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Abstract
The nonlinear Schrödinger equation with a Dirac delta potential is considered in this paper. It
is noted that the equation can be transformed into an equation with a drift-admitting jump.
Then following the procedure proposed in Chen and Deng (2018 Phys. Rev. E 98 033302), a
new second-order finite difference scheme is developed, which is justified by numerical
examples.

Keywords: nonlinear Schrödinger equation, delta potential, finite difference method

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider in this paper the following nonlinear Schrö-
dinger equation with a Dirac delta potential:

ld¶ Y = - ¶ + + Y Yx t x g x t x ti ,
1

2
, , , 1t x

2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ∣ ( )∣ ( ) ( )

where i is the imaginary unit, λ and g are constants, and δ(x)
represents the Dirac delta function [1]. While the function
Ψ(x, t) is continuous at x=0, its derivative is not. Instead, we
have the following matching relation

l¶ F + - ¶ F - = Ft t t0 , 0 , 2 0, , 2x x( ) ( ) ( ) ( )

which can be obtained by firstly integrating equation (1)
over the interval [−ε, ε], and then considering the limit
e  0.

Equation (1) provides an idealized model for short-range
interactions [2–6]. Due to the jump condition (2), special
techniques shall be employed to discretize equation (1)
properly. There are some useful numerical methods for sol-
ving equation (1). For instance, a finite element method is
developed in [7], where the Dirac delta function is

incorporated directly into the discretization of the problem by
using the inherent integration of the method. In [8], the
evolution operator of equation (1) is approximated by means
of the Lie evolution operator. Then spectral splitting methods
are implemented. Viewing the problem as an interface at the
point x=0, a so-called explicit jump immersed interface
method is proposed in [9]. A weak multi-symplectic refor-
mulation is proposed in [10, 11] for equation (1), enabling
one to get some preserving properties. One can also regularize
the Dirac delta function in equation (1) by using a nonsingular
function [12], resulting in an equation that can be handled by
some common schemes. For instance, replacing the Dirac
delta function by a so-called discrete delta function [13], a
wavelet collocation method is constructed in [14].

In this paper, we provide a novel method to solve
equation (1) numerically. Rather than discretizing equation (1)
directly, we first show in section 2 that equation (1) can be
transformed into an equation with discontinuous drift, in which
case both the solution and flux are continuous. Then we can
employ the method proposed in [15] to solve the transformed
equation. For the purpose of efficiency, we provide in section 3 a
new finite difference scheme following the derivation procedure
in [15]. Numerical experiments are conducted in section 4 to
validate the proposed method. Finally, we draw conclusions in
section 5.
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2. Transformation

Consider the following one-dimensional equation:

y y y¶ = ¶ + +a x t b V x g x t, , , 3t x
2 2( ) [ ( ) ∣ ∣ ] ( ) ( )

where

ld= +V x x V x 40( ) ( ) ( ) ( )

with V0(x) representing a regular potential. Here a, b, g and λ

are constants. Let

y f=x t x t, e , , 5c x( ) ( ) ( )∣ ∣

where c is a constant that will be determined later to cancel
the δ function in equation (3). It is noted that

y f f¶ = + ¶c xe sgn , 6x
c x

x[ ( ) ] ( )∣ ∣

where the ‘sgn’ stands for the sign function. Furthermore,
using the relation d¶ =x xsgn 2x ( ) ( ), we obtain immediately
from equation (6) that

y f d f f f¶ = - + ¶ + ¶c c x c xe 2 2 sgn .
7

x
c x

x x
2 2 2{ ( ) [ ( ) ] }

( )

∣ ∣

Thus, it follows from equations (4) and (7) that

y f

l d f f f

¶ + = +

+ - + ¶ + ¶

b V x e bc V x

bc x bc x b2 2 sgn . 8
x

c x

x x

2 2
0

2

[ ( )] {[ ( )]
( ) ( ) [ ( ) ] } ( )

