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and compute line-of-sight integrals with the numerically stable and fast FFTlog formalism.
We find that the relative size of lensing corrections depends on the respective redshift dis-
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signal-to-noise correlations. We point out that a full assessment and judgement of the im-
portance of these corrections requires the inclusion of lensing Jacobian terms on the galaxy
side. We identify these additional correction terms, but do not evaluate them due to their
large number. We argue that they could be potentially important and suggest that their size
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1 Introduction

Modeling of lensed observables relies on a number of assumptions. One of them, the Born
approximation, states that it is sufficiently accurate to simply integrate lensing deflections
along the line-of-sight instead of tracing them along the true photon geodesic. The list of
works that have studied the validity of the Born approximation with analytical and numerical
methods is long [2–9] and has led to the consensus that it is extremely accurate for model-
ing shear and convergence power spectra. Higher order corrections to Born approximation
change, for example, the expected CMB lensing convergence power spectrum only at the
sub-percent level.1 The success of the Born approximation is at first somewhat surprising
because its validity is not due to the deflections being small — which they are not necessarily
— but due to the fact that spatially uniform deflections have a large coherence scale. This
leads to an efficient cancellation between otherwise large correction terms.

1Terminology: what is commonly referred to as post Born corrections in the context of lensing observables
is usually referred to as lensing corrections for other observables.

– 1 –



J
C
A
P
0
3
(
2
0
2
0
)
0
4
5

Another intuitive phrasing for this finding was given by ref. [10]: the applicability of
the Born approximation is owed to the fact that it is used to model the statistics of the
deflection field and that the statistical properties of the lenses along the perturbed path
should not differ significantly from those along the unperturbed path.

The relative smallness of lensing corrections is not guaranteed for all observables: ref. [5]
found, for example, that post-Born corrections for the CMB lensing bispectrum can be of the
order of the signal itself and ref. [8] pointed out the importance of higher order corrections
for modeling the skewness and kurtosis of cosmic shear fields. Multiple deflection also source
a curl component in the lensing deflection field, which could be detected with future exper-
iments [11, 12]. Recently, [13] showed that lensing corrections are important for modeling
cross-bispectra.

In this work, we want to study the validity of the Born approximation for cross corre-
lations of lensing fields with other tracers of large scale structure. This is motivated by the
recent vast literature showing that such cross correlations could be an extremely useful probe
of neutrino masses, dark energy and other cosmological parameters [14–16]. Given the sub-
% measurements of cross-correlations that the next generation of cosmological surveys could
achieve, it is therefore important to quantitatively check to what extent the Born approxi-
mation, assumed in all these forecasts, could provide an accurate descriptions of the data.

In the remainder of this paper we want to investigate the magnitude of Post-Born
corrections to cross-correlations of lensing and galaxy fields, and how they depend on the
relative redshifts of the observed galaxies. Our results will apply to lensing maps obtained
from CMB data, galaxy shape catalogs or the intensity of the 21 cm line [17]. We are also
interested in relaxing the Limber approximation which assumes that only overlapping (in
redshift) lensing planes are correlated, and we will indeed show that these often dropped
terms are of the same magnitude as all the others.

We note that lensing is not the only higher-order correction to cross-correlations. A
complete and consistent treatment of the problem up to fourth order in the linear density
contrast, δlin, would require modeling the non-linear evolution of the matter density as well
as the non-linear connection between the galaxy density and the dark matter density. While
these corrections can be of the same order of magnitude or larger as the higher order lensing
corrections considered here, a full treatment of all of these effects is beyond the scope of
this paper. Instead, we choose to focus on the question to what extent the cancellation
found between higher-order lensing terms in the auto correlation can be recovered in cross
correlations. By doing so we will use the Gaussian field δlin as a small parameter and use a
linear bias model to model the matter-halo connection.

There has also been extensive work on higher order correction to the galaxy auto-
correlation function [18–20] and recently also line intensity mapping [21]. Ref. [22] studied
the impact of lensing corrections on the tSZ cross correlations and found them to be negligible.
While not the main scope of this paper, we also derive the expression for the auto power
spectrum of galaxy number counts and evaluate it for different redshift distributions.

This paper is organized as follows: we start by stating the leading order result and
introducing notations in section 2. In section 3, we give a schematic overview of the expected
terms and cancellation. This is followed by expressions for higher order lensing corrections
to both convergence and galaxy densities in section 4. In section 5 we start by listing all
higher order terms that appear in the cross correlation and turn to their evaluation with
and without Limber approximation in the subsequent subsections (sections 5.1 and 5.2). In
section 5.3, we list all terms that involve the lensing Jacobian and point out their possible
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importance. In section 6 we turn to derive and evaluate corrections on the (auto) correlation
between galaxy samples. We conclude in section 7. Details of the calculations can be found
in the appendices.

2 Leading order expressions

The leading order contribution to the observed two-dimensional galaxy density, g(θ), where
θ is the angular position on the sky, is given by

g(1)(θ) =

∫ χmax

0
dχ

[
dN

dz

dz

dχ

]
δg(θ, χ) =

∫ χmax

0
dχW g(χ) δg(θ, χ). (2.1)

We use the shorthand notation Wg(χ) for the normalized redshift-distribution of the galaxy
sample

Wg(χ) =
dN

dz

dz

dχ
, (2.2)

where χ denotes the comoving distance. By writing eq. (2.1) and all following expressions in
terms of the three-dimensional galaxy density, δg, we do not assume a specific bias model or
order in the bias expansion.

In terms of lensing obervables, we will be working with the lensing convergence, κ, which
is related to the lensing potential, φ, through the Poisson equation,

κ(θ) = −1

2
∇2φ(θ). (2.3)

At leading order the lensing potential is modeled as a line-of-sight integral over the Weyl
potential, Ψ,

φ(1)(θ, χ) = −2

∫ χ

0
dχ′Wκ(χ, χ′)Ψ(θ, χ′), (2.4)

weighted by the lensing efficiency

W
[
χ, p(χ′)

]
= 1/χ

∫ χmax

χ
dχ′ p

(
χ′
) (χ′ − χ)

χ′
, (2.5)

with the distribution function of the sources p(χ)dχ = p(z)dz. For a source plane at distance
χs, we have p(χ′) = δD(χ′ − χs), and eq. (2.5) simplifies to

Wκ(χ, χs) =
χs − χ
χχs

Θ(χs − χ), (2.6)

where Θ(·) denotes the Heaviside step function.

We further write the Poisson equation as

∇2Ψ(x, z) = A(1 + z)δm(x, z), (2.7)

with the Weyl potential, Ψ, and the redshift independent prefactor defined as

A =
3

2
Ωm0H

2
0 . (2.8)
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For notational brevity, we will make the 1/(1 + z) in the Poisson equation part of the lensing
efficiency, i.e. modify eq. (2.5) to

Wκ(χ, χs) = [1 + z(χ)]χ
(χs − χ)

χs
Θ(χs − χ). (2.9)

In the above equations and throughout this work we assume a flat Cosmology, i.e. ΩK = 0
and delta function source redshifts.

On small scales, where the lensing signal is sourced by matter fluctuation that are small
compared to the typical size of the lensing kernel, we can use the Poisson equation to express
the lensing convergence in terms of the matter density contrast, δm [23, 24],

κ(1)(θ) = A
∫ χs

0
dχWκ [χ, p(χs)] δm(θ, χ). (2.10)

We are going to use this approximation in section 5.1, where we also apply the Limber
approximation, because both approximations break down on similar scales. However, we are
not going to use this approximation to compute our final results in section 5.2.

