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Abstract

We show that D = 4 Minkowski space is an emergent concept related to a

class of operators in extended Hilbert space with no positive-de�nite scalar

product. We start with the idea of position-like and momentum-like opera-

tors (Plewa 2019 J. Phys. A: Math. Theor. 52 375401), introduced discussing

a connection between quantum entanglement and geometry predicted by ER

= EPR conjecture. We examine eigenequations of the simplest operators and

identify D = 4 Minkowski space as to be spanned by normalized eigenvectors

corresponding to the zero eigenvalue. Both spacetime dimension and signa-

ture of the metric are �xed by the regularization procedure. We generalize

the result to the case of more general operators, being analogues to quantum

�elds. We reproduce the Minkowski space again, however, now in a holo-

graphic way, as being identi�ed with the conformal boundary of AdS5. We

observe an interesting analogy to string theory and, in particular, to AdS/CFT

correspondence.

Keywords: ER=EPR, AdS/CFT, extended Hilbert space

1. Introduction

It has been proposed that classical spacetime may not be a fundamental concept, but having

a quantum origin. Earlier observations presented in [2, 3] suggest that quantum entanglement

could be a quantum notion originating space. More precisely, using Ryu–Takayanagi formula

[4] it was shown that connectivity of space is related to quantum entanglement. This suggests

a sort of duality between quantum states and spacetime. A realization of such a duality is the

ER= EPR conjecture [5–8], stating that there is a link between connected back hole solutions

and maximally entangled quantum states. Itself, the conjecture serves as a potential resolution

of AMPS �rewall paradox [9]. From a broader perspective, ER = EPR provides even wider

connection between entangled particles and wormholes. In the strongest form, it predicts that

everymaximally entangled state can be interpreted geometrically in terms of some (connected)
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black holes. Still, quantum entanglement may be ‘not enough’ [7], and additional notions,

like quantum complexity [7, 10–13] are required. In particular, quantum complexity seems

to be essential in understanding quantum nature of the growth of the Einstein–Rosen bridge

[11]. One expects a signi�cant modi�cation of a classical black hole geometry for suf�ciently

long time scales, caused by quantum processes behind the horizon. All of these facts make

black holes quantum objects, revealing interesting connections between quantum mechanics

and gravity.

It was also suggested that gravity and quantum mechanics are not separate subjects [14].

Instead, they are strongly correlated and this holds true even far away from the fundamental

scale: gravity is needed for consistent description of seemingly non-gravitational systems. To

some extent, this is already the case within the AdS/CFT correspondence [15–17]. Strongly

coupled states of conformal supersymmetric Yang–Mills theory translate into weakly coupled

gravitational solutions in (effectively) �ve-dimensional spacetime. The main difference is that

this holographic description has nothing to do with ‘ordinary’ gravity in asymptotically �at

four-dimensionalMinkowski space. It is possible, however, that further generalization of vari-

ous dualities can eventually result in more general gravitational language, covering even larger

class of relativistic states. It could happen that �nding gravitational imprint of various quan-

tum correlations can make these dualities ‘real’. This may uncover the true quantum nature of

gravity.

Following motivations presented above and keeping in mind the ER = EPR hypothe-

sis, we continue the analysis outlined in [1] and examine mathematical formalism based

on the idea of operators in the extended Hilbert space. Here the term extended Hilbert
space refers to a generalization incorporating negative norm states, i.e. the Hilbert space

with no positive de�nite scalar product [18, 19]. As it was shown in [1], one can construct

a special type of operators in that space, which play a role of the standard position and

momentum. They can be used to reformulate the quantum harmonic oscillator in such a way

that there is a link with spacetime. In particular, it was shown that there is a connection

between maximally entangled ground state of a two-dimensional oscillator and the geometry

of AdS3.

Rather than discussing the extension of the duality for a larger class of states, we look closer

on the operators themselves, considering their eigenequations.We show that solutions to these

equations are highly non-trivial and can be interpreted geometrically.

This paper is organized as follows. In section 2 we discuss the eigenequations of the simplest

operators, the position e and the momentum−i∂ as in [1]. We show that there is an in�nite set

of �nite-dimensional spaces spanned by normalized eigenvalues. We identify the space corre-

sponding to either zero position or zero momentum to be special because of four-dimensional

orthonormal basis consisting of one negative and three positive-norm states. The space will be

then interpreted geometrically in terms of four-dimensional Minkowski spacetime. We iden-

tify the Poincare symmetry group as a subgroup of more general complex Lorentz rotations,

being symmetry transformations in the corresponding extended Hilbert space. In section 3 we

consider more general operators labeled by continuous labels, e(x) and −i∂(x). Construct-
ing eigenvectors, we identify an additional constraint equation to get Hermitian operators. We

interpret the equation geometrically as specifying a class of pseudo-hyperbolic spaces [20].We

derive AdS5 again as a special solution to the constraint, identifyingMinkowski space with the

conformal boundary of anti-de Sitter space. Subsequently, we generalize the results to the case

of the most general operators, �nding a surprising connection with string theory. We conclude

in section 4.
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2. The simplest operators

2.1. Operators in the extended Hilbert space

We start with basic de�nitions introduced1 in [1].

Definition 1. Let F0 ⊂ H be a subspace of some extended Hilbert space H, i.e. the Hilbert

space with no positive-de�nite scalar product [18, 19]. We call F0 the �ducial subspace and
assume that it contains at least one normalizable state. Let {ei, ∂i}Ni=1 stands for a set of

operators inH, de�ned so that acting on any |φa〉 ∈ F0, one has

〈φb|en1i1 . . . enkik |φa〉 = 〈φb|∂n1i1 . . . ∂nkik |φa〉 := 0, (1)

[ei, e j] := 0, [∂i, ∂ j] := 0, (2)

∂i e j1 . . . e jn |φa〉 := δi j1e j2 . . . e jn |φa〉+ · · ·+ δi jne j1 . . . e jn−1
|φa〉, (3)

ei ∂ j1 . . . ∂ jn |φa〉 := − δi j1∂ j2 . . . ∂ jn |φa〉 − · · · − δi jn∂ j1 . . . ∂ jn−1
|φa〉, (4)

e†i := ei, (5)

for N, ik, jk nk ∈ N. We call ei and ∂ j e-operators.
We de�ned e-operators postulating how they act on states belonging to the �ducial subspace

F0. As in [1], we restrict to a single normalizable vector in that space, the so-called �ducial
vector |φ〉 (still the space F0 itself can be highly non-trivial). Acting with products of either ei
or ∂ i operators results in zero-norm states in the form e1|φ〉, e1e2|φ〉, ∂2

2 |φ〉, etc. Despite they
are zero norm states, their linear combinations can be normalizable. In particular, a single pair

(e1, ∂1) of e-operators and a single �ducial vector give rise in�nitely-dimensional extended

Hilbert space. The latter is spanned by positive, negative and zero norm states resulting from

products of operators acting on |φ〉. Equations (3) and (4) ensure that any product of operators
can be expressed solely in terms of either ei or ∂ j. Notice that according to equation (3), ∂ i
looks like ‘derivative’ with respect to ei. Similarly, ignoring the minus sign in equation (4), ei
resembles ‘derivative’ with respect to ∂ j. This is why we reserved a single name2 e-operators
to both ei and ∂ j.

Following the notations adopted in [1] we introduce two spaces, E[F0] and D[F0], de�ned

as being spanned by combinations of respectively ei and ∂ i acting on the �ducial vector but

not the �ducial vector itself. For instance, e1e2|φ〉, e2i |φ〉, . . . ∈ E[F0], ∂1∂2|φ〉, ∂2
i |φ〉, . . . ∈

D[F0], but |φ〉 /∈ E[F0] and |φ〉 /∈ D[F0]. We call the (full) extended Hilbert space3 H =

F0

⊕

E[F0]
⊕

D[F0] the maximally extended space, reserving the term extended space to

E[F0]
⊕

D[F0]. The extended space plays a special role constructing the quantum harmonic

oscillator [1].

The important thing is that equation (5) does not automatically imply that ei are Hermitian

in the standard sense, i.e.

(u, eiv) = (eiu, v), (6)

1 In this paper we adopt some small change of terminology regarding operator names.
2 In [1] they are called external operators.
3More speci�cally, since the de�nition bases on the choice of the �ducial subspace, one should write H[F0] =

F0

⊕
E[F0]

⊕
D[F0]. However, restricting to a single �ducial vector, we intentionally ignore such details.
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for u, v ∈ H. Instead, equation (5) de�nes a Hermitian conjugate of the object ei. Perhaps
it would be better to rewrite equation (5) as e∗i = ei. However, because both ei and ∂ j are
operators, following the notation adopted in [1], we will continue to use the standard symbol of

Hermitian conjugate. As we shall see, the operators are indeed Hermitian in the corresponding

space of eigenstates. Finding that space will be the main subject of this paper.

It turns out that the rule (5) has to be supplemented by the analogous condition for ∂ i

∂†
i := −∂i. (7)

Rather than being postulated, this is required by consistency of the algebra gener-

ated by commutators of e-operators (see [1] for more details). The scalar product in

the maximally extended space is trivially induced by the product in F0, and the rules

(1)–(5) and (7). For instance, for two vectors u = (e1 + ∂1)|φ〉 and v = (e1 − ∂1)|φ〉, one
�nds

(u, v) = 〈φ|(e1 + ∂1)
†(e1 − ∂1)|φ〉 = 〈φ|e2i |φ〉 − 〈φ|e1∂1|φ〉 − 〈φ|∂1e1|φ〉 + 〈φ|∂2

i |φ〉 = 0.

(8)

Making use of equations (2)–(5) and (7), leads to the following commutation relation

[∂i, e j] = δi jη̂, (9)

where

η̂|u〉 := 2|u〉 : |u〉 ∈ F0,

η̂|u〉 := |u〉 : |u〉 ∈ E[F0]
⊕

D[F0].
(10)

Notice that η̂ = id in the extended space E[F0]
⊕

D[F0]. Equation (9) simpli�es in that space

becoming [∂ i, ej] = δij. The last allows to interpret ei as analogue of the position operator,

while −i∂ i plays a role of the momentum. From now on we will call them respectively the

e-position and e-momentum.

