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Abstract
The multi-region relaxed magnetohydrodynamics (MRxMHD) has been successful in the
construction of equilibria in three-dimensional (3D) configurations. In MRxMHD, the plasma is
sliced into sub-volumes separated by ideal interfaces, each undergoing relaxation, allowing the
formation of islands and chaos. The resulting equilibrium has a stepped pressure profile across
sub-volumes. The stepped pressure equilibrium code (SPEC) (S R Hudson et al, Phys. Plasmas
19, 112502 (2012)) was developed to calculate MRxMHD equilibria numerically. In this work,
we have extended the SPEC code to compute MRxMHD equilibria with field-aligned flow and
rotation, following the theoretical development to incorporate cross-helicity and angular
momentum constraints. The code has been verified for convergence and compared to a
Grad–Shafranov solver in 2D. We apply our new tool to study the flow profile change before
and after the sawtooth crash of a reversed-field pinch discharge, in which data of the parallel
flow is available. We find the promising result that under the constraints of cross-helicity and
angular momentum, the parallel flow profile in post-crash SPEC equilibrium is flat in the
plasma core and the amplitude of the flow matches experimental observations. Finally, we
provide an example equilibrium with a 3D helical field structure as the favoured lower energy
state. This will be the first 3D numerical equilibrium in which the flow effects are
self-consistently calculated.
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1. Introduction

The solution of three dimensional magnetohydrodynamics
(MHD) equilibria in toroidal confinement devices is a funda-
mental problem and an active area of research in fusion plasma
physics. In fact, the magnetic field line flow (following the
magnetic field lines) is a 1 1

2 degree of freedom Hamiltonian
dynamical system with ∇·B= 0, where B is the magnetic
field [1, 2]. When the plasma equilibrium is axisymmetric,

the toroidal angle φ is an ignorable coordinate and there-
fore, according to Noether’s theorem, a constant of motion
exist and the system is integrable. In other words, all the field
lines lie on nested axisymmetric, or two-dimensional (2D),
toroidal surfaces known as the flux surfaces. Axisymmetry
is broken in stellarators, in tokamaks with a resonant mag-
netic perturbation (RMP) [3], or in reversed-field pinches with
3D relaxed states (e.g. [4]). In general, for stellarator fields,
only flux surfaces with a ‘sufficiently’ irrational rotational
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transform exist (see for example, [5, 6] and references therein).
Magnetic islands form at surfaces where the rotational trans-
form is rational. As the deviation from axisymmetry increases,
islands start to overlap, leading to regions with chaotic field
lines. The ideal MHD equilibrium ∇p= J×B, where p is
the pressure and J=∇×B the current density, requires that
B ·∇p= 0, i.e. the pressure being a constant along the field
line. Therefore, the pressure profile is complicatedwith islands
and chaos [7].

The multi-region relaxed MHD (MRxMHD) [8–10] con-
siders a weak solution to the ideal MHD equilibrium by parti-
tioning the plasma volume into a finite number of sub-domains
separated by non-relaxed interfaces. It sets the theoretical basis
on a variational principle and is well-defined mathematically.
Within each volume, it seeks the minimum energy solution
with the conservation of magnetic helicity K given by

K=

ˆ
A ·BdV, (1)

following the conjecture byWoltjer and Taylor [11–13], where

A is the vector potential and B=∇×A. The resulting equi-
librium has a constant pressure within each volume and the
magnetic field is a linear Beltrami field ∇×B= µB with
µ the helicity multiplier. Across the interfaces, the total
force p+B2/2 should be balanced. The existence of solution
for such a system is guaranteed by theorems of Bruno and
Laurence [8]. Moreover, in axisymmetric systems MRxMHD
can approach the continuously nested flux surfaces solution
in the limit of Nv →∞, where Nv is the number of interfaces
[14]. It thus forms a bridge between the oversimplified Taylor
relaxation and the infinitely constrained ideal MHD with nes-
ted flux surfaces. To access to MRxMHD equilibrium solu-
tions with complicated geometry and parameters, the Stepped-
Pressure EquilibriumCode (SPEC) [15, 16] was built and veri-
fied in stellarator geometry [17]. It has been applied to resolve
current sheets [18, 19], tearing modes [20], RMP [21], and
beta-limits in stellarators [22]. A time-dependent version of
MRxMHD is being developed to study waves and instabilities
of the equilibrium state [23–25].

For tokamaks, the neutral beam injection introduces
external torque, which drives flows [26] that could co-exist
with error field from RMP. Although flow is neoclassic-
ally damped in general stellarators, the introduction of quasi-
symmetry could allow undamped flow to exist [27–29]. This
has been confirmed experimentally on the HSX stellarator
[30, 31]. Such equilibria are intrinsically 3D and with flow.
However, the effect of flow was not presented in 3D equilib-
rium codes (except for HINT [32] and SIESTA [33], which
can be better described as initial value codes solving the res-
istive MHD evolution equations). In this work, we present an
implementation of 3D equilibrium solver based on MRxMHD
with flow. To introduce flow in the frame work of variational
principle, we seek a state with minimum energy (or equival-
ently maximum entropy) subject to a global constraint known
as the cross-helicity defined by

C=

ˆ
u ·BdV, (2)

where u is the fluid velocity. The resulting state has u par-
allel to B and thus was given the name ‘dynamic alignment’
[34] by the space plasma community to contrast the ‘selective
decay’ conjectured by Taylor [12], which has energy decaying
much faster than magnetic helicity. Numerical experiments
later confirmed the existence of such states as end states of tur-
bulent space plasmas [35, 36]. In toroidal confinement, Finn
and Antonsen [37] proved the conservation of cross-helicity
for a barotropic, dissipation-free plasma and found the cor-
responding minimum energy state with both C and K glob-
ally conserved. They also added the global constraint of tor-
oidal angular momentum for axisymmetric machines which
leads to toroidal rotations. An alternative approach to reach
to similar state is by accessing the limit of zero ion-skin-depth
[38, 39] from themore general two-fluid Hall-MHD relaxation
or double-Beltrami solution [40–42]. The third approach is to
consider the state as the stationary solution of time-dependent
MRxMHD [25].

