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In this corrigendum we perform some small notations corrections and correct some equa-
tions, as well as to clarify a solutions behavior, to [1].

	 1.	�Page 8—At the end, instead of δφ(r, θ,φ) =
∑

�m Y�m(θ,φ)U�(r), it should be 
δφ(r, θ,ϕ) =

∑
�m Y�m(θ,ϕ)U�(r).

	 2.	�Page 9—Equation (3.3) should read

U(r) = Pu

[
1 +

2Q2
e (r − rH)

r
(
r2

H − Q2
e

)
]

, where u ≡ 1
2
(
√

4α+ 1 − 1).

	 3.	�Page 11—Before the perturbative stability section, where is α ∈ [−1/4,−1.890 74] there 
should be α ∈ [−1.890 74,−1/4].

	 4.	�Page 11—Equation (3.5), instead of φ = φ(r, t), it should be φ = φ̃(r, t)

	 5.	�Page 11—Equation (3.7), instead of V1 = −V ′
[
δ1 + φ1 ḟi(φ)

]
, it should be

V ′
1 = −V ′

[
δ1 + φ1

ḟi(φ)
fi(φ)

]
.
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2

	 6.	�Page 11—Equation (3.9) should read

dx
dr

=
1

e−δN
.

	 7.	�Page 11—Equation (3.10) should be

UΩ ≡ e−2δN
r2

{
1 − N − 2r2φ′2 − Q2

e

2r2

[
2

fi(φ)
(1 − 2r2φ′2)− 2ḟ 2

i (φ)

f 3
i (φ)

+
1

f 2
i (φ)

(f̈i(φ) + 4rφ′ ḟi(φ))

]}
.

	 8.	�Page 12—Caption of figure 4 should be: ‘Effective potential, UΩ, for a sequence of solu-
tion with the exponential coupling, α = −10 and Qe  =  0.12. The solutions have rH  =  0.32 
(q  =  0.658)—lowest curve—up to rH  =  0.308 (q  =  0.676)—top curve. The curve in red 
corresponds to the f E solution in figure 1 (top left panel) with rH  =  0.318 (q  =  0.66)’.

	 9.	�Page 12—In the last paragraph of section 3, the sentence ‘For the fractional coupling, 
on the other hand, there can be negative regions in the potential both for physical and 
exotic solutions.’ should be appear immediately before the sentence ‘We emphasise that 
the existence of a negative potential region is a necessary, but not sufficient, condition for 
instability’.
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Abstract
Spontaneous scalarisation of electrically charged, asymptotically flat 
Reissner–Nordström black holes (BHs) has been recently demonstrated 
to occur in Einstein–Maxwell–Scalar (EMS) models. This phenomenon is 
allowed by a non-minimal coupling between the scalar and the Maxwell fields, 
and does not require non-minimal couplings of the scalar field to curvature 
invariants. EMS BH scalarisation presents a technical simplification over the 
BH scalarisation that has been conjectured to occur in extended scalar–tensor 
Gauss–Bonnet (eSTGB) models. It is then natural to ask: (1) how universal are 
the conclusions extracted from the EMS model? And (2) how much do these 
conclusions depend on the choice of the non-minimal coupling function? 
Here we address these questions by performing a comparative analysis of 
several different forms for the coupling function including: exponential, 
hyperbolic, power-law and a rational function (fraction) couplings. In all of 
them we obtain and study the domain of existence of fundamental, spherically 
symmetric, scalarised BHs and compute, in particular, their entropy. The latter 
shows that scalarised EMS BHs are always entropically preferred over the RN 
BHs with the same total charge to mass ratio q. This contrasts with the case of 
eSTGB, where for the same power-law coupling the spherical, fundamental 
scalarised BHs are not entropically preferred over the Schwarzschild solution. 
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Also, while the scalarised solutions in the EMS model for the exponential, 
hyperbolic and power-law coupling are very similar, the rational function 
coupling leads to a transition in the domain of existence, by virtue of a pole 
in the coupling function, into a region of ‘exotic’ solutions that violate the 
weak energy condition. Furthermore, fully non-linear dynamical evolutions 
of unstable RN BHs with different values of q are presented. These show: (1) 
for sufficiently small q, scalarised solutions with (approximately) the same q 
form dynamically; (2) for large q, spontaneous scalarisation visibly decreases 
q; thus evolutions are non-conservative; (3) despite the existence of non-
spherical, static scalarised solutions, the evolution of unstable RN BHs under 
non-spherical perturbations leads to a spherical scalarised BH.

Keywords: black holes, scalar fields, Einstein–Maxwell, spontaneous 
scalarisation

(Some figures may appear in colour only in the online journal)

1.  Introduction

Never, in their one hundred years of history, has there been a more exciting time to study black 
holes (BHs). A diversity of observational data is delivering information with unprecedented 
accuracy on the strong gravity region around these objects—see e.g. the reviews [1, 2]. These 
data include, in particular, the gravitational waves events that have been observed as a result 
of BH binaries inspiral and merger, initiated with the epoch-making detection of the first tran-
sient, gw150914 [3]; the catalogue of gravitational wave events, as of February 2019, is given 
in [4]. Another exciting piece of observational evidence comes from the first image of a BH 
shadow by the event horizon telescope collaboration [5] that was just released [6]—see e.g. 
[7, 8] for recent reviews on BH shadows.

BHs have a surprisingly small number of macroscopic degrees of freedom in general rela-
tivity (GR) and electro-vacuum, where a remarkable uniqueness holds—see e.g. [9] for a 
review. In this framework, the only physical BH solution (with a connected event horizon) 
is the Kerr–Newman BH [10], and astrophysically, only the zero charge limit (the Kerr BH 
[11]) is likely to be relevant. The Kerr solution has only two macroscopic degrees of free-
dom, and BHs in GR (and electro-vacuum) are thus colloquially described as having ‘no-hair’ 
[12]. Gravitational theories beyond GR or even GR with matter sources (i.e. beyond electro-
vacuum) allow a much richer landscape of BH solutions—see e.g. the reviews [13, 14] for 
different types of non-Kerr BHs. These are often called ‘hairy’ BHs since they have more 
macroscopic degrees of freedom. Then, the central question becomes if there are dynamically 
viable ‘hairy’ BHs that could represent alternatives to the Kerr BH paradigm.

A dynamical mechanism that could lead to the formation of BHs that differ from the stand-
ard GR electro-vacuum BHs is spontaneous scalarisation. This phenomenon was proposed 
in the context of neutron stars in scalar tensor models [15] in the 1990s. In this context, the 
presence of non-conformally invariant matter (such as a neutron star) sources scalar field gra-
dients due to the non-minimal coupling of the scalar field to the Ricci curvature. For a certain 
region within the domain of existence of (scalar-free) neutron stars, it becomes energetically 
favourable to scalarise. And in this domain, the tendency to scalarise can be seen from a per-
turbative instability of the scalar-free solutions against scalar perturbations. It turns out that 
BHs are immune to this tendency to scalarise because they are conformally invariant in scalar–
tensor theories, as BH solutions in these theories, in general, coincide with the electro-vacuum 
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solutions [16, 17]. Thus, they do not source scalar field gradients and do not scalarise. But if 
the BHs would be surrounded by non-conformally invariant matter they should scalarise in 
a similar way, as suggested in [18, 19]. This sort of BH scalarisation was confirmed in a set 
of concrete field theory models in [20]. A similar phenomenon of ‘tensorization’ (for neutron 
stars) was discussed in [21].

