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Abstract
The external Ne impurity seeding has been applied to reduce the heat flux to the divertor target
as well as plasma temperature to prolong the lifetime of the EAST upper tungsten (W) target.
The erosion of the W target during the Ne seeding in different divertor operation regimes has
been assessed by using the semi-empirical formula, while the plasma background was provided
by SOLPS modeling. The simulation results showed that the Ne impurity played a critical role
in the W erosion, which depended strongly on the operation regimes. By increasing the Ne
seeding rate, the discharge regime was varied from the attached to detached condition. During
the attached regime, the insufficient seeded Ne impurity could reduce the heat flux to the target,
but the erosion of the W target was obviously enhanced, which may shorten the target lifetime.
By the sufficient impurity seeding, the detached condition could be achieved, and the W target
erosion was obviously suppressed. The high-power discharge brings great challenge to the W
target lifetime, and the erosion is mainly induced by Ne and D ions. The contribution of each
species changes greatly with different Ne seeding rates. In addition, the lifetime of the EAST
upper W divertor has also been evaluated in different operation regimes during high input power
discharge.
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1. Introduction

The application of tungsten (W) as the plasma-facingmaterials
(PFMs) has been widely accepted by different tokamaks, due
to its favorable properties such as high melting temperature,
high thermal conductivity, low sputtering yields, and low fuel
retention rate [1–4]. Pure W is chosen as the PFM of the ITER
divertor (dome and both targets) [5]. Since the high plasma
temperature in the core (thousands eV) is required to satisfy
the deuterium (D)-tritium (T) fusion reaction requirement, the
plasma wall interactions (PWI) becomes to a great concern
for the PFMs protection during high-performance long-pulse
discharges [6]. Moreover, W is a very strong radiator in the

plasma temperature relevant to the core plasma, thus the cent-
ral concentration of W impurity must be kept at or below 10−5

to avoid the loss of plasma operation and performance [7]. The
W impurities are mainly produced by the erosion of (1) the
divertor by the intense plasma flux [8] and (2) the first wall by
the energetic particles [9, 10].

To prolong the lifetime of the W divertor and suppress the
W erosion, it is required not only to reduce the power load to
the target (<10 MW m−2), but also to cool down the temper-
ature of plasma near the target [11, 12]. The radiative diver-
tor operation is a good method to raise the divertor energy
dissipation, thus reduce heat flux to the target. Due to the
plasma density is limited by the current, it is hard to achieve
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detached plasma by only increasing the central plasma dens-
ity. The external gas seeding, such as argon (Ar), neon (Ne)
or nitrogen (N), is the alternative method [13]. The applica-
tion of Ne seeding has been proposed and studied on ITER,
showing the advantages of power radiation and impurity con-
trol [14]. However, the external noble gas seeding may make
the erosion of W PFMs at the divertor more complicated. As
we know that the W sputtering yield depends strongly on the
incident particle species and their energies, the introduced Ne
to W has much lower sputtering energy threshold than that of
D, and for the same incident energy, Ne has much higher sput-
tering yield than that of D. This indicates that the lifetime of
W target will be threatened more seriously by seeding impur-
ity than the fuel particle [15–18]. Therefore, it is important to
understand the erosion ofWdivertor target during the impurity
gas seeding in different divertor operation regimes.

EAST is a fully superconducting divertor tokamak with D-
shaped poloidal cross-section. The upper divertor of EAST
has been upgraded to use ITER-like mono-block W PFM in
2014. Now, W and carbon (C) is, respectively, used as PFMs
of upper and lower divertor on EAST [19]. Our previous work
[11] reported that on EAST C impurity produced at the lower
graphite targets could transport to the upper W targets and
cause the W erosion. The concentration of the C density at
the upper divertor region is low, and thus, the W erosion rate
by C impurities is small. However, during the high power dis-
charge, the erosion of W by D particle becomes to a serious
problem, and the erosion of EASTW divertor with the impur-
ity gas seeding remains unsolved.

