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Abstract

A novel meshless reconstruction algorithm for digital tomosynthesis (DT) is presented and
assessed against experimental data. The algorithm does not require a three-dimensional grid or
mesh allocation and performs a slice-by-slice reconstruction where each slice position can be
chosen at runtime. The methodology is based on the filtered backprojection algorithm adapted to
DT. However, in the traditional approach the backprojection comes first and the filtering follows.
Because the backprojection requires ray tracing, in our case it is replaced with an equivalent image
mapping procedure. The idea to swap the filtering and backprojection had been introduced earlier
for computerized tomography (CT). Here we use this idea but develop it differently. Contrary to
CT imaging, where the source and detector are rotated, in DT the subject and the flat panel
detector are fixed in space. This imaging geometry allows reconstruction in planes parallel to the
flat panel detector, which results in a significant simplification of the filter of backprojection
algorithm. Moreover, the algorithm is not memory demanding and can be used with very large
datasets. Two versions of the meshless algorithm are presented. One of them is based on
convolution type filtering, while another uses filtering in the Fourier domain. Both versions are
assessed and compared against the cone beam algorithm.

1. Introduction

Digital tomosynthesis (DT) is a technology that provides some of the benefits of computerized tomography
(CT) but at reduced radiation dose and cost (Travish et al 2012, 2013, Mavalankar et al 2017). DT
reconstructs slices within a subject from a set of projection images taken over a limited angle range. The
majority of image reconstruction algorithms are common to DT and CT (Helgason 2011, Natterer 2001).
The most popular ones include simultaneous algebraic reconstruction (Kak and Slaney 1988), filtered
backprojection (Deans 1993), cone beam algorithm (Feldkamp et al 2012); and their variants. The image
reconstruction can also be formulated as solving an optimization problem (Patel 2012, Klodt and Hauser
2016). All of the aforementioned methods require reconstruction volume allocation and are based on ray
tracing techniques. Reconstructed three-dimensional images become available only after the entire volume is
processed and the algorithm completes.

In spite of obvious similarities between CT and DT, there exist significant differences. Due to limited
angle data acquisition, reconstruction in DT is performed on a slice-by-slice basis, where slices are usually
taken in planes parallel to a flat panel detector. The key difference between CT and DT is that in plane (x-y)
resolution in DT can be 4-10 times higher than in CT resulting in very large memory usage. In such a case it
makes sense to reconstruct one slice at a time interactively instead of waiting for completion of the algorithm.
This approach is especially efficient when only a part of the entire reconstruction volume is of interest.

In this paper we suggest a meshless (in the sense that no three-dimensional grid or mesh allocation is
required) algorithm, which performs a user interactive, slice-by-slice reconstruction where each slice
position can be chosen at runtime. This allows the display of reconstructed slices on the fly as soon as they
are available. Moreover, the reconstruction slice order can be arbitrary, thus, allowing the most relevant slices
to be reconstructed and displayed first. The methodology presented here is based on the filtered
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backprojection algorithm adapted to DT. However, in our case the backprojection comes first and the
filtering follows. Because the backprojection requires ray tracing, the backprojection in our case is replaced
with an equivalent image mapping procedure.

The idea to swap the filtering and backprojection order had been introduced earlier for CT (Bates and
Peters 1971, Smith et al 1973, Gullberg 1979) and was based on the Fourier transform. In those approaches
the reconstruction procedure starts with the backprojection of attenuation images and follows with the
two-dimensional forward Fourier transform, then, filtering, and, finally, the two-dimensional inverse Fourier
transform (see appendix A). Here we use this idea but develop it differently. Contrary to the CT imaging,
where the source and detector are rotated, in DT the subject and the flat panel detector are fixed in space.
This imaging geometry allows reconstruction in planes parallel to the flat panel detector, which results in a
significant simplification of the filter of the backprojection algorithm.

This paper is organized as follows: In the next section the methodology of the suggested meshless
algorithm is presented. The algorithm is evaluated on experimental data sets and its results are compared to
those of cone beam reconstruction. Experimental details and reconstruction results are described in the
section 4. Then, we summarize and conclude. In order to make the paper self-contained appendix A outlines
the traditional filter of backprojection algorithm appendix B describes the cone beam algorithm used here.

