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Abstract
We study higher order KdV equations from theGL(2, )≅ SO(2,1) Lie group point of view.We find
elliptic solutions of higher order KdV equations up to the ninth order.We argue that themain
structure of the trigonometric/hyperbolic/ellipticN-soliton solutions for higher orderKdV equations
is the same as that of the original KdV equation. Pointing out that the difference is only the time
dependence, we findN-soliton solutions of higher order KdV equations can be constructed from
those of the original KdV equation by properly replacing the time-dependence.We discuss that there
always exist elliptic solutions for all higher order KdV equations.

1. Introduction

The soliton system is taken an interest in for a long time by considering that the soliton equation is the concrete
example of the exactly solvable nonlinear differential equation [1–12]. Nonlinear differential equation relates to
the interesting non-perturbative phenomena, so that studies of the soliton system are important to unveil
mechanisms of various interesting physical phenomena such as those in superstring theories. It is quite
surprising that such nonlinear soliton equations can be exactly solvable and haveN-soliton solutions. Thenwe
have a dogma that theremust be the Lie group structure behind the soliton system, which is a key stone tomake
nonlinear differential equations exactly solvable.

For theKdV soliton system, the Lie group structure is implicitly built in the Lax operator ( )= ¶ -L u x t,x
2 .

In order to see the Lie group structure, it is appropriate to formulate by using the linear differential operator∂x as
the Schrödinger representation of the Lie algebra, which naturally comes to use the AKNS formalism [4] for the
Lax equation
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Then the Lie group becomesGL(2, )≅ SO(2,1) for theKdV equation. An addition formula for elements of this
Lie group is thewell-knownKdV type Bäcklund transformation.

In our previous papers [13–16], we have studiedGL(2, )≅ SO(2,1) Lie group approach for the unified
soliton systems of KdV/mKdV/sinh-Gordon equations. Using thewell-knowKdV type Bäcklund
transformation as the addition formula, we have algebraically constructedN-soliton solutions from various
trigonometric/hyperbolic 1-soliton solutions [13, 15, 16]. Since the Lie group structure of KdV equation is the
GL(2, )≅ SO(2,1), which has elliptic solution, we expect that ellipticN-soliton solutions for theKdV equation
can be constructed by using the Bäcklund transformation as the addition formula.We then really have
succeeded in constructing ellipticN-soliton solutions [14].

We can interpret this fact in the followingway: TheKdV equation, which is a typical 2-dimensional soliton
equation, has the SO(2,1) Lie group structure and thewell-knownKdV type Bäcklund transformation can be
interpreted as the addition formula of this Lie group. Then the elliptic function appears as a representation of the
Bäcklund transformation.While, 2-dimensional Isingmodel, which is a typical 2-dimensional statistical
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integrablemodel, has the SO(3) Lie group structure and the Yang-Baxter relation can be interpreted as the
addition formula of this Lie group. Then the elliptic function appears as a representation of the Yang-Baxter
relation, which is equivalent to the addition formula of the spherical trigonometry [17, 18]. In 2-dimensional
integrable, soliton, and statisticalmodels, there is the SO(2,1)/SO(3) Lie group structure behind themodel. As
representations of the addition formula, the Bäcklund transformation, and the Yang-Baxter relation, there
appears an algebraic function such as the trigonometric/hyperbolic/elliptic functions, which is the key stone to
make the 2-dimensional integrablemodel into the exactly solvablemodel.

In this paper, we consider Lax type higher order KdV equations and study trigonometric/hyperbolic/elliptic
solutions. So far special hyperelliptic solutions formore than the fifth order KdV equation have been vigorously
studied by formulating it into the Jacobi’s inversion problem [19–24]. Since the Lie group structureGL(2, )≅
SO(2,1) and the Bäcklund transformation are common even for higher order KdV equations, we expect that
there always exist elliptic solutions even for higher order. Thenwe study tofind elliptic solutions up to the ninth
order KdV equation, instead of special hyperelliptic solutions.Wewould like to conclude that we always have
elliptic solutions for all higher order KdV equations.

As the application of the third order KdV equation, this equation isfirst obtained in the analysis of shallow
water solitary wave [25]. Even recently, the third order KdV equation becomes important in the analysis of
various non-linear phenomena. For example, in the recent interesting works, the third order KdV equation
comes out in the analysis of the non-linear acoustic solitary wave in the electron-ion plasma [26–29]. As the
application of the higher order KdV equation, some special fifth order KdV equation(KdV5), which is different
from the Lax type equation, is recently experimentally and theoretically interested in. This KdV5 equation
comes out in the analysis of various non-linear phenomena, such as cold collisionless plasma [30], gravity-
capillarywave [31], shallowwaterwavewith surface tension [32] etc. Theoretically, it is shown that Camassa-
Holm equation is transformed into this KdV5 equation [33, 34] andmulti-soliton solutions is obtained [35]. In
this way, the KdV equation becomes important in the analysis of various non-linear phenomena.