In this work, the erosion of upper W divertor on EAST dur-
ing the Ne injection in different divertor operation regimes
has been assessed. The two-dimensional code package SOLPS
[20] has been applied to provide the divertor plasma back-
ground, and the erosion of the W divertor has been calculated
by using the semi-empirical formula [15–17]. The erosion
of W, by D+, carbon ions and Ne ions, was considered.
The power across the separatrix was varied from 1.5 MW to
8.0 MW to simulate from the low power to high power dis-
charges. Under the same input power and core-edge-interface
(CEI) D+ density conditions, by only varying the Ne seed-
ing rate, the divertor operation regime was changed from the
attached to detached. The erosion ofW during different condi-
tions by different particles has been analyzed, and the lifetime
of the W target has also been discussed according to the cal-
culation.

2. Simulation model

2.1. The divertor plasma simulation

In the present work, the SOLPS5.0 code package is used to
simulate the divertor plasma parameters [20]. The D, C, Ne
with all charge states are considered. The electrons and ions
are handled by B2.5, and neutral particles (D, C, Ne and
D2) are traced by EIRENE [20, 21]. The atomic and molecu-
lar processes including ionization, charge exchange, dissoci-
ation, elastic collisions, and volume recombination process are
included, which is similar to [22]. The setups of the boundary

Figure 1. SOLPS simulation mesh for EAST USN configuration.
The plasma-facing materials, neon gas seeding and pumps are
marked in the sketch.

conditions, and radial transport coefficients are the same to our
previous work [11, 23, 24].

The typical upper-single null (USN) magnetic field config-
uration of EAST is used, as shown in figure 1. EAST has the
graphite lower divertor targets and W upper divertor targets,
and the main chamber PFCs (first wall) is molybdenum (Mo).
The reflection of D on different materials plays important role
in the divertor plasma, and the reflection rates in this work
are identical to [25]. The input power PSOL and D+ density
at the core boundary of the modeling grid (e.g. r-rsep at the
outer mid-plane (OMP) ~6.6 cm) are fixed. For the graphite
PFCs, the physical sputtering yield Yphys is calculated by the
modified Roth-Bohdansky formula, while the chemical sput-
tering yield is fixed to 0.01. The eroded W and Mo impurities
are not included. The Ne atoms are injected from upper outer
divertor region as shown in figure 1. Four pumps are set at
the corner of each divertor with the recycling rate fixed to 0.8.
Lithium (Li) coating has been widely applied to EAST exper-
iment, which made the PWI much more complicated. It has
been reported in [26]. that with Li coating, the lowZ impurities
can be significantly suppressed; at the meanwhile, the effect-
ive W sputtering by Li impurity is low. In the future devices
such as CFETE and ITER, Li will not coexist with W PFCs;
therefore, Li impurity is neglected in the present work. Other
impurities such as N and O are not included due to their low
content.

In the current simulation, the input power varies from
1.5 MW to 8.0 MW, and the D+ density at the CEI is fixed
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to 3.5 × 1019 m−3. The Ne puffing rate changes from 0.0 to
2.0 × 1020 Ne atoms/s. Due to the numerical difficulty, drifts
are not included. Only steady-state condition is simulated and
the ELMs condition is not taken into consideration.

2.2. The tungsten erosion calculation

When the particle hits the wall, if the material lattice atom
gets enough momentum which can overcome surface binding
energy, physical sputtering occurs [27]. Therefore, there exists
a sputtering threshold energy. The energy and angular depend-
ence of physical sputtering yield for W (Yphy,w) with different
incident ions can be calculated by using semi-empirical for-
mula [15–17]:

Yphy(E0) = QSn(ε)[1− (Eth/E0)
2/3

](1−Eth/E0)
2
(cosα)−f

exp{f[1− (cosα)−1
]cosαopt} (1)

The definition of each quantities and more details can be
found in [28]. The W erosion rate is expressed as

REroSρ
M

NA = Yphy,WΓS (2)

and equation(2) can be derived to

REro = Yphy,WΓM/(ρNA) (3)

where REro represents the W erosion rate, M and ρ is atomic
mass and density ofW, respectively,NA is the Avogadro’s con-
stant, Γ is the incident particle flux density and S is the area of
the target [29]. The erosion rate in equations (2) and (3) is one
dimension, and the direction is assumed to be perpendicular to
the target.

