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Abstract

This article presents a finite dimensional unbreakable P7 -symmetric waveg-
uide system with linear and nonlinear coupling. In traditional P7 -symmetric
systems, a balance (or a symmetric state) among the waveguides with loss and
gain can be achieved only when the coupling among the waveguides is suffi-
ciently strong. But the coupled waveguide system that we report here obtains
the balance (or symmetry preservation) as soon as the couplings are estab-
lished and this symmetric nature is undisturbed even for arbitrarily large values
of loss—gain strength. We here show that the P77 -symmetry in the system is
unbreakable in the presence of linear and nonlinear coupling. Interestingly, in
the absence of linear coupling, the system shows contrast behavior where PT -
symmetry is spontaneously broken for all parametric values. As the considered
system is integrable, we illustrate the symmetry unbroken and broken nature of
the system using their integrals of motion. Importantly, we illustrate the possi-
bility to have high power oscillations by weakening the couplings among the
waveguides.

Keywords: unbreakble PT-symmetry, integrability, power amplifiers

(Some figures may appear in colour only in the online journal)

1. Introduction

Hybridizing many features of conservative and dissipative systems, the class of P77 -symmetric
systems stand unique and open up new prospects for better control over physical processes
[1-4]. For instance, in optical systems, the non-reciprocal nature of P7 -symmetric sys-
tems enable active light control which gives hope for the development of all-optical devices
on a micro-scale optical chip [5-7]. The robustness of P7T -symmetric systems in cavity
mode selection evidences its advantage in single mode microlasers [8, 9] and consequently
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in the development of next-generation optoelectronic devices for optical communications.
Similarly, the applications of P77 -symmetric systems are not limited to optics, interesting phe-
nomena have been observed in other fields including acoustics [10, 11], plasmonics [12, 13],
quantum optics of atomic gases [14, 15], Bose—Einstein condensates in optical lattices [16]
and electronic circuits [17].

A typical phenomenon observed in these P7T -systems is that spontaneous breaking of P7T -
symmetry which leads to two different phases, namely, unbroken and broken P77 -phases. In
the unbroken P7 -phase, these systems often behave similar to that of conservative systems and
support stationary solutions. Non-conservative features can be seen in the broken P77 -phase
which appears for higher gain—loss strength. From the application point of view, both phases
are interesting [1, 18—20] and various experimental investigations have been carried to capture
the symmetry breaking phenomena and to study the characteristics of the system in the two
phases [21-24]. Eventhough the spontaneous symmetry breaking is observed in many of the
‘PT-symmetric systems, there are few special cases in which the symmetry is unbreakable and
the system remains in unbroken 7 -phase for arbitrarily large values of gain—loss strength
[25-27].

Such unbreakable PT -symmetric systems are reported mainly in the case of infinite dimen-
sional systems where the unbroken P7 -phase features a special class of self-trapped solu-
tions. Because the self-organized solutions supported by traditional dissipative systems are
of attractor type [28, 29] but the ones supported by P7T -symmetric systems form a continu-
ous family of solutions as observed in the conservative systems [30, 31]. In [32], the authors
have introduced the 2D network of P77 -symmetric dimers with cubic nonlinearity. Due to its
unbreakable PT-symmetric nature, the system supports stable symmetric fundamental soli-
tons at lowest power and anti-symmetric fundamental soliton and vortices at high powers
were observed. As symmetry breaking limits the parametric regions of stable P77 -symmetric
solitons, the explorations of unbreakable P7T -symmetric systems have got interest [25-27].
Considering finite dimensional systems, unbroken P7 -phase features power oscillations [18,
33, 34] which can be used in applications like two-way switches [35]. As far as we know, the
finite dimensional example of unbreakable P77 -symmetry is given only by I V Barashenkov
and M Gianfreda in [36]. They have reported the unbreakable P77 symmetric nature in a par-
ticular case of Hamiltonian P77 symmetric dimer (where gain and loss strength alone serves
as a free parameter) and shown the existence of stable high amplitude oscillations at higher
gain-loss strength. More explorations of finite dimensional systems with intact P77 -symmetry
is required.

