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Abstract
Recently, Kenna-Allison et al claimed that bimetric gravity cannot give rise 
to a viable cosmological expansion history while at the same time being 
compatible with local gravity tests. In this note we review that claim and 
combine various results from the literature to provide several simple counter 
examples. We conclude that the results of Kenna-Allison et al cannot hold in 
general.
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1.  Introduction

Ghost-free bimetric gravity is an extension of general relativity (GR) which describes the non-
linear interactions of a massive spin-2 field in a dynamical gravitational background [1, 2]. In 
contrast to its cousin massive gravity [3], it contains a massless spin-2 mode that mediates a 
long-range force and it possesses a smooth GR limit4.

In the linear theory of a massive spin-2 field coupled to a source, the zero-mass limit is dis-
continuous [8, 9]. For a single massive graviton, this discontinuity is in conflict with observa-
tions but can be cured by nonlinear interactions, a feature known as the Vainshtein mechanism 
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4 An important additional point to consider is the Cauchy problem, which is known to be well-posed in GR, but still 
the subject of ongoing work within bimetric theory [4–7].
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[10]. In massive gravity, without the massless spin-2 mode, this mechanism is absolutely crucial 
for the phenomenological viability of the theory. In bimetric theory, the situation is fundamen-
tally different since the gravitational interaction is mediated by a combination of the massive 
and the massless spin-2 mode. For large spin-2 masses, bimetric gravity passes all local gravity 
tests due to the strong Yukawa suppression of the massive graviton mode in the gravitational 
potential in Newtonian approximation. In addition, the coupling of the massive spin-2 mode 
to matter can be made arbitrarily small, in which case the gravitational force is effectively 
mediated purely by the massless field. As a consequence, bimetric theory does not necessarily 
require a working Vainshtein mechanism in order to be in agreement with observational data.

Furthermore, bimetric theory can give rise to cosmological solutions with accelerated 
expansion even in the absence of vacuum energy [11–13]. These self-accelerating solutions 
require the mass scale which is associated to the breaking of independent diffeomorphisms of 
the two metrics to be on the order of the Hubble scale. This scale is not necessarily identical to 
the Fierz–Pauli mass of the massive spin-2 mode since the latter depends on a different param
eter combination. In particular, the spin-2 mass also involves the parameter which controls the 
coupling of the massive spin-2 mode to the matter source.

The authors of [14] claimed that in bimetric theory it is not possible to bring a viable 
cosmological expansion history in agreement with local gravity tests. Implicitly, their argu-
ment involved two steps: (1) the assumption that local gravity tests can only be passed if the 
Vainshtein mechanism is at work, and (2) a working Vainshtein mechanism can be shown to 
contradict a viable background cosmology due to incompatible requirements on the param
eters of the theory.

In the following we invalidate both of these steps in the argument by giving explicit 
counter-examples.

2.  Short review of bimetric gravity

We start by presenting the action of ghost-free bimetric theory for two metric tensors g and f  
[1, 15]5,

S =
m2

g

2

∫
d4x

(√
−g R(g) + α2

√
−f R( f )

)

− m2m2
g

∫
d4x V(g, f ) +

∫
d4x

√
−gLm(g,Φ),

�

(1)

where mg is the bare Planck mass of the metric g and α measures the ratio to the bare Planck 
mass of f . R(•) denotes the Ricci curvature scalar for each metric. The two metric tensors 
interact via the potential,

V(g, f ) =
√
−g

4∑
n=0

βnen

(√
g−1f

)
,� (2)

where en denotes the nth elementary symmetric polynomial of the matrix argument. The con-
stants βn are free parameters of the theory, and β0 and β4 parametrize the bare cosmological 
constants for g and f , respectively6.