∣ ∣

Therefore, the choice l=c b2( ) cancels the term with the δ
function. In this case, we know that the substitution of the
transform (5) into equation (3) results in

f f f

l f f

¶ = + +

+ ¶ + ¶

a bc V x g

x b

e

sgn . 9

t
c x

x x

2
0

2 2

2

[ ( ) ∣ ∣ ]
[ ( ) ] ( )

∣ ∣

To solve equation (9) involving the sign function, two
matching conditions should be imposed at x=0, i.e. the
continuity of f and the continuity of the flux, defined by

l f f= + ¶f x t x b, sgn . 10x( ) ( ) ( )

In addition, it is observed that equation (9) is very similar to the
Fokker–Planck equation considered in [15], except the additional
source term f f+ +bc V x ge c x2

0
2 2[ ( ) ∣ ∣ ]∣ ∣ . Therefore, it is no

doubt that the numerical scheme developed in [15] can be
applied directly here. However, the numerical scheme is only of
second order for the case with drift-admitting jumps although it is
designed to be fifth-order for the case with smooth drifts. In order
to save some computational resource, we prefer to solve
equation (9) by developing in the next section a new scheme of
third order for the case with smooth drifts rather than fifth order.

3. Numerical scheme

Following the procedure in [15], we develop here a new
scheme for solving equation (9). Using the method of line, we
first consider how to discretize properly the derivative of the
flux, i.e. ¶ fx (see equation (10)). The key is to use a so-called
staggered grid.

Suppose that the computational domain is truncated to be
[xL, xR] with xL<0<xR. Then we divide the domain into

two subdomains, denoted by Ω1=[xL, 0] and Ω2=[0, xR],
respectively. In each subdomain Ωi, solution points and flux
points are placed uniformly, where the solution points are defined
by = + -x x j h1 2j L1, 1( ) (  j N1 1) for Ω1 and =x j2,

+ -x j h1d 2( ) (1� j� N2) for Ω2. Here hi are the spacial
steps for Ωi with = - -h x N 1 2L1 1( ) and = -h x NR2 2(
1 2), where Ni are the numbers of solution points. It is noted that

= =x x 0N1, 2,11
, meaning that x=0 is set to be a solution point.

We will see later that this setup is very important for ensuring the
continuity of the solution at x= 0. In addition, we define the flux
points by = ++x x jhj L1, 1 2 1 ( - j N0 11 ) for Ω1 and

= -+x j h1 2j2, 1 2 2( ) (1� j�N2) for Ω2, such that the flux
points and the solution points are staggered with each other (see
also figure 1 in [15]). Then it follows immediately that both the
two boundary points are flux points since =x xL1,1 2 and

=+x xN R2, 1 22 .

3.1. Spacial discretization

For the introduced staggered grid, we first evaluate the flux at
flux points, and then compute the flux derivative at solution
points.

3.1.1. Evaluation of the flux. Here we only present the
scheme for the subdomain Ω1, while the scheme for the
subdomain Ω2 can be obtained immediately by using a
mirror-symmetric property of the grid points. Additionally, let
us assume b> 0 in equation (9) without loss of generality.

At a certain time level, suppose that the values of f are
known at solution points x j1, , denoted by f j1, . Then we derive
a third-order interpolation scheme to obtain the values at flux
points. For stability reason, we approximate the term
l fxsgn( ) appearing in the flux at flux points +x j1, 1 2 by

l f l f++
-

+
+max , 0 min , 0 , 11j j1, 1 2 1, 1 2{ } { } ( )

where f +
-

j1, 1 2 represents interpolation values by using left-

biased stencils while f +
+

j1, 1 2 are obtained by using right-
biased stencils. The interpolation scheme can be described as
follows. Let f f fF =  

-
, ,..., N1 1,1 2 1,3 2 1, 1 2

T
1

[ ] and F =1

f f f, ,..., N1,1 1,2 1,
T

1
[ ] . Then the right-biased scheme can be

expressed as F = F+ +I1 1 1, where the N1×N1 interpolation
matrix +I1 reads

=

-

-

-

-

+I . 121
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⎝
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⎞

⎠
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( )  