In the above context, we report a finite dimensional coupled waveguide system with intact
PT-symmetry and study the consequences of unbreakable P7T -nature in the system. The con-
sidered PT -system with loss and gain has linear and nonlinear couplings and the presence
of either of the couplings is sufficient for the system to be P7T -symmetric. In the absence of
linear coupling, the symmetry of the system is strictly broken whilst it is unbreakable for all
parametric values in the presence of linear coupling. The symmetry is intact even for finite
(but non-zero) values of linear and non-linear couplings and also for arbitrarily larger val-
ues of loss—gain strength. This seems to be interesting because in the absence of linear and
nonlinear coupling, the two waveguides, respectively, with gain and loss shows dissipative
dynamics where one of the waveguide shows abrupt growth and the other shows decay in
power [37]. Thus, the propagation of stationary and also symmetric modes is expected only
for sufficiently strong coupling (either linear or nonlinear coupling or both) among the waveg-
uides. This article shows that as a consequence of unbreakable P7T -nature, the considered
waveguide system supports stable symmetric modes even for weaker linear and nonlinear cou-
plings and also the observed symmetric modes in such parametric regime are of high power.
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Thus, due to the intact P77 -symmetric nature, we obtain high power oscillations through weak-
ening the coupling strengths and there is no need to have high loss and gain. We hope that
exploration of this type of systems can lower the switching power if the observed power oscil-
lations were utilized for switching applications (as low input power is sufficient to obtain the
high power oscillation) [35]. On the other hand, they may also be used for optical amplification
[38,39].

In this article, we explain the above mentioned characteristics of the system with the use of
their integrable nature. In section 2, we first present the considered model. The complete asym-
metric nature of the P77 -symmetric system in the absence of linear coupling is elucidated in
section 3. As the latter case is exactly solvable, the existence of symmetry broken solutions
are elucidated via exact solutions and this case also presents an interesting dynamical aspect
where the existence of isochronous oscillations are shown. Now introducing the linear coupling
section 4, the sudden disappearance of asymmetric modes and the stabilization of symmetric
mode is shown through the linear stability analysis of nonlinear modes. To deepen our under-
standing of the latter case, we present the integrable nature of the system in section 5. As the
linear stability analysis is a local analysis, it provides only qualitative information about the
system, the integrals of motion presented in the latter section enables us to figure out (i) the
initial conditions that can lead to power oscillations and the ones lead to blow-up responses
and (ii) the maxima and minima of the power oscillations. With these as tools, we presented
the dynamics of the waveguide coupler for weaker and stronger coupling strengths in section 6
and discussed the consequence of the unbreakable P77 -symmetric nature. Finally, the obtained
results have been summarized in the section 7.

2. Model

Consider a coupled waveguide problem in which the propagation of light in the waveguides is
described by the following coupled mode equations

iddiil = woy — iver +ia(|¢1]* + |d2 )1 + koo,
W
i = wWoa + iydy —ia(|da|* + |o1[P)br + k. "

In the above, ¢ and ¢, are the complex amplitudes of electromagnetic field that describe
the propagation of light in the two waveguides with respect to the propagation direction z.
The parameter w represents the propagation constant, v is the linear loss—gain strength, & is
the evanescent field coupling and « represents the strength of nonlinearity. Here, we can also
observe a nonlinearity involving total power in the third term of equation (1). In this nonlinear
term, the first part of the term represents a nonlinear loss—gain nature and the second part of the
term represents a nonlinear coupling among the waveguides which may be achieved through
stimulated Raman scattering as discussed in [40—42].

It is interesting to note that the above system is integrable and is also exactly solvable in
the case of k = 0. Below, we elucidate the integrable nature and show the interesting dynamics
observed in the k = 0 and k # O cases.

3. Asymmetric modes in the absence of linear coupling

In this section, we study the field dynamics of the coupler (1) in the absence of linear coupling
and present the existence of an interesting asymmetric mode. In general, one may not achieve
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waveguide coupler without linear coupling but very recently, the researchers have also shown
the possibility to have complete nonlinear coupling (without linear coupling) among resonators
[43]. Thus we hope that this system with purely nonlinear coupling may also be achieved
with proper experimental set-up and this section presents some interesting dynamical aspects
of a PT-symmetric system (note the system is P77 -symmetric even in the absence of linear
coupling).