2.2. Position eigenequation

Belowwe discuss the position eigenequation.Restrict for simplicity to a single pair of operators

(e, ∂); here we skipped the labels for convenience.Acting on a given normalized �ducial vector

|φ〉 the operators span in�nitely-dimensionalmaximally extended spaceH. The eigenequation

reads

e|eλ〉 = λ|eλ〉. (11)

Looking for a solution, one may start with the most general form of the vector in the

corresponding maximally extended space:

|eλ〉 =
(

a+
∞
∑

n=1

bne
n
+

∞
∑

n=1

cn∂
n

)

|φ〉, (12)

where a, bn, cn are unknown coef�cients to be �xed. Inserting the ansatz (12) into the

eigenequation (11), and solving the corresponding recurrence equations, gives

|eλ〉 = aEλ|φ〉, (13)
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where

Eλ = 1+

∞
∑

n=1

(

λ−nen +
(−λ)n

n!
∂n
)

, (14)

and a stands for the overall normalization coef�cients. The recurrence equations �x both bn
and cn, leaving a as a free parameter. Being irrelevant from perspective of the eigenequation,

the coef�cient a is expected to be �xed by the normalization condition (if the eigenvector is

normalizable). We ignore this for a moment, letting temporarily a = 1. The product of two

eigenvectors (13), labeled by two eigenvalues λi, λj, reads

〈eλi |eλ j〉 = 1+

∞
∑

n=1

[(

λ∗
i

λ j

)n

+

(

λ j

λ∗
i

)n]

, (15)

where ‘∗’ stands for complex conjugate. Clearly, λi should be real for Hermitian operator. We

kept the complex conjugate in equation (15) because we have not proved that e is Hermitian.

If so, eigenvectors from different eigenvalues λi 6= λj should be orthogonal.
Contrary to what is expected, the product (15) implies that this is not the case unless

|λi| = |λj|. If |λi| 6= |λj|, the product is divergent and the eigenvectors are not orthogonal.

What is more, they are non-normalizable, i.e. ‖eλ‖ = ∞. Despite the latter is common for

operators with continuous spectrum (they are mostly non-normalizable), the former means

that e is not Hermitian in the whole maximally extended space H. Still, it could happen the

operator is Hermitian if it is restricted to some subspace E ⊂ H. Keeping this in mind, we call

E the restricted Hilbert space (withinH). If exists, the space is of special importance because it

makes e-position a candidate for observable. SinceH is not positive-de�nite, no one guaranties

that E will be free of negative norm states. In fact, this is in parallel analogy to construction

of the harmonic oscillator presented in [1]. Hilbert space of the quantum harmonic oscillator

emerges as a natural positive-de�nite sector in the extended space. Finding that sector, one

�nds the oscillator. Similarly, we now expect that constructing the restricted Hilbert space E
will get some insight into physical meaning of e-position.

Having said that, we are now ready to start the construction. Since, by de�nition, e is Her-
mitian in E , the eigenvalues should be real, i.e. λ ∈ R in equation (15). Another observation is

that despite the eigenvectors (13) are not normalizable, they can be easily regularized. In order

to do so, consider a �nite cut-off Λ ≫ 1 and the following regularized version of the operator

(14)

EΛ
λ := 1+

Λ
∑

n=1

(

λ−nen +
(−λ)n

n!
∂n
)

. (16)

Eigenvectors (13) can be now rewritten as |eλ〉 = limΛ→∞EΛ
λ |φ〉. It is worth to underline

that vectors constructed with the help of the operator (16) with �nite Λ are not the exact

position eigenstates. In fact, the reason for introducing the form (16) consists in param-

eterization of the limit Λ→∞. Rather than imposing a real cut-off, we will let Λ→∞
in the end. Note that the operator (16) is de�ned up to the overall normalization con-

stant and any vector in the form a limΛ→∞EΛ
λ |φ〉, with a ∈ C, is an eigenvector as well.

One can formally make a in�nitesimally small dividing by in�nite length and requiring the

resulting state will be �nite. This can be done introducing ‘regularized’ eigenvectors in the

form

|erλ〉 := lim
Λ→∞

1√
2Λ

EΛ
λ |φ〉. (17)

5
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The latter is to be supplemented by a subtle rede�nition of the product:

〈erλi |e
r
λ j
〉 := lim

Λ→∞

(

1

2Λ
〈φ|(EΛ

λi
)†EΛ

λ j
|φ〉
)

. (18)

It is straightforward to observe that equations (17) and (18) imply the eigenvectors are unit,

i.e. 〈erλ|erλ〉 = 1. Alternatively, one can de�ne the vectors (17) as |erλ〉 := limΛ→∞
1√
2Λ0

EΛ
λ |φ〉,

supplementing the de�nition with the following version of product

〈erλi |e
r
λ j
〉 := lim

Λ→∞
(〈erλi |e

r
λ j
〉|Λ0=Λ). (19)

For the sake of simplicity we adopt the form (17) of regularized eigenvectors, understanding

they are normalized according to the rule (18).

One can check that eigenvectors (17) corresponding to opposite non-zero eigenvalues are

orthogonal, i.e. 〈er−λ|erλ〉 = 0, λ 6= 0. However, this is not the case in general. Fixing a single

|λ| = λ0 > 0, one speci�es a two-dimensional space Eλ0 ⊂ H spanned by eigenvectors of two

opposite eigenvaluesλ = ±λ0. Clearly, Eλ0 is an ordinary two-dimensionalHilbert space and e
is Hermitian in that space. The positive real parameter λ0 is arbitrary, but should be �xed. Once

this is done, all other eigenvalues |λ| 6= λ0 are forbidden. Still, none of the values λ0 > 0 is

special. One can formally incorporate all of them considering direct sum of the corresponding

spaces Eλ0
E+ =

⊕

λ0>0

Eλ0 , (20)

and supplementing E+ with an additional superselection rule eliminating superpositions of

states from different absolute value of the eigenvalues. In what follows, |λ| plays a role of

the conserved charge. The only allowed superpositions involve eigenvectors corresponding to

opposite eigenvalues. This guaranties that the e-position is Hermitian. All superselection sec-

tors in equation (20), despite separate, are equivalent in the sense there is a trivial isomorphism

preserving the scalar product. In fact, all the sectors are (ordinary) two-dimensional Hilbert

spaces.

The construction abovemay seem to be unfamiliar from quantummechanical point of view,

since constructing the restricted Hilbert space E involves additional superselection rules. As

we shall see, they have a deeper geometrical meaning.

2.3. Generalization to complex eigenvalues

So far we have restricted ourselves to non-zero eigenvalues. It turns out, however, the case

λ = 0 will be interesting from geometrical point of view. Before discussing the limit λ→ 0,

it will be convenient ignoring for a moment the fact we construct a space where e is mani-

festly Hermitian. Instead, we temporarily allow general complex eigenvalues. The reason is

that we would like to enlarge the space (20), incorporating eigenvectors from arbitrarily small

but complex eigenvalues.

As in the case of equation (17), we start considering a pair of normalized eigenvectors.

Letting in equation (15) λi = i, one �nds

‖eλi‖ = lim
Λ→∞

(−1)Λ. (21)

Again, this is ill-de�ned. On the other hand, the right-hand side of the equation above can

be easily regularized letting Λ to be either even or odd. This leads to a pair of normalized

6
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eigenvectors, de�ned as follows

|e(Λ1)
i 〉 := lim

N→∞
EΛ1(N)
i |φ〉, |e(Λ2)

i 〉 := lim
N→∞

EΛ2(N)
i |φ〉, (22)

where Λ1 = Λ1(N) = 2N, Λ2 = Λ2(N) = 2N− 1; N ∈ N. The limit (21) is now well-de�ned.

In particular,

‖e(Λ1)
i ‖ = 1, ‖e(Λ2)

i ‖ = −1. (23)

Note that there is one positive and one negative norm eigenvector. Imposing of the cut-off Λ is

not regularization in the standard sense, since instead of interpreting the divergent term, we for-

mally allowed all the possible outcomes. Each of them is associated with different normalized

vector, making this simple procedure free from ambiguities.

Unfortunately, the product 〈e(Λi)
i |e(Λ j)

i 〉 is not well-de�ned due to the presence of double

limits:

〈e(Λ1)
i |e(Λ2)

i 〉 = lim
N1→∞

lim
N2→∞

〈φ|(EΛ1(N1)
i )†EΛ2(N2)

i |φ〉. (24)

They have to be clari�ed to get the result. This can be done introducing an order operation ::,

de�ned as follows

:〈φ|(EΛi
λi
)†E

Λ j

λ j
|φ〉: ≡ 1

2
〈φ|(EΛi

λi
)†E

Λ j

λ j
|φ〉
∣

∣

∣

∣

Λi6Λ j

+
1

2
〈φ|(EΛi

λi
)†E

Λ j

λ j
|φ〉
∣

∣

∣

∣

Λi>Λ j

.

(25)

We can now de�ne

:〈e(Λi)
λi

|e(Λ j)

λ j
〉: = lim

Ni→∞
lim
N j→∞

: 〈φ|(EΛi(Ni)
λi

)†E
Λ j(N j)
λ j

|φ〉: (26)

In other words, taking the limits we impose additional constraints, i.e. Λi 6 Λj and Λi > Λj,

treating them in a symmetric way. As it is shown in appendix A, the rule (26) transforms the

double limit into the following single ones:

:〈e(Λi)
λi

|e(Λ j)

λ j
〉: = 1

2
lim
Ni→∞

〈φ|(EΛi(Ni)
λi

)†EΛi(Ni)
λ j

|φ〉+ 1

2
lim
N j→∞

〈φ|(EΛ j(N j)
λi

)†E
Λ j(N j)
λ j

|φ〉, (27)

and both they are well de�ned. For vectors (22) the rule (27) gives :〈eΛi
i |eΛ j

i 〉: = 0. In what

follows, the two degenerated eigenvectors are orthogonal. Note that the order (25) only matters

if Λi 6= Λj. If they are equal, :〈e(Λi)
λi

|e(Λ j)

λ j
〉: = 〈e(Λi)

λi
|e(Λ j)

λ j
〉|Λi=Λ j .

Having speci�ed exemplary eigenvectors (22) corresponding to the single eigenvalueλ = i,
one can ask if the procedure can be generalized to the case of general complex eigenvalues. As

it is shown in appendix B, this is indeed the case for

λ = reiϕ, ϕ =
pπ

q
, (28)

where p
q ∈ (0, 1)∪ (1, 2), p, q ∈ N. The corresponding regularized eigenvectors read

|e(l)λ 〉 = lim
N→∞

E
Λq,l(N)

λ |φ〉. (29)

7
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The eigenvectors are labeled by additional discrete labels l in such a way that

Λq,l(N) = qN + l, l ∈ {0, 1, . . . , q− 1}. (30)

In particular, letting r = 1, ϕ = π
2

corresponds to λ = i, p = 1, q = 2 and l ∈ {0, 1}.
These two values de�ne two different eigenvectors, speci�ed by two cut-offs, Λ2,0(N) = 2N,
Λ2,1(N) = 2N+ 1. This reproduces the eigenvectors (22).

