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Abstract

We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a
special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate
the density propagation, long-time survival probability and mean square displacement of the wave
packet in the regime with the mobility edge and compare with the cases in extended, localized and
multifractal regimes. Our numerical results indicate that the dynamics in the mobility-edge regime
mix both extended and localized features which is quite different from that in the mulitfractal phase.
We utilize the Loschmidt echo dynamics by choosing different eigenstates as initial states and sudden
changing the parameters of the system to distinguish the phases in the presence of such system.

1. Introduction

More than 60 years ago, Anderson predicted and explained the well-known ‘Anderson localization’ in his
landmark paper [1] which has been widely recognized as one of the significant phenomena in the condensed
matter. In the years since, Anderson localization has found its way across a wide range of different topics, such as
electronic systems [2], acoustic waves [3], quantum optics [4—8] and cold atomic gases [9—16]. A single-particle
mobility edge as one of the most important concepts in a disordered system marks a critical energy E separating
localized from extended energy states and depends both on the disorder amplitudes and on the types of the
disorder [17, 18]. In three-dimensional disordered systems, the quantum particles are free to move in the
systems when the energies are above the mobility edge, whereas the energy states below E. are localized. In one-
and two-dimensional cases, quantum states become localized for an arbitrary small disorder [19, 20].

However, the situation has changed in a one-dimensional quasi-periodic system, in which the localization
and delocalization transition has drawn great attentions. One of the most famous quasi-random examples was
proposed by Aubry and André in 1980 [21]. One demonstrates that due to the self-duality characteristic [22], all
the eigenstates are extended or localized, which depends on the parameters of the system [23], and there exist no
mobility edges. Involved phenomena in the Aubry—André (AA) model have been investigated, such as
Hofstadter’s butterfly [24, 25], metal-insulator transition [26—36], topologically nontrivial properties [37—42]
and many body localization [43—46], etc.

One can obtain a one-dimensional model displaying the mobility edge when the so-called self-dual
symmetry is broken, such as a system with a shallow one-dimensional quasi-periodic potential [47-51]. Another
class of systems with the mobility edge by introducing a long-range hopping term [31] or a special form of the
on-site incommensurate potential [52] present the energy-dependent self-duality in the compactly analytic
form. Recently, great attention has been paid to the properties of the intermediate phase characterized by the
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mobility edge in the quasi-periodic lattices, such as many-body localization in the presence of a single particle
mobility edge [53—61] and the existence of Bose glass phase in finite temperature [62, 63]. Many works have been
tried to understand the relations between the energy spectral property of a disordered system and the dynamical
propagation of the wave packet [64—84]. Sinha et al [76] study the Kibble—Zurek mechanism for generalized AA
model with an energy-dependent mobility edge. Experimentally, the observation of the mobility edge has been
reported in non-interacting ultra-cold atomic systems with a three-dimensional speckle disorder [11-14] and
different numerical methods are proposed to estimate the position of E. [ 14, 84—88]. By monitoring the time
evolution of the density imbalance and the global size of the atom cloud, the direct experimental research of the
mobility edge in a one-dimensional quasi-random optical lattice of an initial charge-density wave state [47] is in
good agreement with the theoretical results [89].

In this paper, we consider the wave packet dynamics in a one dimensional incommensurate optical lattice
with the mobility edge in a compactly analytic form, which is described by the generalized AA model with a
special form of the on-site potential. We employ the density propagation, long-time survival probability and
mean square displacement to exhibit the dynamical properties of the intermediate phase and our numerical
results show the dynamics of the mobility-edge regime mix both extended and localized features which is quite
different from that in the multifractal phase. We also apply the Loschmidt echo dynamics to distinguish the
intermediate regime from the other regimes shown in such models.