To understand the field propagation in this case, we utilize the exactly solvable nature of the
system. The details of solving the considered case and the integrals of motion associated with
the case has been given in appendix A. From the latter, the general solution of the system can
be written as

Cefiwzfi(f

¢1 — /Plefin*He, and ¢2 e W’

@)

where,

vV Ael|CP (ez C C3> 3)

P=_
! 2a + 2a e—Z\/ﬂ/Z—4(12\C\ZZ _ C3

In the above, C = C, +iC,, C; and 6 are integral constants. Note that P, € R (so 72 —
40?|C|* = 0) and so the solution represents the system dynamics only when |C|? < %. For

the initial conditions corresponding to |C|2 > #, Py can be written as

JACE =2 JAACE =
p=-L 4 €l 7tan( ‘a‘ 7(z+C3)>. (4)

T 2 2

From the above solutions (3) and (4), we observe that the latter solution corresponding to
|C* > % represents blow-up response (due to the presence of tan function) and so the power
in the waveguides tend to infinity as z — co. But the former one given in (3) represents a stable
solution and the power in the two waveguides at the asymptotic limit (P} and P5') can be written
as

~y /77— 4a2|C|?
Ph=lghp = oL - VA,

2c 2c
v VA CP
PA:|¢12\|2:£+ 2@ 4

Pty = ([ PRye et (5)

The above expression represent that in the asymptotic limit ¢; and ¢, exhibit a periodic oscilla-
tions with frequency w (same as the frequency of the linear oscillation). Note that the frequency
of these oscillations does not depend on the initial conditions or the amplitude of oscillation
which denotes the isochronous nature of the oscillations. We have presented the dynamics cor-
responding to solution (2) in figures 1(a) and 1(b) where one can observe periodic oscillations
after a short transient.

A closer look at equation (5) indicates that P4* and P4 vary with respect to initial conditions
but the total asymptotic power does not depend on initial condition, that is,

prapr=T, 6)
(07
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Figure 1. For v = 1.0, a = 0.5 and k = 0, the above figures (a) and (b) respectively
represent the dynamics of the complex amplitudes ¢, and ¢, and the intensity at the two
waveguides |¢;|> and |¢,|2. In figure (a), the thin pink and green lines represents the
transient dynamics before the system settles into the orbit.

The above expressions (5) and (6) indicate that P} and P} respectively can take the values
only in the range ;- > P{* > 2 and 0 > P2 > ;. (and so P{* > P3). Thus, the amplitudes of
oscillations P4 and P> are restricted even though they are continuous. In addition, P* # P%
represents the asymmetric nature of the modes. But, for the initial conditions corresponding to

2 . ,
|C* = . the modes become symmetric where P{* = Py = 7.

4. No more asymmetry in the presence of linear coupling

Now, we focus on the dynamics of the system for k non-zero case. As similar to the previous
one, this case is also found to be integrable but not exactly solvable. It is non-trivial to express
their exact solution explicitly and so we first study the dynamical characteristics by examining
the stationary modes corresponding to the system and by studying their stability. We present
the details of their integrable nature and the understandings derived out from it in the next
section.

Considering the stationary modes of the system, firstly the linear modes corresponding to
the systems are stable for k > ~. To find the nonlinear modes corresponding to the system,
we consider

¢1 = Rie W0 gy — Rye W02 (7)
and substituting the above in equation (1) leads to

Ry +i61R; = —R| 4+ a(R? + R2)R, — ikRye {1702

Ry +16,Ry = YRy — a(R? + RH)R, — ikR e~ (8)
Decomposing the real and imaginary parts of the above equation, we obtain
Ry = —yR, + (R} + R3)R, — kR sin(f; — 6,),
Ry = YRy — (R} + R3)R, + kR, sin(f; — 6,),
0,R, = —kR, cos(; — 0,), and 6,R, = —kR; cos(f, — 605). 9)
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2 p2
(Rzél R]ZZ) cos(f; — 6,). Defining the phase

difference § = 0 — 0,, we can write the equations of amplitude and phase as

From the latter set of equations, we find (91 — 92) =k

Ry = —YR; + (R} + R5)R, — kR, sin 6,
Ry = ¥R, — a(R} + R3)R, + kR, sin 6,

(R} — R)
RiR>

§=k os 0. (10)
Before we look at the modes corresponding to the k nonzero case, we check the modes
corresponding to k = 0 case and is of the form

R+ Ry = g, 0™ = constant. (11)

It is very obvious that it is same as the one given in equation (6).
Now with the introduction of k, the nonlinear modes corresponding to the system are of the
form,

2R —

R} =R;=R", sind" = . , (12)
where, R* can take any positive real values but the fact, |sind| < 1, restricts the value of R*.

