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Abstract
Propagation characteristics (resonances, propagation regions, and cutoffs) of ordinary waves
(perpendicularly propagating electromagnetic waves) are studied in a relativistic electron
plasma by using the kinetic model. The dispersion relation for the ordinary mode (O-mode) in a
relativistic electron plasma is investigated by employing the Maxwell-Boltzmann-Jüttner
distribution function. As the integration in the relativistic dispersion relation cannot be done
analytically so an approximated value is obtained using the trapezoidal rule. Various modes of
propagation for the ordinary waves are observed for each harmonic number n due to the
relativistic effects defined by the value η = mc2

kBTe
. We also observe that the high-temperature

relativistic plasma environment is more transparent for the O-mode as compared to weakly
relativistic and non-relativistic plasma environments. Moreover, the cutoff points are shifted to
lower values in the relativistic limit.

Keywords: resonances, propagation regions, cutoffs, ordinary waves, relativistic plasma,
tokamak, cyclotron harmonic

(Some figures may appear in colour only in the online journal)

1. Introduction

Various plasma environments that exist in different regions
of the Universe can be classified as being non-relativistic,
weakly relativistic, relativistic, degenerate, relativistic degen-
erate, magnetized, cold and hot depending on the plasma para-
meters like density, magnetic field, and temperature. These
parameters vary over a wide range, so the characteristics of
the dispersion curves of a wave get modified by changing the
plasma environment. The relativistic plasmas exist in many
astrophysical objects (pulsars, quasars, active galactic nuc-
lei, black holes, white dwarfs, neutron stars and radio galax-
ies) and laboratory environments (fusion experiment). The
environments where a plasma contains particles with high
thermal velocities, the relativistic effects play an important
role in the dispersion curves of the waves. The characteristics
(excitation, propagation, absorption, cutoff, harmonic struc-
ture) of electromagnetic waves in magnetized plasmas require
precise measurement of the relativistic effects associated

with the fast-moving electrons, especially for perpendicularly
propagating modes (O-mode, X-mode and Bernstein waves)
as they all lie in the electron cyclotron resonance frequency
range. These waves are used for electron cyclotron resonance
heating and current drive in the tokamaks [1–15]. The elec-
tromagnetic waves for which the perturbed electric field E1

is parallel to the ambient magnetic field B0 (E1 ∥ B0) and the
propagation vector k is perpendicular to the ambient magnetic
field (k⊥ B0) are called the ordinary waves. These waves can
be studied either by the fluid theory or the kinetic theory.
According to the fluid theory, these waves remain unaffected
by the magnetic field since we average over Larmor orbit. In
order to observe the magnetic field effects on these waves,
we use the kinetic model and these effects become signific-
ant when we include higher harmonics of the cyclotron fre-
quency. The ordinary mode (O-mode) is an important wave
for cyclotron heating of the magnetically confined plasma and
for ionospheric heating experiments [16–22]. These waves
are strongly absorbed in hot plasma, so they are emitted as
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blackbody radiations and can be used to measure the local
electron temperature in a tokamak plasma [23]. Many authors
have studied different characteristics (growth rate, damping,
and propagation) of the O-mode in different plasma envir-
onments. S. Zaheer and G. Murtaza studied the growth rate
and propagation characteristics of the O-mode in a homo-
geneous relativistic plasma environment. They observe that
the non-propagation region disappears as we increase the val-
ues of the harmonic number n as well as the damping rate
depends directly on n [24]. R A Lopez et al analyze the dis-
persion relation for the O-mode in an electron-positron pair
plasma and they observe that the effective plasma frequency
(the lower cutoff for the electromagnetic branch) decreases
with the increase in temperature [25]. Z Iqbal et al studied
this wave in degenerate anisotropic plasma. It was observed
that a new banded type of instability gets excited, which needs
some particular values of temperature anisotropy and external
magnetic field to grow [26]. K Azra et al studied the propaga-
tion characteristics of the O-mode in a relativistic degenerate
electron plasma and examined the behavior of the wave by
taking different values of the plasma density and magnetic
field that corresponds to a particular astrophysical environ-
ment. They concluded that the cutoff and the resonance points
are shifted to lower values of frequency due to relativistic
effects [27]. G Abbas et al derived the dispersion relations
for the perpendicular propagating modes (X-mode, O-mode
and upper hybrid mode) for a weakly magnetized relativ-
istic degenerate electron plasma and they found that due to
the relativistic effects, the characteristics of the dispersion,
cutoff and resonance points are shifted to the lower values
of frequency resulting in enhancement of the propagation
domain [28].