2.Model and hamiltonian

As a concrete example, we choose a one-dimensional incommensurate optical lattice with a special form of the
on-site potential, which is described by [52]

H=—]Y @&+ he) + > A\, (1)
j j

with

A=A cos(2may +.6) ) @
1 — beosQ2maj + 6)

where ¢; is the annihilation operator of the particles at j site, 7i; = 6; ¢j denotes the particle number operator and
Jis the strength of the hopping term. ); is the on-site potential of a quasi-periodic form, where \is the strength of
the chemical potential, « is an irrational number which is usually setas a = (/5 — 1) /2 intheliteratures, & is
anoffsetand b € [0,1) is in the half open interval. When b = 0, the system reduces to the AA model. By using
self-duality characteristic, all the eigenstates are localized for A > 2] and extended for A < 2], while the
eigenstates are multifractal at the transition point A = 2J. There are no mobility edges in the standard AA model.
For b = 0 case, the mobility edge separates the localized from extended states at energy E. = 2(J — A/2)/b[52].

To measure the localization of the eigenstates of the system, we study the inverse participation ratio (IPR) of
the eigenstate |¢),) corresponding to the eigenenergy E,,, IPR® = Zj|C](”) |*[31,48, 52], containing information
of the eigenstate [¢),) = 3 C](”) | 7) with the Wannier basis | /) being chosen at each lattice site j. The IPR shows
the scaling behavior with respect to the system size L, IPR®™ oc L~P2 with D, being the correlation dimension of
the wave function. For an extended state, D, = d, where d is the dimension of the system, D, = 0in the localized
regimeand 0 < D, < 1 for amultifractal one. If there exists a value of the IPR of the energy E,, which separates
localized from extended states, the system exhibits a mobility edge. Figure 1 shows the IPR as a function of A for
the system (1) with b = 0.2, 6 = 0and ] being set as an unit energy. With the increase of A, extended,
intermediate and localized regimes emerge successively. The red solid line corresponds to the analytic result of
the mobility edge and the intermediate regime shown in A € (1.48, 2.52) presents between the black dash lines.
In the next section, we will study the wave packet dynamics in the intermediate regime. As a comparison, the
cases in the extended, localized and multifractal phases are also considered.

3. Wave packet dynamics

We investigate expansion dynamics of a wave function |U(#)) at time ¢ governed by the Hamiltonian (1). The
wave function is expressed as the linear combination of the eigenstates |1),,) of the system with the corresponding
eigenenergies E,, the time evolution of which is accordingly

(1) = S (Wl T0) e B ap) = > Ci()1), ©)
j

n

with C;(t) = 35, C ](U”)*C;")e’iE"t. The wave packet is initially localized at lattice jo, i.e. [¥(0)) = | j,)-
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Figure 1. IPR of the system (1) with b = 0.2, 6 = 0 and J being set as an unit energy for different \. The red solid line shows the analytic
result of the mobility edge and the black dashed lines represent the boundaries of the intermediate regime.
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Figure 2. Density distributions p;(¢) for L = 301 at different temporal times and from top to bottom rows, t = 10, 100, 500 and 10%,
Four columns correspond to different parameters of the systems: (a) b = 0.2, A = 1.2,(b)b = 0.2, A = 1.8,(c)b = 0.2, A = 2.8 and
(d)b = 0, A = 2, respectively. All data in this figure are averaged 2000 quasi-disorder realizations by choosing different phases ¢.

One of the important quantities we focus on is the density distribution at time ¢ given by
pi(t) = |C;(D) . “4)

In figure 2, we show the density distribution for the system with L = 301 at different temporal times, from top to
bottom rows at time t = 10, 100, 500 and 10*, respectively. We average 2000 quasi-disorder realizations by
choosing different phases ¢ for all the data. In the extended phase, the initial state at the center of the lattice
expands rapidly and after some long-time intervals, the wave function presents a ergodic character
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Figure 3. Scaling of v(¢) with L = 28 657, = 17 711/28 657 and b = 0.2 under periodic boundary conditions for A = 1.2,2,2.2
and 2.8 in (a)—(d), respectively. (e) Integrated wave packet P(r) at t = 10* with L = 2001 different band \.