The paper is organized as follows: In section 2, we study trigonometric/hyperbolic solutions for higher order
KdV equations.We construct elliptic solutions for higher order KdV equations in section 3. In section 4, we
consider theKdV type Bäcklund transformation as an addition formula for solutions of theWeierstrass type
elliptic differential equation. In section 5, we study special 1-variable hyperelliptic solutions, andwe discuss a
relation between such special 1-variable hyperelliptic solutions and our elliptic solutions.We devote a final
section to summarize this paper and to give discussions.

2. Trigonometric/hyperbolic solutions for the Lax type higher orderKdV equations

Lax pair equations for higher order KdV equations are given by
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wherewe denote ‘�0’ to take positive differential operator parts or function parts for general pseudo-differential
operators. The integrability condition gives higher order KdV equations
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As these higher order KdV equations comes from the Lax formalism, these higher order KdV equations are
called the Lax type. There are various higher order KdV equations such as the Sawada-Kotera type, which is the
higher order generalization of theHirota formKdV equation [38]. As operators +B n2 1 are constructed from L,
higher order KdV equations also have the same Lie group structureGL(2, )≅ SO(2,1) as that of the original
KdV(=third order KdV) equation. Using u=zx, the KdV type Bäcklund transformation is given in the form
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which comes from equation (2.1) only, so that it is valid even for the higher order KdV equations. In the Lie
group approach to the soliton system, if wefind 1-soliton solutions, we can constructN-soliton solutions from
various 1-soliton solutions by the Bäcklund transformation equation (2.5) as an addition formula of the Lie
group.

For 1-soliton solutionof equation (2.4), ifx and +t n2 1 come in the combination ( ) a b d= + +g+
+X x tn

n
2 1

2 1 ,
then if g ¹ 1, the right-hand sideof equation (2.4) is a functionof onlyX,while the left-hand side is a functionofX
and t. Therefore,γ=1 isnecessary, that is, a b d= + ++X x t n2 1 .N-soliton solutions are constructed fromvarious
1-soliton solutionsby theBäcklund transformation.Then themain structureofN-soliton solutions,which are
expressedwith ( )( ) =+X i N, 1, 2, ,i

n2 1 , takes the same functional forms inhigherorderKdVequations and in the
originalKdVequation.Thedifference is only the timedependenceof ( )a b d= + + =+X x t i N, 1, 2, ,i i i n i2 1 ,
that is, coefficientsβi. This is validnot only for the trigonometric/hyperbolicN-soliton solutionsbut also for ellipticN-
soliton solutions.

For the trigonometric/hyperbolicN-soliton solutions, we can easily determine the time dependence
without knowing details of +B n2 1. For dimensional analysis, we have [ ] [ ]¶ = =M u M,x

2 in the unit ofmass
dimensionM. Further, we notice that [ ]+B L,n2 1 does not contain differential operators but it contains only
functions. Thenwe have

( ) ( )¶
¶

= ¶ +
+

+ 
u

t
u u . 2.6

n
x
n

2 1

2 1 2

As equation (2.6) is the Lie group type differential equation, we take the Lie algebraic limit. Putting ˆ= u u first,
equation (2.6) takes in the form
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Then for trigonometric/hyperbolic solutions, we see that x and +t n2 1 come in a combination d= + X a xi i i
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2 1 for 1-soliton solutions. In this way, the time-dependence for trigonometric/

hyperbolic solutions is easily determinedwithout knowing details of +B n2 1.We can then obtain trigonometric/
hyperbolicN-soliton solutions for the ( )+n2 1 -th order KdV equation from the original KdVN-soliton
solutions just by replacing ( )( ) ( ) d d= + +  = + + =+ +
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2 1 .
For example, the original third order KdV equation is given by5

( )= -u u uu6 , 2.9t x x33

and thefifth order KdV equation is given by [38],

( )= - - +u u uu u u u u10 20 30 . 2.10t x x x x x5 3 2
2

5

These two equations look quite different, but the 1-soliton solution for the third order KdV equation is given
by (( ) )d= - + +z a ax a ttanh 23 , while 1-soliton solution for thefifth order KdV equation is given by =z

(( ) )d- + +a ax a ttanh 25 . In this way, even for anyN-soliton solutions, we can obtain thefifth order KdV
solution from third order KdV solution just by replacing ( ) ( )d d= + +  = + +X a x a t X a x a ti i i i i i i i

3 3 5 5 .
Seemore details in theWazwaz’s nice textbook [38].

