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Abstract

Interpretation of the second solar spectrum (SSS) requires a complete determination of the depolarizing effect due
to collisions with neutral hydrogen. In this paper, we provide comprehensive collision data for simple atoms,
complex atoms, and atoms with hyperfine structure. Grids of interaction potentials were computed for a large range
of effective quantum numbers n* that characterize states of hypothetical simple atoms. After that, the Schrödinger
equation is solved to calculate the collisional transition matrix for each value of n*. Thus, we constructed a
database of collisional polarization transfer and depolarization rates of all p-, d-, and f-states of simple atoms. The
obtained results are fitted to deduce 48 variation laws, leading to the determination of all depolarization and
polarization transfer rates of solar simple atoms. These laws are general and can be applied for any simple atom.
We demonstrate how these laws can be used to efficiently obtain the collision rates associated with complex atoms,
as well as with atoms with hyperfine structure. We show how the reader may use the variation laws to reproduce all
new (de)polarization rates of this paper, as well as all rates of our previous papers published since 2003. Accuracy
of our variation laws is discussed. Our analytical laws can be easily implemented in the numerical models
developed to simulate the formation of the SSS.

Unified Astronomy Thesaurus concepts: Solar physics (1476)

1. Overview of the Collision Problem

To better explain some subtle aspects of (de)polarizing
collisions that may not be trivial for nonspecialized readers, and
in order to avoid ambiguities and confusion, we start by
providing a brief overview of collisions and their effects on
light polarization. We also explain how and why collisions
must be included in the models of polarized line formation.

1.1. Basic Definitions and Framework

In the case where an atomic system (atom or molecule) is
excited by isotropic radiation, all the Zeeman sublevels are
equally populated, and as a result, the scattered radiation is
unpolarized. Conversely, atomic systems excited by anisotropic
radiation could emit polarized light. Such polarization is called
scattering polarization (SP), and if it is observed close to the
solar limb at the photospheric level, the SP is also called the
second solar spectrum (SSS; e.g., Stenflo & Keller 1997;
Gandorfer 2000; Stenflo et al. 2000). In fact, during spectral
line formation, processes that break spherical symmetry could
create polarization of the emitted light. However, several
processes occurring in the medium where the line is formed can
reduce this polarization. Isotropic processes intervening in the
SP formation result in a partial or total polarization decrease
(e.g., Sahal-Bréchot 1977; Trujillo Bueno 2001; Derouich et al.
2003b).
Isotropic collisions can have two effects on the observed

radiation (e.g., Barklem & O’Mara 1997; Derouich et al.
2003b):

1. The observed line profile can be broadened.
2. The radiation polarization can be modified. If the

variation corresponds to a decrease, it is called depolar-
ization or relaxation. The depolarization corresponds to
equalization of Zeeman sublevel populations and partial
or total destruction of their coherences.

In this work, we focus our attention on the effect of
collisions with hydrogen atoms. In photospheric conditions
where the SSS is formed, the main collisional contribution
comes from collisions with hydrogen, which is stronger than
the contribution coming from collisions with electrons.
Depolarization rates due to collisions with hydrogen atoms
are often a fundamental ingredient in determining magnetic
fields by interpreting their Hanle effect on the SP (e.g.,
Hanle 1924). The Hanle-based method is currently the only
available approach to obtain weak and turbulent magnetic fields
in the solar atmosphere (e.g., Landi Degl’Innocenti &
Landolfi 2004).
Collisions with electrons are negligible in modeling the SSS.

For example, at photospheric temperatures T∼5000 K, the de-
excitation collision rate C for the Sr λ4607 line is ∼2 ×
10−7×Ne, where Ne is the electron density (Sahal-Bré-
chot 1969). Since Ne∼1012 cm−3 at the photosphere, C∼2
×105 (s−1). The Einstein coefficient for spontaneous radiative
de-excitation for the Sr λ4607 line is A=2.01 × 108 (s−1),
and thus C/A∼ 10−3=1.
A quantum description of collisional depolarization is

generally obtained by assuming that collisions are binary,
complete, and well separated in time. This is an impact
approximation where the collision duration is short as
compared to the time interval between two collisions. The
depolarization rates are computed by multiplying the hydrogen
density and the collisional coefficients calculated for one binary
collision.