The construction additionally requires that eigenvectors corresponding to different complex

eigenvalues does not belong to a single space (see appendix B for more details). This is a

direct analogue of the superselection rule for regularized eigenvectors corresponding to real

eigenvalues (17). However, now each space corresponds to a single complex eigenvalue, while

different complex λ specify different spaces of regularized eigenvectors. Each space contains

one positive, one negative and q− 2 zero norm states (if q 6 2 then there is no zero norm

vectors). The resulted eigenvectors are degenerated, whereas the spaces they belong to are

equivalent in the sense they differ only by the number of zero norm eigenstates.

2.4. The limit of zero eigenvalues and D = 4 Minkowski space

We are now ready to discuss the problem of zero eigenvalues. In order to do so, consider

λ = ±ǫ �rst, where ǫ stands for an in�nitesimal real parameter. De�ne

|e±〉 := |er±ǫ〉, (31)

where |er±ǫ〉 are given by equation (17) for λ0 = ǫ. That is, there are two eigenvectors of two

opposite eigenvalues±ǫ. Both eigenvalues go to zero in the limit ǫ→ 0. To make the product

(18) well-de�ned we let ǫ to be arbitrary small, but non-zero. In what follows, the limit λ→ 0

consists in treating ǫ as in�nitesimal parameter, and letting ǫ→ 0 in the end. This is in parallel

analogy to introducing regularizationparameterΛ. The only difference is that we �rst eliminate

Λ, letting Λ→∞ while keeping ǫ as a �xed parameter, and then eliminate ǫ letting ǫ→ 0.

Alternatively, one can keep ǫ as arbitrarily small but �xed all the time, treating the vectors given

by equation (31) as eigenvectors corresponding to approximately zero eigenvalue. The smaller

the value ǫ, the better the approximation. We ignore such details now, however. Physically it

does not matter whether some quantity is exactly zero or is arbitrarily small. From now on

we interpret equation (31) as de�ning a pair of degenerated eigenvectors corresponding to the

zero eigenvalue. This value can be found in the limit of either small negative λ = −ǫ or small

positive λ = ǫ eigenvalues.
In the next step we generalize the procedure to the case of complex eigenvalues. The

idea is to reach λ = 0 by small complex λ (i.e. |λ| ≪ 1). For instance, let λ = iǫ. Recalling
equations (28)–(30), this corresponds to r = ǫ, ϕ = π/2, leading to two eigenvectors labeled

by l = 0 and l = 1. De�ne

|e〉0 := |e(1)iǫ 〉, |e〉1 := |e(0)iǫ 〉, (32)

where |e(l)iǫ 〉 are given by equation (29). These are de�ned as respectively negative and positive
normeigenvectors, i.e. 0〈e|e〉0 = −1, 1〈e|e〉1 = 1. For small but �xed ǫ the operator e is approx-
imately Hermitian on states (32) in the sense that the deviation |(ek, e el)− (e ek, el)| = 2iǫδkl
is small of order ǫ (here ek, el stand for eigenvectors (32)). Letting ǫ arbitrarily close to zero

makes the deviation from Hermiticity, as well as the eigenvalue λ, arbitrarily small. This is

similar to the case of eigenvectors from real eigenvalues (31). Again, we treat ǫ as arbitrar-
ily close to zero, eliminating it in the limit ǫ→ 0+. The vectors (32) turns out to be nor-

malized e-eigenvectors corresponding to the zero eigenvalue. In contrast to the vectors (31),

8
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one gets the value λ = 0 in the limit at which the imaginary part of the eigenvalue goes to

zero.

Despite the vectors (31) and (32) were found using different methods, they are orthogonal.

This is due to the prefactor (2Λ)−1/2 in the de�nition (17). Hence, the two-dimensional space

corresponding to λ0 = ǫ, i.e. the space of eigenstates corresponding to opposite eigenvalues

λ = ±ǫ, can be effectively enlarged supplementing with vectors (32). This results in the total

number of four unit eigenvectors:

|e〉0 := |e0〉, |e〉1 := |e1〉, |e〉2 := |e+〉, |e〉3 := |e−〉. (33)

They all correspond to the zero eigenvalue. The �rst two vectors are the eigenvactors (32), the

last two ones are the eigenvectors (31).

At this point one may wonder if the basis (33) can be further modi�ed incorporating eigen-

vectors from different complex (in�nitesimal) eigenvalues. The important thing to note is that

there is a superselection rule forbidding superposition of states corresponding to different

eigenvalues, even if they are arbitrarily close to each other (see appendix B for more details).

Choosing the complex eigenvalue �xes the choice, as in the case of eigenvectors corresponding

to real eigenvalues (see equation (20) and the corresponding superselection rule). In particu-

lar, instead of the vectors (32), one could consider eigenvectors from different in�nitesimally

small complex eigenvalues. As was shown in appendix B, different choices correspond to dif-

ferent number of zero norm states, but this do not affect the number of non-zero norm vectors.

Since the zero norm states do not contribute to the scalar product, they are meaningless and

can be ignored. In what follows, trying to change regularized eigenvectors, one cannot affect

the dimension and signature of the space spanned by the basis of degenerated eigenvectors cor-

responding to the zero eigenvalue. Increasing dimension is forbidden by superselection rules,

while the signature remains the same because we get always one negative and three positive

norm eigenvectors.

Let E0 stands for the restricted Hilbert space spanned by the basis (33) (a subspace ofH in

which e is Hermitian). The set of disconnected spaces (20) can be then enlarged by E0:

E =
⊕

λ0>0

Eλ0 . (34)

Being restricted to any of the spaces Eλ0 , the operator e is manifestly Hermitian. As in the

case of equation (20), writing down equation (34) we keep in mind that there are additional

superselection rules forbidding superpositions of states corresponding to different |λ|.
Among various different spaces in the direct sum (34), the restricted Hilbert space E0 is

special because of the biggest number of orthogonal eigenvectors and the fact that they are all

degenerated.Nowwe will take a closer look at that space. Note that any complex superposition

of states corresponding to the zero eigenvalue is an eigenvector as well. Clearly, this is only

possible if λ = 0. Let

|v〉 = ξµ|eµ〉 (35)

be a superposition chosen so that |ξµ| ≪ L for L≫ ǫ; ξµ ∈ C. In what follows, e|v〉 = O(ǫ).
The smaller ǫ, the better the approximation. In particular, in the limit ǫ→ 0, one �nds e|v〉 → 0.

Hence the vector (35) is a zero eigenvector in the same sense as any of the basis eigenstates

(33). Again, ǫ is identi�ed with additional regularization parameter, similarly as Λ. Notice that

|e〉0 is a negative norm vector, while the rest ones, |e〉i, i = 1, 2, 3, have positive norms. This

suggest a connection with Minkowski space. Indeed, the basis (33) is orthonormal in the sense

of the scalar product in Minkowski space, 〈eµ|eν〉 = 〈eν |eµ〉 = ηµν . Here µ, ν ∈ {0, . . . , 3}

9
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and ηµν stands for the standard Minkowski metric. However, the scalar product is symmetric

under complex Lorentz rotations, i.e. the symmetry group O(3, 1,C). Since the negative norm
vector is present, we cannot impose the standard normalization condition for the superposition

(35). For the same reason in the extended Hilbert space complex amplitudes ξµ have no prob-

abilistic interpretation. Still, as it was shown in [1], in special circumstances they could play a

role analogous to the standard probabilities. We ignore this details now, considering the most

general symmetry group O(3, 1,C).
It turns out that coef�cients ξµ can be identi�ed with coordinates in the Minkowski space.

To see this note that the symmetry under O(3, 1,C) rotations means that

ηαβ = ηγδ(Λ
γ
α)

∗
Λ

δ
β , (36)

where ∗ stands for complex conjugate. Consider an in�nitesimal transformation δΛµ
ν = δµν +

Ω
µ
ν , where Ωµν = −Ω

∗
µν . Extracting real and imaginary parts,

Ωµν = ωµν + i ω̃µν , (37)

one rewrites the rotation as

δΛµ
ν = δµν + ωµ

ν + iω̃µ
ν , (38)

whereωµν , ω̃µν are antisymmetric tensors. The transformation involves twelve real parameters,

six for each of two antisymmetric tensors: ωµν and ω̃µν . Acting on a complex vector ξµ =

σµ + iθµ; σµ, θµ ∈ R, the transformation (38) gives

(ξµ)′ = δΛµ
νξ

ν
= (δµν + ωµ

ν)σ
ν − ω̃µ

νθ
ν
+ i
[

(δµν + ωµ
ν)θ

ν
+ ω̃µ

νσ
ν
]

. (39)

The real (σµ)′ and imaginary (θµ)′ parts of (ξµ)′ transform as follows

(σµ)′ = (δµν + ωµ
ν)σ

ν − ω̃µ
νθ

ν , (40)

(θµ)′ = (δµν + ωµ
ν)θ

ν
+ ω̃µ

νσ
ν . (41)

For a �xed θµ = θµ0 = const, the real part of equation (39), given by equation (40), is a Poincare

transformation

(σµ)′ = (δµν + ωµ
ν)σ

ν
+ aµ. (42)

Here aµ = −ω̃µ
νθ

ν
0 plays a role of the translation, while δµν + ωµ

ν is a Lorentz rotation.

Similarly, for a �xed σµ = σµ
0 = const, the imaginary part (41) becomes

(θµ)′ = (δµν + ωµ
ν)θ

ν
+ bµ, (43)

where bµ = ω̃µ
νσ

ν
0 . Again, this is the Poincare transformation with the same Lorentz rotation

and the translation bµ. In what follows, imposing one of the two following constraints

θµ = θµ0 , (44)

σµ
= σµ

0 , (45)

i.e. letting θµ = const or σµ = const, respectively the real or imaginary part of the complex

vector ξµ transforms under standard four-dimensional Poincare symmetry group. This means

that either σµ or θµ can be identi�ed with coordinates in four-dimensional Minkowski space.