(figures 2(al)—(a4)). For b = 0.2, A = 2.8, deep in the localized phase, the wave function nearly freezes its position
in time which is one of signatures of the localization (figures 2(c1)—(c4)). In the intermediate regime, i.e. b = 0.2
and A = 1.8 € (1.48,2.52) as shown in figures 2(b1)—(b4), the center part of the density fast decays to a finite
value and the other part of the wave packet spreads similarly to that in the extended regime. For long-time
dynamics, it reflects both localized and extended phenomena. The wave packet evolution in the multifractal
phase is shown in figures 2(d1)—(d4). The center part decays with time and the expanding is much slower than
the one with the mobility edge.

To further distinct the dynamics of the system in different phases, we observe the long-time survival
probability P(r) [77]. The probability of detecting the wave packet in sites within the region (—r/2, r/2) aftera
giventime, P(r) = 3, i—il<r /2| Ci(t — 00) ?,is proportional to (r/ L)ﬁ2 for finite distances where jj is at the

center of the lattice and 52 is the generalized dimension of the spectral measure [71, 72]. The relation of the
correlation dimension D, of the wave function and 52 of the spectral measure is 52 =D, / d for the traditional
extended, localized and multifractal cases [71, 72]. For one dimensional case, 52 = D,. We calculate 52 by
using the box-counting method [71, 72, 90-93]. Given an energy spectrum partitioned into boxes 2,(¢) of width
ewithi € [1, AE/e]and AEbeing the width of the spectrum, a quantity can be defined as

2
() = Zl > IC??IZ] el (e =0, ()
i | Escute)
with j, being the position of the center lattice. The quantity (¢) is the probability that two eigenfunctions picked
from the spectral decomposition of |1),,) have an energy distance less than € [71, 90]. In figure 3(a), we display the
scaling of () of the spectral measures with L = 28 657 (the 23rd number of the Fibonacci sequence) and
=17 711/28 657 in different phases under periodic boundary conditions. As shown in figure 3(a) for b = 0.2,
A=12,D,=1and ~(¢) approximately approaches to 0 with the decrease of € in the extended regime. In the
localized regime, takingb = 0.2, A = 2.8 as an example seen in figure 3(d), y(¢) is finite and independence of €
with 52 = 0.Forb = 0.2, A = 2 and 2.2 in the intermediate regime (figures 3(b) and (c)), we can see that
52 = 1but~(¢) tends to a finite value when € — 0. Figure 3(e) shows the long-time survival probability P(r)
changes with r/Latt = 10*for the system with L = 2001 in the different phases. When the parameters are in the
extended regime (b = 0.2, A < 1.48), since the probability of finding the wave packet at each site is the same, it
linearly increases with r, P(r) o r/L. For the localized phase (b = 0.2, A > 2.52), P(r) presents exponential rise
and rapidly reaches to (r/L)° = 1[77].In the intermediate regime, P(r) exponentially increases for r/L < 1and
for finite r, the increase of P(r) is proportional to r/L again. In contrast, for the multifractal case,i.e.b = 0,
A =2,P(r) x (r/L)"/?and 52 =1 / 2 has been shown in [70]. The integrated wave packet P(r) indicates in the
regime with the mobility edge, the spreading wave packet presents mixing features of both localized and
extended regimes for a long-time dynamics and is different from the multifractal dynamics.
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Figure 4. Single-shot mean-square displacement o°(#) as the function of time t with L = 2001, b = 0.2, § = 0 and the different initial
states with selected energies. The black dashed line indicates a power-law fitting. (al), (a2) A = 1.2;(b1), (b2) A = 2;(c1),(c2)
A=28.

