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Abstract
Effects of Lovelock gravity on the Joule–Thomson expansion are probed from 
various perspectives. The well-known Joule–Thomson coefficient is derived 
with both the explicit expression and intuitive image presented. Moreover, the 
inversion curves showing the relation between the inversion temperature and 
the inversion pressure are studied. It is shown that for given inversion pressure, 
the inversion temperature of the case α �= 0 (α is the Lovelock parameter) 
is much lower than that of the case α = 0. And the inversion temperature 
tends to decrease with α, in contrast to the effect of the electric charge. It is 
also shown that the ratio between the minimum inversion temperature and the 
critical temperature decreases with α for α �= 0. Furthermore, the isenthalpic 
curves are investigated with rich physics revealed. The intersection point 
between the isenthalpic curve and the inversion curve is exactly the inversion 
point discriminating the heating process from cooling process. It is shown 
that both the inversion temperature and the inversion pressure for α �= 0 are 
much lower for the same given mass of the black hole, showing the effect of 
Lovelock gravity. Last but not the least, we discuss the uncharged Lovelock 
AdS black holes. It is shown that the Joule–Thomson coefficient is always 
positive, suggesting the expansion is always in the regime of cooling process. 
And no inversion temperature exists, in contrast to the case Q �= 0. Isenthalpic 
curves are also quite different since the temperature increases monotonically 
with the pressure when the mass is specified.
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1.  Introduction

Thermodynamics of AdS (Anti-de Sitter) black holes is such an exciting topic that has attracted 
lots of attention. It was disclosed that there exists phase transition between the Schwarzschild 
AdS black hole and the thermal AdS space [1]. And this transition was then named after its 
discoverer, Hawking and Page. Concerning charged AdS black holes, rich phase structures 
were found by Chamblin et al [2, 3]. It was shown that charged AdS black holes are closely 
related to the liquid-gas system. This observation was further supported by the study of P − V  
criticality [4], which was carried out in the so-called extended phase space. In this framework, 
the cosmological constant is identified as the thermodynamic pressure and the mass should 
be interpreted as enthalpy [5]. Moreover, it was suggested recently that AdS black holes share 
many similarities with the ordinary thermodynamic systems in critical behavior [6–8]. One 
can refer to the most recent review [9] for details and more references. Apart from the critical 
phenomena, many other interesting aspects of AdS black holes have also been covered in the 
recent literatures. For example, the novel concept of holographic heat engine was proposed 
by Johnson [10], suggesting one more way to extract mechanical work from black holes. This 
idea was further generalized with the proposal that one can even implement black holes as 
efficient power plant [11].

Recently, Joule–Thomson expansion, a well-known process in classical thermodynamics, 
was generalized to AdS black holes by Ökcü and Aydiner [12] creatively. For RN-AdS black 
holes [12] and Kerr–AdS black holes [13], both the inversion curves and isenthalpic curves 
were investigated. These pioneer works were generalized to quintessence RN-AdS Black 
Holes [14], holographic superfluids [15], Gauss–Bonnet gravity [16] and RN-AdS black holes 
in f (R) gravity [17]. More recently, we probed in detailed the effect of the dimensionality 
on the Joule–Thomson expansion [18]. It was shown that [18] the ratio between minimum 
inversion temperature and the critical temperature decreases with the dimensionality d while 
it recovers the result in [12] when d  =  4.

We are curious to examine our former result in another high-dimensional space-time. On 
the other hand, we are also interested in the effect of Lovelock gravity on the Joule–Thomson 
expansion. So we choose our target as seven-dimensional Lovelock AdS black holes. Lovelock 
gravity [19] successfully solved the problems of ghosts [20] and field equations  of fourth 
order. So it is certainly of interest to probe the black hole solutions and their thermodynamics 
within the framework of Lovelock gravity [21–56]. Dehghani et al [21] found the topologi-
cal black hole solutions in Lovelock–Born–Infeld gravity. Their thermodynamics and critical 
behavior were investigated in detail [22–30]. Kastor et al [31] presented an explicit formula 
for the ADM mass and free energy of AdS black holes in Lovelock gravity and studied the 
Hawking–Page phase transition. In this paper, we would like to generalize the current research 
of Joule–Thomson expansion to the black hole solutions found in [21]. This generalization 
is of physical significance since varieties of intriguing thermodynamic properties have been 
disclosed for this solution. It is naturally expected that the research in this paper may give rise 
to novel findings concerning the Joule–Thomson expansion. To concentrate on the effect of 
Lovelock gravity, we do not consider the nonlinear electromagnetic filed here.

