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Abstract

We study higher order KdV equations from the GL(2, R) = SO(2,1) Lie group point of view. We find
elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main
structure of the trigonometric/hyperbolic/elliptic N-soliton solutions for higher order KdV equations
is the same as that of the original KdV equation. Pointing out that the difference is only the time
dependence, we find N-soliton solutions of higher order KdV equations can be constructed from
those of the original KdV equation by properly replacing the time-dependence. We discuss that there
always exist elliptic solutions for all higher order KdV equations.

1. Introduction

The soliton system is taken an interest in for a long time by considering that the soliton equation is the concrete
example of the exactly solvable nonlinear differential equation [ 1-12]. Nonlinear differential equation relates to
the interesting non-perturbative phenomena, so that studies of the soliton system are important to unveil
mechanisms of various interesting physical phenomena such as those in superstring theories. It is quite
surprising that such nonlinear soliton equations can be exactly solvable and have N-soliton solutions. Then we
have a dogma that there must be the Lie group structure behind the soliton system, which is a key stone to make
nonlinear differential equations exactly solvable.

For the KdV soliton system, the Lie group structure is implicitly built in the Lax operator L = 9% — u(x, t).
In order to see the Lie group structure, it is appropriate to formulate by using the linear differential operator 0, as
the Schrodinger representation of the Lie algebra, which naturally comes to use the AKNS formalism [4] for the

Lax equation

a (1/}1(96, t)) _ (a/z —u(x, r))(wl(x, t))

Ox\ax, )\ =1 —a/2 \ihatx, 0f
Then the Lie group becomes GL(2, R) 2~ SO(2,1) for the KdV equation. An addition formula for elements of this
Lie group is the well-known KdV type Bicklund transformation.

In our previous papers [13—16], we have studied GL(2, R) = SO(2,1) Lie group approach for the unified
soliton systems of KAV /mKdV /sinh-Gordon equations. Using the well-know KdV type Bicklund
transformation as the addition formula, we have algebraically constructed N-soliton solutions from various
trigonometric/hyperbolic 1-soliton solutions [13, 15, 16]. Since the Lie group structure of KdV equation is the
GL(2, R) 22 SO(2,1), which has elliptic solution, we expect that elliptic N-soliton solutions for the KdV equation
can be constructed by using the Bicklund transformation as the addition formula. We then really have
succeeded in constructing elliptic N-soliton solutions [14].

We can interpret this fact in the following way: The KdV equation, which is a typical 2-dimensional soliton
equation, has the SO(2,1) Lie group structure and the well-known KdV type Biacklund transformation can be
interpreted as the addition formula of this Lie group. Then the elliptic function appears as a representation of the
Bicklund transformation. While, 2-dimensional Ising model, which is a typical 2-dimensional statistical
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integrable model, has the SO(3) Lie group structure and the Yang-Baxter relation can be interpreted as the
addition formula of this Lie group. Then the elliptic function appears as a representation of the Yang-Baxter
relation, which is equivalent to the addition formula of the spherical trigonometry [17, 18]. In 2-dimensional
integrable, soliton, and statistical models, there is the SO(2,1)/SO(3) Lie group structure behind the model. As
representations of the addition formula, the Backlund transformation, and the Yang-Baxter relation, there
appears an algebraic function such as the trigonometric/hyperbolic/elliptic functions, which is the key stone to
make the 2-dimensional integrable model into the exactly solvable model.

In this paper, we consider Lax type higher order KdV equations and study trigonometric/hyperbolic/elliptic
solutions. So far special hyperelliptic solutions for more than the fifth order KdV equation have been vigorously
studied by formulating it into the Jacobi’s inversion problem [19-24]. Since the Lie group structure GL(2, R) =~
SO(2,1) and the Backlund transformation are common even for higher order KdV equations, we expect that
there always exist elliptic solutions even for higher order. Then we study to find elliptic solutions up to the ninth
order KdV equation, instead of special hyperelliptic solutions. We would like to conclude that we always have
elliptic solutions for all higher order KdV equations.