2. Methodology

Let us start with the basic facts. In order to recover desired information about internal structures, it is
necessary to invert the Radon transform, that s, to solve for a function f(r) in terms of its transform f(p, v),
where r is a point in three-dimensional space, v is a unit vector perpendicular to a x-ray, and p is the
(perpendicular) distance from the origin to the ray in the direction v (see figure 1). The function f(r)
represents the spatial distribution of the transport coefficient entering the Beer—Lambert law. Then, as it is
shown in the literature (Kak and Slaney 1988, Deans 1993), the function f(r) can be recovered from f(p, )
as:

f<r>=/|_ldu/_mf@,wh(u-r—p)dp, 1)

where h denotes the ramp filter. Introducing the notation £ = v - r — p, the ramp filter in equation (1) is

he) =1 / K exp (2mike) dk, @)

2
where d stands for the space dimension. The inverse Radon transform in equation (1) is two-dimensional
(d=12) even though it is used for the three-dimensional reconstruction.

The ramp filter, equation (2), is given by the integral whose integrand oscillates ‘infinitely’ quickly at
both limits. On the other hand, the absolute value of a wave number k in periodic structures such as a
Cartesian grid of pixels can not exceed its maximum value ky,.x = 1/2), where A denotes the pixel size
(Brillouin 1953). Therefore, the infinite integration interval should be replaced with the finite one. Then, the
integral equation (2) can be evaluated, which results in

. . 2
h(e) = — {ﬂkmMSHWZkaﬂf)—»{““(”kmﬂg)] }. 3)

T ¢ ¢

Representing distances along coordinate axes as £ = An, where n € Z is the distance in pixels, and
substituting the value of kn.x into equation (3) we arrive at (Kak and Slaney 1988)

1/4, n=0,
h(n) =knw{ —1/(7n)’, n=2m+1, meZ, (4)
0, n=2m, m # 0.

In tomosynthesis, due to the de-magnification effect of backprojected rays, sometimes it makes sense to
have the reconstructed slice resolution to be higher than that of the flat panel detector. However, in such a
case the maximum value of the wave number kp,x should be decreased to suppress high frequency artefacts.
For practical purposes it should be sufficient to reduce the maximum value of the wave number by a factor of
two. Then, equation (3) with k! = 1/4\ results in:

max

1/4a 71:0,
b (n) = k2, (—1)("71)/2/(7rn)—2/(7rn)2, n=2m+1, mecZ, (5)
2 [l ()" ), m=2m mo,
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Figure 2. (a) Pixels’ backprojection at the specified height along rays connecting pixel’s corners to the emitter. (b) Backprojected
pixels mapping onto the reconstruction slice grid.

As it is shown below, the application of the latter filter, equation (5), is effective only when the resolution
of the reconstruction slice is higher than that of the flat panel detector image.

Many well-known algorithms such as cone beam reconstruction perform filtering prior to the
backprojection. Here, however, we shall reverse the order and backproject first. We introduce the
four-dimensional backprojection space in the same way as it is described in the literature (Levakhina 2013).
The structure of the backprojection space is simple: At any particular height above a flat panel detector
(assuming that the flat panel detector is placed at the bottom) a slice of the backprojection space is
represented by a stack of backprojected images of f. Each image belongs to only one emitter. For instance, M
emitters generate a stack of M images. For enumerating backprojected images we shall introduce an index
(subscript) m in fm, where m runs through all emitters.

Each backprojected image of f,, in the stack is computed as it is shown diagrammatically in figure 2. That
is, the pixel value is backprojected at the specified height along rays connecting a pixel’s corners and the
emitter, see figure 2(a). Then, the pixel intersection area with a backprojected image grid cell is computed,
figure 2(b). This area is furthermore divided by the area of the grid cell, which results in the weighting factor.
Then, the pixel value of f,, is weighted by this factor and added to the value of the grid cell. This pixel
mapping approach replaces a ray tracing algorithm such as the distance-driven one (De Man and Basu 2004,
De Man and Fessler 2010).

Everywhere below the backprojected image of f;, shall be denoted by g,,. As soon as the Radon transform
f,n has been mapped into g,,, the latter can be considered to be independent from the unit vector v.

