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Abstract

The Dirac oscillator in a homogeneousmagnetic �eld exhibits a chirality phase

transition at a particular (critical) value of the magnetic �eld. Recently, this

system has also been shown to be exactly solvable in the context of noncommu-

tative quantum mechanics featuring the interesting phenomenon of re-entrant

phase transitions. In this work we provide a detailed study of the thermody-

namics of such quantum phase transitions (both in the standard and in the

noncommutative case) within the Maxwell–Boltzmann statistics pointing out

that the magnetization has discontinuities at critical values of the magnetic �eld

even at �nite temperatures.
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1. Introduction

Quantum phase transitions (QPT) [1] are a class of phase transitions that can take place at

zero temperature when the quantum �uctuations, required by the Heisenberg’s uncertainty

principle, cause an abrupt change in the phase of the system. The QPTs occur at a critical value

of some parameters of the system such as pressure or magnetic �eld. In a QPT, the change is

driven by themodi�cation of particular couplings that characterise the interactions between the

microscopic elements of the system and the dynamics of its phase near the quantum critical

point.

For a quantum system at �nite temperature T, both the thermal and the quantum�uctuations

are present. The interplay between the quantum and the thermal �uctuations can either smooth

out the differences between the phases (namely, no phase transition occurs at �nite temperature)

or there can be regimes in which some discontinuities hold, and a phase transition appears.

Eventually, the thermal �uctuations prevail [1].

In this paper we shall be considering an exactly solvable relativistic system, namely the

Dirac oscillator [2]. The Dirac oscillator has a lot of applications in different �elds e.g.,

Jaynes–Cummings model and the anti Jaynes–Cummings model both of which are two level

systems are related to the Dirac oscillator [3] and the noncommutative Dirac oscillator respec-

tively [4–6]. It may also be noted that an experimental realization of the mapping of com-

mutative Dirac oscillator to the Janynes–Cummings model has been proposed in reference

[3, 7, 8]. In particular, we focus on the Dirac oscillator, at �nite temperature T and with an

additional constant magnetic �eld B. The Dirac oscillator system including an interaction in

the form of a homogeneousmagnetic �eld is an exactly solvable system [3, 4, 9–11] and shows

interesting properties. In particular, at zero temperature, if the magnitude of the magnetic �eld

either exceeds or is less than a critical value Bcr (which depends on the oscillator strength), this

combined system shows a chirality phase transition [12, 13]. Because of the phase transition,

the energy spectrum is different for B > Bcr andB < Bcr whereB is the magnetic �eld strength.

The (2+ 1)-dimensional Dirac oscillator in the presence of a constant magnetic �eld has

also been studied at zero temperature in the framework of noncommutative space coordinates

and momenta [14]. A remarkable feature of this system comes from the fact that at zero tem-

perature it manifests a re-entrant phase transition (RPT) [14, 15] that we �nd is present also at

�nite temperature (see �gure 1). The RPT was �rst observed in nicotine/water mixture [16]

as noted in [17]. This phenomenon has been recently found also in gravitational systems

[18, 19], and for the �rst time in noncommutative systems in [14, 15]. As pointed out in

[20–23], there are systems in condensed matter physics that in certain regimes appear to

have a behavior mathematically equivalent to systems living in a noncommutative spacetime.

This opens the avenue of an analogue noncommutativity that is the possibility of studying,

also experimentally, condensed matter systems that are analogue to those with noncommuting

coordinates and/or momenta but living in ordinary commutative space.

Indeed, it has been shown in [10] that in the (2+ 1)-dimensional Dirac oscillator Bcr

depends not only on the oscillator strength but also on the noncommutative parameters. The

consequence of the noncommutativescenario is that, apart from the left- and right-chiral phases

of the commutative case, there is also a third left phase and thus a second quantum phase tran-

sition (right-left) [14] (see �gure 1). The presence of this third phase with left chirality leads

to the RPT [15].

In this work, we analyze the Dirac oscillator in the presence of a constant magnetic �eld

at �nite temperature. While in the �rst part of the paper we consider the thermodynam-

ics of the standard system the second part will be dedicated to the thermodynamics of the

noncommutative Dirac oscillator.
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Figure 1. Re-entrant phase transition as shown by the heat capacity of a non-
commutative Dirac oscillator as a function of the scaled effective magnetic energy

X ≡ (µB− ~ω) /mc2 and the scaled inverse temperature β̃ = mc2/kBT . The two crit-
ical (red) lines X1 = ωη~/mc

2 = 2 and X2 =
(

ωθ~/mc
2
)

= 8 divide the green regions
(left phases) from the violet region (right phase). In the left phases, the heat capacity

becomes non-monotonic in β̃.

