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Abstract
Anovel scheme for the enhancement of phase sensitivity based on aMach–Zehnder interferometer
(MZI) and intensity detection is proposed.With the input of bright entangled twin beams from four
wavemixing (FWM), the phase sensitivity can beat shot noise limit (SNL) and approachHeisenberg
limit. This scheme is special due to that only one of bright entangled twin beams enters into theMZI
and the other one is employed formeasurement. In addition, by altering the parametric strength of
FWMand the implementation ofmaximumquantum squeezing, the optimal phase sensitivity can
reach sub-SNL.Optical intensity depletion of photon detectors and internal intensity depletion of the
MZI are also discussed. The scheme displays that by employing external resources, while one input of
theMZI is an vacuumbeam, the phase sensitivity still can beat SNL.

1. Introduction

As the basis of precisionmeasurement applications, an optical interferometer, such as aMach–Zehnder
interferometer (MZI), is the commonly used tool for the phasemeasurement.When the inputs are one coherent
beam and one vacuumbeamor two coherent beams [1, 2], the phase sensitivity based on aMZI is limited to shot

noise limit (SNL)
N

1 . For a givenmeasurement scheme, the phase sensitivity can be calculated by error

propagation formula. In order to get the higher phase sensitivity, a lot of research groups proposed that by
employing quantum resources, the phase sensitivity can reach sub-SNL or approachHeisenberg limit (HL) [3],
and the usual quantum resources contain: N00N states [4], twins Fock states [5], and squeezed states [6, 7].

Generally, the interferometers consist of three constructions. 1: the input (classical state and quantum state);
2: the interferometer scheme. For example, aMZI ismade up of a beam splitter (BS); an SU(1,1) interferometer
[8, 9] contains an optical parametric amplification or a fourwavemixing (FWM) process [10–12] and a hybrid
interferometer consists of a BS and a FWM; 3: detectionmethod [13]. The useful detectionmay contain intensity
sumor difference detection [14], homodyne detection [15, 16], paritymeasurement [17]. However, it is
impossible to get the optimal phase sensitivity by employing all the detectionmethods. Fortunately, Braunstein
andCaves introduced the quantumFisher information (QFI)which is independent on themethod [18]. For a
given input state and interferometer, the ultimate precision bounds of the phase sensitivity is given by the
quantumCramer–Rao bound (QCRB)which is fD 

F
2 1

Q
and FQ is theQFI [19–25].

Even thoughQCRB ismuch easier without considering the detectionmethod, the question is that when the
detectionmethod needs another beam, the local beam in homodyne detection, theQFI is different. It was firstly
proposed by Jarzyna et alwhowant to give theQFIwhen the interferometer is consideredwith andwithout an
external phase reference [23]. Gong et al found that theQFI is different in an SU(1,1) interferometer when the
phase shift is in upper armor lower arm [22]. This problemwas solved by You et alwho showed that the phase
averagemethod can amend theQFI [25]. In addition, Takeoka et al claimed that for theMZI, if one of the inputs
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is the vacuum, one cannot beat the SNL by any nonclassical input from the other port [24]. This view alsowas
confirmed byYou et al on an SU(1,1) interferometer [25]. Furthermore, Takeoka et al thought that the view is
only truewhen both the arms have the unknown phase. If the unknown phase is only in one arm, in fact, by using
external resource at the input or detection, the phase sensitivity can beat SNL [24]. However, a detailed scheme
by employing external resources for the phase sensitivity ismissing. So an unique scheme based on aMZIwith
an vacuumbeam as one inputwith external resources is displayed in this paper. This is special due to the
employment of bright entangled twin beamswith only one entering into the intensity detection.

The paper is organized as follows: section 2 introduces the schemewhere the inputs are bright entangled
twin beams and the detectionmethod is intensity difference. Different from the previous schemes, only one of
the twin beams enters into theMZIwhile the other one enters into the detector directly. In section 3, the factors
which have a effect on the phase sensitivity including parametric strength and photon number are discussed. In
addition, the optimal phase sensitivity can be realizedwith the implemation of themaximumquantum
squeezing. In section 4, the intensity depletion on the sensitivity are also studied.When the detectionmethod
needs uncounted resources, the results are summarized in section 5.

