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Abstract

Using stochastic methods, general formulas for average kinetic and poten-
tial energies for anharmonic, undamped (frictionless), classical oscillators are
derived. It is demonstrated that for potentials of |x|”, (v > 0) type energies
are equipartitioned for the harmonic potential only. For potential wells weaker
than parabolic potential energy dominates, while for potentials stronger than
parabolic kinetic energy prevails. Due to energy conservation, the variances of
kinetic and potential energies are equal. In the limiting case of the infinite rect-
angular potential well (¥ — oo) the whole energy is stored in the form of the
kinetic energy and variances of energy distributions vanish.

Keywords: equipartition relations, virial theorem, anharmonic oscillators,
classical oscillators

(Some figures may appear in colour only in the online journal)

1. Introduction and motivation

Classical mechanics [1, 2] is a well developed and established theory. Newtonian, Lagrangian
and Hamiltonian methods can be effectively used to describe and solve various problems
[3,4]. Already examination of toy models can be very insightfull and beneficial. These models
provide us with valuable intuition which can be transferred to more complex setups or into very
different fields. Unfortunately, not all models can be solved exactly. Even for conceptually very

simple setups,

e.g., classical (purely) anharmonic oscillator, one has to rely on numerical [5]

or approximate methods [6] like perturbative methods [7, 8]. Various numerical methods have
been developed in the quantum [9-12] and classical setups [13] both for purely anharmonic
potentials [14] or for parabolic potential with an anharmonic addition [15—-18]. These methods
focus on construction of exact or approximate solutions, eigenvalues, energies of ground states
but they generally do not consider the problem of energy partition.
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Here, we study the problem of energy partitionning in undamped (frictionless), (purely)
anharmonic, classical oscillators. We solve the problem solely on the basis of the classical
mechanics without relaying on tools known from quantum mechanics or statistical physics
[19-22]. First, we recall the classical harmonic oscillator as the fully solvable case. Next,
we generalize the potential to the purely anharmonic oscillators. Despite the fact that studied
models typically are not traceable analytically, we provide exact formulas for the time aver-
aged energy partitions. We demonstrate a general framework which allows for calculation of
arbitrary moments of energy distributions. Therefore, our approach is more explicit than the
Virial theorem [2], which provides the formula for the ratio of average energies.

The applied methodology is conceptually similar to [23, 24] where energy distributions in
1D time dependent oscillators are calculated. The system studied here is time independent and
undamped (frictionless), consequently its energy is conserved, i.e., it is constant. Similarly,
like in [23, 24] we use uniform distribution of initial conditions on the constant energy curve
to calculate time averaged energies (instead of energy distributions). Uniform distribution of
initial conditions accompanied with the ergodic theory can be used to calculate energy partition
for any single-well potential of |x|” (v > 0) type.

2. Model and results

The harmonic oscillator [2]
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is a fundamental fully solvable model of classical mechanics, which is used as the approxi-
mation of many complex systems. Formula (1) describes the fully deterministic, conservative
system which undergoes periodic motion. The general solution of equation (1) is given by x(7)
= Asin(wt + J), where w = \/k/m is the frequency of the harmonic motion. Two constants
A (amplitude) and ¢ (phase shift) are determined by the initial conditions. The total instanta-
neous energy £ of the harmonic oscillator is partitioned between kinetic energy & = mv?*/2
and potential energy £, = rx*/2. Average energies satisfy (£) = £ = (&) + (£,). Using the
general solution of equation (1) and the fact that the period of the motion is T = 27 /w one can
calculate time averaged energies

1 (Tm 5 m 5, K,, £
- = — X = — A = —A = — 2
(&) T/o 5% (¢)dt 7Y ) > (2)
and
1 [Tk 5 Kk, €&
n = — —_ p— —A p— —,
(&) T/o 2x (1) dr ) > 3)

because £ = kA% /2. Consequently, for the harmonic oscillator, average kinetic and potential
energies are equipartitioned, i.e., they are equal to each other and to half of the total energy. The
equipartition of average kinetic and potential energies takes place for the harmonic oscillator
only.