However, as we explain in the next section, theway to determine the time dependence by taking the Lie
algebraic limit does not applicable for elliptic solutions.

3. Elliptic solutions for the Lax type higher orderKdV equations

Weconsider here elliptic 1-soliton solutions for higher order KdV equations up to ninth order.Wefirst study
whether higher order KdV equations reduces to differential equations of the elliptic curves. If a differential
equation of the elliptic curve exists, via dimensional analysis, [ ] [ ] [ ] [ ]¶ = = = =M u M k M k M, , ,x

2
3

0
2

2,
[ ] =k M1

4, and [ ] =k M0
6, thatmust be the differential equation of theWeierstrass type elliptic curve
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Weuse the notation = ¶ = ¶u u u u, ,x x x x2

2 , throughout the paper.
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where ( )=k i 0, 1, 2, 3i are constants.We cannot use themethod to take the Lie algebraic limit tofind the time
dependence of the elliptic 1-soliton solution, because we cannot take u 0 as ¹k 00 is essential in the elliptic
case. By differentiating equation (3.1), we have the following relations;

( )= + +u k u k u k a
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2
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2
, 3.2x2 3

2
2 1

( )= +u k uu k u b3 , 3.2x x x3 3 2

( )= + +u k uu k u k u c3 3 , 3.2x x x x4 3 2 3
2

2 2

( )= + +u k u u k uu k u d9 3 , 3.2x x x x x5 3 2 3 3 2 3

( )= + + +u k u u k u k uu k u e12 9 3 , 3.2x x x x x x6 3 3 3 2
2

3 4 2 4

( )= + + +u k u u k u u k uu k u f30 15 3 , 3.2x x x x x x x7 3 2 3 3 4 3 5 2 5

( )= + + + +u k u u k u k u u k uu k u g45 30 18 3 . 3.2x x x x x x x x8 3 2 4 3 3
2

3 5 3 6 2 6

3.1. Elliptic solution for the third orderKdV(original KdV) equation
The third order KdV (original KdV) equation is given by

( ) ( )= - = -u u uu u u6 3 . 3.3t x x x x3 2
2

3

Weconsider the 1-soliton solution, where x and t come in the combination d= + +X x c t3 3 , thenwe have

( )- - =u u c u
k

3
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, 3.4x2
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where k1/2 is an integration constant. Furthermultiplying ux and integrating, we have the following differential
equation of theWeierstrass type elliptic curve
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2
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where k2, k1, and k0 are constants and c3 is determined as =c k3 2, which gives the time-dependence of the
1-soliton solution. If we putÃ = +u k2 122 , we have the standard differential equation of theWeierstrass℘
function type
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Elliptic 1-soliton solution is given by

( ) ( ) ( ) ( )( ) ( )= = Ã -u x t u X X
k

, 2
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, 3.83
3 3 2

with

( ) d= + + =X x c t c k, .3
3 3 3 2

We sketch the graphs of the third order KdV solution infigure 1.
It should be noted that wemust parametrize the differential equation of theWeierstrass type elliptic curve by

k2, k1, and k0 instead of g2 and g3, because coefficients +c n2 1 in higher order KdV equations, which determine the
time dependence, are expressedwith k2, k1, and k0. According to themethod of our previous paper, if wefind
various 1-soliton solutions, we can constructN-soliton solutions [14].

3.2. Elliptic solution for thefifth orderKdV equation
Thefifth order KdV equation is given by [38],

( ) ( )- - - + =u u uu u u10 5 10 0. 3.9t x x x x4 2
2 3

5

Weconsider the elliptic solution, where x and t5 come in the combination of d= + +X x c t5 5 , which gives

( ) ( )- - - + + =c u u uu u u C10 5 10 0, 3.10x x x5 4 2
2 3

whereC is an integration constant.Wewill show that the above equation reduces to the same differential
equation of theWeierstrass type elliptic curve equation (3.1). Substituting equation (3.1),L, and equation (3.2c)
into equation (3.10) and comparing coefficients of u3, u2, u1, and u0, we have 4 conditions for 6 constants
k k k k c, , , ,3 2 1 0 5, andC in the form

4

J. Phys. Commun. 4 (2020) 045013 MHayashi et al



) ( )( ) ( )- - =k k ai 2 3 2 0, 3.113 3

) ( ) ( )- =k k bii 2 0, 3.112 3

) ( ) ( )= - +c k k k ciii 9 2 10 , 3.115 3 1 2
2

) ( ) ( )= - +C k k k k div 3 5 2. 3.113 0 1 2

Thenwe have two solutions

) ( )= = - + = +k k k k c k k C k k kI 2, , , : arbitrary, , 2, 3.123 2 1 0 5 1 2
2