Dennis et al [43] generalized Finn and Antonsen [37] to
include multiple volumes, forming the theoretical basis of
MRxMHD with flow which will be used in this work. In addi-
tion to the stepped pressure, it also predicts a stepped flow in
toroidal and parallel direction, with u= λB/ρ+ΩRêφ, where
ρ is the plasma mass density, R the major radius, êφ the unit
vector in the toroidal direction, and Ω and λ are constants.
The form of the flow formulated by Dennis et al is not general
enough in many applications. For example, it does not capture
the E×B flow. Moreover, flow is discontinuous on interfaces
without any drag force due to the absence of viscosity, lead-
ing to the well known D’Alembert’s paradox [44]. Despite the
limitations, we argue that it could be a step towards mathem-
atically well-defined equilibria with a more general form of
flow, and therefore there is value to build a 3D equilibrium
code based on it. Also, this equilibrium solution is essential
for the further development of a time-dependent MRxMHD
code. The focus of this paper will be to develop such an equi-
librium code, and apply it to relevant equilibria. Besides, we
aim to demonstrate the physical implications of theMRxMHD
model to equilibrium flow.

The reversed-field pinch (RFP) has axisymmetric field coils
similar to a tokamak and its poloidal field is generated mainly
by plasma current. Unlike tokamak, the toroidal field of RFP is
weak, decreases as a function of minor radius and changes its
sign at the plasma edge. The field reversal is due to the meas-
ured dynamo effect [45] from tearing mode activities. RFP
in general has exhibited a richer class of 3D magnetic field
configurations due to dynamo effects and self-organisation
(e.g. [4]). A major objective is to find whether the observed
experimental relaxed states can be understood and predicted
via theoretical relaxation models. As an example, the equi-
librium field bifurcation between the single-helical-axis state
and the double-axis state in the RFX experiment was success-
fully reproduced by the static MRxMHD model and SPEC,
considering partial relaxation [46]. On the other hand, relaxa-
tion of axisymmetric flows and magnetic fields in RFPs have
been theoretically shown to be interlinked [47]. In particu-
lar, during tearing mode reconnection events [48] momentum
transport and flow relaxation have been demonstrated using
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non-linear MHD calculations of tearing mode torques [49, 50]
and later in two-fluid model [51]. Experimentally, the paral-
lel flow profile on Madison Symmetric Torus (MST), a RFP
device, is flat from centre to edge then flips its sign at the
edge during a reconnection event [52]. A relaxation model
with flow may be able to reach such a relaxed flow profile.
Khalzov et al [53] applied the relaxed single-fluid and Hall-
MHDmodels in a single-volume cylinder to study the case the-
oretically, and found that single-fluid MHD relaxation theory
to be in reasonable agreement with experimental observation.
However, their study was limited to a single-volume cylinder
with only the cross-helicity conservation. In this work, we fol-
low this idea and present a numerical calculation of the post-
sawtooth-crash flow profile from pre-crash profile using our
toroidal SPEC-flow code which recovers the experimentally
observed parallel flow profile both qualitatively and quantitat-
ively. We also construct the first multi-volume solution of the
aforementioned MST case with 3D magnetic fields. This will
form the application part of the paper.

The work is organized as follows. Section 2 reviews and
clarifies the theory of MRxMHDwith flow. Section 3 explains
the numerical details of the stepped pressure equilibrium code
(SPEC) with flow and provides a convergence study in stellar-
ators and a benchmark with a tokamak equilibrium code. Sec-
tion 4.1 computes the flow profile after sawtooth crash from a
pre-crash equilibrium using SPEC and relaxation theory. Sec-
tion 4.2 gives a numerical example of the stepped flow case
with 3D magnetic fields in MST. Finally, section 5 draws the
conclusion.

2. Theory

2.1. Basic equations

In this work, we mainly follow theoretical work of Dennis
et al [43]. The plasma volume is separated into NV volumes
labeled byRi. Between two volumes, there is an ideal interface
labelled by Ii. A schematic view of the magnetic geometry is
shown in figure 1.

Within each volume, the plasma is assumed to relax to the
Taylor state, i.e. the plasma energy is minimized, subject to a
number of constraints. The total energy Ei in each volume is
given by

Ei =
ˆ
Ri

[
1
2
ρu2 +

1
2
B2 +

p
γ− 1

]
dV, (3)

where γ is the adiabatic index and the unit is CGS. The integ-
ration is over the plasma volumeRi.

There are a number of constrained quantities during the
energy minimization. They are the magnetic helicity Ki, the
cross-helicity Ci, the angular momentum Li, the total massMi

and the plasma entropy Si. These constraints are given by

Ki =
1
2

ˆ
Ri

A ·BdV, (4)

Ci =
ˆ
Ri

u ·BdV, (5)

Figure 1. Schematic view of the plasma regionsRi and
interfaces Ii.

Li =
ˆ
Ri

ρR2u ·∇φdV, (6)

Mi =

ˆ
Ri

ρdV, (7)

Si =
ˆ
Ri

ρ

γ− 1
lnκ

p
ργ
dV, (8)

respectively, with κ a constant. In fact, Ki is not fully gauge
invariant, i.e. Ki is not a constant under the gauge transforma-
tionA→ A+∇g for multivalued g. However, in this work we
will choose a specific gauge described in the numerical section
and limit g to be single-valued. The angular momentum con-
straint is only applied to toroidal geometry with coordinates
(R,φ,Z), where φ is the toroidal angle. We note that unlike
Dennis et al, we add separate constraints for total mass and
entropy.

The total energy functional of the entire plasma is given by

W=

NV∑
i=1

Wi. (9)

Within each volume we have

Wi = Ei−µi(Ki−K0i)−λi(Ci−C0i)−Ωi(Li−L0i)

− νi(Mi−M0i)− τi(Si− S0i), (10)

The quantities µi, λi, Ωi, ν i and τ i are Lagrange mul-
tipliers, while K0i,C0i,L0i,M0i and S0i are constraint values
of Ki,Ci,Li,Mi and Si, respectively. In addition, the pol-
oidal and toroidal magnetic fluxes, ψp,i and ψt,i, are taken as
constraints.

