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Abstract

A novel scheme for the enhancement of phase sensitivity based on a Mach—Zehnder interferometer
(MZI) and intensity detection is proposed. With the input of bright entangled twin beams from four
wave mixing (FWM), the phase sensitivity can beat shot noise limit (SNL) and approach Heisenberg
limit. This scheme is special due to that only one of bright entangled twin beams enters into the MZI
and the other one is employed for measurement. In addition, by altering the parametric strength of
FWM and the implementation of maximum quantum squeezing, the optimal phase sensitivity can
reach sub-SNL. Optical intensity depletion of photon detectors and internal intensity depletion of the
MZI are also discussed. The scheme displays that by employing external resources, while one input of
the MZI is an vacuum beam, the phase sensitivity still can beat SNL.

1. Introduction

As the basis of precision measurement applications, an optical interferometer, such as a Mach—Zehnder
interferometer (MZI), is the commonly used tool for the phase measurement. When the inputs are one coherent
beam and one vacuum beam or two coherent beams [1, 2], the phase sensitivity based on a MZI is limited to shot
noise limit (SNL) % For a given measurement scheme, the phase sensitivity can be calculated by error
propagation formula. In order to get the higher phase sensitivity, a lot of research groups proposed that by
employing quantum resources, the phase sensitivity can reach sub-SNL or approach Heisenberg limit (HL) [3],
and the usual quantum resources contain: NOON states [4], twins Fock states [5], and squeezed states [6, 7].

Generally, the interferometers consist of three constructions. 1: the input (classical state and quantum state);
2: the interferometer scheme. For example, a MZI is made up of abeam splitter (BS); an SU(1,1) interferometer
[8, 9] contains an optical parametric amplification or a four wave mixing (FWM) process [10-12] and a hybrid
interferometer consists of a BS and a FWM,; 3: detection method [13]. The useful detection may contain intensity
sum or difference detection [14], homodyne detection [15, 16], parity measurement [17]. However, it is
impossible to get the optimal phase sensitivity by employing all the detection methods. Fortunately, Braunstein
and Caves introduced the quantum Fisher information (QFI) which is independent on the method [18]. For a
given input state and interferometer, the ultimate precision bounds of the phase sensitivity is given by the
quantum Cramer—Rao bound (QCRB) which is A?¢ > FLQ and Fq is the QFI [19-25].

Even though QCRB is much easier without considering the detection method, the question is that when the
detection method needs another beam, the local beam in homodyne detection, the QFI is different. It was firstly
proposed by Jarzyna et al who want to give the QFI when the interferometer is considered with and without an
external phase reference [23]. Gong et al found that the QFI is different in an SU(1,1) interferometer when the
phase shift is in upper arm or lower arm [22]. This problem was solved by You et al who showed that the phase
average method can amend the QFI [25]. In addition, Takeoka et al claimed that for the MZI, if one of the inputs
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is the vacuum, one cannot beat the SNL by any nonclassical input from the other port [24]. This view also was
confirmed by You et al on an SU(1,1) interferometer [25]. Furthermore, Takeoka et al thought that the view is
only true when both the arms have the unknown phase. If the unknown phase is only in one arm, in fact, by using
external resource at the input or detection, the phase sensitivity can beat SNL [24]. However, a detailed scheme
by employing external resources for the phase sensitivity is missing. So an unique scheme based on a MZI with
an vacuum beam as one input with external resources is displayed in this paper. This is special due to the
employment of bright entangled twin beams with only one entering into the intensity detection.

The paper is organized as follows: section 2 introduces the scheme where the inputs are bright entangled
twin beams and the detection method is intensity difference. Different from the previous schemes, only one of
the twin beams enters into the MZI while the other one enters into the detector directly. In section 3, the factors
which have a effect on the phase sensitivity including parametric strength and photon number are discussed. In
addition, the optimal phase sensitivity can be realized with the implemation of the maximum quantum
squeezing. In section 4, the intensity depletion on the sensitivity are also studied. When the detection method
needs uncounted resources, the results are summarized in section 5.

