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Silicon is an important high capacity anode material for the next generation Li-ion batteries. The electrochemical
performances of the Si anode are influenced strongly by the properties of the solid electrolyte interphase (SEI). It is well
known that the addition of flouroethylene carbonate (FEC) in the carbonate electrolyte is helpful to improve the cyclic
performance of the Si anode. The possible origin is suggested to relate to the modification of the SEI. However, detailed
information is still absent. In this work, the structural and mechanical properties of the SEI on Si thin film anode in the
ethylene-carbonate-based (EC-based) and FEC-based electrolytes at different discharging and charging states have been in-
vestigated using a scanning atomic force microscopy force spectroscopy (AFMFS) method. Single-layered, double-layered,
and multi-layered SEI structures with various Young’s moduli have been visualized three dimensionally at nanoscale based
on the hundreds of force curves in certain scanned area. The coverage of the SEI can be obtained quantitatively from the
two-dimensional (2D) project plots. The related analysis indicates that more soft SEI layers are covered on the Si anode,
and this could explain the benefits of the FEC additive.
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1. Introduction

Non-aqueous liquid electrolytes are widely used in com-
mercial Li-ion batteries for portable electronics, electric vehi-
cles, and many other applications.!!=3! Electrolytes with high
conductivity, safety, and compatibility with the electrodes are
desirable.[* It is favorable but not necessary that the elec-
trolyte should keep electrochemically stable in a wide elec-
trochemical window. If the exposed surface of cathode and
anode towards the electrolyte can be covered by a stable pas-
sivating layer, the battery can also operate well. Such a passi-
vating layer is well known and called the solid electrolyte in-
terphase (SEI).’! The SEI plays a critical role in determining
the Coulumbic efficiency, cycle life, calendar life, rate per-
formance, energy efficiency, gas release, self-discharge, and
safety for Li-ion batteries.[°) Based on experimental inves-
tigations using x-ray photoelectron spectroscopy (XPS),!!0]
electrochemical impedance spectra (EIS),['!] and secondary
ion mass spectrometry (SIMS)[!?! techniques, it is generally
accepted that the SEI is composed of at least two layers. The
inner layer is the inorganic layer, containing Li;COs3, Li;0,
LiF, and LiOH. The outer layer is the organic and polymer
layer, containing LiOR, ROCO;Li, and PEO-Li.[13:141 Such
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complicated multi-layered structure has been reconstructed by
molecular dynamic (MD) simulation.!!3) Tt is also known that
the SEI is amorphous and the thickness ranges from 2 nm to
hundreds of nanometers. Therefore, it is very difficult to detect
the structure of the SEI experimentally.

Si is known as the most promising anode material for
the next generation of Li-ion batteries due to its high spe-
cific capacity of 3579 mA-h-g~! associated with the forma-
tion of Li;5Si4 at room temperature. It was noticed by the au-
thors in 1999 that the capacity retention of Si can be improved
by decreasing the particle size to nanometers./'®!8] However,
the challenges of Si anodes are quite difficult to overcome.
One is the large volume variation (~ 320% for fully discharge
and charge) during the lithiation/delithiation process.!!*-2? It
leads to the pulverization of the Si materials with large parti-
cle size and worsen of the electrical connection between the
electrode and the current collector. Another issue is the SEI
film on Si anode. The chemical compositions of the SEI on Si
anodes at different states upon cycling are explored by XPS,
which are found similar with graphite anode such as Li,CO3,
LiF, and Li-contained organic species. The SEI exhibits differ-
ent morphology at different potential during the first two cycle
as confirmed by scanning electronic microscopy (SEM).[23 Tt
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was suggested that the SEI layer is mainly composed of inor-
ganic species (LiF, LiP,F,, et al.) under high rate and organic
carbonate species (alkyl lithium carbonates, et al.) under low
rate, this phenomenon is confirmed by XPS and ToF-SIMS. [>4]

A stable passivating layer with 100% coverage for the SEI
film is expected. However, up to now, the quantitative infor-
mation of the SEI coverage on electrodes in lithium batteries
is difficult to obtain, including Si anodes. It is not clear (1)
whether the Si anode is covered by the SEI film completely
after the first cycle; (2) whether the SEI can maintain stable
after large volume variation; (3) whether the reformation of
the SEI film on the fresh exposed surface after the formation
of cracks will lead to the worsen of the electronic contact.