Mean-square displacement o*(£) is an important quantity to estimate the spreading of the width of a wave
packet [74], which is defined as

ai(t) = 1j = PIGO P (6)
J

The value of () grows in a power-law form of time given by o*(#) o< t* during the expansion process. Firstly,
we do not take quasi-disorder average into account. One follows the evolution of a wave packet initially localized
atsite jo. We consider a quench protocol, where the initial wave packet at site j, is the eigenstate of Hamiltonian
(1) in atomic limit (J = 0), and whose dynamics is taken with Hamiltonian (1) for ] = 1 in this case. Essentially,
the initial energy is fully encoded in the initial state, being precisely equal to A . In figure 4, we calculate o*(p) for
different initial energies E' with fixed § = 0. For a clean system \ = 0, itis clear that the mean-square
displacement displays a ballistic diffusion with ;1 = 2 (see blue solid line in figure 5(a)) and oscillates around a
given value after some diffusion time intervals. We know that the wave packet expands for a clean system in the
long-time limit with nearly the same probability amplitude at eachsite, i.e. C;(t) ~ 1/+/L and the mean value of
the mean-square displacement o2 ~ 3.34 x 10° for L = 2001 which is an upper bound as shown in figure 5(b).
For the initial states with different energies at A = 1.2, the dynamical behaviors are the same as the clean case
(see figure 4(al)) and 0% ~ 105 (see figure 4(a2)). For A = 2.8 where the post-quench system in the localized
regime shown in figures 4(c1) and (c2), the power-law indices y are equal to 0 for different initial energies and
‘02 ~ 10. For the intermediate case, we take A = 2 as an example where the mobility edge at E. = 0. The mean-
square displacements of both initial energies greater and smaller than the mobility edge display the ballistic
diffusion with p = 2 (figure 4(b1)). In figure 4(b2), the mean value of the mean-square displacement for the
initial state with the energy smaller than E. is of order 10°. However, for the energy of the initial state above the
mobility edge, o2 is much smaller than that below E.. As shown in figure 4(b2), for the initial energy E' '~ 1.80,
the mean value of () within t € [50 000, 55 000] in steps of 10 amounts t0 5.0855 x 10*and for E' ~ 2.43,

02 ~ 3.1132 x 10% To understand the results of o in the intermediate regime, we define the probability of the
projection of the initial state to the final eigenstates with the final energies above the mobility edge [84], i.e.
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Figure 5. (a) Log-log plot of the mean-square displacement o*(£) as the function of time ¢ with averaging over the quasi-periodic
configurations. The wave packet is initially localized on the center of the lattice. The black dashed line indicates a power-law fitting. (b)
Time dependent of o*(f) for much longer time intervals with different A and b = 0.2. And the black dashed line represents the mean
value of o”(#) within t € [50 000, 55 000] in steps of 10. Here, L = 2001 and data are averaged 100—1000 quasi-disorder realizations.

P(E, >) = 3 (W) P, @)

Ef>E,

where [UF) is the initial eigenstate with the energy E* and |\IJE ) is the final eigenstate with the energy E/and

PE', <) =1 — P(E', >)for the final energies below E... We take E' &~ —1.67and2.43 as examples to do our
calculations for b = 0.2, A = 2,6 = 0and L = 2001. When the initial energy is smaller than E, i.e. P

(—1.67, <) = 0.8643 and P( — 1.67, >) = 0.1357, the projection of the initial state to the final extended part is
dominant. However, P(2.43, <) = 0.097 and P(2.43, >) = 0.903 for the initial energy larger than E. where the
projection of the initial state to the extended part is much smaller than to the localized one and o2 is greatly
decreased. Our results shows that the power-law index 1« does not depend on the choice of the initial state but
depends on the post-quench regime and the mean value of the mean-square displacement olis strongly
influenced by the initial energy for the single quasi-disorder realization case in the intermediate regime and this
can be of relevance for experiments with a much smaller number of realizations available.