2.Model

. N A . ~T r . At roo .
The transformation ofa FWM s 4, = cosh rd, + sinh rb,,and b; = sinh rd] + cosh rby. ris the parametric
A 1 A rT s . . . ~
strength of FWM. d, by, 4] and b, are annihilation and creation operators for the two input modes, respectively. ;,

Z;I, df and l;l-r are annihilation and creation operators after FWM. For BS, the relationship is 4, = JTé, + ivR 50,
and b, = ivRé;, + JTby. Tand Rare transmissivity and reflectivity of intensities, and they are equal to % 4y, by, @)

~T s . .
and b, are annihilation and creation operators after BS. So the total transform of the operators in the scheme
is given by

dout = mdy + mybo,

a4y = msay + maby. M
Andmy = (3BT = JVTE)m = (3VETie? + i5JTh ) m = (;VELe ™ - ;JTT),
my = (—iéq/ LTe ¢ — i%,/ LT, ) dou and 4], are the annihilation and creation operators after the T, from
output, ¢ is the phase shift. The FWM process is employed for the generation of bright entangled twin beams.
After the FWM, the probe beam enters into a MZI as figure 1 shows. For the conjugate beam, it directly enters
into the photon detector. The intensity of a probe beam after the gain of FWM is cosh? rN + sinh? r, and the
intensity of a conjugate beam is sinh? N + sinh? 7. Nis the photon number of the input coherent beam before
FWM. For the input of the coherent beam before FWM, it is (4,) = (4;) = ~/N. The intensity of a probe beam
after the MZI is

(L) = (iTZTA; + iT3T4 — %TM/TZT;», cos qb)(cosh2 rN + sinh?r). )

With the intensity difference detection, the detection signal intensityis (I_) = (iTz T, + %T3 T, — %T4 JLT; cos (b)
(cosh?rN + sinh?r) — T;(sinh?rN + sinh?r). If the phase shift = 0 and there are no optical depletion in the
scheme, the intensity of a probe beam after MZI is 0 which is even lower than the intensity of a conjugate beam. If
¢ = m, the intensity is same to that of input which is larger than that of the conjugate beam.

For the definition of visibility, it is

max _ Imin

=  max + Imin' (3)
cosh? rN + sinh? r
. . . o cosh’sN 4 sinh?r I :
depletion, which represents that even this scheme is different from the previous interferometer, it still can realize

the process of an interferometer.
The sensitivity A ¢ as the uncertainty in estimating a phase shift ¢ is

np= VAT @
@)1

1™ and I™" js the maximum and minimum value of | (I_)]. So V = = 1without intensity

. . A2p 52 - . . .
The variance of the measurement is A2l = |(I”) — (I_)?|. Take the bright entangled twin beams into
calculation, the sensitivity can be written as
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Figure 1. Sketch of the scheme for phase sensitivity measurement. M is mirror, BS is beam splitter, B is beam block and FWM is four
wave mixing. Probe represents the probe beam. PD is the photon detector. The dashed line means that the beam is an vacuum beam.
T, T5, Ts and T, represent the intensity depletion of PD and the internal intensity depletion of the Mach—Zehnder interferometer
(MZI). Here, only one beam enters into the MZI, and the other one is used for measurement. The FWM process is only for the
generation of bright entangled twin beams. The function of a conjugate beam works like the local beam in homodyne detection. For
comparison, the phase sensitivity with two coherent beams as input is also considered (not shown in this figure) and its function is the
measurement of intensity difference squeezing.

~

NI
Apg = —— &)
1(Os(I-Nlq
Then
6(I_ 1
8| _ ‘ L [BT Ty sin(6) (cosh? N + sinh?r) |, 6)
56 2
Q
and
AT = |(m3my cosh>r — T, sinh?r)2 N + sinh?r cosh?r (mzmy — T,)*N
+ myms cosh?r sinhr(msm; — T,)N + mymymsmy cosh?rN
+ sinhr cosh?r(mszm; — ) mymaN + 2mymymzmy sinh?r
+ sinh?r cosh? r (mzm;, — T;)?|. 7)

Here, Q means that the input beams are quantum beams. Usually, for comparison, two coherent beams with the
same intensities of the quantum beams are used to replace the probe and conjugate beams. The phase sensitivity
of two coherent beams as input can be expressed as

VAT ¢

% ol ©
So
NI = |(mimi + mymymsmy)(cosh?rN + sinh?r)
+ T2(sinh?rN + sinh?r)], 9
and
‘ % - ‘ %m T, sin(¢) (cosh? 1N + sinh?r) | . (10)
c

According to equations (6) and (10), the bright entangled twin beams and two coherent beams have the same
slope [(03(1_)) |, which means the bright entangled twin beams can get better phase sensitivity than the two

coherent beamsif VAT o < VA .