5 For a review on bimetric gravity, see [16].
6 [14] refers to α0 as the bare cosmological constant, which is incorrect, since matter loops renormalize β0. For an 
explicit confirmation of this, see equation (2.12) of [17]. The parameter α0 is a combination of all five βn and the 
exact relations between the two parametrizations can be found, for instance, in [2].
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Varying the action with respect to g and f  yields two sets of modified Einstein equations,

Gg
µν + m2Vg

µν =
1

m2
g

Tµν ,� (3a)

α2G f
µν + m2V f

µν = 0,� (3b)

where Gg and Gf  are the Einstein tensors of g and f , respectively. The terms Vg,f  arising from 
variation of the potential were derived in [1, 18]. Finally, the stress-energy tensor of matter is 
defined as,

Tµν =
−2√
−g

δ
√
−gLm

δgµν
.� (4)

3.  Mass eigenstates and gravitational force

Bimetric gravity has a well defined mass spectrum around proportional backgrounds, where 
the metrics are conformally related as f̄ = c2ḡ with the real constant c, determined by [2],

α2(cβ0 + 3c2β1 + 3c3β2 + c4β3
)

= β1 + 3cβ2 + 3c2β3 + c3β4.
� (5)

We consider small fluctuations around that background,

gµν = ḡµν + δgµν , fµν = f̄µν + δfµν .� (6)

Plugging this ansatz into the Einstein equations and keeping only terms up to linear order in 
the fluctuations, one finds that a massless spin-2 field, δGµν, and a massive spin-2 field, δMµν  
propagate on the proportional background [1, 2]. The massive mode has a Fierz–Pauli mass,

m2
FP = m2 1 + α2c2

α2c2 c(β1 + 2β2c + β3c2).� (7)

The original metric fluctuations are linear combinations of both mass eigenstates,

δgµν ∝ δGµν − α2δMµν ,� (8a)

δfµν ∝ δMµν + c2δGµν ,� (8b)

where we omitted the overall normalization.
When α � 1, the fluctuation of the physical metric gµν is almost aligned with the massless 

excitation. Since matter fields couple to the metric perturbations δgµν, we expect to recover 
GR for α � 1 [19]. Clearly, in this parameter region there is no conflict with current obser-
vational data.

For instance, let us consider a spherically symmetric background [20–24]. The contribution 
to the Newtonian potential coming from the massless mode is a Coulomb-like term, ∼ r−1, 
proportional to the inverse distance between the source and the test particle, while the massive 
mode contributes a Yukawa-term ∼ e−mFPr/r. Hence, from equation (8a) it follows that the 

coupling 1
m2

g
δgµνTµν  will produce the following linearized gravitational potential,

V(r) = − 1
m2

Pl

(
1
r
+

4α2c2

3
e−mFPr

r

)
,� (9)
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where the physical Planck mass is m2
Pl = m2

g(1 + α2c2) [2]. Whenever the first term in the 
gravitational potential dominates over the second one, the solution behaves approximately like 
GR and does not require a Vainshtein mechanism. We can thus identify two parameter régimes 
in which GR is restored,

	(1.)	�αc � 1,
	(2.)	�mFP � �−1,

where � is the typical length scale of the system (e.g. � � 1 AU for the Solar System).

4.  Example: solar system

In this section, we demonstrate the general results discussed in the previous section  in an 
explicit example: the Solar System. For concreteness, we derive numerical values for the Sun 
as central source of the gravitational potential. Not all solar system tests are based on this sce-
nario, so our arguments here should be viewed as qualitative. A detailed quantitative analysis 
is left for future work. Our findings are summarised in figures 1 and 2.

4.1. Yukawa suppression

At the scale of 1 AU � 1.5 × 1013 cm, deviations from the inverse square law for the gravi-
tational force are constrained to be �10−9 [25]. We aim at providing the most conservative 
constraints on the bimetric parameters. Hence, we use this bound (which is the most stringent 
one) on deviations for any distance from the Sun. Comparing the two contributions in (9), this 
requires7,

Figure 1.  For the Sun as central source, this figure  indicates deviations from GR in 
the Newtonian force, for distances r to the test particle as a function of the spin-2  
mass mFP. For large mFP and large r, the contribution from the massive mode is 
sufficiently suppressed, yielding the red-shaded region. For small mFP and small r, the 
Vainshtein mechanism restores GR, yielding the yellow-shaded region. Below 10µm 
no observational constraints exist.