1.2. Quantification of the Atomic Levels in the Solar
Atmosphere

Consider an atomic state a ñJMJ∣ subject to the action of
collisions where J is the total angular momentum, MJ is its
projection along the quantization axis, and α represents a set of
the other quantum numbers describing the electronic state.
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Atomic linear polarization is nonzero only if the Zeeman
sublevels having different absolute values MJ∣ ∣ are differently
populated. On the other hand, the existence of circular
polarization in the radiation is caused by differences of
populations between Zeeman sublevels a + ñJ MJ∣ and
a - ñJ MJ∣ . In the case of the SSS, only the atomic linear
polarization is of importance.

In order to describe the state of the emitting/absorbing atom
(A), one resorts to the quantum mechanics, which tells us that at
any instant t the atomic state is described by a wave function
y ñtA∣ ( )( ) . If {a ñJMJ∣ } is an orthonormal basis, y ñtA∣ ( )( ) can be
written as a linear combination of vectors of this basis:

åy añ = ñ
a

at a t JM . 1A
JM

JM J

J

J∣ ( ) ( )∣ ( )( )

The probability of finding the atom in the state a ñJMJ∣ is
given by

a yá ñ = aJM t a t . 2J A JM
2 2

J∣ ∣ ( ) ∣ ∣ ( )∣ ( )( )

The state of A can also be characterized by its density matrix
ρA(t), defined by

r y y=t t t . 3A
A A( ) ∣ ( ) ( )∣ ( )( ) ( )

An important advantage of the density matrix ρA(t) is that it
allows a more general description than that given by a wave
function y ñtA∣ ( )( ) (e.g., Trujillo Bueno 2001). If one considers a
set of N systems that are identical and independent (in our case,
N emitting solar atoms), one defines the total system density
matrix as being the average of the density matrices of
individual systems:

år r=
=

t
N

t
1

. 4A

i

N
A

1

i¯ ( ) ( ) ( )

The density matrix rA¯ then allows us to describe the “state of
an average atom” or the “average state of an atom.” This is a
useful and successful way to describe the overall system
behavior, which is needed to model the SP formed in the Sun’s
photosphere. Note that atomic states are described through the
atomic density matrix rA, but the emitted photons are described
by another density matrix ρphotons (see, e.g., Sahal-Brechot
et al. 1998; Sahal-Brechot & Bommier 2014).

From now on, we will use the notation ρ instead of r tA¯ ( ) for
short. The diagonal element a r aá ñJM JMJ J∣ ∣ is the average
population of the level a ñJMJ∣ . The nondiagonal elements
a r aá ¢ ¢ñJM J MJ J∣ ∣ are the average of the coherence (interference)
between the states a ñJMJ∣ and a ¢ ¢ñJ MJ∣ .

We note that in the standard basis {a ñJMJ∣ } there is no
difference in physical meaning between diagonal elements
(populations) and nondiagonal elements (coherences). The
distinction between populations and coherences depends on the
choice of the quantization axis along which the momentum J is
projected (e.g., Landi Degl’Innocenti & Landolfi 2004). In fact,
the irreducible tensor operators (ITO) basis has been shown to
be the most suitable to model the formation of the SP.

In the case of collisions with neutral hydrogen treated in this
work, transitions with a a¹ ¢ are not of interest since they do
not have any effect on the SSS. Thus, from now on, we omit
the label α for the sake of brevity, and we restrict our notations
to involve only the J number and its projection MJ.

1.3. Irreducible Tensor Operators Basis and Statistical
Equilibrium Equations (SEEs)

1.3.1. Irreducible Tensor Operators Basis

Development of the density matrix over the basis of the ITO
is dictated by the symmetries of the studied problem (e.g.,
Landi Degl’Innocenti & Landolfi 2004). In fact, the ITO basis
is particularly well adapted to the study of problems with
spherical or axial symmetry and allows a noncomplicated
formulation of the SEEs. In addition, quantities expressed in
the ITO have a measurable physical meaning. The passage
relation from the standard basis to the ITO basis is (e.g., Sahal-
Bréchot 1977; Landi Degl’Innocenti & Landolfi 2004)

= å - +
¢

- ¢
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¢
¢

-T k
J k J

M q M

JM J M

1 2 1

, 5

J J
q
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,
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where the entity between parentheses is a j3 -coefficient.
According to the selection rules, one has
- ¢ + ¢ J J k J JJ∣ ∣ , −kJ�q�kJ, and = - ¢q M MJ J .