3 General formalism

To derive corrections on the leading order results, we will work with the traditional lensing
expansion that assumes small deflections. Since the aforementioned insensitivity to large
coherent shifts is not reflected in this expansion, it appears in the calculation of two-point
correlations as a cancellation between higher order terms. To illustrate this cancellation we
schematically expand the convergence field κ(L),

κ (L) = κ(1)(L)︸ ︷︷ ︸
Born

+κ(2)(L)︸ ︷︷ ︸
O(d2)

+κ(3)(L)︸ ︷︷ ︸
O(d3)

+O
(
d4
)
, (3.1)

where κ(1) is the lensing convergence in the Born approximation and higher order corrections
are labeled by their power in the lensing deflection d = ∇φ (where we neglect curl modes), L
is the 2D harmonic wave vector on the sky and we define L = |L| as its modulus. Note that
we could replace κ in eq. (3.1) by any other lensed field such as the projected galaxy density,
g, emission line intensities, ∆, or the CMB temperature and polarization fields, T,E,B. For
these fields higher order terms would simply be referred to as lensing corrections. Post-Born
corrections can be viewed as lensing corrections to the lensing field itself.

The 2-point correlator in harmonic space for convergence auto-spectrum is

〈κ (L)κ
(
L′
)
〉 = 〈κ(1)(L)κ(1)(L′)〉︸ ︷︷ ︸

Born

+ 〈κ(2)(L)κ(1)(L′)〉︸ ︷︷ ︸
=0 (Limber/Gaussian)

+ 〈κ(1)(L)κ(2)(L′)〉︸ ︷︷ ︸
=0 (Limber/Gaussian)

+ 〈κ(1)(L)κ(3)(L′)〉+ 〈κ(3)(L)κ(1)(L′)〉+ 〈κ(2)(L)κ(2)(L′)〉︸ ︷︷ ︸
≈0

+O
(
d4
)
. (3.2)

Third order terms in eq. (3.2) are absent for a Gaussian deflection field and vanish under the
Limber approximation even for non-Gaussian fields (as we will show later). The smallness
of the remaining terms relies on the cancellation of the rather large (22) and (13) + (31)
contributions. This is analogous to, e.g., the cancellation of terms in modeling CMB lens-
ing. Similar cancellations can also be found in standard perturbation theory for large-scale
structure [25–27].
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Similarly, we can write the cross correlation between lensing convergence and projected
galaxy density, g, as

〈κ (L) g
(
L′
)
〉 = 〈κ(1)(L)g(1)(L′)〉︸ ︷︷ ︸

Born

+ 〈κ(2)(L)g(1)(L′)〉︸ ︷︷ ︸
=0 (Limber/Gaussian)

+ 〈κ(1)(L)g(2)(L′)〉︸ ︷︷ ︸
=0 (Limber/Gaussian)

+ 〈κ(1)(L)g(3)(L′)〉+ 〈κ(3)(L)g(1)(L′)〉+ 〈κ(2)(L)g(2)(L′)〉︸ ︷︷ ︸
≈?

+O
(
d4
)
, (3.3)

and we see immediately that in order to recover the same number of terms as in the auto
correlation, we have to take into account the lensing corrections to the galaxy field i.e. the
fact that the galaxies themselves are observed at their lensed positions.2 This should not be
confused with the effect of lensing on the galaxy shapes, known as cosmic shear.

4 Higher order lensing corrections

Higher order lensing corrections to the convergence can be derived by perturbing the single
lensing deflection Ψ,a(θ, χ) around the line-of sight-direction

Ψ,a [θ + ∆θ(θ), χ] = Ψ,a(θ, χ) + Ψ,ab(θ, χ)∆θb(θ, χ)

+
1

2
Ψ,abc(θ, χ)∆θb(θ, χ)∆θc(θ, χ) +O(∆θ3). (4.1)

Here, we use , a as short hand for ∇aθ, i.e., the ath component of the two dimensional an-
gular derivative operator and repeated indices on one side are summed over. Truncating at
second order in the perturbation ∆θ and using the expressions for ∆θ(n) that we derive in
appendix A, we get

κ(θ) = ∇aθ
∫ χCMB

0
dχWκ(χ, χCMB)

[
Ψ,a(θχ, χ) + Ψ,ab(θχ, χ)φ,b(θ, χ)

+
1

2
Ψ,abc(θχ, χ)φ,b(θ, χ)φ,c(θ, χ)

− 2 Ψ,ab(θχ, χ)

[∫ χ

0
dχ′Wκ(χ′, χ)Ψ,bc(θχ

′, χ′)φ,c(θ, χ
′)

]
+O(Ψ4

,a)

]
= κ(1)(θ) + κ(2)(θ) + κ(3)(θ) + O(Ψ4

,a)

= F−1
[
κ(1)(L) + κ(2)(L) + κ(3)(L) + O(Ψ4

,a)
]
, (4.2)

where F−1 denotes the inverse Fourier transform. The intuitive interpretation of the above
equation is that lensing changes not only the encountered lenses (Taylor expansion in ∆θ(1),
sourcing the second and third term in the above equation), but also the subsequent path
(fourth term in the above equation, proportional to ∆θ(2)) and so on. Note that evaluating

2We will keep the same labeling of terms for the galaxy field as introduced for the lensing convergence,
even though g(1) is zeroth order in the deflection, but motivated by the fact that κ and g are both of order
∇2ψ, with ψ being the gravitational potential.
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the derivative that we have moved outside of the integral will increase the number of terms.
We will use small letters to number the terms at the same order, e.g.,

κ(3)(L) = κ(3a)(L) + κ(3b)(L). (4.3)

Pulling the derivative in front of the integral inside and evaluating it, splits each of these
terms again into sub terms. In analogy to eq. (4.2) lensing corrections to the observed galaxy
field up to third order are

g(θ) =

∫ χmax

0
dχWg(χ)

{
J(θ, χ)

(
δg(θχ, χ) + δg,a(θχ, χ)φ,a(θ, χ)

+
1

2
δg,ab(θχ, χ)φ,a(θ, χ)φ,b(θ, χ) (4.4)

− 2

[∫ χ

0
dχ′Wκ(χ′, χ)φ,b(θ, χ

′)Ψ,ab(θχ
′, χ′)

]
δg,a(θχ, χ) + 1

)
− 1

}
+O(δ4

lin).

Here, J(θ, χ), denotes the Jacobian of the lens remapping (eq. (A.1))

J =
[
(1− κ)2 − |γ|2

]1−2.5s
, (4.5)

where “s” is the change of number counts with magnitude at the magnitude limit of the sur-
vey. The effect of lensing magnification at lowest order is known as magnification bias [28–34].
For tracers without magnitude limit, like the CMB or the 21 cm radiation field, surface bright-
ness conservation implies J = 1. The Jacobian itself contains higher order lensing corrections
and needs to be expanded for our purposes,

J ≡ 1 + ∆J = 1 + J (1) + J (2) + J (3) +O(Ψ4
,a). (4.6)

Detailed derivations and expressions for lensing corrections on number counts can be found
in appendix A.1.

Since Ψ,aa ' δlin, as mentioned above, an expansion up to third order in the deflection
field should also include second order and third order terms sourced by non-linear evolu-
tion [35] (plus lensing corrections on these higher order terms), as well as a halo bias expan-
sion. Accounting for all of these terms is beyond the scope of this work. Since our primary
focus is to study the magnitude of the lensing corrections and possible internal cancellations,
we will leave these terms aside, but note that they could potentially be of the same size or
even bigger. Due to their different structure and physical source, an efficient cancellation
between higher order terms sourced by different expansions is unlikely.3

Another complication comes from the lensing Jacobian. It is non-linear in the lensing
even without higher order lensing corrections. To simplify and organize the analysis, we ignore
higher order terms in the lensing Jacobian in section 5.1 and set J = J (0) = 1. In section 5.2,
we take into account the magnification bias, sourced by correlating J (1) = 5(s − 0.4)κ with
κ(1), because it is of the same order as the cross correlation itself. We discuss additional
terms that arise in the presence of a lensing Jacobian in section 5.3.