For the general, anharmonic single-well potentials
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The Newton equation (1) reads

d’x(r) ,
m a2 =-V'(x). (®)]

Equation (5) describes a periodic motion with the period T given by

Iy~ v 1
T:E 27T_m|:ﬁ:| Fl(y)l , (6)
vV & Lr] T(3+7)
where I'(. . .) is the Euler gamma function, see references [1, 25]. Due to the absence of damp-
ing the system described by equation (5) is conservative. The total instantaneous energy & is
constant and equal to £ = %mv2 + V(x). It’s exact value is determined by the initial condi-
tions, i.e., v(0) and x(0). The motion in phase space is restricted to the closed constant energy
curve. The energy conservation can be used not only to calculate 7, see equation (6), but also to
calculate the implicit dependence #(x), which typically cannot be inverted [6]. Consequently,
in order to calculate the energy partition, it is not possible to use the methodology applied
in equation (2) and (3). Here, using the probabilistic approach [26], we calculate the energy
partition for any V(x) o |x|” (v > 0) potential.

From a single trajectory, after long measurement time, it is possible to estimate the prob-
ability p(x) of observing the particle in the neighborhood of x. Applying the correspondence
principle [20, 27, 28], this probability is proportional to the time spent in the vicinity of x

de 2 dr 2dx  2dx

pOdx =7 = p v =y ™
!

where T is the period of the motion given by equation (6). In the denominator of equation (7)
there is % because the motion between two most distanced (turning) points (£x.,) lasts half
of the period, i.e., 7. During the full period 7 every point x is visited twice, except x = +xp,,
with corresponding velocities v(x) and —wv(x). Therefore, in order to calculate p(x) one needs to
study the appropriate part of the full motion only. From the energy conservation principle one

can calculate the velocity v = /2 [£ — £|x|"], where £ = Zv* + £[x|” is the total energy.

The probability density p(x) then reads:
1

2
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The probability density p(x) has maxima at points where the particle spends most time, see
equation (7), i.e., at points where the velocity is minimal [26]. These points correspond to
reversal points, i.e., to the points where the velocity smoothly changes its sign. These points
are placed in the maximal distance +x,, from the origin, see equation (8).

The complementary p(v) density can be obtained from p(x) by the transformation of
variables

®)
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Using again the energy conservation one gets
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and
d 1 vl
X m|v v
= &= m? . 11
dv K [/{ ( 2" )} ! an
Finally, combining equations (9) and (11) with the energy conservation principle, one obtains
2 1 v
m|v K
= |Z(e-= : 12
p(v) Tr L (5 2m1} )} (12)

Maxima of the p(v) density are located at points where the acceleration is minimal, i.e., the
velocity is maximal (v > 1) or minimal (v < 1) [26].

Formulas for p(x) and p(v) densities, see equations (8) and (12), can be used to derive main
results of the current research, i.e., time averaged energies given by equations (13) and (14)
along with appropriate variances, see equations (16) and (17), and formulas for moments of
the arbitrary order which are given by formulas (18) and (19).

It can be verified that densities (8) and (12) are normalized on [—xy,, x| and [—vpm, Uy ]
intervals respectively, where the maximal allowed velocity vy, and the maximal possible dis-
placement x,, satisfy the conditions £ = %vfn and £ = Z|xy|". Importantly, equations (8) and
(12) can be used to calculated the average kinetic and potential energies for any single-well
potential V(x) o< |x|”

I AN S
(&) = /ﬂm p(v) > dv = 5 1/5 (13)
and
(Ep) /xm ( )E| |”dx = 2 & (14)
) = ﬂmpx =l de = S——¢.

Due to energy conservation, instantaneous energy £ is equal to the average energy (&) =
(&) + (&p)- The ratio of average kinetic and potential energies is equal to