As the application of the third order KdV equation, this equation is first obtained in the analysis of shallow
water solitary wave [25]. Even recently, the third order KdV equation becomes important in the analysis of
various non-linear phenomena. For example, in the recent interesting works, the third order KdV equation
comes out in the analysis of the non-linear acoustic solitary wave in the electron-ion plasma [26-29]. As the
application of the higher order KdV equation, some special fifth order KdV equation(KdV5), which is different
from the Lax type equation, is recently experimentally and theoretically interested in. This KdV5 equation
comes out in the analysis of various non-linear phenomena, such as cold collisionless plasma [30], gravity-
capillary wave [31], shallow water wave with surface tension [32] etc. Theoretically, it is shown that Camassa-
Holm equation is transformed into this KdV5 equation [33, 34] and multi-soliton solutions is obtained [35]. In
this way, the KdV equation becomes important in the analysis of various non-linear phenomena.

The paper is organized as follows: In section 2, we study trigonometric/hyperbolic solutions for higher order
KdV equations. We construct elliptic solutions for higher order KdV equations in section 3. In section 4, we
consider the KdV type Backlund transformation as an addition formula for solutions of the Weierstrass type
elliptic differential equation. In section 5, we study special 1-variable hyperelliptic solutions, and we discuss a
relation between such special 1-variable hyperelliptic solutions and our elliptic solutions. We devote a final
section to summarize this paper and to give discussions.

2. Trigonometric/hyperbolic solutions for the Lax type higher order KdV equations

Lax pair equations for higher order KdV equations are given by

8¢ == B2n+11/}> (22)
Otyni1

where L = 02 — u. By using the pseudo-differential operator 9, ', B,,, | are constructed from L in the form
[36,37]

- (£2n+1)20 _ ain-&-l _ %uain—l + e (2.3)
with
L=D2=9 - Lot Bxpg2
R

where we denote ‘>0’ to take positive differential operator parts or function parts for general pseudo-differential
operators. The integrability condition gives higher order KdV equations

OL
Otans1

= [Ban+1> L] (2.4)

As these higher order KdV equations comes from the Lax formalism, these higher order KdV equations are
called the Lax type. There are various higher order KdV equations such as the Sawada-Kotera type, which is the
higher order generalization of the Hirota form KdV equation [38]. As operators B,, 1 are constructed from L,
higher order KdV equations also have the same Lie group structure GL(2, R) = SO(2,1) as that of the original
KdV(=third order KdV) equation. Using u = z,, the KdV type Bicklund transformation is given in the form

2
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' a> | (@ =2
Zy + 2y = 5 + 5 , (2.5)
which comes from equation (2.1) only, so that it is valid even for the higher order KdV equations. In the Lie
group approach to the soliton system, if we find 1-soliton solutions, we can construct N-soliton solutions from
various 1-soliton solutions by the Bicklund transformation equation (2.5) as an addition formula of the Lie
group.

For 1-soliton solution of equation (2.4), if xand f,,, ; | come in the combination X"tV = ax + (t],,, + 6,
thenif v = 1, the right-hand side of equation (2.4) is a function of only X, while the left-hand side is a function of X
and t. Therefore, v = 1is necessary, thatis, X = ax + 0,1 + 8. N-soliton solutions are constructed from various
1-soliton solutions by the Backlund transformation. Then the main structure of N-soliton solutions, which are
expressed with X "™V, (i = 1, 2,---, N), takes the same functional forms in higher order KdV equations and in the
original KdV equation. The difference is only the time dependence of X; = a,;x + Gitapr1 + 6 (i = 1, 2,-+-, N),
that s, coefficients ;. This is valid not only for the trigonometric/hyperbolic N-soliton solutions but also for elliptic N-
soliton solutions.

For the trigonometric/hyperbolic N-soliton solutions, we can easily determine the time dependence
without knowing details of By, ;. For dimensional analysis, we have [0,] = M, [u] = M? in the unit of mass
dimension M. Further, we notice that [B,,, 1, L] does not contain differential operators but it contains only
functions. Then we have

ou

= 92y + O@?). (2.6)
Otans1

As equation (2.6) is the Lie group type differential equation, we take the Lie algebraic limit. Putting u = €1 first,
equation (2.6) takes in the form

oil

= €0 + O(e2?), (2.7)
Otyni1

€

and afterwards we take the limit ¢ — 0, which gives
Ol

= 93"ty (2.8)
Otant1 *

Then for trigonometric/hyperbolic solutions, we see that x and f,,, ;| come in a combination X; = a;x + ¢ —