3However, ref. [5] identified such a cancellation in the CMB lensing bispectrum.
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5 Lensing corrections to galaxy-lensing cross correlations

With higher-order lensing corrections for both observables, galaxy density and lensing con-
vergence, at hand we can now turn to computing the resulting corrections on their cross
correlation. We split the assessment of these corrections in two sections. In the first sec-
tion we make use of the Limber approximation, which states that unequal time/redshift
correlations are negligible, i.e., that one can assume

〈A(z1, k1)B(z2, k2)〉 ∝ δD(z1 − z2)δD(k1 − k2), (5.1)

for two observables A and B at redshifts z1 and z2, respectively. We will also ignore the
magnification bias for simplicity in this section and focus on examining the nature of the
cancellations between higher order terms. After obtaining results in the Limber approxima-
tion, we will argue why this approximation is likely to break down for the expressions at
hand. In the second section, we will compute and evaluate all correction terms without the
Limber approximation and include lowest order magnification bias corrections. To organize
the results, we introduce the notation

Cκg(L) = Cκg11 (L) + Cκg12 (L) + Cκg21 (L) + Cκg22 (L) + Cκg31 (L) + Cκg13 (L) +O(δ5
lin), (5.2)

where subscripts label the order of each observable in δlin (assuming Ψ aa ∝ δlin).

5.1 Lensing corrections in the Limber approximation

5.1.1 Detailed expressions up to fourth order

The leading order cross correlation between the convergence field and the galaxy field in
Limber and flat sky approximation is given by

Cκg11 (L) = A
∫ χs

0
dχ
W κ(χ, χs)Wg(χ)

χ2
Pmg(L/χ, χ). (5.3)

Here, we have used the Poisson equation to relate the Weyl potential to the matter overden-
sity, assuming that derivatives of the potential along the line of sight integrate to zero. As
mentioned in the beginning, this is a valid assumption when the derivative varies on scales
much smaller then the typical size of the integration kernel.

At next to leading order, the first contribution to the cross correlation signal comes
from contracting the second order convergence term κ(2) with the leading order galaxy term
g(1) (or vice versa). The resulting terms depend on the matter-halo cross bispectrum, Bmmg,
which is zero if we ignore non-linear structure formation and the non-linear matter halo-
connection. But even if one allows for a non-zero bispectrum, these terms still vanish under
the Limber approximation: for the bispectrum, the Limber approximation generalizes to

〈δm(L1, χ1)δm(L2, χ2)δg(L3, χ3)〉 = (2π)2δD(L1 + L2 + L3)
δD(χ1 − χ2)δD(χ1 − χ3)

χ4
1

×Bmmg(L1/χ1,L2/χ2,L3/χ3; z(χ1)). (5.4)

The delta functions in eq. (5.4) collapse the lensing kernels in the expression for
〈
κ(2)g(1)

〉
δD(χ1−χ2)δD(χ1−χ3)Wκ(χ1,χs)Wκ(χ2,χ1)Wg(χ3) =Wκ(χ1,χs)Wκ(χ1,χ1)︸ ︷︷ ︸

=0

Wg(χ1), (5.5)

– 7 –
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and similarly for
〈
g(2)κ(1)

〉
. Because of this twofold suppression, we will ignore these terms

in the following.

At third order in the lensing convergence we get contributions from four terms,

〈κ(3)(L)g(1)(L′)〉 =
〈[
κ(3A)(L) + κ(3B)(L) + κ(3C)(L) + κ(3D)(L)

]
g(1)(L′)

〉
(5.6)

while the lensing corrections to galaxy field results in two third order terms that we need to
evaluate

〈κ(1)(L)g(3)(L′)〉 =
〈
κ(1)(L)

[
g(3a)(L′) + g(3b)(L′)

]〉
. (5.7)

These expectation values involve the halo-matter four-point function, which consists of a
Gaussian disconnected contribution and a connected trispectrum contribution. Sticking to
the assumption of Gaussianity, we ignore the non-Gaussian trispectrum contribution.4 The
Gaussian part can be decomposed under Limber into

〈δm(L1, χ1)δm(L2, χ2)δm(L3, χ3)δg(L4, χ4)〉

= (2π)4δD(L1 + L2)δD(L3 + L4)
δD(χ1 − χ2)

χ2
1

δD(χ3 − χ4)

χ2
3

Pmm(L1/χ1, χ1)Pmg(L3/χ3, χ3)

+ (L1 ↔ L3, χ1 ↔ χ3) + (L1 ↔ L4, χ1 ↔ χ4) (5.8)

At first glance, this seems to result in 6x3 terms that contribute to the post-Born correction
at this order. However, most of these terms vanish trivially in the Limber approximation
because one of the lensing kernels becomes zero or because of the condition that multiple
deflections can only be caused by lenses at different and ordered redshifts (χ1 > χ2 > χ3).
Thus at third order in the lensing convergence we end up with two remaining terms, out of
which one vanishes because of odd parity (see appendix C) and the only remaining term is

Cκg31b(L) = −2 A3

∫
d2L1

(2π)2

[L · L1]2

L4
1

∫ χmax

0
dχ

Wκ(χ, χs)Wg(χ)

χ2
Pmg(L/χ, χ)∫ χ

0
dχ′

[Wκ(χ′, χ)]2

χ′2
Pmm(L1/χ

′, χ′)

= −A
3L2

2π

∫
d lnL1

∫ χmax

0
dχ

Wκ(χ, χs)Wg(χ)

χ2
Pmg(L/χ, χ)∫ χ

0
dχ′

[Wκ(χ′, χ)]2

χ′2
Pmm(L1/χ

′, χ′). (5.9)

Expanding the galaxy leg, we are again left with only one non-vanishing term

Cκg13b(L
′) = −2A3

∫
d2L1

(2π)2

[
L1 · L′

L2
1

]2 ∫ χs

0
dχ
Wg(χ)Wκ (χ, χs)

χ2∫ χ

0
dχ′

[Wκ(χ′, χ)]2

χ′2
Pmg(L

′/χ, χ)Pmm(L1/χ
′, χ′). (5.10)

4This should be a valid assumption at least for CMB lensing, which is sourced by lenses at relatively high
redshifts, but might break down on small scales or for low source redshifts. The impact of bi- and trispectrum
terms should be assessed with ray-traced simulations in the future.
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Finally, we also need to correlate the two second order terms,

Cκg22 (l) = 4A3

∫
d2L

(2π)2

[
L · (l− L)

|L− l|2

]2 L · l
L2

∫ χs

0
dχ
Wg(χ)Wκ (χ, χs)

χ2∫ χ

0
dχ′

[Wκ(χ′, χ)]2

χ′2
Pmg(L/χ, χ)Pmm(|l− L|/χ′, χ′). (5.11)

At this point, non-linear corrections to the density and matter-halo connection could still be
taken into account by using higher order expressions for the power spectra Pmm, Pmg and Pgg,
though this would not include mixed higher order terms and so for consistency, we refrain
from doing that here.