To study what kind of QPT the Dirac oscillator at �nite T undergoes, we will inves-

tigate the system at high temperatures when the statistics can be approximated with the

Maxwell–Boltzmann one [24]. We �nd that in this regime the QPT does not disappear and

therefore the quantum �uctuations prevail upon the thermal ones (as can be seen in the non-

commutative case in �gure 1). Only in the limit of very high temperatures (β → 0) the QPT

disappears.

The organization of the paper is as follows: in section 2 we shall present the system to be

analyzed and discuss the spectrum of the two phases, namely, the left and the right phase; in

section 3, we present the method to calculate the partition function that characterizes the chiral

phases at �nite temperature and describes the phase transition as the strength of the magnetic

�eld varies; in section 4 we scrutinize in details the magnetization at �nite temperature and in

section 6 we study the thermodynamic of a noncommutative Dirac oscillator with a constant

magnetic �eld. Finally, section 7 is devoted to conclusions.

2. The quantum system: Dirac oscillator with a constant magnetic field

The non-relativistic version of the (2+ 1)-dimensional Dirac oscillator with a constant mag-

netic �eld and zero temperature can be associated to a chiral harmonic oscillator [12],

that have been studied in [25]. Moreover, in [26, 27] a possible connection to topological

Chern–Simons gauge theories has been pointed out. The case of the system presented in this

paper can be seen as a relativistic extension of the chiral harmonic oscillators [12, 13], at �nite

temperature.

A relativistic spin-1/2 fermion constrained in a two-dimensional plane with mass m, charge

e, Dirac oscillator frequency ω and subjected to an a constant magnetic �eld orthogonal to the

plane, is described by the Hamiltonian:

H = cσ ·
(

p− imωσzx+
e

c
A
)

+ σz mc
2, (1)
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where c stands for the speed of light and σ =
(

σx, σy
)

, σz denotes the Pauli matrices. As in the

usual notation, the p and the x represent the momentum and the position operators while the

vector potential is related to the magnetic �eld through

A = (−By/2,Bx/2). (2)

The relativistic oscillator interaction acts as an effective transverse magnetic �eld. This set-up

offers an intriguing interplay: while the two-dimensional Dirac oscillator coupling endows the

particle with an intrinsic left-handed chirality [3], the magnetic �eld coupling favors a right-

handed chirality [9]. The interplay between opposed chirality interactions culminates in the

appearance of a relativistic quantum phase transition, which can be fully characterized [12].

2.1. Energy levels

In this section, we shall recall the spectrum [3, 4, 9–13] and the degeneracy of the various

energy levels of a two-dimensional relativistic Dirac oscillator in the two phases de�ned by

B > Bcr and B < Bcr. The spectrum of the system is characterized by two quantum numbers:

nr = 0, 1, 2, . . . , the radial quantum number and M = 0,±1,±2, . . . , the two-dimensional

angular momentum quantum number (please refer to [14] for the detailed analysis of the

spectrum).

In what we call the left phase, the energy level corresponding to the zero mode has positive

energy E = mc2 and in�nite degeneracy with respect to the non-negative magnetic quantum

numberM > 0 (the negativemagnetic numbers are forbidden [14], but only for the zero mode).

The excited states, which contain both positive and negativeM, are

E±
N = ±mc2

√

1+ ξL N, (3)

N = nr +
|M| −M

2
, N = 1, 2, . . . , (4)

where N labels the energy levels, ξL is a constant encoding the parameters of the system that

for the standard commutative case simply reads

ξL = −4X, X :=
1

mc2
(µB− ~ω) (5)

and µ = e~/(2mc) denotes the Bohr magneton. The energy levels in (4) are degenerate. In

particular, every level has in�nite degeneracy, with respect to the non-negative values of M,

and D = N+ 1 �nite degeneracy with respect to the negative values ofM.