Let us mention that kJ is the tensorial order and q quantifies
the coherence rate between the Zeeman sublevels.
The density matrix of an “average atom” is ρ. The density

matrix elements in the ITO basis rJ q
kJ are commonly referred to

as multipolar terms or elements. The importance of the ITO
basis is apparent from the fact that certain multipolar terms are
directly proportional to the J-level population and, therefore,
we do not need to know the population of each Zeeman
sublevel. We also note that the limiting case, where the light
polarization is neglected, is retrieved by simple restriction of
the equations to the order kJ=0. Under the impact approx-
imation, the effect of collisions on the atomic density matrix ρ
is proportional to the depolarization (relaxation) matrix.

1.3.2. Statistical Equilibrium Equations

We consider the SEEs for atomic levels that undergo effects
of several physical processes. Let us denote the density matrix

variation rate under the effect of the process i as
rd

dt
i

J
q
kJ

⎜ ⎟⎛
⎝

⎞
⎠ . In the

photosphere where the SSS is formed, the label i is used to refer
to collisions with hydrogen atoms, radiative processes, and the
Hanle effect of a magnetic field. If natural widths of fine-
structure levels are smaller than separations between different
fine levels, one has to solve the SEEs for J-levels. Therefore,
the SEEs, describing the effect of these different processes on
atomic states, can be written as

å
r

=
d

dt
0. 6

i

J
q
k

i

J⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

The incident unpolarized but anisotropic radiation that
illuminates the emitting atom at the solar atmosphere does
not create multipolar elements rJ q

kJ with odd kJ (e.g., Trujillo
Bueno 2001; Landi Degl’Innocenti & Landolfi 2004). Thus, the
subsystem solution that corresponds to the values of odd kJ is

r = k0, odd integer, 7J k
J0

J ( )

which also means that = -N NJM J MJ J . As a result, none of the
atomic levels are circularly polarized, i.e., the SP is linear.
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To interpret the SP, one needs only even values of kJ.
Although the radiation does not contain tensorial orders larger
than 2, orders higher than 2 (if they exist) should be taken into
account in the SEEs. In other words, even if one observes only
the linear polarization associated with kJ=2, density matrix
elements rJ q

kJ with >k 2J are coupled to the orders kJ=0, 2
via the SEEs and therefore cannot be ignored. One needs, for
theoretical calculation of linear polarization, all the multipolar
terms of the atomic density matrix of orders =k 0, 2, 4 ,...J

2. Different Types of (De)Polarizing Collisions

Collisions can be divided into three types:

1. Purely elastic collisions, where the atomic angular
momentum J does not change during the collision. These
collisions mix Zeeman substates JMJ( ) inside a given J-
level.

2. Quasi-elastic collisions, which change the value of J but
without changing the electronic state. These collisions
mix Zeeman substates JMJ( ) and ¢ ¢J MJ( ) with ¹ ¢J J .

3. Inelastic collisions, which correspond to cases where
initial and final electronic states are different.

Let us mention that, during a given binary collision between a
hydrogen atom and the emitting atom, only off-diagonal
elements of the interaction potential matrix are able to vary the
polarization (see, e.g., Derouich et al. 2005a). This is because
off-diagonal elements contain the anisotropic part of the
interaction potential since it depends on the projection MJ of
J. This property is general, i.e., regardless of whether the
emitting atom is in the s-, p-, d-, or f-state, only the anisotropic
part of the interaction potential affects the atomic polarization.
A detailed explanation of this property for an atom in an s-state
interacting with the hydrogen atom in its ground s-state is given
in Section 2 of Derouich et al. (2005a) (see also Derouich &
Barklem 2007). However, the anisotropy of the interaction
potential should not be confused with the fact that the collisions
are isotropic, i.e., the relative velocity distribution during the
collisions is isotropic (and, more precisely, chosen to be
Maxwellian in our depolarization rate calculations).

3. Depolarization and Polarization Transfer Rate

In the impact approximation one assumes that the collisions
are binary and uncorrelated. Hence, the collisional depolariza-
tion is proportional to the hydrogen atom density. Evolution of
the perturbed atom states is governed by the SEEs, which give
the variation of the density matrix elements rJ k

0
J due to

isotropic collisions with hydrogen atoms (see, e.g., Sahal-
Bréchot 1977; Derouich et al. 2003a):

r
r

r

=- ´

+ å
¢ +
+
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Collisions with neutral hydrogen atoms are elastic or quasi-
elastic, i.e., occur inside the same electronic state.