To simplify the notation, we define the 2-dimensional matrix

M(L,L′) =

∫ χs

0
dχ
Wg(χ)Wκ (χ,χs)

χ2

∫ χ

0
dχ′

[Wκ(χ′,χ)]2

χ′2
Pmg(L/χ,χ)

L2

Pmm(L′/χ′,χ′)

L′4

≡
∫ χs

0
dχ

∫ χ

0
dχ′B(χ,χ′;χs)

Pmg(L/χ,χ)

L2

Pmm(L′/χ′,χ′)

L′4
(5.12)

which allows us to write the three non-zero terms in compact form

Cκg22 (L) = 4A3

∫
d2L′

(2π)2

[
L′ ·

(
L− L′

)]2 [
L · L′

]
M(L′, |L− L′|) (5.13)

Cκg31 (L) + Cκg13 (L) = −4A3

∫
d2L′

(2π)2
L2
[
L · L′

]2
M(L,L′). (5.14)

5.1.2 Understanding the cancellation

Both terms in the above equation become very large, comparable or bigger than the signal
at large L (see figure 1). In this form we can also easily see that these terms have the same
structure as corrections to the auto-correlation (compare, e.g., eqs. (33) and (36) in ref. [4]),
which suggests a similar cancellation between them could happen.

In order to check this we first redefine L′ → L− L′,

Cκg22 (L) = 4A3

∫
d2L′

(2π)2

[
L′ ·

(
L− L′

)]2 [
L ·
(
L− L′

)]
M(|L− L′|, L′), (5.15)

and then assume the power spectrum can be approximated by a power law, or a superposition
thereof, over the relevant range of scales, Pmm(k) ∝ kn. In this limit the 31 term then reads

Cκg31 (L) + Cκg13 (L) ' −4A3

∫ χs

0
dχ

∫ χ

0
dχ′
B(χ, χ′;χs)

(χχ′)n
L2(n+1)

∫
dxdϕ

(2π)2
xn−1 cos2(ϕ)

= −4A3

∫ χs

0
dχ

∫ χ

0
dχ′
B(χ, χ′;χs)

(χχ′)n
L2(n+1)

∫
dx

(4π)
xn−1 (5.16)

where we have defined x ≡ L′/L and ϕ is the angle between L′ and x axis. We see that for
some choices of n the lensing corrections receive large contribution when x→ 0 or equivalently
L′ � L. As L′ becomes small, these modes become more and more a uniform shift applied
to the modes of wavenumber L, and should therefore not be observable. The 22 term has a

– 9 –



J
C
A
P
0
3
(
2
0
2
0
)
0
4
5

more complicated structure

Cκg22 (L) ' 4A3

∫ χs

0
dχ

∫ χ

0
dχ′
B(χ, χ′;χs)

(χχ′)n
L2(n+1)∫

dxdϕ

(2π)2
xn+1(1− cos(ϕ)/x)2(1− x cos(ϕ))[1 + x2 − 2x cos(ϕ)](n−2)/2 (5.17)

which we then expand for small x and integrate over ϕ

Cκg22 (L) '4A3

∫ χs

0
dχ

∫ χ

0
dχ′
B(χ, χ′;χs)

(χχ′)n
L2(n+1)

∫
dx

(4π)
[xn−1 +O(xn+1)] . (5.18)

The leading order large scale contributions indeed exactly cancels the one of the 31 piece and
one is left with small subleading terms of O(xn+1). Notice that the cancellations happens
at the level of the integrand and that it is independent of the lensing and galaxy kernels.
Compared to the similar cancellation happening in the perturbative expansion for the density
field [26, 27, 36, 37] the IR sensitivity of the individual terms is much stronger, and diver-
gencies appear for n ≤ 0. While we have only shown that large scale shifts are unobservable
for the first post Born correction and in Limber approximation, we expect this result to hold
for the fully general case beyond Limber and in the fully non linear regime.

5.1.3 Numerical evaluation

To numerically evaluate the integrals we follow the trick used by refs. [4, 37] and move the
cancellation inside the integrand by rewriting,

Cκg22 (L)+Cκg31 (L) = 4A3

[∫
d2L′

(2π)2

[
L′ ·
(
L−L′

)]2 [
L·
(
L−L′

)](
M(|L−L′|,L′)−M(L,L′)

)
+

∫
d2L′

(2π)2

([
L′ ·
(
L−L′

)]2 [
L·
(
L−L′

)]
−L2

[
L·L′

]2)
M(L,L′)

]
(5.19)

= 4A3

[∫
d2L′

(2π)2

[
L′ ·
(
L−L′

)]2 [
L·
(
L−L′

)](
M(|L−L′|,L′)−M(L,L′)

)
+L2

∫ 2π

0

dϕ

(2π)2

(
1+2cos2ϕ

)∫
dL′L′5M(L,L′)

]
. (5.20)

In the last line, we have assumed that L is aligned with the external x-axis, i.e. L = Lx, and
L · L′ = LL′ cosϕ with ϕ being the angle between L′ and the x coordinate axis. We further
dropped terms that vanish under the angular integration.

For the evaluation we adopt a ΛCDM cosmology with parameters As = 2.10732 · 10−9,
h = 0.68, kpivot = 0.05 Mpc−1, ns = 0.97, ωb = 0.0225, ωcdm = 0.119 and use a simple
redshift dependent bias model of the form b(z) = 1 + z. We use the same cosmology and
bias model throughout this paper. In figure 1 we plot the signal and correction terms for
a correlation of the CMB lensing convergence with galaxy samples with Gaussian redshift
distributions, where we denote the mean and standard deviation of the Gaussian by zmean

and σz respectively. We find a cancellation, similarly efficient as in the case of the lensing
auto correlation.
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Figure 1. Higher order lensing corrections to the galaxy- CMB lensing cross correlation for different
Gaussian redshift distributions. On the left we plot the signals in solid lines, and the corrections in
dashed (negative) and solid (positive) lines. To stress the importance of the cancellation, we plot the
31+13 terms in dashed-dotted. On the right we show the relative contribution of the correction to
the signals, they are below 0.1% up to L = 10000.

5.2 Lensing corrections without Limber approximation

We now drop the Limber approximation and include magnification bias at lowest order in
our calculations. Our motivations for dropping the Limber approximation are manifold:

1. The Limber approximation breaks down for projected scales that are similar in size to
the projection kernel. The correction terms derived in the previous section integrate
over varying scales and varying sizes of the kernel, such that this requirement is not
always satisfied.

2. Other works, such as ref. [21], have found that terms that vanish under Limber ap-
proximation can be of similar size or bigger than the sum of terms that are non-zero in
Limber.

3. Depending on the relative redshifts of the observables, the Limber approximation can
have a dramatic impact on scales L < 100, e.g., causing a sign change of the signal (see
e.g. ref. [38])

We do not expect this full treatment to break the symmetries that lead to the cancella-
tions that we analyzed in the previous section. However, the increased number of terms
could add up to a significant correction, given the required precision for future cosmological
measurements.

In the following we define Cxyl as

Cxyl (χmax, χ
′
max) =

2

π

∫ χmax

0
dχ

∫ χ′
max

0
dχ′Wx(χ)Wy(χ

′)

∫
dlnk jl(kχ)jl(kχ

′)
[
k3Pxy(k)

]
,

(5.21)
where jl are spherical Bessel functions and kernels Wx for different fields x/y are listed in
table 1. For the power spectrum, we use the linear 3D power spectrum of density fluctuations
at z = 0, Pδlin , and multiply by Ak2 where necessary to convert δ → Ψ. Evaluating these line-
of-sight integrals can be computationally challenging and expensive, due to the oscillatory
behaviour of the Bessel functions. We use the recently proposed FFTlog formalism [38, 39]
to evaluate our post-Limber expressions, because it is both fast and numerically stable. We
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x Wx(χ)

δg D+(χ)b(χ)δD(χmax)

Ψ D+(χ)δD(χmax)

φ D+(χ)Wκ(χ, χmax)

Table 1. Kernels used in the Cl computation in this section. D+ denotes the growth function of
linear perturbations, b(χ) is a redshift dependent bias (here b = 1 + z) and δD is the Dirac delta
function. The lensing and redshift kernels (Wg, Wκ(χ, χs)) were defined in section 2.

test our implementation by reproducing correlation functions for CMB lensing and number
counts produced with state of the art Boltzmann solvers [40, 41]. We also independently
double coded all expressions and debugged by cross checking the results.