10
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Notice that the constrains (44) and (45) are essential for this identi�cation. The last fact

has a natural interpretation in terms of a higher-dimensional space. Suppose we interpret

imaginary parts of the vector ξµ as coordinates in extra dimensions. To this end, consider a

vector ~f = ya~f a, a = 1, . . . , 8, where (yA) := {σ0, . . . , σ3, θ0, . . . , θ3} are coordinates in an

orthonormal, eight-dimensional basis ~f a. The latter is constructed in such a way that vector

spaces spanned by the two subsets {~f 0, . . . , ~f 3}, {~f 4, . . . , ~f 7} are isomorphic (in the sense

of preserving the scalar product) to the space spanned by the eigenvectors {|e〉0, . . . , |e〉3}.
In what follows, ~f ∈ R6,2. Imposing one of the two constraints (44) and (45) results in a

four-dimensional hypersurface, the four-dimensional Minkowski space.

The interpretation above may seem to be arti�cial because of introduced ad hoc the eight-

dimensional basis ~f a. Still, the construction provides a clear interpretation of the constraints

(44) and (45). As we shall see discussing more general e-operators, the Minkowski space

emerges in a similar fashion, being solution to the constraint equation in a higher-dimensional

space.

We close this section recalling the form of space of eigenvectors (34). The fact it splits

into separate subspaces is crucial for geometric interpretation of E0. In particular, this pro-

hibits enlarging the space by additional eigenvectors corresponding to different in�nitesimal

eigenvalues. The procedure �xes the dimension and signature of the restricted Hilbert space

E0, interpreting it geometrically in terms of Minkowski spacetime. This means that regularized

eigenvectors corresponding to the zero eigenvalue are more like geometric objects, giving rise

the Poincare symmetry in four dimensions.

3. General operators

Below we discuss eigenequation of e-position labeled by continuous variables, written sym-

bolically as x = {x0, . . . , xD−1}. In general, generalized e-operators ei(x), ∂ j(x) are given by

the following generalization of de�nition 1:

[ei(x), e j(y)] = [∂i(x), ∂ j(y)] := 0, (46)

〈ϕ|en1i1 (x1) . . . e
nk
ik
(xk)|φ〉 = 〈ϕ|∂n1i1 (x1) . . . ∂

nk
ik
(xk)|φ〉 := 0, (47)

e†i (x) := ei(x), ∂†
i (x) := − ∂i(x), (48)

∂i(x)e j(y)|φ〉 := δi jδ
D(x− y)|φ〉. (49)

Additionally we require

∂i(x)e j1(y1) . . . e jn(yn)|φ〉 = δi j1δ
D(x− y1)e j2(y2) . . . e jn(yn)|φ〉+ . . .

+ δi jnδ
D(x− yn)e j1(y1) . . . e jn−1

(yn−1)|φ〉, (50)

ei(x)∂ j1(y1) . . . ∂ jn(yn)|φ〉 = −δi j1δ
D(x− y1)∂ j2(y2) . . . ∂ jn(yn)|φ〉+ . . .

− δi jnδ
D(x− yn)∂ j1(y1) . . . ∂ jn−1

(yn−1)|φ〉. (51)

It can be veri�ed that operators satisfy the following commutation relation

[∂ j(y), ei(x)] = δi jδ
D(x− y)η̂. (52)

11
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Linear combinations of ei(x) and ∂ j(y) leads to creation α
†
i (x) and annihilation αi(x) operators,

satisfying

[αi(x),α
†
j(y)] = δi jδ

D(x− y)η̂, (53)

[αi(x),α j(y)] = [α†
i (x),α

†
j(y)] = 0. (54)

In the extended space, i.e. the space spanned by combinations of e-operators acting on the

�ducial vector but not the ‘bare’ �ducial vector itself, equation (53) simpli�es taking the form

of the standard algebra for creation and annihilation operators, i.e.

[αi(x),α
†
j(y)] = δi jδ

D(x− y), (55)

whereas the commutation relations (54) remain unchanged. Consider for simplicity operators

labeled only by continuous labels, i.e. e(x), ∂(x). For instance, one can identify e(x) = e1(x),
∂(x) = ∂1(x), rewriting equation (55) as

[α(x),α†(y)] = δD(x− y). (56)

The most general e-operators will be discussed in the end of this paper. The eigenequation of

e(x) operator reads

e(x)|e(x)〉 = λ(x)|e(x)〉. (57)

Here we cannot identify λ(x) = x, because for D > 1 this would make no sense from perspec-

tive of the eigenequation (λ is a scalar-like object). Instead, we have to assume that eigenvalues

are given by a scalar function λ(x) = λ(x0, . . . , xD−1). We do not �x the dimension D now,

letting it to be a free parameter.

The eigenvector |e(x)〉 is a direct analogue of the standard position eigenstate in position

representation |x〉, i.e.

x̂|x〉 = x|x〉. (58)

Here

〈x|x′〉 = δ3(x− x′). (59)

Being non-normalizable, eigenvectors |x〉 are orthogonal. Keeping this in mind, we now

examine the position e(x). The solution of equation (57) takes the form

|e(x)〉 = Eλ(x)|φ〉, (60)

where |φ〉 is a �ducial vector and Eλ(x) stands for the most general combination of (general-

ized) e-operators:

12
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Eλ(x) = a(x)+
∞
∑

n=1

∫

dDx1 . . . d
Dxn bn(x; x1, . . . , xn)e(x1) . . . e(xn)

+

∞
∑

n=1

∫

dDx1 . . . d
Dxn cn(x; x1, . . . , xn)∂(x1) . . . ∂(xn). (61)

Here a(x), bn(x; x1, . . . , xn), cn(x; x1, . . . , xn) are functional coef�cients to be �xed. Supplement-

ing equation (60) with the ansatz (61), and then substituting the resulting vector |e(x)〉 into the
eigenequation (57), leads to recurrence equations for the functional coef�cients. Solving them,

one �nds

bn(x; x1, . . . , xn) =
a(x)

λn(x)

n
∏

i=1

δD(x− xi), (62)

cn(x; x1, . . . , xn) = a(x)
(−λ(x))n

n!
, (63)

Here λ(x), a(x) are remaining free functional coef�cients. Consider the product 〈e(x′)|e(x)〉
= 〈φ|Eλ(x′)†Eλ(x)|φ〉. Making use of equations (61)–(63) gives

〈e(x′)|e(x)〉 = a∗(x′)a(x)

(

1+

∞
∑

n=1

[(

λ(x)

λ∗(x′)

)n

+

(

λ∗(x′)

λ(x)

)n]
)

. (64)

Notice that letting a(x) = 1, λ(x) = λj and λ(x′) = λi, we restore the form (15). This is

expected since with the lack of manifest dependence on continuous variables x, x′, the product
should reduce to what has been found for e operator. On the other hand, there are two remaining

functional parameters in equation (64): the eigenvalue λ(x) and a(x).
As in the case of e operator, we will now search for a restricted Hilbert space in which e(x) is

Hermitian. In order to do so, we assume that λ(x) is real and non-zero. We will not reconsider

the problem of zero eigenvalues. In fact, due to relative similarity between equations (64) and

(15), we would get nothing interesting. Instead, we will concentrate on a small region in the

neighborhood of two close points Xa and Xa + dXa, where Xa stand for continuous labels

of e-operators (A ∈ {0, . . . ,D− 1}). We ask what guaranties that e(x) is Hermitian in that

region.

Assume that a(x) = const, letting a(x) = 1 in equation (64), and impose a �nite cut-off Λ

for Eλ(x) in equation (61). The cut-off will be eliminated by taking the limit Λ→∞ in the

end. The regularized product reads

〈eλ(x′)|eλ(x)〉 =
(

1+

Λ
∑

n=1

[(

λ(x)

λ(x′)

)n

+

(

λ(x′)

λ(x)

)n]
)

, (65)

where (x′)A = Xa + dXa. We will treat the arguments x, x′ ∈ RD as dimensionless parameters.

Performing the sum (65) explicitly and expanding the result in dXa gives

〈eλ(x′)|eλ(x)〉 = 2Λ

(

1+

(

Λ
2

6
+

Λ

4
+

1

12

)

∂ABλ(x)

λ(x)
dxAdxB

)

+O(dx3).

(66)

If Λ ≫ 1, one can neglect two terms in the internal bracket, rewriting equation (65) in a bit
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simpler form

〈eλ(x′)|eλ(x)〉 = 2Λ
(

1+ Λ
2
ΘAB(x)dx

AdxB
)

, (67)

where

Θµν(x) :=
∂µνλ(x)

6λ(x)
. (68)

Here we skipped the terms of orderO(dx3)4. If Xa = (x′)A, i.e. dXa = 0, the product (67) reads

〈eλ(x)|eλ(x)〉 = 2Λ. (69)

This is the norm of the eigenvector |eλ(x)〉; it diverges in the limit Λ→∞. This is the

same divergence we have met discussing e-eigenvectors corresponding to real eigenvalues.

As we recall, regularized eigenvectors (17) have been constructed multiplying by in�nitesi-

mal prefactor 1/
√
2Λ. However, since now the eigenvectors are labeled by continuous vari-

ables, we will not do so. For instance, for the standard position operator equation (59)

gives 〈x|x〉 = δ3(0). This is why, contrary to the analysis presented in the last section, we

will not demand the position eigenvectors (60) to be normalized. We only require they are

orthogonal.

The last translates into the additional constraint. Recalling the form (67) of the product, the

constraint reads

ΘAB(x)dx
AdxB = −Λ

−2. (70)

The last is non-trivial only if dXa 6= 0 (if dXa = 0 the constraint is a non-issue because the

product reduces to in�nite norm (69)). Assume for a moment that equation (70) has already

been satis�ed. One gets

〈eλ′ (x′)|eλ(x)〉 =
{

lim
Λ→∞

2Λ, if x = x′

0, if x 6= x′.
(71)

In the limit Λ→∞, one identi�es δ(0) = Λ/(2π). Therefore equation (71) can be interpreted
as relatedwith Dirac delta, i.e. 〈eλ′(x′)|eλ(x)〉 ∝ δ(λ(x)− λ(x′)). The operator e(x) is Hermitian

in the resulting restricted Hilbert space and has continuous spectrum. We should also keep in

mind that equation (71) makes sense only in a close neighborhood of a �xed point. Hence,

equation (70) is a local constraint.

3.1. Spacetime interpretation of the constraint equation and geometry of AdS5

We will now interpret and solve the constraint (70). We start with an observation that lin-

ear combinations of e-operators give rise the standard creation and annihilation operators,

leading to the standard algebra (54) of the harmonic oscillator. Physically, this means that

variables x of e-operators can be identi�ed with positions in space. Indeed, recalling stan-

dard interpretation of quantum �elds, each point in space can be viewed as associated with

4More speci�cally, these terms are of order O(Λ2 dx3) and are small if Λ2dx3 is also small. In particular, this would

be the case for |dx| = O(Λ−1). The regularization parameter Λ is then interpreted as inverse of |dx|. Once |dx| ≪ 1,

then Λ ≫ 1.
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a quantum harmonic oscillator, while the �eld itself can be interpreted as in�nite num-

ber of such oscillators. The vacuum space can be related with oscillators in the ground

state.