For the left-biased values, the scheme reads F =-
1

f F- +I ,1 1,1 2 1
T T[ ] , where the ´ +N N 11 1( ) interpolation

2
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matrix is

=

-

-

-

-

-I

1

1
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⎞
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( )
  

Let f f fF = ¶ ¶ ¶ -, ,...,x x x x N1, 1,1 2 1,3 2 1, 1 2
T

1[( ) ( ) ( ) ] .
Then we can get the difference scheme F = FA hx1, 1 1 1,
where the N1× N1 difference matrix A1 is expressed as
follows:

=

- -
-

- -

- -

-

A

2 3 1
1 1

1 1

. 141

1

24

9

8

9

8

1

24

1

24

9

8

9

8

1

24

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

( )
   

Finally, we obtain the approximation to the flux as

l f l f

f

= +

+ ¶
+ +

-
+

+

+

f

b

max , 0 min , 0

. 15

j j j

x j

1, 1 2 1, 1 2 1, 1 2

1, 1 2

{ } { }

( ) ( )

As mentioned before, the flux +f j2, 1 2 for the subdomain Ω2

can be obtained by using the symmetry property of the grid.
Moreover, we usually apply boundary conditions =f1,1 2

=+f 0N2, 1 22
in applications.

3.1.2. Compute the derivative of the flux. Theoretically, the
flux is continuous at x= 0. Thus, we can derive a difference
scheme for the whole computational domain [xL, xR] directly.
To describe the algorithm, let us introduce the flux vector
=f f f,1

T
2
T[ ] with

=

=
-

+

f

f

f f f

f f f

, , , ,

, , , , 16

N

N

1 1,1 2 1,3 2 1, 1 2
T

2 2,3 2 2,5 2 2, 1 2
T

1

2

[ ··· ]

[ ··· ] ( )

and the derivative vector =f f f,x x x1,
T

2,
T[ ] with

= ¶ ¶ ¶

= ¶ ¶ ¶

f

f

f f f

f f f

, , , ,

, , , . 17
x x x x N

x x x x N

1, 1,1 1,2 1,
T

2, 2,2 2,3 2,
T

1

2

[( ) ( ) ··· ( ) ]
[( ) ( ) ··· ( ) ] ( )

Then we express the difference scheme as =f fAx , where
the entries aj k, of the difference matrix A can be obtain by
using the following stencils:

=

S =

S -

S =

=

= + -

= + -

 f

f

f

f

a j

a j N

a j N

, 1,

, 2 1,

, .

18x j

k j k k

k j k j k x

k j k N k x

1
3

,

1
4

, 2

1
3

, 2x

⎧
⎨⎪

⎩⎪
[ ]

[ ]
[ ]
[ ]

( )

Here [f]k denotes the kth entry of the vector f, and
= + -N N N 1x 1 2 .
By using the method of Lagrangian interpolation, it is

straightforward to determine the entries of A. While the
stencils locate in a single domain, we have

=
- =

- =

=
- - -

- - + -

 

 

 

 
19

a
j

j N

a
j N

N j N

1, 1, 0 , 1,

0, 1, 1 , ,

, , , , 2 2,

, , , , 2 1.

j k k
h

h x

j k k
h

h x

, 1 3

1

1

, 1 4

1 1

24

9

8

9

8

1

24 1

1 1

24

9

8

9

8

1

24 1

1

2

1

2

⎧
⎨⎪
⎩⎪
⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ( )

[ ]
[ ]

[ ]

[ ]

While the stencils across the interface point x=0, i.e.
- + N j N1 11 1 , the entries can be determined as
= - +a d h h,j k j N k, 2, 1 21 ( ), where the expressions for d x y,j k, ( )

are presented in table 1.

3.2. Time-marching scheme

After discretizing the derivative of the flux, we obtain from
equation (3) an ordinary differential system, which can be
solved by a time-marching scheme. In this paper, the third-
order Runge–Kutta scheme as used in [15] is employed (see
equations (30) and (31) therein). If not stated otherwise, the
time step is chosen to be h h0.01 min ,1

2
2
2{ }.