Instead of considering the traditional scalar–tensor models, the recent focus on BH sponta-
neous scalarisation—triggered by the works [22–24]—has been centred on extended scalar–
tensor-Gauss–Bonnet (eSTGB) gravity. Historically, gravitational models with Gauss–Bonnet 
(GB) curvature corrections have appeared in the context of Lovelock gravity [25], where the 
GB combination becomes dynamical in higher dimensions, or in the context of string theory, 
where the GB combination has been argued to arise naturally [26] and, if a dilatonic coupling 
is included, can become dynamical in four spacetime dimensions. BHs in the latter context 
have been first obtained in [27]. The Kerr family (including Schwarzschild) does not solve the 
corresponding equations of motion; new BH solutions appear which are perturbatively stable 
in some part of their domain of existence [28].

The class of models dubbed eSTGB gravity consist on allowing a more general coupling 
between the scalar field and the GB combination. If this coupling preserves a Z2 symmetry, 
then the model allows a scalar-free solution [22, 24]. But the scalar-free solution seems to be 
generically unstable against scalar perturbations. Since, these models also allow the existence 
of scalarised BHs, the phenomenon of spontaneous scalarisation has been conjectured to 
occur: for some range of mass (in terms of the GB coupling constant) a Schwarzschild BH 
becomes unstable and transfers some of its energy to a ‘cloud’ of scalar particles around it. 
In the case of the exponential-type coupling used in [22] the scalarised BHs are entropically 
favoured and the fundamental branch of scalarised BHs contains perturbatively stable solu-
tions against radial perturbations [29]. Then, the scalarised BHs could be the endpoints of the 
evolution of unstable Schwarzschild BHs. But in the case of the power-law coupling used in 
[24], the scalarised solutions are not entropically favoured and the whole fundamental branch 
appears to be unstable against radial perturbations [22]. In this case, therefore, it is unclear 
how the instability of the Schwarzschild solution terminates. See [30–37] for additional recent 
work on eSTGB BH scalarisation.

In eSTGB gravity, spontaneous scalarisation is triggered by the strong spacetime curvature, 
which induces non-linear curvature terms in the evolution equations. These are computation-
ally demanding and make dynamical studies challenging. As pointed out in [38], however, 
in what concerns the BH spontaneous scalarisation phenomenon, the eSTGB model belongs 
to a wider universality class that also contains the Einstein–Maxwell–Scalar (EMS) models. 
In these models, scalarisation occurs for electrically charged BHs and it is triggered by large 
enough charge to mass ratio, q. EMS theories have helped to gain a deeper insight into the BH 
spontaneous scalarisation phenomena. This technically simpler model allowed an easier study 
of the domain of existence of solutions, in particular beyond the spherical sector, and it also 
allowed carrying out fully non-linear dynamical evolutions establishing that the instability 
of the scalar-free solution terminates in the scalarised BHs of the model [38]. In this context, 
the first examples of static, asymptotically flat, regular on and outside the event horizon BHs 
without spatial isometries have been constructed, but their dynamical role has been left unad-
dressed. Here we shall give evidence these solutions do not form dynamically, and are likely 
to be unstable. The fundamental, spherical, scalarised solutions, on the other hand, have been 
shown to be stable against generic perturbations (rather than only spherical) [39]—see also 
[40, 41] for additional work on related models. It is therefore relevant to ask how much the 
physics of the EMS and eSTGB models parallel each other, in what concerns the scalarisa-
tion phenomenon. Here we will point out that this parallelism depends on the choice of the 
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coupling function. Moreover, we will also probe the dependence of the scalarised BHs of the 
EMS model on the choice of the coupling function that determines the non-minimal coupling 
between the scalar field and the Maxwell Lagrangian. Finally, several dynamical features, via 
fully non-linear numerical evolutions, will be pursued, in particular examining the constancy 
of the charge to mass ratio during the scalarisation process. We present evidence this is only 
approximately conserved for a sufficiently small value of q of the initial, unstable RN BH.

This paper is organised as follows. We start, in section 2, by presenting the basics of the 
EMS model and in particular specify possible coupling functions, that will be analysed in this 
work. These include: an exponential coupling, a hyperbolic (cosh) coupling, a power-law cou-
pling and a rational function (fractional) coupling. The numerical elliptic results are presented 
in section 3, where the static solutions are obtained and the domain of existence discussed. In 
particular, we show in more detail in section 4, that for all examples of couplings considered 
the scalarised BHs are thermodynamically preferred over the electro-vacuum solutions—the 
RN BHs with comparable global charges. In section 5 we address the time evolution problem 
and show that scalarised BHs do form dynamically, and compare the charge to mass ratio 
q between the initial RN BH and the final scalarised BH. We also consider the evolution of 
unstable RN BHs under non-spherical perturbations to show that, in all cases, the end point is 
a spherically symmetric scalarised BH. Finally, in section 6 conclusions are presented.

2. The EMS models

The EMS model describes a real scalar field φ minimally coupled to Einstein’s gravity and 
non-minimally coupled to Maxwell’s electromagnetism. The model is described by the action 
(4πG = 1)

S =
1
4

∫
d4x

√
−g

[
R − 2∂µφ∂ µφ− fi(φ)I

(
ψ, g

)]
,� (2.1)

where I = FµνFµν  is the ‘source term’, Fµν  the usual Maxwell tensor and ψ denotes col-
lectively possible matter fields. The coupling function fi(φ) couples the scalar field, non-
minimally, to the Maxwell background; the subscript index i will be used to label the various 
coupling choices, as specified below. The generic, spherically symmetric, line element which 
can be used to describe both a scalar-free and a scalarised BH solution is

ds2 = −N(r)e−2δ(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2),� (2.2)

where N(r) ≡ 1 − 2m(r)/r  and m(r) is the Misner–Sharp mass function [42]. Spherical 
symmetry, in the absence of a magnetic charge, imposes an electrostatic 4-vector potential, 
A(r) = V(r)dt , and a scalar field solely radial dependent φ(r). This allows us to define an 
effective Lagrangian from which the equations of motion can be derived as

Leff = e−δm′ − 1
2

e−δ r2Nφ
′2 +

1
2

eδ fi(φ)r2V
′2 .� (2.3)

Recall that the functions m, δ, φ, V  are all radially dependent only. This dependence is from 
now on omitted for notation simplicity. The equations of motions are

m′ =
1
2

r2Nφ
′2 +

1
2

e2δ fi(φ)r2V
′2, δ′ = −rφ

′2,� (2.4)
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(
eδ fi(φ)r2V ′

)′
= 0,

(
e−δr2Nφ′

)′
= −1

2
ḟi(φ)eδ r2V

′2,� (2.5)

where we denote ḟi = dfi/dφ (also f̈i = d2fi/dφ2), while a prime denotes a derivative w.r.t. the 
radial coordinate r. The equation for the electric potential yields the first integral

V ′ = −e−δ Qe

r2 fi(φ)
,� (2.6)

the integration constant, Qe, being the electric charge5.
To solve the set of ordinary differential equations (ODEs) (2.4)–(2.6), we have to imple-

ment suitable boundary conditions for the desired functions 
(
m, δ, φ, V

)
 and corresponding 

derivatives. Near the BH event horizon, located at r = rH > 0, we assume that the solutions 
possess a power series expansion in (r  −  rH), with

m(r) =
rH

2
+

∑
k�1

m(k)(r − rH)
k, δ(r) = δ0 +

∑
k�1

δ(k)(r − rH)
k,

φ(r) = φ0 +
∑
k�1

φ(k)(r − rH)
k, V (r) =

∑
k�1

v(k)(r − rH)
k.