In this work, to calculate Yphy,w, an averaged incidence
angle of 45◦ is assumed [11]. The incident energy depend-
ences of Yphy,w for bombardment with D, C and Ne are shown
in figure 2. It can be seen that Yphy,w increases as the incident
energy increases once the energy exceeds the energy threshold.
The energy threshold for W, with D, C and Ne is about 220 eV,
50 eV and 38 eV, respectively [27, 30–32]. For the same incid-
ent energy, heavier ion has larger Yphy,w than that of lighter ion,
e.g. the Yphy,w with C and Ne is much larger than with D.

3. Simulation results

3.1. The divertor plasma during Ne impurity seeding

The high power long-pulse discharge is necessary for EAST
to investigate the steady-state operation, which is required by
ITER [33]. This will bring great challenge to the W diver-
tor to dissipate energy and protect the target. The divertor
plasma parameters under different power across the separat-
rix PSOL can be obtained by using SOLPS modeling. Due
to the existence of the divertor in-out asymmetry, the outer
divertor usually suffers higher heat flux load [34, 35] . We
focus on the outer divertor study in this work. The averaged
discharge shot number on EAST is about 3000 shots/year,
and shot duration is about 60 s (long-pulse)/10 s (shot pulse

Figure 2. Energy dependence of physical sputtering yield of W
(Yphy ,w) for bombardment with D, C and Ne. The incident angle is
45◦.

in averaged). The thickness of the W layer is 5.5 mm from
plasma-facing surface (PFS) to the water cooling tube. We
assume all the shots belong to long-pulse, and the expected
lifetime of the PFM is 15 years, therefore, REro should be con-
trolled bellow 2.0 nm s−1. Since ELM, which can significantly
increase REro, is not included in the present model, the crit-
ical erosion rate during the ELM-free period should at least
be REro < 1.0 nm s−1 on EAST. When there is no Ne seeding,
figure 3 shows the peak and OSP values of electron temperat-
ure (Te), deposited energy density (q), and the corresponding
REro as functions of PSOL at the outer target. REro is calculated
by using equation (3) via sputtering yield and incident flux. It
can be seen that Te and q raises significantly as PSOL increases.
When PSOL = 1.5 MW, the peak Te is about 54 eV, the peak
q is ~ 3.4 MW m−2, and the corresponding peak REro is only
1.1 × 10−3 nm s−1, which is induced mainly by C impurity
from the lower graphite target [11]. Both q and REro satisfy the
divertor requirements, therefore, the additional impurity seed-
ing is not necessary. As PSOL increases to 3.0 MW, the peak Te
raises to about 245 eV. Although qpeak ~ 5.7 MW m−2 is still
below 10MWm−2, butREro increases to as high as 1.8 nm s−1.
When PSOL is beyond 5 MW, both the peak q and REro exceed
the tolerance of W PFMs. Therefore, the external gas seeding
to increase the divertor power radiation, thus to reduce both Te
and q, is necessary. It should be noted that the peak value of
each parameters does not necessary appear at the same loca-
tion, therefore, we focus on the OSP analysis unless otherwise
stated.

As it is pointed out that the external impurity seeding is
necessary during the high power discharge to satisfy both
the heat load and W erosion limitation. To illustrate the
effects of impurity gas seeding on the divertor plasma, the
divertor plasma comparisons between with (Ne seeding rate
6.0 × 1019 atoms/s) and without Ne seeding cases are shown
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Figure 3. The peak (maximum value) and outer strike point (OSP) values of (a) electron temperature Te, (b) deposited energy density q,
and (c) W erosion rate REro at the outer target as functions of PSOL without Ne seeding.