Atomic state orientation is quantified by the density matrix
elements with odd tensorial orders kJ (kJ= 1, kJ= 3, etc.),

while the alignment is given by the even orders (kJ= 2, kJ= 4,
etc.) (e.g., Landi Degl’Innocenti & Landolfi 2004). The
population of the J-level is given by density matrix elements
with kJ=0. Isotropic collisions affect multipolar elements rJ q

kJ

( ¹q 0) in the same way that they affect rJ k
0

J . D J T,kJ ( ) is the
collisional depolarization rate of the order kJ of the level J. In
particular,

1. D J T,0 ( ) is the population destruction rate. We can
verify that it is identically zero. This means that purely
elastic collisions do not change the population of the
level J.

2. D J T,1( ) is the destruction rate of the orientation, which
is directly related to the circular polarization.

3. D J T,2 ( ) is the destruction rate of alignment, which is of
interest, particularly in the interpretation of the SSS, since
it is associated with the linear polarization.

For a complete study of the effect of isotropic collisions with
neutral hydrogen atoms, we must also consider the polarization
transfer rates between J and ¢J atomic levels  ¢D J J T,kJ ( ).
The tensorial order kJ is between zero and J2 if < ¢J J , and if
> ¢J J , ¢ k J0 2J . The rates  ¢D J J T,kJ ( ) result from an

integration over the Maxwellian velocity distribution of
[nH×v×s  ¢J J v,kJ ( )], where s  ¢J J v,kJ ( ) is the polar-
ization transfer cross section, v is the relative velocity, and nH is
the hydrogen density.  ¢D J J T,kJ ( ) is a linear combination
of the usual rates of collisional transitions between the Zeeman
sublevels  ¢ ¢ JM J M T,J J( )(e.g., Sahal-Bréchot 1977;
Derouich et al. 2003a).
By using the general equation giving  ¢D J J T,kJ ( ) (see

Derouich et al. 2003a), one can deduce, for the particular case
where kJ=0, that

 ¢ =
+ ¢ +

´ å  ¢ ¢

=
+
¢ +
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¢ 



D J J T
J J

JM J M T

J

J
J J T

,
1

2 1 2 1

,
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, . 9
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For = ¢J J one finds that

 = D J J T J J T, , . 100( ) ( ) ( )

In addition,

=  - D J T D J J T D J J T, , , . 11k k0J J( ) ( ) ( ) ( )

4. Collisions of Simple Atoms with Neutral Hydrogen

4.1. General Considerations and Variation Laws

We denote as “a simple atom” an atom having only one
valence electron in a p-, d-, or f-state above a filled subshell
(e.g., Na I or K I) or above an electron in an s-state (Sr I or Ca I).
Derouich–Sahal-Bréchot–Barklem (DSB) developed a general
semiclassical theory of calculation of depolarization rates of
lines of simple atoms by isotropic collisions with neutral atoms
of hydrogen (see, e.g., Derouich et al.
2003a, 2003b, 2015, 2017; Derouich 2004, 2017, 2019;
Sahal-Bréchot et al. 2007).
The energy of the valence electron in an excited level is

denoted as Elevel, and the ionization energy of the perturbed
atom in its fundamental state is ¥E . Thus, the ionization energy
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of the atom in its excited level is ( -¥E Elevel). The effective
quantum number associated with the excited level is defined by
(see, e.g., Derouich et al. 2003b)

= -¥
-n E E2 , 12level

1 2* [ ( )] ( )

where ¥E and Elevel are in a.u. and are tabulated in atomic
databases. Following the DSB method, n* characterizes the
atomic state. As an example, by using Equation (12), one finds
n*=2.030 for the Mg 3p level, n*=2.077 for Ca 4p, and
n*=2.117 for Na 3p.

The DSB semiclassical theory of collisions is justified by the
fact that, in the solar temperatures, the process of depolarization
depends essentially on intermediate interatomic distances. This
theory is general, i.e., it is not specific to a given atom and,
thus, allows depolarization rate determination for all neutral
simple atoms. Comparisons to some specific calculations of
quantum chemistry validate DSB general theory (see, e.g.,
Derouich et al. 2003b). In fact, at T=5000 K, for p- and d-
states, the difference between our results and those of quantum
chemistry obtained by Kerkeni (2002) is 11% for Mg I, 8% for
Ca I, 13% for Na I, and 3%–5% for Ca II.

