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Abstract
First-order general relativity in n dimensions (n � 3) has an internal gauge 
symmetry that is the higher-dimensional generalization of three-dimensional 
local translations. We report the extension of this symmetry for n-dimensional 
f (R) gravity with torsion in the Cartan formalism. The new symmetry arises 
from the direct application of the converse of Noether’s second theorem to 
the action principle of f (R) gravity with torsion. We show that infinitesimal 
diffeomorphisms can be written as a linear combination of the new internal 
gauge symmetry, local Lorentz transformations, and terms proportional 
to the variational derivatives of the f (R) action. It means that the new 
internal symmetry together with local Lorentz transformations can be used 
to describe the full gauge symmetry of f (R) gravity with torsion, and thus 
diffeomorphisms become a derived symmetry in this setting.

Keywords: modified gravity theories, f (R) theories of gravity, gauge 
symmetries, Noether’s second theorem

1.  Introduction

Despite the success of general relativity, the interest in theories beyond it, generically known 
as ‘modified gravity’ theories has grown substantially in recent decades. In essence, the so-
called modified gravity attempts to give an explanation to some cosmological and astrophysi-
cal observations that apparently do not fit in the theoretical framework of general relativity or 
matter fields coupled to general relativity, among them: accelerated expansion of the universe, 
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the rotation curves of particles surrounding galaxies or the dynamics of galaxies in clusters, 
the large-scale structure of the universe, etc [1, 2].

Among the variety of modified gravity theories, one of the most straightforward generali-
zations of general relativity is f (R) gravity. In such theories, the Lagrangian is proportional 
to an arbitrary function f (R) of the Ricci scalar R, instead of just being linear in R as in gen-
eral relativity. There are three versions of f (R) gravity: metric f (R) gravity, Palatini f (R) 
gravity, and f (R) gravity with torsion. In the first case, the Lagrangian depends on the metric 
tensor only, because the spacetime connection is the Levi-Civita connection constructed out 
of the metric [1]. In the second case, it is assumed that the fundamental variables of the theory 
are the metric tensor and a torsion-free connection (see [2, 3]). In the third case, the funda-
mental variables of f (R) gravity with torsion are taken to be either the metric tensor and a 
metric-compatible connection in the metric-affine formalism [4–6], or an orthonormal frame 
of 1-forms and a metric-compatible connection in the Cartan formalism [7].

On the other hand, it is well known that f (R) gravity with torsion in the Cartan formalism 
is by construction invariant under local Lorentz transformations and diffeomorphisms. These 
symmetries have been adopted for many years as the fundamental symmetries underlying the 
gravitational theories. Nevertheless, this paradigm has been recently challenged by a series 
of works showing that different equivalent sets of symmetries, which do not consider dif-
feomorphisms as fundamental, naturally emerge through the implementation of the converse 
of Noether’s second theorem [8–10]. For instance, in [8] the symmetries of the n-dimen-
sional Einstein–Cartan action with a cosmological constant (n � 3) are reformulated in this 
approach. It is shown there that the full gauge invariance of this action can be described by 
local Lorentz transformations and an internal gauge symmetry that is the higher-dimensional 
generalization of three-dimensional (3D) local translations. In this framework, infinitesimal 
diffeomorphisms are no longer regarded as fundamental but as a derived symmetry. Bearing 
in mind that the idea of replacing diffeomorphisms with 3D local translations has been useful 
to attack the problem of quantizing gravity in the 3D setting [11, 12], and given the advan-
tages of f (R) gravity with torsion in comparison with other models, in the present paper we 
want to extend the analog of 3D local translations to the case of f (R) gravity with torsion. 
Furthermore, such internal gauge symmetry, along with local Lorentz transformations, would 
render f (R) gravity with torsion closer to ordinary gauge theories.