&) v

_r 15
) 2 ()

which agrees with result of the Virial theorem [2]. Formula (15) demonstrates that energy
equipartition is recorded for v = 2 only. For 0 < v < 2 the larger fraction of average energy
is stored as the potential energy, while for v > 2 kinetic energy dominates, see figure 1. Fur-
thermore, in the limit of ¥ — oo the potential V(x), see equation (4), reduces to the infinite
rectangular potential well. In such a limit the whole energy is accumulated as the kinetic energy
only. Figure 1 shows energy partitions as a function of the exponent v characterizing the steep-
ness of the potential V(x), see equation (4). Solid lines given by equations (13) and (14) are
nicely followed by results of numerical simulations (points) corresponding to the uniform dis-
tribution of initial conditions on the constant energy curve. More precisely, starting from the
uniform distribution of initial conditions on the constant energy curve multiple realizations
were simulated with the velocity Verlet algorithm [5]. From the generated set of trajectories
we calculate (£(f)) and (E,(r)) as ensemble averages. Alternatively, using the numerical solu-
tion of equations (5) and (6), one can perform integration of equations (2) and (3) for any
value of v. Both approaches: ensemble averaging (see figure 1) and numerical integration of
equation (5) (results not shown) give the same results. For simplicity, it has been assumed that
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Figure 1. Rescaled average kinetic (&) /€ (squares) and potential (£,) /€ (circles) ener-
gies as a function of the exponent v characterizing the steepness of the potential V(x),
see equation (4). Solid lines depict the theoretical curves given by equations (13) and
(14) while points correspond to the results of computer simulations.
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Figure 2. Variance of the kinetic 0*(&) (squares) and potential 0(€,,)? (circles) ener-
gies divided by £2 as a function of the exponent v characterizing the steepness of the
potential V(x), see equation (4). The solid line depicts the theoretical value given by
equations (16) and (17) while superimposed points (squares and circles) correspond to
the results of computer simulations.

constant energy curve corresponds to the following initial condition x(0) = 0 and v(0) = v/2,
i.e., form = 1 we have £ = 1.
Analogously to equations (13) and (14), one can calculate variances 0>(&;) and 0(€ »)

ey = —— g (16)
TR T 2 022+ )
and
2y A o
TE =G arnt (an

which are equal. The equality of variances of kinetic and potential energies emerges as a
consequence of the energy conservation. Figure 2 shows variances of kinetic and potential
energies for 1 < v < 20. Solid line given by equations (16) and (17) is nicely corroborated
by results of numerical simulations corresponding to the uniform distribution of initial con-
ditions on the constant energy curve. Due to equality of variances of kinetic and potential
energies numerically estimated variances are the same, therefore points (squares and circles)
are superimposed.
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Figure 3. Cumulants of the kinetic x,(&x) (solid lines) and potential x,,(€,) (dotted lines)
energies divided by £" as a function of the exponent v characterizing the steepness of
the potential V(x), see equation (4).

The variance of kinetic and potential energies, see equations (16) and (17) is a non-
monotonous function of the exponent v characterizing the steepness of the potential V(x), see
equation (4). The maximal variance is recorded for v = 1 4+ /11/3 & 2.24, see figure 2. In
the limit of » — oo the variance tends to zero. Again, it can be intuitively explained by the
fact that for v — oo the potential V(x) transforms into the infinite rectangular potential well
and the whole energy is stored in the form of kinetic energy. Energy distributions are given by
p&) = 0(€ — &) and p(E)) = 0(E)).

Besides the variances, the absolute values of cumulants of kinetic and potential energies, i.e.,
kn(Er), kn(Ep) for n > 2 are equal. In particular, for kinetic and potential energies even cumu-
lants are identical while the odd ones (starting from order 3) have an opposite sign, see figure 3.
The general expressions for the moments (from which the cumulants can be calculated) are
given by the formulas

(DT (D),
CErne () "

)

D=0 —

and

NIERIIED
IR O "

(&) = (E]) =

All cumulants tend to 0 as the exponent v — co. At the same time (&) tends to &£",
while (£7)) goes to zero. The moment generating functions calculated from equations (18) and
(19) are Mg, (§)=1F) (3,1 + 1:€€) and Mg () =1F) (L.1 + 1:¢€) . where (Fi(...) is the
Kummer’s confluent hypergeometric function.

