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Abstract

We address the problem of compressing density operators de�ned on a �nite

dimensional Hilbert space which assumes a tensor product decomposition. In

particular, we look for an ef�cient procedure for learning themost likely density

operator, according to ‘Jaynes’ principle, given a chosen set of partial infor-

mation obtained from the unknown quantum system we wish to describe. For

complexity reasons, we restrict our analysis to tree-structured sets of bipar-

tite marginals. We focus on the tripartite scenario, where we solve the problem

for the couples of measured marginals which are compatible with a quantum

Markov chain, providing then an algebraic necessary and suf�cient condition

for the compatibility to be veri�ed. We introduce the generalization of the pro-

cedure to the n-partite scenario, giving some preliminary results. In particular,

we prove that if the pairwiseMarkov condition holds between the subparts then

the choice of the best set of tree-structured bipartite marginals can be performed

ef�ciently. Moreover, we provide a new characterization of quantum Markov

chains in terms of quantum Bayesian updating processes.

Keywords: quantumMarkov chains, maximum von Neumann entropy, bipartite

correlations, quantum trees

1. Introduction

The problem of ef�ciently compressing density operators can be related to the one addressed

by Jaynes [1] for probability distributions. We are interested in determining an ef�cient proce-

dure for inferring themost likely density operator from partial information about the system we

wish to describe, with the freedom of choosing the set of partial information to be collected.

With a complete set of measurements, quantum tomography techniques are able to infer with
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maximum accuracy the density operator that most likely describes the given quantum system,

but the needed resources to perform the former increases exponentially with the number of

degrees of freedom of the system. A clever choice of a partial set of measurements should opti-

mize the data collection, lead up to an ef�cient learning procedure and keep a good accuracy.

The necessity of dealing with a statistically relevant number of degrees of freedom motivates

machine learning [2] and quantum machine learning techniques [3–5].

1.1. The maximum entropy estimator

In his seminal paper [1], Jaynes wrote:

‘Information theory provides a constructive criterion for setting up probability distribu-

tion on the basis of partial knowledge and leads to a type of statistical inference which is

called the maximum-entropyestimate. It is the least biased estimate possible on the given

information, i.e. it is maximally noncommittal with regard to missing information.’

Since quantum information theory provides a well-de�ned generalization the Shannon

entropy, the von Neumann entropy, it can be used to state a quantum ‘Jaynes’ principle and,

therefore, to obtain a maximally noncommittal estimator for density operators with regard to

the partial information collected. Moreover, due to the concavity of both Shannon and von

Neumann entropy, the maximization problem has a unique solution and the desired estimator

is uniquely determined.We choose therefore to infer from the givenmeasurements, the density

operators that maximizes the von Neumann entropy.

1.2. Learning from direct correlations

A common approximation for multipartite physical system description consists in cutting the

correlations after the �rst neighbour. Direct dependencies between random variables are usu-

ally less struggling to be measured and it results in a theoretical exponential gain in data

collection. Consider a multipartite quantum system, described by a Hilbert space HX1,...,Xn

= HX1 ⊗ · · · ⊗ HXn , with dim HXi = O(d), for all i = 1, . . . , n. To infer the state of the whole

system, represented by a densitymatrix ρX1,...,Xn , one needs an exponential amount of resources,

more concretely, O(d2n). However, if one restricts to bipartite correlations only, the amount of

resources needed to approximately reproduce the state scales polynomially with n, O(n2d4).

This approximation restricts the set of learnable states: for pure-multipartite correlated systems,

such as the GHZ state, we expect not to be accurately recoverable.

1.3. Restriction to trees

Since density operators generalize classical probability distributions, �nding the density oper-

ator that maximizes the von Neumann entropy given the complete set of bipartite correlations,

would solve the analogous problem for classical probability distributions. To study an ef�cient

learning procedure, the hardness results of the classical problem need to be taken in account.

Given a �nite set of classical randomvariables, the optimization problemof �nding the prob-

ability distribution that maximizes the Shannon entropy given a general collection of bipartite

marginals, can be stated as a graph inference problem.With the provided information, the clas-

sical system can be represented by a graph where the vertices represent the random variables

and the edges represent the direct dependencies between them. Then, graphical models, such

as Bayesian Networks andMarkov random�elds [2, 6], provide the learning techniques for the

maximum entropy estimator. Inferring a general graphical structure is NP-hard [7], and so is

�nding an approximate solution [8]. The only structures for which a general ef�cient learning

solution is known are trees, as even learning 2-polytrees is NP-hard [9]. Nevertheless, there
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exists an ef�cient algorithm to obtain the optimal tree—the Chow–Liu algorithm [10]. Then,

any set of random variables can be ef�ciently approximated by the probability distribution

describing its most likely tree. It has been an open problem to �nd richer structures than tree

Markov random �elds that can be learned ef�ciently.

Motivated by these classical results, we look for an ef�cient learning procedure for the

maximum von Neumann entropy estimator given a subset of bipartite marginals which is

tree-structured. This means that, representing the joint quantum system by a graph where the

vertices label the subsystems and where the edges represent the measured bipartite marginals,

the resulting graph is a tree. Observe that the problem we are analyzing can be stated also

as searching for a subclass of density operators for which the classical results of learning via

graphical models can be extended.

The ef�ciency of the aforementioned learning techniques is mainly due to the factorization

of the joint probability distribution that occurs when the conditional independence condition

between the interested subparts holds. As we are going to see in detail, also when the sys-

tem involves quantum correlations, the quantum generalization of conditional independence

to quantum states results in an algebraic recovery of the joint in terms of the interested sub-

parts. However, whereas the graphical structure of a classical system naturally encodes the

conditional independence properties between them, the one involving quantum correlations

does not. Further conditions, not explicit from the graphical structure, need in general to be

veri�ed. Many attempts have been done for developing appropriate generalizations of graph-

ical models for density operators [11, 12], but none of them naturally encodes the required

properties which result in a learning simpli�cation without further conditions [13].

1.4. Problem

We wish to �nd an ef�cient procedure for learning the density operator that maximizes the

von Neumann entropy from a subset of (compatible, cf de�nition 1) tree-structured bipartite

marginals.

1.4.1. Results. We consider the simplest nontrivial tree, i.e. a tripartite quantum system where

two marginals are known (section 2.1). This analysis provides insight for the multipartite

scenario (section 6).

Tripartite case: we provide an algebraic recovery procedure of the tripartite density

operator given two bipartite marginals when they are compatible with a quantum Markov

chain—de�nition 2.We �nd that there exists an algebraic recovery procedure, namely the Petz

recovery map, for the maximum entropy estimator whenever there exists a quantum Markov

chain in the compatibility set of the providedmarginals—theorem 1. Indeed, quantumMarkov

chains represent the subset of tripartite density operators that strictly contains classical proba-

bility distributions, i.e., such that between the two non adjacent quantum states, the (quantum)

conditional independence condition holds—corollary 1. Then, we provide a necessary and

suf�cient condition for ef�ciently verifying if the given couple of marginals is compatible

with a quantum Markov chain—theorem 2. Moreover, we give a criterion for determining

which couple of possible bipartite marginals, out of the three possible, provides the best maxi-

mum entropy estimator, meaning the one that minimizes the relative entropy distance with the

unknown density operator. We prove the best estimator to be the one with minimum von Neu-

mann entropy—theorem 5, which, if all the three couple of measuredmarginals are compatible

with a quantumMarkov chain, can be obtained by discarding themarginalwithminimumquan-

tum mutual information—theorem 6. Both the conditions of theorems 2 and 6 are algebraic,

allowing the ef�ciency of the entire learning procedure and, possibly, an easier generalization

to the multipartite case.
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Furthermore, observing that the problem of entropymaximization can be stated as multiple-

step minimum entropy updating (section 4), we give a further characterization of quan-

tum Markov chains as the commutativity of a diagram of quantum Bayesian updating

processes—theorem 4.