In spite of the above uncertainties in the SEI film on
Si anode, it has been found that the use of additives effec-
tively improves the cyclic performances of Si and other an-
odes through modifying the SEI film.[>-28] And flouroethy-
lene carbonate (FEC) has been widely used as additive!?°—34]
or co-solvent!3 > of electrolyte for Si anodes. The en-
hancement of the cyclic performance is ascribed to the bet-
ter properties of the FEC-induced SEI, such as smooth

29331 Jow impedance, *%3 and protecting the Si an-

surface, [
ode from oxidation.[*! The detected chemical components
of the SEI on Si anodes in FEC-contained electrolyte are
LiF, oxalates, polyene-compounds, polycarbonate species, Si—
F based products, et al. However, the detailed structure of the
SEI, especially the mechanical properties and the coverage of
the SEI are still not clear, which are key information for prop-
erly understanding the functions of the FEC.

Atomic force microscopy (AFM) has been used to study
the SEI for a long time.[*?! The thickness of the SEI on
highly oriented pyrolytic graphite (HOPG) was 25 nm in a
1 umx1 pm area measured by the AFM tip according to
Kotz’s results.*3] Chu found that the SEI formed at a higher
potential on the edge surface of HOPG than on basal surface
via an electrochemical AFM technique.!**! Micro-structural
evolution process such as curling, swelling, and exfoliation
of the HOPG particle caused by the intercalation of solved
lithium ions was observed by Ogumi’s group.'*>! And this
group has also found that the SEI can dissolve and agglom-
erate when stored at elevated temperature. [46]

The surface evolution of the Si-based anode material dur-
ing cycling can be investigated through an AFM equipped in-
side the argon-filled glove box.[*”! The volume change of the
Si upon lithiation/delithiation was observed by several groups
using AFM. 47491 And the cracks of the Si thin film after cy-
cle were also confirmed. All these in-situ or ex-situ AFM
studies are helpful for understanding the interface problems
and designing lithium batteries with better performance. Re-
cently, an AFM based method, force spectroscopy (AFMES),
has been proposed to study the SEI of the MnO thin film,>!]

HOPG[2 anode for Li-ion batteries, and has also been ex-
tended to study the SEI of Na-ion batteries.>! The deforma-
tion of the sample and the force acted on the tip are recorded
during the repulsive interaction process between the sample
and the tip. Consequently, the Young’s modulus and the thick-
ness of the SEI can be measured. This is quite helpful to obtain
the mechanical property of the SEI film.

In this work, ex situ AFMFS method has been developed
further by scanning the surface and collecting a large quan-
tity of force curves. Accordingly to the analysis, the coverage,
three-dimensional (3D) structure, and mechanical properties
of the SEI on the Si anode can be obtained, which is helpful
for understanding the function of the FEC and clarifying the
problems listed above.

2. Experiment
2.1. Materials

Silicon nanopowder with an average size of 100 nm was
purchased from Hefei Kaier Nanotechnology Development
Co., Ltd. Super P carbon and sodium alginate were purchased
from Sigma-Aldrich. All chemicals were used as received
without further purification.

2.2. Electrode preparation and cell assembly

The 70 wt% silicon nanopowder, 15 wt% super P car-
bon, and 15 wt% sodium alginate in deionized water as sol-
vent were mixed using a Germany IKA Eurostar 6000 stir-
rer (2000 rpm) for at least 10 h to obtain homogeneous slur-
ries. Then, these slurries were coated on a Cu foil using a
100 um doctor-blade. After coating, the film was dried in an
air dry oven at 30 °C for 2 h, compressed under 1 MPa be-
tween two stainless steel plates, and cut into sheets with an

area of 0.8 cm?

2

. The average mass loading of silicon was
2.34 mg/cm~. These sheets were dried in a vacuum oven at
120 °C to remove the solvent. The silicon electrodes were ob-
tained for electrochemical performance measurements.

The test cells were assembled into CR2032 cells with a
metal lithium foil as the counter electrode and a Celgard sepa-
rator in an argon-filled glove box. The electrolytes of the cells
were made with: (i) 1 M LiPFg in EC/DMC (1 : 1, v/v), a com-
mercially available electrolyte for lithium ion batteries, and (ii)
1 M LiPF¢ in FEC/DMC (3 : 7, v/v). The discharge and charge
measurements were carried out on a Land BT2000 battery test
system (Wuhan, China). All these cells were cycled between
10 mV and 1 V versus Li/Li* at a 0.05 C rate (210 mA~g’1)
for the first cycle and a 0.2 C rate (840 mA-g~!) for subsequent
cycles.