The equilibrium of MRxMHD locates at the stationary
points of the energy functionalW, and can be obtained from the
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variational principle. The free variables are p, ρ, u,A, the Lag-
range multipliers and the position of the interfaces. VaryingW
with respect to p and setting the varied equation to zero, one
gets the equation of state

p= τiρ. (11)

Comparison with the ideal gas law p = nkBT shows the
physical meaning of τ i to be kBTi/mi, where n is the number
density, kB the Boltzmann constant, T i the plasma temperature
in the i-th volume. Varying with respect to ρ, we reach the
Bernoulli equation given by

τi ln
ρ

ρ0i
+

1
2
u2 −ΩiR

2u ·∇φ= 0, (12)

where

lnρ0i =− lnκτi+
γ

γ− 1
− νi
τi
. (13)

Varying with respect to u, we get flow in the form of

ρu= λiB+ ρΩiR
2∇φ. (14)

VaryingA leads to the modified Beltrami equation given by

∇×B= µiB+λi∇× u. (15)

Finally, varying with respect to the interfaces, one obtains
the interface jump condition[[

p+
1
2
B2

]]
= 0, (16)

where [[x]] = x+ − x− stands for the difference of x on either
side of the interface. In addition, Ii are ideal interfaces with
infinite conductivity, requiring that on these interfaces

B ·n= 0, (17)

where n is the unit vector perpendicular to the interfaces. Also,
any electrostatic potential difference on the interface would
be short-circuited. The equilibrium electric field (if there is
any) should be perpendicular to the interfaces. From the ideal
Ohm’s law operating on the interfaces, we have

u ·n= 0, (18)

i.e. the plasma must not flow out of the volume.
Combining (14), (17) and (18), one will reach that on the

interfaces Ωi∇φ ·n= 0. For a interface set by F(R,Z,φ) =
0, the normal direction is parallel to ∇F. The aforementioned
condition requires either F = F(R,Z) (the interface is axisym-
metric), orΩi= 0 (there is no rigid toroidal rotation). As a con-
clusion,Ωi can only be non-zero for volumes bounded entirely
by axisymmetric interfaces. This is consistent with the simu-
lation finding on MAST that the introduction of RMP field
will suppress toroidal flow [54]. We note that it provides a
more strict criterion than Dennis et al where only the outer-
most boundary is required to stay axisymmetric. Dennis et

al also proposed a scenario in which the interfaces position
are time-dependent and rotating altogether with the plasma,
but becoming time-independent in the rotating frame. On con-
trary, we consider all interfaces in our work to be static and
will not consider the time-dependent case.

After some algebra, (12)–(18) are summarized as follows.

Ri : ∇×
(
1− λ2i

ρ

)
B= µiB+ 2λiΩi∇Z, (Beltrami)

(19)

Ri : τi ln
ρ

ρ0i
+

1
2
λ2i B

2

ρ2
=

1
2
Ω2
i R

2, (Bernoulli) (20)

Ii :
[[
ρτi+

1
2
B2

]]
= 0, (Force balance) (21)

Ii : B ·n= 0, (Ideal interface condition) (22)

while p and u are derived from (11) and (14) once (19)–(22)
are solved. In additional, Ωi ̸=0 is allowed if the geometry is
toroidal, and if both Ii−1 and Ii are axisymmetric.

2.2. Continuous nested flux surfaces limit and comparison to
tokamak equilibrium

In this section, we will revisit the continuous nested flux sur-
faces limit of MRxMHD, using slightly different argument
fromDennis et al. Straightforwardly, in the limit of continuous
nested flux surfaces, (11), (14) and (20) become

p= τ(s)ρ, (23)

u=
λ(s)
ρ

B+Ω(s)R2∇φ, (24)

and

τ(s) ln
ρ

ρ0(s)
+

1
2

[
λ(s)B
ρ

]2
=

1
2
[Ω(s)R]2, (25)

respectively, with ‘s’ the continuous flux surfaces label (for
example the square root of the normalized poloidal or tor-
oidal flux). One can compare these results with that of the
ideal MHD in tokamaks geometry (e.g. references [55, 56]).
The Grad–Shafranov–Bernoulli system of equations is sum-
marized in A. The forms of flow (24) and the Bernoulli equa-
tion (25) are identical to that of the ideal MHD given by (A2)
and (A3), respectively.

For continuous nested surfaces, (14) and (15) approach

ρu ·∇u=−∇p+ J×B+ ρΩ(s)∇(R2u ·∇φ)

− ρΩ(s)R2∇φ× (∇× u), (26)

4
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where J=∇×B is the current density. The rigorous deriva-
tion is provided in section III of Dennis et al [43]. Expanding
the last two terms of (26) in cylindrical geometry, one will
find that for Ω ̸= 0, (26) can match that of the ideal MHD if
and only if the last two terms cancel. This means the flow is
axisymmetric. In fact, this criteria is always satisfied by recall-
ing that Ωi ̸= 0 is only allowed if the bounding interfaces are
axisymmetric. Consequently, the last two terms of (26) will
always vanish and (26) conforms that of the ideal MHD force
balance given by

ρu ·∇u=−∇p+ J×B. (27)

3. Stepped pressure equilibrium code with flow

3.1. Numerical methods

3.1.1. The static SPEC code. The current version of SPEC
solves the fixed-boundary MRxMHD equilibrium in slab, cyl-
indrical or toroidal geometry. Setting λi =Ωi = 0, (19)–(22)
will reduce to the set of equations coded into SPEC, with (20)
degenerated to ρ= ρ0i and replaced by the piecewise pressure
pi = ρ0iτi. For toroidal geometry with stellarator symmetry,
the interfaces and plasma boundary are specified by

RIi =
∑
m,n

Rm,n,i cos(mθ− nNpζ), (28)

ZIi =
∑
m,n

Zm,n,i sin(mθ− nNpζ), (29)

φ= ζ, (30)

where θ and ζ are generalized angles. Here, Np is the field
periodicity. The number of the poloidal and toroidal harmon-
ics are known as Mpol and Ntor, respectively. The summation
is over n ∈ [−Ntor,Ntor] and m ∈ [0,Mpol] for m,n ∈ N. For the
plasma boundary, Rm,n,NV and Zm,n,NV are given as input para-
meters, while they are unknowns for the interfaces and will be
determined by the force balance condition (21). Inside each
volume, the coordinates are specified as a linear interpolation
between the inner and outer interfaces, given by

R(s,θ,ζ) =
1− s
2

RIi−1(θ,ζ)+
1+ s
2

RIi(θ,ζ) (31)

Z(s,θ,ζ) =
1− s
2

ZIi−1(θ,ζ)+
1+ s
2

ZIi(θ,ζ), (32)

with s∈ [−1, 1] the generalized radial coordinate. A special
treatment is needed for the innermost volume and is described
in Hudson et al [15].