In light of this, here we show that there exist a new internal gauge symmetry for n-dimen-
sional f (R) gravity with torsion in the Cartan formalism, that is the natural extension of the 
internal gauge symmetry reported in [8] for n-dimensional general relativity. In the case of 
n-dimensional general relativity, i.e. f (R) = R− 2Λ, the new internal gauge symmetry col-
lapses off-shell to the symmetry obtained in [8]. Furthermore, for a general f (R) theory, we 
find that infinitesimal diffeomorphisms can be written as a linear combination of local Lorentz 
transformations, plus the new internal gauge symmetry, plus terms proportional to the vari-
ational derivatives of the f (R) action. Thus, the new symmetry together with local Lorentz 
transformations can be taken as a set of fundamental symmetries to capture the full gauge 
invariance of f (R) theories of gravity with torsion. In this framework, diffeomorphisms are 
regarded as a derived symmetry. The new symmetry is obtained by applying the converse of 
Noether’s second theorem, which involves the construction of a non-trivial Noether identity. 
We achieve this by following an approach analogous to that used in [8–10]. An interesting 
property of the new internal gauge symmetry is that it depends explicitly on the spacetime 
dimension and the particular form of the function f (R), this in contrast to diffeomorphisms 
and local Lorentz transformations, which take the same structure independently of the form of 
the action from which they are deduced. Finally, we consider the case f (R) = Rn/2  (n � 3) 
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and find, by using the converse of Noether’s second theorem, that the corresponding action 
principle has a new symmetry, namely, the invariance under the rescaling of the frame. This 
last symmetry shows that the application of the converse of Noether’s second theorem on par
ticular models of f (R) gravity with torsion may lead to further symmetries.

2.  Symmetries of four-dimensional (4D) general relativity

We begin this section by recalling some facts concerning the symmetries of 4D general rela-
tivity in the Cartan formalism, and then we review the derivation of the internal gauge symme-
try obtained in [8] for this case. This allows us to illustrate the basic idea behind the procedure 
that we use to uncover the analog of this gauge symmetry for f (R) gravity with torsion.

Let M4 be a 4D orientable manifold and let SO(4) be its frame rotation group for the 
Euclidean case (σ = 1) or SO(3, 1) for the Lorentzian one (σ = −1)4; in each case, the 
associated metric is (ηIJ) := diag(σ, 1, 1, 1). In the Cartan formalism, 4D general relativity 
with cosmological constant Λ is described by the Einstein–Cartan action (or Palatini action) 
S[e,ω] =

∫
M4 LGR, whose Lagrangian 4-form in terms of the orthonormal frame of 1-forms eI 

and the spacetime connection ωI
J  compatible with the metric ηIJ, dηIJ − ωK

IηKJ − ωK
JηIK = 0 

(and thus ωIJ = −ωJI), is given by

LGR =
κ

2
εIJKLeI ∧ eJ ∧

(
RKL − Λ

3!
eK ∧ eL

)
.� (1)

Here, RI
J = dωI

J + ωI
K ∧ ωK

J  is the curvature of ωI
J  and κ is a constant related to Newton’s 

constant. The totally antisymmetric tensor εIJKL  is such that ε0123 = 1 and the frame indices 
I, J, K, . . . are raised and lowered with the metric ηIJ. The variational derivatives of the action 
defined by equation (1) with respect eI and ωIJ  are

EI :=
δS
δeI = −κεIJKL

(
RJK − Λ

3
eJ ∧ eK

)
∧ eL,� (2a)

EIJ :=
δS
δωIJ = −1

2
κεIJKLD

(
eK ∧ eL)

= −1
2
κεIJKL

[
d
(
eK ∧ eL)+ ωK

M ∧ eM ∧ eL + ωL
M ∧ eK ∧ eM] ,

�

(2b)

respectively, where D is the covariant derivative defined by ωI
J  [13]. Einstein’s equations with 

cosmological constant follow from (2a) and (2b) by setting EI = 0 and EIJ = 0. Notice that 
if EIJ = 0, then the connection ωI

J  is torsion-free provided that the frame is nondegenerate. 
Nevertheless, we point out that throughout this paper the variational derivatives EI and EIJ  will 
be assumed to be nonvanishing in general, since our approach to uncover gauge symmetries 
is off-shell.

Now we turn our attention to the gauge symmetries of the Einstein–Cartan action. The full 
gauge invariance of the action defined by equation (1) can be equivalently described by two 
different sets of fundamental symmetries. The first set is composed of (infinitesimal) local 
Lorentz transformations

4 From here, we use the word ‘Lorentz’ or ‘Lorentzian’ for referring to both signatures, the Euclidean and the 
Lorentzian one.
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δτeI = τ I
JeJ ,

δτω
IJ = −Dτ IJ = −

(
dτ IJ + ωI

Kτ
KJ + ωJ

Kτ
IK) ,

� (3)

and (infinitesimal) diffeomorphisms

δξeI = LξeI ,

δξω
IJ = Lξω

IJ ,
� (4)

where the functions τ IJ(= −τ JI) are gauge parameters and Lξ is the Lie derivative along the 
vector field ξ, which is the generator of a diffeomorphism. At this point it is worth recalling 
that an infinitesimal transformation of the fields depending on arbitrary functions is a gauge 
symmetry of the action if the corresponding Lagrangian remains quasi-invariant (invariant 
up to a total derivative) under it. In this regard, the change of the Lagrangian (1) under local 
Lorentz transformations is δτLGR = 0 and under diffeomorphisms is δξLGR = d (ξ LGR), 
where ξ LGR is the contraction of the vector field ξ and the 4-form LGR.