2.3. Elecrtrochemical testing

Electrochemical cycling of the assembled half-cell was
performed by Arbin automatic cell tester between 2 V and
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0.005 V at 0.2 C. Different electrochemical states are listed
in Table 1. For the FEC-free sample, the cut-off voltages were
0.05 Vv, 0.005 V, and 0.005 V (kept at 0.005 V for 48 h) in the
first discharging process, and 2 V was chosen in the charging
process. With addition of 30% FEC in the electrolyte, the sam-
ples were discharged to 0.2 V (sample 6), 0.05 V (sample 7),
0.005 V (sample 8), and 0.005 V (sample 9) for 48 h. Sample
10 was charged to 2 V at room temperature after the first dis-
charging process. Sample 11 was discharged to 0.005 V and
kept at 0.005 V (55 °C) for 48 h. Sample 12 was charged to
2 V.

Table 1. Different cycle stages of silicon thin films.

Electrochemical states

Sample No. Electrolyte & temperature
(cut-off voltage)
Sample 1 Pristine silicon,
discharge to 0.2 V
Sample 2 discharge to 0.05 V EC-based electrolyte, RT
Sample 3 discharge to 0.005 V
Sample 4 discharge to 0.005 V and
keep at 0.005 V for 48 h
Sample 5 charge to2 V
Sample 6 discharge to 0.2 V
Sample 7 discharge to 0.05 V
Sample 8 discharge to 0.005 V FEC-based electrolyte, RT
Sample 9 discharge to 0.005 V and
keep at 0.005 V for 48 h
Sample 10 charge to2 V
discharge to 0.005 V and
Sample 11 . o
keep at 0.005 V for 48 h  FEC-based electrolyte, 55 °C
Sample 12 charge to2 V

2.4. Characterization

A Swageloke-type two-electrode cell was assembled in
an Ar-filled glove box. The Si thin film was used as the work-
ing electrode, and a lithium foil as the counter electrode. After
cycling, the cells were disassembled in the Ar-filled glove box,
and the Si thin films were washed by DMC to remove resid-
ual of LiPF¢. The samples were then vacuum-dried for more
than 5 h before AFM (MultiMode 8, Bruker, equipped inside
an Ar glove box) study. A random 45 pumx45 pum area was
selected on each sample and 225 force curves in total were ob-
tained for each sample in the chosen area. The space distance

between two force curves was 3 um. As for the AFMFS mea-
surement, a batch of flat Si thin film electrodes were prepared
under the same condition by magnetron sputtering. Titanium
was deposited on a polished quartz substrate by direct current
magnetron sputtering to serve as the current collector. The Si
film (~ 410 nm in thickness) was then deposited on the tita-
nium layer directly by radio frequency magnetron sputtering.
The sputtering chamber was vacuumed to 2 x 10~* Pa before
depositing and was kept at 0.5 Pa under pure Ar (> 99.999%).

3. Results and discussion

Figure 1(a) shows the cycling performance of the cells
containing the EC-based (50% EC) and the FEC-based (30%
FEC) electrolytes. Excellent reversible capacities were ob-
served for the cells containing either FEC or EC. The re-
versible capacity of the silicon electrode in the EC-based elec-
trolyte was 3126 mA-h/g for the first cycle. The same elec-
trode in the FEC-based electrolyte had an initial capacity of
3102 mA-h/g, slightly lower than that in the EC-based elec-
trolyte. The Coulombic efficiency in the first cycle was 90%
for the EC-based electrolyte while it was 86% for the FEC-
based electrolyte (Figs. 1(b) and 1(c)). Furthermore, the cells
containing FEC showed better cycling performance than those
without FEC after 30 cycles.

In order to study the SEI film using AFMFS method,
amorphous Si thin film electrodes (a-Si is used in the fol-
lowing text for convenience) were prepared by magnetron
sputtering.®* Figure 2(a) indicates the discharging and charg-
ing states of the a-Si electrodes. Figures 2(b)-2(g) show the
surface morphology evolution. The top view of the pristine
a-Si electrode displays spherical grains with the average grain
size ranging from tens to hundreds of nanometers. The grain
size increases gradually with the insertion of Li-ion during
discharging and decreases slightly after charging. This can
be shown clearly in the roughness statistics in Fig. 2(h). The
roughness Ry is measured by root-mean-squared (RMS) val-
ues determined from the AFM images.!>! At the charging
state, the cracking can also be seen.