This simple logic can be further generalized to incorporate time. To be more speci�c, con-

sider the possibility that the variables x = x0, . . . , xD−1 represent spacetime labels, just like

for operators in the Heisenberg picture. However, in light of the algebra (54), this would mean

there are oscillations also in temporal direction; something which requires the concept of oper-

ator of time. The latter is not a new idea and has already been discussed [21–23]. One of the

reasons behind such an approach is that time and space are treated on equal footing, as in the

case of general relativity (or more generally, classical theory of gravity). Since on the quan-

tum level time and space are represented by operators, this suggests a way of incorporating

quantum gravity effects.

Despite operator of time is a promising idea, we will not go deeply into the subject. Instead,

keeping in mind all what we have said, we restrict to say that the labels x of e(x) and ∂(x) can
be potentially connected with coordinates in spacetime. The way they are related should be, at

least at the most super�cial level, determined by solutions to the constraint (70).

Unfortunately, equation (70) cannot say much about the connection. This is because we

actually did not discuss any quantum system. The latter would require introducing quantum

�elds, or performing a simpli�ed analysis similar to the one presented in [1]. Rather than

searching for the connection between quantum states and geometry, we ask about the potential

geometrical meaning of the constraint itself.

The starting point will be the result found in section 2.4, a class of regularized eigenvec-

tors spanning four-dimensional Minkowski space. As we recall, for x = const and a(x) = 1,

eigenvectors (60) are equivalent to the simple e-eigenvectors (13). Since for λ = 0 the former

was interpreted geometrically in terms of Minkowski space, the same is expected for the latter.

Therefore, solving the constraint equation (70), one expects to �nd a solution sharing the same

geometrical interpretation. This should hold for suf�ciently small eigenvalues. In particular, we

expect to get the four-dimensional Minkowski space in the limit λ(x)→ 0. We now examine

this in details.

In order to do so, assume that λ(x) vanishes at a �xed point xA = ~0, i.e. λ(0) = 0.

Obviously the point xA = ~0 is not special, this is only to illustrate the procedure. We also

assume the function is slowly varying in a close vicinity of this point. This means that in

the Taylor series approximating λ(x) close to zero all gradient terms are small. In particu-

lar, |∂Aλ(0)|, |∂A∂Bλ(0)| ≪ 1 and |∂A∂Bλ(0)| ≪ |∂Aλ(0)|, etc. For a slowly varying function,
equation (70) can be approximated as

ΘAB(0)dx
AdxB = −Λ

−2, (72)

where

ΘAB(0) =
∂ABλ(0)

6λ(0)
. (73)

Since the matrix ΘAB(0) is symmetric, it can be diagonalized. Let Θ(0)
µν = diag{c0, . . . , cD−1}

stands for the result of diagonalization procedure. This procedure involves linear transforma-

tion of variables Xa. If the original matrix is already diagonal, they remain the same. If not,

they will be changed. For simplicity we ignore such details now, assuming that Xa refer to
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already diagonal form Θ
(0)
µν . The constraint (72) reads

D−1
∑

n=0

cn(dx
n)2 = −Λ

−2. (74)

Here all (constant) coef�cients cn are non-zero. In general, diagonalization of ΘAB(0) may

result also in zero diagonal components cn. We simply assume that λ(x) was chosen is such a

way thatΘ(0)
µν hasD non-zero components. Alternatively, one can reinterpretD as representing

the number of non-zero components after diagonalization.

Equation (74) can be further simpli�ed introducing the following new variables

x̃A :=
√

|cA| xA (75)

(there is no summation convention here). The constraint (74) takes the form

D−1
∑

n=0

(±)n(dx̃
n)2 = −Λ

−2, (76)

where (±)n := sign(cn).
We would like to examine if it is possible to get four-dimensional Minkowski space as a

solution to the constraint. Obviously, this requires D > 4. In the simplest possible case D = 4

while Θ(0)
AB has a signature (−,+,+,+). Recalling equation (68) one concludes that this will

be the case for

λ(x) = λ0 sin(ωx0)+ λ0 sinh(k1x
1)+ λ0 sinh(k2x

2)+ λ0 sinh(k3x
3), (77)

where ω, k1, k2, k3 are assumed to be small to guaranty the function is slowly varying. Letting

l0 to be a dimensional length scale, the function will be slowly varying in the corresponding

region if ω ≪ l−1
0 and ki ≪ l−1

0 . The constraint (76) reads

ηµνdx
µdxν = −Λ

−2. (78)

As we recall, Λ stands for a regularization parameter, which goes to in�nity in the end. Geo-

metrically, the left-hand side of equation (78) can be identi�ed with the line element in four-

dimensional Minkowski space, i.e. ds2 = ηµνdxµdxν . In the limit Λ→∞ the latter goes to

zero meaning that we cover not the whole space, but a hypersurface corresponding to the set

of events ds2 = 0. This can be identi�ed with trajectories of massless particles. They de�ne a

hypersurface in D = 4 Minkowski space, but not the whole space.

Fortunately, there is an even larger class of solutions. Notice that the right-hand side of

equation (76) is invariant under SO(n,m) rotations, where (n,m) stands for the signature of

the matrixΘ
(0)
AB. As such, equation (76) resembles the constraint de�ning the so-called pseudo-

hyperbolic space [20] as embedding in Rn,m. Depending on the signature of Θ
(0)
AB this includes

hyperbolic, anti-de Sitter, and many other spaces with no clear spacetime interpretation5.

Another observation is that equation (76) (as well as equation (74)) becomes scale-invariant

in the limit Λ→∞. The last two facts show that if anti-de Sitter space is a solution to the

constraint, the solution is special. Below we show that equation (76) indeed support that space

and, in particular, AdS5.

5This is because more than one time-like direction and the presence of closed timelike curves which cannot be

eliminated in a consistent way.
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In order to do so, assume that λ(x) is a function of six continuous variables such that the

matrix Θ0
AB has a signature (−,−,+,+,+,+). The constraint (76) reads

−(dx̃0)2 + (dx̃1)2 + (dx̃2)2 + (dx̃3)2 + (dx̃4)2 − (dx̃5)2 = −Λ
−2. (79)

Again, we can interpret the constraint (79) as de�ning a hypersurface ds2 = 0. However, we

would not like to do so. Instead, we solve the constraint explicitly, installing a coordinate sys-

tem on the resulting manifold. Note that the left-hand side of equation (79) is invariant under

SO(4, 2) rotations, the isometry group of AdS5. Hence, we expect that anti-de Sitter space is a

solution to the constraint (79). More precisely, let δL :=Λ
−1 and

δxA := dxA (80)

stand for components of an in�nitesimal, normalized vector in R4,2. The normalization is

provided by the constraint (79):

−(δx0)2 + (δx1)2 + · · ·+ (δx4)2 − (δx5)2 = −δL2. (81)

The left and the right-hand side of the equation above are built out of in�nitesimally small

objects of the same order. A convenientway of solving the constraint (81) is installing Poincare

coordinate system (tδ , xδ1, xδ2, xδ3, zδ) [24], de�ned as

δx0 =
−t2δ + xδ21 + xδ22 + xδ23 + z2δ + δL2

2zδ
,

δxi = δL
xδ i
zδ

, i = 1, 2, 3,

δx4 =
−t2δ + xδ21 + xδ22 + xδ23 + z2δ − δL2

2zδ
,

δx5 = δL
tδ
zδ
. (82)

Inserting equation (82) into equation (81) one checks the constraint is satis�ed. Note that unlike

the standard construction ofAdS5 as embedding inR4,2, equation (81) is a constraint on a vector

δxA ∈ R4,2 built out of in�nitesimal variables. Solutions (82) lead to the following metric on

the resulting manifold

ds2 = δL2
−dt2δ + dxδ21 + dxδ22 + dxδ23 + dz2δ

z2δ
. (83)

This is the metric of AdS5 in Poincare coordinates; δL stands for AdS radius. Formally, the

right-hand side of equation (83) is small of order four. This is actually not a problem since the

line element is manifestly scale-invariant. Small lengths can be isomorphically map into their

arbitrarily large equivalents. In particular, the line element (83) is invariant under scaling trans-

formation (tδ , xδ1 , xδ2 , xδ3 , zδ)→ (Ωtδ ,Ωxδ1 ,Ωxδ2 ,Ωxδ3 ,Ωzδ), where Ω is arbitrary real param-

eter. This scale-invariance re�ects the scale-invariance of the constraint (81) or, alternatively,

the form (72).

Since δL = Λ
−1, AdS-radius goes to zero in the limit Λ→∞, while the scalar of curvature

R = −20Λ2
= −20δL−2 becomes in�nite. Fortunately, this is not an issue at the conformal

bound, corresponding to zδ = 0 in Poincare coordinates. To be more precise, taking the limit
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zδ → 0 leads to the ‘boundary’ of AdS5. This turns out to be nothing but the four-dimensional

Minkowski space:

ds2 = −dt2 + dx21 + dx22 + dx23. (84)

The metric above can be easily derived from equation (83), assuming that δL, zδ → 0 while

keeping δL/zδ = const. Letting zδ → 0 is a way to compensate the problematic limit δL→ 0.

The �ve-dimensional geometry effectively reduces to the four-dimensional one, and the letter

is manifestly non-singular. It takes the form of the four-dimensional Minkowski space. How-

ever, the space emerges in a rather unexpected way as the boundary of a higher-dimensional

spacetime.

At this point it is worth underlying that all what we have said concerns the assumption that

λ(x) is small and slowly varying. What is more, we restricted ourselves to the local version

of the constraint equation, valid in a close neighborhood of a �xed point. Even with these

strong assumptions we arrived with a large class of solutions, identifying AdS5 to be special

because of the form of its boundary. However, global solutions to the constraint equation can

be qualitatively different.Without specifying the form of the functionλ(x) we cannot say much

about them. The only what we know is that locally they should look like AdS5 to match the

results found for e operator. Quite interestingly, the last fact can be viewed as a holographic

analogue of the standard local �atness. TheMinkowski space emerges in a holographicmanner,

being the boundary of the anti-de Sitter space.

We close the analysis with a simple observation regarding the form of the product (65). It

is straightforward to observe that the latter is invariant under scaling transformations λ(x)→
bλ(x). This means that scale-invariance is a symmetry of the product in its most general form.

