10OP Publishing

Physica Scripta

Phys. Scr. 95 (2020) 065224 (11pp)

https://doi.org/10.1088/1402-4896 /ab8800

Investigating the viscous damping effects on
the propagation of Rayleigh waves in a
three-layered inhomogeneous plate

Rahmatullah Ibrahim Nuruddeen'~, R Nawaz' and Q@ M Zaigham Zia'

! Department of Mathematics, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad

44000, Pakistan

2 Department of Mathematics, Faculty of Science, Federal University Dutse, Jigawa State, Nigeria

E-mail: NuruddeenRahmatullah.n@fud.edu.ng
Received 9 January 2020, revised 1 April 2020
Accepted for publication 8 April 2020
Published 16 April 2020

Abstract

®

CrossMark

The present paper investigates the propagation of anti-plane Rayleigh waves in an elastic three-
layered inhomogeneous plate in the presence of viscous damping. The core layer is sandwiched
between skin layers with appropriate perfect interfacial boundary conditions, while traction-free
conditions are prescribed on the outer faces. The eigenfunctions expansion method is employed for
the study. Various cases of damped and undamped situations have been examined in connection to
the obtained displacements and shear stresses. Finally, the effects of viscous damping on the
propagation of Rayleigh waves are reported graphically using some physical available data.
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1. Introduction

Wave propagation in elastic media is an important area in
solid mechanics that continues to gain ground due its wide
range of applications including the earthquake science, elas-
todynamics, geophysics, aerodynamics, and a lot of engi-
neering branches, among others, [1-3]. In particular, a variety
of studies have been carried out in regard to the wave pro-
pagation in elastic media consisting of periodic and graded
waveguides [4, 5], laminated and composite elastic beams
[6, 7] and layered plates [8—12] to mention a few. Of interest,
layered plates including multilayered and composite struc-
tures play vital role in many physical applications leading to
several investigations both experimentally and theoretically,
[8-10]. In particular, a three-layered plate that is characterized
by soft-stiff layers appears in many configurations depending
on the application. For, instance, laminated glasses consists of
thin soft core layer and stiff facings are used in glazing
applications; photovoltaic panels are made of light core layer
with stiff facings and used in solar energy; while the classical
sandwich plates normally emerged with light core layer and
stiff facings, with a variety of applications including in elastic
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beams [11, 12]. Mathematically, a quite number of studies
have been reported in the literature in regard to layered plates
comprising of the harmonic wave propagation in layered
elastic sandwiches [11], elastic waves dispersion in three-
layered plates [12], low-frequency motions of elastic multi-
component structures [13], analysis of composite sandwich
plates of a five-layered nature with viscoelastic cores [14] and
the dynamicity of five-layered plates for various thicknesses
made of glass material [15], see also [16-23] among others
and the references therein. Besides, viscous damping effects
in regards to propagation of elastic waves in layered media
has not been found in the literature, of which is it believed to
affect such propagation considerably.

However, the present paper examines the propagation of
anti-plane Rayleigh waves in an isotropic three-layered
inhomogeneous elastic plate in the presence of viscous
damping. The core layer is sandwiched between skin layers
with prescribed perfect interfacial conditions within and
traction-free boundary conditions on the outer faces of the
skin layers. Underlying is aimed to study damping effects on
the propagation of Raleigh waves in a multiple layered plate
and determine global estimates for lower eigenvalues, if any.

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Symmetric inhomogeneous three-layered plate.