5000 - — = 2.0 2.0
- harge-dishcharge between 0.01 V and 1 V@0.1 G z silicon electrode in EC-based electrolyte . silicon electrode in FEC-based electrolyte
o0 4000 theoretical for silicon +, (1 M LiPF6 in EC:DMC) ~ (1M LiPF6 in FEC:DMC)
= ; @] =2 b (b)| % 15r (©)
< switch from 0.05 C to > =
£ 3000 1%---> 0.2 C after 1st cycle [} =
~ : 2]
= 200 s 1.0 Z .
£ 2000t ke - 1.0
3 -+ EC:DMC I “ ovel = _
§ 1000} -+ FEC:DMC Z 05 _iothq::;(?lc E o5 1 ceyele
O - b — cycle
0 theoretical for graphite E —20% cycle Q? —20th C;’Cle
- 0 T L
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Fig. 1. (a) Reversible capacity of the silicon electrodes in the FEC-based electrolyte and the EC-based electrolyte. Charge and discharge curves
of the silicon electrode cycled (b) in the EC-based electrolyte and (c) in the FEC-based electrolyte.
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Fig. 2. (a) Voltage profile of samples 2—-6, which were discharged to 0.2 V, 0.05 V, 0.005 V, 0.005 V (kept at 0.005 V for 48 h), and charged to 2 V.
(b)—(g) Roughness of samples 1-6. (h) AFM topographical images (3 pmx3 pum) of samples 1-6, where sample 1 was the pristine Si thin film.

For a 45 pmx45 pm crack-free square region which was
selected randomly, the AFM tip probed the force response ev-
ery 3 um. Total 225 force curves were collected for every
sample. The diameter of the tip is about 4 nm (it is about
80 nm when the immersion depth of the tip is 100 nm). There-
fore, we believe that the microstructure of neighbor spots will
not influence each other by each probing. Five typical types of
force curves have been obtained, as shown in Fig. 3, which
Each

layer has a set of elastic region and yield region. Normally,

could correspond to five different surface structures.

the elastic region has a linear slope while the slope of the
yield region changes compared with that of the elastic region.
This is the reason for the existence of several points of inflex-
ion on a curve. Though the amplification of the first deriva-
tive between two layers is very small for the short indenta-
tion depth and similar composition, the second derivative has
a huge change. So the multilayers can be distinguished from
each other through the huge change of the second derivative.
Figure 3(a) shows the force curve of the naked surface of the
Li-Si alloy. The second type of force curve profile is shown
in Fig. 3(c). In this figure, § = 0 (directed by the olive ar-
row) is the start-contact point of the tip and sample surface.
So & < 0 means that the tip stays far enough from the sample,
beyond the range of any tip—sample interactions. Then the tip
is loaded towards to the surface of the sample. A set of elas-
tic region (0< & < 50.89 nm, a linear slope in the indentation
curve) and yield region (50.89 nm < § < 70.46 nm, the slope
decreased compared with the elastic region) can be observed.
Then a sharp increasing region appears above 70.46 nm, which
is related to the Li-Si alloy (representative force curve of Li—
Si is shown in Fig. 3(a)). It is supposed that the structure of
the detected point is a single-layered SEI with the thickness
of 70.46 nm, as drawn in Fig. 3(d) for reference. The third

type of force curve profile has two sets of elastic, yield regions
(0< 6 < 12.95 nm, 12.95 nm< § < 44.05 nm) in one force
curve, corresponding to a 12.95 nm layer and a 31.1 nm layer,
respectively. We believe that this is related to a double-layer
structure as described in Fig. 3(f). This type of double-layered
force curve was also observed in the case of SEI on Cu anode
in a Na battery. During the interaction process, the top soft
layer of SEI could be compressed by the tip and a compact
SEI formed, thus the force behavior of the compressed SEI
was modified compared to the soft one.’! The fourth type of
force curve profile is composed of three regions as shown in
Fig. 3(g), 0 < 6 < 20.75 nm for the first layer, 20.75 nm < § <
42.84 nm for the second layer, and 42.84 nm < d < 69.42 nm
for the third layer. Each layer is identified by one set of elastic
and yield regions. This could be an area with a triple-layered
structure, as shown in Fig. 3(h). The fifth type of force curve
is shown in Fig. 3(i). It increases to about 60 nN as the sample
deformation is 13 nm and then decreases from 60 nN to 30 nN
in the region of 13 nm < § < 28 nm. This phenomenon means
that the tip may touch a bubble existed in the SEI film. This is
reasonable that some authors have proposed such possibility
previously.’®>7l The bubble could generate since the reduc-
tion of the electrolyte will produce CO,, CO, CHy, CoHy, et
al.’¥ In some surface areas of the cycled Si thin film, none of
the above four types of force curves are obtained. Compared
to the fresh a-Si electrode, a linear response with relatively
low slope can be found (see Fig. 3(a)). This area should be
the naked lithiated a-Si surface. Based on the responses of
the force curves in each detected point, we could judge easily
whether the surface at that point is covered by the SEI or not,