The second set of symmetries of the Einstein–Cartan action defined by equation (1) is com-
posed of (infinitesimal) local Lorentz transformations (3) and the internal gauge symmetry [8]

δρeI = DρI ,

δρω
IJ =

σ

2
(
−εIJKL ∗ RMKLN + ∗R ∗MN

IJ) ρMeN + Λρ[IeJ],
� (5)

where we have written the curvature as RI
J = (1/2)RI

JKLeK ∧ eL and defined the left and 
right internal duals ∗RIJKL := (1/2)εIJ

MNRMNKL and R∗IJKL := (1/2)εKL
MNRIJMN , respec-

tively. Also, ρI is the gauge parameter associated to this transformation. It can be checked that 
the Lagrangian (1) is quasi-invariant under the symmetry (5), since

δρLGR = d
[
κ

2
εIJKLρ

I
(

RJK +
Λ

3
eJ ∧ eK

)
∧ eL

]
.� (6)

The internal gauge symmetry (5) is the particular case for n  =  4 of the symmetry found in [8] 
for the n-dimensional Einstein–Cartan action, which corresponds to the higher-dimensional 
generalization of 3D local translations [12, 14] (see [9] for a nice derivation of this symmetry 
using the converse of Noether’s second theorem).

Since the set composed of local Lorentz transformations and the internal gauge symmetry 
(5) is a ‘complete set’ (see [15]), it is possible to write an infinitesimal diffeomorphism acting 
on both the frame and the connection in terms of the symmetries of this set. As matter of fact, 
using the Cartan formula LXQ = d(X Q) + X dQ with Q being an arbitrary k-form, we 
can express equation (4) as

δξeI = (δρ − δτ ) eI + terms proportional to EIJ ,

δξω
IJ = (δρ − δτ )ω

IJ + terms proportional to EI ,
� (7)

where τ IJ := ξ ωIJ  and ρI := ξ eI are the field-dependent gauge parameters. This shows 
that, in this setting, infinitesimal diffeomorphisms can be regarded as a derived symmetry. The 
terms proportional to EI and EIJ  in (7) are known as ‘trivial gauge transformations’.

Let us now show how we can arrive at the internal gauge symmetry (5) by using the converse 
of Noether’s second theorem [16–18], which is the fundamental tool that we use throughout 
this paper to uncover gauge symmetries. The converse of Noether’s second theorem states that 
for every set of m differential relations (Noether identities) among the variational derivatives 
of an action principle, corresponds a gauge symmetry involving m gauge parameters. This 
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means that we can replace the problem of finding infinitesimal gauge transformations that 
leave the action quasi-invariant by that of finding Noether identities.

With this in mind, the first step towards finding the internal gauge symmetry (5) is to get the 
corresponding Noether identity. This is done as follows [8]. Taking the covariant derivative of 
equation (2a) and using the Bianchi identity DRI

J = 0, we obtain

DEI = −κεIJKL
(
RJK ∧ DeL − ΛDeJ ∧ eK ∧ eL) .� (8)

Then, expressing the curvature as RI
J = (1/2)RI

JKLeK ∧ eL and using the fact that 
2DeI ∧ eJ ∧ eK = D(eI ∧ eJ) ∧ eK + eI ∧ D(eJ ∧ eK)− D(eI ∧ eK) ∧ eJ , equation (8) acquires  
the form

DEI = −κ

2
εIJKLRJK

PQ

[
D
(
eL ∧ eP) ∧ eQ +

1
2

eL ∧ D
(
eP ∧ eQ)

]

+
κΛ

2
εIJKLD

(
eJ ∧ eK) ∧ eL.