7 In this section, we absorb c into α for simplicity. Reinserting c does not change any of our findings.
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4α2

3
e−mFPr � 10−9.� (10)

Deviations due to the massive mode are arbitrarily small in both the previously identified 
parameter limits. The red line in figure  1 represents the bound equation  (10) for the case 
α = 1. Therefore, in the red-shaded region, the Yukawa-like term in the gravitational potential 
is always smaller than all observational bounds. A value for α smaller than unity makes the 
deviations even smaller.

Local gravity tests inside the solar system provide strong constraints on deviations from 
GR down to scales of  ∼10µm [25]. As a very rough estimate, we use equation (10) to define 
a critical spin-2 mass (for α � 1),

mcrit � 2.6 eV,� (11)

above which no deviations from GR are detectable via observations in the Solar System. This 
is indicated by the black-shaded region in figure 1.

For mFP � mcrit and in the red-shaded region of effective Yukawa suppression, the 
Vainshtein mechanism is certainly not needed to restore GR.

4.2.  Vainshtein regime

Close to the source, nonlinear terms become as important as the linear ones in a way, such 
that GR is restored. This is the well-known Vainshtein mechanism [10] and it is active within 
a sphere defined by the Vainshtein radius,

rV =

(
rS

m2
FP

)1/3

� (12)

Figure 2.  This figure shows the allowed parameter regions in the α-mFP-plane at the 
length scale r = 1AU . For large mFP, the parameter α is not constrained to be small 
thanks to the Yukawa suppression in the potential. For small mFP, it is unconstrained 
due to the Vainshtein mechanism. Only for masses from 10−24 to 10−16 eV observations 
require α � 10−5.
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around an object of mass M with Schwarzschild radius rS = (1 + α2)M/m2
Pl  [20, 24]. Even 

though the expression derived in [14] seems to differ by a numerical factor (which is not mani-
festly positive) from (12), the scale is the same as long as the parameters satisfy βn ∼ O(1)8.

Well inside the Vainshtein radius, deviations from the inverse-square law of the gravita-
tional force scale like (r/rV)

3 [20, 22] and hence, in order to satisfy (10), we require (for 
α � 1),

r
rV

� 10−3.� (13)

Choosing a solar mass object M = M� defines the orange line in figure 1 as a rough estimate 
for the threshold of an effective Vainshtein mechanism. Consequently, well inside the yellow-
shaded region, the gravitational force is certainly indistinguishable from GR for any bimetric 
parameters.

4.3.  Constraints on the spin-2 coupling

Only in the region left white in figure 1, significant deviations from GR could occur. However, 
we still have the free parameter α, which we can use to suppress the extra term in the 
Newtonian potential. The most stringent bound comes from close to the Vainshtein radius, 
where the observational bound (10) requires,

α � 10−5,� (14)

see also figure 2. Then, for any mass of the spin-2, deviations from the GR prediction are 
undetectable with current experimental precision.

For very small spin-2 masses, the Vainshtein radius of the Sun becomes larger than the 
solar system itself. As a conservative estimate, evaluating equation (13) at r = 100 AU implies 
mFP � 5 × 10−28 eV. For smaller spin-2 masses the Kuiper belt is well inside the Vainshtein 
sphere and the solar system does not constrain α to be small.

We conclude this section  by stressing the following points: for a large spin-2 mass, 
mFP � mcrit, the Vainshtein mechanism is not necessary for the theory to pass all solar system 
tests since the Yukawa suppression of the contribution from the massive mode is too large. For 
very small masses, the Vainshtein mechanism has to be (and is) active. These results hold for 
any value of α � 1. Only for intermediate spin-2 masses the parameter α has to satisfy the 
bound (14).