Multipartite case: We provide some preliminary results about a possible generalization

of the notion of the procedure to the multipartite scenario. In particular, we prove that the

global Markov condition, properly extended to density operators, is suf�cient to have an

ef�cient recovery of the maximum entropy estimator given a tree structured set of bipar-

tite marginals and, additionally, it is suf�cient to ef�ciently choose an optimal tree for the

estimator—proposition 3.

2. Maximum entropy estimator

Let X = {X1, . . . , Xn}, with 0 < n < ∞, be a set labelling the parts of a multipartite quantum

system X . The physical system X can be described by an Hermitian, positive-semide�nite

and trace one operator ρX , namely a density operator in the Liouville space L(HX ), where

HX is a separable Hilbert space on its subpartsHX :=⊗n
i=1HXi . We denote by dX the dimen-

sion of the Hilbert space HX , which is always assumed to be �nite in the whole manuscript.

Running several times the same experiment, we can collect many copies of the unknown

system; on each of them, we can perform a measurement, obtaining the set of expectation

values {〈Θi〉}i∈I , where Θi are positive Hermitian operators acting on the full joint Hilbert

spaceHX .

Proposition 1. The density operator ρ̃ ∈ L(HX ) that maximizes the von Neumann entropy,

denoted S(ρ), is given by

ρ̃X =
1

Z
exp

(
∑

i∈I

λiΘi

)
, with Z = Tr

[
exp

(
∑

i∈I

λiΘi

)]
(1)

and in which {λi}i∈I are Lagrange multipliers which are obtained by solving the equations
Tr [ρΘi] = 〈Θi〉.

Proof. This follows from taking the variation of the function

S(ρ)−
∑

i∈I

λi
(
Tr [ρΘi] − 〈Θi〉

)
. (2)

By concavity of S the solution is a maximum point and it is unique. �

In our case, we are given a set of bipartite marginals {ρXiX j}, which can be probed by

a complete set of observables in the associated bipartite Hilbert spaces. If we are given a

Hilbert space HX , then there exist a set of Hermitian operators {Λ(X)
j : j = 0, . . . , d2X − 1}

which are complete in the sense that any linear operator and, in particular any observable,

can be written as a linear combination of the latter. This basis of operators can be chosen

to be orthonormal with respect to the Hilbert–Schmidt inner product and, additionally, to be

traceless, so that {iΛ(X)
j : j = 0, . . . , d2X − 1} span a Lie algebra su(dX), where Λ

(X)
0 := idX is

the identity on HX and it corresponds to the remaining generator of u(dX). For each i ∈ I, we

denote by {Λ(Xi)
k : k = 0, . . . , d2Xi − 1} a chosen complete set of observables for Xi, as before.

For each XiX j, the set {Λ(Xi)
k ⊗ Λ

(X j)

l : k = 0, . . . , d2Xi − 1, l = 0, . . . , d2X j − 1} forms a com-

plete set of observables for the bipartite system XiX j. We extend the operators Λ
(Xi)
k ⊗ Λ

(X j)

l
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acting on HXi ⊗HX j in a natural way to act on the joint Hilbert space HX by taking the

tensor product with the identity on the relevant factors. By abuse of notation we denote by

Λ
(Xi)
k Λ

(X j)

l the extended operators. As a consequence of proposition 1, the density operator

ρ̃X1...Xn maximizing the von Neumann entropy assumes the form

ρ̃X =
1

Z
exp



∑

i, j

d2Xi
−1∑

k=0

d2X j
−1

∑

l=0

k2+l2 6=0

λ
(XiX j)

kl Λ
(Xi)
k Λ

(X j)

l


 , (3)

where, as before, {λ
(XiX j)

jk } are the Lagrange multipliers of the optimization problem, con-

strained by the partial traces on the given marginals. The state of equation (3) exists because

the set of density operators satisfying the given constraints is convex and non-empty. Indeed,

a priori, the set of bipartite marginals is the output of a set of measurements performed on an

existing quantum system described by an n-partite density operator. We are than assuming the

given set of provided marginals to be compatible.

Definition 1 (Compatibility and compatibility set). Consider a set of density operators

C = {ρY ∈ L(HY )}Y∈K, where K is a family of subsystems of X which is a cover, i.e.,⋃
Y∈KY = X . We say that C is a compatible set of marginals if there exists at least one

density operator ρ over the joint Hilbert space HX such that TrY (ρ) = ρY for all ρY ∈ C.
Here TrY (·) denotes the partial trace over the complementary factors of the Hilbert space

Ȳ = X\Y .
Moreover, we denote by Comp(C) the set of density operators over HX s.t. TrY (ρ) = ρY

for every ρY ∈ C. We say for each ρ ∈ Comp(C) that ρ is compatible with ρY , for any Y ∈ K.

Additionally, we also say that ρ is compatible with C.

The problem of determining if a given set of density operators is compatible is known as the

quantum marginal problem is QMA complete [14, 15]. This problem reduces to determining

the maximum entropy estimator (compatible with the marginals), and therefore, the latter is

QMA hard. In particular, a necessary condition, also suf�cient for classical probability distri-

butions, for a set of density operators de�ned on overlapping Hilbert spaces to be compatible

is to coincide on their intersection. Formally, given ρY1
, ρY2

∈ C compatible, if Y1 ∩ Y2 6= ∅
then TrY1∩Y2

(ρY1
) = TrY1∩Y2

(ρY2
).

Our goal, as stated in the introduction, is to have an ef�cient recovery of the maximum

entropy estimator given a set of bipartite marginals. For that reason and taking into account the

results known for the classical case (see the introduction), we restrict to the case where the set

of bipartite marginals is tree structured. In the next subsection we consider the tripartite case

in detail.

Remark 1. Also in the tripartite case, we are going to restrict the problem to trees where

just two marginals out of the three possible are taken in account. This not only to gain some

insight about the generalization to the multipartite scenario, but also since the recovery problem

for a tripartite probability distribution given all the three possible bipartite marginals is open

[16–18]. Moreover, moving to the quantum scenario, also the compatibility problem for just a

couple of overlapping marginals is open [19, 20]. We are then going to assume the set of the

two given marginal density operators compatible.
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Figure 1. Graph associated to system of bipartite marginals {ρAB, ρBC}. Each vertex rep-
resents a quantum system to which is associated a density operator by partial tracing the
marginals. The edges correspond to direct correlations between the vertices, associated
to mixed states de�ned over the edge Hilbert space.

2.1. The tripartite case

Let us denote X = {A,B,C}, and assume we are given access to marginals {ρAB, ρBC}. See
the associated graph in �gure 1.