�

(9)

Now, equation (2b) implies that D
(
eI ∧ eJ

)
= −(σ/2)εIJKLEKL , which substituted into equa-

tion (9) yields

DEI − ZKL
IJeJ ∧ EKL = 0,� (10)

with

ZKL
IJ :=

σ

2
(
−εKLMN ∗ RIMNJ + ∗R ∗ IJ

KL)+ Λδ
[K
I δ

L]
J ,� (11)

where our convention for the antisymmetrizer is A[IJ] := (AIJ − AJI)/2. This is the desired 
Noether identity. After multiplying equation (10) by the gauge parameter ρI, we arrive at the 
off-shell identity [8]

EI ∧ DρI
︸︷︷︸
δρeI

+EIJ ∧ ZIJ
KLρ

KeL
︸ ︷︷ ︸

δρωIJ

+d(ρIEI) = 0.
� (12)

From this, appealing to the converse of Noether’s second theorem, we read off the internal 
gauge symmetry (5) from the quantities multiplying EI and EIJ  in equation (12).

3.  Symmetries of n-dimensional f (R) gravity with torsion

In order to make this paper self-contained, we will begin this section by giving a brief descrip-
tion of n-dimensional f (R) gravity with torsion in the Cartan formalism. We next focus on 
the main goal of the current paper, namely, to uncover the n-dimensional analog of the inter-
nal gauge symmetry (5) for f (R) gravity with torsion. To accomplish this, we will use the 
approach outlined in the previous section, which heavily relies on the use of the converse of 
Noether’s second theorem.

Let Mn be an n-dimensional orientable manifold and let SO(n) be the frame rotation group 
for the Euclidean case (σ = 1) and SO(n − 1, 1) for the Lorentzian one (σ = −1); to each 
case corresponds the metric (ηIJ) := diag(σ, 1, . . . , 1). In the Cartan formalism, the action that 
describes f (R) gravity with torsion in n dimensions (n � 3) is given by S[e,ω] =

∫
Mn Lf (R), 

where the Lagrangian n-form is [7]

Lf (R) = κf (R)η.� (13)
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Here, f (R) is an arbitrary (real) function of the Ricci scalar R := RIJ
IJ with RI

J :=
dωI

J + ωI
K ∧ ωK

J = (1/2)RI
JKLeK ∧ eL the curvature of ωI

J , which is compatible with the 
metric ηIJ, DηIJ = dηIJ − ωK

IηKJ − ωK
JηIK = 0 (and thus ωIJ = −ωJI), eI is an orthonor-

mal frame of 1-forms, η := (1/n!)εI1...In eI1 ∧ · · · ∧ eIn is the volume form, and κ is a con-
stant related to Newton’s constant, whose numerical value depends on n. The frame indices 
I, J, . . . , now run from 0 to n  −  1 and are raised and lowered with the metric ηIJ, and the 
totally antisymmetric tensor εI1...In is such that ε0...n−1 = 1.

The variational derivatives of the action defined by the Lagrangian n-form (13) with respect 
to the frame eI and the connection ωIJ  are, respectively:

EI :=
δS
δeI = κ(−1)n−1 [ f ′(R) � (eI ∧ eJ ∧ eK) ∧ RJK + (f (R)−Rf ′(R)) � eI

]
,

� (14a)

EIJ :=
δS
δωIJ = κ(−1)n−1D [ f ′(R) � (eI ∧ eJ)] ,� (14b)

where f ′(R) := df (R)
dR  and ‘�’ is the Hodge dual operator:

�(eI1 ∧ · · · ∧ eIk) =
1

(n − k)!
εI1...IkIk+1...In eIk+1 ∧ · · · ∧ eIn .� (15)

The equations of motion of the theory correspond to EI = 0 and EIJ = 0, which after some 
manipulations give rise to

f ′(R)RI
J −

1
2

f (R)δI
J = 0,� (16a)

TI
JK =

2
(n − 2) f ′ (R)

δI
[J∂K]f ′ (R) ,� (16b)

where RI
J := RKI

KJ is the Ricci tensor, ∂I is the vector field dual to the frame eI, i.e. ∂J eI = δI
J, 

and TI
JK are the components of the torsion 2-form TI = DeI = (1/2)TI

JKeJ ∧ eK . Notice that 
with the particular choice f (R) = R− 2Λ, equation (16a) leads to Einstein’s equations with 
cosmological constant, whereas equation (16b) implies that TI

JK = 0 and thus the connec-
tion ωI

J  is torsion-free. This is expected, since in this case the Lagrangian (13) reduces to the 
n-dimensional Einstein–Cartan Lagrangian with cosmological term,