3



10P Publishing

Phys. Med. Biol. 65 (2020) 085010 V'Y Soloviev et al

) = 5 (§2+ )

Figure 3. Backprojection space average.

Therefore, each g, is a function of local coordinates (x,y), which can be introduced for the slice of the
backprojection space at any height z. Furthermore, because the convolution in equation (1) is a linear
operation (in the sense that convolution of the sum of functions is the same as the sum of convolutions) we
shall introduce the average:

Qo) =15 O &), ©)

m<M’

where M’ < M is the number of overlapped images g, at the height z at the point (x, ), as is shown in
figure 3. Then, the reconstruction formula, equation (1), can be replaced with the following:

flxy) = 1{/ dx'h(x—x') (g (<", 3) @)

2 (Jow
+/V:de’h(y—y’) <§(x,y’)>},

where 1/2 stands for the average, and W denotes integration limits, which will be discussed later on in
section 4.

Taking the average, equation (6), is crucial not only for the reason of performance but also for detector
boundary artefacts reduction. Thus, when the functions g, are used in equation (7) instead of their average,
due to the finite size of the flat panel detector and the limited field of view, the reconstruction slice will
contain quite strong artefacts caused by the truncation of backprojected images (Zhang et al 2009,
Sechopoulos 2013). Averaging of g,, helps to alleviate this problem: The blind (truncated) areas of each g,
are filled with the average of other g, (k # m) in the stack (see figure 3).

Alternatively, reconstruction can be performed by computing the forward and inverse Fourier transforms
with filtering in the Fourier domain. Let us, for the sake of brevity, denote the Fourier transform by an
operator F. Then, in a symbolic form the inversion formula reads

f(x,y):ffl{h(k)]:@(x,y))}, (8)

where h (k) denotes the ramp filter in the Fourier domain. Equation (8) is obtained from equation (1) by
applying the forward and inverse Fourier transforms, where | f(p,v)dv is replaced with the average of
backprojections (g(x’,y’)), Equation (6).

Strictly speaking, only the 1D forward and inverse Fourier transforms are required in equation (8) for
computing the reconstruction, which can be performed, say, along the x-axis. Thus, for instance, the Fourier
transform is applied along the line of intersection of the plane ABCD (see figure 1) with the reconstruction
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slice, the line EF, while the line AB sweeps across the flat panel detector. However, nothing prevents us from
using Fourier transforms along the y-axis as well. That is, Fourier transforms entering equation (8) become
two-dimensional ones resulting in higher resolution of the reconstruction. This is the major difference
between the approach suggested here and the previously proposed filter of backprojection (see appendix A)
(Bates and Peters 1971, Smith et al 1973, Gullberg 1979). In those prior works, 2D Fourier transforms are
applied over a stack of planes such as the plane ABCD, while the subject is rotated (or, completely
equivalently while only the source and detector are rotated).

Formally, the forward Fourier transform of the ramp filter, equation (2 ), results in |k| /2. As it was
already mentioned, the value of |k| must not exceed its maximum value Ko = 27kimayx = 7 /A. That is
because signals (waves) with larger wave numbers can not be resolved on a grid with the pixel size A
(Brillouin 1953). Therefore, for cutting off k > kay the ramp filter can be, for instance, a product of |k| /2

with the Heaviside step function H <l~cmax - |k|) . A slightly better choice of h (k) provides the product of
|k| /2 with the Fermi-Dirac distribution:
1 k
My =1 N ©)
1+exp [(kz - kfnax) /E]

where £ < k2

max

kiax- That is, 1 (k) — (3) [kl H (l;max - |k\) , when € — 0. Although equation (9) has been used here, many

is a small number controlling the smoothness of a transition of 4 (k) to 0 in the proximity of

more choices of the ramp filter can be found in the large body of literature (Oppenheim and Schafer 1975,
Hamming 1977, Lyra and Ploussi 2011).