In the above mentioned literature, we have presented the
findings of some of the authors about the propagation of the
ordinary waves in various plasma environments. Many others
[40–42] have put in a great effort to understand the behavior of
these waves in the relativistic magnetized plasma. M Ali et al
studied the propagation of O-mode in ultra-relativistic Max-
wellian electron plasma and they found that the damping rate
does not increase indefinitely for small wave number instead
the damping is constrained in the presence of strong magnetic
field [29]. L Nikolic and S Pesic [30] have discussed ordinary
waves in a relativistic plasma by using I. Weiss approach [43].
In this approach, all infinite harmonics represented in a single
term and denominator passes via zero for every ω* that is an
integer. They examined the variation in the real and imaginary
part of the refractive indexwith the normalized frequency (ωce

ω )
for non-relativistic, weakly relativistic and relativistic temper-
atures, along with several values of density. It was observed
that as the electron temperature increases the cyclotron har-
monic resonances get broaden due to relativistic effects. The
real part of the refractive index increases with increasing the
electron temperature and gradually it reaches its free-space
value. They also observed a shift in the maximum value of
the imaginary part of refractive index with an increase in the
density.

To complete the analysis we will choose the value of η =
mc2

kBTe
(ratio of the rest mass energy to the thermal ) that will

decide whether we are in a relativistic (η≤ 1), weakly relativ-
istic (η > 1) or non-relativistic (η >> 1) environment [2, 21].
As we are trying to understand the dependence of the har-
monic structure of O-mode on the relativistic momentum and
propagation of the wave at each harmonic of the cyclotron
frequency, we use the generalized expression for the O-mode
derived by A Kalsoom et al [27] leads to an infinite sum of
terms, each of which has a Bessel function which contains
momentum as its argument and that is integrated over the
momentum space . The plan of this paper is as follows: In sec-
tion 2, the general dispersion relation for the ordinary waves
in relativistic electron plasma is given. In section 3, a numer-
ical approach is presented for the approximate solution of the
integrand in the dispersion relation for O-mode. In section 4,
discussion and graphical analysis are given and finally in sec-
tion 4.1, the conclusion of our work is presented.

2. The generalized expression for the ordinary
waves.

The generalized expression for the ordinary waves in a relativ-
istic electron plasma is given as [27],
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Here e, n0, Ω, f 0, n and pFq[(a1, .....ap),(b1, .....bq),x] are
the electron charge, equilibrium number density, relativistic
cyclotron frequency, equilibrium distribution function, the
harmonic number and a generalized Hyper-geometric function
respectively [2, 21, 27, 32].

To account for the relativistic effects on the dispersion
curves [2, 21, 33, 34, 44] we use the Maxwell-Jüttner equi-
librium distribution function which is given as,

f0(p) =
1

4πm3c3
η

K2(η)
exp[−ηγ], (2)

where the relativistic factor γ is defined as,

γ =
(
1+

p2

m2c2

) 1
2
,

and K2 is the modified Bessel function of the second kind of
order two. By substituting the relativistic distribution function
in equation (1), we get,
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3. Numerical Approach

The integrals given by equations (4) and (5) have no explicit
anti-derivatives. The numerical quadrature is one of the prom-
ising methods for definite integrals of a function having no
explicit anti-derivative or not easy to obtain in terms of ele-
mentary functions. The idea is to evaluate the integrand func-
tion on a finite set of points within the interval of integration
and then obtain a weighted sum of these function values to
obtain an approximation of the definite integral. The integ-
ration points and the weights depend on the specific method
used. Here we have employed trapezoidal method whose gen-
eral formula is,

ˆ b

a
f(x)dx≈

M∑
n=1

f(xn−1)− f(xn)
2

∆xn.

The interval of integration [a, b] is partitioned into finite set
of points a= x0 < x1 < .. . < xM = b where the function f (x)
is evaluated and ∆xn = xn− xn−1 is the step size [35–39]. In
our case, the interval of integration and step size are taken as
[0,100] and 1 respectively. During the numerical approxima-
tion, quantities like ωce, c, kx, n, ω and η are treated as sym-
bolic variables [44]. To approximate the integrals in equations
(4) and (5), we use Wolfram Mathematica 10.

4. Discussions and graphical representations

To observe the characteristics of Ordinary waves in differ-
ent electron plasma environments (relativistic, weakly relativ-
istic and non-relativistic), we need to choose the values of η
accordingly.

Figure 1. Dispersion curves showing the cyclotron harmonics for
η= 0.5 and (

ωpe

ωce
)2 = 25 for Ordinary waves in relativistic plasma.

4.1. Cyclotron resonance

Wewill analyze the harmonic structure of the O-mode by plot-
ting equation (3). If we reduce the propagation regime by keep-
ing small values of the normalized frequency ( ω

ωce
), we will get

the cyclotron harmonic resonance structure for different val-
ues of η, which is explained below.