4. Numerical examples

In this section, we solve several problems numerically to show
the validity of the aforementioned method. To measure
the convergence rate, we introduce the L2-norm error,
defined by

å å= + + +
=

-

=

L e h e h h e herror
1

2
,

20
j

N

j N
j

N

j
2

1

1

1,
2

1 1,
2

1 2
2

2,
2

2

1 2
1

1

2⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( )

( )

/

Table 1. Coefficients that determine the difference scheme (18) for the cases - + N j N1 11 1 .

s=1 s=2 s=3

d x y,s,1( ) +x y

1
20 4

-
+ +
xy y

x x y x y

4 3

3 3

2

( )( ) + + +
y

x y x y x y

2

3 5

2

( )( )( )

d x y,s,2 ( ) - +
+

x y

x xy

7 2

6 22
- +
+ +

xy y

x x y x y

12 3

3

2

( )( )
- +

+
x y

xy y

4 5

4 4 2

d x y,s,3( ) +
+

x y

x xy

5 4

4 42 - -
+ +
x xy

y x y x y

3 12

3

2

( )( )
+
+

x y

xy y

2 7

2 6 2

d x y,s,4 ( ) -
+ + +

x

x y x y x y

2
3 5

2

( )( )( )
-

+ +
x xy

y x y x y

3 4
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-
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1
4 20
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and the ¥L -norm error

=¥L eerror max , 21
i j

i j
,

,∣ ∣ ( )

where ei,j are the errors between numerical results and analytic
solutions. Then the numerical convergence rate is measured by

= - E E M Nrate ln ln , 22M N( ) ( ) ( )

where EM and EN are the errors corresponding to the cases with
M and N solution points, respectively.

4.1. Stationary nonlinear Schrödinger equation

At first, we consider the stationary nonlinear Schrödinger
equation

ld y y my- ¶ + + =x g
1

2
, 23x

2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ∣ ∣ ( )

where λ, g and μ are constants. Rather than solving
equation (23) directly, we can solve the following time-
dependent nonlinear Schrödinger equation

ld mY = ¶ - + - Y Yx g
1

2
24t x

2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ∣ ∣ ( )

until Ψt reaches the machine zero. Then we obtain equiva-
lently the solution of equation (23).

It is obvious that equation (24) is in the form of the
general equation considered in equation (3). Thus the algo-
rithm presented in the previous sections can be applied
directly. Here we just specify the initial condition for
equation (24) to be Gaussian, i.e.

pt
Y = t-x, 0

1

2
e 25x

0

22
0( ) ( )( )

with τ0 chosen to be 0.01. In the following two cases, we set
the computational domains to be large enough, enabling us to
impose the zero flux boundary condition

= =f x t f x t, , 0. 26L R( ) ( ) ( )

In addition, the computation is stopped until the residue,
defined by

= Y - Y -Res max , 27n

j
j
n

j
n 1∣ ∣ ( )

reaches the machine zero.

4.1.1. Linear case. When g= 0, equation (23) degenerates
to a linear equation, which admits a bound state solution [16]

y = lx e 28x( ) ( )∣ ∣

with μ=−λ2/2. Here we choose λ=−1/2 and truncate the
computational domain to be [−20, 20]. Then we solve
equation (24) and obtain the numerical solution as shown in
figure 1(a). The convergence process of the numerical
solution is shown in figure 1(b). The test of accuracy in
table 2 demonstrates that second-order accuracy is achieved,
as expected.

4.1.2. Nonlinear case. For ¹g 0, the nonlinear term in
equation (24) comes into play. Here we confine the study to
the case with g=1, which admits the analytic solution [17]

y =
- + <

- >
x

k k x x x
k k x x x

cosech , 0,
cosech , 0

290

0

⎧⎨⎩( ) ( ( ))
( ( )) ( )

if m l= - - 1 2 22( ) . Here x0 is determined by the equality

l=kx ktanh , 300( ) ( )

Figure 1. Numerical results for equation (23) with g=0 and λ=−1/2, where N1=N2=200 is used to compute the numerical solution
that matches well with the analytic solution. (a) Numerical solution; (b) residue.