The organization of this paper is as follows. Section 2 devotes to a short review of the ther-
modynamics of (n + 1)-dimensional Lovelock AdS black holes. In section 3, we will probe 
the Joule–Thomson expansion of seven-dimensional Lovelock AdS black holes. Conclusion 
will be presented in section 4.
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2.  A brief review of the thermodynamics of (n + 1)-dimensional Lovelock AdS 
black holes

The action of Lovelock gravity coupled with Born–Infeld electromagnetic filed can be written 
as [21]

IG =
1

16π

∫
dn+1x

√
−g

(
− 2Λ + L1 + α2L2 + α3L3 + L(F)

)
,� (1)

where

L1 = R,� (2)

L2 = RµνγδRµνγδ − 4RµνRµν + R2,� (3)

L3 = 2RµνσκRσκρτRρτ
µν + 8Rµν

σρRσκ
ντRρτ

µκ + 24RµνσκRσκνρRρ
µ

+ 3RRµνσκRσκµν + 24RµνσκRσµRκν + 16RµνRνσRσ
µ

− 12RRµνRµν + R3,
�

(4)

L(F) = 4β2

(
1 −

√
1 +

F2

2β2

)
.� (5)

L1, L2, L3 and L(F) represent the Einstein–Hilbert Lagrangian, Gauss–Bonnet Lagrangian, 
the third order Lovelock Lagrangian and Born–Infeld Lagrangian respectively with α2, α3 
denoting the second and third order Lovelock coefficients and β denoting the Born–Infeld 
parameter.

Dehghani et al [21] derived its (n + 1)-dimensional black hole solution as

ds2 = −f (r)dt2 +
dr2

f (r)
+ r2dΩ2,� (6)

where

f (r) = k +
r2

α
[1 − g(r)1/3],� (7)

g(r) = 1 +
3αm

rn − 12αβ2

n(n − 1)

[
1 −

√
1 + η − Λ

2β2 +
(n − 1)η
(n − 2)

�(η)
]
.� (8)

�(η) denotes the hypergeometric function 2F1

([
1
2 , n−2

2n−2

]
,
[

3n−4
2n−2

]
,−η

)
 with η = (n−1)(n−2)q2

2β2r2n−2 .  

It should be noted that this solution was obtained with the assumption that α2 = α
(n−2)(n−3) ,

α3 = α2

72(n−2
4 )

 [21], where α denotes the Lovelock parameter.

In the above solution, m and q are parameters related to the mass M and the electric charge 
Q as

M =
(n − 1)Σk

16π
m,� (9)

Q =
Σk

4π

√
(n − 1)(n − 2)

2
q.� (10)
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Here, Σk denotes the volume of the (n − 1)-dimensional hypersurface with constant curvature 
(n − 1)(n − 2)k  whose line element is represented by dΩ2 in the above metric. Note that the 
horizon radius r+ is the largest root of the equation f (r+ )  =  0. Then the mass can be expressed 
into the function of r+ .

Since we need to concentrate on the effect of Lovelock gravity, the effect of nonlinear 
electromagnetic filed can be excluded by considering the limit β → ∞. Then

g(r) → 1 +
3αm

rn +
6αΛ

n(n − 1)
− 3αq2

r2n−2 .� (11)

The mass, the Hawking temperature, the entropy and the electric potential Φ of topological 
Lovelock AdS black holes was derived as [21]

M =
Σk

48nπrn+6
+

{3n(n − 1)q2r8
+ + r2n

+

[
kn(n − 1)(3r4

+ + 3kr2
+α+ k2α2)− 6r6

+Λ
]
}.� (12)

T =
1

12π(n − 1)r+(r2
+ + kα)2

{−6Λr6
+ − 3(n − 2)(n − 1)q2r8−2n

+

+(n − 1)k[3(n − 2)r4
+ + 3(n − 4)kαr2

+ + (n − 6)k2α2]}.
�

(13)

S =

∫ r+

0

1
T

(
∂M
∂r+

)
dr =

Σk(n − 1)rn−5
+

4

(
r4
+

n − 1
+

2kr2
+α

n − 3
+

k2α2

n − 5

)
,

� (14)

Φ =
4πQ

(n − 2)rn−2
+ Σk

.� (15)

The integration in equation (14) is divergent for n � 5. And it is just the manifestation of the 
fact that the third order Lovelock gravity is non-trivial only for n  >  5.