LGR = κ (R− 2Λ) η = κ
[
�(eI ∧ eJ) ∧ RIJ − 2Λη

]
,� (17)

which for n  =  4 collapses to equation (1). In the general case, from equation (16b) it is seen 
that a non-linear function f (R) is the source of torsion, and hence the connection is no longer 
on-shell torsion-free even in vacuum. Furthermore, in contrast to general relativity, for a non-
linear f (R) the right-hand side of equation (16b) involves second derivatives of the connec-
tion. It should also be pointed out that as a result of the assumptions involved in the theories 
described by equation (13), namely arbitrary torsion and vanishing non-metricity DηIJ = 0, 
the equation of motion (16b) is different from its analogous counterpart in f (R) gravity in the 
Palatini formalism, where the assumptions are vanishing torsion and arbitrary non-metricity. 
Actually, in this last case, the corresponding equation of motion implies vanishing non-metric-
ity only for a linear function f (R) (see [19], for instance).

Having introduced f (R) gravity with torsion, we now proceed to study its symmetries. We 
start by recalling that, by construction, the Lagrangian n-form (13) is invariant under local 
Lorentz transformations (3) and quasi-invariant under infinitesimal diffeomorphisms (4). It 
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is not hard to verify that the change of the Lagrangian n-form (13) under these symmetries 
is, respectively, δτLf (R) = 0 and δξLf (R) = d(ξ Lf (R)). Furthermore, it is well-known that 
local Lorentz transformations and diffeomorphisms can be used to capture the full gauge free-
dom of f (R) gravity with torsion.

Let us illustrate how the converse of Noether’s second theorem can be used to obtain local 
Lorentz transformations of the f (R) Lagrangian (13). Taking the covariant derivative of equa-
tion (14b), we get

DEIJ = (−1)n−1κD2 [ f ′(R) � (eI ∧ eJ)]

= (−1)n−1κf ′(R)
[
−RK

I ∧ � (eK ∧ eJ)− RK
J ∧ � (eI ∧ eK)

]

= (−1)n−1κf ′(R)
(
−2RK

[JeI] ∧ �eK
)

,

�
(18)

where in the third line we have used the identity

RKI ∧ � (eJ ∧ eK) =
1
n!
εKI2...InRK

JeI ∧ eI2 ∧ · · · ∧ eIn = −RK
JeI ∧ �eK .� (19)

On the other hand, from equation (14a) we have

eI ∧ EJ = κ(−1)n−1 (f (R)eI ∧ �eJ − 2f ′(R)RK
JeI ∧ �eK

)
.� (20)

Antisimmetrizing this expression in the indices I, J and inserting the result into equation (18), 
we arrive at the Noether identity

DEIJ − e[I ∧ EJ] = 0,� (21)

which, after being multiplied by the gauge parameter τ IJ(= −τ JI) and some algebra, leads to 
the off-shell identity

EI ∧ τ I
JeJ

︸ ︷︷ ︸
δτ eI

+EIJ ∧ (−Dτ IJ)︸ ︷︷ ︸
δτωIJ

+d
[
(−1)n−1τ IJEIJ

]
= 0.

� (22)

Appealing to the converse of Noether’s second theorem, local Lorentz transformations (3) 
emerge from the quantities that multiply each variational derivative in equation (22).

In addition to local Lorentz transformations and diffeomorphisms, we will show that the 
Lagrangian n-form (13) possesses a new internal gauge symmetry analogous to that of equa-
tion (5), and given by

δρeI = DρI + Yn
I
JKρ

JeK ,

δρω
IJ = Zn

IJ
KLρ

KeL,
� (23)

where

Yn
I
JK :=

1
(n − 2) f ′(R)

δI
[J∂K]f ′(R),� (24a)

Zn
IJ

KL :=
σ(n − 3)
(n − 2)!

(
εIJMI1...In−3 ∗ RKI1...In−3ML + ∗R ∗ I1...In−4KL

I1...In−4IJ)

+
1

(n − 2)

(
R− f (R)

f ′(R)

)
δ
[I
Kδ

J]
L ,

�

(24b)
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with the n-dimensional left and right internal duals defined as

∗RI1...In−2MN :=
1
2
εI1...In−2KLRKL

MN ,� (25a)

R ∗ MNI1...In−2 :=
1
2
εI1...In−2KLRMN

KL,� (25b)

respectively. To prove this fact, we compute the change of the Lagrangian n-form (13) under 
the transformation (23), obtaining

δρLf (R) = d
{

κ

(n − 2)
ρI � (eI ∧ eJ ∧ eK) ∧

[
RJK

+
1

(n − 1)(n − 2)

(
R− f (R)

f ′(R)

)
eJ ∧ eK

]}
.