2.Model

The transformationof a FWMis = +a ra rbcosh sinh1 0 0ˆ ˆ ˆ †
, and = +b ra rbsinh cosh1 0 0

ˆ ˆ ˆ† . r is the parametric

strengthof FWM. a0ˆ , b0
ˆ , a0ˆ † and b0

ˆ †
are annihilation and creationoperators for the two inputmodes, respectively. a1̂,

b1
ˆ , a1̂

† and b1̂
†
are annihilation and creationoperators after FWM.ForBS, the relationship is = +a T a R bi2 1 0ˆ ˆ ˆ ,

and = +b R a T bi2 1 0
ˆ ˆ ˆ .T andR are transmissivity and reflectivity of intensities, and they are equal to 1

2
. a2ˆ , b2

ˆ , a2ˆ †

and b2
ˆ †

are annihilation and creationoperators afterBS. So the total transformof the operators in the scheme
is givenby

= +

= +

a m a m b

a m a m b

,

. 1

out 1 1 2 0

out 3 1 4 0

ˆ ˆ ˆ

ˆ ˆ ˆ ( )† † †

And = -fm T T T Te1
1

2 2 4
i 1

2 3 4( ), = +fm T T T Tie i2
1

2 2 4
i 1

2 3 4( ), = -f-m T T T Te3
1

2 2 4
i 1

2 3 4( ),
= - -f-m T T T Ti e i4

1

2 2 4
i 1

2 3 4( ). aoutˆ and aoutˆ† are the annihilation and creation operators after theT4 from

output,f is the phase shift. The FWMprocess is employed for the generation of bright entangled twin beams.
After the FWM, the probe beam enters into aMZI asfigure 1 shows. For the conjugate beam, it directly enters
into the photon detector. The intensity of a probe beam after the gain of FWM is +rN rcosh sinh2 2 , and the
intensity of a conjugate beam is +rN rsinh sinh2 2 .N is the photon number of the input coherent beambefore
FWM. For the input of the coherent beambefore FWM, it is á ñ = á ñ =a a N0 0ˆ ˆ † . The intensity of a probe beam
after theMZI is

fá ñ = + - +I T T T T T T T rN r
1

4

1

4

1

2
cos cosh sinh . 2a 2 4 3 4 4 2 3

2 2⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

With the intensity differencedetection, thedetection signal intensity is fá ñ = + --I T T T T T T T cos1

4 2 4
1

4 3 4
1

2 4 2 3( )
+ - +rN r T rN rcosh sinh sinh sinh2 2

1
2 2( ) ( ). If thephase shiftf=0and there arenooptical depletion in the

scheme, the intensity of aprobebeamafterMZI is 0which is even lower than the intensity of a conjugate beam. If
f=π, the intensity is same to that of inputwhich is larger than thatof the conjugate beam.

For the definition of visibility, it is

=
-
+

- -

- -

V
I I

I I
. 3

max min

max min
( )

-I max and -I min is themaximumandminimumvalue of á ñ-I∣ ∣. So = =+
+

V 1rN r

rN r

cosh sinh

cosh sinh

2 2

2 2 without intensity

depletion, which represents that even this scheme is different from the previous interferometer, it still can realize
the process of an interferometer.

The sensitivityΔf as the uncertainty in estimating a phase shiftf is

fD =
D

¶ á ñf

-

-

I

I
. 4

2ˆ
∣( ˆ )∣

( )

The variance of themeasurement isD = á ñ - á ñ- - -I I I2 2 2ˆ ∣ ˆ ˆ ∣. Take the bright entangled twin beams into
calculation, the sensitivity can bewritten as
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fD =
D

¶ á ñf
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-
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I
. 5Q

2
Q
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Here,Qmeans that the input beams are quantumbeams.Usually, for comparison, two coherent beamswith the
same intensities of the quantumbeams are used to replace the probe and conjugate beams. The phase sensitivity
of two coherent beams as input can be expressed as

fD =
D

¶ á ñf

-

-

I

I
. 8C

2
C

C

ˆ
∣( ˆ )∣

( )

So
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According to equations (6) and (10), the bright entangled twin beams and two coherent beams have the same
slope ¶ á ñf -I∣( ˆ )∣, whichmeans the bright entangled twin beams can get better phase sensitivity than the two

coherent beams if D < D- -I I2
Q

2
C

ˆ ˆ .