Figure 4. The (a) Te and (b) heat flux q profiles along the EAST
upper outer divertor with (seeding rate is 6.0 × 1019 atoms/s) and
without Ne seeding, PSOL = 3.0 MW.

in figure 4 (PSOL = 3.0 MW). It can be seen that by intro-
ducing Ne impurity, the peak Te reduces from ~ 245 eV
to ~ 29 eV, peak q falls from ~ 5.7MWm−2 to ~ 0.6MWm−2.
This proves that the Ne seeding can significantly increase the
divertor power dissipation, thus the damage risk of the W
divertor during the discharge may be greatly reduced. The

corresponding total Ne impurity density distribution (
n=10∑
n=0

nn+Ne )

Figure 5. The 2D contour of the total Ne density distribution (sum
over all charge states including atom). The input power is
PSOL = 3.0 MW and Ne seeding rate is 6.0 × 1019 atoms/s.

in the simulation domain is shown in figure 5, where nn+Ne is
the density of Ne with the charge state n. It is clearly that
Ne impurity mainly distributes in the divertor and private flux
regions. The Ne particles across the separatrix are ionized to
the highest charge state, and accumulate in the core region
[36]. The highest Ne density appears along the separatrix in
the inner and outer divertor regions, which manifests that the
vicinity of strike points faces the most intense Ne flux. As a
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Figure 6. The profiles of (a) the averaged incident energy (the inset-graph is the Te), (b) calculated W physical sputtering yield, (c) the
incident particle flux density, and (d) the W erosion rate, of/by Ne ions with different charge states, at the EAST upper outer divertor target.
The input power is PSOL = 3.0 MW and Ne seeding rate is 6.0 × 1019 atoms/s.

result, the erosion of the W target by Ne ions may become to
a severe problem.

According to figures 3 and 4, it can be found that the power
load to the W target can be reduced to below 10 MW m−2

without too much difficulty on EAST by external impurity
seeding, indicating that the power load handling can be not a
major concern. This is in agreement with previous studies [37,
38]. Thus, we mainly focus on the erosion of W target study
in the following section.

3.2. The erosion of W divertor during Ne seeding

The semi-empirical formula equation (1), which is a function
of incident particle species, incident particle energy and angle,
is applied to calculate the physical sputtering yield when the
particle hit the W target. The incident angle is fixed to 45◦

based on the ERO simulation of EAST andDIII-D experiment.
To illustrate the calculation of theW target erosion, the plasma
condition of figure 5 is chosen, i.e. the PSOL = 3.0 MW and

Ne seeding rate 6.0 × 1019 Ne atoms/s. Figure 6(a) shows the
incident energy of Ne ion with each charge state at the outer
W target, and the corresponding Te along the target can be
seen in the inset-graph. The peak Te is about 29 eV, whereas
the peak incident energy of Ne+ and Ne10+ is about 100 eV
and 600 eV, respectively. The ion can be accelerated by the
sheath before incident on the target, and the increased energy
is ∆εΦz, where Φ is the sheath potential and z is the charge
state. The peak energy of Nen+ is far beyond the W sputter-
ing energy threshold (38 eV), therefore, the physical sputter-
ing occurs [11, 39]. The calculated YW,phys by Ne ions with
each charge state is shown in figure 6(b). Obviously, higher
charge state Ne ion leads to larger YW,phys due to higher incid-
ent energy. The peak YW,phys induced by Ne10+ reaches as high
as 0.4. The incident Ne ion flux density is presented in figure
6(c), it can be seen that Ne ions with low charge states (1–4)
have higher particle flux densities than those of high charge
states (5–10), due to that most of low charge state Ne ions
exist in the divertor region. The target erosion rate REro, which
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Figure 7. (a) The REro by different species along the outer W target, and (b) the contribution of each charge state Ne ions to the total
Ne-induced REro (the corresponding peak REro at r-rsep = 0.05 m as the dash line labeled in figure 7(a)). The input power is PSOL = 3.0 MW
and Ne seeding rate is 6.0 × 1019 Ne atoms/s.

the product of Γ and YW,phys can be calculated by equation(3),
and is shown in figure 6(d). As can be seen that the peak REro
ranges from ~ 0.05 nm s−1 to ~ 0.22 nm s−1, and Ne8+, Ne3+

and Ne4+ can lead to the highest W erosion rate. Although
Ne8+ has lower flux density than those of Ne3+or Ne4+, the
incident energy of Ne8+ is much larger than Ne3+or Ne4+.
Consequently, Ne8+ ion gives rise to the biggest threat to the
W target (peak REro ~ 0.22 nm s−1). It should be noted that the
peak YW,Phys and Γ is not in the same position. The peak YW,Phys
locates in the far OSP region and the peak Γ is closed to the
OSP, as a result the location of peak REro offsets the OSP.