It is worth mentioning that global estimates of lower eigen-
values in the presence of damping help in further determining
the optimal dispersion relations while considering different
multilayered structures with material contrast setups, see
[1, 12, 13]. The eigenfunctions expansion method is con-
sidered for the present investigation. Similarly, a numerical
bisection method will be utilized to deal with the resulting
transcendental eigenvalues equation. The displacements and
stresses in the respective layers of the plate amidst the viscous
damping corresponding to both the symmetric and antisym-
metric motions will be determined. Various cases of free
damped and undamped situations will be examined. Also,
some physical data available in the literature will be sought
for the numerical computations of the problem, and the results
will be depicted graphically. Furthermore, the paper is
arranged as follows: section 2 gives the formulation of the
problem, and the solution of the problem is given in section 3.
In section 4, analysis of the obtained solution is presented,
while section 5 presents the numerical results and makes
some discussions, and section 6 gives the concluding
remarks.

2. Formulation of the problem

Consider an isotropic symmetric strongly inhomogeneous three-
layered plate as shown in figure 1 below consisting of the upper
skin layer h. <y < (he + hy), the core layer —h,. < y < k.
and the lower skin layer in —(h. 4+ hy) <y < —h,.

We then define an anti-plane dynamic problem by con-
sidering the classical equation of motion [1, 2, 24, 25] in the
presence of viscous damping [26] given in Cartesian coor-
dinates (x, y) as follows
dody  9*U1 n 68Uq

Ool,
= 2
ot ot

Ox Oy

,t>0, g=c,s, (1)

with the spatial variables x, y, the temporal variable ¢, and the
out of plane displacements U? for ¢ = ¢ and ¢ = s standing
for the core and skin layers, respectively. Also, p, are the
volume mass densities, ¢ is the viscous damping parameter,
[26]. The stresses 033, for j = 1, 2 are given by

v, oue

O—Iq’j:’u‘]ax’ 0—23::uq8y’q:C,S, (2)

where i, are the Lame’s elastic parameters. The prescribed

continuity or interfacial conditions are as follows:

U(x,y, t) =USx, y, t),
05:(x, ¥, 1) = 033(x, y, 1), at y = +h,, t>0. 3)

The traction-free conditions on the outer skin faces are given
by:

033(x,y,1) =0,aty = £(h. + hy), t > 0. 4
The initial conditions at ¢t = 0 are also given to be:

Ul(x,y, 0) = Fy(x,y), Ul(x,y,0) =Gyx,y), g=c,s,
5

where F,(x, y) and G,(x, y) are given continuous functions in
x, y. Thus, in view of the above formulated problem, we
therefore aim in this paper to examine the displacements and
stresses in the respective layers of the inhomogeneous plate
under consideration by studying the effects of the viscous
damping parameter in both the skin and core layers. The
powerful analytical method called the eigenfunctions expan-
sion method [27] is adopted for the investigation.

3. Solution method of the problem

To solve the direct solution of the formulated problem, we
employ the eigenfunctions expansion method. However
before then, due the missing boundary conditions x variable,
we first convert the given problem in equations (1)-(5) to a
system solvable by the above said method. In doing so, a kind
of harmonic solution of the form:
Ulx, y, 1) = Vi(y, De™, q=c,s, (6)
is assumed on x variable to satisfy the displacement field;
where i = \/—_1 , and k is the wave number. Thus, the initial
conditions also take the following form from equation (6)

Fy(x, y) = f,(0e™, Gyx, y) = g,(me™, q=c,s, (T)

where f,(y) and g,(y) are continuous functions. Therefore, by
virtue of the above assumption, equations (1)—(5) transform to
the following system:

2V/q 2yq q
6‘/2 _k2vq:%a‘: +i—8v,t>0,q:c,s,
ady c; ot p, Ot

®)

where ¢, = ,%’ is the transverse speed. We also get the
q

following continuity conditions as proceed:

, ove(y, t
Vc(y’ t) = Vs(y’ t)’ He (y )
dy
— XM, aty = +h,, t> 0, ©)
dy
and the traction-free boundary conditions:
s
w —0,aty =+ +hy), t>0. (10)
y
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The initial conditions now take the form:

Vily, 0) =f,(», VI, 0 =g,0), g=c,5. (11

Now, with the application of the eigenfunctions expansion
method, let the solution of equation (8) take the following
form