Treating the cosmological constant as a variable, the thermodynamic pressure and thermo-
dynamic volume can be defined as [5]

P = − Λ

8π
, V =

(
∂M
∂P

)
=

rn
+Σk

n
.� (16)

3.  Joule–Thomson expansion of seven-dimensional Lovelock AdS black holes

In classical thermodynamics, Joule–Thomson expansion describes such an isenthalpic process 
in a thermally insulated tube that the gas expands from a high pressure section to a low pres
sure section through a porous plug. This process is also called throttling process and is widely 
applied in thermal machines such as air conditioner, liquefiers and heat pumps. Obviously, 
during this process the pressure decreases. And the expansion can be divided into the cool-
ing process (the change of temperature is negative) and the heating process (the change of 
temperature is positive), which can be discriminated by an important criteria named as the 
Joule–Thomson coefficient. The coefficient can be defined as

µ =

(
∂T
∂P

)

H
� (17)
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where µ > 0 corresponds to the cooling process while µ < 0 corresponds to heating process. 
For more detailed information concerning the Joule–Thomson expansion of the real gas, one 
can refer to any textbook of classical thermodynamics or the nice review presented in [12].

3.1. The Joule–Thomson coefficient

Now we utilize the first law of black hole thermodynamics to derive the Joule–Thomson coef-
ficient for Lovelock AdS black holes. The first law of black hole thermodynamics of seven-
dimensional Lovelock AdS black holes in the extended phase space reads [26, 32]

dH = TdS +ΦdQ + VdP +Adα,� (18)

where A denotes the quantities conjugated to the Lovelock parameter. Note that the mass of 
the black hole is interpreted as the enthalpy in the extended phase space and the term Bdβ is 
omitted here because the nonlinear electromagnetic field is not taken into account here.

From equation (18), one can obtain

0 = T
(
∂S
∂P

)

H
+ V .� (19)

The conditions dH = 0, dQ = 0, dα = 0 have been used in the above derivation. On the other 
hand, the entropy S can be viewed as the function of the Hawking temperature T, the pressure 
P, the charge Q and the Lovelock parameter α. And one can express dS  as

dS =

(
∂S
∂P

)

T ,α,Q
dP +

(
∂S
∂T

)

P,α,Q
dT +

(
∂S
∂α

)

T ,P,Q
dα+

(
∂S
∂Q

)

T ,P,α
dQ,

� (20)
from which one can further derive

(
∂S
∂P

)

H
=

(
∂S
∂P

)

T ,α,Q
+

(
∂S
∂T

)

P,α,Q

(
∂T
∂P

)

H
.� (21)

Here, we have utilized dQ = 0, dα = 0 again.
Substituting equation (17) into (21), one can obtain

µ =
1

T
(
∂S
∂T

)
P,α

[
−T

(
∂S
∂P

)

T ,α,Q
− V

]
=

1
CP,α

[
T
(
∂V
∂T

)

P,α,Q
− V

]
.� (22)

Note that both the Maxwell relation and the definition of specific heat have been applied.
One can also follow the approach proposed in [13] and derive the Joule–Thomson coef-

ficient utilizing both the first law of black hole thermodynamics and the differentiation of the 
Smarr formula. We have shown in [18] both approaches are consistent with each other.