In equation (3), we denote by λkl :=λ
(AB)
kl and ηkl :=λ

(BC)
kl . We then have,

ρ̃ABC =
1

Z
exp




d2
A
−1∑

k=0

d2B−1∑

l=0

k2+l2 6=0

λklΛ
A
kΛ

B
l +

d2B−1∑

k=0

d2
C
−1∑

l=0

k2+l2 6=0

ηklΛ
B
kΛ

C
l


 . (4)

Because for each XiX j, the set {Λ
(Xi)
k ⊗ Λ

(X j)

l : k = 0, . . . , d2i − 1, l = 0, . . . , d2j − 1} forms a

complete set of observables for the bipartite system XiX j, we can write,

ρAB =
1

dAdB
idAB +

d2
A
−1∑

k=0

d2
B
−1∑

l=0

k2+l2 6=0

αklΛ
(A)
k Λ

(B)
l ,

ρBC =
1

dBdC
idBC +

d2
A
−1∑

k=0

d2
B
−1∑

l=0

k2+l2 6=0

βklΛ
(B)
k Λ

(C)
l , (5)

where αkl, βkl ∈ R. Additionally, the constraints imposed by the marginals can be cast in the

form

Tr

[
Λ
(A)
k Λ

(B)
l

(
ρ̃ABC − ρAB ⊗

idC

dC

)]
= 0,

Tr

[
Λ

(B)
k Λ

(C)
l

(
ρ̃ABC −

idA

dA
⊗ ρBC

)]
= 0, (6)

where k and l range in the dimensions of the space of linear operators of the appropriate

subsystem.

From the partition function Z, one can obtain, by differentiation, a system of equations

which allow to solve for the Lagrange multipliers in terms of the known parameters {αkl}
and {βkl}. This is a standard procedure in statistical mechanics. Determining if the optimiza-

tion problem described above has an algebraic solution is not trivial: the Lie operators in the

6
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exponent of equation (4) in general do not commute, which makes the analysis of the con-

straints imposed in equation (6) mathematically hard to manage. Many techniques for over-

coming similar problems are object of study, see for example reference [21] for trace inequal-

ities or references [22, 23] for operator inequalities. Instead, here we focus our attention on a

well-behaved subset of density operators—quantum Markov chains [24]. In the next section,

we recall the de�nition of a quantum Markov chain and prove a necessary and suf�cient

condition for a given pair of bipartite marginals to be compatible with a quantum Markov

chain.

3. Marginals’ compatibility with quantum Markov chains

Definition 2. (Quantum Markov chain [21]). A tripartite state ρABC over HABC is called

a quantum Markov chain (QMC) in order A− B− C if there exists a recovery map

RB→BC : L(HB)→L(HBC) such that

ρABC = (IA ⊗RB→BC) (ρAB), (7)

where a recovery map is an arbitrary trace-preserving completely positive (CPTP) map, see

reference [2], and IA denotes the identity map on L(HA).

A QMC can be characterized from an information-theoretical point of view due to the

following result.

Proposition 2. [25] A tripartite state ρABC is a QMC in the order A− B− C if an only

if Iρ(A : C|B) = 0, where Iρ(A : C|B) := S(ρAB)+ S(ρBC)− S(ρB)− S(ρABC) is the quantum

conditional mutual information.

We recall that in case of classical random variables with �nite domains, when we are given

two bipartite marginals p(A,B) and p(B,C), the compatibility condition
∑

ap(A = a,B = b)

=
∑

cp(B = b,C = c) is necessary and suf�cient for A and C to be independent conditioned

on B, i.e. I(A : C|B) = 0. Then, the set of quantumMarkov chains includes the set of classical

tripartite probability distributions.

Proposition 2 is equivalent to the statement: a QMC A− B− C is a tripartite quantum state

for which the strong subadditivity of the von Neumann entropy,

S(ρAB)+ S(ρBC) > S(ρB)+ S(ρABC), (8)

holds with equality [26], which trivially results in the fact that a QMC A− B− C maximizes

the von Neumann entropy given its two bipartite marginalsAB and BC. Furthermore, the quan-

tum systems A and C are said to be quantum conditionally independent given the quantum

system B.

A QMC always admits as a recovery channel the rotated Petz recovery map [27, 28]:

P t
B→BC(X) :=ρ

1+it
2

BC

(
ρ
− 1+it

2
B Xρ

− 1−it
2

B

)
ρ

1−it
2

BC , for anyX ∈ L(HB), t ∈ R. (9)

In particular, for t = 0, the map is known as the Petz recovery map or transpose map:

7
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PB→BC(X) :=ρ
1
2
BCρ

− 1
2

B Xρ
− 1

2
B ρ

1
2
BC, for anyX ∈ L(HB). (10)

Note that in the previous formulas, ρB and X are understood as elements of L(HBC) by extend-

ing it in the natural way, i.e., ρB ⊗ idC. In reference [21] it is shown that the Petz recovery map

is indeed a recovery map, i.e., a CPTP map.

Our �rst result comes as a natural corollary of the previous stated results.

Theorem 1. Given bipartite marginals {ρAB, ρBC} compatible with a QMC in the order

A–B–C, say ρABC, then the solution of the maximum entropy estimator ρ̃ABC is precisely

equal to ρABC. Moreover, ρ̃ABC can be algebraically recovered via the Petz map PB→BC(·),
concretely:

ρ̃ABC = ρ
1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC. (11)

Remark 2. We can also recover a tripartite density operator from ρBC through PB→AB(·):

ρ
1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB, (12)

and by uniqueness, because the von Neumann entropy is concave, they are the same.

In alternative to the Petz recovery map, in presence of marginals compatible with a QMC,

we can solve ef�ciently the associated optimization problem, i.e., determine the Lagrange

multipliers in equation (4) due to the following result by Petz [29]:

Lemma 1. [29] Assume that ρABC is invertible. Then the equality holds in the strong

subadditivity inequality (SSA) if and only if logρABC − logρAB = logρBC − logρB.

Our next result, provides a necessary and suf�cient condition for the given marginals

{ρAB, ρBC} to be compatible with a QMC. The condition is moreover algebraic, resulting in

being easily veri�able.

Theorem 2. Two bipartite marginals {ρAB, ρBC} are compatible with a QMC inL (HABC) in

the order A− B− C if and only if TrA(ρAB) = TrC(ρBC) and the operatorΘABC = ρ
1
2
BCρ

− 1
2

B ρ
1
2
AB

is normal.

Before giving the proof of theorem 2, we will need one further result.

Theorem 3. ([25]). A tripartite density operator ρABC ∈ L(HABC) satis�es the SSA with

equality, i.e., Iρ(A : C|B) = 0, if and only if there exits a decomposition of the Hilbert space

HB of the form

HB =
⊕
j

HBL
j
⊗HBR

j
, such that ρABC =

⊕
j

pj ρABL
j
⊗ ρBR

j
C, (13)

with pj > 0, for all j,
∑

jpj = 1 and the states ρABL
j
∈ L

(
HA ⊗HBL

j

)
and ρBR

j
C ∈

L
(
HBR

j
⊗HC

)
.

Proof. (⇒) Using compatibility, the following decompositions are a direct consequence of

theorem 3

8
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ρAB =
⊕

j

pj ρABL
j
⊗ ρBR

j
, with ρBR

j
= TrC(ρBR

j
C), (14)

ρBC =
⊕

j

pj ρBL
j
⊗ ρBR

j
C, with ρBL

j
= TrA(ρABR

j
), (15)

ρB =
⊕

j

pj ρBL
j
⊗ ρBR

j
. (16)

It is now trivial to see that TrA(ρAB) = TrC(ρBC), as required. It remains to check that ΘABC is

normal. Notice that, from the above decompositions, we have

ΘABC = ρ
1
2
BCρ

− 1
2

B ρ
1
2
AB

=

(
⊕

j

pj ρBL
j
⊗ ρBR

j
C

) 1
2
(
⊕

k

pk ρBL
k
⊗ ρBR

k

) − 1
2
(
⊕

l

pl ρABL
l
⊗ ρBR

l

) 1
2

=
⊕

j

pjρ
1
2

ABL
j

⊗ ρ
1
2

BR
j
C
. (17)

and also

Θ
†
ABC =

(
ρ

1
2
BCρ

− 1
2

B ρ
1
2
AB

)†

= ρ
1
2
ABρ

− 1
2

B ρ
1
2
BC =

⊕

j

pj ρ
1
2

ABL
j

⊗ ρ
1
2

BR
j
C
= ΘABC, (18)

hence we conclude that ΘABC is self-adjoint, therefore normal.