�
(2.8)

The above expressions are replaced in equations (2.4)–(2.6), which are solved order by order 
in (r  −  rH). It turns out that, at least to sixth order, the coefficients m(k), δ(k),φ(k) and v(k) are 
determined by the essential parameters φ0 and δ0. The expressions of the lowest order coef-
ficients are6

m1 =
Q2

e

2 fi(φ0)r2
H

, φ1 =
ḟi(φ0)

2rHfi(φ0)

Q2
e

Q2
e − r2

Hfi(φ0)
, δ1 = −φ2

1 rH , v1 = − e−δ0 Qe

r2
Hfi(φ0)

,

� (2.9)
in terms of these two essential parameters φ0 and δ0. The horizon data fixes the values of the 

Hawking temperature TH = 1
4πN′(rH)e−δ(rH), and horizon area, AH = 4πr 2

H. The expression 
of the Kretschmann scalar, K ≡ RµναβRµναβ, and the energy density ρ = −Tt

t  at the horizon 
are also of interest

K(rH) =
4
r4

H

[
3 − 6Q2

e

r2
Hfi(φ0)

+
5Q4

e

r4
Hf 2

i (φ0)

]
, ρ(rH) =

Q2
e

2r4
Hfi(φ0)

,� (2.10)

while the Ricci scalar vanishes as r → rH. For future reference observe the energy density 
ρ(rH) vanishes when the coupling blows up and changes sign when the coupling changes sign.

An asymptotic approximation of the solution in the far field takes the form:

m(r) = M − Q2
e + Q2

s

2r
+ . . . , φ(r) =

Qs

r
+

QsM
r2 + . . . ,

V(r) = Φ +
Qe

r
+ . . . , δ(r) =

Q2
s

2r2 + . . . .
� (2.11)

5 After replacing the expression of the 1st integral (2.6), the equations for mass functions and scalar field take the 
simpler form

m′ =
1
2

r2Nφ
′2 +

Q2
e

2r2fi(φ)
, φ′′ +

1 + N
rN

φ′ +
Q2

e

r3Nfi(φ)

(
φ′ − ḟi(φ)

2rfi(φ)

)
= 0 .� (2.7)

.
6 Similar expressions can be written for higher order coefficients. However, we have not been able to find a pattern 
or recurrence relations.

P G S Fernandes et alClass. Quantum Grav. 36 (2019) 134002



6

This expansion introduces another three constants: the ADM mass M, the electrostatic poten-
tial at infinity Φ and the scalar charge Qs. The full equations of motion can now be integrated 
with these asymptotic behaviours.

The solutions satisfy the virial identity [38],
∫ ∞

rH

dr
{

e−δ r2φ
′2
[

1 +
2rH

r

(m
r
− 1

)]}
=

∫ ∞

rH

dr
[

e−δ

fi(φ)

(
1 − 2rH

r

)
Q2

e

r2

]
,

�

(2.12)

which is obtained via a scaling argument, see section 3.2.2 in [13], and the Smarr relation  
[43, 44], which turns out not to be affected by the scalar hair [38],

M =
1
2

THAH +ΦQe .� (2.13)

The first law of BH thermodynamics is dM = 1
4 TH dAH +ΦdQe. The solutions satisfy also the 

following relation [38]

M2 + Q2
s = Q2

e +
1
4

T2
HA2

H .� (2.14)

Remarkably, one can show that (2.14), dubbed non-linear Smarr relation, holds for any fi(φ) 
that behaves as φ → Qs/r asymptotically (i.e. as r → ∞).

2.1. The coupling functions

The coupling function fi(φ) must obey the following criteria: (1) accommodate non-scalarised 
solutions, which amounts to the condition ḟi(0) = 0. This can be intrepreted as implementing 
a Z2 symmetry φ → −φ; (2) the form of the coupling is constrained by two Bekenstein type 
identities [45], which require

f̈i > 0, φ ḟi > 0,� (2.15)

for some range of the radial coordinate; (3) obey f i(0)  =  1, so that one recovers Maxwell’s 
theory near spatial infinity. In this work we will consider four forms for the coupling constant 
consistent with the above requirements:

	 (i)	�an exponential coupling, fE(φ) = e−αφ2
, first used in this context in [38]; 

	(ii)	�a hyperbolic cosine coupling, fC(φ) = cosh(
√

2|α|φ); 
	(iii)	�a power coupling, fP(φ) = 1 − αφ2, already discussed in this context in [41]; 

	(iv)	�a fractional coupling, fF(φ) = 1
1+αφ2 .

The coupling constant α is a dimensionless constant in all cases, and, except for the hyperbolic 
function, the conditions on f i imply that α < 0 for a purely electric field, i.e. FµνFµν < 0. The 
f i candidates shall be specified by the subscript i ∈ {E, C, P, F}, respectively. For |α|φ2 � 1 
(and α < 0), f E, f C and f F possess the same Taylor expansion to first order which coincides 
with the (exact) form of f P:

fF (φ) ≈ fC(φ) ≈ fE(φ) ≈ 1 + |α|φ2 +O(φ4) .� (2.16)

This observation implies, in particular, that the zero mode coincides for all cases in the spheri-
cal sector, fundamental branch, scalarised solutions. Thus, from [38], scalarised solutions 
exist in all cases for α < −1/4. Fixing −α > 1/4 scalarised solutions exist above a certain 
threshold for the charge to mass ratio q. From another perspective, there is minimum value 
of |α| for each q of a RN BH in order for scalarised solutions to exist. This minimum value 
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corresponds to the branching point and is presented in table 1 for some values of q. As the 
scalar field increases and non-linearities become relevant, the differences between the models 
with different couplings emerge.

3.  Numerical results

The set of four ODEs (2.4) and (2.5) can be numerically solved through a Runge–Kutta strat-
egy, given the aforementioned boundary conditions. Our numerical method implements a 
six(five) Runge–Kutta integration algorithm (RK65) with an adaptative step size and a shoot-
ing method. The latter is implemented in the unknown parameters and ensures the fulfillment 
of the boundary conditions. This code is written in c and was developed and extensively tested 
by us.

3.1.  Solutions profile

Let us start by exhibiting some typical solutions obtained from the numerical integration. In 
figure 1 the various radial functions defining the scalarised BHs are represented for an illus-
trative coupling of α = −10, charge to mass ratio q ≡ Q/M = 0.66 and for three different 
choices of coupling. A universal feature of those nodeless solutions is that the scalar field is 
monotonically decreasing function of the radius. Thus the scalar field value at the horizon, φ0, 
see (2.8), is always the maximum of the scalar field. The scalar field vanishes asymptotically, 
see (2.11). In fact, at far enough radius (r  >  102), all defining functions of the scalarised BHs 
converge to the ones of a comparable (i.e. with the same global charges) RN BH. Another 
typical feature illustrated by the figure  is that the differences between the exponential and 
power-law couplings are small—see table 2 (and the same would apply to the cosh coupling, 
thus not shown), and more pronounced for the fractional coupling. Yet, for the same values of 
α and q the scalarisation in the exponential coupling is stronger than for the power law one 
(and intermediate in the cosh one); this is visible in the value of the scalar field at the horizon 
on the two top panels of the figure. We remark that these data are well within the numerical 
errors: our tests have exhibited a relative difference of 10−8 for the virial relation; 10−7 for the 
Smarr relation and 10−6 to the non-linear Smarr relation.

For the particular case of the fractional coupling, however, a different type of solutions, 
that we call exotic is possible. If 1 + αφ2

0 < 0, then the corresponding solutions have a region 
of negative energy density in the vicinity of the horizon, see (2.10) and figure 2 (right panel). 
Moving away from the horizon, as the value of the scalar field decreases monotonically, see 
figure 2 (left panel), it passes through the point at which the coupling diverges. This diver-
gence is, however, benign and the geometry is smooth therein. This can be understood from 
the equation (4), which contain 1/f F terms but no divergencies. Moreover, beyond a critical 
radius the energy density is again positive—figure 2 (right panel inset) . The negative energy 
region in the vicinity of the horizon leads to a decrease in the mass function profile—see fig-
ure 2 (left panel).