In the spacial case, restricting to small regions in the parameter space and small λ(x), this
symmetry is re�ected by scale-invariance of AdS5.

3.2. Momentum eigenequation

So far we considered e-position, represented either by e or e(x) operators. Now we will

discuss the momentum. In the simplest possible case, it reads p̂= −i∂. The corresponding

eigenequation

p̂|p〉 = λ|p〉, (85)

has a solution

|p〉 = P̂λ|φ〉, (86)

where

P̂λ = exp(iλe)+
∞
∑

i=1

∂n

(iλ)n
. (87)

The scalar product of two eigenvectors (86) reads

〈pλi |pλ j〉 = 1+

∞
∑

n=1

[(

λ∗
i

λ j

)

+

(

λ j

λ∗
i

)]

. (88)

Notice that the right-hand side of equation (88) is the same as the right-hand side

of equation (15), found for e-position. Therefore, the future analysis, including con-

struction of normalized eigenvectors and their geometric interpretation, will be also the
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same. The superselection rules guaranty the momentum is conserved, while the whole

D = 4 Minkowski space corresponds to the zero momentum eigenvalue. Again, both

spacetime dimension and signature of the metric are determined by the regularization

procedure.

For generalized momentum−i∂(x) the eigenequation takes the form

−i∂(x)|p(x)〉 = λ(x)|p(x)〉. (89)

The eigenvector can be foundwriting down the most general form of the state in the maximally

extended space:

|p(x)〉 =
(

a(x)+
∞
∑

n=1

∫

dDx1 . . . d
Dxn bn(x; x1, . . . , xn)e(x1) . . . e(xn)

+

∞
∑

n=1

∫

dDx1 . . . d
Dxn cn(x; x1, . . . , xn)∂(x1) . . . ∂(xn)

)

|φ〉. (90)

Substituting equation (90) into (89) and solving the resulting equations gives

bn(x; x1, . . . , xn) = a(x)
in

n!
λn(x), (91)

cn(x; x1, . . . , xn) = a(x)
(−i)n
λn(x)

n
∏

k=1

δ(x− xk). (92)

Here a(x) is a remaining functional parameter. The product of two eigenvectors (90) reads

〈p(x′)|p(x)〉 = a∗(x′)a(x)

(

1+

∞
∑

n=1

[(

λ(x)

λ∗(x′)

)n

+

(

λ∗(x′)

λ(x)

)n]
)

. (93)

Again, we found the same result as for the extended position (see equation (64)). Therefore, the

constraint equation will be also the same. Having found D = 4 Minkowski space discussing

e-position, the same can be found discussing e-momentum. The space emerges as a conformal

boundary of AdS5.

3.3. The most general operators

We are ready to generalize the results to the case of the most general e-operators, ea(x) and
∂a(x), a = 1, . . . , d. The position eigenequation reads

ea(x)|e(x)〉 = λa(x)|e(x)〉, (94)

where

|e(x)〉 =
d
⊗
a=1

|ea(x)〉, (95)

and |ea(x)〉 stand for eigenvectors (60). There are d copies of such eigenvectors, one for each

label a. It is straightforward to observe that the rules (46)–(51) guaranty that eigenvectors

|ea(x)〉 indexed by different discrete labels are orthogonal.
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Notice that the solution (95) is similar to the previously found (60). In fact, the only what

changed is that now we have d functional eigenvalues λa(x), while eigenvectors (95) were

built out of ‘simple’ eigenvectors (60). We have a copy of the constraint equation (70) for each

discrete label of the e-position.
It is convenient adopting a bit more natural notation, rewriting the eigenequation (94) as

X̂a(x)|X(x)〉 = X a(x)|X(x)〉. (96)

Here we de�ned

X̂a(x) := ea(x), X a(x) :=λa(x), |e(x)〉 := |X(x)〉. (97)

Similarly, for the momentum P̂a(x) := − i∂a(x), one has

P̂a(x)|P(x)〉 = Pa(x)|P(x)〉. (98)

The operators X̂a(x), P̂a(x) are similar to the standard position and momentum, however, do

not share the standard algebra. Instead, equation (52) can be rewritten as

[X̂a(x), P̂b(y)] = iδabδ
D(x− y)η̂. (99)

As it was shown in [1], eigenstates of creation and annihilation operators can be constructed

in such a way they belong to extended, but not maximally extended space. This means

that one can skip the operator η̂, reproducing the standard algebra of the quantum har-

monic oscillator. However, for e-position and e-momentum the situation is qualitatively dif-

ferent. Solving eigenequations one cannot skip the term responsible for the presence of the

bare �ducial vector. In consequence, the commutation relation cannot be simpli�ed in the

space of eigenvectors. Therefore we cannot expect the standard uncertainty relation for these

operators.

Discussing eigenequation of e(x) operator we identi�ed the constraint (70) guarantying that
eigenvectors from different eigenvalues are orthogonal. Itself, the constraint was interpreted

geometrically as de�ning spacetime as embedded manifold. Letting D = 6 we found AdS5 as

embedding inR4,2. What makes the solution special is that it matches perfectly the result found

for ‘simple’ e-operators: the eigenspace corresponding to the zero eigenvalue can be interpreted
geometrically as four-dimensional Minkowski space. As we recall, this was generalized to the

case of generalized e-operators in the limit of small λ(x). Keeping this in mind, it is natural to

ask what will happen in the most general case, i.e. for ea(x) and −i∂a(x).
As before, we start with e-position. Due to the symmetry of the scalar product, the same

results can be found for the momentum. In case of ea(x) eigenstates, one �nds d copies of the
constraint equation (70):

Θ
a
AB(x)dX

AdxB = −Λ
−2
a , (100)

where

Θ
a
AB(x) =

∂ABX a(x)

6X a(x)
, (101)

and a = 1, . . . , d. Following the construction presented in section 3.1 we will be interested

in covering a small region where the eigenvalues are close to zero. The latter is de�ned by

a neighborhood of Xa = 0. Suppose that Xa(0) = 0. Repeating the steps of the construction
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outlined in section 3.1, we assume that each Xa(x) is a slowly varying function, rewriting the

constraints (101) as

D−1
∑

n=0

can(dx
n)2 = −Λ

−2
a . (102)

Here Λa stand for regularization parameters. Without loosing of generality one can assume

they are all equal, i.e. Λ1 = · · · = Λd = Λ. Again, one should take the limit Λ→∞ in the

end. Introducing new variables

x̃a,A :=
√

|caA|X A (103)

(there is no summation convention here), one rewrites equation (102) as

D−1
∑

n=0

(±)(a)n (dx̃a,n)2 = −Λ
−2. (104)

Here (±)(a)n := sign(can). Suppose we have chosen Xa(x) in such a way that each matrix Θ
a
AB

has a signature (−,−,+,+,+,+). This would be the case for

X a(x) = λa0 sin(ωax0)+ λa0

3
∑

i=1

sinh(kai x
i)+ λa0 sin(ka4x

4), (105)

where λa0, ω, k
a
1, . . . , k

a
4 are additional parameters. As before, we assume that ω, ka1, . . . , k

a
4

are small with respect to some length scale l0: ωa ≪ l−1
0 , kai ≪ l−1

0 , ka4 ≪ l−1
0 . This guaranties

Xa(x) are slowly varying.
Following the construction of AdS5 in Poincare coordinates presented in section 3.1 one

concludes that starting with the form (105), one �nds d copies of that space, one for each

discrete label a. Since each time one gets the same geometric result, one can start with a simpler

form of Xa(x):

X a(x) = λa0 sin(ωx0)+ λa0

3
∑

i=1

sinh(kix
i)+ λa0 sin(k4x

4), (106)

where ω, k1, . . . , k4 are the same for all discrete labels a. It is straightforward to check that one
�nds the same constraint for each discrete label a. Geometrically, this results in AdS5. This is

justi�ed within the adopted assumption that eigenvalues are small, i.e.

|X a(x)| ≪ 1. (107)

We should keep in mind that all we have said concerns the local form of the constraint given

by equation (72). Therefore, the resulting geometry is only a local solution. This is somehow

similar to local �atness in general relativity. Note that we have already mentioned this analogy

discussing eigenvectors of e(x) operator. As previously, general solutions to the constraint (70)
may differ signi�cantly from anti-de Sitter or evenMinkowski space. Unfortunately,we cannot

say much about themwithout incorporatingmatter (quantum �elds, vibrations of strings, etc.).
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4. Conclusions

We have discussed the solutions to the eigenequation of the e-operators, the position and

momentum. Starting with the eigenvectors of the e operator, we show that they are non-

normalizable, however, can be easily regularized. We observe that regularized eigenvectors

span restricted (extended) Hilbert space in the form of a direct sum of separate spaces of

�nite dimension. This includes two-dimensional spaces spanned by eigenvectors of opposite

eigenvalues, and a four-dimensional space composed of degenerated states corresponding to

λ = 0. We also identi�ed superselection rules forbidding combinations of states with different

absolute values of the eigenvalues λ. Our construction guaranties that operator the e is Her-
mitian if it is restricted to any of these spaces. The same result holds for e-momentum. The

space corresponding to the zero eigenvalue turns out to be special, because it has the maxi-

mal dimension and because the orthonormal basis consists of three positive and one negative

eigenvector. As such, the space can be identi�ed with the four-dimensional Minkowski space.

The interpretation relies upon the observation that for λ = 0 any superposition of eigenvec-

tors is also an eigenvector corresponding to the same zero eigenvalue, and amplitudes in the

superposition are linked with spacetime coordinates. The difference is that instead of Lorentz

symmetry group, we arrive with a more general group of complex Lorentz rotationsO(3, 1,C).
Rewritten in terms of real parameters θµ and σν , the rotations result in non-trivial transforma-

tions given by equations (40) and (41). Assuming that half of the directions in the parame-

ter space are ‘frozen’, i.e. either σµ = σµ
0 = const or θµ = θµ0 = const, leads to the standard

four-dimensional Poincare group.

Having found eigenvectors of the simplest e-operators, we generalize the result to the

case of operators with continuous labels. Considering the position eigenequation, we notice

the presence of the additional constraint equation (70) which ensures that the operator is

Hermitian. Eigenvalues λ(x) turned out to be labeled by the labels of the e-operators, and
except equation (70) there was no further constraints on the form of the function λ(x). We

discuss the constraint equation (70) restricting to the region where the eigenvalue is close

to zero. This is supplemented by technical assumption making λ(x) slowly varying func-

tion. The reason for considering small eigenvalues was dictated by the observation that for

the simplest e-operators, the space corresponding to the zero eigenvalue was identi�ed with

the four-dimensional Minkowski space. In what follows, taking λ(x) to be close to zero,

we expect to reproduce the geometric result corresponding to λ = 0, i.e. D = 4 Minkowski

space. We show that this is indeed the case and in a class of various possible solutions to

the constraint, one can identify the one interpreted geometrically as AdS5. The Minkowski

space emerges in a holographic way, as the conformal boundary of the resulting anti-de Sitter

space.