X; = ajx + a?" " 'ty,,1 + 6 for 1-soliton solutions. In this way, the time-dependence for trigonometric/

hyperbolic solutions is easily determined without knowing details of B, . We can then obtain trigonometric/

hyperbolic N-soliton solutions for the (21 + 1)-th order KdV equation from the original KdV N-soliton

solutions justby replacing X® = a;x + a’t; + & — X"V = a;x + a?" Mty + 6, (=1, 2,-,N).
For example, the original third order KdV equation is given by’

Uy, = Usx — Ollly, (2.9)
and the fifth order KdV equation is given by [38],
Up, = Usy — 10uuzy — 20Uyt + 30uu,. (2.10)

These two equations look quite different, but the 1-soliton solution for the third order KdV equation is given
by z = —atanh((ax + a’ + &) /2), while 1-soliton solution for the fifth order KdV equation is given by z =
—a tanh((ax + a’t + 8)/2). In this way, even for any N-soliton solutions, we can obtain the fifth order KdV
solution from third order KdV solution justby replacing X® = a;x + a’t + & — X = a;x + al’t + 6.
See more details in the Wazwaz’s nice textbook [38].

However, as we explain in the next section, the way to determine the time dependence by taking the Lie
algebraic limit does not applicable for elliptic solutions.

3. Elliptic solutions for the Lax type higher order KdV equations

We consider here elliptic 1-soliton solutions for higher order KdV equations up to ninth order. We first study
whether higher order KdV equations reduces to differential equations of the elliptic curves. If a differential
equation of the elliptic curve exists, via dimensional analysis, [0,] = M, [u] = M?, [ks] = M?, [k] = M?,
[k] = M*,and [ky] = M®, that must be the differential equation of the Weierstrass type elliptic curve

u? = kyud + ku? + ku + ko, 3.1

5 .
We use the notation u, = Ou, tp, = 0%u,---, throughout the paper.
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where k;(i = 0, 1, 2, 3) are constants. We cannot use the method to take the Lie algebraic limit to find the time
dependence of the elliptic 1-soliton solution, because we cannot take # — 0 as ko = 0 is essential in the elliptic
case. By differentiating equation (3.1), we have the following relations;

Uy = %sz + kou + %kl, (3.2a)

Uz, = 3ksuu, + kyuy, (3.2b)

Uge = 3kttt + 3ksu e + kytiny, (3.20)

Usy = ks, iy, + 3ksuuz, + kyuzy, (3.2d)

Ugx = 12ksui iz, + kst + 3ksutiyy + kotisy, (3.2¢)

Uz = 30kt iz + 15k3u g, + 3kzuus, + kytisy, (3.2f)

gy, = 45kstiny sy + 30ksus,? + 18ksttis, + 3ksutiey + kotigy. (3.29)

3.1. Elliptic solution for the third order KdV(original KdV) equation
The third order KdV (original KdV) equation is given by

Uy, = Uz — 6uuy = (tpy — 3u?),. (3.3)
We consider the 1-soliton solution, where x and ¢ come in the combination X = x + ct3 + 8, then we have
k
Uy — 3U% — c3u = ?1, (3.4)
where k; /2 is an integration constant. Further multiplying u, and integrating, we have the following differential
equation of the Weierstrass type elliptic curve
u? = 2ud + ku® + ku + ko, (3.5)

where ks, ki, and kg are constants and ¢; is determined as ¢; = ky, which gives the time-dependence of the
1-soliton solution. If we put o = u/2 + k; /12, we have the standard differential equation of the Weierstrass o
function type

Pr =140’ — £0 — & (3.6)

with
& = k?/12 — k /2, (3.7a)
g = —k?/216 + kik, /24 — ko /4. (3.7b)

Elliptic 1-soliton solution is given by

k

ux, t5) = u(X?) = 2p(X®) - p (3.8)

with
X(3):X+ 3t + (S, C3 = kz.
We sketch the graphs of the third order KdV solution in figure 1.
It should be noted that we must parametrize the differential equation of the Weierstrass type elliptic curve by
k,, k1, and ko instead of g, and gz, because coefficients ¢, in higher order KdV equations, which determine the

time dependence, are expressed with k», k;, and ky. According to the method of our previous paper, if we find
various 1-soliton solutions, we can construct N-soliton solutions [14].