3. Phase sensitivity and quantum squeezing

In this section, the optimal phase sensitivity with bright entangled twin beams, two coherent beams, SNL and HL are
compared. For the MZI in the scheme, the SNLis 1/ \/N_al and the HLis 1/N,; where N,; = cosh?rN + sinh?r is
the total photon number inside the interferometer. Here, the conjugate beam works like the local beam in homodyne
detection and the photon number of the conjugate beam is not taken into counted. The function of the conjugate
beam is also little different from the local beam. For the conjugate beam, it only provides the power. The local beam

3
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Figure 2. The phase sensitivity A¢ of the scheme with ‘Quantum’ means the twins beams generated from four wave mixing.
‘Coherent’ means two coherent beams. ‘SNL’ and ‘HL” mean shot noise limit and Heisenberg limit. Parametric strength r = 1and
N = 100 without depletion.

offers the phase reference and power. Figure 2 shows the phase sensitivity versus the phase shift. The optimal phase
sensitivity with bright entangled twin beams can beat SNL and approach HL while the minimum value of phase
sensitivity means the optimal phase sensitivity. For two coherent beams, it even cannot reach SNL. In addition, for the
bright entangled twin beams and two coherent beams, they can get the optimal phase sensitivity at different phase
points. This method in fact uses the external resources. According to [24], for a MZI, when one input is a vacuum
beam, the phase shift cannot beat SNL while the other input is a quantum or classical beam. This view is only true
without the external resources or two phase estimations are compared. However, this scheme is for the only one
phase estimation with external resources, which does not broke the conclusion from [24]. Meanwhile, because the
conjugate beam in the system works for measurement like the local beam in homodyne detection, the photon
number of the external beam is not counted.

Next, the factors which have impacts on the optimal phase sensitivity are discussed. In figure 3, with the
increase of parametric strength r of FWM and photon number N, the optimal sensitivities of bright entangled
twin beams and two coherent beams are all better. From figure 3(a), when r is approaching 0 and N = 100, the
optimal phase sensitivity of bright entangled twin beams is approaching HL while the optimal sensitivity of the
two coherent beams can approach SNL. With the input of two coherent beams, only one of them enters into the
interferometer and the other input is the vacuum beam, the optimal phase is worse than SNL in this case, which
is corresponding to [24]. And the optimal sensitivity of bright entangled twin beams cannot reach HL while ris
much bigger. However, if is 0, the scheme will reduce to an ordinary one where only a coherent beam enters
into the MZI and there are no extra resources. Then phase sensitivity will be limited to SNL. From figure 3(b), the
optimal phase sensitivity of twin beams, two coherent beams, HL and SNL are all tending to be better with the
increase of photon number N.If N = 0, the bright entangled twin beams will reduce to the two-mode squeezed
vacuum beams. At this time, even parametric strength rvaries, for both quantum and classical beams, the phase
sensitivities are all worse than SNL as figure 3(c). The total photon number in the interferometer is
Niwo—mode = sinh? r. Considering the photon number is more than or equal to 1, in figure 3(c), the r is assumed
tobe more than 1. Furthermore, the difference between figure 3(a) from figure 3(b) is that with the increase of
photon number N, the phase sensitivities seem to be the constant values and it is opposite for parametric
strength r.

In addition, by varying parametric strength r, the optimal phase sensitivity can be realized at different phase
points which is shown as figure 4. When ris approaching 0, the optimal phase sensitivity can be realized at the
point where the phase shift is approaching 0. The phase shift is approaching 7 with the increase of parametric
strength. So the optimal phase sensitivity always can be realized at any point by altering parametric strength
which will make the process much easier. Meanwhile, the optimal phase point is not related to photon number
as shown in the inserted figure 4. In order to achieve the optimal phase sensitivity, only parametric strength r
needs to be taken into account.