Finally, we discuss the eigenequation for the most general e-operators, labeled both by dis-
crete and continuous labels. In particular, for the position operator ea(x), we found d constraint
equations, where d stands for the number of discrete labels of the operator. We show that solu-

tions to the constraints in the region of small eigenvalues also supports AdS5. We notice an

interesting symmetry between e-position and e-momentum, consisting in the structure of the

scalar product. Taking a closer look at the position eigenequation (94) and rewriting it in the

form (96), we �nd an analogy to string theory: eigenvalues Xa(x) resemble worl-volume coor-

dinates. The latter can be seen as a starting point for string theory. Indeed, on a classical level

this provides motivation for writing down the standard p-brane action. However, specifying

the classical �eld Xa(x), one gets automatically the corresponding quantum state |Xa(x)〉 in the
maximally extended space.
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The main result presented in this paper is the geometric interpretation of solutions to

the eigenequation of e-operators. The interpretation relies upon the number and sign of

the norm of regularized eigenvectors corresponding to the zero eigenvalue. In the sim-

plest case this gives rise the four-dimensional Minkowski space. For more general opera-

tors the space emerges as the boundary of AdS5. It is also worth underlying that for sim-

ple operators, e and ∂, there is no direct link between classical coordinates and their quan-

tum equivalents. The whole Minkowski space corresponds to a single position or momen-

tum eigenvalue, while superselection rules guaranty these quantities are conserved. In the

case of general e-operators the connection becomes slightly more transparent. Still, sim-

ilarly as in [1], spacetime turns out to be a secondary concept, associated with quantum

states.

Compared to the discussion presented in [1–3], the quantum entanglement seems not to

be essential for the emergence of spacetime. In what follows, one can ask how it is possible

we extracted classical geometry without incorporating quantum correlations. The answer is

that these correlations are actually present, being hidden in the adopted assumptions. More

speci�cally, the interpretation of the continuous labels of e-operators bases on the algebra (53)
and its connection with the quantum harmonic oscillator. We have also utilized the fact that

quantum �elds can be interpreted as in�nite number of oscillators associated with points in

space. This holds true both for excited states and the ground state. The latter is particularly

interesting since the vacuum state of relativistic QFT is maximally entangled [25]. Assuming

that empty space is �lled with quantum �elds in the lowest energy state, we get a link with

entanglement. In particular, the vacuum anti-de Sitter can be seen as represented by in�nite

number of oscillators in the ground state.

Talking about the geometry of anti-de Sitter space, it is worth mentioning that in string

theory the latter appears when discussing gravitational �eld of D-branes. In the closed string
description, they correspond to spacetime geometry in which close strings propagate. In par-

ticular, in the case of type IIB supergravity the spacetime metric sourced by a system of N
branes, in the strong gravity region, reduces to AdS5 × S5 [16, 26–28]. On the other hand, D-

branes themselves are objects where endpoints of open strings are attached. Consequently, in

the open string description, D-branes can be viewed as sort of hypersurfaces. Their excitations
are open strings living on the brane, and closed strings propagating in the bulk [16, 17]. The

dual description of D-branes is essential for AdS/CFT conjecture, leading to a link between

supersymmetric conformal Yang-Mills theory at the boundary and gravity in asymptotically

anti-de Sitter space in the bulk.

Notice that we have met a brane-like analogy two times in our paper. Firstly, discussing the

symmetry group of complex rotations O(3, 1,C), we show they lead to the standard Poincare

symmetry in four dimensions if the initial symmetry is partially broken. This is interpreted

as de�ning a four-dimensional hypersurface in higher dimensional space, something which

resembles a brane. Second, for the most general operators the position eigenvalues take the

form of a worldvolume in the sense that there is a map Xa(x), i.e. Xa 7→ Xa. These functions

are not �xed by the construction, however, solving the constraint (72) we assume they are small

and slowly varying. For a brane this would mean that we are in the region where perturbations

are small. Quite interestingly, recalling standard results of the AdS/CFT correspondence, this

corresponds to the geometry dual to strongly-coupledYang-Mills plasma close to thermal equi-

librium [29, 30]. The main difference is that in our case the AdS-radius goes to zero, making

spacetime curvature in the bulk divergent. Therefore, trying to interpret our resulting geometry

as being sourced by a brane, we should keep in mind we are in the region where AdS radius

is small. A connection to D-branes in string theory consist in the fact that eigenvalues of the

most general e-operators support worldvolume interpretation.Moreover, as in case of D-brane
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system, we identi�ed the geometry of anti-de Sitter space. The latter is a special solution to the

constraint, re�ecting its scale-invariance.

It would be interesting to ask if such an interpretation is more than a formal anal-

ogy to string theory. In fact, the formalism of the e-operators in the extended Hilbert

space was already used in [1] while searching for the connection between the ground

state of a two-dimensional oscillator and AdS3. Again, this is in full consistency with

the holographic principle. All of these facts suggest that Hilbert space with no positive-

de�nite scalar product can be a useful concept combining quantum mechanics and

gravity.

The construction presented in this paper can be further generalized in two different ways.

The �rst one is to examine an explicit identi�cation of the position eigenvalues Xa(x) with
coordinates on the worldvolume of a brane. That is, one can consider the possibility of let-

ting arbitrary functions Xa(x) to be solutions of the classical equation of motion for a p-brane.

Alternatively, one could formally introduce quantum �elds, expressing them in terms of the

e-operators. The background geometry will be provided by the solution to the constraint, how-

ever, one expects a further backreaction induced by quantum correlations. This, in fact, could

be the �rst step towards identifying a more general class of gravitational dualities.
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Appendix A. Regularization

We consider the product 〈eλi |eλ j〉 = 〈φ|(Eλi )
†Eλ j |φ〉 of two eigenvectors (13), labeled by two

eigenvalues λi and λj. Denote 〈φ| . . . |φ〉 := 〈. . .〉, skipping the �ducial vector for convenience.
The product reads

〈eλi |eλ j〉 = 〈E†
λi
Eλ j〉 =

〈(

1+

∞
∑

k=1

ek

(λ∗
i )
k
+

(λ∗
i )
k

k!
∂k

)(

1+

∞
∑

n=1

en

λnj
+

(−λ j)
n

n!
∂n

)〉

,

where in the last equality we substituted the exact form of the operator Eλ (14), making use

equations (5) and (7). Multiplying terms on the right-hand side of equation (A1) gives

〈E†
λi
Eλ j〉 = 1+

∞
∑

k=1

∞
∑

n=1

(

(−λ j)
n

(λ∗
i )
k

〈ek∂n〉
n!

+
(λ∗

i )
k

λnj

〈∂ken〉
k!

)

= 1+

∞
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

. (A1)

To get the �rst line, we used equation (1), i.e. 〈en〉 = 〈∂n〉 = 0 (for n > 0). To get the second,

we utilized equations (3) and (4), �nding

〈ek∂n〉 = (−1)nδnkn!, 〈∂nek〉 = δnkk! (A2)

We are now ready to consider the product (25):

:〈(EΛi
λi
)†E

Λ j
λ j
〉: =

1

2
〈(EΛi

λi
)†E

Λ j
λ j
〉
∣

∣

∣

∣

Λi6Λ j

+
1

2
〈(EΛi

λi
)†E

Λ j
λ j
〉
∣

∣

∣

∣

Λi>Λ j

.
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For the �rst term, one �nds

〈(EΛi
λi
)†E

Λ j

λ j
〉
∣

∣

∣

Λi6Λ j

= 1+

Λi
∑

k=1

Λ j
∑

n=1

(

(−λ j)
n

(λ∗
i )
k

〈ek∂n〉
n!

+
(λ∗

i )
k

λnj

〈∂ken〉
k!

)

(A3)

= 1+

Λi
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

. (A4)

In the last line we utilized the fact that, according to equation (A2), the only non-zero contri-

bution to the sum comes from expectation values involving equal number of e-operators e and

∂. In what follows, k = n. This also means that for Λi 6 Λj the summation
∑Λ j

n=1 (· · ·) can be
terminated at Λj = Λi. A similar analysis shows that

〈(EΛi
λi
)†E

Λ j

λ j
〉
∣

∣

∣

Λi>Λ j

= 1+

Λ j
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

. (A5)

Substituting expectation values (A4) and (A5) into (A3) gives

:〈(EΛi
λi
)†E

Λ j

λ j
〉: = 1+

1

2

Λi
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

+
1

2

Λ j
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

=
1

2
〈(EΛi

λi
)†EΛi

λ j
〉+ 1

2
〈(EΛ j

λi
)†E

Λ j

λ j
〉. (A6)

Taking into account equation (A6), the product (26) reads

:〈e(Λi)
λi

|e(Λ j)

λ j
〉: = 1+

1

2
lim
Ni→∞

Λi(Ni)
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

+
1

2
lim
N j→∞

Λ j(N j)
∑

n=1

((

λ j

λ∗
i

)n

+

(

λ∗
i

λ j

)n)

. (A7)

In particular, for the vectors (22), one has6 λi = λj = i, Λi = 2Ni, Λj = 2Nj − 1, and

〈e(Λ1)
i |e(Λ2)

i 〉 = 1+
1

2
lim
N→∞

2N
∑

n=1

2(−1)n +
1

2
lim
N→∞

2N−1
∑

n=1

2(−1)n

= 1+ lim
N→∞

[

1

2

(

−1+ (−1)2N
)

+
1

2

(

−1+ (−1)2N−1
)

]

= 0.