3.2. Elliptic solution for the fifth order KdV equation
The fifth order KdV equation is given by [38],

s, — (g — 10Uy, — 5u,® + 10u®), = 0. (3.9)
We consider the elliptic solution, where x and t5 come in the combination of X = x + c¢sts + 8, which gives
csu — (Ugy — 10Uy, — 5u,> + 10u°) + C =0, (3.10)

where Cis an integration constant. We will show that the above equation reduces to the same differential
equation of the Weierstrass type elliptic curve equation (3.1). Substituting equation (3.1), - -+, and equation (3.2¢)
into equation (3.10) and comparing coefficients of u?, 1%, u', and u°, we have 4 conditions for 6 constants

ks, ky, ki, ko, ¢s5,and Cin the form
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Figure 1. The third order KdV solution. The red line shows u(x,0) and the blue line shows u(x,1) with kg = 1.2,k; = —1.6,k, = 0.8,

6 = 0. We can see the time-dependence.
107 k
Ko °

XAV Ve

Figure 2. The fifth order KdV solution. The red line shows u(x, 0) and the blue line shows u(x,1) with ko = 1.2,k; = —1.6,k, = 0.8,
& = 0. We can see the difference of the time-dependence between the third order solution and the fifth order solution.

wn

i) (ks — 2)(3k; — 2) = 0, (3.11a)
i) k(s —2)=0, (3.11b)
iii) 5= (9%;/2 — 10)k + k2, (3.11¢)
iv) C= (3ks — 5ko + kk /2. (3.11d)
Then we have two solutions
) k=2, k,hk,ko:arbitrary, =k +k? C=ky+ kk/2, (3.12)
m k= % k=0, Ky ko:arbitrary, ¢ ——7k, C— —3k. (3.13)

We here take the most general solution, i.e., I) case, which gives the same differential equation of the elliptic
curve u,> = 2u® + ku? + k*u + ko asthat of the third order KdV equation equation (3.5) and cs is determined
ascs = —k + k2. Elliptic 1-soliton solution is given by

ulx, t5) = u(X®) = Zp(X(S)) — %,

(3.14)
with
X(S) =x+ C5t5 + 6, C5 = —kl + k22.

We sketch the graphs of the fifth order KdV solution in figure 2.
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3.3. Elliptic solution for the seventh order KdV equation
The seventh order KdV equation is given by [38],

u, — (ugy — ldung, — 28u,us, — 21up? + 70u?uy, + 70uu,? — 35ut), = 0. (3.15)
In this case, assuming that x and #; come in the combination of X = x + ¢t; + 6, we have
ou — (ugy — 14uuy, — 28u s, — 21up? + 700y + 70uu,> — 35u*) + C = 0. (3.16)

Repeatedly substituting equation (3.1), - - -, and equation (3.2¢) into equation (3.16) and comparing coefficients
of u*, 13, u?, u', and u°, we have 5 conditions for 6 constants k3, k, k;, ko, ¢, and C of the form

) (ks — 2)3ks — 2)(3ks — 1) = 0, (3.17a)

i) ky(ks — 2)3ks — 2) = 0, (3.17b)

i) k(ks — 2)(6ks — 5) + 3k2(ks — 2) = 0, (3.17¢)

iv) = (45k? — 126ks + 70)ko + (27ks — 56)kik, + k>3, (3.17d)
v)  C = (15ks — 28)koks + (93 — 21)ki2/4 + kik2/2. (3.17¢)

Then we get 3 solutions

I) k3 = 2, kz, k], ko : arbitrary, G = *Zko — 2k1k2 —+ k23,

C = 2koky — 3k%/4 + kik?*/2, (3.18)

H) k3 = 2/3, k1 = 3k22, kz, k() : arbitrary, G = 6k() — 113k23,
C = —18koky — 129k,%/4, (3.19)
nn k=1/3, k=0, k=0, ky:arbitrary, ¢ =33k, C=0. (3.20)

We take the most general solution i.e., I) case, which is the same differential equation of the elliptic curve as that
of the third order KdV equation equation (3.5) and ¢; is determined as ¢ = —2ko — 2kjk, + k>, Elliptic
1-soliton solution is given by

k
u(x, t7) = u(X7) = 2p(X7) — f (3.21)
with
X(7) =X+ gty + 6, G = *Zko — 2k1k2 + k23.

