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Abstract

We propose a variation of the Guiol-Machado—Schinazi (GMS) model of evo-
lution of species. In our version, as in the GMS model, at each birth, the new
species in the system is labeled with a random fitness, but in our variation, to
each extinction event is associated a random threshold and all species with fit-
ness below the threshold are removed from the system. We present necessary
and suficient criteria for the recurrence and transience of the empty configura-
tion of species; we show the existence of a long time limit distribution of species
in the system, and present necessary and suficient criteria for the finiteness of the
number of species in that distribution. There is a remarkable symmetry between
both sets of criteria. We also highlight fundamental differences between ours
and the GMS model, putting them in different universality classes.

Keywords: Poisson processes, records, evolution

1. Introduction

In a seminal paper, Bak and Sneppen [1] have proposed a simple model of evolution of species,
which has inspired a wealth of studies in several areas of knowledge, including physics, biology
and mathematics. In [1], species are identified with sites in a circular 1d grid, and their evolution
are described through a dynamics on their fitnesses, which at each step replaces the current
minimal fitness along with neighboring current fitnesses at the grid with fresh, independent
fitnesses sampled from the standard uniform distribution.
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In the mathematics literature, there are few rigorous results concerning the long term behavior
of the Bak—Sneppen system. Noteworthy are papers of Meester and Znamenski [2, 3], which
derive information on the asymptotic fitness distribution of the model.

Guiol, Machado and Schinazi [4] proposed a different, if somewhat similar dynamics,
describing the evolution (in discrete time, as in [1]) of species who independently appear at
each time step with probability p, and are assigned a fitness sampled from the uniform distri-
bution on [0, 1]. Extinction occurs at each time step, also independently and with probability
1 — p, whenever there is at least one species present at the corresponding time, in which case
the one with the least fitness is removed from the system. Note that the rule to ‘kill the least
fit’ is a common feature with [1]; however, the local interactions of the Bak—Sneppen system
are absent. In [4] it was proved that species fitnesses are asymptotically uniformly distributed
in (fe, 1), where f; = (1 — p)/p, a similar result to Meester and Znamenski’s.

Several extensions and generalizations of the GMS model were subsequently introduced
and studied, as in Ben-Ari et al [5], Michael and Volkov [6], Bertacchi et al [7] and Grejo et al
[8]. Further, Guiol ef al [9] proposed a variation of the model, where the evolution is given in
continuous time. See also Formentin and Swart [10] for a closely related model with a different
motivation. We refer to this literature for further discussion of the models and results.

We consider here a variation of the GMS model [9] in which, as in that model, new species
are born at a given rate, and at possibly another rate we have extinction of species. For each
new species in the system, we associate a positive random number, chosen from a distribution
F,. We call this random number the fitness of the species. So far, the setting is the same as
(or quite similar to the one) in [9].

Our variation is (more markedly) related with the extinction events. At the time of each such
event, we have a positive threshold random variable, with distribution F;, and all species with
fitness below this threshold at that time, if any, get extinct.

We believe this is a natural variation of the GMS model, when we consider extinction of
species in the natural world produced by major events such as abrupt habitat change, where con-
ceivably each species might be affected according to its own aptitude to face the new challenge,
irrespective of other species.

The random fitnesses and the random thresholds are independent of each other and of every-
thing else in the process. We assume F, is continuous on R} = [0, 00); so, in particular, we
can and will identify each species with its fitness. We also assume, for simplicity, that F, and
F; have unbounded support.

Let II, and II; be independent Poisson point processes in R with rates A, and A4, respec-
tively. Define {T;};cz+ as the set of birth time instants of a new species in the system, define
{8} jez~ as the instants of time in which there is an extinction event. These sequences represent
the points in the Poisson processes and are indexed in increasing order. At each time 7; € I,
we assign to the newly appeared species the fitness X;, drawn from F,, and to each time §; € II;
we associate the threshold Y; from distribution F.

Given a locally finite subset A of R, let n, = {n,(s), s > r} denote our evolution model
starting from A at time ¢. So, atinitial time ¢ € R, the process has initial configuration ,(f) = A,
and at time s € (#,00), the process has the configuration 7,(s) which is composed of all
species/fitnesses either of A or that have appeared in the time interval (z, s], and that have sur-
vived the events of extinction in [, s], i.e. species whose fitnesses are greater than the highest
threshold drawn in events of extinction in [#, s] after their birth.