4.1.1. Cyclotron harmonic resonance structure in relativistic
electron plasma. When the thermal energy of the particles is
greater or equal to the rest mass energy (kBTe ≥ mc2), cyclo-
tron harmonic resonance structure of the Ordinary waves is
strongly affected by the relativistic mass. In figure 1, a plot of

the ordinary waves is presented for η= 0.5 and
ω2
pe

ω2
ce
= 25. Due

to relativistic effects, the mass of particles increases depending
upon the velocity. As a result, particles will gyrate at different
cyclotron resonance frequencies even for the same harmonic
number n. This effect can easily be observed in the dispersion
curves. The first and second harmonic number n has threewave
modes and the third contains two wave modes. The resonance
curves in figure 2, are obtained for η= 1 and

ω2
pe

ω2
ce
= 25. When

we increase the value of η from 0.5 to 1, the same number
of wave modes exist for each harmonic number n, but now
the wave modes are shifted to a higher value of frequency and
also propagate for large kx. By comparing figures 1 and 2, we
can analyze the modification in the wave modes due to these
relativistic effects.

4.1.2. Cyclotron harmonic resonance structure in weakly
relativistic electron plasma. In the weakly relativistic elec-
tron plasma, the thermal energy of the particles is less than
the rest mass energy i.e. (kBTe < mc2). In figure 3, the res-
onance curves are presented for η= 6 (weakly relativistic

regime) and
ω2
pe

ω2
ce
= 25. Here we observe that the number of
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Figure 2. Dispersion curves showing the cyclotron harmonics for
η= 1 and (

ωpe

ωce
)2 = 25 for the Ordinary waves in relativistic plasma.

Figure 3. Dispersion curves showing the cyclotron harmonics for
η= 6 and (

ωpe

ωce
)2 = 25 for Ordinary waves in weakly relativistic

plasma.

wave modes, corresponding to the harmonic number n= 1 and
n= 2 decreases as expected. In weakly relativistic electron
plasma, cyclotron resonance curves also shift to lower values
but less as compared to the relativistic case.

4.1.3. Cyclotron harmonic resonance structure in non-
relativistic electron plasma. In non-relativistic electron
plasma, the thermal energy of the particles is very small as
compared to the rest mass energy (kBTe << mc2), so the
relativistic effects do not play any role in the characteristic
curves. In figure 4, a plot of the O-mode is presented for

Figure 4. Dispersion curves showing the cyclotron harmonics for
η= 50 and (

ωpe

ωce
)2 = 25 for Ordinary waves in non-relativistic

plasma.

Figure 5. Dispersion curves showing propagation of ordinary
waves for different values η and (

ωpe

ωce
)2 = 25.

η= 50 and
ω2
pe

ω2
ce
= 25. In the non-relativistic limit, we get only

one wave mode for each harmonic number n.

4.2. Propagation

Whenwe focus our attention on the large values of the normal-
ized frequency ( ω

ωce
), we observe that the harmonic structure

vanishes and we obtain a single curve for the O-mode. In the
same way as before, we take different values of η to incorpor-
ate the relativistic effects and fix the value of (ωpe

ωce
) in figure 5.

We can easily observe that when the value of η decreases, the
plasma becomes more transparent for the O-mode.
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Figure 6. Dispersion curves showing the cutoffs of the ordinary

waves for different values of η by taking
ω2
pe

ω2
ce
= 25.

4.3. Cutoffs

To analyze the relativistic effects on the cutoff points of the
O-mode, we plot ( ω2

c2k2x
) vs ( ω

ωpe
) in figure 6 for different val-

ues of η and by taking
ω2
pe

ω2
ce
= 25. Here we observe that the

cutoff point is shifted to a higher value by increasing the
value of η.

5. Conclusions

In this article, we analyze the ordinary waves in different
plasma environments. Due to the momentum dependence of
the cyclotron frequency in the relativistic and weakly relativ-
istic electron plasma, we conclude that the cyclotron reson-
ance wave modes are shifted to lower values of frequency
and we obtain more than one wave mode corresponding to
each harmonic number n, both in the relativistic and weakly
relativistic case. The number of wave modes decreases when
we go from the relativistic regime to the weakly relativistic
regime. Eventually, we observe only one wave mode for each
harmonic number n in the non-relativistic regime. The reason
behind getting more than one wave mode is that the particles
associated with each harmonic number n can have different
relativistic velocities, so they oscillate at different cyclotron
frequencies even for the same harmonic number n. In the non-
relativistic limit, as there is no change in the mass of the
particle or in other words the cyclotron frequency remains
same for all particles, a single wave mode exists for each har-
monic number n as expected. When we plot the dispersion
curves for large values of ( ω

ωce
) vs ( ckxωce

) we observe that the
plasma become more transparent for the O-mode at a high
temperature.
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