5.2.1 Detailed expression up to fourth order

We start by stating the leading order results. Including magnification bias, we get two terms,
the cross correlation between the galaxy field and lensing convergence

CκgL = −L2

∫ χs

0
dχWκ(χ, χs)

∫ χmax

0
dχ′Wg(χ

′)C
Ψδg
L (χ, χ′) (5.22)

and the correlation between the contribution to g that is sourced by J (1), and the lensing
convergence

Cκg1J1(L) = 5(s− 0.4)L4

∫ χmax

0
dχWg(χ)

∫ χs

0
dχ′Wκ(χ′, χs)

∫ χ

0
dχ′′Wκ(χ′′, χ)CΨΨ

L (χ′, χ′′).

(5.23)
For the lensing correction terms, we only consider terms at lowest order in the lensing Jaco-
bian (J (0) = 1). These are the same correlations as in the previous section,

Cκg22 (L) = −
∫

d2l

(2π)2
[L · l] [l · (L− l)]2

∫ χs

0
dχ

∫ χmax

0
dχ′Wg(χ

′)Wκ(χ, χs)[
C
δgΨ
l (χ′, χ)Cφφ|L−l|(χ

′, χ) (5.24)

+CφΨ
l (χ′, χ)C

δgφ
|L−l|(χ

′, χ)
]

(5.25)

Imposing Limber by requiring χ = χ′, sets the second term to zero and we recover our former
result eq. (5.11). The second term vanishes because the Limber approximation sets source
(φ) and lens (Ψ) to the same redshift, but the upto χ projected lensing field φ(χ) gets no

contribution from Ψ(χ), therefore CφΨ
l (χ, χ) = 0.

When correlating the first order galaxy term with the first third order lensing term,
we get

Cκg31a(L) =
1

2
L2

∫
d2l

(2π)2
[L·l]2

∫ χs

0
dχ

∫ χmax

0
dχ′Wg(χ

′)Wκ(χ,χs)C
δgΨ
L (χ′,χ)Cφφl (χ) (5.26)

+

∫
d2l

(2π)2
[L·l]2 l2

∫ χs

0
dχ

∫ χmax

0
dχ′Wg(χ

′)Wκ(χ,χs)C
Ψφ
l (χ)C

φδg
L (χ,χ′). (5.27)
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Similarly, contracting the first order lensing term with the first third order galaxy term,
results in

Cκg13a(L) =
1

2
L2

∫
d2l

(2π)2
[L · l]2

∫ χs

0
dχ

∫ χmax

0
dχ′Wg(χ

′)Wκ(χ, χs)C
δgΨ
L (χ′, χ)Cφφl (χ′).

(5.28)
The sum of these two terms is the same as eq. (5.9) after imposing the approximation.

Finally, correlating the second third order lensing term with the first order galaxy term,
gives

Cκg31b(L) = 2

∫
d2l

(2π)2
[L · l]2 l2

∫ χs

0
dχWκ(χ, χs)

∫ χmax

0
dχ′Wg(χ

′)∫ χ

0
dχ′′Wκ(χ′′, χ)CΨΨ

l (χ′′, χ)C
φδg
L (χ′′, χ′) (5.29)

and

Cκg13b(L) = −2

∫
d2l

(2π)2
[L · l]2 L2

∫ χs

0
dχWκ(χ, χs)

∫ χmax

0
dχ′Wg(χ

′)∫ χ′

0
dχ′′Wκ(χ′′, χ′)CΨΨ

L (χ′′, χ)C
φδg
l (χ′′, χ′), (5.30)

which are both zero in Limber because Wκ(χ, χ) = 0.

5.2.2 Results

We evaluate the above expressions for different source redshifts and redshift kernels. In all
examples we assume for simplicity Gaussian galaxy distributions characterized by a central
redshift and a variance. We choose three different settings: correlating CMB lensing with
galaxies of central redshift zmean = 1 and width σz = 0.4 (the same setting was used in
the evaluation under Limber approximation in section 5.1), correlating galaxy lensing with
source redshift zs = 1.3 with a galaxy distribution peaking at zmean = 0.7 and σz = 0.2
(achieving a large overlap of galaxy and lensing kernel) and finally a setting in which the
signal is dominated by magnification bias, i.e., where the source redshift lies in front of the
galaxy distribution. Lensing kernels and galaxy distributions of these examples are shown
in figure 2. Results of the evaluations are shown in figure 3. In the first column we show
the cross-correlation signal along with the correction due to magnification bias for different
values of the slope “s”. We point out that for all three examples, magnification bias plays
an important role and we will get back to this in the next section. In the last column we
plot the individual post Born correction terms (where we already sum the cancelling terms
with the trick introduced in the previous section). The additional terms that vanish in
Limber approximation are of comparable magnitude as the residuals of the Limber terms
after cancellation. The relative importance of the terms varies with different combinations
of source redshifts and galaxy kernels. We find a cancellation between another pair of terms
(eqs. (5.25) and (5.29)), which is very efficient for zs � zmean, but disappears for zs < zmean.
In the last example, a term (eq. (5.30)) that is zero under Limber and strongly suppressed for
zs � zmean becomes similarly important as the Limber terms. In the last column of figure 3,
we compare the sum of all of the above correction terms to the signal (for different amounts
of magnification bias). The contribution is well below 0.01% for all multipoles considered
(2 < L < 1000). Extrapolating the curves seem to suggest that the relative correction
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Figure 2. Combinations of lensing kernels Wκ(χ, χs) (blue) and galaxy distributions Wg(χ) (green)
for which we evaluate cross correlations and their lensing corrections in this section. Note that we
assume a single source redshift and no source redshift distribution. This choice should not affect the
relative importance of lensing corrections significantly. The configuration in the first row was also
used in section 5.1 and we see that dropping the Limber approximation has not changed the correction
significantly.

Figure 3. Leading order results (eq. (5.22)+eq. (5.23)) for different slope parameters s (left column)
and corresponding higher order lensing corrections (eqs. (5.24)–(5.30)) (middle column) for three
different redshift configurations. Negative values are indicated by dashed lines. The leading order
cross correlations lie several orders of magnitude above the lensing corrections for all source and galaxy
distributions considered (right column). Our highest assumed value of s = 0.8 is unlikely to come
from the flux limit alone, but can arise in the presence of an additional size bias [42].

decreases for multipoles L > 1000, however, on these scales also non-linear corrections to the
power spectrum become important and the employed line-of-sight integration decreases in
precision, so a simple extrapolation might be misleading.
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order of Jacobian possible combinations evaluated in this work

J (0) δ
(1)
g κ(3), δ

(3)
g κ(1), δ

(2)
g κ(2) �, �, �

J (1) κ(1), κ(3), δ
(1)
g κ(2)∗, δ

(2)
g κ(1)∗ �, ×, ×, ×

J (2) κ(2), δ
(1)
g κ(1)∗ ×, ×

J (3) κ(1) ×

Table 2. Combination of higher order terms that enter the cross correlation up to fourth order in

the density/deflection field (cp. eq. (A.20)). Note that κ(3) = κ(3a) + κ(3b) and similarly for δ
(3)
g . We

omit bispectrum terms. A star indicates that the expression for this term is given in appendix B.

5.3 Additional Jacobian terms

So far we have ignored any higher order terms that involve the lensing Jacobian. These are,
however, numerous and need to be taken into account for a full and consistent treatment. In
this section we provide an overview of the full set of possible correction terms and make the
case for their evaluation with simulations.