5.  Gravitational waves and galactic tests

Constraints from gravitational waves were derived in [26], excluding a small region of the 
parameter space: within the spin-2 mass range of 10−22–10−21 eV, the ratio of the Planck 
masses has to satisfy α � 0.3. For a spin-2 mass outside that range, gravitational wave obser-
vations do not constrain α to be small.

On galactic scales, observations of galactic velocity dispersions and gravitational lens-
ing can be used to constrain the bimetric parameters [23]. For mFP � H0 and for a galaxy 
of mass M = 1012M�, deviations from GR predictions are expected to be on the order of 

8 We emphasize that the value for the Vainshtein radius is derived assuming r < m−1
FP . For the Solar System, this is 

not an issue since the intersection of the lines corresponding to rV  and m−1
FP  lies close to the observable threshold of 

∼ 10µm. The region where m−1
FP ∼ rV  should be treated more carefully, but can definitely be brought in agreement 

with data by making α small.
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(r/rV)
3 � 2 × 10−13 [22], which is within the observational bounds by a factor of 4 × 10−12 

[27, 28]. Data from cluster lensing requires α � 0.7 for a spin-2 mass range of 10−30 to 
10−28eV [29], where neither the Vainshtein mechanism nor the Yukawa suppression restore 
GR on the length scales relevant to observations. Outside of this range, α is not constrained to 
be small since it is not needed to restore GR.

For a combined exclusion plot with galactic and extragalactic constraints as well as bounds 
from gravitational wave detection on the bimetric parameters, see figure 9 in [29]9. We con-
clude that tests of the gravitational law outside the solar system do not provide constraints on 
the bimetric parameter space in the region where α � 0.1. Thus the most stringent bounds on 
bimetric gravity are those from the Solar System, discussed in the previous section.

6.  Bimetric cosmologies

The equations of motion of bimetric gravity evaluated on a homogeneous and isotropic ansatz 
for both metrics give two sets of equations that can be combined into one modified Friedmann 
equation of the general form,

H2 = F(ρ).� (15)

Here H = ȧ/a is the Hubble function of the physical scale factor a(t) inside the physical met-
ric gµν and ρ  is the matter energy density, i.e. the 00-component of the perfect fluid source Tµ

ν.
In the following, we will assume that all βn parameters, are of order unity and the mass 

scale m (not necessarily mFP) is of order H0. For concreteness we will consider a simple bimet-
ric model with parameters β0 = β3 = β4 = 0. All of our findings straightforwardly generalize 
to models with generic O(1) values for all βn.

6.1.  Large mass region

In [19] it was shown that for α � 1, the Friedmann equation (15) can be approximated by the 
simple form,

H2 =
ρ

3m2
Pl
− 2β2

1

3β2
m2 +O(α2).� (16)

The Fierz–Pauli mass in equation (7), defined at the de Sitter point is,

m2
FP = m2(1 + α−2c−2)(cβ1 + 2c2β2) ∼

m2

α2 ,� (17)

where we have used that c = − β1
3β2

+O(α2) ∼ O(1) which follows from the background 
equation (5). Clearly α � 1 implies that,

mFP � H0.� (18)

This shows that we can easily be in the parameter regime where no Vainshtein mechanism is 
needed and at the same time have a valid background cosmology that matches exactly that of 
GR with cosmological constant Λ = 2m2β2

1/|β2|. In fact, the approximation in equation (16) 
is valid up to the scale H ∼ mFP [19]. By making the spin-2 mass large, we can thus push 
back the deviations from GR to arbitrary early times. Explicitly, already for a spin-2 mass 
of mFP � 0.4 eV the background expansion in this simple model follows (almost) exactly 

9 Note that α = tan θ in the notation of [29] and their plot is linear in θ.
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the ΛCDM prediction until the CMB. At earlier times, when H > mFP, we expect GR to be 
recovered by nonlinear effects, as we shall discuss further below. Moreover, the cosmological 
evolution at early times is dominated by the matter density ρ  [13] and will therefore anyway 
follow almost exactly the evolution predicted by the ΛCDM model.