Notice that as long as A does not depend on ¢, neither does the distribution of 7,, so below
we will often restrict to 7.
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Figure 1. Possible configuration of process 7, in the time interval [z, s].

Figure 1 simulates a realization of the process 7, in the time interval [#, s]. Each circle rep-
resents a species alive in the process and the gray arrow issuing from it represents its life time.
Observe that the position of each species in relation to the vertical axis is given by its fitness.
The three black circles represent the configuration of the process at time ¢. The six gray circles
represent the species that were born in the time interval [z, s]; the positions that they occupy
represent the respective instants of time they were born (horizontal axis) and the fitnessess that
were drawn to them (vertical axis). The four withe circles represent the species that survived
the extinction events and are alive at the time s. Finally, each extinction threshold is represented
in figure 1 by black stars.

1.1. Preliminary comparison to the GMS model

Before going to our results, let us briefly discuss preliminarily how our model compares with
the GMS model (of [9]). One difference is that we have fitnesses in R rather than [0, 1], but
this is not important, or rather just a matter of changing the fitness scale. More importantly,
our thresholds are also supported in R, and one might point out that the model makes sense
for a bounded threshold distribution. In this case, we would allow for another feature missing
from our model and present in the GMS model, namely, the eternal species. However, this
would be a trivial phenomenon in our model (any species with fitness above the upper bound
of the threshold distribution would automatically be eternal, and none below that upper bound).
The most interesting comparison between the models would be thus our model in the above
formulation (both fitnesses and extinction thresholds unboundedly supported) and the GMS
model below the critical fitness value (for the occurrence of eternal species).

In terms of recurrence of the empty state and finiteness of the number of species in the limit-
ing distribution of species fitnesses, the latter model is known to show recurrence and infinitely
many species in the limit. As we will see below our model may show different behavior in both
this respects, depending on F, and F}, but there are choices, such as F, = Fj, for which both
models behave the same in both these respects. It is then natural to ask whether our model
with F, = F; behaves the same as the GMS model below the critical fitness value at other fun-
damental levels, thus putting them in a sense in the same universality class. But we find that
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the models behave fundamentally differently, regarding a third issue, in this case as well; see
remark 2.14 below.

One other distinguishing aspect, a more technical one, is that the GMS model may be
described in terms of a spatial birth-and-death process. Ours cannot. In particular, the num-
ber of species present at time 7, which performs an ordinary birth-and-death process on N in
the GMS model, with jumps only of size 1 in any direction, does not do so in our case, where
there may be jumps larger than 1 towards 0, and is not even Markovian. The technical approach
of analysis required in our case is thus quite different from the ones of the literature related to
[9], as will become clear below.

1.2. Records.

Elaborating on the latter point above, our technical approach to treat our model relies substan-
tially on classical record theory. This is a topic of much recent interest in theoretical physics,
with an effort in modeling phenomena such as record temperatures in global warming, or record
prices in the stock market, and other examples; see [11, 12], and references therein. Some of
these phenomena depart from the classical i.i.d. setting in that the underlying sequence of ran-
dom variables have a time trend, and are thus not identically distributed, or exhibit correlations;
these are the settings analyzed in [11, 12] and other recent work.

The questions we ask about our model involve records as follows. As regards recurrence
of the empty state, we have returns to that state whenever we find extinction points above the
staircase formed by records of fitness of succesive species, as they appear going forward in
time. The other issue is finiteness of the limiting configuration of species fitnesses, and this
is given by the fitnesses of the species appearing above the staircase of records of extinction
thresholds, going backwards in time. We defer further details for the coming sections of this
paper. The description of the record staircase in both cases follows from the classical theory,
since we specify i.i.d. fitnesses and extinction thresholds, and Poisson point processes for the
birth and extinction times. It makes sense however to consider time dependent and/or correlated
specifications, as those of [11, 12], in the context of our model, which might yield interesting
extensions of our results.