�

(26)

This means that the Lagrangian n-form (13) is quasi-invariant, and hence the transformation 
(23) is a gauge symmetry of the action principle built from (13).

To uncover the internal gauge symmetry (23) we follow the procedure depicted in sec-
tion 2, which in this case, involves constructing a Noether identity that relates the covariant 
derivative of EI with both EI and EIJ . We start by computing the covariant derivative of equa-
tion (14a), arriving at

DEI = κ(−1)n−1 { f ′(R)[D � (eI ∧ eJ ∧ eK)] ∧ RJK

+ Df ′(R) ∧ � (eI ∧ eJ ∧ eK) ∧ RJK + D (f (R)−Rf ′(R)) ∧ �eI

+(f (R)−Rf ′(R)) ∧ D � eI}

= κ(−1)n−1
{

f ′(R)
(n − 3)
(n − 2)!

εIJKI1I2...In−3RJK
MN

×
[

D
(
eI1 ∧ eI2 ∧ · · · ∧ eIn−3 ∧ eM) ∧ eN +

1
2

eI1 ∧ D
(
eI2 ∧ · · · ∧ eIn−3 ∧ eM ∧ eN)

]

+ Df ′(R) ∧ � (eI ∧ eJ ∧ eK) ∧ RJK + D (f (R)−Rf ′(R)) ∧ �eI

+ (f (R)−Rf ′(R)) ∧ D � eI

}
,

�

(27)

where in the first equality we have used the Bianchi identity DRIJ  =  0 whereas in the second 
the fact that

(n − 3)! [D � (eI ∧ eJ ∧ eK)] ∧ RJK =
(n − 3)
(n − 2)

εIJKI1I2···In−3RJK
MN

×
[

D
(
eI1 ∧ eI2 ∧ · · · ∧ eIn−3 ∧ eM) ∧ eN +

1
2

eI1 ∧ D
(
eI2 · · · ∧ eIn−3 ∧ eM ∧ eN)

]
,

� (28)
which can be verified by a direct calculation. Then, the remaining task is to write the right-
hand side of equation (27) in terms of EI and EIJ . This is done as follows.

Contracting equation (14b) with εIJI3...In, we have

f ′(R)D
(
eI1 ∧ · · · ∧ eIn−2

)
=

σ(−1)n−1

2κ
εIJI1...In−2EIJ − Df ′(R) ∧

(
eI1 ∧ · · · ∧ eIn−2

)
,� (29)
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which substituted into equation (28) yields

DEI =
σ(n − 2)
(n − 3)!

RJK
MNεIJKI1I2...In−3

×
(
εI1I2...In−3PQMEPQ ∧ eN +

1
2

eI1 ∧ εI2...In−3PQMNEPQ

)

+ κ(−1)n−1
[

1
(n − 2)

Df ′(R) ∧ � (eI ∧ eJ ∧ eK) ∧ RJK

+ D (f (R)−Rf ′(R)) ∧ �eI + (f (R)−Rf ′(R)) ∧ D � eI

]
.

�

(30)

Now, from equations (14a) and (14b) we obtain

� (eI ∧ eJ ∧ eK) ∧ RJK =
(−1)n−1

κf ′(R)
EI −

(
f (R)

f ′(R)
−R

)
� eI ,� (31a)

D � eI =
(−1)n−1

κf ′(R)(n − 2)
eJ ∧ EIJ −

(n − 1)
(n − 2) f ′(R)

Df ′(R) ∧ �eI ,� (31b)

respectively. So, inserting these two expressions into equation (30), we get

DEI =
σ(n − 2)
(n − 3)!

RJK
MNεIJKI1I2...In−3

×
(
εI1I2...In−3PQMEPQ ∧ eN +

1
2

eI1 ∧ εI2...In−3PQMNEPQ

)

+
1

(n − 2) f ′(R)
Df ′(R) ∧ EI +

1
(n − 2)

(
R− f (R)

f ′(R)

)
eJ ∧ EIJ

− κ(−1)n−1

(n − 2) f ′(R)
∂I f ′(R) (nf (R)− 2Rf ′(R)) η.

�

(32)

The last term in equation (32) is rewritten using equation (14a) as

κ(−1)n−1 (nf (R)− 2Rf ′(R)) η = eJ ∧ EJ ,� (33)

and with this result, DEI  takes the final form

DEI = − 1
(n − 2) f ′(R)

∂I f ′(R)eJ ∧ EJ +
σ(n − 2)
(n − 3)!