(⇐) Consider the operator

̺ABC = ΘABCΘ
†
ABC = ρ

1
2
BCρ

− 1
2

B ρABρ
− 1

2
B ρ

1
2
BC. (19)

We have:

(a) ̺ABC is a density operator overHABC. This can be seen from the fact that the map

PB→BC :L(HB)→L(HBC)

σ 7→ ρ
1
2
BCρ

− 1
2

B σρ
− 1

2
B ρ

1
2
BC (20)

is a CPTP map, as mentioned above, and it extends to a CPTP map IA ⊗ PB→BC which

yields, when applied to ρAB, ̺ABC.

(b) ̺ABC is compatible with {ρAB, ρBC}. Indeed, we have,

TrA(̺ABC) = ρ
1
2
BCρ

− 1
2

B TrA (ρAB) ρ
− 1

2
B ρ

1
2
BC = ρ

1
2
BCρ

− 1
2

B ρBρ
− 1

2
B ρ

1
2
BC = ρBC, (21)

where we have used TrA(ρAB) = ρB. Moreover, since ΘABC is normal and TrC(ρBC) = ρB,

we have,

TrC(̺ABC) = TrC(ΘABCΘ
†
ABC) = TrC(Θ

†
ABC ΘABC)

= TrC

(
ρ

1
2
ABρ

− 1
2

B ρBCρ
− 1

2
B ρ

1
2
AB

)
= ρAB. (22)

(c) By (a) and (b) and de�nition 2, ̺ABC is a QMC. �

9
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From theorem 2, we have the following corollary:

Corollary 1. The space of pairs of bipartite marginals {ρAB, ρBC} which is compatible with
a QMC is strictly included in the space of pairs of bipartite marginals {ρAB, ρBC} which are
compatible.

The last statement seems rather intuitive, but cannot be seen immediately due to the fact

that the quantum marginal problem, also for two overlapping marginals, is open. To provide a

counter-example, we numerically generated a random 3-qubit density matrix, from which we

obtained two compatible marginals via partial trace. Then, we check the compatibility con-

dition with a quantum Markov chain in theorem 2, given the two marginals. We repeat the

process until the latter conditions fails.

4. Quantum Bayesian updating

The principle of minimum discrimination information [30, 31], is intrinsically related to the

maximum entropy principle and it is at the base of inferential updating of probability dis-

tributions. Given a prior joint probability distribution qX describing the random variables

X := {X1 . . . ,Xn} and an additional set of new information about the system, the most unbi-

ased posterior pX corresponds to the one that minimizes the Kullback–Leibler divergencewith

the prior distribution under the constraints given by the additional information. If the prior is

the most un-informative one, i.e. the uniform distribution, then the problem is equivalent to

�nding the probability distribution that maximizes the Shannon entropy with the given con-

straints. In reference [32], the choice of the Kullback–Leibler divergence as a functional for

inferential updating is explained in light of the maximum entropy principle and some designed

criteria.

The learning problem for multipartite quantum states we are proposing here can be stated a

multiple-step inferential updating procedure, where starting from the uniform distribution, i.e.

the maximally mixed state, the marginals are the additional information set available at each

step.

In reference [33], a generalization to the quantum realm of the Bayesian updating procedure

is proposed. The Kullback–Leibler divergence is generalized by the von Neumann relative

entropy, not by mere replacement, but deriving it from the same designed criteria and the

maximum (von Neumann) entropy principle.

Definition 3 (Quantum Bayesian updating). Given a quantum system X = {X1, . . . , Xn}
described by the joint Hilbert space HX =

⊗n
i=1HXi , let ̺X ∈ L(HX ) be our a prior knowl-

edge about it, and {〈Θ j〉} j∈J a set of expectation values corresponding to a set of observables

{Θ j} j∈J be the additional set of information. Then, via the principle of minimum updating, the

posterior density operator assumes the form

ρX = exp

(
λ idX +

∑

j∈J

α jΘ j + log ̺X

)
, (23)

where the Lagrangemultipliers λ and {α j} j∈J are determined by the constraints Tr(ρ) = 1 and

Tr(ρΘ j) = 〈Θ j〉, j ∈ J. We indicate the updating process of equation (23) by the diagram

̺X
{Θ j,〈Θ j〉} j∈J
−−−−−−−−→ρX . (24)

10
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Observing that S(ρX ) = −S(ρX‖
idX
dX

), it follows that the maximum entropy density operator

of equation (4) is equivalent to the output of the process:

idABC

dABC

{ρAB,ρBC}−−−−−−→ρ̃ABC. (25)

We could split the updating process into two processes, i.e:

idABC

dABC

ρAB−−→σ̃′
ABC

ρBC−−→σ̃ABC, (26)

or

idABC

dABC

ρBC−−→ ˜̺′ABC
ρAB−−→ ˜̺ABC, (27)

and, classically, one can show, all these updating processes, equations (25)–(27), are equiv-

alent. However, in the quantum scenario, this is not the case due to the non-commutative

nature of the observables involved. In reference [34], it is shown that, in contrast to the clas-

sical case, where the conditional mutual information is always a measure of the distance

of a tripartite quantum state to a general Markov chain, in the quantum case it is not. In

particular,

Iρ(A :C|B) > S(ρABC‖RB→BC(ρAB)), (28)

whereRB→BC(·) is an arbitrary recoverymap. Recently, tighter versions of the above inequality

have been the object of study by several authors [35]. The equality holds when Iρ(A :C|B) = 0,

i.e., for a QMC. The fact that the three above processes, equations (25)–(27), lead to different

density operators corresponds to the non-commutativity of a diagram. Moreover, in the next

theorem we provide necessary and suf�cient conditions for the diagram to commute, which

provides a characterization of QMCs in terms of QBU.

Theorem 4. Given a set of marginals {ρAB, ρBC}, we then have a commutative diagram of

quantum Bayesian updating processes:

if and only if they are compatible with a QMC in the order A− B− C.

To provide a proof of this theorem we will need the following lemma.

Lemma 2. [22, 23] Given a tripartite quantum state ρABC ∈ L(HABC) compatible with

{ρAB, ρBC}, the following operator-inequalities hold:

(a) TrAB[ρABC(logρABC − logρAB + logρB − logρBC)] � 0,

(b) TrAB[ρAB(logρAB − logρABC − logρB + logρBC)] � 0,

where the equality holds if and only if ρABC is a QMC in the order A− B− C. Above, � 0

stands for positive semide�nite.

11
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Proof. (⇐) We will now show that if {ρAB, ρBC} is compatible with a QMC ρ̃ABC in the order

A− B− C, then σ̃ABC = ˜̺ABC = ρ̃ABC.