The right phase, on the other hand, has zero mode degeneracy with respect to the non-

positivemagnetic quantumnumberM 6 0 and the value of the energy is in the negative branch:

E = −mc2. Similarly, the excited states have an in�nite degeneracywith respect to non-positive

values ofM, while the degeneracy is D = N+ 1 with respect toM > 0 and the energies read

E±
N = ±mc2

√

1+ ξR N, N = nr +
|M|+M

2
N = 1, 2, . . . , (6)

where the parameter ξR is related to ξL by the relation ξR = −ξL. Note that, when ξR = ξL = 0,

that is when

B = Bcr = ~µω, (7)

all the energy levels collapse to the energy E = ±mc2 and the quantum phase transition

happens [12, 14].
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Figure 2. Pictorial view of the positive branch of the energy levels that from a continuous
spectrum for the free electron collapse to the discrete one in (4) and (6).

3. Finite temperature quantum phase transition

To study the interplay between thermal and quantum �uctuations for this two-dimensional

relativistic Dirac oscillator, we focus on the system at high temperatures when the electron-

states statistics can be described with the Maxwell–Boltzmann statistics. We will show that in

this regime the QPT will not disappear.

3.1. Partition function

The partition function for the positive branch of the energy levels (4) and (6) and the zeromode,

has to take into account the degeneracy of each single energy level. Thus, it is de�ned by the

product of the density of the states and the Boltzmann factor

ZL,R =
∑

M,nr

g e−β E+
N , N = 0, 1, . . . , (8)

where E+
N are the values given by (4) and (6), and β is the inverse temperature.

To evaluate the density of the states g, we can split every chiral phase of the system

(left and right introduced in the previous section) into two different sub-systems with respect

to the sign of the quantum numberM.

If we consider a free electron withM > 0 or alternativelyM < 0, in a standard commutative

spacetime and con�ned to a �nite area L2, the number of energy levels in the region dpxdpy
around px and py is dg = L2/

(

2h2
)

dpxdpy [24]. Note that it can be proved that the phase-space

volume element dpx ∧ dpy in the relativistic case is invariant for Lorentz transformations [28].

Moreover, L is the length in a rest-frame.

3.1.1. Left Phase. For M > 0, the degeneracy of each energy level (4) de�ned in the region

K of the momenta (px, py) such that EN < Efree(px, py) < EN+1 (see �gure 2), where Efree is the

energy of the free electron, is given by

gM>0 =
1

2

(L

h

)2
∫∫

K

dpxdpy

= π
(L

h

)2
[

p2
]

p2

m2c2
= ξL(N+1)

p2

m2c2
= ξLN

=

(Lmc

h

)2

πξL. (9)

and N depends only on the quantum number nr because the difference in (4) is zero.
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In the case M < 0, the number of levels collapsing into the level N is still equal to gM>0.

However, one should consider that, whenM < 0, as shown in (4), N depends on both the quan-

tum numberM and nr, namelyN = nr +M. Therefore, one needs to keep into account, for each

energy level N, the degeneracyD, i.e. gM<0 = gM>0/D.Thus, the number of states

gM<0 =

(Lmc

h

)2 πξL
(nr −M + 1)

, (10)

is not constant along the spectrum, but depends on the energy level.

Taking into account the degeneracy, using the spectrum (4) and its zero point energy, the

partition functionwith Boltzmann statistics of the states of a single oscillator7 for the left phase

is

ZL =

(Lmc

h

)2

πξL

[

e−βmc2
+

∞
∑

nr=1

e−βmc2
√

1+ ξL nr +

∞
∑

nr=1

−∞
∑

M=0

e−βmc2
√

1+ ξL (nr−M)

(nr −M + 1)

]

. (11)

Notice that the contribution to the partition function of the zero mode energy appears only

for M > 0 [14] and, as we will see later in section 3.3, this will be the source of the non-

analyticity of the partition function at the phase point. The sum in the third term of (11)

coincides with the second if we introduce M′ and N′ such that M′ = −M then nr +M′ = N′,
obtaining

∞
∑

nr=1

∞
∑

N′=nr

e−βmc2
√

1+ ξL (N′)

(N′ + 1)
=

∞
∑

N′=1

e−βmc2
√

1+ ξL (N′), (12)

so, over all, the two sectors (M > 0 andM < 0) equally contribute to the partition function.

3.1.2. Right Phase. The partition function for the right phase, de�ned by the energy levels

(6), is equal to (11) except for the zero mode term. This is because, as explained in section 2,

the zero mode contributes only to the negative energies branch.