0 1 2

) ( )= = = - = -k k k k c k C kII
2

3
, 0, , : arbitrary, 7 , 3 . 3.133 2 1 0 5 1 0

Wehere take themost general solution, i.e., I) case, which gives the same differential equation of the elliptic
curve = + + +u u k u k u k2x

2 3
2

2
2

2
0 as that of the third orderKdV equation equation (3.5) and c5 is determined

as = - +c k k5 1 2
2. Elliptic 1-soliton solution is given by

( ) ( ) ( ) ( )( ) ( )= = Ã -u x t u X X
k

, 2
6

, 3.145
5 5 2

with

( ) d= + + = - +X x c t c k k, .5
5 5 5 1 2

2

We sketch the graphs of the fifth order KdV solution infigure 2.

Figure 1.The third order KdV solution. The red line shows u(x,0) and the blue line shows u(x,1)with k0=1.2, k1=−1.6, k2=0.8,
δ=0.We can see the time-dependence.

Figure 2.The fifth order KdV solution. The red line shows u(x, 0) and the blue line shows u(x,1)with k0=1.2, k1=−1.6, k2=0.8,
δ=0.We can see the difference of the time-dependence between the third order solution and thefifth order solution.
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3.3. Elliptic solution for the seventh orderKdV equation
The seventh order KdV equation is given by [38],

( ) ( )- - - - + + - =u u uu u u u u u uu u14 28 21 70 70 35 0. 3.15t x x x x x x x x6 4 3 2
2 2

2
2 4

7

In this case, assuming that x and t7 come in the combination of d= + +X x c t7 7 , we have

( ) ( )- - - - + + - + =c u u uu u u u u u uu u C14 28 21 70 70 35 0. 3.16x x x x x x x7 6 4 3 2
2 2

2
2 4

Repeatedly substituting equation (3.1),L, and equation (3.2e) into equation (3.16) and comparing coefficients
of u u u u, , ,4 3 2 1, and u0, we have 5 conditions for 6 constants k3, k2, k1, k0, c7, andC of the form

) ( )( )( ) ( )- - - =k k k ai 2 3 2 3 1 0, 3.173 3 3

) ( )( ) ( )- - =k k k bii 2 3 2 0, 3.172 3 3

) ( )( ) ( ) ( )- - + - =k k k k k ciii 2 6 5 3 2 0, 3.171 3 3 2
2

3

) ( ) ( ) ( )= - + + - +c k k k k k k k div 45 126 70 27 56 , 3.177 3
2

3 0 3 1 2 2
3

) ( ) ( ) ( )= - + - +C k k k k k k k ev 15 28 9 21 4 2. 3.173 0 2 3 1
2

1 2
2
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k k k k k c k k

C k k k
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18 129 4, 3.19

3 1 2
2

2 0 7 0 2
3

0 2 2
4

) ( )= = = = =k k k k c k CIII 1 3, 0, 0, : arbitrary, 33 , 0. 3.203 2 1 0 7 0

We take themost general solution i.e., I) case, which is the same differential equation of the elliptic curve as that
of the third order KdV equation equation (3.5) and c7 is determined as = - - +c k k k k2 27 0 1 2 2

3. Elliptic
1-soliton solution is given by

( ) ( ) ( ) ( )( ) ( )= = Ã -u x t u X X
k

, 2
6

, 3.217
7 7 2

with

( ) d= + + = - - +X x c t c k k k k, 2 2 .7
7 7 7 0 1 2 2

3

3.4. Elliptic solution for the ninth orderKdV equation
The ninth order KdV equation is given by [39],

(
) ( )

- - - - - + +
+ + - - + =
u u uu u u u u u u u uu u

u u uu u u u u u

18 54 114 69 126 504

462 378 630 420 126 0. 3.22

t x x x x x x x x x x

x x x x x x

8 6 5 2 4 3
2 2

4 3

2
2 2

2 2 2 3
2
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9

Assuming that x and t9 come in the combination of d= + +X x c t9 9 , we have

(
) ( )

- - - - - + +
+ + - - + + =
c u u uu u u u u u u u uu u

u u uu u u u u u C

18 54 114 69 126 504

462 378 630 420 126 0. 3.23
x x x x x x x x x x

x x x x x

9 8 6 5 2 4 3
2 2

4 3
2

2 2
2 2 2 3

2
5

Substituting equation (3.1),L, and equation (3.2g) into equation (3.23) and comparing coefficients of u5, u4, u3,
u u,2 1, and u0, we have 6 conditions for 6 constants k3, k2, k1, k0, c9, andC in the following form