In figure 5, we present the mean-square displacement as the function of t with L = 2001, different Aand b
and all the data are averaged 100 to 1000 quasi-disorder realizations. The wave packet is initially localized at the
center of the lattice. As shown in figure 5(a), the power-law increasing of the time-dependent o (#) in the
extended and intermediate regimes shares the same behavior as that of the clean system. The extracted power-
law indices imply that the dynamical evolution in both extended and intermediate phases is a ballistic process, in
contrast to the zero power-law index for A = 2.8, b = 0.2 corresponding to the localized process. We also
calculate az(t) in the multifractal regime with A = 2and b = 0, which shows the power-law index t = 1.
According to our results, the power-law index of the mean-square displacement is not changed by considering
the quasi-disorder average and is twice D, ie. 0= 2D, whichisin agreement with [70, 71]. A theoretical
analysis about the origin of the ballistic behavior is made in [94] by a Wentzel-Kramers—Brillouin semiclassical
approximation. Figure 5(b) shows the distributions of the time-dependent o*(t) for much longer time intervals
withL = 2001,b = 0.2and A = 0,1.2,1.8,2,2.2 and 2.8, respectively. After some time intervals, the mean-
square displacement oscillates around a glven value and the black dashed line in figure 5 5(b) represents the mean
value of the mean-square displacement ¢ within ¢t € [50 000, 55 000]in steps of 10. o2 ~ 3.32 x 10° for
A = 1.2,b = 0.2 and comparing with the clean case, the relative deviation is less than 0.6%. When the system is
driven through the intermediate regime, o &~ 2.1 x 10°for A = 1.8, 0> ~ 1.4 x 10°for A = 2.0and
0%~ 1.1 x 10%for A = 2.2 asshownin figure 5(b). We can see that o2 reduces with the increase of A due to the
decreasing of extended part in the spectrum. When all the eigenstates are localized, o2 is much smaller, such as
A=2.8,b=0.2case, 0> ~ 7.86.Itindicates that though the power-law indices of the mean-square
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Figure 6. Log—log plot of o(t) as the function of t with different b, \ = 2and L = 2001. The data are averaged 100 different quasi-
disorder realizations.

displacement for the wave packet expanding in the extended and intermediate regimes are the same, the values
of o2 depend on the proportion of the localized part in the energy spectrum.

As mentioned above, at b = 0, A = 2, the curve of the mean-square displacement as for the Hamiltonian with
asharp localized to extended phase transition has a t scaling. However, for a finite b and A = 2, the intermediate
phase emerging, the curve has a * scaling for long time. The case of different values of b requires further
exploration. Figure 6 shows the log-log plot of 0°(£) as the function of t with different b, A = 2 and L = 2001. In
short time, o°(#) spread as t for small b cases, i.e. b = 0.05 and 0.1 shown in figure 6, since time scale is not enough
to distinguish the energy scale defined by b and A = 2. With the increase of b, the transition time of ¢ scale
decreases. As shown in figure 6, it hardly detects such region at b = 0.5. For longer time, o°(¢) deviates away from
tand becomes #* since eventually the extended part dominates.

4. Loschmidt echo dynamics

Loschmidt echo is a powerful method for analyzing nonequilibrium dynamics [95—111], which can exhibita
series of zero points if the initial and the post-quench systems are located in different phases at some time
intervals. Up to now, it has been successfully applied in a series of models, such as transverse field Ising model
[95], XY model [104, 105], topological models [103, 106—108], Hubbard and Falicov-Kimball models [97] and
disorder models [109]. Yang et al [109] suggest that the Loschmidt echo dynamics can characterize the
localization-delocalization transition in the standard AA model. If both the initial and post-quench system are in
the extended regime or localized regime, the values of the Loschmidt echo are always positive and if they locate in
different regimes, the oscillations of the Loschmidt echo decay to zero in some time intervals. However, the
behavior of the Loschmidt echo for the system with the mobility edge is still puzzled. We in the following
consider the system being initially prepared in an eigenstate of the Hamiltonian H (N, b%) and then quenched to
the final Hamiltonian H (N, b/). The Loschmidt echo can be defined as