3.4. Elliptic solution for the ninth order KdV equation
The ninth order KdV equation is given by [39],

Uy, — (uge — 18uugy — 54uyusy — 114Uy uiye — 69us,® + 126Uy, + 504un, usy

+ 462u, %1y + 378utn? — 630u?u,’ — 420uu,, + 126u°), = 0. (3.22)
Assuming that x and ty come in the combination of X = x + cyt9 + 6, we have

cott — (ugy — 18uttgy — 54ucus, — 114ty tisy — 693> + 1261%Ugy + 50411, sy

+ 462U,y + 378uty? — 6301’ — 420uu,, + 126u°) + C = 0. (3.23)

Substituting equation (3.1), ---, and equation (3.2¢) into equation (3.23) and comparing coefficients of 1%, u*, 1,
12, u!, and 1°, we have 6 conditions for 6 constants ks, k», k1, ko, ¢, and Cin the following form

i) (ks — 2)(3ks — 2)(3ks — 1)(5ks — 1) = 0, (3.24a)
i)  k(ks — 2)(3ks — 2)(3ks — 1) = 0, (3.24b)
i) k(ks — 2)(3ks — 2)(9%; — 4) + 7k2 (ks — 2)(3ks — 2) = 0, (3.24c)
iv)  3ko(ks — 2)(225k;? — 252ks + 70) + ky(k; — 2)(720k ks — 546k + 85k,%) = 0, (3.24d)
V) co = (675k3> — 1836k; + 966)kok, + (378k;2 — 1080k; + 651)k%/2 + (243ks — 492)kik,?/2 + k*,
(3.24¢)

vi)  C = (297k;® — 828k; + 462)kok; /2 + (63ks — 123)koky? + (27ks — 57 ki*k, /2 + kik® /2. (3.24f)
Then we obtain 4 solutions

D) ks=2, k,k,ko: arbitrary, cg = —6koky + 3k12/2 — 3k1k22 + k24,
C = —3koky + 3kok® — 3k’ky /2 + kk/2, (3.25)
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1) ks=2/3, ko= (66kk, — 85k>)/6, ki, ki : arbitrary,
co = (99k? + 594k k2 — 1188k%) /2, C = (423k’%k, — 2376k k> + 2295k,°) /2, (3.26)
11I) ks=1/3, k=7k? ko= 187k?/3, ky arbitrary, cq= 33462k*,
C = 40248k,>, 3.27)
IV) ks=1/5, k=0 k=0 k=0 co=0C=0. (3.28)
We take the most general solution i.e., I) case, which gives the same differential equation of the elliptic curve as

that of the third order KdV equation equation (3.5), and ¢y is determined as
cg = —6kok, + 3k%/2 — 3kik? + k*. Elliptic 1-soliton solution is given by

u(x, 1) = u(X®) = 2p(X®) — % (3.29)

with
X(g) = X + Cc9tg + (S, Cg = *6k0k2 + 3k12/2 — 3k1k22 + k24.

In this way, even for higher order KdV equations, the main structure of the elliptic solution, which is
expressed by X"+, takes the same functional form except the time dependence, that s, ¢, 1 in
XCmtD = x + 6, 1tans1 + 6. Compared with the trigonometric/hyperbolic case, ¢, + | becomes complicated
for elliptic solutions of higher order KdV equations.

In the general (21 + 1)-th order KdV equation, by dimensional analysis [1,,,] = [t"T!] = M?"+2,
integrated differential equation gives the (n + 1)-th order polynomial of u1. Then the number of the conditions
isn + 2, while the number of constants is 6. So, n > 5 becomes the overdetermined case, but we expect the
existence of the differential equation of the elliptic curve for more than eleventh order KdV equation owing to
the nice SO(2,1) Lie group symmetry. Although the existence of such elliptic curve is a priori not guaranteed, we
will show later that the elliptic solutions really exist for all higher order KdV equations.