Due to this reason, R* can take the values between

"k [~ +k
y=r <R < yrk while k < 7,
2 2
3
ogR*gy/% while k > 7. (13)

We can also note that, R} = R; denotes that they are symmetric and stabilization of such
modes give rise to the symmetry unbroken phase. Note that the existence of asymmetric mode
ceases while k is non-zero. Thus to find the stable or unstable nature of this mode, we did linear
stability analysis and the results indicate that the eigenvalues corresponding to these symmetric
modes are

A =0, ﬁ:2\/72 — k2 — 67aR: + 8RS (14)

The eigenvalues indicate that whenever the term inside the squareroot is negative, that is,

r/~2+8K2 .
whenA_ < R* < A; where Ay = Mg++8k, the symmetric mode can become neutrally
stable. Combining the above criteria with the allowed values of R* given in equation (13), we

find that the symmetric mode is neutrally stable for all non-zero values of parameters (including
k) with R* lying in the range \/% <R <Ay whilek <yand0 < R* < 4/ % while k > ~.
This denotes PT —symmetry of the system is unbreakable. This has also been illustrated in
figure 2.

This stable nature of the symmetric mode for both lower and higher values of coupling
strengths k and « is notable as the possibility to obtain balance of power between the loss and
gain sites at very weaker coupling is surprising. Thus it is important to observe the dynamics
of the systems with respect to different coupling strengths in particular for the lower coupling
regime. As the linear stability analysis is a local analysis, its results picture the nature of the

6



J. Phys. A: Math. Theor. 53 (2020) 195701 J R Parkavi and V K Chandrasekar

0] 1 2 3 4
k

Figure 2. The shaded region in the figure presents the values of R* for which the
symmetric mode exists with pure imaginary eigenvalues. Here, the curves G| and G,

respectively represent the curves R* = "”2;1‘ and R* = 4/ "”;gk . The curves G3 and G4
represent R* = A_and R* = A ...

system for initial conditions near to the stationary mode given in equation (12). To have a
wide view and to have complete picture with respect to initial conditions, we here utilize the
integrable nature of the system and illustrate the consequence of unbreakable P77 — symmetry.

5. Integrable nature

The integrable nature of the considered system can be understood clearly when we look upon
the dynamics in terms of the Stokes variables [44, 45], namely,

p=lo1? + 1ol so=|d1* — |’ 51 = d1dh + b,
5y = i(¢1; — d{dy)  with p? = 55 + 5T + 3. (15)

In terms of these new real variables, the dynamical equation of the system can be written as

p=—2(y—ap)so, so=—2(y—ap)p+ 2ks,,
S.l = O, S'z = —2kS(). (16)

The above equation has two integrals of motion and an obvious integral of motion is

s1 = I} = constant. (17)
The other one can be written as (see appendix B for details)

(v — ap)et®2 = I, = constant. (18)

The presence of two integrals of motion /; and I, associated with the system given in
equation (16) ensures the integrable nature of the system. From the above integrals given in
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equations (17) and (18) and from the relation that exists between the variables (equation (15)),
one can obtain the below form of equation,

2
poi-(on(5) ]

which is similar to the classical Hamiltonian corresponding to a particle in a potential well
V(p). In more clear words, we can view the above expression in the form,

P =40y — apy’

-2
% +V(p) =0, (20)

2
1%+<k1n<7_0‘p>> —pzl. 1)
(0% 12

Eventhough it is non-trivial to write the explicit solution of equation (19), the above poten-
tial picture enable us to understand the dynamics of the system from the turning points p;
(corresponding to V(p,) = 0) and fixed points p* (corresponding to V'(p*) = 0) of the poten-
tial mentioned in equation (21). For the simple form of initial conditions such as ¢;(0) = 0
or ¢,(0) = 0 corresponding to /; = 0, the turning points of this logarithmic potential can be
written simply as,

where,

V(p) = 2(y — ap)?

v

TP, : p = o (22)
I *%
v+ kW ( 2 )
TP, : p = o , (23)
I e%
v kW <2T>
TP;: p = — (24)

W(X) in equations (23) and (24) represents product log function or Lambert-W function and this
W function yields real quantity only when x > ‘71 For other initial conditions corresponding to
I, # 0, the expression of TP, remains same but the explicit expressions of TP, and TP; are non-
trivial to present here. The minima corresponding to the potential can also be obtained from
V'(px) = 0. One obvious potential minima is p* = 2 which is nothing but 7 and the other one

2
corresponds to (y — ap) ((A,li'fw) In (7’;2‘”’ + p)) +a (Ilz + <§ In (7;—2‘”’)) - p2> =0.