The vector potentialA in SPEC takes the Clebsch formA=
Aθ∇θ+Aζ∇ζ, with the two components represented by

Aθ =
∑
m,n,l

Aθ,m,n,lTl(s)cos(mθ− nNpζ), (33)

Aζ =
∑
m,n,l

Aζ,m,n,lTl(s)cos(mθ− nNpζ), (34)

where T l(s) is the Chebyshev polynomial of order l, with Lrad
the highest order number. SPEC uses a gauge such that A= 0
on the inner surface for volumes Ri≥2 and on the outer sur-
face for R1. The boundary condition B ·n= 0, the enclosed
poloidal flux ∆ψp and the toroidal flux ∆ψt are enforced by
introducing another set of Lagrange multipliers (ei for the i’th
Fourier harmonic of the boundary condition, g, h for flux).
Let a= (Aθ,m,n,l,Aζ,m,n,l,ei,g,h), the energy functional can be
written as a quadratic form in a, simply that

Wstatic =
1
2
aT · (A−µiD) · a− aT · B ·Ψ+µiK0i, (35)

where A, B and D are matrices constructed from the pre-
scribed geometry, and Ψ= (∆ψp,∆ψt). The solution a is
the stationary point of (35). If µi is known and is not one of
the eigenvalues of the eigenvalue problem A · a= µiD · a, the
bracket term in (35) is invertible. The solution is then given by
a= (A−µiD)−1B ·Ψ. If µi is unknown but K0i is known, or
µi is one of the eigenvalues, the solution a should be obtained
by finding the stationary point of (35) with both µi and a as
variables.

After the Beltrami field is solved in each volume, SPECwill
move the position of the interfaces according to force differ-
ence on the two sides using a Newton’s method. Finally, the
force balance condition (21) will be satisfied down to machine
precision.

3.1.2. Adding flow to SPEC. Equation (19)–(22) are the
system of equation to be solved in SPEC with flow. For a
MRxMHD problem, one needs to adjust the Lagrange mul-
tipliers to satisfy the constraints in each volume, and the pos-
ition of the interfaces to satisfy the force balance. However,
as SPEC is an equilibrium code, we also provide the option to
treat the constants ρ0i, κi, λi and Ωi as user inputs, since these
quantities have more physical and measurable meanings (ρ0i
is the density constant, κi is kBTi/mi, λi related to the Alfv́en
Mach number, Ωi the angular rigid rotation frequency).

One can substitute (11) and (14) into the energy functional
(10), giving that

Wi =

ˆ
Ri

[
1
2

(
1− λ2i

ρ

)
B2 −λiΩiR

2B ·∇φ
]
dV

−µi(K−K0i)+Wρi(ρ,Ωi,κi, τi), (36)

where Wρi depends on ρ and the Lagrange multipliers. Tak-
ing ρ as known, solved from (20) and discarding Wρi, W i is
transformed in to a matrix form given by

Wflow =Wstatic −λiΩigT · a, (37)

where the second term corresponds to the second term in the
bracket in (36) and the factor in front of B2 is now absorbed
into A, making A=A(ρ). We can thus solve a using either
a linear algebra method, giving a= (A−µiD)−1(B ·Ψ+ g),
or Newton’s method by locating the stationary point of (37).

5
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The next step is to obtain ρ from the Bernoulli equation
(20), which is rewritten in the following form

f(M2
∥) =− ln

M2
∥

M2
∥0

+M2
∥ −

Ω2
i R

2

τi
= 0, (38)

where M∥ = λiB/ρ
√
τi is the parallel Mach number, and

M∥0 = λiB/ρ0
√
τi.

The function f has its minimum at M2
∥ = 1. In general,

if f(1)< 0,the equation f(M2
∥) = 0 can have two solutions:

a subsonic solution (0<M2
∥ < 1) and a supersonic solution

(M2
∥ > 1). This bifurcation in density was discussed in detail

by Finn and Antonsen [37]. It is possible to develop a density
discontinuity (shock) [57] in the systemwhen f (1)= 0 appears
within the volume, i.e. the Bernoulli equation has two degener-
ated solutionsM2

∥ = 1. However, in this work, we have limited
the discussion to purely subsonic or purely supersonic flow
within each volume. We will not allow a transonic surface to
develop in the volume (but it can happen across the interfaces).

The equations in each volume are solved in an iterative
manner. Concretely, the solver takes the following steps:

(i) Solves the (modified) Beltrami equation (19) assuming
ρ = ρ0i.

(ii) Solves the Bernoulli equation (20), given B from the
Beltrami solver.

(iii) Solves (19), given ρ from (ii).
(iv) Repeat (ii) (iii) until converge.

The iterative procedure converges to machine precision usu-
ally within five steps. After the field and density are solved in
each volume, (21) is calculated and the interfaces are adjusted
to satisfy force balance, following the original SPEC code.

3.2. Verification of SPEC solutions with flow in single volume

In this section, we will verify the convergence of the SPEC
solutions in the presence of flow. We consider two cases with
a single volume of plasma as follows.

Case A: A classical l = 2 stellarator with 5 field periods and
field-aligned flow [17]. Figure 2 shows the plasma
boundary and the corresponding field strength on the
boundary. Parameters are τ = 0.01 and λ = 0.01.