Summing the W erosion rate (RNe
n+

Ero ) by Ne with each
charge state in figure 6(d), the total erosion induced by the

Ne ions can be obtained (RNeEro =
10∑
n=1

RNe
n+

Ero ). The erosion rate

by D and C species can be calculated via similar method. The
total W erosion rate of the outer target is the sum of the three
species contribution, i.e. RtotalEro = RDEro+RCEro+RNeEro, which is
shown in figure 7(a). It can be seen that in this condition,
the divertor target was eroded mainly by Ne ions, reaching
to ~ 1 nm s−1. The energy of D+ is below the W sputtering
energy threshold (~220 eV) since the peak Te is only ~29 eV.
The content of C is very low [11], therefore, it plays a small
role in the W erosion. The peak erosion rate (at the position of
r-rsep = 0.05m) is selected, and the ratio of erosion contributed
by different Ne ions is shown in figure 7(b). It is clearly that
Ne3+ and Ne4+ ions lead to the highest ratio of the erosion,
which is in agreement with figure 6(d). This result reveals that
the seeded impurity becomes to the biggest threat to the W
erosion in the attached (or partial detached) plasma operation
regime. It drives us to understand the W erosion in different
regimes to figure out the best solution regards to the target pro-
tection.

The high power discharge is the greatest challenge to theW
target lifetime. To fully assess the erosion of the target during
the impurity seeding, three input powers, i.e. PSOL = 3.0 MW,

5.0 MW and 8.0 MW, are chosen. By changing the seeding
rate, different operation regimes from attached to detached
can be obtained as shown in figure 8. The peak Te is reduced
significantly as Ne puffing rate increases, which is in agree-
ment with [36, 40]. When PSOL = 3.0 MW, the peak Te
is ~ 245 eV without Ne seeding, and it falls to 5.8 eV when
Ne seeding rate reaches 7.5 × 1019 atoms/s. The correspond-
ing peak REro decreases from ~ 1.8 nm s−1 to 0.05 nm s−1. For
PSOL = 5.0MW, the peak Te decreases from ~ 415 eV to 4.1 eV
as the puffing rate increases from 0 to 1.5× 1020 atoms/s; and
the peak REro reduces from 3.9 nm s−1 to 0.04 nm s−1. Dur-
ing the highest power PSOL = 8.0 MW, the peak Te reduces
from ~ 600 eV to 3.3 eV as the Ne seeding rate reaches
2.0× 1020 atoms/s. The peak REro is 6.4 nm s−1 without seed-
ing, and falls to 0.033 nm s−1 when Ne seeding rate reaches
2.0 × 1020 atoms/s. The simulation results demonstrate that
the REro first increases to a higher value, and then decreases
significantly as the seeding rate increases (PSOL = 5.0 and
8.0 MW). The erosion of the W targets depends strongly
on the divertor Te as shown in figure 8(c). To reduce the
erosion rate below 1 nm s−1, peak Te < 18 eV should be
satisfied for all three PSOL. Higher PSOL requires lower Te
for the same erosion rate limitation. Only when the incid-
ent energy is below the sputtering threshold, the erosion of
the target can be fully eliminated. However, the simulation
finds that the erosion can be greatly suppressed, but is not
fully eliminated even peak Te < 5 eV [41]. It reveals that
higher PSOL requires more impurity to effectively reduce the
plasma temperature, and this will face more serious erosion
problem.

To explain the variation of peak erosion rate with the Ne
seeding rate under different heating power, the composition of
total REro, which is induced by D, C and Ne, respectively, is
presented in figure 9. We can see that the C ions play the negli-
gible role in the target erosion. The total erosion ismainly con-
tributed by D and Ne ions. From equation (3), we can obtain
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Figure 8. The peak (a) Te, the peak (b) W erosion rate, as functions of Ne seeding rate and the peak (c) erosion rate as functions of the peak
Te, PSOL = 3.0 MW, 5.0 MW and 8.0 MW, respectively.