Vi(y, 1) = Z qu(y)Z{m(t)’ q=2cas,

m=1

12)

where X,,,(v) are the eigenfunctions for m = 1, 2, 3, .... Then,
the corresponding spectral problem from equations (8)—(11)

cos (heA| X2, — k2)
—sin (he| A2, — k2)

sin (he | A2, — k2)
cos (he A X2, — k2)

3.1. Symmetric solutions

With the symmetric solution consideration for y > 0,
equation (14) reduces to the following

Xem(y) = Ay cos (yy N2, — k2),
Xon(y) = Arcos (y| A, — k2) + Bysin(yy A, — k2),

5)

and leading to the following solution matrix from the con-
ditions given in equations (9)—(10)as follows:

—cos (heA| X2, — k2)

—sin((he + hy) A2, — k%) cos((he 4+ hg) N2, — k?) 0

takes the following form:

X ) + O = k) Xgu(y) = 0,
Xem(y) = Xou(y), MLXc/m(y) = Msxy/m(y), aty = +h,,
X5n(y) = 0. aty = £(he + hy),
13)
for g = ¢, s. More, from the above spectral problem, we get the

respective solutions in the upper skin, core and lower skin layers
as follows:

’uisin (he | N2, — k)|, (16)
that gives the following eigenwave equation
a7

cot (he N2, — k2)tan (hsy N3, — k2) = —He.
1

Equation (17) cannot explicitly be solved for the eigenvalues
A analytically, but numerically or by other means [28]. Also,
analyzing further for lower eigenvlues )\, < 1, we set k =0
in equation (17) and found that it does not have a global
estimate for lower values of \,,.

Xon () = Aj cos (yy| A2, — k%) + Bysin(yy A2, — k%), he <y < (he + hy),

Xem(y) = Ay cos (3 A2, — k2) + Bysin(y X2, — k%), —h. <y < he,
Xon(y) = A3 008 (y X, = k%) + Bysin (yy/X;, — k%),

where A;, B;, [ = 1, 2, 3 are constants to be determined. Now,
since the structure is considered to be symmetrical about
x =0, we therefore analyze both the symmetric and anti-
symmetric solutions of the governing problem in subsections

Xem(y) = cos (yy| \a, — k2),

below. In doing so, we obtain the expected eigenvalues and
eigenfunctions, and the corresponding displacements and
stresses in the respective layers of the plate.

(14)

—(he + hy) <y < —he,

Also for the eigenfunctions, the solutions given in
equation (15) via the conditions in equations (9)-(10)for

y = Oare revealed to be as follows:

(18)
X () = Agy (S (3 /)\%1 — k%) + tan ((he + hy) N2, — k?)sin (+ 22— k2)),
where
cos(hcm) (19)

A2m

" cos (e X2 — k2) + sin(he 22, — K2)tan ((he + hy) 02 — k2)
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Now, to determine the function T,,(#), we substitute
equation (12) with the help of equation (13) into equation (8)
and the initial conditions given in equation (11) to get the
following differential equations:

" 6] 2 _
Tqm(t) + Uq Tqm(t) + (Cqu) Yém(t) - O’ (20)
Z]m(o) = Ry, T(;m(()) = N>

for ¢ = ¢, s, where R,, and N,, are given by the application of
the Fourier’s series as

he hy
[ @Xn&d + [ @)X,
_ 0 he

Ry he ) h ) ’
| xoede + [ xhds,
he hy
[ seXon@de + [ s (e Xum(ds,
N = he h 5 :
| Xoede + [ xh e, @1
The solutions of equation (20) are given by
anR,, cosh (;’;t) + M, sinh (Z_fl;t) —ﬁt
Ty (1) = e, (22)

Qm

where M,, = 241, N,y + 6cqum and oy, = «/0;62 - 4uch2 A2
Thus, from the assumptions made at the beginning of

this section and via equations (6), (12) and (22) we get
the complete out of plane displacements in the respective

cos (hey| A2, — k2)
—sin (he| N2, — k2)

sin (he | X2, — k2)

cos (heA| X2, — k?)