RJK
MNεIJKI1I2...In−3

×
(
εI1I2...In−3PQMEPQ ∧ eN +

1
2

eI1 ∧ εI2...In−3PQMNEPQ

)

+
1

(n − 2) f ′(R)
Df ′(R) ∧ EI +

1
(n − 2)

(
R− f (R)

f ′(R)

)
eJ ∧ EIJ .

�

(34)

Substituting Yn
K

IJ and Zn
KL

IJ  given by equations (24a) and (24b) in (34), it is straightfor-
ward to arrive at the following Noether identity

DEI − Zn
KL

IJeJ ∧ EKL − YK
IJeJ ∧ EK = 0.� (35)

Multiplying equation (35) by the gauge parameter ρI and after a bit of algebra, we get the off-
shell identity

M Montesinos et alClass. Quantum Grav. 37 (2020) 045008
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EI ∧
(
DρI + Yn

I
JKρ

JeK)
︸ ︷︷ ︸

δρeI

+EIJ ∧ Zn
IJ

KLρ
KeL

︸ ︷︷ ︸
δρωIJ

+d
(
(−1)nρIEI

)
= 0.

� (36)

Taking into account the converse of Noether’s second theorem, from the quantities multiply-
ing EI and EIJ  in equation (36) we can read off a new gauge symmetry of the f (R) action, 
which is precisely that given in equation (23).

An important remark about the internal gauge symmetry (23) is that it and diffeomor-
phisms are not independent gauge symmetries. To show this, it is convenient to write equa-
tion (23) in the following alternative form

δρeI = DρI +
f ′′(R)

(n − 2) f ′(R)
(∂KR) ρ[IeK],

δρω
IJ =

[
CIJ

KL −
2(n − 3)
(n − 2)

δ
[I
KR

J]
L

]
ρKeL +

[
2R

(n − 1)
− f (R)

(n − 2) f ′(R)

]
ρ[IeJ],

� (37)
where

CIJKL ≡RIJKL −
1

(n − 2)
(ηIKRJL − ηJKRIL + ηJLRIK − ηILRJK)

+
1

(n − 1)(n − 2)
R (ηIKηJL − ηILηJK) ,

�

(38)

are the components of the Weyl tensor [13]. Then, using equation (37) and the Cartan formula 
LXQ = d(X Q) + X dQ, we find that infinitesimal diffeomorphisms can be written as

δξeI =(δρ − δτ ) eI +
σ(−1)n−1

κf ′(R)

[
2

(n − 2)
�
(
eK ∧ EJK

)
ρ[IeJ] + �

(
eI ∧ EJK

)
ρ[JeK]

]
,

δξω
IJ = (δρ − δτ )ω

IJ

+
σ(−1)n−1

κf ′(R)

[
(n − 3)
(n − 2)

�
(

e[I ∧ EK

)
ρJ]eK +

3
(n − 2)

�
(

e[I ∧ EK

)
ρJeK]

]
,

�

(39)

where τ IJ := ξ ωIJ  and ρI := ξ eI are field-dependent gauge parameters. This means that 
infinitesimal diffeomorphisms are linear combinations of local Lorentz transformations and 
the transformation (23), modulo terms proportional to EI and EIJ . This in turn implies that 
local Lorentz transformations and the new gauge symmetry can be taken as a fundamental set 
to describe the whole gauge symmetry of f (R) gravity with torsion.

Two comments are in order: (i) In the particular case of n-dimensional general relativity, 
namely f (R) = R− 2Λ, the transformation (23) reduces to

δρeI = DρI ,

δρω
IJ =

σ(n − 3)
(n − 2)!

(
εIJLI1...In−3 ∗ RMI1...In−3LN

+ ∗R ∗I1...In−4MN
I1...In−4IJ

)
ρMeN +

2Λ
n−2

ρ[IeJ],

�

(40)

which is exactly the internal gauge symmetry reported in [8]. Furthermore, to obtain the trans-
formation (5) we only need to set n  =  4 in this expression, and to get 3D local translations,

δρeI = DρI , δρω
IJ = 2Λρ[IeJ],� (41)
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we simply set n  =  3 in equation (40). Note that the second term in the gauge transformation 
of the frame eI given in equation (23) vanishes for the case of general relativity whereas if 
f (R) �= R− 2Λ such a term will always be present.
(ii) It is important to point out that, in contrast to local Lorentz transformations and diffeomor-
phisms, the structure of the internal gauge symmetry (23) depends explicitly on the spacetime 
dimension n and the function f (R) under consideration. For instance, in four dimensions 
(n = 4) the new symmetry (23) takes the form