6. Dynamics in the system of unbreakable P7-symmetry

6.1. Dynamics at lower k: existence of symmetric oscillations

With these, we now improve our understanding on the dynamics of the systems using the
numerical schemes and by using the above potential picture. To start with, we consider the
case of focus, that is, the case of smaller k and fix v and « respectively as 1.0 and 0.5. In
view of the illustration purpose, we consider the simple form of initial condition ¢;(0) # 0
and ¢,(0) =0 (and so I} = 0 and I, = v — ap(0)). The numerical solution corresponding to

8
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Figure 3. Figures (a)—(e) demonstrates the dynamics of the system fory = 1.0, = 0.5
and k = 0.1. Figures (a) and (b) are respectively the plots of |¢;|, i = 1,2 and total
power (p) with respect to z for the initial condition ¢;(0) = 1.0 and ¢,(0) = 0.0. The
corresponding potential V(p) curve given in equation (21) is plotted in figure (c) where
the thick red curve denotes the dynamics of the system between the turning points TP,
and TPs. The sub-plot in figure (c) is used to clearly distinguish TP; and TP,. Figure
(d) pictures out the values of turning points for different initial conditions and here the
initial condition (¢;(0) = u;(0) + iv;(0), j = 1,2) is varied in such a way that u;(0) is
alone varied and we have kept u2(0) = v, 2(0) = 0 for simplicity. The potential curve has
been plotted in figure (e) in the region where TP; ceases to exist, that is, for #;(0) = 2.5.

such a case (k = 0.1) is given in figure 3(a) where one can surprisingly find the existence of
symmetric power oscillations for this lower value of k. As mentioned above, the dynamics can
also be understood well from the potential picture [42, 45, 46]. To illustrate the above, we
have plotted figures 3(b) and (c) respectively elucidating the dynamics of total power and the
potential picture illustrating the latter dynamics. Considering figure 3(c), the thin black curve
represents the structure of the logarithmic potential given in equation (21) for the considered
parametric values and initial conditions. One can observe that the potential V(P) exists between
p = 0and 2 and it becomes complex for p > 2. The dynamics of the system can also be inferred
from the structure of the potential and the turning and fixed points of the system, where the
total power of the system exhibits oscillations about the potential minima or fixed point located
at p* = 1.0. Note that eventhough p(0)(= 1.0) matches with p* (in this particular case), p(0)
does not match with p* and the turning points TP, and TP5 acts as extrema of their dynamics
(the inset in figure 3(c) clearly shows that the dynamics is between TP, and TP3; and not TP,
and TP3). This can also be confirmed from the numerical result given in figure 3(b). In this
figure, we note that the values of TP, and TP5 act as maxima and minima values of the power
oscillations.

Being confirmed the existence of symmetric oscillation for lower k value, we now turn
our attention toward the dynamics for different initial conditions. We vary the value of u;(0)

9
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Figure 4. Figures (a) and (b) figures out the turning points of V(p) for different values of
kwith v = 1.0 and o = 0.5. In figures (a) and (b), we respectively considered the initial
situations (a) ¢1(0) = 1.0 and ¢,(0) = 0.0 and (b) ¢;(0) = 1.5 and ¢»(0) = 0.0. Here,
the turning points TP;—TP3 have been notated with the same legends used in figure 3. In
figure (c), we have considered ¢(0) = 1.5 and ¢,(0) = 0.0 and shown how k changes
the structure of the potential V(p). Note that the potential corresponding to k = 0.5
and 0.95 indicates blow-up dynamics and the one corresponding to k = 1.0 indicate
oscillatory type dynamics.