Case B: A tokamak with both field-aligned flow and rigid
rotation. Parameters are R0 = 1.0m, a = 0.3m, µ =
0.1, τ = 0.01, λ = 0.1 and Ω = 0.1. The boundary is
circular.

Here, R0 is the major radius of the torus and a the minor
radius. The error of the solution in directionα= s, θ,φ is quan-
tified as

ϵα =

∣∣∣∣[∇×
(
1− λ2i

ρ

)
B−µiB− 2λiΩi∇Z

]
·∇α

∣∣∣∣ , (39)

while ϵ̄α defines the volume average of ϵα.

Figure 2. Plasma boundary and field strength for Case A.

The errors of both cases are shown in figure 3 as a func-
tion of Fourier resolution. The radial resolution is chosen to
be high enough so it does not limit the precision. In case A,
the error follows the trend of ϵ̄∼ e−κMpol and will converge
to machine precision as resolution increased. In case B, the
error follows a similar trend forMpol ≤ 12. ForMpol > 12, the
convergence continues but at a lower rate. The slower conver-
gence is a consequence of the machine precision limit on the
logarithmic operation in solution of the Bernoulli equation.We
found that if the Bernoulli equation is solved analytically, for
instance by Taylor expansion if the parameter M2

∥/M
2
∥0 − 1 is

small, the convergencewill continue the trend ofMpol ≤ 12. To
sum up, figure 3 verifies the numerical scheme of the Beltrami
solver.

3.3. Benchmark with a tokamak equilibrium code

To benchmark SPEC in multiple volume setting, we com-
pare the solution to a tokamak Grad–Shafranov equilibrium
code. The theory behind is that the continuous nested flux sur-
faces limit of MRxMHD should match the solution of an ideal
MHD code in 2D following section 2.2. Existing tokamak
equilibrium codes either have limited support of isothermal
flux surfaces, such as FLOW [58], FINESSE [59] and M3D
[60], or have no field-aligned flow, such as HELENA+ATF
[61]. To benchmark with a SPEC solution, we need non-trivial
modifications to these codes. HELENA+ATF solves the mod-
ified Grad–Shafranov equation with toroidal flow and pressure
anisotropy. We added field-aligned flow into HELENA+ATF
based on the Grad–Shafranov and Bernoulli equations in A
and will not use the part related to pressure anisotropy.

We first generate a tokamak equilibrium from
HELENA+ATF. The parameters used are R0 = 1m, a =
0.3m, on axis β = 0.75%, F(ψ̄p)∼ 1, τ(ψ̄p)∼ (1− ψ̄p)

2,
Ω2(ψ̄p)∼ (1− ψ̄p)

2, λ(ψ̄p) = 0.03(1− ψ̄p), ρ0(ψ̄p) = 1,
where ψ̄p is the normalized poloidal flux given by ψ̄p ≡
(ψp−ψp,edge)/(ψp,core −ψp,edge). The rotation mach number
ΩR0/

√
τ on axis is chosen to be unity. The SPEC interfaces

are placed at flux surfaces equidistantly in
√
ψ̄p. The toroidal

flux within each volume and the rotational transform on the
interfaces are obtained from the HELENA+ATF solution and
used as SPEC constraints. The ‘temperature’ τ i within each
volume is calculated as

τi

ˆ ψt,i

ψt,i−1

dψt =
ˆ ψt,i

ψt,i−1

τdψt, (40)
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Figure 3. The force error for: (a) stellarator with field-aligned flow (Case A), (b) tokamak with field-aligned flow and rotation (Case B).
Radial resolution is at (a) Lrad = 8, (b) Lrad = 10. The machine precision is at 10−16. The three lines show the average error ϵ̄α in s (red
solid), θ (black dashed) and ζ direction (blue dashed dotted), respectively .
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m
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Figure 4. Flux surfaces of the Grad–Shafranov solution
(HELENA+ATF) in the upper half of the figure and the SPEC
interfaces with Lrad = 4, Mpol = 7 and NV = 16 in the lower half.
Both field-aligned flow and rigid rotation are presented.

where ψt is the toroidal flux, while ψt,i− 1 and ψt,i are the
enclosed toroidal flux of the bounding interfaces. We apply
similar calculations to obtain Ωi, λi and ρ0i.

Once we set up the parameters in each volume, the posi-
tion of the interfaces in SPEC are allowed to move according
to the force balance and finally rest when the energy func-
tional reaches its stationary point. The comparison between
the HELENA+ATF solution and the final SPEC interfaces is
plotted in figure 4, showing very good agreement. To quantify
this agreement, we start from a SPEC equilibrium with two
volumes, gradually increase the number of interfaces, and
record the position of the SPEC magnetic axis. The corres-
ponding relationship between the magnetic axis position Raxis

and the number of interfaces NV is shown in figure 5. As the
number of interfaces increases, Raxis from SPEC converges
to Raxis from HELENA+ATF, i.e. the ideal MHD solution.

2 4 8 16 32 48

Nv

1.06

1.065

1.07

1.075
R

   
   

(m
)

ax
is

Figure 5. The position of the magnetic axis Raxis (blue square) in
the innermost volume as a function of the number of volumes NV .
The horizontal line indicates the magnetic axis position calculated
by HELENA+ATF.

This serves both as a benchmark of SPEC force balance and
as a confirmation that MRxMHD with flow converges to
ideal MHD in the limit of infinite interfaces as discussed in
section 2.2.

To give an idea of how flow affects the force balance, we
also calculate the same case as figure 4 but removing flow.
The comparison of the interfaces with/without flow is shown
in figure 6. It is evident from the figure that the presence
of flow shifted the interfaces (flux surfaces) outward, a well
studied phenomenon in the literature of tokamak equilibrium
[58, 62, 63]. Inspection of the force balance equation (20) and
the Bernoulli equation (21) shows that the density is no longer
a constant within the volume and is modified by flow effects. It
is the non-homogeneity of the density on interfaces that modi-
fies the force balance and causes the outward shift of the inter-
faces compared to the static case.
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Figure 6. Interface position of the SPEC solution with both rigid
rotation and field-aligned flow (lower half) and the same case with
no flow. In both cases Lrad = 4, Mpol = 7 and NV = 16.