Therefore, the stresses of, and 04, defined in equation (2)
follow from equation (23) as follows

ol (x, y, 1)

| Ry, cosh (;—#qt) + M,, sinh (;—:qt)
= ik, Z

m=1

O
L b
ikx— 5t
X qu(y)e -,

od5(x, v, 1)

= | @mRucosh (;—t) -+ M,, sinh (Lt)

Hy 2/1,q

o'
/ ikxfﬁt

X qu()’)e g (24)

for g = ¢, s. Also, the signs () and (") denote the first and

second derivatives, respectively.

3.2. Antisymmetric solutions

Here also, the antisymmetric solution for y > 0 from
equation (14) takes the form

{XW) = Bysin(y A2 — £2),

(25)

Xon(y) = Ajcos (v s, — k?) + Bysin(y (| A;, — k2),

and yields the following solution matrix from the conditions
given in equations (9)—(10)and the solutions in equation (25)
as follows:

—sin (he| N2, — k2)

—sin((he + hy) Ay, — k?) cos ((he + ho) Ay, — k?) 0

layers as

« | @Ry cosh (;—II) + M, sinh (Z—:"t)
Ulx, y, )= ! !

m=1

Qm

6c2
ikx— 5t
X qu()’)e e, g =c,S,

(23)

where X,,,(y) for ¢ = ¢, s are given in equation (18), and R,,,
and N,, in equation (21).

—%cos (he A = K2) |, (26)
that gives the following eigenwave equation
(27

tan (hcm) tan (hsm) — Fe
H

Thus from equation (27), explicit solution of the eigenvalues
An cannot be obtained analytically, but numerically or by
other means [28]. To analyze further, we set k = 0 to get the
global lower eigenvalues range for \,, < 1 and reveals

/’l —1
&<<—S<<[&) )

(28)
/Ls hC Ms

Also for the eigenfunctions, the solutions given in equation (25)
via the conditions in equations (9)—(10) are revealed to be as
follows:
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Figure 2. Curves for the free undamped displacements of the skin (a) and core (b) layers and free undamped stresses of the skin (c) and core
(d) layers in equation (38).

Xom(y) = sin(yy Ay, — k2), 29
Xon(y) = Bam(cos (yy/ A2, — k2) + tan ((he + hy)y| A2, — k2)sin (yy/ A2, — k2)),

where

sin (he | A2, — k) 30
€08 (he D2, — K2) + sin (he A2, — k2)tan (he + ho) A2, — K2)

By, =

) ) ] for g = ¢, s,where R,, and N,, are given by the application of
Now, to determine the function T,,(f), we substitute (e Fourier's series as

equation (12) with the help of equation (13) into equation (8)

and the initial conditions given in equation (11) to get the he ()Xo (£)dES + hs ()Xo (E)d
following differential equations: _ fO Je ()X (G55 "[;lc 1 (X (G

m )

he ) h 2
[ xaepde,+ [ X (€

he h
[ s€Xan(dsy + [ 8 (€ Xon(E)de,
@31 Ny ==2 he . (32

he h
Tin(0) = Ripe Tp(0) = Ny, [ xh@ds + [ X,

62
T(;;n(t) + M—”Tém(l‘) + (chm)zT(‘]m(t) =0,
q
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Figure 3. Curves for the underdamped displacement of the skin layer in equation (40) with various ¢ values.
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— 6=-2x1073
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Figure 4. Curves for the underdamped displacement of the core layer in equation (40) with various ¢ values.

with X, (), (g = ¢, s) in equation (29). Also. the solutions
of equations (31) are given by

R, cosh (a—'”t) + M, sinh (&t) w2
2, 2 “q

q — 1t
e 2y R

Tym (1) = (33)

Qm

where M, = 24, N,, + (5cqum and o, = Jc;éz - 4uchz)\,2n.