4. Bicklund transformation for the differential equation of the elliptic curve

Here we will show that the Bicklund transformation connects one solution to another solution of the same
differential equation of the Weierstrass type elliptic curve. The Lie group structure of KdV equation is given by
GL(2, R) >~ SO(2,1) and the Bicklund transformation can be considered as the self gauge transformation of this
Lie group. We consider two elliptic solutions for the KdV equation, that is, two solutions u'(x, t3) and u(x;, t;) for
ut'3 — g + 60/, = Oand u,, — Uy + 6uu, = 0. We put the time dependence in the forms;

X' = x + cits + &8 for u'(x, t;) and thatof X = x + c3t; + & for u(x, t3). In order to connect two solutions
by the Backlund transformation and to construct N-soliton solutions, ¢; and c; must take the same common
value. By integrating twice, we have the same differential equation of the elliptic curve

ul? = 2u” + ku? + ku' + ko, (4.1)
el =21 + kou? + ku + ko, (4.2)

with same coefficients ky, k;, and ko, where we take c; = ¢; = k. By takinga constant shiftof u — u — k, /6, we
consider the same two differential equations of the Weierstrass type elliptic curve

ul? =2u"” — 2g,u’ — 4g,, (4.3)

ul =2 —2gu — 4g, (4.4)
where g, and g; are given by equations (3.74) and (3.7b). It should be mentioned that this differential equation of
the Weierstrass type elliptic curve has not only the solution u(x) = 2gp(x) but also N-soliton solutions [14].

Here we will show that we can connect two solutions of equations (4.3) and (4.4) by the following Backlund
transformation

a?> (2 — 2)?
Z 4z = ST (4.5)
whereu = z,and u’ = z,. Weintroduce U = v/ + u = z, + z,and V = 2z’ — z, which gives
Vi =z, — ze = v/ — u.Thenwehave’ = (U + V,)/2and u = (U — V,)/2.Equations (4.3) and (4.4) are
given by
(Ur + Vi)® = (U + Vo)* — 4g, (U + Vo) — 16g,, (4.6)

(Us = Vix)? = (U = Vi)’ — 4g,(U — V) — 16g,. (4.7)
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The Bécklund transformation (4.5) is given by

v o a?
U= — — —, 4.8
3 5 (4.8)
which gives U, = VV,.
First, by taking equations (4.6)—(4.7), we have
UVis = SGU + 1) = 2,V (4.9)
which reads the form
3 1 1 3 3 3
VVe = 2(V2— a?? + —V,2 — 2, = V2 + 2V4 — Za2V2 + 2% — 2g 4.10
xx 8( ) > x 30 > x 3 1 3 30 ( )
through the relation (4.8). By dimensional analysis, we have
VE=myV*+ ms V3 + my V2 + mV 4 my, (4.11)
where m;(i = 0, 1,--, 4) are constants. By differentiating this relation, we have
Vxx = 2m4V3 + %ﬂ’h ‘/2 + m2V -+ %ml. (412)
Substituting this relation into equation (4.10), we have
4, 3 3 2, 1 Lo 3va_3 22 3 4
2myV* + —m3 V> + mp Ve + —mV = =V, + =V* — —a’V* + —a* — 2g,, (4.13)
2 2 2 8 4 8
which gives
2 3\ 4 3 3 22 3 4
Vo= 4m4—z V&4 3m; V2 + 2m2+5a 1% +m1V—Za + 4g,
:T714V4+ T’)”I3V3+ m2V2—|— m1V+ my. (414)
Comparing coefficients of the power of V, we have m, = 1/4,m3 = 0, my = —3a®/2, m; = (undetermined),
my = —3a*/4 + 4g,, which gives
Vit = lV4 — 2aZV2 +mV — ia“ + 4g,, (4.15)
4 2 4
1 3 1
Ve = =V2 — Za?V + —my. 4.16
XX ) 2 2 1 ( )
Second, by taking equation (4.6)-+equation (4.7), we have
U2 + Vi = U 4+ 3UV,2 — 4g,U — 16g,. (4.17)
Using equation (4.8), we have
vz ooary v:  a? V2 a?
VV2+ Vill=]— — —| +3]|— — —|V2 - 4g| — — —| - 16g. 4.18
o 2 2 Y A % *18)