From equations (13), (14), (16) and (22), the explicit expression of µ for seven-dimensional 
Lovelock AdS black holes can be obtained as

µ =
2r5

+{r6
+[40Pπr6

+ + 75r2
+α+ 25α2 + r4

+(70 + 8Pπα)]− 10q2(15r2
+ + 11α)}

15(r2
+ + α)3(10r8

+ + 8Pπr10
+ + 5αr6

+ − 10q2)
.� (23)

The behavior of µ is depicted in figure 1 with the help of equation (23). Both a divergent point 
and a zero point can be observed in each subgraph. The horizon radius corresponding to the 
zero point (We use the notation r+i to denote this horizon radius while the subscript i is short 
for ‘inversion’ in this paper) tends to decrease with the Lovelock parameter α. So does the 
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horizon radius corresponding to the divergent point of µ. Remind that the divergent point of 
Joule–Thomson coefficient coincides with the zero point of Hawking temperature.

Utilizing equation (13), one can further obtain the inversion temperature Ti when P, Q, α 
is given. Inversion temperature is an important quantity to probe the Joule–Thomson expan-
sion. In the following subsection, we will study the inversion curves which show the relation 
between the inversion temperature Ti and the inversion pressure Pi intuitively.

(a) (b)

(c) (d)

(e) (f)

Figure 1.  Joule–Thomson coefficient µ for P = 1, Q = 1 (a) α = 0 (b) α = 0.5  
(c) α = 1.0 (d) α = 1.5 (e) α = 2.0 (f) α = 2.5.
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3.2. The inversion curves and the isenthalpic curves

As can be observed from the numerator of the righthand side of equation (23), the inversion 
pressure Pi and the corresponding r+i satisfy

r6
+i[40Piπr6

+i + 75r2
+iα+ 25α2 + r4

+i(70 + 8Piπα)]− 10q2(15r2
+i + 11α) = 0.

� (24)
Via equations (13), (16) and (24), the inversion curves are plotted in figure 2. For α = 0.5, 
figure 2(a) shows the effect of the electric charge on the inversion curves. With the increasing 
of Q, the inversion temperature for given pressure tends to increase. This behavior is quali-
tatively similar to the RN-AdS black holes [12]. Figure 2(b) further compares the inversion 
curve of the case α = 0.5 with that of the case α = 0. Although in both case the inversion 
temperature Ti increases with the inversion pressure Pi, the slope is rather different. For given 
Pi, the inversion temperature of the case α = 0.5 is much lower. To further probe the effect of 
the Lovelock gravity on the inversion curves, figures 2(c) and (d) shows the inversion curves 
for different α while Q is chosen to be 1 and 2 respectively. As can be witnessed in these two 
sub-figures, Ti tends to decrease with α for given Pi, in contrast to the effect of the electric 
charge.

Since Ti increases monotonically with Pi, there exists a minimum inversion temperature 
Tmin which can be calculated by demanding Pi  =  0. The ratio between Tmin and the critical 
temperature Tc is of potential interest. It was shown that this ratio is 1/2 for four-dimensional 
charged AdS black holes [12] and Kerr–AdS black holes [13] but tends to decrease with the 
dimensionality d [18]. The results of the ratio Tmin/Tc for various α is shown in table 1. For 
α = 0, it recovers the value of d  =  7 [18]. For α �= 0, the ratio decreases with α. Note that 
there is no analytic expression for the minimum inversion temperature due to the complexity 
of the equation of equation (24) and we had to present the numerical results here.

Apart from the inversion curves, the isenthalpic curves are also of interest considering 
Joule–Thomson expansion is an isenthalpic process. Within the framework of the extended 
phase space, the mass is interpreted as enthalpy [5]. Then isenthalpic curves can be plotted 
provided the mass of the black holes is fixed. Utilizing equations  (12), (13) and (16), the 
isenthalpic curves for α = 0 and α �= 0 is shown in figure 3. The inversion curves are shown 
together to gain a deeper understanding of the Joule–Thomson expansion. Each isenthalpic 
curve is divided into two branches by the inversion curve. The branch above the inversion 
curve represents the cooling process while the branch below the inversion curve represents 
the heating process. Note that the intersection point between the isenthalpic curve and the 
inversion curve is exactly the inversion point. So the inversion point discriminates the heat-
ing process from cooling process. Moreover, the inversion point is the maximum point for a 
specific isenthalpic curve, implying that during the whole Joule–Thomson expansion process 
the temperature is highest at the inversion point.