Table 1.  Minimum value of |α| for scalarisation of a RN BH with charge to mass 
ratio q.

q 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

|α| 0.25 2.995 5.121 8.019 12.37 19.50 32.56 60.72 141.0 574.9
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3.2.  Domain of existence

Let us now focus on a comparative study of the domain of existence for the scalarised, fun-
damental, spherically symmetric solutions for the chosen couplings. Action (2.1) imposes the 
scalar field equation of motion

�φ =
1
4

ḟi(φ)I,� (3.1)

which, after being linearized around a scalar free solution, yields 
(
�− µ2

eff

)
δφ = 0, where 

µ2
eff = f̈i(0)I/4 = −|α|Q2

e r−4. In order for a tachyonic instability to settle in, we must have 
µ2

eff < 0. The spherical symmetry allows a scalar field’s decomposition in (real) spherical 
harmonics, δφ(r, θ,φ) =

∑
�m Y�m(θ,φ)U�(r). The scalar field equation simplifies to

Figure 1.  Scalarised BH radial functions for α = −10 and q  =  0.66. (Top left panel) 
f E; (top right panel) f P; (bottom panel) f F.

Table 2.  Characteristic quantities for scalarised BH solutions with four choices of 
couplings, α = −10 and q = 0.66. aH is the reduced horizon area, aH ≡ AH/16πM2 .

fi(φ) rH M Qs Φ aH TH

f E 0.3180 0.1816 0.0167 0.3689 0.7663 0.2162
f C 0.3180 0.1816 0.0132 0.3720 0.7663 0.2156
f P 0.3180 0.1816 0.0122 0.3729 0.7663 0.2154
f F 0.3186 0.1818 0.0561 0.2848 0.7680 0.2314
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eδ

r2

(
r2N
eδ

U′
�

)′

−
[
�(�+ 1)

r2 + µ2
eff

]
U� = 0,� (3.2)

which is an eigenvalue problem: fixing the coupling α, for a given �, requiring an asymptoti-
cally vanishing, smooth scalar field, selects a discrete set of BHs solutions, i.e. RN solutions 
with a certain q. These are the bifurcation points of the scalar-free solution. They are labelled 
by an integer n ∈ N0; n  =  0 is the fundamental mode, whereas n  >  1 are excited states (over-
tones). One expects only the fundamental solutions to be stable [39]. Focusing on the latter, 
solutions with a smaller (larger) q are stable (unstable) against spherical scalar perturbations, 
for that coupling. Clearly, for any fi(φ), setting δ = 0 and N(r) = 1 − 2M/r + Q2

e/r2 in (2.1) 
allows us to recover the usual RN metric. Then, a scalarised solution can be dynamically 
induced by a scalar perturbation of the background, as long as the scalar-free RN solution is 
in the unstable regime.

As pointed out in [38], for � = 0, one finds the following exact solution7

U(r) = Pu

[
1 +

2Q2
e(r − rH)

r2
H − Q2

e

]
, where u ≡ 1

2
(
√

4α+ 1 − 1).� (3.3)

Pu being a Legendre function. For generic parameters (α, Qe, rH), the function U(r) approaches 
a constant non-zero value as r → ∞,

U(r) → 2F1

[
1
2
(1 −

√
4α+ 1),

1
2
(1 +

√
4α+ 1), 1;

x2

x2 − 1

]
+O

(
1
r

)
,

� (3.4)
where x = Qe/rH. Thus finding the � = 0 unstable mode of the RN BH reduces to a study of 
the zeros of the hypergeometric function 2F1. Some values were given in table 1.

Figure 2.  A typical scalarised BH in an EMS model with the coupling function f F, 
which possesses a region with negative energy density, ρ < 0. (Left panel) Profiles of 
the metric and matter functions; (right panel) the energy density (zoom in presented in 
the inset), the Ricci and Kretschmann scalars and the inverse of the coupling function 
fF(φ) which changes sign at some finite r. This plot manifests that solutions with ρ < 0 
are smooth.

7 No exact solution appears to exist for � � 1, and equation (3.2) is solved numerically. These modes, nonetheless, 
also possess non-linear continuations leading to static, non-spherically symmetric scalarized BHs [38].
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The solution of (3.2) yields a RN BH surrounded by a vanishingly small scalar field. The 
full set of such configurations make up the existence line which, as discussed before, is com-
mon for all specific coupling functions discussed herein, as they are identical for small φ. The 
differences in the domain of existence of the four couplings emerge for larger values of φ, 
wherein non-linearities become important.

The domains of existence for the scalarised BHs with the f E, f C, f P couplings are exhibited 
in figure 3 (left panel). They are delimited by the existence line—(dashed blue) on which 
the RN BHs that support the zero mode exist—and a critical line—(solid red) which corre-
sponds to a singular scalarised BH configuration. In between (shaded blue regions: dark for 
f P, dark  +  medium for f C, dark  +  medium  +  light for f E), scalarised BHs exist. In particular, 
for q = Qe/M � 1 the usual RN BH and the scalarised solutions co-exist with the same global 
charges. In this region there is non-uniqueness. The scalarised solutions are always entropi-
cally favoured (see section 4). These spherical scalarised BHs are candidate endpoints of the 
spherical evolution (if adiabatic) of the linearly unstable RN BHs in the EMS model.

At the critical line, numerics suggest K → ∞, TH , AH → 0, while M,Qs remain finite. As 
another feature, along α =constant branches, q increases beyond unity: therefore, scalarised 
BHs can be overcharged [38].

Comparing the domain of existence of the exponential, cosh and power-law couplings 
(figure 3, left panel) we see that they are qualitatively similar. The critical set for the same α, 
however, occurs at the smallest value of q for the power law coupling, an intermediate value 
for the hyperbolic coupling and the largest value of q for the exponential coupling. So, the 
exponential coupling allows maximising the possibility of overcharging the BH and, in this 
sense, of maximising the differences with the RN BH case. Moreover, as seen before see fig-
ure 1, scalarisation is ‘stronger’ for the f E coupling than for f P (with an intermediate value for 
f C). We also remark that for a given α, as q increases, so does the scalar field’s initial ampl
itude φ0. As already mentioned, the scalar field profile is always such that the scalar field is 
monotonically decreasing. Thus, the global maximum of the scalar field occurs at the BH hori-
zon, and increases, for fixed α, with q, and one can take φ0 as a measure of q and vice-versa.

The domain of existence of the f F coupling function (figure 3—right panel) can be divided 
into two parts. For α =constant, φ0 grows from the existence line until it reaches φ2

0 = 1/|α| 

Figure 3.  Domain of existence of scalarised BHs in EMS models (shaded blue regions). 
The domain of existence is always delimited by the existence line (dashed blue line) 
and the critical (red) line. (Left panel) fE(φ), fC(φ) and fP(φ) couplings. (Right panel) 
fF (φ) coupling. Here we only exhibit the physical region, which is delimited by the 
existence line and the line at which the coupling function diverges at the horizon. The 
latter is the boundary of the physical region; above it, solutions have a negative energy 
density in the vicinity of the horizon.
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at the divergence line, corresponding to the pole of the coupling. These solutions span the 
physical region wherein solutions have a positive energy density. Beyond the divergence line 
solutions have φ2

0 > 1/|α| and thus a negative energy density region near the horizon extend-
ing up to a critical radius at which ρ = 0—see figure 2. Beyond this point the energy density 
is again positive. Solutions in the exotic region appear to be smooth exhibiting no other obvi-
ous pathologies apart from the negative energy density. The physical region of the domain of 
existence will tend to thin down to zero, as |α| increases. Unlike the other studied couplings, 
for a model with f F, the scalarised BH can only be overcharged and in the physical region if 
the coupling constant is in a compact interval: α ∈ [−1/4, −1.890 74], with a maximum of 
q = 1.029 71 for α = −1.0115—see figure 3—right panel.