Substituting V% and V., into equation (4.18) and by using equation (4.15) and equation (4.16), we have the
condition m* = 4a® — 16a’g, — 64g,. Then the undetermined coefficient 11, is determined, and we have the
differential equation of the Jacobi type elliptic curve for V =z’ — z

V.2 = iV‘* - %anz + 4a® — 16a%, — 64g, V — %a‘* + 4g,. (4.19)

In this way, the set of equations {equations (4.3), (4.5)} is equivalent to the set of those {equations (4.4),
(4.5)}. This means that the Bicklund transformation (4.5) connects one soliton solution u to another soliton
solution u' for the same differential equation equation (4.3) and equation (4.4) of the Weierstrass type elliptic
curve. In order to construct N-soliton solutions of the (21 4 1)-th order KdV equation by the Bicklund
transformation, the time dependence for each 1-soliton solution, ¢u+1; (i = 1, 2,---, N'), must be the same
common value, then xand t,,,, ; come in the combination Xi(z"+ D= x4 Gnittans1 + O

In our previous work [14], by using the explicit soliton solution given by p-function and (-function, we
connect one soliton solution to another soliton solution by the Bicklund transformation. Here we have shown
that Bicklund transformation connects one soliton solution to another soliton solution of the same differential
equation of the Weierstrass type elliptic curve without using the explicit expression of the solution.
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5. Special hyperelliptic solutions for higher order KdV equations

By using the method of commutative ordinary operators [19, 20], we can formulate higher order KdV equations
into the Jacobi’s inversion problem. By solving the general Jacobi’s inversion problem, we can find solutions for
higher order KdV equations [20—-24]. Here we consider the fifth order KdV equation in order to explain how to
solve the Jacobi’s inversion problem. Integrated fifth order KdV equation is given by

Uy — 10Uty — 5u,® + 100 = csu + C. (5.1)

According to the Tanaka-Date’s nice paper [20], this fifth order KdV equation is reformulated in the following
form. We introduce auxiliary fields 1, (x), £, (x),

u(x) = 2(p(x) + p,(x)), (5.2)

= NATES)

By () = , (5.3)
: (%) — p15(x)
+2,/f5 (11, (x))
Hy(X)y = ————, (5.4)
P (X) = puy ()
fé(}\) = )\5 + 013)\3 + Olz)\z —+ Oél)\ —+ Q, (55)
where a3, @, vy, and g are constants. Surprisingly, this u(x) satisfies
g — 10Uty — 5u® + 100 = —8aszu + 160v,. (5.6)
which determines cs = —8a3, C = 160,. Then if we can find the solution g, (x), 1,(x), we can construct the
solution u(x, t) of the fifth order KdV equation by u(x, ) = u(X®) = 2(4,(X®) + p,(X®))
where X® = x + ¢st5 + 6.
Equations (5.3) and (5.4) can be written in the form of the genus two Jacobi’s inversion problem [40]
d d
me | A (5.7)
@) Jf ()
@) pdu,® 5.8)

sy () Vs (pa (%))

The solution of the Jacobi’s inversion problem is that the symmetric combination of 1, (x) and p,(x), that s,
1y (%) + p, (x) (=u(x) /2) and g, (x) po(x) are given by the ratio of the genus two hyperelliptic theta function.
However, the above Jacobi’s inversion problem is special as the right-hand side of equation (5.7) is zero. Then
the genus two hyperelliptic theta function takes in the following special 1-variable form 9 (+2x + d;, d,) where
d,, d, are constants, that is, the second argument becomes constant. Then the ratio of such special genus two
hyperelliptic theta function is the function of 1-variable x, which becomes proportional to the 1-variable
function u(x) = 2(u1(x) + p2(x)). The general genus two hyperelliptic theta function is given by