One can read off the inversion temperature and the inversion pressure from the intersection 
point between the isenthalpic curve and the inversion curve. Comparing the isenthalpic curves 
for α �= 0 with those of the case α = 0, it can be witnessed that both Ti and Pi for α �= 0 are 
much lower for the same given mass of the black hole, showing the effect of Lovelock gravity. 
Moreover, we list the corresponding Ti and Pi for various mass in table 2. As M increases, both 
Ti and Pi increase, suggesting that the inversion temperature is higher for the Joule–Thomson 
expansion with a larger enthalpy.

J-X Mo and G-Q Li﻿Class. Quantum Grav. 37 (2020) 045009
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3.3. The uncharged case

Here, we consider the uncharged Lovelock AdS black holes. From equations (13), (14), (16) 
and (22), one can obtain the explicit expression of µ as

(a) (b)

(c) (d)

Figure 2.  (a)The inversion curves for α = 0.5. From top to bottom the curves 
correspond to Q  =  2.5, Q  =  2.0, Q  =  1.5, Q  =  1.0 respectively. (b) The inversion 
curves for Q  =  1. The dashed line represents α = 0 while the solid line represents 
α = 0.5. (c) The inversion curves for Q  =  1. From top to bottom the curves correspond 
to α = 0.5, α = 1.0, α = 1.5, α = 2.0, α = 2.5 respectively. (d) The inversion curves 
for Q  =  2. From top to bottom the curves correspond to α = 0.5, α = 1.0, α = 1.5, 
α = 2.0, α = 2.5 respectively.

Table 1.  Tmin/Tc of seven-dimensional charged Lovelock AdS black holes for various 
α (Q  =  1).

α 0 0.5 1.0 1.5 2.0 2.5

Tmin 0.257 949 0.090 899 0.050 021 0.033 123 0.024 259 0.018 915
Tc 0.587 673 0.200 981 0.142 337 0.116 228 0.100 658 0.090 031
Tmin/Tc 0.438 933 0.452 277 0.351 427 0.284 983 0.241 004 0.210 094

J-X Mo and G-Q Li﻿Class. Quantum Grav. 37 (2020) 045009
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µ =
2r5

+[40Pπr6
+ + 75r2

+α+ 25α2 + r4
+(70 + 8Pπα)]

15(r2
+ + α)3(10r2

+ + 8Pπr4
+ + 5α)

.� (25)

As can be observed from above, both its numerator and denominator are always positive 
since P > 0,α � 0. So there will be no zero point or divergent point for µ. This conclusion 
can also be confirmed in figure 4, where the behavior of µ is plotted for the case Q  =  0 for 
various choices of α. µ is always positive, suggesting the expansion is always in the regime 
of cooling process. Then no inversion temperature exists in this case, in contrast to the case 
Q �= 0. Isenthalpic curves are presented in figure 5 for both the case α = 0 and α �= 0. It is 
shown in both cases that the temperature increases monotonically with the pressure when the 
mass is specified. This phenomenon is also quite different from that in the isenthalpic curves 
of Q �= 0. It can be attributed to the observation that the system does not quite behave like a 
real (Van der Waals) gas in absence of charge and rotation .

(a) (b)

Figure 3.  Isenthalpic curves for Q  =  1 (a) α = 0 (b) α �= 0 (α = 0.5). In both graphs 
the curves from left to right correspond to M  =  2.0, M  =  2.5, M  =  3.0, M  =  3.5 
respectively. Note that the inversion curve for Q  =  1 is also depicted in both graphs via 
the dashed line.

Table 2.  Inversion temperature and inversion pressure of seven-dimensional charged 
Lovelock AdS black holes for various mass (Q  =  1).

α M Pi Ti

0 2.0 9.99 3.13
0 2.5 19.04 5.39
0 3.0 31.17 8.26
0 3.5 47.02 11.77
0.5 2.0 1.70 0.21
0.5 2.5 5.95 0.40
0.5 3.0 11.94 0.63
0.5 3.5 19.87 0.87

J-X Mo and G-Q Li﻿Class. Quantum Grav. 37 (2020) 045009
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(a) (b)

(c) (d)

Figure 4.  Joule–Thomson coefficient µ for P = 1, Q = 0 (a) α = 0 (b) α = 0.5  
(c) α = 1.0 (d) α = 2.0.