Using the fact that S(ρ) = −S(ρ‖ idABC
dABC

), the �rst step of the updating process is obtained by

maximizing the von Neumann entropy, yielding

σ̃′
ABC = ρAB ⊗

idC

dC
and ˜̺′ABC =

idA

dA
⊗ ρBC. (29)

Recalling that Comp(ρBC) := {ρABC ∈ L (HABC) : TrA(ρABC) = ρBC}. Then

σ̃ABC = argmin
ρABC∈Comp(ρBC)

S(ρABC‖σ̃
′
ABC). (30)

It then follows that, since ρ̃ABC ∈ Comp(ρBC),

S

(
ρ̃ABC‖ρAB ⊗

idC

dC

)
> S

(
σ̃ABC‖ρAB ⊗

idC

dC

)
. (31)

Analogously, Comp(ρAB) = {ρABC ∈ L (HABC) : TrC(ρABC) = ρAB}. Then

˜̺ABC = argmin
ρABC∈Comp(ρAB)

S(ρABC‖˜̺′ABC). (32)

It then follows that, since ρ̃ABC ∈ Comp(ρAB),

S

(
ρ̃ABC‖

idA

dA
⊗ ρBC

)
> S

(
˜̺ABC‖

idA

dA
⊗ ρBC

)
. (33)

The SSA inequality can be obtained as a special case as the contractibility property of the

quantum relative entropy under CPTP maps [36, 37]:

S(ρ‖σ) > S(Φ(ρ)‖Φ(σ)), for all ρ, σ andΦ a CPTmap. (34)

Indeed, set ρ = ρABC ∈ Comp(ρAB) ∩ Comp(ρBC), then:

(a) For σ = ρAB ⊗
idC
dC

and Φ(·) = TrA(·), we get

S

(
ρABC‖ρAB ⊗

idC

dC

)
> S

(
ρBC‖ρB ⊗

idC

dC

)
. (35)

(b) For σ =
idA
dA

⊗ ρBC and Φ(·) = TrC(·), we get

S

(
ρABC‖

idA

dA
⊗ ρBC

)
> S

(
ρAB‖

idA

dA
⊗ ρB

)
. (36)

In both equations (35) and (36) the equality holds for ρABC = ρ̃ABC. Using the inequalities (31)

and (35) with ρABC = σ̃ABC and the equation (35) with ρABC = ρ̃ABC,

12
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S

(
ρ̃ABC‖ρAB ⊗

idC

dC

)
> S

(
σ̃ABC‖ρAB ⊗

idC

dC

)

> S

(
ρBC‖ρB ⊗

idC

dC

)
= S

(
ρ̃ABC‖ρAB ⊗

idC

dC

)
. (37)

It then follows that ρ̃ABC = σ̃ABC.

Analogously, using the inequalities (33) and (36) with ρABC = ˜̺ABC and the equation (36)

with ρABC = ρ̃ABC, we get ρ̃ABC = ˜̺ABC.
(⇒) We will now show that if σ̃ABC = ˜̺ABC then {ρAB, ρBC} is compatible with a QMC ρ̃ABC

in the order A− B− C and ρ̃ABC = σ̃ABC = ˜̺ABC.
To provide explicit representations of σ̃ABC and ˜̺ABC as exponentials of some operators we

write, using invertibility,

ρAB = exp




d2
A
−1∑

i=0

d2B−1∑

j=0

Ai jΛ
(A)
i ⊗ Λ

(B)
j


 ,

ρBC = exp




d2B−1∑

i=0

d2
C
−1∑

j=0

Ci jΛ
(B)
i ⊗ Λ

(C)
j


 , (38)

for {Ai j} and {Bi j} real coef�cients. For convenience, we also de�ne the partition functions

ZAB = exp(−A00) and ZBC = exp(−C00). (39)

We then have, using de�nition 3,

σ̃ABC = exp




d2B−1∑

i=0

d2
C
−1∑

j=0

ηi jΛ
(B)
i Λ

(C)
j + log σ̃′

ABC


 . (40)

where {ηi j} are the Lagrange multipliers in the de�nition. After some algebra, we can write

log σ̃ABC = (η00 − log ZBC − log dC) idABC +

d2B−1∑

i=0

d2
C
−1∑

j=1

ηi jΛ
(B)
i Λ

(C)
j

+

d2
A
−1∑

i=1

d2B−1∑

j=0

Ai jΛ
(A)
i Λ

(B)
j +

d2B−1∑

i=1

(A0i + ηi0)Λ
(B)
i . (41)

Similarly,

˜̺ABC = exp




d2
A
−1∑

i=0

d2B−1∑

j=0

λi jΛ
(A)
i Λ

(B)
j + log ˜̺′ABC


 . (42)

where {λi j} are the Lagrange multipliers in the de�nition. After some algebra, we can write

13
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log ˜̺ABC = (λ00 − log ZAB − log dA) idABC +

d2
A
−1∑

i=1

d2
B
−1∑

j=0

λi jΛ
(A)
i Λ

(B)
j

+

d2B−1∑

i=0

d2
C
−1∑

j=1

Ci jΛ
(B)
i Λ

(C)
j +

d2B−1∑

i=1

(Ci0 + λ0i)Λ
(B)
i . (43)

Since σ̃ABC = ˜̺ABC, by hypothesis, it follows that log σ̃ABC = log ˜̺ABC and, hence,

η00 − log ZBC − log dC = λ00 − log ZAB − log dA, (44)

Ai j = λi j, for i = 1, . . . , d2A − 1 and j = 0, . . . , d2B − 1, (45)

Ci j = ηi j, for i = 0, . . . , d2B − 1 and j = 1, . . . , d2C − 1, (46)

A0i + ηi0 = Ci0 + λ0i, for i = 1, . . . , d2B − 1. (47)

Observing that,

d2
A
−1∑

i=1

d2B−1∑

j=0

λi jΛ
(A)
i Λ

(B)
j = log ρAB − log ZABidAB −

d2B−1∑

i=1

A0iΛ
(B)
i , (48)

d2B−1∑

i=0

d2
C
−1∑

j=1

ηi jΛ
(B)
i Λ

(C)
j = log ρBC − log ZBCidBC −

d2B−1∑

i=1

Ci0Λ
(B)
i , (49)

it follows that the two reconstructed states can be written as

log σ̃ABC = log ρAB + log ρBC + (η00 − log ZBC − log dC) idABC +

d2B−1∑

i=1

(ηi0 − Ci0)Λ
(B)
i , (50)

log ˜̺ABC = log ρAB + log ρBC + (λ00 − log ZAB − log dA) idABC +

d2B−1∑

i=1

(λ0i − A0i)Λ
(B)
i . (51)

We now de�ne the Hermitian operator θB by the following two equivalent formulas (conse-

quence of log σ̃ABC = log ˜̺ABC):

log θB := (η00 − log ZBC − log dC) idB +

d2B−1∑

i=1

(ηi0 − Ci0)Λ
(B)
i

= (λ00 − log ZAB − log dA) idB +

d2B−1∑

i=1

(λ0i − A0i)Λ
(B)
i . (52)

Observe that θB can, as usual, be extended by tensoring with the relevant identity maps to

the whole Hilbert space HABC. We conclude that σ̃ABC = ˜̺ABC implies the existence of an

Hermitian θB such that

14
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log σ̃ABC = log ρAB + log ρBC + log θB = log ˜̺ABC. (53)

Plugging in ρABC = σ̃ABC and its logarithm as in equation (53), in lemma 2, we get:

(a) TrB[ρBC(log ρB + log θB)] � 0,

(b) −TrB[ρB(logρB + log θB)]idC � 0.