) ( )( )( )( ) ( )- - - - =k k k k ai 2 3 2 3 1 5 1 0, 3.243 3 3 3

) ( )( )( ) ( )- - - =k k k k bii 2 3 2 3 1 0, 3.242 3 3 3

) ( )( )( ) ( )( ) ( )- - - + - - =k k k k k k k ciii 2 3 2 9 4 7 2 3 2 0, 3.241 3 3 3 2
2

3 3

) ( )( ) ( )( ) ( )- - + + - - + =k k k k k k k k k k div 3 2 225 252 70 2 720 546 85 0, 3.240 3 3
2

3 2 3 1 3 1 2
2

) ( ) ( ) ( )
( )

= - + + - + + - +c k k k k k k k k k k k
e

v 675 1836 966 378 1080 651 2 243 492 2 ,
3.24

9 3
2

3 0 2 3
2

3 1
2

3 1 2
2

2
4

) ( ) ( ) ( ) ( )= - + + - + - +C k k k k k k k k k k k k fvi 297 828 462 2 63 123 27 57 2 2. 3.243
2

3 0 1 3 0 2
2

3 1
2

2 1 2
3

Thenwe obtain 4 solutions
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= = - + - +
= - + - +

k k k k c k k k k k k

C k k k k k k k k

I 2, , , : arbitrary, 6 3 2 3 ,

3 3 3 2 2, 3.25

3 2 1 0 9 0 2 1
2

1 2
2

2
4

0 1 0 2
2

1
2

2 1 2
3
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) ( )
( ) ( ) ( )

= = -
= + - = - +

k k k k k k k

c k k k k C k k k k k

II 2 3, 66 85 6, , : arbitrary,

99 594 1188 2, 423 2376 2295 2, 3.26

3 0 1 2 2
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2 1
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1
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2 1 2
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)
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= = = =
=

k k k k k k c k

C k
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40248 , 3.27

3 1 2
2

0 2
3

2 9 2
4

2
5

) ( )= = = = = =k k k k c CIV 1 5, 0, 0, 0, 0, 0. 3.283 2 1 0 9

We take themost general solution i.e., I) case, which gives the same differential equation of the elliptic curve as
that of the third order KdV equation equation (3.5), and c9 is determined as

= - + - +c k k k k k k6 3 2 39 0 2 1
2

1 2
2

2
4. Elliptic 1-soliton solution is given by

( ) ( ) ( ) ( )( ) ( )= = Ã -u x t u X X
k

, 2
6

, 3.299
9 9 2

with

( ) d= + + = - + - +X x c t c k k k k k k, 6 3 2 3 .9
9 9 9 0 2 1

2
1 2

2
2

4

In this way, even for higher order KdV equations, themain structure of the elliptic solution, which is
expressed by ( )+X n2 1 , takes the same functional form except the time dependence, that is, +c n2 1 in

( ) d= + ++
+ +X x c tn

n n
2 1

2 1 2 1 . Comparedwith the trigonometric/hyperbolic case, +c n2 1becomes complicated
for elliptic solutions of higher order KdV equations.

In the general ( )+n2 1 -th order KdV equation, by dimensional analysis [ ] [ ]= =+ +u u Mnx
n n

2
1 2 2,

integrated differential equation gives the ( )+n 1 -th order polynomial of u. Then the number of the conditions
is +n 2, while the number of constants is 6. So, n 5 becomes the overdetermined case, butwe expect the
existence of the differential equation of the elliptic curve formore than eleventh order KdV equation owing to
the nice SO(2,1)Lie group symmetry. Although the existence of such elliptic curve is a priori not guaranteed, we
will show later that the elliptic solutions really exist for all higher order KdV equations.

4. Bäcklund transformation for the differential equation of the elliptic curve

Herewewill show that the Bäcklund transformation connects one solution to another solution of the same
differential equation of theWeierstrass type elliptic curve. The Lie group structure of KdV equation is given by
GL(2, )≅ SO(2,1) and the Bäcklund transformation can be considered as the self gauge transformation of this
Lie group.We consider two elliptic solutions for theKdV equation, that is, two solutions ( )¢u x t, 3 and u(x, t3) for
¢ - ¢ + ¢ ¢ =u u u u6 0t xxx x3

and - + =u u uu6 0t xxx x3
.We put the time dependence in the forms;

d¢ = + ¢ + ¢X x c t3 3 for ( )¢u x t, 3 and that of d= + +X x c t3 3 for ( )u x t, 3 . In order to connect two solutions
by the Bäcklund transformation and to constructN-soliton solutions, ¢c3 and c3must take the same common
value. By integrating twice, we have the same differential equation of the elliptic curve