and whether the SEI is single layer or multiple layers.
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Fig. 3. Typical profiles of force curve spectroscopy: (a) naked surface
of the Li-Si alloy after cycle, (c) single-layered SEI, (d) double-layered
SEI, (g) triple-layered SEI, (i) bubble; (b) (d), (f), (h), (j) possible mod-
els for the previous structures.
As mentioned above, the thickness of each layer of the
SEI film can be obtained from the force curves. The total SEI
thickness statistics of the various samples at different states
are shown in Fig. 4. The frequency of the Y axis means the
number of the force curves with the feature of the SEI. The

thickness means the total thickness of the SEI at certain point,
whatever the SEI in that point is single layer or triple layer.

For the samples with EC-based electrolyte (Figs. 4(a)—
4(d)), the area with SEI can be detected out only when the a-Si
electrodes are discharged below 0.05 V. The number of thicker
SEI areas increases gradually with decreasing the discharge
voltage. The number of thicker SEI decreases after charging
to 2.0 V. In the case using the FEC-contained electrolyte, the
area with SEI can be detected out at a higher discharging cut-
off voltage of 0.2 V. The general trend of the thickness varia-
tion of the SEI during discharging and charging is similar to
that of the FEC-free samples (Figs. 4(e)—4(h) for discharging,
Fig. 4(i) for charging). Relatively speaking, the number of the
areas with thick SEI and the thickness of the a-Si electrode
in the electrolyte with FEC are larger than those of the a-Si
electrode in the FEC-free electrolyte.

The effect of temperature was also investigated. The a-
Si electrodes were discharged at 55 °C and then charged after
cooled down to room temperature for AFMFS testing. Ob-
viously, the SEI grown at 55 °C is thinner than that at room
temperature. It is supposed that part of the SEI could be more
dissolvable at elevated temperature, which has been noticed
previously.!7-43]

Young’s modulus can be extracted from each force curve.
During measurement, a conical type tip (tip radius ~ 2 nm)
was inserted into a flat surface. The relationship among
Young’s modulus, sample deformation, and loading force can
be described by the Sneddon model*”!

F = (2/m)(E/(1-v?))8*an(a), ()

where F is the loading force, E is the Young’s modulus, &
is the sample deformation of the elastic region, ¢ is the half
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Fig. 4. Thickness distribution of SEI: (a)—(d) for samples 2—-5 (blue arrow: discharged to 0.05 V, 0.005 V, 0.005 V and kept at 0.005 V for 48 h,
charged to 2 V; EC-based electrolyte, RT), (e)—(i) for samples 6—10 (olive arrow: discharged to 0.2 V 0.05 V, 0.005 V, 0.005 V and kept at
0.005 V for 48 h, charged to 2 V; FEC-based electrolyte, RT), (j)—(k) for samples 11-12 (red arrow: discharged to 0.005 V and kept at 0.005 V

for 48 h, charged to 2 V; FEC-based electrolyte, 55 °C).
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angle of the conical tip (&« = 20°), Vv is the Poisson ratio which
was set to be 0.5, assuming rubber elasticity for the SEI films
at the early stage of the elastic region of the force curve.[#8-0]
At the detected point, the information of the Young’s modu-
lus at each layer can be obtained. Since we have already ob-
tained the information of the SEI thickness of each layer, we
can draw a plot of Young’s modulus versus the SEI thickness
of each layer. In order to distinguish the SEI with different
layer structure, the SEI areas with single layer, double layer,
or triple layer are marked with different symbols. As shown
in Figs. 5(a)-5(d), soft and hard SEI areas coexist once the
SEI is formed after discharging to 50 mV. More soft SEI areas
with low Young’s modulus appear at deep discharging state,
as shown in Fig. 5(c). The areas with single-layered struc-
ture have the highest probability to appear at all discharging
and charging states. The SEI areas with double-layered struc-
ture appear after discharging to 0.005 V and the triple-layered
structure appears after discharging at 5 mV and keeping po-
tentiostatically for extra 48 h, as shown in Figs. 5(b) and 5(c).
After charging, only single-layered SEI remains and more soft
SEI areas disappear, as shown in Fig. 5(d).