3.3.  Perturbative stability

Following a standard technique for studying perturbative stability against radial perturbations, 
we consider spherically symmetric, linear perturbations of our equilibrium solutions, keeping 
the metric ansatz (2.2), but allowing the functions N, δ and φ, V  to depend on t as well as on r:

ds2 = −Ñ(r, t)e−2δ̃(r,t)dt2 +
dr2

Ñ(r, t)
+ r2(dθ2 + sin2 θdϕ2), A = Ṽ(r, t)dt, φ = φ(r, t) .

� (3.5)
The time dependence enters as a periodic perturbation with frequency Ω, for each of these 
functions:

Ñ(r, t) = N(r) + εN1(r)e−iΩt, δ̃(r, t) = δ(r) + εδ1(r)e−iΩt,

φ̃(r, t) = φ(r) + εφ1(r)e−iΩt, Ṽ(r, t) = V(r) + εV1(r)e−iΩt .
� (3.6)

From the linearised field equations around the background solution, the metric perturbations 
and V1(r) can be expressed in terms of the scalar field perturbation,

N1 = −2rNφ′φ1, δ1 = −2
∫

dr rφ′φ′
1, V1 = −V ′[δ1 + φ1 ḟi(φ)],

� (3.7)
thus yielding a single perturbation equation for φ1. This equation can be written in the standard 
Schrödinger-like form:

− d2

dx2 Ψ+ UΩΨ = Ω2Ψ,� (3.8)

where we have defined Ψ ≡ rφ1 and the ‘tortoise’ coordinate x by

dx
dr

=
1

eδN
.� (3.9)

The perturbation potential UΩ is defined as:

UΩ ≡ e−2δN
r2

{
1 − N − 2r2φ′2 +

Q2
e

2r2

[
2

fi(φ)
(1 − 2r2φ′2)− 2ḟ 2

i (φ)

f 2
i (φ)

+
1

f 2
i (φ)

(f̈i(φ) + 4rφ′ ḟi(φ))

]}
.

� (3.10)
The potential UΩ is not positive definite, but is regular in the entire range −∞ < x < ∞. Also, 
it vanishes at the BH event horizon and at infinity. It follows from a standard result in quantum 
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mechanics (see e.g. [46]) that equation (3.8) has no bound states if UΩ is everywhere larger 
than the lowest of its two asymptotic values, i.e. if it is positive8.

For the case of the exponential, cosh and power-law coupling, the potential is, generically, 
everywhere positive for the vast majority of the solutions analysed, which are therefore free 
of instabilities—see the related analysis in [38, 39]. For the fractional coupling, on the other 
hand, there can be negative regions in the potential both for physical and exotic solutions. 
As an illustration, in figure 4 the potential is plotted for a sequence of solutions. One can see 
that the potential is smaller than zero in a small q-region close to the RN limit—the RN BHs 
has the zero mode at q  =  0.649 (α = −10). Then the potential becomes positive and remains 
so for arbitrary large q along the remaining α branch. We emphasise that the existence of a 
negative potential region is a necessary, but not sufficient, condition for instability. It would be 
interesting to see if one can establish stability even in the presence of such negative regions, 
using, for instance the S-deformation method [47, 48].

4.  Entropic preference

In the EMS scalar model, the Bekeinstein–Hawking BH entropy formula holds. Thus, the 
entropy analysis reduces to the analysis of the horizon area. It is convenient to use the already 
introduced reduced event horizon area [aH ≡ AH/(16πM2)]. Then, in the region where the RN 

Figure 4.  Effective potential, UΩ, for a sequence of solution with the fractional 
coupling, α = −10 and Qe  =  0.12. The solutions have rH  =  0.32 (q  =  0.658)—lowest 
curve—up to rH  =  0.308 (q  =  0.676)—top curve. The curve in red corresponds to the 
f E solution in figure 1 (bottom panel) with rH  =  0.318 (q  =  0.66).

8 A simple proof is as follows. Write equation (3.8) in the equivalent form

d
dx

(
Ψ

dΨ
dx

)
=

(
dΨ
dx

)2

+ (UΩ − Ω2)Ψ2.� (3.11)

After integrating from the horizon to infinity it follows that

∫ ∞

−∞
dx

[(
dΨ
dx

)2

+ UΩΨ
2

]
= Ω2

∫ ∞

−∞
dxΨ2� (3.12)

which for UΩ > 0 implies Ω2 > 0.
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BH and scalarised BHs co-exist—the non-uniqueness region—, for the same q the scalarised 
solutions are always entropically preferred. This is shown in figure 5 for all four coupling 
fi(φ) functions studied herein. One also observes that, for the same q, aH increases with the 
growth of |α|.

Such entropic considerations are not, however, sufficient to establish if the endpoint of the 
instability of the RN BH is the corresponding hairy BH with the same q. In [38], fully non-
linear dynamical evolutions were performed that established that for f E, and sufficiently small 
q, this is indeed the case, which is consistent with the observation above that the scalarised 
solutions for the exponential (and also power-law and hyperbolic) coupling are, generically, 
stable against spherical perturbations. The endpoint of the instability, however, can only be 
established once fully non-linear numerical evolutions are studied. Such evolutions will be 
addressed in the next section.

An intriguing question, however, concerns the fractional coupling. Fixing the coupling, 
there are RN BHs that are unstable against scalar perturbations above the existence line in 
figure 3 (right panel). However, no scalarised BHs exist for that value of q (because it is above 
the critical set), in the physical region of the domain of existence with positive energy density. 
The endpoint of the instability of such RN BHs is therefore an interesting question.

Figure 5.  Reduced area aH versus q for: (top, left panel) fE(φ); (top, right panel) 
fP(φ); (bottom left panel) fC(φ); (bottom right panel) fF (φ). The blue lines are the 
sequence of non-scalarised RN BHs. The red lines are sequences of (numerical data 
points representing) scalarised BHs for a given α. Different sequences are presented, 
for a range of values of α. The solid black line shows the sequence of solutions along 
the boundary of the physical region for the fF  model.
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5.  Dynamical preference

Following [38], in which the numerical framework of [49–51] was used, we have performed 
fully non-linear evolutions of unstable RN BHs in the EMS system under a small Gaussian 
scalar spherical perturbation, to assess the dynamical endpoint of the evolution.

We have also considered evolutions with a non-spherical perturbation using the freely 
available Einstein Toolkit [52, 53]. The scalar field initial data is

φ(r, θ) = A0 e−(r−r0)
2/λ2

Y0
� (θ),� (5.1)

where Y0
�  is the �-spherical harmonic with m  =  0 and A0, r0 two constants defining the ampl

itude and centre of the Gaussian radial profile of the scalar perturbation.
We implemented the Maxwell equations together with the evolution equations in [51] for 

a non-minimally coupled massless scalar field φ and an auxiliary variable, Π ≡ −nµ∇µφ, 
with nµ the 4-velocity of the Eulerian observer. Two extra variables ΨE  and ΦB are included to 
dynamically damp the constraints with two parameters, κ1 and κ2, which we take to be equal 
to 1. The set of evolution equations for an arbitrary coupling take the form

(
∂t − Lβ

)
φ = −α0Π,� (5.2)

(
∂t − Lβ

)
Π = −Da(α0Daφ

)
+ α0KΠ

+ α0
ḟi
2
[
BaBa − EaEa],�

(5.3)

(
∂t − Lβ

)
Ea = εabcDb

(
α0Bc

)
+ α0

[
KEa − DaΨE

]

+ α0
ḟi
fi

[
εabcDbφBc +ΠEa],�

(5.4)

(
∂t − Lβ

)
ΨE = −α0

[ ḟi
fi

DbφEb − DbEb − κ1ΨE
]
,� (5.5)

(
∂t − Lβ

)
Ba = −εabcDb

(
α0Ec

)
+ α0

[
KBa + DiΦB

]
,� (5.6)

(
∂t − Lβ

)
ΦB = α0

[
DbBb − κ2ΦB

]
,� (5.7)

where α0 is the lapse function, β is the shift vector, γij  are the 3-metric components, Da is the 
covariant derivative with respect to the 3-metric, Ea and Ba are the electric and magnetic fields 
respectively and L denotes the Lie derivative. The matter source terms are given by

ρ = nαnβTαβ =
1

8π
[
DaφDaφ+Π2 + fi

(
BaBa + EaEa)],� (5.8)

ja = −nαγβ
a Tαβ =

1
4π

(
−ΠDaφ− fiεabcEbBc),� (5.9)

Sab = γα
a γ

β
b Tαβ =

1
4π

[
DaφDbφ+ fi

(
BaBb − EaEb

)

− 1
2
γab

[
DcφDcφ−Π2 + fi

(
BcBc − EcEc)]

]
.