3. Discussion

Thanks to the ergodic theory [29], it is possible to obtain formulas for p(x) and p(v) densities,
see equations (8) and (12), which can be used to derive exact formulas for the energy partition
in (purely) anharmonic, undamped (frictionless), classical oscillators. Time averaged energies
given by equations (13) and (14) along with their variances, see equations (16) and (17), are
the main results of current research.
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On the one hand, with the help of time averaging and correspondence principle [20] it is
possible to calculate p(x) and p(v) densities from which energetic characteristics, like the aver-
age kinetic or potential energy, of anharmonic oscillators can be obtained. On the other hand,
exact results have been verified by ensemble averaging. For V(x) o |x|” (v > 0) the average
potential energy decays with the increasing exponent v. At the same time, the average kinetic
energy increases with the growing exponent v. The equipartition is recorded for v = 2, i.e., for
the harmonic oscillator. Otherwise, for v # 2 the ratio of average energies differs from 1, i.e.,
it is given by (&)/(&,) = v/2. The system energy £ is constant, i.e., £, + & = £ = const,
therefore, variances of kinetic and potential energies, as well as absolute values of higher
cumulants are equal. Moreover, the variance is a non-monotonous function of the exponent
v. In the limit of ¥ — oo the potential well attains the rectangular shape and the particle
motion is restricted by two reflecting walls. The whole energy is stored as the kinetic energy
and variances of kinetic and potential energies vanish because energy distributions are given
by single Dirac’s delta functions. The presented framework can be extended to any V(x). In
such a case, using equation (8) one can easily find the p(x) density. Contrary to p(x) construc-
tion of p(v) distribution is more difficult because the constant energy curve do not need to be
convex.

Analogous effect is observed for stochastic underdamped, undamped (frictionless), anhar-
monic oscillators [30] driven by the Gaussian white noise

mi(t) = —V'(x) + £(@), (20)

where £(7) stands for the Gaussian white noise fulfilling (£(7)) = 0 and (£()&(s)) = 0(t — s).
Due to absence of damping and action of stochastic force (noise), the system described by
equation (20) is out-of-equilibrium. Asymptotically its average energy (£) grows linearly in
time. For v = 2, (&) = (&,), while for v # 2 average energies differs. Depending on v: poten-
tial (0 < v < 2) or kinetic energy (v > 2) energy can dominate, see reference [30]. Addition
of linear damping to equation (20)

mii(t) = —V'(x) — yv + \/27ksT /m&(0), 21

restores fluctuation dissipation relations and brings the system back to the equilibrium [31].
The stationary state for the model described by equation (21) not only satisfies the stationary
Kramers equation [32] but it is also of the Boltzmann—Gibbs type

1 [mv?
plx,v) o< exp {_kBT [2 + V(x)] } (22)
from which
kgT
(€)= =~ (23)
and
kgT
(&) = 37 (24)

On the one hand, averages energies calculated using time averaging, see equations (13)
and (14), and using Boltzmann—Gibbs distribution, see equations (23) and (24), are different.
The difference between averages can be explained by the energy conservation principle which
relates x and v in the studied setup, see equation (5), and statistical independence of position
and velocity in the Boltzmann—Gibbs distribution. The Boltzmann—Gibbs distribution (22)
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factorizes into position and velocity dependent parts. Therefore, in the stationary state, despite
the functional dependence x(f) = v(t), position and velocity are statistically independent.

On the other hand, analogously like in the deterministic model described by equation (5) the
ratio of average energies reads (&) /(€,) = /2. The same results can be obtained by use of the
canonical ensemble [21]. Replacement of the Gaussian white noise with the Lévy noise moves
the system out-of-equilibrium [33, 34]. In the regime of linear friction (damping) velocity and
position are statistically dependent [35], but average energies diverge. Consequently, there is
no classical energy equipartition relation [36]. Nevertheless, systems driven by Lévy noise
require further studies especially in the regime of nonlinear friction [37], which is capable of
bounding average energies.

Within current research we have restricted our analysis to the deterministic motion in the
single-well, stable, potentials, i.e., V(x) o< |x|” with v > 0. Neverthless, it is possible to cond-
sider motion in unstable potentials. For instance, noise assisted motion in unstable potentials
decaying faster than 1/x has been analyzed recently [38], demonstrating the break-down of
the standard ergodic hypothesis and its extension to infinite-ergodic theory [39]. Moreover,
contrary to the stable potentials used within current research, in the case of unstable potentials,
e.g., x3, standard statistical quantities of interest can diverge. In such a situation, local charac-
teristics can be analyzed and exploited to obtain effective statistical measures, as it has been
shown recently in [40].
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