3.2. Zeta-function representation

A different representation of the de�ning series in the partition function that will reveal itself

to be more effective when the phase switches from left to right, can be obtained using the

Cahen–Mellin integral, as suggested for different systems in [29] and reviewed in [30, 31].

The Cahen–Mellin integral is de�ned as [32]

e−x =
1

2πi

∫

c+i∞

c−i∞
Γ (s) x−s ds

(

|arg x| < 1

2
π; x 6= 0

)

(13)

where c is real and c > 0. The argument of the integral has poles for all x = −n, n ∈ N0 and the

residuals at the negative poles are (−1)n/n! (see �gure 3). Using (13) to calculate the second

7The classical multi-oscillator states partition function is simply (ZL)
n/n! for n electrons [24].
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Figure 3. (Left) Poles of the argument of the Cahlen–Mellin integral (13). (Right)
Path in the complex plane over which the contour integration (16) is performed. The
semicircle of radius R→∞ is closed on the left.

term in the partition function (11) and including the sum into the integral, we have that the

term

ξL

∞
∑

nr=1

e−βmc2
√

1+ ξL nr (14)

can be rewritten as

ξL
2πi

∫

c+i∞

c−i∞

Γ (s)
(

βmc2
)s

∞
∑

nr=1

1

(1+ ξL nr)
s/2

ds. (15)

The series in (15) can be recognized as the series representation of the Hurwitz-ζ function

ζ (v, a) =
∑∞

n=0
1

(n+a)v
that converges only ifRe (v) > 1. Under this condition the integral (15)

becomes

ξL
2πi

∫

c+i∞

c−i∞

Γ (s)
(

βmc2ξ
1/2
L

)s ζ

(

s

2
,
1

ξL
+ 1

)

ds. (16)

In contrast to what has been proposed in the recent literature on the topic (see [31] and

references therein), we notice that the condition for the convergence of the series s/2 > 1

implies c > 2. The integral can therefore be evaluated with the method of residue once a

proper closed path has been identi�ed. Because of the presence of the Γ-function that diverges

as Γ(s) = (2π)1/2e−sss−
1
2

[

1−O
(

s−1
)]

, the integration in (16) can be closed only on the

left part of the complex plane, allowing to use the Cauchy’s residue theorem on the poles

{s = 2, 0,Z−} represented in �gure 3. Introducing the adimensional variable β̃ = βmc2, the
partition functions for both the phases becomes

ZL,R = 2π
(Lmc

h

)2
[

(

2

β̃2
− 1

)

+

(

Θe−β̃

2
− 1

2

)

ξL,R

+

∞
∑

n=1

(

−β̃
)n

ξ
n
2+1

L,R

n!
ζ

(

−n

2
, 1+

1

ξL,R

)



 , (17)

where now we use the subscript L, R to indicate both the left and right phase and Θ is a step

function that is equal to zero (one) for the right phase (left phase). This series representation

7
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Figure 4. Scaled partition function for the commutative Dirac oscillator and its sec-
ond order approximation at the critical point (dashed) as a function of the scaled
effective magnetic energy X, de�ned in (5), for different values of the temperature:

β̃ = 0.5, 0.8, 1.1, 1.5 respectively green, red, black and blue lines.

can be seen as a series expansion in power of β, namely a high-temperature power expansion.

From now on the quantity in the square brackets of (17) will be called Z̃L,R

ZL,R = 2π
(Lmc

h

)2

Z̃L,R. (18)

The series representations of the partition function Z̃L,R in terms of the ζ-function and the Boltz-
mann representation introduced in (11) can be both evaluated numerically considering only a

�nite number of terms in the series. However, the Boltzmann representation encounters obvi-

ous numerical issues for small values of ξL,R, i.e. close to the value where the phase transition
happens. These issues do not affect the ζ-function representation of the partition function and,
as we will see in the next subsection, the partition function can be evaluated analytically for

small values of ξL,R. Figure 4 shows Z̃L,R in the ζ-function representation keeping nmax = 100

terms of the series in (17).

3.3. Partition function near the critical point

The partition function (17) can be used to calculate the asymptotic expansion near the critical

point, namelywhen ξL,R → 0. This allows to analytically explore the regimes close to the phase

transition and study the interplay between thermal and quantum �uctuations. The asymptotic

expansion of the Hurwitz-ζ function [33, 34] is

ζ (s, a) =
a1−s

s− 1
+

1

2
a−s +

Z (s, a)

Γ (s)
(19)

where the large-a (Poincaré) asymptotic expansion of the function Z (s, a)

Z (s, a) ∼
∞
∑

k=1

B2k

(2k)!