The influence of the FEC on the mechanical properties of
the formed SEI is shown in Figs. 5(e)-5(i). The most strik-
ing differences of a-Si electrodes in the FEC electrolyte and
FEC-free electrolyte are noticed as follows.

1) The appearance of the SEI at 0.2 V for the FEC case,
as shown in Fig. 5(e) (this is also observed in Fig. 4(e)), the
start-formation potential of the EC-based electrolyte is 0.05 V.
The Young’s modulus of SEI at 0.2 V is at least larger than
100 MPa, most of areas are single layer and the thickness is
less than 40 nm. The Young’s modulus is below 100 MPa dur-

ing the following discharging process, implying that the softer
SEI formed under this condition could be mainly composed of
organic layer.

2) The amount of double-layered and triple-layered SEI is
relatively higher in the FEC case and increases with decreas-
ing discharging voltage (Figs. 5(e)-5(1)).

3) The double-layered SEI areas remain even after charg-
ing to 2.0 V (Fig. 5(i)) in the FEC samples while only single-
layered SEI remains in the EC ones (Fig. 6(d)), it means that
the FEC, used as co-solvent of the electrolyte, is helpful to
form the SEI with better structural and electrochemical stabil-
ity.

At 55 °C, the general tendency is similar. Soft SEI ar-
eas disappear significantly after charging to 2.0 V. A slight
difference is that the multi-layered SEI areas are fewer than
that at room temperature for the fully discharged a-Si elec-
trodes, as shown in Fig. 5(h). Comparing the a-Si electrodes
after charging at 2.0 V at room temperature (Fig. 5(i)) and at
55 °C (Fig. 5(k)), both soft and hard SEI are much less at el-
evated temperature. This suggests further that the solubility
of the SEI at elevated temperature is increased significantly,
especially for the soft components.

At each AFMFS measured point in the scanned area, the
Young’s modulus can be obtained. If the SEI is single layer,
one Young’s modulus value at different indentation depth can
be obtained. If the SEI is multi-layered, several Young’s mod-
ulus values can be obtained. At each point, the thickness of
the SEI for each layer is also known. Therefore, 3D plots can
be drawn based on the above analysis, as shown in Fig. 6. The
SEI is presented in the xyz coordinates, where x and y are the
positions of each force curve in the 45 umx45 pum surface and
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z is the thickness of the SEI measured. The Young’s modulus
of the SEI is represented by the color bar ranging from 0 to
4 GPa. It can be seen that the surface of the a-Si electrodes at
every state is not covered completely by the SEI film. Some ar-
eas are still naked even at deeply discharging state. The SEI on
a-Si anode looks like a wild forest, distributed randomly and
inhomogeneously. The SEI morphology on the silicon surface
has been studied by Choi.[®" The lithium alloy with a particle-
like shape is generated and the volume expands during the pe-
riod of charging. When the lithium is removed from the alloy,
the electrode shrinks and produces cracks. The cracking on the
surface proceeds and the cracked silicon becomes smaller with
cycle number. This can be attributed to the volumetric stresses
of the insertion/extraction lithium of the lithium—silicon alloy
during the repeated cycling. The FEC is helpful to the for-
mation of SEI layer on the cracked surface of the electrode
by reductive decomposition of the electrolyte solution. Con-
clusions drawn from Fig. 6 are the same as above analysis,
obviously, the variation of the SEI morphology upon the dis-
charging and charging, the effect of the FEC and temperature
can be seen clearly and straightforwardly. Especially, the shell
of the SEI is composed of soft SEI as shown by blue color with
lower Young’s modulus.