�
(5.10)
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To perform the evolutions we have used a numerical grid with 11 refinement levels with

{(192, 96, 48, 24, 12, 6, 3, 1.5, 0.75, 0.375, 0.1875),
(6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0.0125, 0.006 25)},

where the first set of numbers indicates the spatial domain of each level and the second 
set indicates the resolution. Due to the geometry of the spherical harmonics, we consider 
equatorial-plane symmetry and reflection symmetry with respect to the x  −  z plane for the 
(� = 2, m = 0), but not for the (� = 1, m = 0) mode, and reflection symmetry with respect to 
the positive values of x and y  for both modes.

In [38] the dynamical formation of scalarised BHs with the exponential coupling was estab-
lished. The evolution of the process can be observed in figure 6, wherein four snapshots, at 
times t = 0, 100, 175, 225, are show for the exponential coupling, q  =  0.2 and α = −400.979. 
The � = 0 small Gaussian perturbation triggered the growth of a scalar cloud in the vicinity 
of the horizon that expands outwards and becomes a monotonically decreasing function of 
the radial coordinate. The energy transfer to the scalar field saturates by t ∼ 100 [38] and 
it reaches an equilibrium state, at least in the vicinity of the BH, around t ∼ 200, albeit part 
of the more exterior scalar field distribution is still evolving outwards, settling down to the 

Figure 6.  Four snapshots of the time evolution of the scalar field around an unstable RN 
BH with q  =  0.2 in the EMS system, with the exponential coupling and α = −400.979.
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scalarised solution. The same qualitative pattern is observed for other couplings for which 
scalarisation occurs.

The endpoint of the evolution shown in figure 6 is a scalarised BH with the same value 
of q. This was established by comparing the value of the scalar field on the horizon obtained 
in the numerical evolution with the one of the previously computed static scalarised solution 
with the same coupling and q. As explained above, fixing α the value of φ0 ≡ φ(rH) serves as 
a measure of q. In figure 7 (left panel) this comparison is made for various values of α, fixing 
q  =  0.2 of the initial RN BH, for both the exponential coupling (data already shown in [38]) 
and the power law coupling. The crosses are from the numerical evolutions and the solid line 
from the static solutions. The agreement is quite good. As discussed above, the power-law 
coupling produces a weaker scalarisation for the same coupling.

Figure 7 (right panel) performs a similar comparison, for the exponential coupling, but now 
exploring a larger range of values of q. Beyond q ∼ 0.4, the agreement between the value of 
the scalar field on the horizon obtained from the evolutions and that obtained from the static 
solutions with the same q, ceases to hold. In other words, the endpoint of the evolution of a 
RN BH with a certain value of q is not a scalarised BH with the same value of q. Rather, the 
former matches a scalarised BH with a lower value of q. This is interpreted as a non-conserv-
ative evolution which ejects a larger fraction of electric charge than energy when forming the 
scalarised BH.

An intriguing possibility raised in [38] concerns the dynamical role of non-spherically 
symmetric scalarised solutions. To address this issue we have performed the evolutions of an 
unstable RN BH under a non-spherical perturbations, using (5.1) with � = 1, 2. In figure 8 
we show snapshots of such an evolution for the � = 2 case. It can be observed that, initially, 
the non-spherical mode dissipates/is absorbed; then scalarisation proceeds much as in the 
case of a spherical perturbation. Similar results are obtained for the � = 1 perturbation. Thus, 
scalarisation is robust, even without imposing spherical symmetry and, moreover, we see no 
evidence of the formation of the non-spherical scalarised solutions described in [38]. This 
suggests such solutions may be unstable.

Figure 7.  (Left panel) Scalar field value at the horizon for q  =  0.2 and a range of 
couplings α, for the exponential and power-law coupling. The solid line is obtained 
from the static solutions. The crosses are the dynamically obtained value from the 
numerical simuations after saturation and equilibrium has been reached. The agreement 
is notorious. (Right panel) A similar study, for the exponential coupling, but for various 
values of q. The agreement between the points and the lines with the same q is restricted 
to q � 0.4. For larger q, the evolution points match static solution lines with a smaller q.
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6.  Conclusions and remarks

In this work we have studied BH scalarisation in the EMS model [38], for four different 
choices of coupling function.

Concerning the examination of the static solutions, two main conclusions can be extracted 
from our study. Firstly, for all cases studied, the scalarised solutions are entropically favoured 
over a comparable RN BH in the region where non-uniqueness holds. This creates a dif-
ference with the case of BH scalarisation in eSTGB model, where for the same power-law 
coupling we have considered here, the scalarised BHs are not entropically favoured and the 
scalarised spherically symmetric, fundamental BH solutions are not necessarily perturbative 
stable. Thus, BH scalarisation in the EMS and eSTGB models do not necessarily mimick one 
another, for all couplings. Secondly, the power-law, hyperbolic and exponential coupling are 
qualitatively very similar, albeit the exponential coupling maximises differences with respect 
to the RN case. The fractional coupling, on the other hand, yields qualitative differences with 
the existence of a different type of boundary in the domain of existence, bounding the region 
where physical solutions exist, abiding the weak energy condition. This boundary is associ-
ated to the divergent behaviour of the coupling for a certain value of the scalar field.

Concerning the dynamical evolutions, we have established that for small values of q the 
evolutions of unstable RN BH lead to the formation of a scalarised BH with the same value of 
q, within numerical error. The evolution is essentially conservative. This was observed for the 

Figure 8.  Twelve snapshots in the x  −  z (y   =  0) plane of the time evolution of an 
unstable RN BH with q  =  0.2 in the EMS system, with the exponential coupling and 
α = −1200 and an � = 2, m  =  0 perturbation. The snapshots correspond to t between 
0 and 140.8. The data for negatives values of x and z are mirrored by the corresponding 
positive values, due to equatorial symmetry.
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exponential and power-law coupling explicitly. Although we have not done evolutions with 
the hyperbolic coupling, it is very likely the same is observed. But for sufficiently high values 
of q scalarisation decreases this value, thus establishing a non-conservative process is taking 
over, expelling from the BH a non-negligible fraction of charge and energy, with a dominance 
of the former. We have studied this in detail in the exponential coupling case, but expect the 
same result to be observed in the power-law and hyperbolic coupling. For the case of the 
fractional coupling, we have only performed evolutions at large q and in the region where RN 
BHs overlap with (physical) scalarised BHs. Scalarisation was observed and a decrease in the 
value of q occurred. Finally, we have analysed the evolution of unstable RN BHs under non-
spherical perturbations and observed that a spherical scalarised BH emerges.