2. Results

We derive three kinds of results. First, criteria for recurrence and transience of the empty config-
uration in 7)o; see theorem 2.1 below; they are obtained from the analysis of a Poisson process
of records. Second, we derive the existence of a limit distribution for 7y(s) as s — oo; see
theorem 2.2 below. Finally, we derive criteria for finiteness and infiniteness of the number of
species present in the limit distribution; see theorem 2.3 below; curiously, the Poisson pro-
cess of records of the recurrence and transience issue appears here as well, but in reverse.
The behavior of F} o F,~! at the origin plays a determinant role in the first result, and thus, in
reverse, so does that of F, o ;! in the third one; as usual, for * = x and 1, F, = 1 — F,, and
F.~ ! indicates the (right-continuous) inverse of F,, namely

F ') =inf{s: F.(s) > 1}, 0<t<1.

For the latter result we need to assume that F; is continuous. Proofs are deferred to the last
section.
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Let us define the functions R,, R; : R — R by
R.(x) = —log F.(x),
Ri(x) = —log Fi(x).
For birth events denote by I; the record indexes and by Xj, the record values, as follows:
I, =1;and fork > 1
Ly =min{i > I 1 X; > X, }.
Proposition 2.1 (Proposition 4.11.1, Resnick [13]). The record values (X )i>1 form a
Poisson point process in R with intensity measure [pR.(dx), B € B(R,).
The next result refines the previous one.

Proposition 2.2 Let T;, be the time of the kth record and denote by AT, = Ty, — Ty, the
interval between two consecutive records. Then, {(Xlk, AT1k)k>1} is a Poisson process in Ri
with intensity measure

[i(O)= / / AF (e M5 dsR (dx), € € B(RY).
C

Proposition 2.3  The set of points (S;,Y;)j>1 is a Poisson process in Ri, denoted by f[T,
with intensity measure

11:(C) = As / /C diFi(dx), C € BR2).

To study recurrence and transience, we will build a ladder of records using the process of
births and the fitness associated to each species. Let us denote the random region above each
step of the ladder by {Dy }«>1, and the region above the full ladder is denoted by D, namely,
fork > 1

Dy = [Ty, Ty, ) % [X;.00) and D= | Dy

k1

Let A = p+(D), M =DnN fIT, and M = # M. Observe that M counts the number of extinc-
tion events in D—as noted in Sub section 1.2, these extinction marks generate empty configu-
rations, with no species present at and immediately after their corresponding times®. Given D,
M has a Poisson distribution with mean A (because ﬁT is a Poisson process), so

Efe™] = E [Ele ™|A]] = E {e_(l_[tm} . (1)
Here we allow A = oo, in which case M = co a.s. It may be checked, from ergodicty
considerations, that { A = oo} is a trivial event, and, thus, so is {M = cc}.

Remark 2.4. Define h; : R%. — R, by hi(x,s) = A\isF;(x). From the definition of 1 in
proposition 2.3, we have

A= (D)= D) =Y NAT,Fi(X)) =Y hi(Xy,, ATy). )

k>1 k>1 k>1

3But there may be, and indeed there a.s. are, extinction marks generating an empty configuration which appear
below D.
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Note that E[M] = E[E[M|A]] = E[A] and we may use Campbell’s formula
(see proposition 2.7 in [14]) and (2) to find

Fi(o)
E[A] = A/ R0, 3)

Proposition 2.5. Fort >0

- (1 — e A Fi(x)
0 AFL() + (1 — e HAFH(x)

Efe ™] = exp {— R,(dx)| .

2.1. Recurrence/transience of ng

We start by discussing the a.s. finiteness of M. Define the functions ¢ : Ry — Ry and ¢ :
[0, 1] — [0, 1] by

*© (11— e*’))\TFT(x)

Y= | NF+ (1 — e OAF Q)

R, (dx),

and
Y() = Fr o F.™\(w). )
By monotone convergence, we have that

_ )‘TFT(X) _
0 ANF) + AN Fr(x)
Proposition 2.6. The following statements are equivalent:

¢(00) = lim (1) = R, (dx).

(a) p(o0) < o0;

(b)) P(M < 0) = 1;

(c) E[M] < ooy

d) “(”) is integrable at the origin,
(e) w(s_l) is integrable at infinity.