For simplicity, we first assume s = 0, such that J1−2.5s = J . With this simplification,
we get the following Jacobian expansion terms up to third order

J = 1− 2κ+ κ2 − |γ|2 = 1− 2
[
κ(1) + κ(2) + κ(3)

]
+
[
κ(1) + κ(2)

]2
−
[
|γ|(1) + |γ|(2)

]2
+O(κ(4)), (5.31)

and identify

J (0) = 1 (5.32)

J (1) = −2κ(1) (5.33)

J (2) = −2κ(2) +
[
κ(1)

]2
−
[
|γ|(1)

]2
(5.34)

J (3) = −2κ(3) + 2κ(1)κ(2) − 2|γ|(1)|γ|(2). (5.35)

Using this notation we list all correction terms to the cross correlation that involve the lensing
Jacobian (up to fourth order) in table 2. We provide expression for terms marked with a
star in appendix B and point out that we expect an efficient cancellation between the pure
lensing terms J (1)κ(3) + J (3)κ(1) + J (2)κ(2) ≈ 0.

Allowing an arbitrary amount of magnification bias (s 6= 0) introduces another expan-
sion on top of the terms listed above. Schematically,

(1 + x)β = 1 + βx+
1

2
(β − 1)βx2 +

1

6
(β − 2)(β − 1)βx3 +O(x4). (5.36)

In figure 4 we show the relative change of the signal after including the leading order magnifi-
cation bias correction to illustrate that it can easily be of the same order of magnitude as the
signal itself (and should really be considered as part of the signal). This in turn suggests that
correction terms involving the lensing Jacobian should be similarly important as the terms
evaluated in the previous section. Given the high number of contributing correction terms
after allowing for arbitrary magnifications, these terms could add up to a significant correc-
tion. Due to their sheer number and involved evaluation, we suggest the use of ray-traced
lensing simulation to estimate their total effect.
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Figure 4. Importance of magnification bias for different redshift configurations and number count
slopes, s. Formally, magnification bias is of the same order as the signal itself (left plot). For
unconventional configurations it can even dominate the signal (right plot).

6 Lensing corrections to the galaxy auto power spectrum

We now turn to evaluating the same set of terms as in section 5.2, but for the correlation of
galaxy number counts in different redshift windows. The corresponding expressions are

Cgg22 (L) =

∫
d2l

(2π)2
[l · (L− l)]2

∫ χmax

0
dχ1W

(1)
g (χ1)

∫ χmax

0
dχ2W

(2)
g (χ2)[

C
δgδg
l (χ1, χ2)Cφφ|L−l|(χ1, χ2) + C

δgφ
l (χ1, χ2)C

δgφ
|L−l|(χ2, χ1)

]
, (6.1)

where W (1) and W (2) denote the redshift distribution kernels of the two galaxy bins that
are being correlated. The above term is symmetric in the redshift kernel and equivalent to
eqs. (5.24)–(5.25) in the cross correlation. Similarly,

Cgg13/31a(L) = −1

2

∫
d2l

(2π)2
[l · L]2 (6.2)∫ χmax

0
dχ1W

(1)
g (χ1)

∫ χmax

0
dχ2W

(2)
g (χ2)C

δgδg
L (χ1, χ2)Cφφl (χ1)

+ [(W (1), χ1)↔ (W (2), χ2)]

is the equivalent of eqs. (5.26) and (5.28). An equivalent to eq. (5.27) seems to be absent
(parity) due to the different derivative structure.

The remaining term vanishes in the Limber approximation,

Cgg13/31b(L) = 2

∫
d2l

(2π)2
[l · L]2

∫ χmax

0
dχ1W

(1)
g (χ1)

∫ χmax

0
dχ2W

(2)
g (χ2)∫ χ1

0
dχ′1W (χ′1, χ1)C

δgφ
l (χ1, χ

′
1)C

Ψδg
L (χ′1, χ2)

+ [(W (1), χ1)↔ (W (2), χ2)]. (6.3)

The correction terms to the galaxy-galaxy correlation function are similar to those to the
cross correlation. However, there is no direct correspondence (i.e. we cannot simply replace
the lensing kernel by a galaxy kernel and Ψ by δg to go from the expressions for the cross
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correlation to the auto correlation). The reason for this is the different derivative structure,
which results in different terms vanishing due to parity. We evaluate the corrections on the
galaxy correlation in the same fashion as the corrections on the cross correlations in the
previous section.

As in the previous section, in addition to lensing corrections, we also have to include
magnification bias [43, 44], which has two contributions, the galaxy-convergence correlation

Cgg1J1(L) =
1

2
5(s− 0.4)L2

∫ χmax

0
dχ1W

(1)
g (χ1)

∫ χmax

0
dχ2W

(2)
g (χ2)C

δgφ
l (χ1, χ2) (6.4)

and the convergence-convergence correlation

CggJ1J1(L) =

[
1

2
5(s− 0.4)L2

]2 ∫ χmax

0
dχ1W

(1)
g (χ1)

∫ χmax

0
dχ2W

(2)
g (χ2)Cφφl (χ1, χ2). (6.5)

Results for different combination of redshift distributions are shown in figure 5. To illustrate
the effect of magnification bias, we plot in the first column the correlation function without
correction (in blue), the correlation function after correcting for the first term (dotted lines)
and after correcting for both terms (other colored, solid lines). For the lensing corrections
we find two very efficient cancellations on small scales, independent of the respective redshift
distributions. One amongst the terms that are non-zero in Limber

Eq. [(6.1) (term 1)] + Eq. [(6.2)] ≈ 0 (6.6)

and the other amongst the terms that are zero in Limber

Eq. [(6.1) (term 2)] + Eq. [(6.3)] ≈ 0. (6.7)

The first cancellation can be directly seen by comparing the first term in eq. (6.1) with
eq. (6.2) and taking the limit L � l. The second cancellation can be seen by noticing that

C
Ψδg
L (χ′1, χ2) in eq. (6.3) peaks sharply at χ′1 = χ2. Using this as a constraint (in the second

term of eq. (6.3), correspondingly the constraint is χ′1 = χ1), we see that we approximately
recover the second term of eq. (6.1).

The cancellations are depicted in the second column of figure 5. In the last column we
plot the relative size of the corrections to the signal. While being bigger than in the auto-
correlation, the corrections still remain at the sub-percent level a result which is in agreement
with estimates from ray-traced simulations [13].

As in the previous section, we have again neglected the numerous terms that arise when
allowing for higher order Jacobian terms. In figure 6 we plot the relative change of the signal
when including magnification bias terms. The size of this change (in the examples up to a
factor 2 and higher) suggests that higher order Jacobian terms should be taken into account
in a full analysis.

7 Conclusions

In this work we studied the importance of lensing corrections for modelling several types
of (cross-) correlations: correlating CMB lensing with galaxies, weak galaxy lensing with
galaxies and galaxies with galaxies (possibly at different redshifts). Studies of this type are
important given the required accuracy for modeling future measurements of cosmological
parameters and the mass of neutrinos from these observables.
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Figure 5. Lensing corrections (without Jacobian terms) on CggL for different combinations of Gaussian
redshift distributions: in the first column we plot the signal without magnification bias (blue) and
corrected by the two arising leading order magnification bias terms (dotted lines show the effect of
correcting for one of the terms only). In the middle column we plot the lensing correction terms
(eqs. (6.1)–(6.2), their sum is indicated in black. On small scales, we find the same cancellation as for
CκgL and CκκL . In the last column, we plot the ratio of these corrections to the signal. The correction
is biggest on large scales (where also the signal is smaller), and below < 1%. The gap in some of the
plots is due to our L-sampling; we sample only at integer numbers.