Γ (2k+ s− 1)

a2k+s−1
, |a| →∞ (20)

8
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is valid in |arg a| < π and B2k denote the even-order Bernoulli numbers.Writing explicitly the

sum (20) in the partition function Z̃L,R gives

Z̃L,R =
2

β̃2
− 1−

(

1−Θe−β̃
) ξL,R

2

+

∞
∑

n=1

(

−β̃
)n

n!

{[

1

2
ξL,R − 2

(

ξL,R + 1
)

n+ 2

]

(

ξL,R + 1
)
n
2

+

∞
∑

k=1

B2k

(2k)!

Γ
(

2k− n
2
− 1
)

Γ
(

− n
2

)

ξ2kL,R
(

ξL,R + 1
)2k− n

2−1

}

. (21)

Using the binomial series and the relation between Euler gamma functions

Γ

(

−n

2

)

Γ

(

1+
n

2

)

=
π

sin
(

−πn/2
) , (22)

one can rewrite the terms in the curly brackets in (21) as

∞
∑

w=0

1

w!

{[

1

2
ξL,R − 2

(

ξL,R + 1
)

n+ 2

]

Γ
(

1+ n
2

)

Γ
(

1+ n
2
− w

) ξwL,R +

∞
∑

k=1

B2k

(2k)!

Γ
(

1+ n
2

)

Γ
(

−2k+ n
2
+ 2−w

) ξ2k+w
L,R

}

(23)

de�ning in this way the partition function at all orders in ξL,R near the critical point. At the

second order in ξL,R, one can sum the partition function at all orders in β, so that, near the

critical point, it reads

Z̃L,R =
2e−β̃

β̃

[

1+
1

β̃
+ (Θ− 1)

β̃ξL,R
4

+
β̃2 ξ2L,R
48

]

+O
(

ξ3L,R
)

. (24)

This expression is a continuous but non-analytic function in ξL,R and, in fact, Θ brings a dis-

continuity in the �rst order derivatives. The function to the second order (24) is compared with

(17) in �gure 4.

4. Magnetization at finite temperature

At this point, it is possible to use the derived expression for the partition function (17) to

calculate a physical observable quantity like the magnetization [35, 36]. Indeed, in [14] the

magnetization has been proposed as the quantity able to distinguish between the phases of the

system.

The magnetization for a system at �nite temperature, can be de�ned as [24]

M = kBT
∂ log Z

∂B
=

1

β Z

∂Z

∂ξ

∂ξ

∂X

∂X

∂B
. (25)

9
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Figure 5. Scaled magnetization of the commutative Dirac oscillator as function of the
scaled effective magnetic energy X, de�ned in (5), for different values of the temperature

β̃ = 0.5, 0.8, 1.1, 1.5 respectively green, red, black and blue lines.

In order evaluate the derivative ∂Z/∂ξL,R one can use in (17) the following identity [37]

∂ζ (s, a)

∂a
= −sζ (s+ 1, a) for s 6= 0, 1 Re a > 0. (26)

Themagnetization evaluated numericallywith nmax = 60 is illustrated in �gure 5. Interestingly,

we �nd that the magnetization in the left phase, has opposite sign with respect to the single

state result obtained at T = 0 [14]. At �nite temperature, in ξL = ξR = 0 the magnetization

manifests a discontinuity.

Analogously to what has been done for the partition function in the previous sections, we

now inspect the magnetization behavior at values of the magnetic �eld close to the critical

values. To approximate the full partition function in the neighborhood of ξL = ξR = 0, we can

either follow the steps described in section 3.3 for the full partition function resulting of (25),

or we can use (24) in (25).

At the critical point, the magnetization is not a continuous function of the magnetic �eld

and can be written as a series expansion around X = 0 at all order in β as

MR,L

µ
= − β̃

β̃ + 1
H (X)+

(

β̃

β̃ + 1

)2
[

2

3
+ β̃

(

H (−X)− 1

3

)]

X +O
(

X2
)

,

(27)

where H(x) is the Heaviside step function. The discontinuity with respect to the magnetic �eld

at the critical point X = 0 is

|∆Mcr| = µ
β̃

(1+ β̃)
. (28)

In the limit β̃ → 0, the thermal �uctuations overcome the quantum ones, the gap disappears

and the magnetization is zero for both the chiralities.