As an avenue of further research one may include a mass term for the scalar field. As in 
the case of other scalar–tensor theories this is expected to suppress the effects of scalarisa-
tion. We have done preliminary results of this model and observed that: (1) the existence line 
changes; (2) scalarisation requires a larger |α| as compared to the mass-free case; and (3) the 
mass term quenches the dispersion of the scalar field, which becomes more concentrated in 
the neighbourhood of the horizon. It would be interesting to analyse such inclusion of a mass 
term in greater detail.

Acknowledgments

This work has been supported by Fundação para a Ciência e a Tecnologia (FCT), within 
project UID/MAT/04106/2019 (CIDMA), by CENTRA (FCT) strategic project UID/
FIS/00099/2013, by national funds (OE), through FCT, IP, in the scope of the framework 
contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of 
August 29, changed by Law 57/2017, of July 19. NSG is supported by an FCT post-doctoral 
grant through the project PTDC/FIS-OUT/28407/2017 and A Pombo is supported by the FCT 
Grant PD/BD/142842/2018. This work has further been supported by the European Union’s 
Horizon 2020 research and innovation (RISE) programmes H2020-MSCA-RISE-2015 Grant 
No. StronGrHEP-690904 and H2020-MSCA-RISE-2017 Grant No. FunFiCO-777740. The 
authors would like to acknowledge networking support by the COST Action CA16104.

ORCID iDs

Pedro G S Fernandes  https://orcid.org/0000-0002-8176-7208
Carlos A R Herdeiro  https://orcid.org/0000-0002-9619-2013
Alexandre M Pombo  https://orcid.org/0000-0002-5815-2758
Eugen Radu  https://orcid.org/0000-0002-0503-896X
Nicolas Sanchis-Gual  https://orcid.org/0000-0001-5375-7494

References

	 [1]	 Berti E et  al 2015 Testing general relativity with present and future astrophysical observations 
Class. Quantum Grav. 32 243001

	 [2]	 Barack L et al 2018 Black holes, gravitational waves and fundamental physics: a roadmap
	 [3]	 Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. 

Lett. 116 061102
	 [4]	 Abbott B P et al 2018 GWTC-1: a gravitational-wave transient catalog of compact binary mergers 

observed by LIGO and Virgo during the first and second observing runs (arXiv:1811.12907) 

P G S Fernandes et alClass. Quantum Grav. 36 (2019) 134002

https://orcid.org/0000-0002-8176-7208
https://orcid.org/0000-0002-8176-7208
https://orcid.org/0000-0002-9619-2013
https://orcid.org/0000-0002-9619-2013
https://orcid.org/0000-0002-5815-2758
https://orcid.org/0000-0002-5815-2758
https://orcid.org/0000-0002-0503-896X
https://orcid.org/0000-0002-0503-896X
https://orcid.org/0000-0001-5375-7494
https://orcid.org/0000-0001-5375-7494
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1088/0264-9381/32/24/243001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://arxiv.org/abs/1811.12907


19

	 [5]	 I. colaboration 2006 Event horizon telescope
	 [6]	 Akiyama K et al 2019 First M87 event horizon telescope results. I. The shadow of the supermassive 

black hole Astrophys. J. 875 L1
	 [7]	 Cunha P V P and Herdeiro C A R 2018 Shadows and strong gravitational lensing: a brief review 

Gen. Relativ. Gravit. 50 42
	 [8]	 Psaltis D 2018 Testing general relativity with the event horizon telescope (arXiv:1806.09740) 
	 [9]	 Chrusciel P T, Lopes Costa J and Heusler M 2012 Stationary black holes: uniqueness and beyond 

Living Rev. Relativ. 15 7
	[10]	 Newman E T, Couch R, Chinnapared K, Exton A, Prakash A and Torrence R 1965 Metric of a 

rotating, charged mass J. Math. Phys. 6 918–9
	[11]	 Kerr R P 1963 Gravitational field of a spinning mass as an example of algebraically special metrics 

Phys. Rev. Lett. 11 237–8
	[12]	 Ruffini R and Wheeler J A 1971 Introducing the black hole Phys. Today
	[13]	 Herdeiro C A and Radu E 2015 Asymptotically flat black holes with scalar hair: a review Int. J. 

Mod. Phys. D 24 1542014
	[14]	 Volkov M S 2017 Hairy black holes in the 20th and 21st centuries Proc., 14th Marcel Grossmann 

Meeting on Recent Developments in Theoretical and Experimental General Relativity, 
Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes): (Rome, Italy), 12–18 July 
2015 vol 2 pp 1779–98

	[15]	 Damour  T and Esposito-Farese  G 1993 Nonperturbative strong field effects in tensor—scalar 
theories of gravitation Phys. Rev. Lett. 70 2220–3

	[16]	 Hawking S W 1972 Black holes in the Brans–Dicke theory of gravitation Commun. Math. Phys. 
25 167–71

	[17]	 Sotiriou T P and Faraoni V 2012 Black holes in scalar–tensor gravity Phys. Rev. Lett. 108 081103
	[18]	 Cardoso V, Carucci I P, Pani P and Sotiriou T P 2013 Matter around Kerr black holes in scalar–

tensor theories: scalarization and superradiant instability Phys. Rev. D 88 044056
	[19]	 Cardoso V, Carucci  I P, Pani P and Sotiriou T P 2013 Black holes with surrounding matter in 

scalar–tensor theories Phys. Rev. Lett. 111 111101
	[20]	 Herdeiro C A R and Radu E 2019 Black hole scalarisation from the breakdown of scale-invariance 

Phys. Rev. D 99 084039 
	[21]	 Ramazanolu F M 2017 Spontaneous growth of vector fields in gravity Phys. Rev. D 96 064009
	[22]	 Doneva  D  D and Yazadjiev  S  S 2018 New Gauss–Bonnet black holes with curvature-induced 

scalarization in extended scalar–tensor theories Phys. Rev. Lett. 120 131103
	[23]	 Antoniou G, Bakopoulos A and Kanti P 2018 Evasion of no-hair theorems and novel black-hole 

solutions in Gauss–Bonnet theories Phys. Rev. Lett. 120 131102
	[24]	 Silva H O, Sakstein J, Gualtieri L, Sotiriou T P and Berti E 2018 Spontaneous scalarization of black 

holes and compact stars from a Gauss–Bonnet coupling Phys. Rev. Lett. 120 131104
	[25]	 Lovelock D 1971 The Einstein tensor and its generalizations J. Math. Phys. 12 498–501
	[26]	 Zwiebach B 1985 Curvature squared terms and string theories Phys. Lett. 156B 315–7
	[27]	 Kanti P, Mavromatos N E, Rizos J, Tamvakis K and Winstanley E 1996 Dilatonic black holes in 

higher curvature string gravity Phys. Rev. D 54 5049–58
	[28]	 Kanti P, Mavromatos N E, Rizos J, Tamvakis K and Winstanley E 1998 Dilatonic black holes in 

higher curvature string gravity. 2: linear stability Phys. Rev. D 57 6255–64
	[29]	 Blzquez-Salcedo J L, Doneva D D, Kunz J and Yazadjiev S S 2018 Radial perturbations of the 

scalarized EGB black holes Phys. Rev. D 98 084011 
	[30]	 Doneva D D, Kiorpelidi S, Nedkova P G, Papantonopoulos E and Yazadjiev S S 2018 Charged 

Gauss–Bonnet black holes with curvature induced scalarization in the extended scalar–tensor 
theories Phys. Rev. D 98 104056

	[31]	 Brihaye Y, Herdeiro C and Radu E 2019 The scalarised Schwarzschild-NUT spacetime Phys. Lett. 
B 788 295–301

	[32]	 Minamitsuji M and Ikeda T 2018 Scalarized black holes in the presence of the coupling to Gauss–
Bonnet gravity Phys. Rev. D 99 044017 