In the case of higher reconstruction slice resolution than that of the flat panel detector, the maximum
value of the wave number kma, must be reduced in order to damp high frequency artefacts. In the Fourier
domain this damping can be done in a more flexible way in comparison to physical space. If the pixel size of
the reconstruction slice is denoted by A" < A, then, the corresponding maximum wave number is
krax = (A/A) kmax.

max

3. Regularization

It is well-known that inverse problems are typically ill-posed. DT imaging is not an exception. Contrary to
CT, DT reconstructs slices from a set of projection images taken over a limited angle range. Therefore, the
inverse problem suffers from incompleteness of data. This incompleteness manifests itself in the appearance
of negative numbers (especially in regions where the transport coefficient should be 0), and poor image
quality. To address this issue, the problem must be regularized.

In the case of equation (7), a finite convolution window W has a regularization effect. This follows from
the fact that the ramp filter integrates to 0. Truncation of the integration path results in a positive value of the
integral. That is, an application of the truncated filter lifts negative values up. Moreover, the finite
convolution window size not only improves the reconstruction quality but also appreciably reduces
computational load. Moreover, the tails of the ramp filter decay fast enough making convolution over the
entire interval unnecessarily. The same regularization effect has a beneficial addition of a small number
a < 1 to the diagonal of the ramp filter, i.e. to the values with n =0 in equations (4) and (5).

Similarly, in the Fourier domain an addition of a small number to |k| in equation (9) has a regularization
effect. That is equation (9) becomes

1 |k| + oAk
2 1+ exp [(k2 - sznax) /s} 7

ha (k) (10)

where av < 1 is the regularization parameter, and Ak denotes the size of the reciprocal lattice cell. A typical
value of « is about 0.01 in our case.

4, Results

The presented algorithm has been assessed on experimental data. To simulate an array of emitters, a single
x-ray source was moved on a mechanical stage through 45 positions (a regular 7 x 7 grid with the corners
missing with positions separated by 10 mm). The source was a Newton Scientific M237 monoblock operated
at 60 kV and 50 pA for 100 ms in each position on the grid with each cone having a full opening angle of
110 °. The Source to Image Distance (SID) between the focal spot and detector was set to 120 mm. The
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Figure 4. Antique wrist joint bones.

detector used was a Teledyne Shad-o-Box 3 K HS with 50 um pixels covering an area of 114 X 64 mm.
Attenuation images were computed as In (Iy/I), where Ij is the recorded empty space intensity, and I is the
attenuated intensity due to x-ray absorption by an object.

Antique wrist joint bones had been chosen as the first phantom for the algorithm evaluation. They were
placed directly on the flat-panel detector and imaged, as shown in figure 4. The internal structure of the
bones is reconstructed by employing the cone beam algorithm (see appendix B) and two versions of the
meshless approach. The former is used for comparison reasons. The first version of the meshless approach
employs the convolution type of the ramp filter, while the second one performs filtering in the Fourier
domain. Reconstructed slices are displayed in figure 5.

The first row shows slices at different heights computed with the cone beam algorithm. The second and
the third rows present reconstruction slices with the meshless approach with the convolution and Fourier
type filtering, correspondingly. Each column shows slices at a specified height, which value is displayed at the
top left corner. The image histogram is shown below each image. Because image intensity counts have a very
wide dynamic range, counts are expressed in decibels (dB). The image intensity is given in arbitrary units
along the abscissa axis (this is because original images are 16-bit and its intensity is converted to double
precision real numbers and scaled down prior to the reconstruction).