(where u;(0) = Re[¢1(0)] and we let Im[¢;(0)] = 0) and plotted the values of the turning
points in figure 3(d). The turning points TP; and TP, are located in close proximity with each
other so that they are not clearly separated in figure 3(d). Considering TP3, it shows significant
changes with respect to the variation of u;(0) or equivalently p(0) and it reaches the value of
2at u%(O) = p(0) = "é = 2. Increasing u;(0) further, we find that at a critical value, namely,
u1(0) = u. or p(0) = p., TP; ceases to exist as it becomes complex and equation (24) indicates
that this critical value is

po= L Koo (25)

a o«

The annihilation of the turning point TP; has greater impact over the dynamics (as the
previous case (figures 3(a)—(c)) shows that the symmetric oscillations were observed between
TP, and TP3) where blow-up responses have been observed for those initial conditions. The
potential structure corresponding to such initial condition (u#;(0) = 1.5 > u.) is figured out in
3(e), where one can observe that the potential is complex upto p < 2 anditisreal forp > 2. TP,
and TP, are located closed with each other (near p = 2), the inset of figure 3(e) clearly shows
the location of the two turning points. It is obvious from figure 3(e) that a fictitious particle
placed at the point p(0) (marked by dark-green square) will slide down along the potential
leading to blow-up response.

Thus we can summarize here that eventhough the symmetric oscillations exists for lower
values of k, we can also observe blow-up responses for certain initial conditions. For the situ-
ations /; = 0, we can find that symmetric oscillations were observed for p < p. and blow-up
responses for p > p.. With these ideas, we now move onto the dynamics of the system for
higher values of k.

6.2. Dynamics for higher k: suppression of blow-up regimes

Now we increase the value of k and look upon the dynamics of the system. To elucidate the
impact of strengthening k, we here plot the turning points of the potential with respect to k
for two different initial conditions (i) ¢1(0) = 1.0 and ¢»(0) = 0.0 (the situation in which we
observed oscillatory dynamics in the case of figure 3) (ii) ¢;(0) = 1.5 and ¢»(0) = 0.0 (the
situation in which we observed blow-up response in the case of figure 3) in figures 4(a) and
(b). From figure 4(a), we observe that by the increase of k, TP, starts diverging from the value
of TP, and the values of TP; also show changes. Thus, strengthening of & alters the maxima and
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Figure 5. Figures (a) and (b): high power oscillation observed in the coupled waveg-
uide system respectively for o« = 0.1 and o = 0.01. Figure (c) elucidates the vari-
ation of turning points with respect to initial condition u,(0), where we considered
@1(0) = u1(0) + 01, ¢p»(0) = 0 and o = 0.1. In figure (d), for the same value of o, we
have drawn the variation of turning points with respect to k and elucidated the control of
blow-up response for ¢;(0) = 3.8 and ¢,(0) = 0.0. In all the figures, we have considered
v=1.0and k =0.1.

minima of the power oscillations. As maxima value (position of TP,) of the power oscillations
decreases with the increase of k, comparatively higher power light transport can be observed
for lower k.

Considering figure 4(b), we observe that the increase of k changes the blow-up dynamics
to power oscillations through the entry of TPs. This is because that increasing the value of k,
the critical value p,. also increases. Thus the suppression of blow-up regimes and emergence
of oscillatory dynamics happens because of the strengthening of . It is also important to note
here these oscillations observed for initial conditions p(0) > 7, TP; is found to be the maxima
of power oscillation and TP, acts as minima of the power oscillation. In the figure 4(c), we
have clearly figured out how the potential changes with respect to the value of k and how it
support oscillations for higher k.

6.3. Lowering both linear and nonlinear coupling strengths

Eventhough the previous section elucidates the possibility of the gain and loss sites to balance
themselves to produce sustained power oscillations for smaller values of k, still the nonlin-
ear coupling « is not weak. In such a case, the stronger nonlinear coupling may also help to
balance the gain and loss present in the coupled waveguide sites. Thus the obvious question
is here that what happens to the beam propagation pattern if both linear and nonlinear cou-
plings were considered to be weak. The results of the linear stability analysis indicates that
the symmetry is unbreakable (and symmetric power oscillations) for all values of « # 0 and
k # 0. Thus in figure 5(a), we look upon the dynamics of total intensity for v = 1.0, k = 0.1
and o = 0.1 and importantly we here observe a high power oscillations even for less intense
input power ¢;(0) = 1.0 and ¢,(0) = 0.0. By recalling the fact that for lower values of k,

1



J. Phys. A: Math. Theor. 53 (2020) 195701 J R Parkavi and V K Chandrasekar

the value of TP, is approximately close to % (or TP, is closer to TP;). The value of TP,
(maxima of the power oscillation) increases significantly with respect to the reduction of a.
For instance, the high intense light transport for v = 1.0 and a = 0.01 (where, 7 = 100) is
also demonstrated in figure 5(b). Thus it denotes that in the presence of weaker couplings, the
tendency of the non-conservative nature of the waveguide sites in growing the intensity of the
sites in combination with the symmetry unbreakable nature of the system allows to have sus-
tained high power oscillations. This makes obvious that the unbreakable P77 -symmetric nature
may open-up new possibilities for light amplification.