10
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Figure 6. Various thermodynamic functions versus the scaled inverse temperature

β̃ = mc2/kBT for different values of the magnetic �eld, corresponding to X =

−4.5,−1.3, 0, 0.3, 2 respectively red, green, dashed-black, blue, orange. The X = 0 case
(dashed black) represents the critical value of the magnetic �eld. Upper left panel (a):
the free energy F/mc2; upper right panel (b): the internal energy U/mc2; lower left (c):
the entropy S/kB and �nally in the lower right panel (d) the speci�c heat C/kB. In the
last one, it is visible the difference between the red and green (left phase) and the blue
and orange (right phase).

5. Other thermodynamic functions

Once the partition function has been calculated, the thermodynamics of the system can be fully

explored. Using

F = − 1

β
ln Z, U = − ∂

∂β
ln Z,

S = kBβ
2 ∂F

∂β
, C = −kBβ2 ∂U

∂β
,

(29)

in �gure 6, we plot the thermodynamic quantities for the commutative system. The speci�c

heat as function of the β manifests a non-monotonic behavior in the left phase, while it

becomes monotonic in the right phase. We note that in the high-temperature limit, β → 0,

the system reaches the same speci�c heat independent of the value of the magnetic �eld, or

the X variable related to the magnetic �eld by (5). We can see it exactly for small values

11
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of X using (24): C/kB = 2+ O
(

X2
)

. The limiting value C/kB = 2 re�ects the equipartition

theorem for a two-dimensional system with the two additional degrees of freedom associated

with the spin of the particle [24]. In the high-temperature regime, no changes in sign of C

appear, showing that there is no apparent phase transition caused by the thermal �uctuations.

In the left phase, the asymptote is reached from above with respect to the critical value of X.

We interpret the non-monotonicity of the speci�c heat in the left-phase as due to the presence

of the zero-mode in the partition function. This is the only difference between the left- and

right-phase partition function, cf see (11).

6. Dirac oscillator with a constant magnetic field

In the previous sections we described the Dirac oscillator under a uniform magnetic �eld and

its associated QPT in a 2D+ 1 space-time.

We now, discuss the same system (Dirac oscillator in a uniformmagnetic �eld) in a setting,

i.e. assuming that the phase-space is. It might be noted that several studies of quantum �eld

theory in a settings have appeared in the literature. Examples of renormalizable scalar �eld

theories (φ4 models), in the four-dimensional Moyal space have been discussed in [38–40].

gauge theories on three-dimensional spacesR3
λ (a deformation ofR3) can be found in [41–43].

Finally quantum gravity inspired noncommutative models have been discussed in [44–47].

Several studies in quantum gravity and string theory have analyzed quantum mechani-

cal effects due to the space-time that can be fundamentally or effectively described by a

generalization of geometry where, locally, coordinates do not necessarily commute [48–58].

Moreover, recent developments in condensedmatter physics, suggest the use of the noncommu-

tative geometry framework to encode geometrical properties of topological quantum systems

[20–23].

The study of the Dirac oscillator in the presence of noncommutative coordinates and

momenta and a constant magnetic �eld in a two-dimensional space at zero-temperature has

been carried out in [14]. The system that in the commutative case undergoes a quantum phase

transition at �nite magnetic �eld, also exhibits in the noncommutative case another phase tran-

sition at a higher magnetic �eld. The third region appears to have the same chirality of the �rst

one providing a re-entrant quantum phase transition [15].

In this section, we will study the noncommutative system at �nite temperature, the param-

eterization that has been used for the exact calculation of the spectrum in [14] will allow us

to exploit all the calculation done in the previous sections and easily study the QPTs in the

noncommutative space.

6.1. Energy levels

Following the notation in [14] in this subsectionwe review the energy spectrum of the noncom-

mutative system and we highlight the differences with the commutative case. The Hamiltonian

for the (2+ 1)-dimensional Dirac oscillator in the noncommutative plane with a homogeneous

magnetic �eld can be written in a way similar to (1)

Ĥ = cσ.
(

p̂− imωσzx̂+
e

c
Â
)

+ σz mc
2, (30)

where now the hat indicates the noncommutative operators. In this framework, the commuta-

tion relation between coordinates and momenta are given by [48]

[x̂, ŷ] = iθ, [ p̂x, p̂y] = iη, [x̂i, p̂j] = i~

(

1+
θη

4~2

)

δi j, (31)
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where θ, η ∈ R. The noncommuting coordinates and momenta can be expressed in terms of

commuting ones using the Seiberg–Witten map and are given by

x̂ = x− θ

2~
py, p̂x = px +

η

2~
y,

ŷ = y+
θ

2~
px, p̂y = py −

η

2~
x.