(a) (b)

Figure 5.  Isenthalpic curves for Q  =  0 (a) α = 0 (b) α �= 0 (α = 0.5). In both graphs 
the curves from bottom to top correspond to M  =  2.0, M  =  2.5, M  =  3.0, M  =  3.5 
respectively.

J-X Mo and G-Q Li﻿Class. Quantum Grav. 37 (2020) 045009



11

4.  Conclusions

Effects of Lovelock gravity on the Joule–Thomson expansion is probed in this paper from 
various perspectives. Specifically, we investigate the Joule–Thomson expansion of seven-
dimensional Lovelock AdS black holes.

Firstly, the well-known Joule–Thomson coefficient µ is derived via the first law of black 
hole thermodynamics. The explicit expression of µ is obtained while its behavior is also 
shown intuitively. Both a divergent point and a zero point exist. Here, the divergent point 
corresponds to the zero point of Hawking temperature while the zero point is the inversion 
point that discriminate the cooling process from heating process. It is shown that the horizon 
radius corresponding to the zero point tends to decrease with the Lovelock parameter α. So 
does the horizon radius corresponding to the divergent point of µ. This suggests that the effect 
of Lovelock gravity decreases the horizon radius of the black hole that changes between the 
heating process and the cooling process.

Secondly, the inversion curves showing the relation between the inversion temperature 
and the inversion pressure are studied. With the increasing of Q, the inversion temperature 
for given pressure tends to increase. This behavior is qualitatively similar to the RN-AdS 
black holes. Comparing the inversion curve of the case α �= 0 with that of the case α = 0, 
it is shown that in both case the inversion temperature Ti increases with the inversion pres
sure Pi. However, the slope is rather different. For given Pi, the inversion temperature of the 
case α �= 0 is much lower. Moreover, the inversion temperature tends to decrease with α for 
given Pi, in contrast to the effect of the electric charge. We also probe the ratio between Tmin 
and the critical temperature Tc. It is shown that the ratio Tmin/Tc decreases with α for α �= 0 
while it recovers the result in former literature [18] for α = 0. These observation suggests 
that the effect of Lovelock gravity makes the inversion much easier (lower inversion temper
ature), which can be further understood considering the fact that gravity becomes weaker with 
increase in Lovelock order.

Thirdly, the isenthalpic curves are investigated with rich physics revealed. Each isenthalpic 
curve is divided into two branches by the inversion curve. The branch above the inversion 
curve represents the cooling process while the branch below the inversion curve represents 
the heating process. And the intersection point between the isenthalpic curve and the inver-
sion curve is exactly the inversion point. So the inversion point discriminates the heating 
process from cooling process. Moreover, the inversion point is the maximum point for a spe-
cific isenthalpic curve, implying that during the whole Joule–Thomson expansion process the 
temperature is highest at the inversion point. One can read off the inversion temperature and 
the inversion pressure from the intersection point between the isenthalpic curve and the inver-
sion curve. Comparing the case α �= 0 with the case α = 0, it can be witnessed that both Ti 
and Pi for α �= 0 are much lower for the same given mass of the black hole, showing the effect 
of Lovelock gravity. This result also supports the finding that the effect of Lovelock gravity 
makes the inversion much easier. One can interpret this finding by considering the fact that 
gravity becomes weaker with increase in Lovelock order. Moreover, both Ti and Pi increase 
as M increases, suggesting that the inversion temperature is higher for the Joule–Thomson 
expansion with a larger enthalpy.

Last but not the least, the uncharged Lovelock AdS black holes are discussed. It is shown 
that µ is always positive, suggesting the expansion is always in the regime of cooling process. 
Then no inversion temperature exists in this case, in contrast to the case Q �= 0. Isenthalpic 
curves are also quite different from those of Q �= 0. It is shown for both the cases α �= 0 
and α = 0 that the temperature increases monotonically with the pressure when the mass is 
specified.
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For future directions, one can further probe the combined effects of both the Lovelock 
gravity and the Born–Infeld field on the Joule–Thomson expansion based on the metric and 
results in this paper. Recently, an interesting phenomenon was reported [57, 58] that the 
isenthalpic curve does not intersect with the inversion curve beyond a certain value of charge 
and the system is always in the heating phase. One can also search for this phenomenon within 
the framework of Lovelock gravity.
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