Table 2. Accuracy test for equation (23) with g=0 and λ=−1/2.
Here, N1=N2=N.

N L2 error Rate ¥L error Rate

200 4.05E-04 4.08E-04
400 1.03E-04 1.97 1.03E-04 1.98
800 2.58E-05 2.00 2.59E-05 1.99
1600 6.49E-06 1.99 6.50E-06 1.99
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which is a consequence of the jump condition of
equation (23) at x=0; see equation (2). In addition, k is
set as l= - -k 1 2 such that ò y =

-¥

¥
x xd 12∣ ( )∣ .

Here we set λ=−1 and truncate the computational
domain to be [−15, 15]. As we can see from figure 2(a), the
numerical results match well with the analytic solution. The
convergence process of the numerical solution is shown in
figure 2(b). The expected second-order convergence rate is
also achieved as shown in table 3.

4.2. Time-dependent nonlinear Schrödinger equation

Now we are trying to solve the time-dependent nonlinear
Schödinger equation (1) [11]. Since Ψ is a complex number
for fixed x and t, we shall assume Y = +p x t q x t, i ,( ) ( ) and
plug it into equation (1) to obtain a couple of equations

ld¶ = - ¶ + + +p x g p q q
1

2
, 31t x

2 2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

ld-¶ = - ¶ + + +q x g p q p
1

2
. 32t x

2 2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

Then we can use the proposed numerical method to solve this
system.

When g=1, equation (1) possesses the analytic solution

y lY = -x t x t, exp i 2 1 8 , 332( ) ( ) ( ( ) ) ( )

where ψ(x) is defined by equation (29). We choose λ=−0.7
and set the initial condition as Ψ(x, 0) according to
equation (33). The computational domain is truncated to be
[−20, 20]. Figure 3 shows that the numerical results of the
real and imaginary parts match well with the analytic solu-
tions at time t=1. In this case, second-order accuracy is still
observed, as shown in table 4.

5. Conclusions

To conclude, we have proposed in this paper a transform for
the one-dimensional nonlinear Schrödinger equation with a

Figure 2. Numerical results for equation (23) with g=1 and l = -1. Here, N1=N2=200. (a) Numerical solution; (b) residue.

Figure 3. Numerical solution of equation (1) with g=1 and λ=−0.7 at time t=1. Here, N1=N2=200. (a) Solution of the real part p;
(b) solution of the imaginary part q.

Table 3. Accuracy test for equation (23) with g=1 and l = -1.
Here, N1=N2=N.

N L2 error Rate ¥L error Rate

100 6.27E-03 9.84E-03
200 1.56E-03 2.00 2.51E-03 1.96
400 3.89E-04 2.00 6.23E-04 2.01
800 9.70E-05 2.00 1.54E-04 2.01
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Dirac delta potential, such that the annoying Dirac delta
function can be canceled out. For the transformed equation
without the delta function, we have provided an efficient
second-order finite difference method. In the numerical
experiments, we have considered both stationary solutions
and time-dependent solutions. All the computed results
validate the new method, which is second-order.

In the future, we may consider whether the same idea is
applicable for the case with double delta potentials [18–20] or
delta comb potentials [21–23]. In addition, we may also
consider how to improve the convergence rate of the num-
erical scheme.

References

[1] Belloni M and Robinett R W 2014 Phys. Rep. 540 25
[2] Hakim V 1997 Phys. Rev. E 55 2835
[3] Adami R and Sacchetti A 2005 J. Phys. A: Math. Gen. 38 8379
[4] Bai E and Shu Q 2005 Chin. Phys. 14 208
[5] Coz S L, Fukuizumi R, Fibich G, Ksherim B and Sivan Y 2008