Our approach does not make use of the Limber approximation and we show that terms
that vanish in the Limber approximations can be of similar importance as terms that are
non-zero in the Limber approximation. We find efficient cancellations between higher order
lensing correction terms, also when cross correlating fields at different redshifts and discuss
the physical origin of these cancellations. We provide fast and accurate code (� [1], which
has undergone double checks at every stage) that can be used to reproduce our results and to
estimate the size of lensing corrections for all aforementioned observables and their arbitrary
redshift combinations.
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Figure 6. Illustrating the importance of magnification bias for galaxy number counts. We show
here examples where it can change the signal by a factor of 2 or more. The importance of a correct
modeling of the magnification bias for this observable was also recently pointed out by ref. [45].

Beyond the type of correction terms that also arise for lensing auto correlations we
identify additional terms, caused by the lensing jacobian correction to galaxy number counts.
We do not evaluate these terms but point out that their sheer number could add up to some
significance. Future work should estimate the size of all these corrections with ray-traced
simulations, as well as their impact on parameter estimates from these measurements.

Acknowledgments

We thank Simon Foreman, Emmanuel Schaan, Enea di Dio, Giulio Fabbian and Antony
Lewis for useful comments on the draft. This research used resources of the National Energy
Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility operated under Contract No. DE-AC02-05CH11231.

A Derivation of higher order terms in weak lensing

Weak lensing theory aims at relating an observed angular extent, θ, of a an object (source)
in the sky to the angular extent, β, it would have if there was no gravitational lensing (see
ref. [46] for a review). By writing

β = θ + ∆θ, (A.1)

we define the (scaled) lensing deflection angle, ∆θ, which is the total deflection of a light ray
generated by all lenses encountered along its geodesic. In weak lensing and in the Newtonian
gauge, an expression for the deflection can be derived from the relation between the trans-
verse, comoving distance x that separates two light rays at distance χ and the encountered
metric perturbations, Ψ, that act as lenses

x(θ, χ) = χθ − 2

∫ χ

0
dχ′

(
χ− χ′

)
∇xΨ

[
x(θ, χ′), χ′

]
. (A.2)

This expression is not closed, since every lens changes the photon’s path and thus the metric
perturbations that the photon will encounter next. If the lensing deflections are small, the
separation, x, can be expanded into a leading order (no-lensing) contribution and higher-
order lensing corrections,

x(θ, χ) = x(0) + ∆x = x(0) + ∆x(1) + ∆x(2) +O
[
(∇Ψ)3

]
. (A.3)
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At lowest order there is no lensing (∆θ = 0) and for a source at distance χ, we have β = x/χ.
The leading order contribution to x is therefore

x(0)(θ, χ) = θχ. (A.4)

To obtain the lensing terms, we expand the local deflection ∇Ψ in ∆x,

∇xΨ(x, χ) = ∇xΨ(x, χ)|x=x(0) +∇x∇xiΨ(x, χ)|x=x(0)∆x
(1)
i +O

[
(∇Ψ)3

]
. (A.5)

Inserting this expansion in eq. (A.2), we find the next to leading order term

∆x(1)(θ, χ) = −2

∫ χ

0
dχ′

(χ− χ′)
χ′

∇θΨ
(
θχ′, χ′

)
= χ∇θφ(θ, χ), (A.6)

where we have identified the lensing potential φ (defined in eq. (2.4)) in the last step. At
second order in the separation, we get

∆x(2)(θ, χ) = −2

∫ χ

0
dχ′

(
χ− χ′

)
∇x∇xjΨ

(
x, χ′

)∣∣
x=θχ′ ∆x

(1)
j (θ, χ′)

= −2

∫ χ

0
dχ′

χ− χ′

χ′
∇θ∇θj

Ψ
(
θχ′, χ′

)
∇θj

φ(θ, χ′). (A.7)

We limit the discussion to terms second order in the lensing deflection here, but note that at

third order we would have to take into account terms proprtional to
(
∆x(1)

)2
and ∆x(2).

By comparison with eq. (A.1), we can now identify the leading order contributions to
the deflection angle ∆θ,

∆θ(1)(θ, χ) = −2

∫ χ

0
dχ′

χ− χ′

χχ′
∇θΨ

(
θχ′, χ′

)
= ∇θφ(θ, χ). (A.8)

This is the well known Born approximation, which sums all deflections in the line-of-sight
direction of the observer. In the Born approximation all deflections get projected onto a single
lens plane. At next to leading order, we add corrections from considering two consecutive
lens planes. The image of the source after the first lens plane becomes the source for the
next lens plane,

∆θ(2)(θ, χ) = −2

∫ χ

0
dχ′

χ− χ′

χχ′
∇θ∇θj

Ψ
(
θχ′, χ′

)
∇θj

φ(θ, χ′). (A.9)

In the main text, we use expressions (A.6)–(A.9) as starting points for deriving higher order
lensing corrections to observables such at the observed galaxy density or the lensing con-
vergence. A more complete approach to expanding the lens equation can also be found in
ref. [47].

A.1 Higher order lensing corrections to the projected galaxy field

We relate the lensed galaxy overdensity field, δ̃g, to the unlensed overdensity field, δg, by

δ̃g (θ, z) =
ñ(θ, z)− n̄(z)

n̄(z)
=

∣∣∣∂β∂θ ∣∣∣n(β, z)− n̄(z)

n̄(z)
= J(β, z) [δg(β, z) + 1]− 1, (A.10)
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with n the galaxy number density (a tilde is used to denote lensed quantities), n̄ its spatial

mean and J :=
∣∣∣∂β∂θ ∣∣∣ the determinant of the lens-remapping, which is to be evaluated at

position β and at redshift z. Note that the area change A = 1/J introduced by lensing will
result in δ̃g (θ, z) 6= 0, even if the unlensed density field is homogeneous, δg(β, z) = 0. The
2-dimensional projected lensed galaxy density δ̃g(θ) follows from eq. (A.10) by line-of-sight
integration

δ̃g(θ) =

∫ χmax

0
dχWg(χ)δ̃g [θ, z(χ)] (A.11)

Eq. (A.10) assumes that the number of galaxies is conserved by lensing. However, in an
actual survey with a magnitude limit mlim, the (de-)focusing effect of lensing can bring
galaxies (below) above the detection threshold. The combination of the two lensing effects
— magnitude change and change of area — is well known as magnification bias [28–34]. It
can be modeled as an effective change to the lensing Jacobian

J → J1−2.5s (A.12)

where s is the change of number counts with magnitude at the magnitude limit mlim.

s =
d log10 n(m)

dm

∣∣∣∣
mlim

. (A.13)

The slope s is generally redshift dependent. Typical values for LSST range between 0.2 and
0.4 depending on the mean redshift of the sample. An additional size cut on the galaxies
introduces a size bias which sources another effective increase in s.