3. Phase sensitivity and quantum squeezing

In this section, the optimal phase sensitivitywithbright entangled twinbeams, two coherent beams, SNLandHLare
compared. For theMZI in the scheme, the SNL is N1 a1 and theHL is 1/Na1where = +N rN rcosh sinha1

2 2 is
the total photonnumber inside the interferometer.Here, the conjugate beamworks like the local beam inhomodyne
detection and thephotonnumber of the conjugate beam is not taken into counted.The functionof the conjugate
beam is also little different from the local beam.For the conjugate beam, it onlyprovides thepower. The local beam

Figure 1. Sketch of the scheme for phase sensitivitymeasurement.M ismirror, BS is beam splitter, B is beamblock and FWMis four
wavemixing. Probe represents the probe beam. PD is the photon detector. The dashed linemeans that the beam is an vacuumbeam.
T1,T2,T3 andT4 represent the intensity depletion of PD and the internal intensity depletion of theMach–Zehnder interferometer
(MZI). Here, only one beam enters into theMZI, and the other one is used formeasurement. The FWMprocess is only for the
generation of bright entangled twin beams. The function of a conjugate beamworks like the local beam in homodyne detection. For
comparison, the phase sensitivity with two coherent beams as input is also considered (not shown in thisfigure) and its function is the
measurement of intensity difference squeezing.
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offers the phase reference andpower. Figure 2 shows thephase sensitivity versus thephase shift. Theoptimal phase
sensitivitywithbright entangled twinbeams canbeat SNLandapproachHLwhile theminimumvalueof phase
sensitivitymeans the optimal phase sensitivity. For twocoherent beams, it even cannot reachSNL. In addition, for the
bright entangled twinbeams and twocoherent beams, they can get the optimal phase sensitivity at different phase
points. Thismethod in fact uses the external resources. According to [24], for aMZI,whenone input is a vacuum
beam, thephase shift cannot beat SNLwhile the other input is a quantumor classical beam.This view is only true
without the external resources or twophase estimations are compared.However, this scheme is for the only one
phase estimationwith external resources,whichdoesnot broke the conclusion from [24].Meanwhile, because the
conjugate beam in the systemworks formeasurement like the local beam inhomodynedetection, thephoton
number of the external beam is not counted.

Next, the factors which have impacts on the optimal phase sensitivity are discussed. Infigure 3, with the
increase of parametric strength r of FWMand photon numberN, the optimal sensitivities of bright entangled
twin beams and two coherent beams are all better. Fromfigure 3(a), when r is approaching 0 andN=100, the
optimal phase sensitivity of bright entangled twin beams is approachingHLwhile the optimal sensitivity of the
two coherent beams can approach SNL.With the input of two coherent beams, only one of them enters into the
interferometer and the other input is the vacuumbeam, the optimal phase is worse than SNL in this case, which
is corresponding to [24]. And the optimal sensitivity of bright entangled twin beams cannot reachHLwhile r is
much bigger. However, if r is 0, the schemewill reduce to an ordinary onewhere only a coherent beam enters
into theMZI and there are no extra resources. Then phase sensitivity will be limited to SNL. Fromfigure 3(b), the
optimal phase sensitivity of twin beams, two coherent beams,HL and SNL are all tending to be better with the
increase of photon numberN. IfN=0, the bright entangled twin beamswill reduce to the two-mode squeezed
vacuumbeams. At this time, even parametric strength r varies, for both quantumand classical beams, the phase
sensitivities are all worse than SNL asfigure 3(c). The total photon number in the interferometer is

=-N rsinhtwo mode
2 . Considering the photon number ismore than or equal to 1, infigure 3(c), the r is assumed

to bemore than 1. Furthermore, the difference between figure 3(a) from figure 3(b) is that with the increase of
photon numberN, the phase sensitivities seem to be the constant values and it is opposite for parametric
strength r.

In addition, by varying parametric strength r, the optimal phase sensitivity can be realized at different phase
points which is shown asfigure 4.When r is approaching 0, the optimal phase sensitivity can be realized at the
point where the phase shift is approaching 0. The phase shift is approaching πwith the increase of parametric
strength. So the optimal phase sensitivity always can be realized at any point by altering parametric strength
whichwillmake the processmuch easier.Meanwhile, the optimal phase point is not related to photon number
as shown in the insertedfigure 4. In order to achieve the optimal phase sensitivity, only parametric strength r
needs to be taken into account.

