ferrimagnetic phase to a paramagnetic phase was evi-
denced around the transition temperature. The magnetic coer-
cive field and remanent magnetization were found to decrease
with the rise temperature. The superparamagnetic behavior was
found at first order phase transition point.
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