(32)

The Hamiltonian (30) can be rewritten as

H = c

(

mc Π̂−
Π̂+ −mc

)

, (33)

where Π̂± are given by

Π̂± =

(

1− ω̃ − ω

ωθ

)

(px ± i py) ± im (ω̃ − ω − ωη)(x± iy) (34)

after introducing the following frequencies out of the parameters of the system:

ω̃ =
eB

2mc
, ωθ =

2 ~

mθ
, ωη =

η

2~m
. (35)

With this parameterization it is clear that there are two critical values of the magnetic �eld

Bcr =
2mc

e
(ω + ωη) =

2c

e

(

mω +
2η

~

)

, (36)

B∗
cr =

2mc

e
(ω + ωθ) =

2c

e

(

mω +
~

θ

)

. (37)

such that for both B = Bcr and B = B∗
cr, there are no interactions in the model and the Hamilto-

nian represents a free particle (only kinetic energy). Since the critical value Bcr depends on the

momentum noncommutative parameter η, this shifts the value of the critical �eld relative to

the value in (7). The space noncommutativity (θ 6= 0) instead introduces the additional critical

value for the magnetic �eld (B∗
cr) [14].

Interestingly, the parameters used in the noncommutativemassiveDirac oscillator can be re-

absorbed in such a way that one can study the single phases independently. In fact, the behavior

of the single phases can be described regardless of the parameters encoding the noncommuta-

tive physics [14]. Therefore, although the noncommutative system has two more parameters,

they can recast into the parameter ξL,R allowing us to use most of the calculations performed in

the previous sections for the commutative case. The main difference now is that the magnetic

�eld and the noncommutative parameters are related by

ξL = −4
mc2

ωθ~

(

ωθ~

mc2
− X

)(

X − ωη~

mc2

)

(38)

while it is still valid the relation ξR = −ξL. Phase changes occur at critical values of the mag-

netic �eld that makes the parameter ξL,R null. Note that, differently from the commutative case

(5), in the noncommutative case the equation (38) is quadratic in B and consequently it admits

two critical points [14].

13



J. Phys. A: Math. Theor 53 (2020) 185204 A M Frassino et al

Figure 7. Scaled partition function in the noncommutative case and its approximation
near the critical points X1, X2 (dashed) with X1 = ωη~/mc

2 = 2, X2 =
(

ωθ~/mc
2
)

= 8

and β̃ = 0.8, 1.1, 1.5 for respectively red, black and blue lines.

6.2. Energy levels and partition function

In section 2.1 we reviewed the spectrum of the system as a function of the parameter ξL,R. As
mentioned above, for the noncommutative case, the spectrum remains equal to (4) and (6) as a

function of the parameter ξL,R that now becomes (38), quadratic in B. Since the density of the

energy states is also a function of the parameters ξL,R, its contribution to the partition function
of each energy level in the noncommutativecase coincideswith the one in the commutative case

(10). The resulting partition function is illustrated in �gure 7. In the plot is also represented the

outcome of the approximation once the constant ξL,R in (38) is replaced in (24). The partition

function can be used to calculate the other thermodynamic quantities using (29). In particular,

the heat capacity is shown in �gure 1. In [59] a different noncommutative model has been

studied without considering the degeneracy of the states.

6.3. Magnetization

The magnetization for the noncommutative Dirac oscillator case is illustrated in �gure 8. The

�gure shows the presence of a �xed point atM = 0 for every T. The point where the magneti-

zation changes its sign appears only in the noncommutative case and is a consequence of the

term ∂ξ/∂X in (25), that is a non constant function of X:

∂ξL,R
∂X

= ±4
mc2

ωθ~

[

2X − ~
(

ωη + ωθ

)

mc2

]

= ±4

√

mc2

~ωθ
ξL,R ± (ωη − ωθ)2

ωθ
2

(39)

where the plus sign is for the L phase and the minus sign is for the R phase. From the �rst

line of (39), we �nd that at the point X0 =
~(ωη+ωθ)