4. Application to RFP plasma relaxation with flow

4.1. Flow profile relaxation during sawtooth crash

The Madison Symmetric Torus (MST) [64] is a reversed-field
pinch device with major radius R0 = 1.5m, minor radius
a = 0.51m and a circular cross section. Sawtooth oscillations,
which are associated with the reconnection events [48], are
usually seen in the time series of plasma parameters (such
as the total toroidal flux) in MST experiments. These oscil-
lations consist of a slow ramp up stage and a rapid crash-
ing stage. Figure 7 shows the time traces of a few physical
quantities of MST discharge 1071 204 060. We take the saw-
tooth cycle from 15ms to 19ms as an example. During the
ramp up stage, the amplitude of m = 1, n = 6, 7 core modes
gradually grew. At t = 18.0ms, a global relaxation took place,
resulting in the burst of m = 0 mode. After that, the plasma
recovered to a stable state and entered the next sawtooth cycle.
The sawtooth cycle in RFP is phenomenally similar to that of
a tokamak, but the detail physics is different. In a tokamak
the sawtooth is caused by a single mode due to its monotonic-
ally increasing q profile. In RFP, since the q profile is mono-
tonically decreasing and hits multiple m = 1 resonances with
different n’s and also the m = 0 resonance, multiple current-
driven kink/tearing instabilities could contribute to the saw-
tooth oscillations [47, 65].

We define the normalized parallel flow parameter λ̄ as

λ̄= ρ
u ·B
B2

= λ+ ρΩR2B ·∇φ
B2

, (41)

including the contribution from both the field-aligned flow
(first term on the right hand side) and rigid rotation (second
term). Note that λ is the field-aligned flow strength andΩ is the
toroidal angular frequency according to (14). This parameter
λ̄ at different stages of the sawtooth cycle was measured by
Kuritsyn et al [52] and shown in figure 4 of that reference. The

data was averaged among a class of discharges with F=−0.2,
Θ= 1.7 and a total current of 200kA, with figure 7 being a typ-
ical one of them. Here F≡ Bz(a)/⟨Bz⟩ and Θ≡ Bθ(a)/⟨Bz⟩
are the RFP parameters. The measurement showed that dur-
ing the ramp up stage, λ̄ had a strong peak on axis, decreased
as a function of radius, and flipped the sign half way to the
edge. During the crash, λ̄ was flatten in the plasma core but
changed its sign sharply at the edge. The flattening was found
in Khalzov et al [53] to be consistent with flow relaxation.
In this section, we intend to study this flow relaxation pro-
cess using MRxMHD and SPEC with flow. Our model differs
from Khalzov et al in three aspects: we consider a toroidal
plasma incompletely relaxed with both the cross-helicity and
the angular momentum constraints, while Khalzov et al con-
sidered a cylindrical plasma completely relaxed with only the
cross-helicity constraint.

A MSTFit [66] equilibrium reconstruction of the discharge
in figure 7 was performed for a time slice just before the saw-
tooth crash at t = 18.5ms. We construct a SPEC equilibrium
calculation with 8 volumes equidistantly placed in

√
ψp, con-

strained volume-wisely by the magnetic helicity and fluxes
computed from the original equilibrium. The static pressure
in the i’th volume is taken to be

pi =
1

ψp,i+1 −ψp,i

ˆ ψp,i+1

ψp,i

p(ψp)dψp, (42)

where ψp,i is the poloidal flux labelling the inner interface of
the i’th volume and ψp,i+ 1 labeling the outer surface. For sim-
plicity, we choose ρ0 to be the experimentally measured line-
averaged density ρ= min= 1.66× 10−27kg× 1013cm−3 and
the same in all sub-volumes. The ‘temperature’ τ i is chosen
such that pi = ρiτi. In the next step, we set the λ̄ profile in
each sub-volume to match piecewisely the experimental data
in Kuritsyn et al, as shown in figure 9. Note that Kuritsyn
et al took the tearing mode rotation velocity as a proxy for
toroidal flow velocity. As there was no resonant mode in the
centre of the plasma (r/a< 0.3), there was no measurement of
the parallel flow there. The λ profile at the centre is therefore
extrapolated from the measurement for r/a> 0.3. However, as
the global constraints are volume integrals and the volume of
the inner volumes are small, our result is not sensitive to the
value of λ profile in the innermost two volumes. The rigid rota-
tion parameter Ω is set to zero for the pre-crash equilibrium.
Figure 8(a) gives the magnetic field components as a function
of minor radius on the low field side of the mid-plane before
the sawtooth crash.

Keeping the global helicity, cross-helicity and angular
momentum as constraints, we remove all interfaces except the
last one and recompute our equilibrium, i.e. a relaxation is con-
sidered in the first seven volumes while the last edge volume
is not relaxed. Note that the field reversal was in the seventh
volume and the interface between the seventh and the eighth
volume is kept. The resulting equilibrium magnetic fields are
plotted in figure 8(b). For comparison, the field from the MST-
Fit equilibrium reconstruction just after the crash is also added
to the figure. Inspection of figure 8(b) shows that the mag-
netic field on axis is lowered after the relaxation, agreeing
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Figure 8. Toroidal field Bt and poloidal field Bp as a function of normalized minor radius r/a on the outbound mid-plane before and after
the sawtooth crash centered at t = 18.5ms. (a) SPEC pre-crash equilibrium (b) SPEC post-crash equilibrium by removing the first six
interfaces and comparison to MSTFit reconstruction. The discontinuities in the profile suggest the placement of interfaces.

with the reconstruction result qualitatively, but underestim-
ating the magnitude of reduction. The relaxation result also
gives a smaller field reversal radius compared to post-crash

reconstruction. This is because the approximation we use for
relaxation, which either removes an interface completely, or
keeps it as a transport barrier and preserves the constraints
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before/after crash on both sides, is a too strong assumption.
In experiments, partial relaxation happens, allowing part of
the helicity to leak across interfaces. However, we will not
pursue a complete match but rather keep it as a first-order
coarse-grained solution. Next, the parallel flow parameter λ̄
are shown in figure 9. According to figure 9, the λ̄ profile has
a flat top at plasma centre, matching the experimental obser-
vations in Kuritsyn et al in both trend and amplitude. The edge
plasma was not relaxed and therefore, the value of λ̄ stays the
same as the pre-crash equilibrium. The consistency between
our relaxed flow and data implies that cross-helicity and tor-
oidal momentum are nearly conserved quantities.