( )¢ = ¢ + ¢ + ¢ +u u k u k u k2 , 4.1x
2 3

2
2

1 0

( )= + + +u u k u k u k2 , 4.2x
2 3

2
2

1 0

with same coefficients k k,2 1, and k0, wherewe take = ¢ =c c k3 3 2. By taking a constant shift of  -u u k 62 , we
consider the same two differential equations of theWeierstrass type elliptic curve

( )¢ = ¢ - ¢ -u u g u g2 2 4 , 4.3x
2 3

2 3

( )= - -u u g u g2 2 4 , 4.4x
2 3

2 3

where g2 and g3 are given by equations (3.7a) and (3.7b). It should bementioned that this differential equation of
theWeierstrass type elliptic curve has not only the solution ( ) ( )= Ãu x x2 but alsoN-soliton solutions [14].

Here wewill show that we can connect two solutions of equations (4.3) and (4.4) by the following Bäcklund
transformation

( ) ( )¢ + = - +
¢ -

z z
a z z

2 2
, 4.5x x

2 2

where u=zx and ¢ = ¢u zx.We introduce = ¢ + = ¢ +U u u z zx x and = ¢ -V z z , which gives
= ¢ - = ¢ -V z z u ux x x . Thenwe have ( )¢ = +u U V 2x and ( )= -u U V 2x . Equations (4.3) and (4.4) are

given by

( ) ( ) ( ) ( )+ = + - + -U V U V g U V g4 16 , 4.6x xx x x
2 3

2 3

( ) ( ) ( ) ( )- = - - - -U V U V g U V g4 16 . 4.7x xx x x
2 3

2 3
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The Bäcklund transformation (4.5) is given by

( )= -U
V a

2 2
, 4.8

2 2

which gives =U VVx x.
First, by taking equations (4.6)–(4.7), we have

( ) ( )= + -U V U V V g V
1

2
3 2 , 4.9x xx x x x

2 3
2

which reads the form

( ) ( )= - + - = + - + -VV V a V g V V a V a g
3

8

1

2
2

1

2

3

8

3

4

3

8
2 , 4.10xx x x

2 2 2 2
2

2 4 2 2 4
2

through the relation (4.8). By dimensional analysis, we have

( )= + + + +V m V m V m V m V m , 4.11x
2

4
4

3
3

2
2

1 0

where ( )=m i 0, 1, , 4i are constants. By differentiating this relation, we have

( )= + + +V m V m V m V m2
3

2

1

2
. 4.12xx 4

3
3

2
2 1

Substituting this relation into equation (4.10), we have

( )+ + + = + - + -m V m V m V m V V V a V a g2
3

2

1

2

1

2

3

8

3

4

3

8
2 , 4.13x4

4
3

3
2

2
1

2 4 2 2 4
2

which gives

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

= - + + + + - +

= + + + +

V m V m V m a V m V a g

m V m V m V m V m

4
3

4
3 2

3

2

3

4
4

. 4.14

x
2

4
4

3
3

2
2 2

1
4

2

4
4

3
3

2
2

1 0

Comparing coefficients of the power ofV, we havem4=1/4,m3=0, ( )= - =m a m3 2, undetermined2
2

1 ,
= - +m a g3 4 40

4
2, which gives

( )= - + - +V V a V m V a g
1

4

3

2

3

4
4 , 4.15x

2 4 2 2
1

4
2

( )= - +V V a V m
1

2

3

2

1

2
. 4.16xx

3 2
1

Second, by taking equation (4.6)+equation (4.7), we have

( )+ = + - -U V U UV g U g3 4 16 . 4.17x xx x
2 2 3 2

2 3

Using equation (4.8), we have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )+ = - + - - - -V V V

V a V a
V g

V a
g

2 2
3

2 2
4

2 2
16 . 4.18x xx x

2 2 2
2 2 3 2 2

2
2

2 2

3

SubstitutingVx
2 andVxx into equation (4.18) and by using equation (4.15) and equation (4.16), we have the

condition = - -m a a g g4 16 641
2 6 2

2 3. Then the undetermined coefficientm1 is determined, andwe have the
differential equation of the Jacobi type elliptic curve for = ¢ -V z z