The second inequality is equivalent to TrB[ρB(logρB + log θB)] 6 0. By tracing overC the �rst

inequality we get TrB[ρB(log ρB + log θB)] > 0. Therefore,

TrB[ρB(log ρB + log θB)] = 0. (54)

From this equation, observing that ρB = TrAC(σ̃ABC), we can write

TrB[TrAC(σ̃ABC)(log ρB + log θB)] = TrABC[σ̃ABC idA ⊗ (log ρB + log θB)⊗ idC] = 0. (55)

Adding and subtracting both log(ρAB)⊗ idC and idA ⊗ log(ρBC), which for simplicity we write

without the identity factors, we get

TrABC[σ̃ABC (log σ̃ABC + log ρB − log ρAB − log ρBC)] = 0, (56)

and this equation is equivalent to Iρ(A :C|B) = 0, i.e., equivalent to the statement that the SSA

inequality holds with equality. �

5. Best two out of three

In section 3, we provided a way of ef�ciently reconstructing a tripartite quantum state given

two of its bipartite marginals subject to the compatibility condition—theorems 1 and 2. In

general, if we are given the three possible bipartite density operators, we still have a residual

degree of freedom, namely, the choice of the pair of bipartite density operators from which

one will recover the tripartite estimator. We are going to show that the best tripartite maxi-

mum von Neumann entropy estimator is the one out of three with minimum von Neumann

entropy—theorem 5.

Theorem 5. Let ρ ∈ L(HABC) be an unknown quantumstate describing a tripartite quantum

system ABC. Given the bipartite marginals {ρAB, ρBC, ρAC}, we de�ne C = {ρXY , ρYZ} with
X, Y, Z ∈ A,B,C to be one of the three possible pairs of marginals, and ρ̃C ∈ Comp(C) to be
the maximum von Neumann entropy estimator. Then ρ̃ minimizing the relative entropy with

respect to the unknown state ρABC is the one with minimum von Neumann entropy

ρ̃ = argmin
C

S (ρ̃C) . (57)

Proof. By linearity of the trace, the von Neumann relative entropy between ρABC and ρ̃C :

S(ρABC‖ρ̃C) = −S(ρABC)− Tr[ρABC log ρ̃C]. (58)

ρ̃C has the form derived in equation (4). Then, there exist Hermitian operators θXY ∈ L(HXY),

θYZ ∈ L(HYZ) and θY ∈ L(HY) (naturally extended to act on the joint Hilbert space) such

that:

15



J. Phys. A: Math. Theor. 53 (2020) 185301 S Di Giorgio et al

log ρ̃C = θXY + θYZ + θY . (59)

Plugging in (59) in (58) and using the fact that both ρABC and ρ̃XYZ are in the compatibility set

of C, it immediately follows that

S(ρABC‖ρ̃C) = S (ρ̃C)− S(ρABC). (60)

Since the term S(ρABC) is independent on the choice of C:

ρ̃ = argmin
C

S(ρABC‖ρ̃C) = argmin
C

S (ρ̃C) . (61)

�

The estimator we are proposing here is then:

ρ̃ = argmin
C

max
ρ∈Comp(C)

S (ρ) . (62)

At this level, the ef�ciency of the choice of the optimal set of marginals is strictly related

to the number of possibilities, which makes the direct generalization to the multipartite sce-

nario inef�cient. As we are going to see in detail in section 6, the number of possible choices

increases exponentially with the number of variables. The Chow–Liu learning algorithm [10],

solves the problem in the case of probability distributions. The next corollary generalizes the

Chou–Liu main argument to QMCs., which will give an hint for the possible generalization of

the Chow–Liu algorithm to Markov quantum trees (cf de�nition 6). Moreover, we are going

to see that is suf�cient that the compatibility condition with a QMC holds for the estimator

obtained via Chow–Liu algorithm to be the optimal one.

Theorem 6. Having a tripartite quantum system ABC described by an unknown ρ ∈
L(HABC) and given the bipartite marginals {ρAB, ρBC, ρAC}. If for every pair C = {ρXY , ρYZ}
with X, Y, Z ∈ {A,B,C} there exists a QCM in the order X − Y − Z (cf theorem 2), then the

QMC ρ̃XYZ minimizing the relative entropy with respect to the unknown state ρABC is the one

recovered from the pair

C̃ = argmax
C

{Iρ(X : Y)+ Iρ(Y : Z)} . (63)

Proof. Observe that:

S(ρABC‖ρ̃XYZ) = Tr
[
ρABC (log ρABC − log ρ̃XYZ)

]

= −S(ρABC)− Tr
[
ρABC (log ρXY + log ρYZ − log ρY )

]

= −S(ρABC)+ S(ρXY)+ S(ρYZ)− S(ρY), (64)

where in the second line we used lemma 1. Now, adding and subtracting S(ρX), S(ρY) and S(ρZ),

we immediately get

S(ρABC‖ρ̃XYZ) = −
[
Iρ(X : Y)+ Iρ(Y : Z)

]
+

∑

W∈{A,B,C}

S(ρW)− S(ρABC). (65)

Since the two last terms are independent on the choice of pair of bipartites, we get the desired

result. �
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Then, in case all the subsets C are compatible with a QMC, the min–max estimator is the

one obtained excluding from the set of marginals the one with lowest quantum mutual infor-

mation. The compatibility conditions with QMCs are necessary for this result to hold. Indeed,

relaxing the compatibility conditions, now we are going to determine an analoguous form to

equation (65) for a general maximum entropy estimator equation (57).

Take equation (59) and add and subtract S(ρXY), S(ρYZ), S(ρY). We then observe that

(i) S(ρXY)+ S(ρYZ)− S(ρY) = −
[
Iρ(X : Y)+ Iρ(Y : Z)

]
+

∑

W∈{A,B,C}

S(ρW), (66)

(ii) Tr
[
ρABC log ρ̃XYZ

]
= Tr [ρABC (θXY + θYZ + θY )]

= TrXY [TrZ(ρABC)θXY]+ TrYZ [TrX(ρABC)θYZ]+ TrY [TrXZ(ρABC)θY ]

= TrXY
[
TrZ(ρ̃XYZ)θXY

]
+ TrYZ

[
TrX(ρ̃XYZ)θYZ

]
+ TrY

[
TrXZ(ρ̃XYZ)θY

]

= −S(ρ̃XYZ); (67)

(iii) S(ρ̃XYZ)− S(ρXY)− S(ρYZ)+ S(ρY) = −Iρ
(
X : Z|Y

)
(68)

Therefore equation (57) can be rewritten as it follows

S(ρABC‖ρ̃XYZ) = −
[
Iρ(X : Y)+ Iρ(Y : Z)

]
− Iρ

(
X : Z|Y

)
+

∑

W∈{A,B,C}

S(ρW)− S(ρABC). (69)

Comparing equation (69) with equation (65), we can see that, in general, the choice of

the two marginals with maximum mutual informations between the subparts, is not the opti-

mal one for the maximum entropy estimator. Relaxing the compatibility conditions between

just one pair with a QMC, the additional term in equation (69), namely the quantum con-

ditional mutual information of the constructed maximum entropy estimator, Iρ(X : Z|Y), is
different from zero. The result of equation (69) does not lead, at �rst sight, to a simpli�cation of

equation (61).

6. The multipartite case

In the previous sections, while considering the tripartite case, we learned that in order to have

an algebraic recovery procedure, we need to have a tree structure and an additional constraint

regarding the conditional mutual information. It is then natural to suppose that in the gen-

eral multipartite case one would need a set of additional constraints, which generalize the one

obtained previously, and this motivates the following de�nitions.