Figure 9. The peak erosion rate, and the erosion by D+, C ions and Ne ions, as functions of Ne seeding rate, (a) PSOL = 3.0 MW, (b)
5.0 MW and (c) 8.0 MW.

that RDEro ∝ ΓD+YD
+

Phys,W and RNeEro ∝
10∑
n=1

ΓNen+Y
Nen+
Phys,W. During

the impurity seeding, the reduction of Te leads to the decrease
of YD

+

Phys,W as well as RDEro. The value of RNeEro depends on the

competition betweenΓNen+ and YNe
n+

Phys,W.ΓNen+ increases, while

YNe
n+

Phys,W decreases as Ne seeding rate increases. When the seed-
ing rate is low, Te is still high, ΓNen+ plays the dominated role,
thus RNeEro increases as the seeding rate raises. As the seed-
ing rate further increases, Te reduces, and YNe

n+

Phys,W plays more
and more important role, until to be the dominant factor, and
then RNeEro decreases as the seeding rate continuously increases.
The total erosion rate RtotalEro R

D
Ero+RNeEro is also the competition

betweenRDEro andR
Ne
Ero.When PSOL = 3.0MW, it is clear that as

the seeding rate increases RtotalEro decreases due to the reduction
of RDEro, and then it increases due to the enhance of R

Ne
Ero (dom-

inated by the raising of ΓNen+), finally it turns to decrease due
to the reduction of RNeEro (dominated by the decrease of YNe

n+

Phys,W).
For the higher PSOL (i.e. 5.0 MW and 8.0 MW), the intro-
duction of Ne impurity can significantly increase RNeEro when
the Te is not effectively reduced, due to that the sputtering
threshold for Ne to W is low. However, in the same condition,
the insufficient seeded impurity becomes to the main threat

to the lifetime of the W target. Higher PSOL leads to potential
higher RNeEro, which will become much more critical for future
fusion device such as CFETR and DEMO. Only the sufficient
impurity seeding can suppress the erosion of the target.
REro can be used to evaluate the lifetime of the divertor. It

can be seen from figures 10(a)–(b) that the peak particle flux
density appears near the OSP. We assume that on EAST the
averaged pulse length (T) is 60 s [42], thus divertor REro with
different Ne seeding rates (0 atoms/s, 9.0 × 1019 atoms/s and
2.0 × 1020 atoms/s, respectively) under high power discharge
(PSOL = 8.0 MW) can be calculated. The total erosion depth
(d) is thus expressed as d = REro∗nshot∗T, where nshot is the
number of discharge shots. The peak erosion depth of three
PSOL cases appears near the OSP, and the peak erosion rate is
6.403 nm s−1, 48.792 nm s−1 and 0.033 nm s−1, respectively.
The thickness of EAST W mono-block is about 5.5 mm from
PFS to the water cooling tube [43, 44]. After 1800 shots of dis-
charge, the target erosion distributions are illustrated in figure
10(c). The peak erosion depths (d) are 0.69 mm, 5.27 mm and
0.003 mm, respectively. Clearly, we can observe that the insuf-
ficient Ne seeding can greatly reduce the lifetime of the target
due to the introducing of the external impurity and the not fully
reduced plasma temperature (peak Te ~ 161.3 eV), whereas the
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Figure 10. (a) The total poloidal ion flux distribution (Ne puffing rate = 9.0 × 1019 atoms/s and PSOL = 8.0 MW), and (b) the flux across
the outer target; (c) the estimated outer target erosion depth (the direction is normal to the surface) distribution under different discharge
conditions (Ne seeding rate is 0 atoms/s, 9.0 × 1019 atoms/s and 2.0 × 1020 atoms/s, respectively), after 1800 shots. The input power is
PSOL = 8.0 MW and the averaged pulse length is assumed to be 60 s.

sufficient Ne seeding can fully bring down Te (<3.4 eV along
the target), thus protect the target not to be eroded. The W
target can survive for 2.8 × 106 shots with sufficient Ne seed-
ing, compared to 1.4 × 104 shots without impurity seeding,
indicating the lifetime can be extended 200 times longer.