Definition 2.7 Let Y = {s > 0: 7o(s) = 0} denote the set of times where the species con-
figuration is empty; in other words, Y is the set of times where there is no species in the system.
T is readily seen to a.s. consist of a collection {[aj, bj),j = 1}, either finite or infinite, of dis-
joint finite intervals. Let Y' = {a;,j > 1} be the collection of left endpoints of such intervals,
correspondings to the times where the species configuration freshly becomes empty. We have
that M’ C Y', where M’ is the projection of M on the time axis. (However, as pointed out
above, M’ # T’ a.s.; see footnote on page 5.)

The process 7 is said to be transient if T is a.s. a bounded set. On the other hand, if Y is
a.s. an unbounded set, then we say that 7 is recurrent.

We point out that, since the set of fitness record times {7}, k > 1} is unbounded, we have
that Y /Y’ is bounded if and only if M’ is bounded.

Theorem 2.1.  The process g is transient if

> Fi(x)
/0 Fooy (@0 <o,

and recurrent otherwise.
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Example 2.8. Suppose that (X;) and (Y;) are exponentially distributed with parameter o,
and «y, respectively. Then,

Qe

~ R , if oy > o
| R = oo
o F 00, if o < o

By proposition 2.6, if o < a., then M = o0 a.s., and from theorem 2.1, 7 is recurrent.
If oy > ., then 7 is transient. We may compute the distribution of A and M in this case
(it will come in handy below), as follows: by 2, Ele ™ =E {e‘zk?lt'hi(xlk’AT’k)} and using

the characterisation of a Poisson process via its Laplace functional (see theorem 3.9 on page
23 of [14])

- M Fi(x)
E € Zk?lt‘hT(Xlk’Ale) = €X |:—/ _t - ol R* d‘x :|
[ } P [0400) AF () 4+ A F3 (X) (dx)

A\ -
_<7/\*+f>w> = (147" ".

By proposition 2.5, E[e ™] = (ﬁ%) , where r = afja*, 8= i—? and p= A*—+|A.
Hence, A follows the gamma distribution with parameters r and 3, and M follows the negative

binomial distribution with parameters r and p.

2.2. Existence and inf/finiteness of a long time limit distribution.

We now establish the existence of a limit distribution for ny(s) as s — co. Remarkably, a lad-
der construction based on a record process comes up here as well, entirely parallel to that of
subsection 2.1, with births and extinctions swapping roles. For that to hold we need however to
assume that F; is continuous. The ladder construction then immediately yields necessary and
sufficient criteria for the almost sure in/finiteness of the number of species present in the limit
distribution, identical to those for transience/recurrence of 7y, except that the symbols x and t
swap roles.

As a preliminary, we will use the process of extinctions and the associated thresholds to
build a ladder of records, much as in subsection 2.1. We define the kth record index J; and the
record value Yj, as follows: J; = —1 and; fork > 1

Jk+l imax{j<Jk : Yj > ij}

Again by proposition 4.11.1 in [13], we get that the {Y;, }+> form a Poisson point process
in R, with intensity measure [ zR;(dx), B € B(R.).

Denote by Sy,(0) the time of the kth record, and by AS; =S, —S;,,, the time span
between two consecutive records. Similarly as in subsection 2.1, we have the following results.

Proposition 2.9. The points (Y;,, AS;)i=1 form a Poisson point process in Ri with
intensity

11 (C)= / / A Fi (e M dsRi(dy),  C € B(R2).
C
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Proposition 2.10. The points {(T-;,X_;)}i>1 form a Poisson point process in R_ x Ry,
R_ = (—0o0, 0], denoted by 11, with intensity

ps(Ch = )\*// diF,(dy), C € BR_ x Ry).
C/
We thus have our ladder of thresholds; denote the region above each step by

Ey = 1[5;,,0) x Ry;

Ep = (ka+1’SJk] X (Yy,00),k>1; E= U Ey.
k=1

We state our existence result.
Theorem 2.2. 1)(7) converges in distribution to 1) as t — oo, where
7?i{Xi:TiG(SJI,O]}U U {Xi>YJk:Ti€(S]k+1,SJk]}
k=1
Remark 2.11. The topology for weak convergence is the usual one in the context of point
processes. Our proof indeed makes use of a coupling to a sequence of processes for which the

convergence is a strong one, and follows by monotonicity.

Next, we address the issue of finiteness of the number of species in 7). For each k > 0, let
S = By Ny = #{ENTLY.