(A8)

6Do not confuse the imaginary number i with indexes of Ni, Λi.
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Appendix B. General complex eigenvalues

Below we discuss normalization of eigenvectors of e operator corresponding to general com-

plex eigenvalues λ = reiϕ, where r > 0 and ϕ ∈ (0, π) ∪ (π, 2π). Here we excluded two pos-

sibilities, ϕ = 0 and ϕ = π, since both they correspond to real eigenvalues discussed in

section 2.2 (they require a different procedure). De�ne

|e(Λ)
λ 〉 := lim

N→∞
EΛ(N)
λ |φ〉. (B1)

Let Lλ[Λ] := 〈(EΛ
λ )

†EΛ
λ 〉. In the limit N→∞ this is norm of the vector (B1). For λ = reiϕ, one

�nds

Lλ[Λ] = 1+ 2

Λ
∑

n=1

cos(2nϕ) = 1+ 2 sin−1(ϕ) sin(Λϕ) cos ((Λ+ 1)ϕ) . (B2)

Clearly, the latter is ill-de�ned in the limit Λ→∞. The idea is to replace the cut-off Λ by a

map Λ(N) such that the product (B2) will be well de�ned in the limit N→∞. More precisely,

we promote the cut-off Λ to a one-to-one function

Λ 7→ Λ(N). (B3)

We expect that its form should be speci�ed by the regularization procedure. We now discuss

general conditions guarantying this to be the case. First, we require that at least from some

�xed point N0 ≫ 1, Λ(N) is increasing function of N. Otherwise, the replacement (B3) would

make no sense. Second, since we are interested in the limit N→∞, looking for a candidate for

Λ(N) it is suf�cient to consider an asymptotic form valid forN≫ 1. One can take the following

ansatz

Λ(N) =
Nmax
∑

k=0

akN
k, (B4)

where Nmax stands for a cut-off, while ak are real coef�cients chosen so that the function (B4)

is increasing. Notice that the original form (B2) is a C∞ function and, in particular,

∣

∣

∣

∣

lim
Λ→∞

dk

dΛk Lλ[Λ]

∣

∣

∣

∣

< ∞ (B5)

for k ∈ N. In what follows, if the regularized function Lλ[Λ(N)] has a well-de�ned limit, we

require it goes smoothly in the limit, i.e.

∣

∣

∣

∣

lim
N→∞

dk

dNk
Lλ[Λ(N)]

∣

∣

∣

∣

< ∞. (B6)

Recalling the form (B2) of the norm, one concludes that the only way of how equation (B6) can

be satis�ed is restricting to a class of linear functionsΛ(N) = qN+ l, where q > 0. Otherwise,

the derivatives will become divergent as N→∞. Coef�cients a, b can be �xed requiring the

function Lλ(N) has a well-de�ned limit N→∞. It turns out, this will be the case for

ϕ =
p

q
π, p, q ∈ N, (B7)

Λq,l(N) = qN + l. (B8)
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We now look closer the conditions (B7) and (B8). Before doing so, however, we have to

make some comments. The �rst observation is that in equation (B7) we should additionally

assume that p 6= 0 and p/q 6= 1/2. This is to eliminate the possibility λ ∈ R, making the

right-hand side of equation (B2) divergent.Without loosing of generality, one can also assume

that

p< 2q, (B9)

as a consequence of the fact that ϕ < 2π (for complex numbers reiϕ one has ϕ ∈ [0, 2π)). In
equation (B8) l stands for additional regularization parameter chosen so that

l = 0, . . . , q− 1. (B10)

We accept this temporarily without explanation; this will be clear in a moment. Note that for a

given pair (p, q) we have maximally q− 1 cut-offsΛq,l(N). The sense of introducing the forms

(B7) and (B8) consists in the fact the norm (B2) behaves well in the limit N→∞ due to the

following periodicity:

Lλ[Λq,l(N)] = 1+ 2 sin−1

(

p

q
π

)

sin

(

l
p

q
π + Npπ

)

cos

(

(l+ 1)
p

q
π + Npπ

)

= 1+ 2 sin−1

(

p

q
π

)

sin

(

l p

q
π

)

cos

(

(l+ 1)
p

q
π

)

. (B11)

By choosing the angle ϕ to be rational number pπ/q and taking the cut-off Λq,k(N) = qN+ l
we simply guaranty Lλ[Λq,l(N)] does not depend onN and, in consequence, behaves well in the

limitN→∞. It is now clearwhat is the origin of the constraint (B10): anyΛq,l corresponding to

l > q is equivalent toΛq,l corresponding to l 6 q− 1. For instance, according to equation (B10)

for q = 3, one gets only three functions: Λ3,0 = 3N, Λ3,1 = 3N+ 1, Λ3,0 = 3N+ 2. Now,

suppose we ignore the upper bound, allowing more of them. For the fourth function one

gets the cut-off Λ3,4 = 3N+ 3 = 3(N+ 1) = 3Ñ, where Ñ :=N+ 1. However, this is trivially

equivalent to Λ3,0.

Having said that, we rewrite the initial form of eigenvectors (B1) as

|e(l)λ 〉 = lim
N→∞

E
Λq,l(N)

λ |φ〉, (B12)

where λ = reipπ/q. It is easily to check that the vectors (22) are the special case of (B12),

corresponding to r = 1, (p, q) = (1, 2) and l = 0, 1.

So far we restricted to normalization conditions and said nothing about the product of two

different vectors. Using the rule (26), one �nds

〈e(li)λi
|e(l j)λ j

〉 = 1+ sin−1

(

ϕi + ϕ j

2

)

lim
Ni→∞

sin

(

ϕi + ϕ j

2
Λi(Ni)

)

× cos

(

ϕi + ϕ j

2
(Λi(Ni)+ 1)

)

+ sin−1

(

ϕi + ϕ j

2

)

× lim
N j→∞

sin

(

ϕi + ϕ j

2
Λ j(N j)

)

cos

(

ϕi + ϕ j

2
(Λ j(N j)+ 1)

)

,

(B13)

27



J. Phys. A: Math. Theor. 53 (2020) 185401 Grzegorz Plewa

where ϕi,j = pi,jπ/qi,j, Λi,j = qi,jNi,j + li,j. The product (B13) was obtained under the

assumption that ri = rj (hereλi = rieipiπ/qi). If ri 6= rj then |〈e(li)λi
|e(l j)λ j

〉| = ∞. This can be easily

read off from the original form of the product (15). In what follows, eigenvectors labeled by

eigenvalues of different r cannot belong to the same (extended) Hilbert space because their

product diverges. As we shall see in a moment, there are even stronger constrains on the

eigenvalues.

Before we go any further, it is worth mentioning that eigenvectors from different eigen-

values λi, λj are orthogonal unless the eigenvalues are mutually conjugated, i.e. λi = λ∗
j .

Indeed,

〈eλ j |e|eλi〉 = λi〈eλ j |eλi〉, (B14)

〈eλ j |e|eλi〉 = (〈eλi |e†|eλ j〉)∗ = λ∗
j〈eλ j|eλi〉. (B15)

Combining equations (B14) and (B15), one concludes that either λi = λ∗
j or 〈eλ j |eλi〉 = 0.

This is a direct analogue of the fact that for a Hermitian operator eigenvectors from differ-

ent eigenvalues are orthogonal. Here we should keep in mind that allowing general complex

eigenvectors we do not expect that e is Hermitian in the corresponding space. Still, there is a

mentioned consistency constraint.

Looking closer at the product (B13) one concludes that i) the product is, in general, not

well-de�ned in the limit Nm →∞, ii) vectors corresponding to two different eigenvalues

λi 6= λ∗
j are not orthogonal even if the product is well-de�ned. The former can be circum-

vented modifying equation (B7) by making pm two times bigger, however, the latter would

be still problematic. The same holds for eigenvectors corresponding to λi = λ∗
j : the product

is ill-de�ned. For instance, for λi = reiϕ (r > 0) and λj = e−iϕ the product diverges. Hence,

the only way to construct the space of complex normalized eigenvectors is restricting to a

�xed eigenvalue. This leads to a superselection rule, forbidding superpositions of states cor-

responding to different complex eigenvalues. Note that this rule is stronger than the corre-

sponding rule for the restricted Hilbert space (20). In the latter case we allowed superposi-

tions of states corresponding to the same absolute value |λ|. Now we require the eigenvalues

must be equal. In consequence, all the superselection sectors are built out of degenerated

states.

Letting in (B13) λi = λj = λ, one �nds

〈e(li)λ |e(l j)λ 〉 = sin−1

(

pπ

q

)

cos

(

(li − l j)pπ

q

)

sin

(

(1+ li + l j)pπ

q

)

. (B16)

Now the product (B16) is well-de�ned and, in particular, does not depend on Ni (which even-
tually goes to in�nity). Notice that eigenvectors from a �xed eigenvalue λ1 do not belong to

the superselection sector corresponding to the eigenvalue λ2, etc. The last is in parallel anal-

ogy to construction of regularized eigenvectors corresponding to real eigenvalues. The main

difference is that each space corresponds to a single eigenvalue.

Constructing the spaces of regularized eigenvectors we need to �x the eigenvalue

λ = reipπ/q �rst, and then �nd the corresponding eigenvectors. Since they are degen-

erated, any linear combination corresponding to the same eigenvalue λ = reipπ/q is

also a well-de�ned eigenvector (with the same eigenvalue). The number of posi-

tive, negative and zero norm eigenvectors is given by the signature of the quadratic

form:

Qkn = 〈e(lk)λ |e(ln)λ 〉. (B17)
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It turns out, the form above has a signature {−1, 1,~0q−2}, where~0q−2 stands for a q− 2 dimen-

sional vector composed of zeros, ~0q−2 = {0(1), . . . , 0(q−2)}. If q 6 2, then there is no zero

eigenvectors. For instance, for λ = eiπ/4, one identi�es p = 1, q = 4. Recalling equation (B8)

and (B10), one �nds the following cut-offs

Λ4,0 = 4N, Λ4,1 = 4N + 1, Λ4,2 = 4N + 2, Λ4,3 = 4N + 3. (B18)

The corresponding regularized eigenvectors are given by equation (B12). This leads to

(Qkn) =









1 1 0 0

1 1 0 0

0 0 −1 −1

0 0 −1 −1









. (B19)

The matrix (B19) has the following eigenvalues {−2, 2, 0, 0}. Therefore, linear combinations

of degenerated eigenvectors |e(l=0,...,3)
λ 〉, where λ = eiπ/4 result in one positive, one negative

and two zero norm vectors (the signature is (−1, 1, 0, 0)). In general, depending on the value

of complex λ, the number of zero norm eigenvectors could be bigger or smaller, however, we

get always two normalizable eigenvectors.

Because different spaces of regularized eigenvectors differs only by the number of

zero norm vectors, they are all equivalent (in the sense that zero norm eigenvec-

tors do not contribute to the scalar product). Again, this is in parallel analogy to the

case of real eigenvalues. As we recall, in this case the spaces are labeled by posi-

tive parameter λ0 > 0, determining the pair of opposite eigenvalues ±λ0. In the com-

plex case the states are degenerated and both positive and negative norm eigenvectors are

present.
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