The present model does not include W impurity transport
calculation, therefore, the W self-sputtering has not been con-
sidered. TheW self-sputtering induced by sputtered W impur-
ities depends strongly on the incident energy [45]. In the diver-
tor region, the incident energy ofW ion is usually below 1 keV,
and the corresponding self-sputtering yield is much smaller
than 1, therefore, the self-sputtering is negligible in most of
the cases [46, 47]. It should be noted that the self-sputtering
is also relevant to the incident angle and the roughness of
divertor W target. It has been found that the incident angle
of the maximum self-sputtering yield is ~80 degree for rough
surface and ~60 degree for smooth surface [46, 48]. The dif-
ferent divertor operation regimes can also influence the self-
sputtering. For high-recycling regime (HRR) and in partially
detached regime (PDR) in pre-ELM cases, it has been repor-
ted that the ratio of W content by self-sputtering is ~20% in
the HRR and ~8% in the PDR case [49]. In our future work,
the self-sputtering will be included because it affects not only
the target lifetime or even induces the W self-sputtering ava-
lanche, but also influences the core plasma contamination [50].
The re-deposition has also significant influence on the target
lifetime. It can change the net erosion as well as W mater-
ial property. To simulate the re-deposition, the model should

include the divertor plasma physics, the W impurity transport
and the dynamic changes of the deposited W layer. However,
the present model does not consider last two parts, which may
result in the underestimation of the W target lifetime.

4. Conclusion

The erosion of the EAST upper W divertor has been assessed
during Ne impurity seeding in different divertor operation
regimes by using the SOLPS modeling coupled with the semi-
empirical formula forW erosion analysis. The simulation con-
firms that the external Ne seeding can significantly reduce both
the heat flux q and the electron temperature Te in the divertor
region. For the low input power discharge (PSOL = 1.5 MW),
the impurity seeding is not necessary; while for the medium or
high input power (PSOL ≥ 3MW), impurity seeding is required
to reduce Te or (and) q. By using the incident energy and
particle flux density provided by SOLPS, theW erosion rate by
each particle species is assessed. The simulation reveals that
during the Ne seeding, the Ne ions play a significant role in the
W target erosion, the impact of C ions on the erosion is small,
whereas roles of D+ depends strongly on the PSOL as well
as Ne seeding rate. For the Ne-dominant W erosion case, the
Ne3+ and Ne4+ ions contribute to the highest erosion rate. By
varying the Ne seeding rate under various PSOL, the W erosion
in different conditions is evaluated. The simulation indicates
that the total erosionRtotalEro depends on the competition between
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RDEro and RNeEro, while the value of RNeEro is dominated by the
competition between ΓNen+ and YNe

n+

Phys,W. This causes R
total
Ero to

be greatly enhanced by the insufficient Ne seeding.
The present results indicate that the selection of the impur-

ity seeding rate should be very careful. Although the insuffi-
cient seeding gas can reduce the heat flux to the target, RtotalEro
may be obviously enhanced, which would shorten the target
lifetime. This becomes to more critical during high power
operation. Only the sufficient impurity seeding can decrease
both RtotalEro and the heating flux to the target q, thus protect
the target. The current erosion calculations are crude, but it
provides rapid/effective method to understand total W target
erosion under various conditions.

In the future, the heating power will be very high, and the
W target erosionmay becomemore andmore serious. External
impurity seeding is required to cool down the divertor plasma
and decrease RtotalEro . On one hand, the erosion of W target is
important to evaluate the lifetime of the divertor, especially
during the designed period of the device such as CFETR.
On the other hand, the trace of the sputtered W impurity and
understanding its accumulation/distribution/concentration are
particularly urgent, which may influence the long-pulse high
performance steady-state operation significantly. In the future
work, the transport of the eroded high-Z impurities will be
investigated during radiative divertor operation with the assist-
ance of the external gas injection. Moreover, the compar-
ison of different novel gas (e.g. nitrogen/neon/argon) by con-
sidering the power dissipation and W target erosion will be
required. The self-W sputtering and re-deposition should also
be included in the model to simulate the erosion accurately.
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