Let us mention that in the ITO basis, each atomic level is
characterized by the total angular momentum J, the tensorial
order k, the orbital momentum l, and the effective principal
quantum number n*. Our numerical code allows us to calculate
all rates of depolarization of levels of simple atoms for a large
range of n* values.

Calculation of D J T,kJ ( ) and  ¢D J J T,kJ ( ) advances
through the following steps:

1. Calculation of the Coulomb wave functions of the
perturbed atom and the interaction potentials between
the perturbed atom and hydrogen.

2. Resolution of the Schrödinger equation, which leads to
the calculation of the transition matrix between the
Zeeman sublevels.

3. Calculation of the transition probabilities in the ITO
basis.

4. Integration on impact parameters and relative velocities to
finally obtain the depolarization and polarization transfer
rates.

These steps are grouped in an interactive code.
We determined a set of data that includes thousands of (de)

polarization cross sections. Then, after averaging over
velocities, we obtained 2400 rates D J T,kJ ( ) and

 ¢D J J T,kJ ( ) in the case of states p =l 1( ), d (l= 2), and
f (l= 3).

We show that these rates generally follow power-law
behaviors with n* that fit by

 ¢ = = ´  ¢

´
= = ´ ´

-

 ¢

-

D J J T n a J J

n

D J T n a J n

, 5000 K 10

, 5000 K 10 , 13

k k

b J J

k k b J

H
10

H
10

J J

kJ

J J
kJ

*
*

( ) ( )

( ) ( ) ( )

( )

( )

where the hydrogen density nH is in cm−3 and DkJ rates are in
s−1. We notice that laws of Equation (13) are based on a least-
squares method. These laws, characterized by tabulated values
of a k

J (in cm3 s−1) and b k
J , are based on 50 hypothetical values

of n* since 1.5�n*�3 for l=1, 2.5�n*�4 for l=2,
and 3.3�n*�5 for l=3. We adopt a step size of 0.1 in the
variation of n*. The n* chosen values cover the majority of the

SSS lines. All 48 possible values of (a k
J , b

k
J ) are tabulated in the

next subsections.
To infer the rates (at =T 5000 K) corresponding to a real

simple atom, one has to determine the value of n* and, then,
can apply the laws of Equation (13). As we discussed in our
previous papers (e.g., Derouich et al. 2015), the depolarization
and polarization transfer rates have temperature dependence of
T0.38. Thus, one can assume that

 ¢ =  ¢ = ´

= = ´

D J J T D J J T
T

D J T D J T
T

, , 5000 K
5000

, , 5000 K
5000

.

14

k k

k k

0.38

0.38

J J

J J

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( ) ( )

( )

4.2. p-states

Grids of collisional rates are computed for 16 values of n* in
the interval [1.5, 3] with a step size of 0.1. Each value of n*

corresponds to a hypothetical simple atom. For simple atoms in
the p-states, one needs to consider the states P2

1 2, P1 1, and
P2

3 2. All nonzero rates associated with simple atoms in the p-
states are as follows:

1. D1 1

2
( ): orientation destruction rate of the state P2

1 2.

2. D 11( ) and D 12 ( ): orientation and alignment destruction
rate of the state P1 1, respectively.

3. D1 3

2
( ) and D2 3

2
( ) : orientation and alignment destruction

rate of the state P2
3 2, respectively; and D3 3

2
( ): linked

indirectly to circular polarization via the SEEs.
4. D0 1

2

3

2
( ) and D1 1

2

3

2
( ): population transfer and

orientation transfer from the level P2
1 2 to the level P2

3 2,
respectively.

After establishing the variation laws of Equation (13), we
obtain the akJ and bkJ values corresponding to the p-states.
These values are given in Table 1.

4.3. d-states

We consider a collision problem between an atom in its d-
state and neutral hydrogen, which, during the entire collision,
remains in its fundamental state 1 s. By using our numerical
code, we obtain general results of any depolarization and
polarization transfer rates for values of n* ranging from 2.5 to
4. All nonzero akJ and bkJ values associated with the d-states of
simple atoms are provided in Table 2.