Let also & = y1,(E); N = #{E N 11, }. We may use Campbell’s formula to find

Ao [ Fo(x)
E[N] = = —— " R:(dx).
[N] )\T/o F.( 1(dx)

Note that N is the number of birth events above the threshold ladder. Also, note that E has
a parallel structure to that of the D ladder of subsection 2.1; the random variables 3 and N are
parallel to A and M in that same subsection. Thus, we get parallel results, once we exchange
the roles of (\,, F,) and (\t, Fy).

From theorem 2.2, the number of species present in the limit distribution 7), denoted by #,
is

#i = #{ENIL} =Y Ne=No+N. 5)

k>0 k>0

It is enough to consider the finiteness of N. From the parallel situation of subsection 2.1, we
get the following results. For ¢ > 0
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E[e—tN] — E[e—(l—eft)z]

T d-enERm
- [ /0 N+ (1 — e OF |-

Setting
[T (= HNFx) |
0= /0 )‘TFT(X) +(1 - e—t))\*ﬁ*(x)RT(dx), t>0,
and
) =FooFy W), u>0,
we have

AFL (%)
AiF () + M Fa(x
Proposition 2.12. The following statements are equivalent:

600 = fim 60 = | Ri@o)
o0 0

(a) P(o0) < 00;

(b) P(N < 0) = 1;

(c) E[N] < 0.

(@)} % is integrable at the origin;
(e) (s ") is integrable at infinity.

Theorem 2.3. The number of species in the limit distribution, #, is finite if

* Fu(x)
/0 FT(X)RT(dx) < 00,

and infinite otherwise.

Example 2.13. Let (X;) and (¥;) be as in example 2.8. We have then

joai

>~ s if a, >«
/ F(X)RT(dx): a — o
o Fi®) 00, if a, < a.

By the theorem 2.3, if o, < oy, then #7) = oo a.s. If a, > ay, then #4) < oo a.s.; let us
find its distribution. We can show that, as in example 2.8, N follows the negative binomial
distribution with parameters a*aja? and A*/\ﬁ P From the joint distribution of (Ny, >p), discussed
in the proof of theorem 2.3 below, we have that N follows the negative binomial distribution

with parameters 1 and A*A_g 1. - It may be checked that Ny and N are independent, and we find

from (5) that #7) follows the negative binomial distribution with parameters “_*”T and 5 AJ; e
—a A

Remark 2.14. 'We might label the case of oo in both criteria in theorems 2.1 and 2.3 as null
recurrent. This is of course the case when F, = F';, which then becomes a natural candidate
for comparison with the GMS model below the critical point, which also is recurrent and
has infinitely many species in its limiting distribution, as anticipated in subsection 1.1, and
is thus null recurrent in the same way. However, as we briefly discuss below—see remark
3.1—, in this case the models are different in another fundamental level, namely the behavior

9
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of N/, the number of species in the limiting distribution with fitness below f, as f — oo (in our
setting; in the setting of [9], the limit should be taken as f 1 f.). While for the GMS model the
suitably rescaled object converges in distribution as the scale parameter vanishes to a nontrivial
distribution—see theorem 1.2 of [10]—, we have a law of large numbers type of convergence
to a constant in our model. In the terms proposed in the latter reference, this puts the two models
in different universality classes.

3. Proofs

Our proofs of propositions 2.2 and 2.3 use definition 5.3 (K-marking process), as well as
theorem 5.6 (Marking theorem) in [14].

Proof of Proposition 2.2. Conditional on {(X; )i>1 = (xt)k>1}, the random variables
ATy, are independent of each other and follow the exponential distribution of rate MFL(xp).
Denote by K, (x, B) the following probability kernel: for x > 0, and B = (s1, 52] C [0, 00), let
K. (x, (51, 52]) = e M1 _ o= MFs2 gand extend the definition for Borelians B in the usual
way.