	[33]	 Silva H O, Macedo C F B, Sotiriou T P, Gualtieri L, Sakstein J and Berti E 2019 On the stability of 
scalarized black hole solutions in scalar-Gauss–Bonnet gravity Phys. Rev. D 99 064011 

	[34]	 Bakopoulos  A, Antoniou  G and Kanti  P 2019 Novel black-hole solutions in Einstein-Scalar-
Gauss–Bonnet theories with a cosmological constant Phys. Rev. D 99 064003 

	[35]	 Brihaye Y and Ducobu L 2018 Hairy black holes: from shift symmetry to spontaneous scalarization 
(arXiv:1812.07438) 

P G S Fernandes et alClass. Quantum Grav. 36 (2019) 134002

https://doi.org/10.3847/1538-4357/ab0e6d
https://doi.org/10.3847/1538-4357/ab0e6d
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1007/s10714-018-2361-9
https://arxiv.org/abs/1806.09740
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.12942/lrr-2012-7
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1063/1.1704351
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1103/PhysRevLett.11.237
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1142/S0218271815420146
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1103/PhysRevLett.70.2220
https://doi.org/10.1007/BF01877518
https://doi.org/10.1007/BF01877518
https://doi.org/10.1007/BF01877518
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevD.88.044056
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1103/PhysRevLett.111.111101
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.99.084039
https://doi.org/10.1103/PhysRevD.96.064009
https://doi.org/10.1103/PhysRevD.96.064009
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131103
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131102
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1103/PhysRevLett.120.131104
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1665613
https://doi.org/10.1063/1.1665613
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.54.5049
https://doi.org/10.1103/PhysRevD.57.6255
https://doi.org/10.1103/PhysRevD.57.6255
https://doi.org/10.1103/PhysRevD.57.6255
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1103/PhysRevD.98.084011
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1103/PhysRevD.98.104056
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1016/j.physletb.2018.11.022
https://doi.org/10.1103/PhysRevD.99.044017
https://doi.org/10.1103/PhysRevD.99.044017
https://doi.org/10.1103/PhysRevD.99.064011
https://doi.org/10.1103/PhysRevD.99.064011
https://doi.org/10.1103/PhysRevD.99.064003
https://doi.org/10.1103/PhysRevD.99.064003
https://arxiv.org/abs/1812.07438


20

	[36]	 Cano  P  A and Ruiprez  A 2019 Leading higher-derivative corrections to Kerr geometry 
(arXiv:1901.01315) 

	[37]	 Ramazanolu F M 2019 Spontaneous tensorization from curvature coupling and beyond Phys. Rev. 
D 99 084015 

	[38]	 Herdeiro C A R, Radu E, Sanchis-Gual N and Font J A 2018 Spontaneous scalarisation of charged 
black holes Phys. Rev. Lett. 121 101102

	[39]	 Myung Y S and Zou D-C 2019 Quasinormal modes of scalarized black holes in the Einstein–
Maxwell–Scalar theory Phys. Lett. B 790 400–7  

	[40]	 Myung Y S and Zou D-C 2019 Instability of Reissner–Nordström black hole in Einstein–Maxwell–
Scalar theory Eur. Phys. J. C 79 273 

	[41]	 Boskovic M, Brito R, Cardoso V, Ikeda T and Witek H 2019 Axionic instabilities and new black 
hole solutions Phys. Rev. D 99 035006 

	[42]	 Misner  C  W and Sharp  D  H 1964 Relativistic equations  for adiabatic, spherically symmetric 
gravitational collapse Phys. Rev. 136 B571–6

	[43]	 Bardeen J M, Carter B and Hawking S W 1973 The four laws of black hole mechanics Commun. 
Math. Phys. 31 161–70

	[44]	 Smarr L 1973 Mass formula for kerr black holes Phys. Rev. Lett. 30 71
	[45]	 Bekenstein  J  D 1972 Transcendence of the law of baryon-number conservation in black-hole 

physics Phys. Rev. Lett. 28 452
	[46]	 Messiah A 1961 Quantum Mechanics ch III2 (Amsterdam: North Holland Publishing Company)
	[47]	 Kimura M 2017 A simple test for stability of black hole by S-deformation Class. Quantum Grav. 

34 235007
	[48]	 Kimura M and Tanaka T 2018 Stability analysis of black holes by the S-deformation method for 

coupled systems Class. Quant. Grav. 36 055005 
	[49]	 Sanchis-Gual N, Degollado J C, Montero P J, Font J A and Herdeiro C 2016 Explosion and final 

state of an unstable Reissner–Nordstrm black hole Phys. Rev. Lett. 116 141101
	[50]	 Sanchis-Gual N, Degollado J C, Herdeiro C, Font J A and Montero P J 2016 Dynamical formation 

of a Reissner–Nordstrm black hole with scalar hair in a cavity Phys. Rev. D 94 044061
	[51]	 Hirschmann E W, Lehner L, Liebling S L and Palenzuela C 2018 Black hole dynamics in Einstein–

Maxwell–Dilaton theory Phys. Rev. D 97 064032
	[52]	 Toolkit E 2012 Open software for relativistic astrophysics (http://einsteintoolkit.org)
	[53]	 Loffler F et al 2012 The Einstein toolkit: a community computational infrastructure for relativistic 

astrophysics Class. Quantum Grav. 29 115001

P G S Fernandes et alClass. Quantum Grav. 36 (2019) 134002

https://arxiv.org/abs/1901.01315
https://doi.org/10.1103/PhysRevD.99.084015
https://doi.org/10.1103/PhysRevD.99.084015
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1103/PhysRevLett.121.101102
https://doi.org/10.1016/j.physletb.2019.01.046
https://doi.org/10.1016/j.physletb.2019.01.046
https://doi.org/10.1016/j.physletb.2019.01.046
https://doi.org/10.1140/epjc/s10052-019-6792-6
https://doi.org/10.1140/epjc/s10052-019-6792-6
https://doi.org/10.1103/PhysRevD.99.035006
https://doi.org/10.1103/PhysRevD.99.035006
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1103/PhysRev.136.B571
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1103/PhysRevLett.30.71
https://doi.org/10.1103/PhysRevLett.30.71
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1103/PhysRevLett.28.452
https://doi.org/10.1088/1361-6382/aa903f
https://doi.org/10.1088/1361-6382/aa903f
https://doi.org/10.1088/1361-6382/ab0193
https://doi.org/10.1088/1361-6382/ab0193
https://doi.org/10.1103/PhysRevLett.116.141101
https://doi.org/10.1103/PhysRevLett.116.141101
https://doi.org/10.1103/PhysRevD.94.044061
https://doi.org/10.1103/PhysRevD.94.044061
https://doi.org/10.1103/PhysRevD.97.064032
https://doi.org/10.1103/PhysRevD.97.064032
http://einsteintoolkit.org
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Spontaneous scalarisation of charged black holes: coupling dependence and dynamical features﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿The EMS models
	﻿﻿2.1. ﻿﻿﻿The coupling functions

	﻿﻿3. ﻿﻿﻿Numerical results
	﻿﻿3.1. ﻿﻿﻿Solutions profile
	﻿﻿3.2. ﻿﻿﻿Domain of existence
	﻿﻿3.3. ﻿﻿﻿Perturbative stability

	﻿﻿4. ﻿﻿﻿Entropic preference
	﻿﻿5. ﻿﻿﻿Dynamical preference
	﻿﻿6. ﻿﻿﻿Conclusions and remarks
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿﻿﻿﻿References﻿﻿﻿﻿

	cqg_37_4_049501.pdf
	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Corrigendum: Spontaneous scalarisation of charged black holes: coupling dependence and dynamical features 
(2019 ﻿Class. Quantum Grav.﻿ ﻿﻿36﻿ 134002﻿)﻿﻿﻿
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿Reference﻿﻿﻿﻿