Table 1
Values of  ¢a J JkJ ( ) and  ¢b J JkJ ( ) Coefficients for the p-states

p-states: P1 J ¢J k  ¢a J JkJ ( )  ¢b J JkJ ( )
P1 2 and P3 2

1/2 1/2 1 5.1 2.3241
1 1 1 18.00 2.8711
1 1 2 16.32 2.8100

3/2 3/2 1 6.21 2.5101
3/2 3/2 2 12.229 2.7517
3/2 3/2 3 8.44 2.667
1/2 3/2 0 9.75 2.7054
1/2 3/2 1 1.485 2.7211

Note. The akJ coefficients are given in cm3 s−1.
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4.4. f-states

As in the case of states p (l= 1) and d (l= 2), the rates
calculated for f-states (l= 3) generally follow the laws of
Equation (13). The values of n* range from 3.3 to 5. It is
obvious that the values of n*, which are of interest for f-states,
are larger than those for p- and d-states. Values of akJ and bkJ

are shown in Table 3.

5. Depolarization Rates for Atoms with Hyperfine Structure

If an atom possesses a nuclear spin I, the hyperfine
components of a fine J-level can show interesting, and
sometimes unexpected, profiles in the SSS. For example, Na I
has a spin nuclear I=3/2, and therefore two hyperfine levels
are possible in the case of level P2

1 2: F=1 and 2. Although
the level P2

1 2 is not linearly polarizable since J=1/2 does
not allow the creation of a tensorial order kJ=2 inside the fine
level, hyperfine levels F=1 and 2 are linearly polarizable by
scattering of anisotropic radiation and thus can be observed in
the SSS.

Intricate and complex structures of SSS profiles, such as Na
λ5896, K λ7699, Li λ6707, Ba λ4554, etc., should be
elucidated in terms of hyperfine-structure effects. Theoretical
works and observations (e.g., Stenflo & Keller 1997; Stenflo
et al. 2000; Smitha et al. 2014; Belluzzi et al. 2015; Sampoorna
et al. 2019) show the importance of hyperfine structures in the
SSS. In this context, it is important to include collisional (de)
polarization rates of a large number of hyperfine levels in the
SSS modeling to infer interesting information about the solar
photosphere.

In previous works (see Derouich et al. 2017), we elaborated
the main steps of two methods, direct and indirect calculation
of (de)polarization rates for atoms with hyperfine structure. We
explained why it is convenient to adopt the indirect method.
According to the indirect method, one assumes that during the
collision the emitting atom nuclear spin is conserved (e.g.,
Derouich et al. 2017). This is the frozen nuclear spin
approximation, where depolarization and polarization transfer
rates of hyperfine levels can be expressed as a linear
combination of rates associated with the fine levels. In fact,

the polarization transfer rates can be written as (e.g.,
Nienhuis 1976; Omont 1977)
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Equation (15) is valid for cases where initial level ¢ñJI FF∣( ) and
final level ¢  ¢¢¢ñJ I F F∣( ) are different. In addition, Equation (15)
takes into account the possibility of coherences between
hyperfine levels F and ¢F inside the same fine level J.
In the cases of purely elastic collisions, where initial and

final hyperfine levels are the same, the depolarization of the
hyperfine level ñJI FF∣( ) is given by

= 
- 

 



JI F T JI FF JI FF T

JI FF JI FF T

, ,

, . 16
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k

0F
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Depolarization and polarization transfer rates can be obtained
by using Tables 1–3 together with Equation (15).
If the coherence between the hyperfine levels F and ¢F inside

the same fine J-level is neglected, we denote  JI F T,kF(( ) ) by
 JFkF( ) and ¢  ¢  ¢¢¢ JI FF J I F F T,kF(( ) ( ) ) by

 ¢ ¢ JF J FkF( ). Variation of the density matrix elements

Table 2
Values of  ¢a J JkJ ( ) and  ¢b J JkJ ( ) Coefficients for the d-states

d-states: D2 J ¢J k  ¢a J JkJ ( )  ¢b J JkJ ( )
D3 2 and D5 2

3/2 3/2 1 1.5878 2.3375
3/2 3/2 2 3.0478 3.5063
3/2 3/2 3 2.143 3.0124
2 2 1 4.3625 2.7534
2 2 2 7.6841 3.1696
2 2 3 5.88876 3.0531
2 2 4 5.37 2.8001
5/2 5/2 1 3.280 2.6001
5/2 5/2 2 6.2336 2.9796
5/2 5/2 3 4.77716 2.7831
5/2 5/2 4 4.653 2.8018
5/2 5/2 5 5.044 2.7934
3/2 5/2 0 3.8599 3.2736
3/2 5/2 1 −0.257 3.3078
3/2 5/2 2 6.6651 3.4573
3/2 5/2 3 −0.126 3.3111

Note. The akJ coefficients are given in cm3 s−1.