Phys. D 237 1103

[6] Billam T P, Helm J L and Gardiner S A 2012 Phys. Rev. A 85
013627

[7] Holmer J, Marzuola J and Zworski M 2007 J. Nonlin. Sci.
17 349

[8] Sacchetti A 2007 J. Comput. Phys. 227 1483
[9] Bai J and Wang L 2015 Appl. Math. Comput. 254 113
[10] Bai J, Li C and Liu X 2018 IMA J. Numer. Anal. 38 399
[11] Bai J 2016 J. Math. Anal. Appl. 444 721
[12] Tornberg A K and Engquist B 2003 J. Sci. Comput. 19 527
[13] Peskin C S 1977 J. Comput. Phys. 25 220
[14] Qian X, Fu H and Song S 2017 Appl. Math. Comput. 307 1
[15] Chen Y and Deng X 2018 Phys. Rev. E 98 033302
[16] Bie H D 2008 Phys. Lett. A 372 4350
[17] Witthaut D, Mossmann S and Korsch H J 2005 J. Phys. A:

Math. Gen. 38 1777
[18] Cacciari I and Moretti P 2006 Phys. Lett. A 359 396
[19] Cartarius H, Haag D, Dast D and Wunner G 2012 J. Phys. A:

Math. Theor. 45 444008
[20] Ahmed Z, Kumar S, Sharma M and Sharma V 2016 Eur. J.

Phys. 37 045406
[21] Witthaut D, Rapedius K and Korsch H J 2009 J. Nonlin. Math.

Phys. 16 207
[22] Erman F, Gadella M and Uncu H 2017 Phys. Rev. D 95

045004
[23] Erman F, Gadella M and Uncu H 2018 Eur. J. Phys. 39 035403

Table 4. Accuracy test for equation (1) with g=1 and l = -0.7 at time t=1. Here, N1=N2=N.

p q

N L2 error Rate ¥L error Rate L2 error Rate ¥L error Rate

200 5.92E-04 1.22E-03 1.55E-03 1.90E-03
400 1.48E-04 2.00 3.04E-04 2.00 3.93E-04 1.98 4.88E-04 1.96
800 3.82E-05 1.95 7.49E-05 2.02 9.94E-05 1.98 1.24E-04 1.97
1600 9.80E-06 1.96 1.85E-05 2.02 2.50E-05 1.99 3.11E-05 1.99

6

Commun. Theor. Phys. 72 (2020) 025001 B Cheng et al

https://doi.org/10.1016/j.physrep.2014.02.005
https://doi.org/10.1103/PhysRevE.55.2835
https://doi.org/10.1088/0305-4470/38/39/006
https://doi.org/10.1088/1009-1963/14/1/038
https://doi.org/10.1016/j.physd.2007.12.004
https://doi.org/10.1103/PhysRevA.85.013627
https://doi.org/10.1103/PhysRevA.85.013627
https://doi.org/10.1007/s00332-006-0807-9
https://doi.org/10.1016/j.jcp.2007.09.014
https://doi.org/10.1016/j.amc.2014.12.095
https://doi.org/10.1093/imanum/drw062
https://doi.org/10.1016/j.jmaa.2016.06.060
https://doi.org/10.1023/A:1025332815267
https://doi.org/10.1016/0021-9991(77)90100-0
https://doi.org/10.1016/j.amc.2017.02.037
https://doi.org/10.1103/PhysRevE.98.033302
https://doi.org/10.1016/j.physleta.2008.04.005
https://doi.org/10.1088/0305-4470/38/8/013
https://doi.org/10.1016/j.physleta.2006.06.061
https://doi.org/10.1088/1751-8113/45/44/444008
https://doi.org/10.1088/0143-0807/37/4/045406
https://doi.org/10.1142/S1402925109000145
https://doi.org/10.1103/PhysRevD.95.045004
https://doi.org/10.1103/PhysRevD.95.045004
https://doi.org/10.1088/1361-6404/aaa8a3

	1. Introduction
	2. Transformation
	3. Numerical scheme
	3.1. Spacial discretization
	3.1.1. Evaluation of the flux
	3.1.2. Compute the derivative of the flux

	3.2. Time-marching scheme

	4. Numerical examples
	4.1. Stationary nonlinear Schrödinger equation
	4.1.1. Linear case
	4.1.2. Nonlinear case

	4.2. Time-dependent nonlinear Schrödinger equation

	5. Conclusions
	References