Definition 4 (Quantum graph and quantum tree). A quantum graph is a triple

(X , {HX}X∈X , ρ,G), where X = {X1, ..., Xn} labels quantum systems described by the asso-

ciated Hilbert spaces HX, X ∈ X , with the n-partite composite system described by HX =

HX1 ⊗ . . .⊗HXn , ρ ∈ L(HX ) is an n-partite density operator and G = (X ,E) is an undirected

graph. Whenever the underlying graph of a quantum graph is a tree, we call the structure a

quantum tree.

Definition 5. Let G = (V ,E) be an undirected graph and let U and W be non overlapping

subsets of V . We say that a subset Z, disjoint from U andW, separates U andW if every path

connecting a vertex in U and a vertex in W necessarily overlaps with Z. We say that Z is a

separator for U andW .
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Definition 6 (Markov quantum�eld andMarkov quantum tree). AMarkov quantum�eld is

a quantum graph (X , {HX}X∈X , ρ,G), where the density operator ρ satis�es the global Markov

property: for all U,W ⊂ X such that there exists a separator Z for U andW then

Iρ(U :W|Z) = 0. (70)

Whenever the underlying graph of a Markov quantum �eld is a tree, we call the structure a

Markov quantum tree.

De�nition 6 includes the most general Markov property, i.e. the global property. Observe

that given a Markov quantum �eld, then any quantum subtree is a quantum Markov tree.

Let ρX ∈ L (HX ) be an unknown density operator that describes an n-partite physical

system labelled by X . Let CT = {ρXiX j , {Xi,X j} ∈ E(T )} a subset of bipartite marginals,

graphically representable by one of its spanning trees T . The quantum state ρ̃CT that max-

imizes the von Neumann entropy under the constraints of compatibility with the marginals

in CT has the form derived in equation (3). Then, there exists a set of Hermitian operators

{θXi ∈ L(HXi ),Xi ∈ V(T )} and {θXiX j ∈ L(HXiX j), {Xi,X j} ∈ E(T )}, naturally extended to act
on the joint Hilbert space, such that:

log ρ̃CT =
∑

{Xi,X j}∈E(T )

θXiX j +

n∑

i=1

θXi , (71)

where degXi is the degree of the node Xi, i.e. the number of edges linked to the node. If the

quantum tree is a Markov quantum tree, then we have,

log ρ̃CT =
∑

{Xi,X j}∈E(T )

log ρXiX j −
n∑

i=1

(deg Xi − 1) log ρXi , (72)

The combinatorial factor is obtained by considering the spanning Markov quantum tree T
over X as a tripartite one on ABC with A = Xi ∈ X , B = X j ∈ X , C = X\{Xi,X j}, where Xi
and X j are chosen such that there are no edges between Xi and any vertices in X\{Xi,X j},
i.e., A− B− C is a Markov quantum tree, for which we can use lemma 1. Then, con-

sider the Markov quantum subtree X\{Xi,X j} as a tripartite quantum tree A′ − B′ − C′ with

A = Xk ∈ X\Xi, B = Xl ∈ X\Xi, C = X\{Xi,Xk,Xl}, apply lemma 1, and iterate the proce-

dure until the remaining subgraph is bipartite. It is then clear that each vertex comes with a

factor of its degree minus one.

The construction above allows for an algebraic recovery of the state by iteratively applying

the Petz recovery map. In the following paragraph, we show that the global Markov condition

results in an ef�cient choice of the best tree.

Choosing the best tree: given an unknown n-partite quantum system, its bipartite correla-

tions can be represented by a complete graph. Its number of possible spanning trees, i.e., tree

subgraphs which include all vertices in the graph, is given by Cayley’s formula [38], nn−2,

which grows exponentially with the number of vertices. Because of this, we can not choose

the best tree ef�ciently. In the classical scenario, one possible solution is to use the Chow–Liu

algorithm [10].

Recall that the Chow–Liu algorithm, cf appendix, provides an ef�cient way to �nd the

optimal tree minimizing the Kullback–Leibler divergence between the actual probability dis-

tribution, p(X1 = x1, . . . ,Xn = xn), and a probability distribution associated to a spanning tree,

18



J. Phys. A: Math. Theor. 53 (2020) 185301 S Di Giorgio et al

pT (X1 = x1, . . . , Xn = xn). In [10], it is shown that the Kullback–Leibler divergence can be

written as:

DK(p, p
T ) = −

∑

{Xi,X j}∈E(T )

I(Xi,X j)+

n∑

i=1

H(Xi)− H(X1, . . . , Xn), (73)

where H(·) is the Shannon entropy and I(Xi,X j) is the classical mutual information between

Xi and X j. The only term that depends on the choice of tree T = (V(T ) = X ,E(T )) is the �rst

one, therefore, minimizing the Kullback–Leibler divergence is equivalent to maximizing

∑

{Xi,X j}∈E(T )

I(Xi,X j), (74)

to which problem the Chow–Liu algorithm provides an ef�cient solution.

The relative entropy between the unknown density operator and one of its quantum tree

maximum entropy estimators can be written as

S
(
ρX‖ρ̃CT

)
= −S (ρX )+ Tr

(
ρX log ρ̃CT

)
= S

(
ρ̃CT
)
− S (ρX ) . (75)

where have used the compatibility conditions to perform a calculation similar to that of

equation (67). It then follows that equation (62) still holds in the n-partite scenario. An alterna-

tive form for equation (75), which generalizes the one obtained byChow andLiu for probability

distributions equation (73), is now derived. Adding and subtracting to equation (75) the terms∑
{Xi,X j}∈E(T )S

(
ρXiX j

)
and

∑n
i=1 (deg Xi − 1) S

(
ρXi
)
, observing that

∑

{Xi,X j}∈E(T )

S
(
ρXiX j

)
−

n∑

i=1

(deg Xi − 1) S
(
ρXi
)
= −

∑

{Xi,X j}∈E(T )

Iρ(Xi,X j)+

n∑

i=1

S
(
ρXi
)
, (76)

and setting

∆S(ρ̃CT ) :=
∑

{Xi,X j}∈E(T )

S
(
ρXiX j

)
−

n∑

i=1

(deg Xi − 1) S
(
ρXi
)
− S(ρ̃CT ), (77)

Equation (75) assumes the form

S
(
ρX‖ρ̃CT

)
= −

∑

{Xi,X j}∈E(T )

Iρ(Xi,X j)−∆S(ρ̃CT )+

n∑

i=1

S
(
ρXi
)
− S (ρX ) . (78)

When∆S(ρ̃C) = 0, again the best tree is the one that maximizes the term

∑

{Xi,X j}∈E(T )

Iρ(Xi,X j). (79)

This last problem can be ef�ciently solved using the Chow–Liu algorithm where the mutual

information on the bipartite subparts is replaced by its quantum generalization.

Next, we are going to study the conditions the correlations inside the given system have to

satisfy in order to have∆S(ρ̃CT ) = 0. Consider the following iterative construction. SinceT is a
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tree, there exists a leaf, i.e., a vertexwith degree 1 call it Xl1 ∈ X and denote by ad(Xl1) its adja-

cent vertex. Set T1 = (V1,E1) :=T . Now consider the chain Xl1 − ad(Xl1)− V1\{Xl1 , ad(Xl1)}.
The associated quantum conditional mutual information reads

Iρ(Xl1 :V1\{Xl1 , ad(Xl1)}|ad(Xl1)) = S
(
ρXl1 ad(Xl1 )

)
+ S

(
ρV1\{Xl1}

)
− S

(
ρad(Xl1 )

)
− S(ρV1).