δρeI = DρI +
1

2f ′(R)
(∂Jf ′(R)) ρ[IeJ],

δρω
IJ =

σ

2
(
−εIJKL ∗ RMKLN + ∗R ∗ MN

IJ) ρMeN +
1
2

(
R− f (R)

f ′(R)

)
ρ[IeJ],

� (42)
whereas in three dimensions (n = 3) the symmetry (23) becomes

δρeI = DρI +
2

f ′(R)
(∂Jf ′(R)) ρ[IeJ],

δρω
IJ =

(
R− f (R)

f ′(R)

)
ρ[IeJ].

�

(43)

Before concluding this section, we would like to remark that the converse of Noether’s 
second theorem applied to some particular f (R) actions may lead to additional symmetries. 
As an example, notice that the left-hand side of equation (33) vanishes for f (R) = cRn/2, 
with c a real constant, which can be verified by a direct substitution. Then, in this case, we 
have the Noether identity

EI ∧ eI = 0.� (44)

As for the previous Noether identities, we multiply equation (44) by the gauge parameter µ, 
obtaining then the off-shell identity

EI ∧ µeI
︸︷︷︸
δeI

= 0.
� (45)

Once again, appealing to the converse of Noether’s second theorem, we identify the gauge 
symmetry associated to the Noether identity (44) from the terms accompanying the variational 
derivatives in equation (45), namely

δµeI = µeI ,

δµω
IJ = 0.

� (46)

Hence, we can conclude that the action S[e,ω] = κ
∫
Mn Rn/2η is invariant under the rescaling 

of the frame. Although it is well-known that the analogous action, in the Palatini formalism, 
S[g,Γ] = κ

∫
Rn/2η, is invariant under conformal transformations of the metric [20], the sym-

metry (46) had not been reported in literature and can be considered as a new symmetry of the 
corresponding action. In this way, we have illustrated how new symmetries naturally emerge 
by applying our approach to particular cases of f (R) gravity with torsion.
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4.  Conclusion

In this work, we have used the converse of Noether’s second theorem to obtain a new internal 
gauge symmetry for n-dimensional f (R) gravity with torsion in the Cartan formalism that is 
the extension of the symmetry reported in [8] for general relativity. The new internal gauge 
symmetry has the following properties:

	 (i)	�The structure of the new internal gauge symmetry explicitly depends on the spacetime 
dimension n and the particular form of the underlying f (R) function. Thus, the new sym-
metry depends on the dynamics of the theory, in contrast to local Lorentz transformations 
and diffeomorphisms which are insensitive to the form of the f (R) action.

	(ii)	�In the particular case of general relativity, that is f (R) = R− 2Λ, the new internal gauge 
symmetry reduces off-shell to that of [8], which is the higher-dimensional generalization 
of 3D local translations.

	(iii)	�The transformation of the frame δρeI  (see equation (23)) involves an extra term as com-
pared with its analog in the case of general relativity. Such a term vanishes when f (R) is 
a linear function of the Ricci scalar R.

	(iv)	�The new internal gauge symmetry and local Lorentz transformations can be considered 
as a fundamental set of symmetries to describe the full gauge freedom of a general f (R) 
theory. This follows from the fact that infinitesimal diffeomorphisms can be written in 
terms of these symmetries. Then, in this framework, the whole gauge symmetry of f (R) 
gravity with torsion is purely internal and diffeomorphisms are no longer a fundamental 
symmetry.

As future work, it would be interesting to obtain the finite gauge transformations corre
sponding to the symmetry (23), since this may have applications in the search for solutions 
of the field equations of f (R) gravity with torsion. On the other hand, due to its relevant role 
in the quantization of the theory, it would be desirable to obtain the gauge algebra of the new 
internal gauge symmetry (for a general f (R) theory with torsion) and local Lorentz transfor-
mations. This gauge algebra is expected to be generically open, just as in the case of general 
relativity [8]. Additionally, it is worth to explore if there exist functions f (R) for which the 
algebra of the new internal gauge symmetry and local Lorentz transformations closes. Finally, 
we would like to remark that analyzing particular cases of f (R) theories, or even other theo-
ries of gravity beyond general relativity, from the perspective of the converse of Noether’s 
second theorem may be not only interesting, but also fundamental, since the last word about 
the ultimate nature of gravity has not been said yet, and so, this powerful mathematical tool 
may help us to get a deeper insight about it.
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