As it is seen in figure 5, the reconstruction quality differs. Image quality can be evaluated by using various
measures. The most common one is the signal to noise ratio: SNR = I/, where the I denotes the image
mean intensity, and o is standard deviation of the image intensity. Computation of this quantity requires a
free from noise reference image. Clearly, there is no such image in our case. Despite that, the reconstructed
image can be denoised and used as a reference one. The most straightforward way of denoising is the
application of the Gaussian filter. The edge preserving Perona-Malik anisotropic diffusion technique could
be a better alternative to it (Perona and Malik 1990). Another way of noise removal is the filtering in the
Fourier domain, thus, truncating wave numbers at the value k = k. /2. All three techniques provide similar
results. A corresponding number of iterations for the Perona-Malik approach can be estimated according to a
7 by 7 pixels Gaussian window size or so by using the Courant-Friedrichs-Lewy stability condition. The same
value of the image standard deviation o allows for computation of the contrast-to-noise ratio, which is
defined as CNR = I, /0, Where 14, stands for the maximum image intensity averaged over a small
window. Another useful measure is the Weber contrast C = (Iyax — I5) /I, where I is the image background
intensity, and the image feature has been chosen as I,y In the region of interest (ROI) the most likely (or the
most probable) value of the image intensity may serve as the background intensity I. This value is more or
less the same for images produced by all three methods. ROI has been chosen as a part of the reconstructed
image corresponding to the maximum number of overlapping backprojected attenuation images, thus,
excluding regions with possible detector boundary artefacts.
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Figure 5. Reconstructed slices of the antique wrist joint. The first row shows results of the cone beam algorithm. The second and
third rows present results of the meshless approach with the convolution and Fourier type flittering, respectively. Column (a)
displays reconstructed slices by three methods at the height 17.5 mm above the flat panel detector, (b) 22.5 mm, and (c) 27.5 mm.
Images are presented in the same grey range for comparison. Image histograms are shown below each image. They display counts
in decibels (dB) along the ordinate axis. The image intensity is given in arbitrary units along the abscissa axis.

=47 =
0

Thus, according to histograms the meshless method with filtering in the Fourier domain provides the
highest contrast. Weber contrast indicates this as well. Its average over three slices shown in the last row in
figure 5 is about 5.4. Weber contrasts for the cone beam algorithm and the meshless approach with
convolution type filterring are roughly the same, which are 3.2 and 3.1, respectively. On the other hand, the
noise level for the meshless technique is higher, which is indicated by both SNR and CNR.

A fox’s jaw was chosen as the second phantom. It might present some interest for application of
tomosynthesis in dental imaging. The SID here was increased to 185 mm. The subject is shown in figure 6. As
in the first case the reconstruction was computed by a cone beam algorithm and two versions of the meshless
method. Reconstruction results are shown in figure 7. Image histograms are placed below each image. By
comparing histograms, it is seen that the reconstruction contrast is noticeably higher for the meshless
method. Weber contrast tells the same. Because SNR is lower for both versions of the meshless approach than
that of the cone beam algorithm, the noise level is higher. That is, higher contrast comes with the higher level
of noise as expected.

Although the filtering in the Fourier domain gives higher overall contrast than the convolution type of
filtering, it suffers from the detector boundary artefacts problem. Figure 8 illustrates this issue, where the out
of focus region at the bottom right coner of the antique wrist joint bones is magnified for this purpose. Thus,
while the reduction of detector boundary artefacts is manageable for the convolution type filtering, currently
it is not clear how to avoid these artefacts in the Fourier domain. This problem can be especially severe when
reconstruction slices are computed far above the flat panel detector. Regarding this issue, the convolution
type filtering is preferable over the Fourier domain filtering until a solution to this issue is found.

The algorithmic efficiency of the Fourier approach is usually higher than that of the convolution one.
However, in our case the difference is not that significant for the following reasons: Firstly, as was mentioned
above, a finite convolution window size is used for regularization purposes. Secondly, a fast Fourier
transform is most efficient for power-of-two vector (array) sizes. That is, for a high resolution flat panel
detector allocated vectors can be much larger than the actual detector size. Thus, for instance, the Teledyne
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Figure 7. Reconstructed slices of the fox’s jaw. The first row demonstrates the cone beam algorithm. The meshless approach with
both type filtering is shown in the second and the third rows. Columns (a), (b) and (c) correspond to different slice heights above
the flat panel detector. Image histograms are shown below each reconstruction slice.

I << %5
(

I Iy °
a) (b) (©)

Shad-o-Box detector has dimensions of 2304 by 1300 pixels, which requires vector sizes of 4096 and 2048
pixels, respectively. Note that these pixel counts (about 3 million) are significantly higher than in CT

(~0.3 million). Moreover, the Fourier transform involves computations with complex numbers, which are
represented by two real ones, and therefore doubles the required vector sizes. In addition, the forward and
inverse Fourier transforms are used twice. Overall, in our implementation, the Fourier approach is about 1.2
times faster than the convolution type filtering, when the convolution window is set to W = 350 pixels from
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Figure 8. Flat panel detector boundary artefacts. (a) Convolution type filtering. (b) Filtering in the Fourier domain.

the left and right of the current pixel. This is very close to the theoretical estimate: 4WN,/4Nylog, (Ny) ~ 1.25,
where N, and Ny are corresponding vector sizes. With a larger detector size, the convolution type filtering
can even be faster than the Fourier approach unless the detector size in pixels is exactly a power of two.