I, v; i, T ) =, explim(im? + mn? + 2mamn) + 2im(mu + nv)). (5.9)

mnez

Then F(x, t) = U (x, dy; t, T, Tj,) satisfies the diffusion equation 0, F (x, t) = —id>F (x, t) /4. Further, F(x,
t) has the trivial periodicity F (x + 1, t) = F(x, t).Itis shown in the Mumford’s nice textbook [41] that if F(x, )
satisfies i) periodicity F(x + 1, t) = F(x, t),ii) diffusion equation 0,F (x, t) = —i02F (x, t) /4w, F(x, t)
becomes the genus one elliptic theta function of 1-variable x. By solving the Jacobi’s inversion problem, the
solution u(x, ts) = u(X®) = u(x + csts + &) of the fifth order KdV equation is given by the ratio of the
special 1-variable hyperelliptic theta function, which gives the elliptic solution. For the (2n + 1)-th order KdV
equation, the solution of the Jacobi’s inversion problem gives u(x, t;,,1) = u(X?"*D) as the ratio of the special
1-variable genus n hyperelliptic theta function of the form ¥ (+-2x + d,, d,--,d,,), which also becomes the
genus one elliptic theta function.

For higher order KdV equations, it is shown that solutions are expressed with above special 1-variable
hyperelliptic theta functions, which becomes elliptic theta functions. Then we can conclude that all higher order
KdV equations always have elliptic solutions, though we have explicitly constructed elliptic solutions only up to
the ninth order KdV equation.

6. Summary and discussions

We have studied to construct N-soliton solution for the Lax type higher order KdV equations by using the GL(2,
R) =~ SO(2,1) Lie group structure. The main structure of N-soliton solutions, expressed with

9
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X; = ajx + Bit + 6, (i = 1, 2,---, N) is the same even for higher order KdV equations. The difference of N-
soliton solutions in various higher order KdV equations is the time dependence, that is, coefficients ;.

In trigonometric/hyperbolic solutions, by taking the Lie algebra limit, we can easily determine the time
dependence. For the (2 n + 1)-th order KdV equation, we can obtain N-soliton solutions from those of the
original KdV equation by just the replacement Xi(3) =aix + a’ty + 6 — Xi(z’”r D= g.x+ a?" My, +
5, (i=1,2,--, N).

For elliptic solutions, up to the ninth order KdV equation, we have obtained N-soliton solutions from those
of the original KdV equation by just the replacement X®; = x + c3t3 + 8 — XD, = x + ¢, itans1 +
6, (i=1,2, 3, 4 where g, 1aregivenby ¢; = k, ¢s = —k + k% ¢ = —2ko — 2kk + k? and ¢y =
—6kok, + 3k2/2 — 3kk? + k* by using coefficients of differential equation of the Weierstrass type elliptic
curve u, > = 2u® + ku? + ku + k.

For general higher order KdV equations, equations becomes quite complicated, and it became difficult to
use our method to show that elliptic solutions always exist. But we can show that the elliptic solution for all
higher order KdV equation always exists by the following two different ways.

First way is to use the GL(2, R)~SO(2,1) Lie group structure. For all higher order KdV equations, we have
the same GL(2, R)~SO(2,1) Lie group structure and the same Biacklund transformation, which means that the
main structure expressed with the variable X CntD) = x + 6,4 1tans + 6 isthe same and difference is only the
time dependence ¢, 1. Then, as the elliptic solution of the third order KdV equation exist with X variable, the
existence of the elliptic solution of all higher order KdV equation with X?"*1 is guaranteed.

Second way is to formulate in the Jacobi’s inversion problem. For the general (21 + 1)-th order KdV
equation, it can be formulated in the Jacobi’s inversion problem [19, 20], and it is known that there exist
solutions expressed with the special 1-variable hyperelliptic theta function of the form ¥ (+2x + d,, dy,---, )
[20-24], which is shown to be the elliptic theta function according to the Mumford’s argument [41]. We can say
in another way. As the soliton solution u(x, f) = u(X), (X = ax + [(ty,+1 + 0), which is expressed as the ratio
of special 1-variable hyperelliptic theta functions, as it has the trivial periodicity X — X + 1, u(X) must be the
trigonometric/hyperbolic or the elliptic function. Then it becomes the elliptic function according to the
Mumford’s argument.

By using these two different ways, we can conclude that we always have the elliptic solutions for the general
higher order KdV equations.

Further, without using the explicit form of the solution expressed with the p function, we have shown that
the KdV type Bicklund transformation connects one solution to another solution of the same differential
equation of the Weierstrass type elliptic curve.
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