Three free parameters remain in the result we presented.
First, the λ profile of the pre-crash equilibrium in the plasma
core is extrapolated and therefore bares uncertainties. Second,
the density profile is taken to be constant in our calculation,
while in experiment it is flat in the plasma core and decreases
at the plasma edge. Finally, the unrelaxed interface at the edge
is placed at approximately 7/8 of the plasma minor radius,
a seemly arbitrary choice. We investigated all three paramet-
ers, noting that changing the last one has the most significant
impact on the final flow amplitude. For example, if the position
of the unrelaxed interface rui moves to rui = a, i.e. all regions
are relaxed, the final flow amplitude will reduce to about half
of the measured value. Nevertheless, the allowed parameter
range of rui is determined considering that

(a) the relaxed region should contain the field reversal of
the pre-crash equilibrium at r/a = 0.87, as indicated by
the large m = 0 mode amplitude during the reconnection
event;

1.5 1.6 1.7 1.8 1.9 2 2.1
R (m)

-0.05

0

0.05

0.1

0.15

0.2

q
Figure 10. The safety factor q as a function of outbound major
radius R of the static axisymmetric VMEC equilibrium (solid black
line), the axisymmetric SPEC equilibrium with flow (red stars), and
the helical bifurcated SPEC equilibrium with flow (blue circles).
The SPEC safety factor is calculated by field line tracing.

(b) and that the most outward data point at r/a = 0.9 should
be in the unrelaxed region, as the measured λ̄ is nearly
unchanged before/after the crash.

Consequently, rui/a falls in to a small range of 0.87<
rui/a< 0.9, within which the final value of λ̄ after relaxation
does not change significantly. The result presented in figure 9
has rui ≈ 0.88 and is therefore justified.

4.2. 3D helical RFP equilibrium with flow

The magnetic fields of RFP plasmas have very rich 3D struc-
tures and these structures can be reproduced by SPEC. In
Dennis et al [46], a minimally constraint model was built by
slicing a RFP VMEC [67] equilibrium into two sub-volumes.
The fluxes and magnetic helicity in each volume is then com-
puted and used as inputs to SPEC. Two equilibria were found
with the same set of constraints, one being axisymmetric, the
other being helical. It was discovered when the interface is
placed near the core, the helical equilibria can have a lower
MHD energy than the axisymmetric one and is therefore a
more energy favoured state. These steps can be repeated for
a MST equilibrium with finite plasma flow.

We reproduce a MSTFit equilibrium reconstruction of the
discharge in figure 7 at a time slice 1 ms before sawtooth
crash using VMEC [67]. The q profile of this equilibrium
is plotted in figure 10. We will not use the same pressure
profile as the reconstruction since it has a strong off-axis
peak, indicating possible helical structures. Instead, we set the
pressure profile to be p= p0(1−ψ2

p), with the pressure on
axis p0 = 0.5 kPa consistent with the reconstruction. Follow-
ing Dennis et al we slice the plasma volume into four sub-
volumes at certain VMEC flux surfaces. These flux surfaces
should have a irrational safety factor. The first flux surface
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Figure 11. The Poincaré cross section at φ = 0 for (a)axisymmetric solution and (b) helical solution. The red solid lines indicates the
position of the interfaces. No Poincaré plot was shown in the outermost sub-volume of the helical case because the very small toroidal field
in that region.

Figure 12. The contour of the parallel Mach number M∥ for the
helical equilibrium.

is chosen to be the q8/9 = (1+ γg)/(8+ 9γg) flux surface, in
which γg = (1+

√
5)/2 is the golden ratio and q8/9 is the ‘most

noble’ [2] irrational number between 1/8 and 1/9. In other
words, the continuous fraction expansion of q8/9 has the most
number of one’s and its flux surface has the largest possibility
to survive under non-axisymmetric perturbations. The second
and third flux surfaces are selected in exactly the same way but
for q12/13 and q24/25. Similar to Dennis et al [46], the number of
interfaces and their safety factor will have a strong effect on
the final equilibrium. In particular, the existence of an inter-
face creates a shielding current which heals islands and chaos
and promotes good flux surfaces around it. For a physics study,
one will need to take this into account carefully, such as con-
structing a sequence of equilibria for the sawtooth cycle and
allowing the interfaces to break one by one as the island grows.
However, in this work we will not pursue this path, but rather

construct an equilibriumwith less rigorous choice of interfaces
as described above. The purpose is to demonstrate the capacity
of the tool on which future dedicated research can be built.

After sub-volumes are chosen, the toroidal flux, poloidal
flux and helicity in each volume are calculated from the
VMEC equilibrium. The field period is set to NFP = 6 to stay
consistent with the experimental observation that the dominant
mode had themode numberm= 1, n= 6. These constraints are
used to drive an SPEC equilibrium calculations with the nor-
malization from SI unit to SPEC given by B/

√
µ0 → B, where

µ0 is the vacuum permeability. Parallel flow is now added
to the equilibrium, with the λ profile resembles the experi-
mental measurement. The discretized λ/mi value is taken to be
−75, 0, 40, 60 in the unit of 1022 m−2 s−1 T−1 from the most
inner volume to the most outer volume, to match the measured
profile in figure 4(b) of Kuritsyn et al.