From equations (6) and (10), the bright entangled twin beams and coherent beams have the same (|%i’>|). So

the smaller A’[_, the better phase sensitivity. The definition of intensity difference squeezing according to [26] is

Var(N, — N .
SD = Y=o Then SD can be written as
Var(N, — Ny)c
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Figure 3. The optimal phase sensitivity with twin beams and two coherent beams versus (a) parametric strength r with photon number
N = 100 and (b) photon number with parametric strength r = 2 and (c) parametric strength r with photon number N = 0,
Ti = T, = Ts = T, = 1.Forbetter comparison, log, ;A¢ are used to show the optimal phase sensitivity.
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which represents that, for the bright entangled twin beams, where there is quantum squeezing, there is a better
phase sensitivity. The squeezing degree of intensity difference can be described as 10log;,SD. And the optimal
squeezing exists where the phase sensitivity is the optimal. It is clear that the maximum quantum squeezing can
be more than 25 dB while the optimal sensitivity is less than 0.02 according to figure 5(a). This characteristic
makes this scheme adaptable and it has been employed for the measurement of plasmonic sensing [26].

Figure 5(b) shows the optimal squeezing versus r. Overall, while r becomes higher, the optimal squeezing degree
is superior and can reach more than 30 dB. While the maximum squeezing in the current experiment is less than
10 dB, itis due to the depletion of FWM as [27]. In addition, as the trend of sensitivity versus parametric strength

and photon number, the optimal quantum squeezing also increases with the increase of rand N which is
displayed in figures 5(b) and (¢).

4. Depletion on the phase sensitivity

In this part, the intensity depletion which play a negative effect on the phase sensitivity are discussed. For
simplification, only the condition that transmissivity is more than 0.5 are counted: the optical intensity
depletion of photon detectors and the internal intensity depletion of the MZI [28, 29]. In the current technology,
the efficiency of photon detectors can be more than 0.95 or even more. For the interferometer, the internal
efficiency can reach more than 0.8. However, in order to better show the optimal phase sensitivity, the condition
that T, = 0.5and T5 = 0.5 s followed. From figure 6(a), the optimal phase sensitivity can be achieved when
both T, and T3 are approaching perfect without depletion. The optimal phase sensitivity even can be better than
0.01. And the transmissivity T, and T5 play the same roles on the sensitivity. For example, when T, = 0.6,

T3 = 0.70r T, = 0.7, T5 = 0.6, the optimal phase sensitivity is the same. So even the MZI is not perfect, the
phase sensitivity can be better with higher transmissivity. From figure 6 (b), the phase sensitivity always can reach
optimal while T} = 0.5. Moreover, it also can be realized while T, approaches 1. So the higher photon detector
efficiency, the better phase sensitivity. For the whole scheme and current experiment technology, the optimal

phase sensitivity can be realized while the intensity depletion of the photon detector and internal intensity
depletion of a MZI are less than 0.05.
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T, = 0.95, T; = 0.95. Others’ parametersarer = 2and N = 1000.

5. Conclusion

In conclusion, this paper has shown that by the employment of quantum squeezing beams, the phase sensitivity can
beat SNL and approach HL in a MZL. Different from others’ interferometers, only one of twin beams enters into the
MZI and the other one is employed for measurement. While the external resources are employed with the inputs
being a vacuum beam and a quantum beam for a MZI, the phase sensitivity really can beat SNL and approach HL by
only the implementation of maximum quantum squeezing. The role of the conjugate beam in the scheme is similar
to thelocal beam in homodyne detection and the photon number of a conjugate beam is also not counted when the
SNLand HL are employed for contrast. Moreover, the intensity depletion of photon detectors and internal intensity
depletion of the MZI are discussed and the phase sensitivity still can be optimal while the intensity depletion in a
MZI are same. Due to the easy realization and function of boost from twin beams, this scheme offers a new method
for the enhancement of phase sensitivity and will be very useful in LIGO, VIRGO and many other precision
measurements, such as the remote sensing and enhanced quantum imaging [30, 31].
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