The computational efficiency of the cone beam algorithm depends on the number of reconstructed slices.
For only a few slices, say 10, the computational efficiency per slice is comparable with the meshless approach
with the convolution type filtering (assuming the same window size W). However when the number of slices
increases, the computational efficiency per slice of the cone beam improves. Thus, for 100 slices the cone
beam algorithm is about 1.4 — 1.6 times faster than the meshless approach. This is an expected result because
in our version of the cone beam algorithm only one convolution per pixel across the flat panel detector has
been used. On the other hand, in contrast to the meshless approach, the cone beam algorithm requires
additional allocation of a three-dimensional grid, which for the case of 100 slices takes approximately 2.4
gigabytes when real numbers are represented with double precision in comparison to just one slice storing
the average of backprojections.

Finally, we discuss the choice of the ramp filter. Due to the de-magnification effect, when pixel values are
backprojected toward the reconstruction volume, super-resolution can be observed (Acciavatti and
Maidmenta 2012). In order to fully capture the phenomenon, the reconstruction slice resolution should be
higher than that of a flat panel detector. However, in this case the value of the maximum wave number Ky is
dictated by the pixel size of the flat panel detector. Othewise, the reconstruction will suffer from high
frequency artefacts.

For illustration of the filter choice, a 1.5-20 lp/mm Line pair phantom (Type 39-003, Leeds Test Objects,
Boroughbridge, UK ) has been imaged. The reconstruction slice resolution is increased to twice the
resolution of the flat panel detector. Reconstuction results are shown in figures 9 and 10, where figure 9
presents a slice computed with the convolution type filtering, while figure 10 displays the results of the
Fourier domain filtering. Images are zoomed for visualization purposes.
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Figure 9. 1.5-20 Ip/mm Line pair phantom reconstructed with the convolution type of filtering: (a) Optimal choice of
kl.x =1/4X’, where A’ denotes the slice pixel size. (b) k., = 1/2\” is too large so there are high-frequency artefacts.
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Figure 10. 1.5-20 Ip/mm Line pair phantom reconstructed with filtering in the Fourier domain: (a) Optimal choice of
k..« =m/2)\’, where A\’ denotes the slice pixel size. (b) k/,,, = m/A’ is too large so there are high frequency artefacts.

Thus, figure 9(a) presents results when equation (5) has been applied. Further zoomed part of the
phantom is shown on the right. On the other hand, figure 9(b) displays reconstruction results computed
with the ramp filter given by equation (4). Zoomed part on the right clearly illustrates high frequency
artefacts, which are absent in figure 9(a). Because the Fourier type of filtering exhibits higher contrast, these
high frequency artefacts are more profound in figure 10(b) where lzmax is chosen. Results with
k! .. = (1/2) kmax are shown in figure 10(a) and present reasonable good quality.

5. Summary and conclusions

A novel meshless reconstruction algorithm is presented and assessed on experimental data. Its reconstruction
quality is compared against cone beam reconstruction. The meshless approach has several advantages.
Firstly, particular reconstruction slices can be chosen at runtime, and, therefore, this approach constitutes a
user interactive reconstruction technique in contrast to the majority of well-known algorithms. This allows
the display of reconstructed slices on the fly as soon as they are available. Moreover, the reconstruction slice
order can be arbitrary, thus, allowing the most relevant slices to be reconstructed and displayed first.
Secondly, for thick objects, it is able to produce slices of higher contrast than many techniques such as the
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cone beam one. Thirdly, it is fast and not memory demanding. Thus, in comparison to the cone beam
algorithm, which is considered as one of the most efficient algorithms, the meshless approach requires less
memory.
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Appendix A. Filter of backprojections

The traditional filter of backprojection algorithm is briefly outlined here. The reconstruction procedure
starts with the backprojection of attenuation images and follows with the two-dimensional forward Fourier
transform, then, filtering, and, finally, the two-dimensional inverse Fourier transform. Originally, this
reconstruction technique had been developed for parallel rays imaging (Bates and Peters 1971, Smith

et al 1973) and extended later for the fan-beam data (Gullberg 1979).