( )= -  - - - +V V a V a a g g V a g
1

4

3

2
4 16 64

3

4
4 . 4.19x

2 4 2 2 6 2
2 3

4
2

In this way, the set of equations {equations (4.3), (4.5)} is equivalent to the set of those {equations (4.4),
(4.5)}. Thismeans that the Bäcklund transformation (4.5) connects one soliton solution u to another soliton
solution ¢u for the same differential equation equation (4.3) and equation (4.4) of theWeierstrass type elliptic
curve. In order to constructN-soliton solutions of the ( )+n2 1 -th order KdV equation by the Bäcklund
transformation, the time dependence for each 1-soliton solution, ( )=+c i N1, 2, ,n i2 1 , must be the same
common value, then x and +t n2 1 come in the combination ( ) d= + ++

+ +X x c ti
n

n n i
2 1

2 1 2 1 .
In our previous work [14], by using the explicit soliton solution given by℘-function and ζ-function, we

connect one soliton solution to another soliton solution by the Bäcklund transformation.Herewe have shown
that Bäcklund transformation connects one soliton solution to another soliton solution of the same differential
equation of theWeierstrass type elliptic curvewithout using the explicit expression of the solution.
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5. Special hyperelliptic solutions for higher orderKdV equations

By using themethod of commutative ordinary operators [19, 20], we can formulate higher order KdV equations
into the Jacobi’s inversion problem. By solving the general Jacobi’s inversion problem,we canfind solutions for
higher order KdV equations [20–24]. Herewe consider thefifth order KdV equation in order to explain how to
solve the Jacobi’s inversion problem. Integrated fifth order KdV equation is given by

( )- - + = +u uu u u c u C10 5 10 . 5.1x x x4 2
2 3

5

According to the Tanaka-Date’s nice paper [20], this fifth order KdV equation is reformulated in the following
form.We introduce auxiliaryfields ( ) ( )m mx x,1 2 ,

( ) ( ( ) ( )) ( )m m= +u x x x2 , 5.21 2

( )
( ( ))

( ) ( )
( )m

m

m m
=



-
x

f x

x x

2
, 5.3x1

5 1

1 2

( )
( ( ))

( ) ( )
( )m

m

m m
=



-
x

f x

x x

2
, 5.4x2

5 2

2 1

( ) ( )l l a l a l a l a= + + + +f , 5.55
5

3
3

2
2

1 0

whereα3,α2,α1, andα0 are constants. Surprisingly, this u(x) satisfies

( )a a- - + = - +u uu u u u10 5 10 8 16 . 5.6x x x4 2
2 3

3 2

which determines a a= - =c C8 , 165 3 2. Then if we can find the solutionμ1(x),μ2(x), we can construct the
solution u(x, t) of the fifth order KdV equation by ( ) ( ) ( ( ) ( ))( ) ( ) ( )m m= = +u x t u X X X, 25

1
5

2
5

where ( ) d= + +X x c t5
5 5 .

Equations (5.3) and (5.4) can bewritten in the formof the genus two Jacobi’s inversion problem [40]

( )
( ( ))

( )
( ( ))

( )
m

m

m

m
+ =

x

f x

x

f x

d d
0, 5.71

5 1

2

5 2

( ) ( )
( ( ))

( ) ( )
( ( ))

( )
m m

m

m m

m
+ = 

x x

f x

x x

f x
x

d d
2 d . 5.81 1

5 1

2 2

5 2

The solution of the Jacobi’s inversion problem is that the symmetric combination ofμ1(x) andμ2(x), that is ,
( ) ( )( ( ) )m m+ =x x u x 21 2 andμ1(x)μ2(x) are given by the ratio of the genus two hyperelliptic theta function.

However, the above Jacobi’s inversion problem is special as the right-hand side of equation (5.7) is zero. Then
the genus two hyperelliptic theta function takes in the following special 1-variable form ( )J  +x d d2 ,1 2 where
d1, d2 are constants, that is, the second argument becomes constant. Then the ratio of such special genus two
hyperelliptic theta function is the function of 1-variable x, which becomes proportional to the 1-variable
function u(x)=2(μ1(x)+μ2(x)). The general genus two hyperelliptic theta function is given by

( ) [ ( ) ( )] ( )åJ t t t p t t t p= + + + +
Î

u v i m n mn i mu nv, ; , , exp 2 2 . 5.9
m n

1 2 12
,

1
2

2
2

12

Then ( ) ( )J t t=F x t x d t, , ; , ,2 2 12 satisfies the diffusion equation ( ) ( ) p¶ = - ¶F x t i F x t, , 4t x
2 . Further, F(x,

t) has the trivial periodicity ( ) ( )+ =F x t F x t1, , . It is shown in theMumford’s nice textbook [41] that if F(x, t)
satisfies i)periodicity ( ) ( )+ =F x t F x t1, , , ii)diffusion equation ( ) ( ) ( )p¶ = - ¶F x t i F x t F x t, , 4 , ,t x