Table 3
Values of  ¢a J JkJ ( ) and  ¢b J JkJ ( ) Coefficients for the f-states

f-states: F3 J ¢J k  ¢a J JkJ ( )  ¢b J JkJ ( )
F5 2 and F7 2

5/2 5/2 1 1.29859 3.35014
5/2 5/2 2 1.5521 3.5642
5/2 5/2 3 1.3590 3.5667
5/2 5/2 4 1.4630 3.5330
5/2 5/2 5 1.01188 3.4677
3 3 1 2.97391 3.1598
3 3 2 3.4327 3.4048
3 3 3 3.12132 3.1780
3 3 4 3.17449 3.0056
3 3 5 2.87098 2.9978
3 3 6 2.99018 2.7797
7/2 7/2 1 2.42326 3.1009
7/2 7/2 2 2.6984 3.2119
7/2 7/2 3 2.51373 2.9235
7/2 7/2 4 2.59771 2.8799
7/2 7/2 5 1.87740 3.1354
7/2 7/2 6 2.01073 2.9980
7/2 7/2 7 1.73455 2.7087
5/2 7/2 0 2.6867 3.2718
5/2 7/2 1 −0.602019 3.4501
5/2 7/2 2 2.0001 3.5076a

5/2 7/2 3 −0.408094 3.0087
5/2 7/2 4 1.20930 2.8709
5/2 7/2 5 −0.367204 3.6086

Notes. The akJ coefficients are given in cm3 s−1.
a This law is valid for 3.3�n*�4.3.
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due to the isotropic collisions with neutral hydrogen becomes

r
r

r

= å ¬ ¢ ¢ ´ ¢ ¢

- å
+
¢ +

 ¢ ¢ +

´

¢ ¢¹

¢ ¢¹



 

d JF

dt
JF J F J F

F

F
JF J F JF

JF

2 1

2 1

.

17

q
k

J F JF
k

q
k

J F JF
k

q
k

coll

0

F

F F

F

F

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( ) ( )

( ) ( )

( )
( )

( )

6. Complex Atoms

Extension of our results from simple to complex atoms is
motivated by the fact that a complete study of the SSS
necessarily requires the interpretation of spectra of complex
atoms (Manso Sainz & Landi Degl’Innocenti 2002; Derouich
et al. 2005b; Sahal-Bréchot et al. 2007). In fact, more than 85%
of the polarized lines presented in Gandorfer (2000) are
associated with complex atoms.

Calculation of the depolarization and transfer polarization
rates for levels of complex atoms requires determination of the
collision matrix. Such a calculation corresponds to the
resolution of the Schrödinger equation, which implies that the
interaction potential elements must be determined. This is the
so-called direct method, which is very complicated. This
method might be even impossible in most of the cases. In fact,
it is very complicated to undertake the problem of collisions
between a complex atom like Ti I or Fe I and hydrogen in solar
temperature conditions.

To solve this problem, Derouich et al. (2005b) proposed an
indirect method based on the frozen core approximation. In the
framework of this indirect method, the complex atom is
assumed to be composed of the following:

1. Electrons in an internal subshell where their total orbital
momentum is zero.

2. Outer incomplete (open) shell containing electrons with
nonzero total orbital momentum denoted as Lc and a total
spin Sc. This shell is called the core of the complex atom.

3. An optical electron with orbital angular momentum l and
spin s (s=1/2).

We adopt the frozen core approximation, that is, the core
angular momentum is conserved during the collision. There-
fore, the collisional transition matrix elements between levels
of complex atoms are linear combinations of transition matrix
elements between levels of simple atoms. We have established
the equation giving the coefficients of this linear combination
(Equation (8) of Derouich et al. 2005b). Similarly, by applying
the frozen core approximation in the ITO basis, one can also
find that the depolarization and polarization transfer rates for
complex atoms are given by linear combination of those
associated with simple atoms given by Tables 1–3. Coefficients
of the linear combination are similar to those given by
Derouich et al. (2005a) and by Sahal-Bréchot et al. (2007).