One equilibrium solution satisfies the aforementioned con-
straints has axisymmetric magnetic field with nested flux sur-
faces. The q profile of this equilibrium is plotted in figure 10
and is shown to match the VMEC solution. The Poincaré sec-
tion of this equilibrium is plotted in figure 11(a). Keeping
the same constraints, SPEC found another equilibrium with
a m/n= 1/6 helical core that has lower total energy, with
figure 11(b) being its Poincaré section. The q profile of the hel-
ical equilibrium is over-plotted in figure 10, showing a plateau
of q = 1/6 in the plasma core due to the helical core structure.
The safety factor q here is calculated with respect to the centre
of the innermost region. The construction of another safety
factor by choosing the axis to be the centre of the helical core
is also possible but will not be pursued here. The existence of
a lower energy state indicates that the axisymmetric equilib-
rium corresponds either to a saddle point or a local minimum
of the energy functional. It is known that the RFP configura-
tions are vulnerable to current-driven kink/tearing instabilities
which forms the sawtooth cycle [68], and the lower energy
state is possibly an equilibrium with saturated instabilities.

The contour of the parallel Mach numberM∥ on the φ = 0
surface for the helical equilibrium is shown in figure 12.
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It takes four steps ranging from −0.13 to 0.08 due to our
approximate four volume equilibrium. The range ofM∥ in the
axisymmetric state is similar but not plotted here. We note
that the density scales as ρ= ρ0 exp(−M2

∥/2) and in this case,
since |M∥| ≤ 0.13, the change of density due to the Bernoulli
equation is less than 1%. Furthermore, The global plasma
beta is about 4% and as a consequence, the λ2/ρ factor in
the Beltrami equation, which stands for the squared Alfv́en
Mach number, is in the order of 10−4. Therefore, the field-
aligned flow in the parameter range of the modeled experiment
does not have a strong effect both on the Beltrami equation
and in the force balance condition (21). Nevertheless, a self-
consistent numerical equilibrium for RFP with field-aligned
flow in toroidal geometry is produced for the first time. This
equilibrium, although coarse-grained in four volumes, stands
as a baseline for future studies with more delicate choices of
interfaces as mentioned earlier in this section.

5. Conclusion

In this paper, we revisited the Multi-region Relaxed MHD
(MRxMHD) theory with cross-helicity and angular
momentum constraints, in addition to the original magnetic
helicity constraint, to capture flow effects. The stationary point
of our MRxMHD energy functional gives equilibria with
stepped field-aligned flow and rotation, in additional to the
stepped pressure and parallel current profiles across different
sub-volumes. They are mathematically well-defined solutions
in 3D that allow the co-existence of flux surfaces, islands and
chaos, while the effect of flow is self-consistently cooperated.
We implemented these new features into the Stepped Pres-
sure Equilibrium Code (SPEC), which can produce numerical
equilibrium solutions in 3D with flow. We verified the con-
vergence of the numerical scheme and compared the infinite
interfaces limit of the SPEC-flow solution to that of a toka-
mak equilibrium code assuming nested flux surfaces, showing
very good converged agreement. The newly developed tool
was then used to model equilibria of the MST reversed-field
pinch experiment with a non-zero flow profile. We construc-
ted a post-sawtooth-crash SPEC equilibrium by relaxing the
core volumes of a pre-crash one, keeping the magnetic heli-
city, the cross-helicity and the angular momentum constraints.
The resulting equilibrium has a parallel flow profile match-
ing that of experimental observations. The flattening of the
parallel flow profile found here is consistent with the theor-
etical cylindrical results [53]. However, this is the first time
that the MST experimental equilibria is coupled to a 3D tor-
oidal equilibrium code for the prediction of the relaxed states
under specific constraints. Finally, we gave an example of a
experimentally relevant equilibrium of a MST discharge: the
equilibrium contains a 3D helical core and has a lower MHD
energy than its axisymmetric counterpart.

We plan to pursue these promising preliminary results, and
further extend these analysis to compare with the experiments.
Themost straightforward extension of the current paperwill be
to make use of our new version of SPEC, construct a sequence
of flowing equilibria that tracks the magnetic field structure

of a RFP sawtooth cycle, and compare to tomographic results
[69]. As mentioned in section 4.1, one will need to choose a
number of interfaces at irrational rotational transform at the
beginning of the sawtooth cycle, track the saturated instabil-
ities as current ramps up, and remove interfaces when they
break. Next, some interest remains in examining the transition
between sub/supersonic flow, and to go beyond the sub-Alfven
regime in which the Beltrami equation becomes hyperbolic.
Furthermore, our new tool solves for the (unstable) initial or
steady state of the time-dependent MRxMHD theory on the
basis of which future simulation will be performed. Lastly,
we hope to diversify the type of flow allowed in our relaxa-
tion theory, by adding and/or editing the global constraints in
different physical scenarios, to capture more classes of flow-
ing equilibrium, such as that with an undamped flow in the
symmetry direction of a quasi-symmetric stellarator.
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Appendix A. Grad–Shafranov–Bernoulli equation
with poloidal and toroidal flow

In an axisymmetric toroidal plasma, the magnetic field can be
written as

B=∇ψp×∇φ+RBφ∇φ, (A1)

with ψp(R,Z) the poloidal flux function and Bφ the magnetic
field strength in toroidal direction. The form of the flow is
given by

u=
λ(ψp)

ρ
B+Ω(ψp)R

2∇φ. (A2)

The isothermal Bernoulli equation is derived by taking the B
direction of the momentum equation (27). It as the form

T(ψp) lnρ+
λ2B2

2ρ2
− 1

2
Ω2 R2 = H(ψp). (A3)

The temperature kBT/mi is exchangeable with the Lagrange
multiplier τ in the MRxMHD theory. The φ direction of (27)
gives

BφR=
F(ψp)+λΩR2

1−λ2/ρ
. (A4)
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And finally, the ∇ψp direction of (27) leads to the modified
Grad–Shafranov equation given by

∇· 1
R2

(
1− λ2

ρ

)
∇ψp =−Bφ

R
F′ − (u ·B)λ′

−ρ(uφRΩ′ +H′ +T′ −T′ lnρ) . (A5)

Consequently, the system is determined by five flux func-
tions {F(ψp),T(ψp),H(ψp),Ω(ψp),λ(ψp)} and the boundary
condition (in the fixed-boundary case ψp= constant on the
plasma boundary).
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