2

becomes the genus one elliptic theta function of 1-variable x. By solving the Jacobi’s inversion problem, the
solution ( ) ( ) ( )( ) d= = + +u x t u X u x c t, 5

5
5 5 of thefifth order KdV equation is given by the ratio of the

special 1-variable hyperelliptic theta function, which gives the elliptic solution. For the ( )+n2 1 -th order KdV
equation, the solution of the Jacobi’s inversion problem gives ( ) ( )( )=+

+u x t u X, n
n

2 1
2 1 as the ratio of the special

1-variable genus n hyperelliptic theta function of the form ( )J  +x d d d2 , , , n1 2 , which also becomes the
genus one elliptic theta function.

For higher order KdV equations, it is shown that solutions are expressedwith above special 1-variable
hyperelliptic theta functions, which becomes elliptic theta functions. Thenwe can conclude that all higher order
KdV equations always have elliptic solutions, thoughwe have explicitly constructed elliptic solutions only up to
the ninth order KdV equation.

6. Summary anddiscussions

Wehave studied to constructN-soliton solution for the Lax type higher order KdV equations by using theGL(2,
)≅ SO(2,1) Lie group structure. Themain structure ofN-soliton solutions, expressedwith

9

J. Phys. Commun. 4 (2020) 045013 MHayashi et al



( )a b d= + + =X x t i N, 1, 2, ,i i i i is the same even for higher order KdV equations. The difference ofN-
soliton solutions in various higher order KdV equations is the time dependence, that is, coefficientsβi.

In trigonometric/hyperbolic solutions, by taking the Lie algebra limit, we can easily determine the time
dependence. For the (2 n+1)-th order KdV equation, we can obtainN-soliton solutions from those of the
original KdV equation by just the replacement ( ) d= + +X a x a ti i i i

3 3
3 → ( ) = + ++ +

+X a x a ti
n

i i
n

n
2 1 2 1

2 1

( )d =i N, 1, 2, ,i .
For elliptic solutions, up to the ninth order KdV equation, we have obtainedN-soliton solutions from those

of the original KdV equation by just the replacement ( ) d= + +X x c ti i
3

3 3 → ( ) = + ++
+ +X x c tn

i n n
2 1

2 1 2 1

( )d =i, 1, 2, 3, 4i where +c n2 1 are given by = = - + = - - +c k c k k c k k k k, , 2 23 2 5 1 2
2

7 0 1 2 2
3, and =c9

- + - +k k k k k k6 3 2 30 2 1
2

1 2
2

2
4 by using coefficients of differential equation of theWeierstrass type elliptic

curve = + + +u u k u k u k2x
2 3

2
2

1 0.
For general higher order KdV equations, equations becomes quite complicated, and it became difficult to

use ourmethod to show that elliptic solutions always exist. Butwe can show that the elliptic solution for all
higher order KdV equation always exists by the following two different ways.

First way is to use theGL(2, )≅SO(2,1) Lie group structure. For all higher order KdV equations, we have
the sameGL(2, )≅SO(2,1) Lie group structure and the sameBäcklund transformation, whichmeans that the
main structure expressedwith the variable ( ) d= + ++

+ +X x c tn
n n

2 1
2 1 2 1 is the same and difference is only the

time dependence +c n2 1. Then, as the elliptic solution of the third order KdV equation exist with ( )X 3 variable, the
existence of the elliptic solution of all higher order KdV equationwith ( )+X n2 1 is guaranteed.

Secondway is to formulate in the Jacobi’s inversion problem. For the general ( )+n2 1 -th order KdV
equation, it can be formulated in the Jacobi’s inversion problem [19, 20], and it is known that there exist
solutions expressedwith the special 1-variable hyperelliptic theta function of the form ( )J  +x d d n2 , , ,1 2

[20–24], which is shown to be the elliptic theta function according to theMumford’s argument [41].We can say
in another way. As the soliton solution u(x, t)=u(X), ( )a b d= + ++X x t n2 1 , which is expressed as the ratio
of special 1-variable hyperelliptic theta functions, as it has the trivial periodicity ( ) +X X u X1, must be the
trigonometric/hyperbolic or the elliptic function. Then it becomes the elliptic function according to the
Mumford’s argument.

By using these two different ways, we can conclude thatwe always have the elliptic solutions for the general
higher order KdV equations.

Further, without using the explicit formof the solution expressedwith the℘ function, we have shown that
theKdV type Bäcklund transformation connects one solution to another solution of the same differential
equation of theWeierstrass type elliptic curve.
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