The projection of the 3D plots in Fig. 6 gives a 2D plot
which will indicate the coverage of the SEI on the a-Si elec-
trodes. Each 2D projection plot as shown in Figs. 7(a)-7(k)
corresponds to the 3D plot in Fig. 6, respectively. From this
figure, it is more obvious that many areas are in black color
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and not covered by the SEI film. From Fig. 7, the coverage
can be calculated quantitatively by the following equation:

number of force curves with SEI response

@

coverage =
total number of force curves

The results are shown in Fig. 8. It is clearly that the SEI cover-
age increases continuously to 50% after discharging to 5 mV
and decreases continuously to 30% after charging to 2.0 V
with the EC-based electrolyte. The addition of FEC is ben-
eficial to increasing the coverage of SEI to 60%. However, the
SEI is not electrochemically stable, especially for the “soft”
parts as mentioned above.

Full coverage of stable and homogeneous SEI on the sur-
face of electrode in lithium ion batteries is desirable for achiev-
ing high Coulombic efficiency at successive cycles and long
cycling life. The coverage of the SEI film could be influenced
by many aspects leading to inhomogeneity, perhaps including
the electronic conductivity of the electrodes, wetting effect of
the electrolyte on the surface of the electrodes, ionic current
distribution on the surface of the electrode, dynamic equilib-
rium between the deposition and dissolution of the SEI com-
ponents, and surface energy of the electrodes. Up to now, the
related knowledge is very poor. We could not explain clearly
why the SEI cannot cover the surface of the a-Si thin film
electrodes in all cases even after the a-Si electrodes are kept
at 0.005 V for 48 h. Comprehensive investigations and com-
parisons on other material systems should be helpful for clear
understanding.
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Fig. 6. Three-dimensional plots (a)—(d) for samples 2—5 (discharged to 0.05 V, 0.005 V, 0.005 V and kept at 0.005 V for 48 h, charged to 2 V; EC-based
electrolyte, RT), (e)—(i) for samples 6-10 (discharged to 0.2 V 0.05 V, 0.005 V, 0.005 V and kept at 0.005 V for 48 h, charged to 2 V; FEC-based
electrolyte, RT), (j)—(k) for samples 11-12 (red arrow, discharged to 0.005 V and kept at 0.005 V for 48 h, charged to 2 V; FEC-based electrolyte,
55 °C), Black substrates are for Li-Si alloy, x, y axes are the coordinates of the SEI film and z axis is the thickness of the SEI film. The color bar of

0—4 GPa is the Young’s modulus for the SEI films.
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Fig. 8. SEI coverage (Eq. (2)) for samples 2-5 (EC-based electrolyte,
RT), (e)—(i) samples 6—10 (FEC-based electrolyte, RT), and (j)—(k) sam-
ples 11-12 (FEC-based electrolyte, 55 °C).

In spite of uncertainty of the mechanism, based on the
above findings, we believe that ex siftu AFMFS could be de-
veloped into a powerful tool for studying the SEI with compli-
cated surface structure and can be very helpful for screening
the electrolyte additives and studying the function of the poly-
mer binder.

Actually, quantitative analysis based on in situ AFMFS
measurements is more desired. However, all of our efforts
have not been successful up to now due to the quick evapora-
tion of the electrolytes in the glove box. Collecting 225 force
curves needs two hours while the electrolyte on the surface of
the a-Si electrode will be dried within 10 min. This problem
could be solved by exchanging the volatile nonaqueous elec-
trolyte into stable ionic liquid. It is certainly valuable but the
important information of the SEI film formed in commonly
used carbonate electrolytes cannot be obtained. Alternatively,

high speed force curve scanning mode or hundreds tips AFM
instruments could be developed for this purpose.

4. Conclusions

Ex situ scanning AFMFS method has been used to study
the SEI film on a-Si thin film electrodes. By analyzing hun-
dreds of force curves collected in certain area, the thickness
distribution, multi-layered structure, Young’s modulus, and
the coverage of the SEI can be obtained. The 3D visualization
of the SEI has been realized. It is found that the SEI grows
thicker and softer during discharging. The soft parts tend to
decompose during charging. Elevating operating temperature
of the cell will lead to the dissolution of the SEI, especially
for the soft parts. The FEC-contained electrolyte is beneficial
to form the SEI film at higher discharge voltage and improve
the SEI coverage, compared to the EC-based electrolyte. This
could explain the enhancement effect of the FEC on the cyclic
performance of the Si anode. Since this method could pro-
vide unique information, it is believed that the combination of
the scanning AFMFS method with other techniques, such as
SIMS, XPS, EELS, and ABF-STEM will be developed as a
powerful tool kit to provide complete picture of the SEI with
chemical, microstructure, and mechanical properties in future.
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