By varying the input powers, we have also presented the turning points of the system for
v =1.0,a =0.1 and k = 0.1 in figure 5(c). In this figure, as k is considered to be small, TP,
and TP, are closer to each other (at 1). The other important thing that can be noted here is that
the value of TP, does not change significantly with respect to u;(0), thus for any input powers
p(0) < pc, here we can obtain power oscillations with maxima to be at 10.

Considering an initial condition corresponding to blow-up response in figure 5(d) (that is,
u1(0) = 3.8), we have captured the values of the turning points for different values of k. As seen
earlier, the increase in k leads to the emergence of TP; and gives rise to power oscillations.

7. Summary

In this article, we have presented a P77 -symmetric coupled waveguide system with linear (k)
and nonlinear (o) coupling. In the absence of the linear coupling, the system does asymmetric
transport of light. By introducing linear coupling, we expected that the asymmetric state retain
its stability upto a critical value of k and stabilizes symmetric modes afterward. But, we have
observed that the stabilization of the symmetric mode occur as quickly as the linear coupling is
introduced and the asymmetric states also cease to exist with its presence. The symmetric state
is found to be stable for all values of k, v, a # 0, indicating the unbreakable P7T -symmetric
nature. Besides the balance between the linear and nonlinear loss—gain, the balance between
the nonlinear loss—gain and the nonlinear coupling present in the system equation (1) plays a
key role in such P77 preservation. Because, this type of intact P77 -symmetric nature cannot be
seen in the cases where the balance of the latter nonlinear terms are absent. We have studied
the consequence of this unbreakable P77 -symmetric nature. Our results show that the non-
conservative nature of the waveguide sites and the unbreakable nature of the P7 -symmetry
aids in the generation of high power oscillation for lower coupling strengths. We hope that
such generation of high powers with unbreakable P77 -symmetric systems may find fruitful
application in optical amplifiers and low power applications.

The considered system is integrable and this integrable nature helped to understand the
dynamics of the system in the initial condition space more clearly. We have shown that even-
though the symmetric power oscillations were observed for all values of parameters, the
blow-up responses also do exist for certain initial conditions. For a class of initial conditions
corresponding to /; = 0 (which is possible for either ¢;(0) = 0 or ¢,(0) = 0), we have figured
out the basin of attraction of symmetric mode (p(0) < p.) and the initial conditions that lead
to blow-up response (p(0) > p).
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Appendix A. Solvability of k = 0 case
To solve equation (1), we simplify it by considering

G =1e ™, gy = e (A.1)
Now the system in equation (1) (for k = 0) can be reduced to

i) = —ivn + a9 ? + [a

ithy = ints —ial|v2 + [P (A2)
From the above, it is obvious that d(“dl—z“z) = 0 so that

iy =C; C=C+iC, C,GeR (A.3)
is integral of motion of the system (A.2). The complex nature of this integral constant enables

one to reduce the order of the differential equation by two (with ¢, = %) and so one can now
simply consider ‘

iy , . 2, ICP
iy = —iyhy +ic <|¢1| + 7/)12> V1. (A4)

Now to solve the above equation, we consider
Py = VP, iy = /Pl (A5)

and decompose the equation (A.4) into equations of amplitude and phase as given below

Py = =29P + 2a(P} +|C]), 6 =0. (A.6)

The above equation (A.6) denotes the phase factor 6, is a constant of motion (#; = 6 = con-
stant) and the equation of corresponding to P; can also be solved easily and its solution is
presented in the main text (equations (3) and (4)).

Appendix B. Integral motion at k = 0

To derive equation (18), consider the first and fourth equations of equation (16) and so the
equation becomes

$ p

— = B.l

ko —ap (B.1)
Integrating on both sides of the equation, we get

\Y) -1

© = o WIn(y—oap) +n)] (B.2)

o)
Then by using logarithmic rules,
I
22 ( 2 ) (B.3)
k Y —ap
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Rearranging the terms one can obtain,

(v — ap)e ™ = I, = constant (B.4)

where I is the integrals of motion.
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