The points (X;,, ATy, )i>1 form a K,-marking of the Poisson process of proposition 2.1. The
result follows by the Marking Theorem (theorem 5.6 of [14]). (Il

Proof of Proposition 2.3. The random variables (Y;) ;> are independent of each other and

independent of (S;) j>1. Then, the points (S}, Y;) j> form a Q;-marking independent of (S) j>1,
where Q; is the measure induced by Y. The result follows again by the Marking theorem. [

Proof of Proposition 2.5. From equations (1) and (2)

e k=1

E[eftM] —_ E[ef(lfeft)/\] —E

-z (l—efm;(xlk,Aszl

= exp {— / / (1 — e U= Mty g (dx, ds)} (6)
[0.00)2

= exp {— / / (11— e“e')Afsff@)A*F*(x)eA*f*wdsR*(dx)} ) (7)
[0,00)2

In (6) we used the characterisation of a Poisson process via its Laplace functional (see
theorem 3.9 on page 23 of [14]), and (7) follows by proposition 2.2.
Integrating the above expression in s, we have

—iMy __ _ ~ _ MFL(x)
Ele ]_e"p[/o (1 A*F*<x>+<1—eﬂ)ATFT(x))R*(dx)}

= [ (1 — e HAF}(x) ]
_exp{ /0 A*F*(X)+(l—e*f)ATFT(x)R*(dx) .

10
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Proof of Proposition 2.6. To prove (a) = (b) note that

A-eNF® _ (-eNFw AR

OS M@ ANE® S MEm T (- e ONFm M)+ NE®
)

Integrating (8) against R, (dx) we get,
(1 —e )p(00) < (1) < P(00). ©))

If $(c0) < o0, by monotone convergence theorem, lim,y¢(f) = 0. Then,
lim E[e"™] = 1i — ()] = exp[— lim ¢(1)] =
lim Efe™] = lim exp[—@(n)] = expl—lim ¢(1)]
and, on the other hand,

hm E[le ™] = hmZe MmMP(M = m) + 0-P(M = o)
m=0

= P(M =m)=PM < )

m=0
To prove (b) = (a) suppose ¢(co) = 0. By (9), ¢(f) = 4o0 for each r > 0. Then,

Ele ™] = exp[—¢(1)] =0 for each r > 0
=Pe™ =0)=1 foreachr>0
— P(M = o0) = 1.

By contradiction we get (b) = (a).

Since trivially (c) = (b), we have from the above that (c) = (a).

To show that (a) = (c), we will change variables. Let y = R,(x) = —log F,(x), so
x = F,~'(e™). From this and (4), F1(x) = F; o F,~'(e™) = ¢)(e ™). Making u = e, we find
that

- *© /\TFT(X)
#(00) = /0 MNE + ME @)

/ e [T A de
N A T Jo Nt A w0

where the second equality is quite clear if F, is strictly increasing, but holds in general
(see e.g. the [15] for a discussion and justification).

1
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If ¢(c0) < o0, then dominated convergence yields

2
lim M) T du = lim / o Ap(u) I 2o)(u)du = 0.

elo S (v + M(u)u 10 WU+ Aip(u))u
Since
2 2
i A(e) / - A (u)
0 </5 Oui A S ). Dot A ™
we get that
2¢e
fim [ ANYE o, (10)

elo S v+ Mp(e)u

Solving the integral,

2e
O g (1 b AE ) :

e A+ My(e)u A2e + Ajy(e)
and from (10)
. Atp(e) _ . Atp(e) _ . A(e)
fim log (1 T2t )\Jr'l/J(E)> =0 I e e 0T e T

We may thus find § € (0, 1) such that Ayep(u) < Au for each u € (0, 6). Thus,

/5 A du 7 A du / M@ du
o Aauou o A+ Mb(u) u At + Mp(u) u

Thus, since also ¥(u) < 1, we have

/Md _ / LA / LICP,

Rewriting (3) in terms of ¢, we have

w2 M [T F@ RGN /w<u)

My Rt @ )_io e

Y

and the finiteness of the latter expression establishes that (a) = (c).
(c) < (d) follows readily from (11). To prove (d) < (e) make the following substitution

) ds du
s=u = —=—-u :>dS———2
du u

and we can rewrite E[M] as
E[M] = —A—* / d(sds = / U(s~)ds.
Note that

5
/ (s )ds < oo for each § € RY;
1

12
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as a consequence
E[M] < 00 & / (s ds < oo for some § € RT.
5

O

Proof of Theorem 2.1. By proposition 2.6, if fooo ;%R*(dx) = 00, then M = 0o a.s. Since
M =D N ﬁT is a.s. finite for every k > 1, we have that M is a.s. unbounded, and thus so is
Y and Y.