Including magnification bias, the lensed galaxy density contrast is

δ̃g(θ,z) =J1−2.5s(β,z) [δg (β,z)+1]−1 =J1−2.5s(θ+∆θ,z) [δg (θ+∆θ,z)+1]−1. (A.14)

Projecting the above equation along the line-of-sight and rewriting in terms of co-moving
coordinates, [x(χ,θ), χ(z)], gives

g(θ) =

∫ χmax

0
dχWg(χ)

{
J1−2.5s(x(0) + ∆x, χ)

[
δg

(
x(0) + ∆x, χ

)
+ 1
]
− 1
}
. (A.15)

Note that we have chosen the same notation as in appendix A, splitting the comoving sep-
aration x in a no-lensing contribution x(0) = θχ and a lensing correction ∆x. We can now
proceed in the same way as we did for the lensing convergence and expand in powers of ∆x,

g(θ) =

∫ χs

0
dχWg(χ)

[
J1−2.5s

(
1 + δg + δg,i∆xi +

1

2
δg,ij∆xi∆xj

)
− 1

]
+O(∆x3

⊥) (A.16)

We want to keep all terms up to second order in the lensing correction in the above equation.
Assuming ∇2Ψ ∝ δm this will leave us with terms up to third order in the density contrast.
Note that we have not yet expanded the determinant J in eq. (A.16). To do so, we write

J =
[
(1− κ)2 − |γ|2

]1−2.5s ≡ 1 + J = 1 + J (1) + J (2) + J (3) +O (δm) , (A.17)

and identify

J (1)(θ, χ) = 5(s− 0.4)κ(θ, χ). (A.18)
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We further need to expand ∆x⊥, which sums the effect of many lensing events and is therefore
non-linear in the lensing. As in appendix A we write schematically (with expressions given
in eqs. (A.6) and (A.7)),

∆x = ∆x(1) + ∆x(2) +O(δ3
m). (A.19)

Collecting all terms up to third order in the linear density field, results in

g(θ) =

∫ χs

0
dχWg(χ)

[
δg(θχ, χ) + δg,i(θχ, χ)∆x

(1)
i (χ,θ) + δg,i(θχ, χ)∆x

(2)
i (χ,θ)

+
1

2
δg,ij(θχ, χ)∆x

(1)
i (χ,θ)∆x

(1)
j (χ,θ)

+ J (1)(χ,θ)
[
1 + δg(θχ, χ) + δg,i(θχ, χ)∆x

(1)
i (χ,θ)

]
+ J (2)(χ,θ) [1 + δg(θχ, χ)]

+ J (3)(χ,θ)

]
+O(δ4

m). (A.20)

All of these terms must be taken into account when computing up to fourth order lensing
corrections to the galaxy-galaxy and galaxy-lensing correlation functions. This is not only
difficult because of the sheer number of terms (note that each J (n), with n > 1 consists of
several terms), but also because of the complicated structure of the individual contributions.
In this work we are mainly interested in the question whether we can recover similar cancel-
lation between higher order terms in the cross correlation as in lensing auto correlation and
leave the estimation of additional terms for future work.

B Expressions for some additional Jacobian terms

In this appendix we give expressions for some of the correction terms that involve the lensing

Jacobian. Correlating J (1)δ
(2)
g with κ(1) gives

Cκg12J1(L) =
5(s− 0.4)

4

∫
d2l

(2π)2
l2L4

∫ χmax

0
dχWg(χ)CφφL (χ, χCMB)C

φδg
l (χ). (B.1)

Similarly for the correlation between J (1)δ
(1)
g and κ(2)

Cκg21J1(L) = −5(s− 0.4)

2

∫
d2l

(2π)2
l2 (L · l) [l · (L− l)] (B.2)∫ χmax

0
dχWg(χ)

∫ χCMB

0
dχ′′Wκ(χ′′, χCMB)CφΨ

|L−l|(χ, χ
′′)C

δgφ
l (χ, χ′′)

+
5(s− 0.4)

2

∫
d2l

(2π)2
l2 [L · (L− l)] [l · (L− l)] (B.3)∫ χmax

0
dχWg(χ)

∫ χCMB

0
dχ′′Wκ(χ′′, χCMB)Cφφl (χ, χ′′)C

δgΨ
|L−l|(χ, χ

′′).

– 22 –



J
C
A
P
0
3
(
2
0
2
0
)
0
4
5

The first order lensing correction to the Jacobian, J (1,1), can be contracted with δ
(1)
g and

κ(1). The corresponding term is

Cκg11J11(L) = 5(s− 0.4)L2

∫
d2l

(2π)2
[(l + L) · L] (L · l)

∫ χmax

0
dχWg(χ)∫ χ

0
dχ′Wκ(χ′, χ)

∫ χCMB

0
dχ′′Wκ(χ′′, χCMB)CΨΨ

l (χ′, χ′′)C
φδg
L (χ′, χ) (B.4)

+ 5(s− 0.4)L2

∫
d2l

(2π)2
[(l + L) · l] l2

∫ χmax

0
dχWg(χ)∫ χ

0
dχ′Wκ(χ′, χ)

∫ χCMB

0
dχ′′Wκ(χ′′, χCMB)CφΨ

l (χ′, χ′′)C
δgΨ
L (χ, χ′′) (B.5)

At second order in the Jacobian we have further the correlation of κ(1)2
δ

(1)
g with κ(1)

Cκg11J2a(L) =
5(s−0.4)

2
L2

∫
d2l

(2π)2
l4
∫ χmax

0
dχWg(χ)

∫ χ

0
dχ′Wκ(χ′,χ)

∫ χ

0
dχ′′Wκ(χ′′,χ)∫ χCMB

0
dχ′′′W (χ′′′,χCMB)CΨΨ

l (χ′,χ′′)C
δgΨ
L (χ,χ′′′) (B.6)

+
5(s−0.4)

2
L4

∫
d2l

(2π)2
l2
∫ χmax

0
dχWg(χ)

∫ χ

0
dχ′Wκ(χ′,χ)

∫ χ

0
dχ′′Wκ(χ′′,χ)∫ χCMB

0
dχ′′′W (χ′′′,χCMB)

[
C

Ψδg
l (χ′,χ)CΨΨ

L (χ′′,χ′′′)+C
Ψδg
l (χ′′,χ)CΨΨ

L (χ′,χ′′′)
]
.

(B.7)

The two other J (2) terms, i.e. γ
(1)
1

2
δ

(1)
g κ(1) and γ

(1)
2

2
δ

(1)
g κ(1), only differ to this in their deriva-

tive structure. For γ
(1)
1

2
δ

(1)
g κ(1), we get in the first line (assuming that we can align the x-axis

with the exterior L vector, and that ϕ is the angle between l and this x-axis,

− 1

4
L2
[
l2(sin2 ϕ− cos2 ϕ)

]2
(B.8)

and in the second line

− 1

4
L4
[
l2(sin2 ϕ− cos2 ϕ)

]
. (B.9)

For γ
(1)
2

2
δ

(1)
g κ(1), only the first term has non-odd parity and is non-zero,

− L2l4 sin2 ϕ cos2 ϕ. (B.10)
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C Odd parity terms in section 5.1

The following terms integrate to zero, because the integrand in the integral over L1 changes
sign under L1 ↔ −L1

Cκg31a(L) = 4 A3 d2L1

(2π)2

[L · L1]3

L4
1L

2

∫ χmax

0
dχ

Wκ [χ, p(χs)]Wg(χ)

χ2
Pmg(L/χ, χ)

×
∫ χ

0
dχ′

[Wκ(χ′, χ)]2

χ′2
Pmm(L1/χ

′, χ′)

= 0 (odd parity) (C.1)

Cκg13b(L
′) = −4A3

∫
d2L1

(2π)2

L1 · L′

L2
1

∫ χs

0
dχ
Wg(χ)Wκ (χ, χs)

χ2∫ χ

0
dχ′

Wκ(χ′, χ)Wκ(χ′, χgal)

χ′2
Pmg(L

′/χ, χ)Pmm(L1/χ
′, χ′)

+ 4A3

∫
d2L1

(2π)2

L1 · L′

L2
1

∫ χs

0
dχ
Wg(χ)Wκ(χ′, χgal)

χ2∫ χ

0
dχ′

Wκ (χ, χs)Wκ(χ′, χ)

χ′2
Pmg(L

′/χ, χ)Pmm(L1/χ
′, χ′)

= 0 (parity). (C.2)
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