From equations (6) and (10), the bright entangled twin beams and coherent beams have the same
d
df
á ñ-I(∣ ∣)
ˆ

. So

the smallerD -I2 ˆ , the better phase sensitivity. The definition of intensity difference squeezing according to [26] is

= -

-
SD

N N

N N

Var

Var

a b

a b

Q

C

^ ^

^ ^
( )
( )

. Then SD can bewritten as

Figure 2.The phase sensitivity fD of the schemewith ‘Quantum’means the twins beams generated from fourwavemixing.
‘Coherent’means two coherent beams. ‘SNL’ and ‘HL’mean shot noise limit andHeisenberg limit. Parametric strength r=1 and
N=100without depletion.
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=
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D
-

-

I

I
SD , 11

2
Q

2
C

ˆ
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Figure 3.The optimal phase sensitivity with twin beams and two coherent beams versus (a) parametric strength rwith photon number
N=100 and (b) photon numberwith parametric strength r=2 and (c) parametric strength rwith photon numberN=0,

= = = =T T T T 11 2 3 4 . For better comparison, fDlog10 are used to show the optimal phase sensitivity.

Figure 4.The phasewhere optimal phase sensitivity can be got versus parametric strength rwithN=100. The inset is the phasewhere
optimal phase sensitivity is achieved versus photon numberNwith r=3 and there are no depletion.
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which represents that, for the bright entangled twin beams, where there is quantum squeezing, there is a better
phase sensitivity. The squeezing degree of intensity difference can be described as 10log10SD. And the optimal
squeezing exists where the phase sensitivity is the optimal. It is clear that themaximumquantum squeezing can
bemore than 25 dBwhile the optimal sensitivity is less than 0.02 according tofigure 5(a). This characteristic
makes this scheme adaptable and it has been employed for themeasurement of plasmonic sensing [26].
Figure 5(b) shows the optimal squeezing versus r. Overall, while r becomes higher, the optimal squeezing degree
is superior and can reachmore than 30 dB.While themaximum squeezing in the current experiment is less than
10 dB, it is due to the depletion of FWMas [27]. In addition, as the trend of sensitivity versus parametric strength
and photon number, the optimal quantum squeezing also increases with the increase of r andNwhich is
displayed infigures 5(b) and (c).

4.Depletion on the phase sensitivity

In this part, the intensity depletionwhich play a negative effect on the phase sensitivity are discussed. For
simplification, only the condition that transmissivity ismore than 0.5 are counted: the optical intensity
depletion of photon detectors and the internal intensity depletion of theMZI [28, 29]. In the current technology,
the efficiency of photon detectors can bemore than 0.95 or evenmore. For the interferometer, the internal
efficiency can reachmore than 0.8.However, in order to better show the optimal phase sensitivity, the condition
thatT2=0.5 andT3=0.5 is followed. Fromfigure 6(a), the optimal phase sensitivity can be achievedwhen
bothT2 andT3 are approaching perfect without depletion. The optimal phase sensitivity even can be better than
0.01. And the transmissivityT2 andT3 play the same roles on the sensitivity. For example, whenT2=0.6,
T3=0.7 orT2=0.7,T3=0.6, the optimal phase sensitivity is the same. So even theMZI is not perfect, the
phase sensitivity can be better with higher transmissivity. Fromfigure 6 (b), the phase sensitivity always can reach
optimal whileT1=0.5.Moreover, it also can be realizedwhileT4 approaches 1. So the higher photon detector
efficiency, the better phase sensitivity. For thewhole scheme and current experiment technology, the optimal
phase sensitivity can be realizedwhile the intensity depletion of the photon detector and internal intensity
depletion of aMZI are less than 0.05.

Figure 5. (a)Phase sensitivity and quantum squeezing as a function of phase shift. Other parameters are r=2 andN=100.
(b)Optimal quantum squeezing versus parametric strengthwithN=100. (c)Optimal quantum squeezing versus photon number
with r=2.
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5. Conclusion

In conclusion, this paper has shown that by the employment of quantumsqueezing beams, the phase sensitivity can
beat SNLand approachHL in aMZI.Different fromothers’ interferometers, only oneof twin beams enters into the
MZI and theother one is employed formeasurement.While the external resources are employedwith the inputs
being a vacuumbeamand aquantumbeam for aMZI, the phase sensitivity really canbeat SNLand approachHLby
only the implementationofmaximumquantumsqueezing. The role of the conjugate beam in the scheme is similar
to the local beam inhomodynedetection and thephotonnumber of a conjugate beam is alsonot countedwhen the
SNLandHLare employed for contrast.Moreover, the intensity depletionof photondetectors and internal intensity
depletionof theMZI are discussed and the phase sensitivity still can be optimalwhile the intensity depletion in a
MZI are same.Due to the easy realization and functionof boost from twinbeams, this schemeoffers a newmethod
for the enhancement ofphase sensitivity andwill be very useful in LIGO,VIRGOandmanyother precision
measurements, such as the remote sensing and enhancedquantum imaging [30, 31].
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