The three-dimensional distribution of the transport coefficient f(x, y,z) is reconstructed on a
slice-by-slice basis along, say, the z -axis, which is chosen as the subject rotation axis here. That is, the
three-dimensional reconstruction is performed as a stack of two-dimensional (x, y)-slices. Images are
acquired on planes parallel to the z -axis as it is shown in figure Al.

In order to explain the technique, let us start with the backprojection operator B first, which is
introduced as

b(xvy):Bf(pvy)a (A1)

where fdenotes the Radon transform of f(x, y) is a point in the slice lying perpendicular to the z-axis; v is the
2D unit vector perpendicular to x-ray; and p is the (perpendicular) distance form the origin to the ray in the
direction v. It is known (Deans 1993), that the true image f(x,y) convolved with 1/r, where

r= [(x—x’)z—k(y—y/)z}m, (A2)

yields the backprojection image

b(x,y) = //7 de’dy’. (A3)

Applying the 2D Fourier transform to b (x, y), equation (A3), we arrive at
b(k) = Fob(x.y) = k|~ f(k), (A4)

where f(k) denotes the 2D Fourier transform of f(x, y), and k = (ks ky) " Combining all these formulas
above we obtain the following

f() = K| b (k) = [K| F2b (x.y) = K| 2] (A5)
The inverse Fourier transform, F, ', of both sides yields
fy) = F5 " [k FB]] (A6)
Therefore, algorithmically, we have to perform series of operations:

fobobofof (A7)
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p </ (X’y)

Figure Al. Filter of backprojection imaging diagram.

emitter

€= |-l

A detector plane I

Figure B2. Fan plane geometry. Parameter p parameterizes a circle. The stereographic projection maps this circle onto a line
across the detector plane.

Appendix B. Cone beam algorithm

The version of the cone beam algorithm which is used in this paper is based on the exact Radon inversion

formula (Deans 1993). It reads:
af(P
B
- /| 3 ]l - (B8)

where t = v - r, and the integral over p is understood to be the Cauchy Principal Value, which is indicated by
a dash. Note that in our case of cone projection, the integration is performed over the interval [—L, L]. This is
because the distance parameter p parameterizes a circle in three-dimensional space, as it is shown in

figure B2. Next, the integration contour is mapped onto the line across the image plane by applying the
stereographic projection:

C=pL(12—p*) "V, p=tL(2+2)7V (B9)

This results in:

_ 1 > Of(te)  de
f(r)—m/ls_lR(fo)ds][OO T} (B10)
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where R ({y) = (L* + £3) /2 s the path length of a ray hitting the current pixel; o = (L (L* — 1?) 1% is the
distance from the local origin on the flat panel detector to the current pixel; £ is the distance parameter across
the flat panel detector; s is the unit vector along the ray; ¢ is the azimuthal angle in the plane of the flat panel
detector which defines the integration path; and the weighting factor a () is given by

24e\?

The inversion formula for a parallel ray projection is recovered from equation (B10) by letting L — oo, as
it should.

Siddon’s algorithm (Siddon 1985, Jacobs et al 1998) has been applied for ray tracing across the flat panel
detector for computing the integration path in equation (B10). That is, a line across an image is represented
by two rays fired in opposite directions starting from the pixel with polar coordinates (4o, @), see equation
(B10 ). Due to the Cauchy Principal Value integral over ¢, the choice of starting integration point inside the
pixel is important. Denoting indices of the pixel at (£y,¢) by i and j, the Cartesian coordinates of the starting
integration point must be at the center of the pixel, i.e. ([i+1/2] Ax,[j+ 1/2] Ay). This choice provides that
line segments of both rays are of the same lengths, while line segments at the pixel where the convolution is
computed are omitted. When the convolution is computed, the pixel value at (¢, ¢) is backprojected toward
the reconstruction volume by employing the distance-driven tay tracing algorithm (De Man and Basu 2004,
De Man and Fessler 2010).
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