Therefore, from the assumptions made at the beginning
of this section and via equations (12) and (33) we get the
complete out of plane displacements in the respective
layers as

[e9) OlmRm cosh (;T;"t) —+ Mm sinh (%t)
Ui(x, y, t) = Z A

q
m=1

Qm

62

X qu(y)eikx_ﬁl’ q = C7 S,
(34)

where X,,(y) are given in equation (29), and R,, and N,, in
equation (32).

The stresses o{; and o4, also follow from equation (34)
are as follows

o0, y, 1)

o Ry cosh (;—Lt) + M, sinh (Z_:;l)
= ikp, >

m=1

(&7

2
¢,
L4

X Xgn(y)e™

0% (x, y, 1)

[ . Qm
a,, R, cosh (Et) + M, sinh (2—#‘7t)

am

ikx &‘%z
/ ikx—5 =
X qu(y)e g B

(35)

for g =c, s.
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Figure 5. Curves for the underdamped stress of the skin layer in equation (40) with various 6 values.
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Figure 6. Curves for the underdamped stress of the skin layer in equation (40) with various 6 values.

4. Analysis of the solutions

In this section, we analyze the effects of the viscous damping
parameter 6 on the closed form solutions of the out of plane
displacements and the stresses determined. In doing so, we
consider the antisymmetric solutions having possessed a global
lower eigenvalues range as estimated in equation (28) and also

o0

Ulx,y, 1) =)

due to the fact that it is more practical in the plate theory. Note
that similar analysis can also be carried out in regard to the
symmetric solutions. Thus, considering the antisymmetric
solutions given in equations (34)—(35) couple to equation (29)
and equation (32) for R, and N,, we therefore rewrite
equations (34)—(35) as follow [26]

By Ry cOSh (Wt €2, — 1) + M, sinh (wgut €, — 1)

m=1
X qu (y) eikx_cqg"’"l7

o0

Bam

BgmBRm cosh (wqmt4/§,2]m — 1) + M,, sinh (wyt gf]m -1

oly(x,y, 1) = ikp, Y

m=1

X Xom()e™etant,

Bam

BqnRm cosh (wq,,,wg;m — 1) + M, sinh (Wt g;m —1)

o0
U%S(x7 Y, t) = :u’qz
m=1

X Xém(y)eikx’cqfqmt,

Bam
(36)
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Figure 7. Curves for the overdamped displacement of the skin layer in equation (41) with various ¢ values.
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Figure 8. Curves for the overdamped displacement of the core layer in equation (41) with various 6 values.

also for ¢ = ¢, s, and following:

g = € Ams g = o Ui(x, y, 1) = Zl Ry €08 (W)

qm m=
24 Am + N, sin (qut))qu(y)eikxa
Dy = —42" B = 2, 5(2]”, —1. 37 I~
K ot3(x, y, 1) = ikp, Y (R cOS (Wymt)

We therefore analyze the above displacements and stresses by m=1 "
considering the following cases of free undamped and free + N Sin (Wym 1)) X gm (y) €™,

damped situations, respectively: oL (e y. 1) = i i (R, 08 (W)
23\ ) — Myq m qm

m=1

4.1. Free undamped quantities £, = 0 (6 = 0) + N, sin (w, X, (y)ek (38)
m m qm b

To obtain the free undamped displacements and stresses, we
set &, =0 (6=0) in equation (34)—(35) to get the forg=c,s.
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4.2. Critically damped quantities &, = 1
For the critically damped quantities, we set &, = 1 in
equation (34)—(35) to obtain the following:
Ulx, y, 1) = Z Rqum(y)eikx7Q’Z,
m=1

oo
oli(x, y, 1) = ikuq Z Rqum(y)elkx—cqt,
m=1

oo
o, y, )= Hy Z RmX‘;m(y)e’kx’C‘i’, (39)

m=1
forg =c, s.
4.3. Underdamped quantities &gy, < 1

Finallyfor underdamped displacements and stresses, we con-
sider the state where £ an < 1 (6 < 1) in equations (34)—(35)
to get the following:

Ulx, y. 1) =

5. Numerical results and discussion

The present section gives the numerical result and discus-
sions of the formulated problem. In doing so, the overall
plate is considered to be a sandwich plate of length 1 m,
composed of an upper skin layer made of copper material of
length 0.15 m, a core layer made of aluminum material of
length 0.7 m and a lower skin layer made of copper material
of length 0.15 m, just as shown in figure 1. Since the plate is
symmetrical around y = 0, we consider half of the plate
since we analyze the antisymmetric solution as explained in
the above section. Thus, we have the following values for
the dimensional lengths and wave number: h; = 0.15,
h. = 0.35 and k=1.

% [ Vg Ron €08 (Wt |1 — gjm) + My, sin (wynt |1 — gjm)

m=1

X qu (y)eihicqfqmt,

o, y, 1) = ikuq Z

ﬁ/qm

05 [ Vg Rom €08 (Wgm 11— £§m) + M, sin (wgnt /1 — §§m

m=1

X Xgm (y) e Catant,

’Yq m

’quRm COoS (wqmtxll - gtzim) + Mm sin (wqmt 1 - gim)

00
AR ESIDY
m=1

X X g () e Culant,

2

for g = ¢, s, and where Vom = 2qu 1 — gqm‘

4.4. Overdamped quantities £ gy, > 1

For the overdamped displacements and stresses, we consider
the situation when ¢ an > 1(6 > 1) in equation (34)—(35) to
get the following:

Ud(x, 1) =

Fqu

(40)

We also consider the following initial data in the
respective skin and core layers:

L) =2y, f,(y) =10y, g.(y) =sin(y), g(y) = cos(y),
(42)

For the skin layer, we take the relevant elastic parameters for
copper material [29] as follows:

% [ 3,y Rin cOsh (wynt /ff,m — 1) + M, sinh (wynt fim -1)

m=1

lkx—cngmt’

X Xgm(y)e

ol y 1) = iku, 3

Bom

55 | By Rm cOSh (wyn lgjm — 1) + M, sinh (wy,t gjm -1)

m=1

thx— Cq Eqm l’

X Xgm(y)e

By

By Rn cosh (wynt /g;m — 1) + M, sinh (wy,t 5§m -1)

00
0'[]2{3()(, yv t) = :U’q Z
m=1

X Xq/m(y)eilocfchqmt7

for g =c, s.

ﬁqm
41
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Figure 9. Curves for the overdamped stress of the skin layer in equation (41) with various § values.
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Figure 10. Curves for the overdamped stress of the core layer in equation (41) with various é values.

p, = 3.86 x 10'%Pa, p = 8.954 x 10°Kgm=3, (43)

also for the core layer, we take aluminum material with the
following elastic parameters [30]:

[, = 2.46 x 101°Pa, p.=2.66 x 103Kgm™3.  (44)

Furthermore, we have made use of ¢, as /i, / p, in the num-
erical computation for our convenience. Also, since our
method requires eigenvalues, we compute the first five
eigenvalues using the above data, via bisection numerical
method [28] as follows:

A =49.378, X\ = 46.6896, A3 = 349133,

A4 =27.9507, X5 = 16.1838. (45)