Note that the total orbital moment is given by = +L L lc
and the total spin = +S S sc . Atoms or ions are considered to
be simple if Lc=0. Simple atoms have an electronic
configuration with only one valence electron above a
completely filled subshell or above a subshell having an
electron in an s-state.

We suppose that only the valence electrons undergo the
effect of the interaction with neutral hydrogen. The internal
electrons are not affected by the collisions in the sense that Lc,
Sc, and = +J L Sc c c are conserved in the framework of the
frozen core approximation.
We consider that = + J Jc is the total level angular

momentum of the complex atom. The polarization transfer rates
 ¢  k ( ) are readily obtained by carrying out the formal

substitutions  F and I→Jc on Equation (15). Thus, rates
of complex atoms  ¢  k ( ) are given by the following
linear combination of the rates of simple atoms

 ¢D J J T,kJ ( ):
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We particularly note that rates of levels of complex atoms
 ¢  k ( ) with even tensorial order k , which affect the

linear polarization of complex atoms, can be expressed as a
function of rates  ¢D J J T,kJ ( ) that affect circular polariza-
tion of simple atoms. For example, for = 1 and =k 2, if
one has J=3/2, odd values kJ=1 and 3 are involved in the
summation of Equation (18).
For depolarization rates of complex atoms we apply

=  -        D T, . 19k k0( ) ( ) ( ) ( )

7. Recovering Previous Results

We determined a set of data that includes thousands of (de)
polarization cross-section values.1 Instead of publishing
collisional data as they are, we make the choice to collect
them in a more compact form as 48 variation laws
characterized by the tabulated a k

J and b k
J values.

Readers should be able to derive all data presented in our
previous papers from the comprehensive data provided in this
manuscript in the form of variations laws. In addition to the
data that have been published previously, one can find
additional new data that are published in the present manuscript
for the first time. The data of this work are applicable for any
simple atom, any complex atom, and any atom with hyperfine
structure provided that l=1, 2, or 3. Hence, these data cover
the majority of polarized lines associated with neutral atoms in
the SSS.
Using our variation laws, all data of our previous papers

published since 2003 can be recovered. For example, previous
results concerned with p-states of Derouich et al. (2003b) and
Derouich (2004) are recalled in Table 4. Figure 1 presents a
confrontation between results of Table 4 and results obtained
by applying our variation laws determined in this work. It is
straightforward to see that both curves are very similar, which
means that results of Derouich et al. (2003b) and Derouich
(2004) are nothing but particular cases of our variation laws.
In fact, our intention in this work is to produce for the reader,

in a single document and in a compact way, practically all the

1 Every (de)polarization cross-section calculation requires a determination of
the interaction potential and a Schrödinger equation resolution by using our
numerical code of collisions.
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depolarization and polarization transfer rates of interest within
the framework of neutral atom SSS study.

Let us now take some important particular cases in the SSS.
We apply our method to the depolarization calculation for the
levels Mg I p P3 1

1, Ca I p4 P1 1, and Na I 3p P2
3 2. We compare

depolarization rates D2 of these levels, previously calculated in
Derouich et al. (2003b), to the rates calculated by applying our

variation laws in cases of values of n* for Mg I 3s 3p, Ca I 4s
p4 , and Na I 3p. Results are provided in Table 5. It can be
easily concluded that our variation laws permit us to retrieve,
with good precision, depolarization rates D2 previously
published.

8. Concluding Remarks

In this work, new data were obtained with our numerical
code of collisions. Then, by using a least-squares fit of all
numerical data (i.e., new data and data published since 2003),
we obtained 48 new variation laws that allow us to obtain
depolarization and polarization transfer rates for all simple
atoms in their p-, d-, and f-states. The quality of the fit may be
evaluated in the example of Figure 1.
Using our variation laws, polarization transfer and depolar-

ization rates of hyperfine levels can be easily obtained through
linear combinations on the basis of algebraic coefficients and
quantum numbers. The same line of reasoning allows indirect
determination of rates associated with  -levels of complex
atoms. This work is thus a comprehensive collection of
depolarizing collisional data that can be implemented in
modeling the SSS for solar spectropolarimetric applications.
Readers should be able to derive all data presented in our

previous DSB papers from the comprehensive data provided in
this manuscript in the form of variation laws. In addition to the
data published earlier, one can find additional new data that are
published in the present manuscript for the first time. The data
set presented in this work covers the majority of polarized lines
associated with neutral atoms in the SSS.
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