L(t; N, bi, M, bl = [(W(N, bi)|e NG, biy) 12, (8)

where |U(N, b)) denotes the eigenstate of the initial Hamiltonian with the parameters and b’, and the
superscript i (f) is corresponding to before (after) the quench. Figure 7 shows the evolutions of Loschmidt echo
withb/ = 0.2, different ML= 2001 for (a)—(b)and L = 12001 for (c). The initial state is the ground state of the
systemwith A’ = 0, ¥ — ocoand A" = 2,b' = 0 shown in figures 7(a)—(c), respectively. We can see the
oscillations of Loschmidt echo display a similar behavior, when the parameters \/, b” after the quench process
arelocated in either the extended or intermediate regime with A’ = 0. The evolution of Loschmidt echo without
decaying for long-time intervals can not touch zeros but rapidly decays to zero for X — oo, which is shown in
figures 7(a) and (b). However, for the cases quenched to the localized phase M\ = 2.8, the evolutions of
Loschmidt echo present the opposite results compared with those in former cases. We also calculate the
evolution of Loschmidt echo quenched from A’ = 2,b" = 0 (a multifractal ground state) to different regimes of
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Figure 7. Evolutions of Loschmidt echo £(t; X, b, M, b)) with b = 0.2 and different M. The initial states are fixed as the ground
states of the Hamiltonian with (a) A’ = 0,(b) N — coand(c) \' = 2,b" = 0. Here, (a), (b) L = 2001 and (c) L = 12001.

the Hamiltonian (1) with b’ = 0.2. As shown in figure 7(c), the Loschmidt echoes can approach zero in long-
time intervals, which is consistent with conventional conclusions [109].

We notice that similar results are shown for quenched to extended and intermediate regimes from both
limits (\* = 0and N — 00). To further discriminate extended and intermediate regimes by Loschmidt echo
dynamics, we consider the quench process from the eigenstates in the intermediate regime with different initial
energies E' to the extended regime. Figure 8 shows the evolutions of Loschmidt echo with A’ = 2,b* = 0.2and
different initial eigenstates quenched to N = 1.2, b’ = 0.21ocated in extended regime. As mentioned above, we
know thatfor A’ = 2,b" = 0.2, itis deep in the intermediate regime with the mobility edge at E. = 0. We
choose the initial eigenstates with the energies smaller or greater than E.. As shown in figure 8, for an extended
eigenstate with energy smaller than E. (E "= _1.8660and E' = —1.7395 for § = 0), the Loschmidt echo
oscillates without decaying for long time and has a positive lower bound. If the eigenstate of intermediate regime
with the energy greater than E, quenches to the extended regime (E' = 0.0919 and E' = 2.0037 for § = 0), the
decayof L(t; N, b', N/, b/)is obvious and the evolution of Loschmidt echo approaches zero after some time
intervals. The results suggest that the dynamics of Loschmidt echo can distinguish the intermediate regime from
the extended, localized and multifractal ones.

5. Conclusions

In summary, we study the spatial expansion of a wave packet in a one-dimensional incommensurate optical
lattice system with a special form of on-site potential described by equation (2). The extended, intermediate,
localized and multifractal phases can be found in such system. By observing the density propagation, long-time
survival probability and mean-square displacement of the wave packet in these regimes, our numerical results
indicate that the dynamics of the wave packet in the intermediate phase behaves as a mixture of extended and
localized phases. The evolution of Loschmidt echo is also considered to distinguish different phases emerging in
such model.
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Fifgure 8. Evolutions of Loschmidt echo £(¢; X, b, A, bf)with \' = 2, b’ = 0.2 and different initial eigenstates quenched to
N =12,/ = 0.2. Here,§ = 0and L = 2001.
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