2mc2
the magnetization changes sign. There-

fore, the point where the magnetization smoothly vanishes is the midpoint between the two

14



J. Phys. A: Math. Theor 53 (2020) 185204 A M Frassino et al

Figure 8. Scaled magnetization in the noncommutative case as function of the scaled
effective magnetic energy X, de�ned in (5), for different values of the rescaled inverse

temperature β̃ = 0.5, 0.8, 1.1, 1.5 respectively green, red, black and blue lines. The
parameters are �xed as in �gure 7.

critical points. This feature of the noncommutative system is independent of the temperature

and was also present in the analysis at T = 0 [14]. Near the critical point, we can evaluate the

magnetization in ξL,R using the second line of (39) and (24) in (25), obtaining:

∂ξL,R
∂X

= ± 4

[
∣

∣

∣

∣

(ωη − ωθ)

ωθ

∣

∣

∣

∣

± 1

2

mc2

~

ξL,R
|ωη − ωθ|

+O(ξ2)

]

, (40)

and the other terms in (25) read

1

β̃

1

Z

∂Z

∂ξ
=

β̃

4(β̃ + 1)
(Θ− 1)+

[

β̃

4(β̃ + 1)

]2
[

2

3
+ β̃

(

Θ− 1

3

)]

ξ +O
(

ξ2
)

.

(41)

Then the discontinuity of the magnetization at the two critical points, for the noncommutative

case is

∆M = ±µ

∣

∣

∣

∣

(ωη − ωθ)

ωθ

∣

∣

∣

∣

β̃

(β̃ + 1)
, (42)

and we can notice that if η, the noncommutative parameter related with the momenta, vanishes

then the transitions become independent from θ, the coordinates noncommutative parameter.

7. Conclusions

Over the years, the Dirac oscillator has become a valuable tool for various branches of physics,

mostly because it is one of the few relativistic systems whose exact solutions are known. The

(2+ 1)-dimensional case, namely when an electron is constrained to live in a plane, manifests
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an intrinsic chiral behavior of its states. An external magnetic �eld interacts at the quantum

level with the chirality properties of the system and, if strong enough, it forces an abrupt switch

in the electron chirality. This behavior studied at zero temperature, distinguish two phases of

the electron at different regimes, and their change is recognized to be a quantum phase tran-

sition [12]. Magnetization shows a discontinuity at a �nite value of the magnetic �eld [14].

The quantum nature of this behavior raises the question on how thermal �uctuations interacts

with the system andwhen the thermal disorder destroys these quantum effects. In this paper, we

analyze the interplay between these two physical phenomena. In particular,we quantify the dis-

continuity of the magnetization of the QPT at �nite temperature∆M ∝ ~

[

1
kB T

+ O
(

1
kB T

)2
]

.

This discontinuity is a quantum phenomenon that tends to zero for high temperatures. While

the critical values of the system are not affected by changes in temperature, we noticed a

crucial difference from the system at T = 0 studied in [14]: the magnetization at �nite tem-

perature has regimes with opposite sign with respect to the single state (zero-temperature)

case. This opens to the possibility of a second phase transition at low temperatures, where the

statistics of the states becomes quantum and cannot be described by Boltzmann statistics. In

�gure 6 we report various thermodynamic quantities that can be evaluated once the partition

function is provided. The speci�c heat shows different behaviors at different phases of the

system.

The series representations of the partition function proposed in this paper allow to explore

the system in diverse regimes: far, close and at the critical points. The representation in terms

of the Hurwitz-zeta function �xes some misunderstandings present in the literature regarding

which poles play a role in the evaluation of the partition function.

We also generalize our calculations to the Dirac oscillator in noncommutativemomenta and

coordinates, showing that it manifests a re-entrant quantum phase transition also at �nite tem-

perature. Interestingly, there are systems in condensed matter physics that in certain regimes

appear to behave as systems living in a noncommutative spacetime [20–23]. This can open

the possibility of an analogue noncommutativity. The ‘analogue’ approach to theoretical mod-

els that are too extreme or too weak to be measured directly has already been successfully

employed in high-energy physics, and in particular in gravity with the so called analogue grav-

ity [60]. This program is in constant development and already lead to important successes such

as the measures of the analogue Hawking radiation [61–64], phenomenon that seemed to be

only a theoretical model. It is interesting and challenging to �nd an analogue system that would

allow the experimental measure of the re-entrant phase transition described in this paper, and

we leave it for future investigation.
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