If [° ;iggR*(dx) < 00, then by proposition 2.6, we have that a.s. M < oo, and thus M is
bounded, and thus so is Y’ and T, as follows from what has been pointed out at the end of

definition 2.7 above. |

Proof of Theorem 2.2. By the homogeneity of the model, the process 1, = {n,(t + s) :
s > 0} has the same distribution for each ¢t € R. In particular,

Pno(®) € +|m0(0) = A) = P(n_(0) € “[n-.(—1) = A), 12)

where A is a locally finite subset of [0, 00). Let (;);> be an increasing sequence in R such that
t; — oo as [ — oo and A as above; take a sequence of processes (1), );>1 such thatn_, (—1) = A,
[ > 1. Define the sequence (77));>1 by

{X,‘ :T; € (—1, 0]}, R if HT N(=1,0) = &;
n = {Xi: T € (S;,,01} U (u’;’;ll{Xi >Y, T € (Sjk+1,SJk]})
U{X, > Y‘]/}/ :T; € (—l‘[,ij{/]}, otherwise,

where k; = max{k : S;, > —1;}, and the union U’,i’:_ 11 above is empty if k; = 1. Note that (121)121
is an increasing sequence with k; — oo as [ — co. Thus, the sequence (7)), is increasing and
im0 ) = U1>1771/ = 1), with

A= X T e (8,00 | X > Yy T e (S50 S0}

k>1

Define the sequence (1)]');>1 by

. A it ILN(=40 =090
"= A ﬂ(YJi ,00), otherwise.
‘I
By proposition 2.9, Y; — oo as k — oo, since R;(x) < oo for every x > 0 and R;(x) — oo
as x — oo. Thus, (Y, I )i>1 1s an increasing sequence with lim; .., in( = 00, since lAc, — 00 as
1 1
I — oco. Therefore, (1)1 is a decreasing sequence and limi s 7" = (5,7 = ©. Because
1-,(0) = n; Un/ for each [ > 1, we have that lim; . 7—,(0) = limjoc 77 U limyoe ) = 1,
and notice that the limit does not depend on the choice of (;);>. Thus lim, ., 7—,(0) = 7 a.s.,
and, by (12), no(¢#) — 7 in distribution as t — oo. U

Proof of Proposition 2.12. The proof is analogous to that of proposition 2.6, using the
same ideas, and changing the roles of (\,, F,) and (A, F}). O

13
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Proof of Theorem 2.3. N, has a Poisson distribution with parameter . Since ¥y =
1(Eop) = A(0 — S_;) ~ exponential (A\;/\,), we have that E[Ny] = E[Xo] = A\ /A < o0,
and thus Ny < oo a.s. B

By (5) and proposition 2.12, if [ ?;E;‘;RT(dx) < 00, then N < o0 a.s., and thus #7 < 0o
a.s. Otherwise, N = oo a.s., and we have #7 = oo a.s. U

Remark 3.1. As a final remark, we argue in a few brief steps that, as pointed out in remark
2.14 above, when F, = F; = F,then N /. the number of species in the limiting distribution with
fitness below f, when properly rescaled, converges (a.s.) to a nontrivial constant. First, by the
above construction of the limiting distribution of species fitnesses, it is enough to consider the
intensity measure of the region bounded by the ladder of records, the x-axis and the horizontal
line through (0, f). This in turn may be readily written as

[PI0.£1| [POI0.£1| [POI0.£1|

F _ 1
> (1—F—((§))> = Y, &—FU Y, oo f (13)
1 ! i=1 i=1 !

i=

where P = {X|,Xa, ...} is a Poisson point process on R, of intensity measure f g R(dx),
B € B(R,), withR(x) = —log F(x),and &, &, . . . arei.i.d. standard exponential random vari-
ables. Clearly, the first term on the right hand side of (13), when scaled by R(f), converges to
1 almost surely as f— oo, by the law of large numbers. We leave as an exercise to check,
using well known properties of Poisson point processes such as P, that the second term, when
scaled by R(f), vanishes almost surely as f — co; indeed, without scaling, it is stochastically
bounded uniformly by a non degenerate random variable; we immediately get convergence to
0 in probability of the scaled quantity, and a closer look reveals that this can be strengthened
to a.s. convergence.
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