6.2.  Small mass region

Now, we consider the parameter region, where α � 1. With our assumption βn ∼ O(1), this 
implies

mFP � H0.� (19)

This parameter region has received a lot of attention in the literature, see e.g. [11–13, 30, 31]. 
In [30] various models with α = 1 were compared to observations, many of which give a good 
fit to data while still allowing for testable deviations from the standard ΛCDM scenario. The 
crucial point is that this parameter region is not in conflict with a successful Vainshtein mech
anism around spherically symmetric sources. For a spin-2 mass on the order of the Hubble rate 
today, the Vainshtein radius of the sun is rV � 1022 cm, which is on the order of the size of the 
Milky Way. Hence, no constraints on α exist for such a tiny spin-2 mass. Lensing constraints 
do not provide bounds on the value of α for small spin-2 masses either [29], see section 5. The 
only caveat here is that the effective Planck mass in cosmological solutions must be matched 
with Newton’s constant in the gravitational force law, which may (mildly) constrain one of 
the βn parameters.

6.3.  Cosmological perturbations

Although bimetric gravity gives rise to a viable expansion history while passing all local grav-
ity tests in both these parameter regions, the cosmological perturbations behave differently 
from GR. In particular, the FLRW background is not always stable against scalar fluctuations 
during the entire expansion history due to a gradient instability [32–43]. [19] showed that for 
times earlier than,

H � mFP,� (20)

the instability sets in. Thus, by making the spin-2 mass large (which is equivalent to α � 1 in 
our parametrization), the instabilities can be pushed to arbitrarily early times.

Naïvely, these results seem to disfavour the parameter region with small spin-2 mass [40]. 
However, precisely when the Hubble rate exaggerates the spin-2 mass, the inset of the gradient 
instability simply implies that nonlinear effects become as important as linear ones, invalidat-
ing linear perturbation theory. The results of [44, 45] suggest that these nonlinear effects are in 
fact not problematic but instead restore GR at early times through the Vainshtein mechanism.

7.  Conclusion

We have discussed on general grounds why bimetric theory for a large range of parameter 
values can give rise to a viable cosmology while at the same time passing all other tests of the 
gravitational force law.

In particular, we demonstrated explicitly that for a weak coupling of the massive spin-2 
mode to matter and a large spin-2 mass, bimetric theory becomes essentially indistinguishable 
from GR in cosmological solutions and on all distance scales in the galaxy.

Class. Quantum Grav. 37 (2020) 047001
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We emphasize once more that this is in sharp contrast to massive gravity, which can be 
obtained as a parameter limit in bimetric gravity by sending α → ∞ and which requires the 
Vainshtein mechanism. For a summary of the much stronger constraints on massive gravity, 
see [46].

We also showed that even in the different regime of small spin-2 mass and Planck scale 
coupling for the massive spin-2, bimetric theory is compatible with all available observational 
data.

The assumptions in our explicit examples may seem restrictive. The theory has enough 
free parameters to achieve a large spin-2 mass even when α � 1 and conversely, a small 
spin-2 mass mFP � H0 although α � 1. These more general models, which require values 
for the βn parameters different from O(1), have several branches of solutions and the expres-
sions can be lengthy. It would be interesting to study the resulting phenomenology, which we 
leave for future work. It is possible that the results of [14] apply to these parameter regions. 
Nevertheless, the examples we presented here clearly show that they do not hold in general.

We conclude that bimetric cosmologies are certainly not incompatible with local gravity 
tests.
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