Various dimensional displacement and shear stress plots have
been depicted below taking in to account the variations or
effects of the viscous damping parameter ¢ on the propagation
of Rayleigh waves in the plate under consideration. We give
the two-dimensional plots for the free damped and free
undamped cases in figures 2—10. Furthermore, before we go
into detailed discussion, it is important to remember here that
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the skin and core layers are assumed to be of different lengths,
thus mere comparison by looking at the two respective graphs
of the core and skin layers may be tempting. Further, it is vital
to note that the chosen initial conditions in the respective
layers play significant role in the nature of the wave propa-
gation profile as rightly asserted by D’ Alembert [1, 26].
Figure 2 portrays various curves for the wave displacements
of the skin (a) and core (b) layers, and shear stresses 0,3 of the
skin (c) and core (d) layers given in equation (38) in the absence
of viscous damping, that is when &,,, = 0 (0 = 0). Propagation
occurred periodically with varying wavelengths and dissimilar
amplitudes. In both quantities, it is noted that the travelling
amplitudes in the case of skin layer are higher than that of the
core layer; while opposite trend is noted in the case of wave-
lengths. Of course this could results from the fact that the stiff-
ness in the skin layer p is higher than that of the core layer .
Figure 3 shows the variation of the displacement profile
of the skin layer given in equation (40) with respect to the
space variable y for various values of viscous damping
parameter 6. The undamped displacement which appears
when ¢ = 0 has the highest amplitude, and then follows with
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underdamped profiles when 6 < 0. It can be observed here that
the undamped displacement profile in the presence of damping is
maintained till § = —2 x 10>, and then begins to change
greatly. Similar interpretation goes to figure 4 for the variation of
the displacement profile of the core layer given in equation (40);
where the damping effect is more significant in the internal
0.01 <y < 0.16 and then continues smoothly.

In figure 5, the variation of the shear stress 093 profile of
the skin layer given in equation (40) with respect to the space
variable y for various underdamped values are shown. Also, it
is noticed that the profile begins to be affected greatly for
6 < —2 x 1073 as is seen in the interval 0.05 < y < 0.118.
Comparably, similar interpretation goes to figure 6 for the
variation of the shear stress o5; of the core layer given in
equation (39) with more sensitive region comprising
of 0.00 < y < 0.217.

Figures 7 and 8 depict the variations of the displacement
profiles of the skin and core layers given in equation (41) with
respect to the space variable y for various values of over-
damped parameter 6. The displacement profiles in the case of
skin layer are not much disturbed in comparison with that of
the core layer that struggle to maintain the periodic movement
form in the presence of overdamping.

Finally, figures 9 and 10 illustrate the variations of the
shear stress profiles of the skin 035 and core 055 layers given
in equation (41) with respect to the space variable y for var-
ious values of overdamped parameter 6. Periodicity in the
stress profile is maintained in the skin layer despite the var-
iation in 6; while significant deviation is noted in the core
layer amidst different values of 6.

6. Conclusion

In conclusion, effects of viscous damping on the propagation of
anti-plane Rayleigh waves in an elastic three-layered inhomo-
geneous plate have been investigated. The layers of the plate are
considered to be of homogenous isotropic materials of different
material properties, and are bounded together with perfect inter-
facial conditions and traction-free boundary conditions on the
outer faces of the skin layers. The eigenfunctions expansion
method is employed for the study and the antisymmetric solution
modes have been completely analyzed amidst free damped and
undamped situations. Furthermore, a 1 m symmetric plate made
of aluminium core layer and copper skin layers is considered for
the numerical computations, of which a bisection method is
utilized for the computations of the first five eigenvalues. Finally,
it is noted that the effects of viscous damping on the propagation
of Rayleigh waves in a layered plate is significant looking at the
variations in the displacement and shear stress for very small
amount of damping (as small as 10 for core layer and 10™ for
skin layers). Also, the damping effect is noted to be more visible
in the core layer, which is due to the fact that the material
stiffness there is less than that of the skin layer.

It is summarized that the above consideration can be utilized
in furthering the study of damping effects on multilayered elastic
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structures which have been investigated in the literature due to
their various applications such as in sandwich plates, layered
laminates, automotive industries, modern aerospace, photovoltaic
panels and beams considerations.
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