(80)

Observe that ρV1 = ρ̃CT . Set T2 := (V2,E2), where V2 = V1\{Xl1} and E2 is obtained naturally

fromE1 by dropping {Xl1 , ad(Xl1)}. It is trivial to see that T2 is a tree and, thus, we can �nd a leaf
Xl2 ∈ V2. Consider now the chain Xl2 − ad(Xl2)− V2\{Xl2 , ad(Xl2)}. The associated quantum

conditional mutual information reads

Iρ(Xl2 :V2\{Xl2 , ad(Xl2)}|ad(Xl2)) = S
(
ρXl2 ad(Xl2 )

)
+ S

(
ρV2\{Xl2}

)
− S

(
ρad(Xl2 )

)
− S(ρV2).

(81)

It is now clear that S
(
ρV1\{Xl1}

)
in equation (80) cancels with S(ρV2) upon summing the

two equations. Iteratively, we can build a tree Ti+1 = (Vi+1,Ei+1) from a tree Ti = (Vi,Ei)

with a chosen leaf Xli , by setting Vi+1 = Vi\{Xli} and dropping the edge {Xli , ad(Xli)} from

Ei to obtain Ei+1. This construction can be performed until one obtains the last chain

Xln−2

n−2∑

i=1

Iρ(Xli :Vi\{Xli , ad(Xli)}|ad(Xli))

=

n−2∑

i=1

[
S
(
ρXli ad(Xli )

)
− S

(
ρad(Xli )

)]
+ S

(
ρVn−2\{Xln−2

}

)
− S(ρV1)

=
∑

{Xi,X j}∈E(T )

S(ρXiX j)−
n∑

i=1

(deg(Xi)− 1)S(ρXi)− S(ρ̃CT ), (82)

where we noticed that Vn−2\{Xln−2
} is the last edge missing in the sum on the second line and

also that
⋃n−2
i=1 {ad(Xi)} is X except two vertices that have degree one. Therefore, we have

∆S(ρ̃CT ) =

n−2∑

i=1

Iρ(Xli :Vi\{Xli , ad(Xli)}|ad(Xli)). (83)

This equation shows that ∆S(ρ̃CT ) > 0, because each term in the sum is non-negative. To

proceed, we will apply the chain rule for quantum conditional mutual information:

Iρ(A :C1 . . .Cn|B) =
n∑

j=1

Iρ(A :C j|BC1 . . .C j−1), (84)

where the �rst term in the sum is de�ned to be Iρ(A :C1|B). Motivated by the order appearing

in the Chain rule, we introduce an order in Vi\{Xli , ad(Xli)} = {Xwi( j)}
n−i
j=1, so that
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∆S(ρ̃CT ) =

n−2∑

i=1

Iρ(Xli :Xwi(1) . . .Xwi(n−i)|ad(Xli))

=

n−2∑

i=1

n−i∑

j=1

Iρ(Xli :Xwi( j)|ad(Xli)Xwi(1) . . .Xwi( j−1)). (85)

To have∆S(ρ̃CT ) = 0 is equivalent to having each term in the sum zero.

Proposition 3. The quantity∆S(ρ̃CT ) is always non-negative. It is zero iff

Iρ(Xli :Xwi( j)|ad(Xli)Xwi(1) . . .Xwi( j−1)) = 0, for all j = 1, . . . , n− i and i = 1, . . . , n− 2.

(86)

�

We conclude that if we are given a Markov quantum �eld, then the choice of the best tree

is ef�cient and the recovery procedure is algebraic. Notice that the set of conditions obtained

in proposition 3 is polynomial, namely O(n2), and these are in general weaker than the global

Markov property. This can perhaps be used as a hint towards relaxing the computationally

demanding veri�cation of the global Markov property on the provided marginals.

7. Conclusions and outlook

In this manuscript, we proposed a way to compress a subset of density operators according to a

generalization to the quantum realm of the ‘Jaynes’ max entropy principle, given a chosen set

of partial information. Focusing on the tripartite case, with access to two bipartite marginals,

we provided a necessary and suf�cient algebraic condition for compatibility with a QMC. The

recovery procedure through the Petz map is algebraic and ef�cient. The recovery procedure

goes as follows:

(a) Measure the three bipartite marginals ρAB, ρBC, ρAC;

(b) Check for every couple ρXY , ρYZ with X, Y, Z ∈ {A,B,C} the compatibility condition with

a quantumMarkov chain X − Y − Z (theorem 2);

(c) If for all the three couples of marginals the compatibility holds, compute the quantum

mutual information I(X : Y) and discard the ρXY with minimum I(X : Y);

(d) From the two remaining marginals, via Petz recovery map, construct the min–max

tripartite estimator (theorem 1).

In theorem 6, we provided a new characterization of QMCs in terms of a commutative

diagramof quantumBayesian updating processes. This hints on a possible category-theoretical

characterization of QMCs, which requires further investigation.

Through the notion of a Markov quantum tree, we were able to generalize the Chow–Liu

algorithm to density operators. In fact, the results of this manuscript indicate that the classical

theory of learning probability distributions via maximum entropy estimation can be extended

naturally to Markov quantum trees.

We speculate that, due to the additional term in equation (69) (see the paragraph after), it

might be possible to extend our results to approximate quantumMarkov chains (see reference

[21]), however, one would have to understand if it is possible to have an ef�cient compati-

bility condition, i.e., the analogue of theorem 2 for the case of approximate quantum Markov

chains.
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Wewould like to be able to relax the globalMarkov condition in de�nition 6 and the result of

proposition 3 provides a hint that such relaxation might be possible. This is desirable because,

in general, the global Markov property seems computationally demanding, for a classical com-

puter, to be veri�ed.Another approach,would be to understand if a quantumcomputer can learn

an even wider class of density operators ef�ciently.

Another possible direction towards extending the space of learnable quantum states is to

enlarge the Hilbert space by an ancilla, which would allow to have a QMC, thus, ef�ciently

learnable, however, this ancilla would have to be subject to certain conditions in order not

to end up with a state which would be far from the unknown state in the relative entropy

sense.
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Appendix. The Chow–Liu algorithm

Given a set of random variables V = {X1, . . . ,Xn} for which we have access to the bipartite

correlations described by the joint probability distributions {pXiX j} we can build a weighted

complete graph G whose vertices label the random variables and the edges correspond to

the bipartite probability distributions, pXiX j , weighted by the classical mutual informations

I(Xi,X j), given by

I(Xi,X j) =
∑

xi ,x j

pXiX j(xi, x j) log
pXi (xi)pX j(x j)

pXiX j(xi, x j)
.

The Chow–Liu algorithm allows us to ef�ciently construct the maximum weighted spanning

tree. Explicitly, sort the values {I(Xi,X j) = Iα}
N= 1

2 n(n−1)

α=1 in descending order, I1 > I2 > . . . >

IN , then the algorithm proceeds to build a tree T iteratively as follows:

[Initialization] G0 = (V ,E0) where V = {X1, . . . ,Xn} and E0 = ∅.

[Iterative Step] Let {Xi,X j} be the pair associated to α ∈ {1, . . . ,N}. Build a graph Gα =

(V ,Eα−1), where Eα is obtained as follows

Eα =

{
Eα−1 ∪ {{Xi,X j}}, if Gα = (V ,Eα) is a tree,

Eα−1, otherwise.

The graph GN = T is the desired maximum weighted tree.
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