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Abstract
We investigate thewave packet dynamics for a one-dimensional incommensurate optical lattice with a
special on-site potential which exhibits themobility edge in a compactly analytic form.We calculate
the density propagation, long-time survival probability andmean square displacement of thewave
packet in the regimewith themobility edge and compare with the cases in extended, localized and
multifractal regimes. Our numerical results indicate that the dynamics in themobility-edge regime
mix both extended and localized features which is quite different from that in themulitfractal phase.
Weutilize the Loschmidt echo dynamics by choosing different eigenstates as initial states and sudden
changing the parameters of the system to distinguish the phases in the presence of such system.

1. Introduction

More than 60 years ago, Anderson predicted and explained thewell-known ‘Anderson localization’ in his
landmark paper [1]which has beenwidely recognized as one of the significant phenomena in the condensed
matter. In the years since, Anderson localization has found its way across awide range of different topics, such as
electronic systems [2], acoustic waves [3], quantumoptics [4–8] and cold atomic gases [9–16]. A single-particle
mobility edge as one of themost important concepts in a disordered systemmarks a critical energy Ec separating
localized from extended energy states and depends both on the disorder amplitudes and on the types of the
disorder [17, 18]. In three-dimensional disordered systems, the quantumparticles are free tomove in the
systemswhen the energies are above themobility edge, whereas the energy states below Ec are localized. In one-
and two-dimensional cases, quantum states become localized for an arbitrary small disorder [19, 20].

However, the situation has changed in a one-dimensional quasi-periodic system, inwhich the localization
and delocalization transition has drawn great attentions. One of themost famous quasi-random examples was
proposed byAubry andAndré in 1980 [21]. One demonstrates that due to the self-duality characteristic [22], all
the eigenstates are extended or localized, which depends on the parameters of the system [23], and there exist no
mobility edges. Involved phenomena in the Aubry–André (AA)model have been investigated, such as
Hofstadter’s butterfly [24, 25], metal-insulator transition [26–36], topologically nontrivial properties [37–42]
andmany body localization [43–46], etc.

One can obtain a one-dimensionalmodel displaying themobility edgewhen the so-called self-dual
symmetry is broken, such as a systemwith a shallow one-dimensional quasi-periodic potential [47–51]. Another
class of systemswith themobility edge by introducing a long-range hopping term [31] or a special formof the
on-site incommensurate potential [52]present the energy-dependent self-duality in the compactly analytic
form. Recently, great attention has been paid to the properties of the intermediate phase characterized by the
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mobility edge in the quasi-periodic lattices, such asmany-body localization in the presence of a single particle
mobility edge [53–61] and the existence of Bose glass phase infinite temperature [62, 63].Manyworks have been
tried to understand the relations between the energy spectral property of a disordered system and the dynamical
propagation of thewave packet [64–84]. Sinha et al [76] study theKibble–Zurekmechanism for generalized AA
model with an energy-dependentmobility edge. Experimentally, the observation of themobility edge has been
reported in non-interacting ultra-cold atomic systemswith a three-dimensional speckle disorder [11–14] and
different numericalmethods are proposed to estimate the position ofEc [14, 84–88]. Bymonitoring the time
evolution of the density imbalance and the global size of the atom cloud, the direct experimental research of the
mobility edge in a one-dimensional quasi-randomoptical lattice of an initial charge-density wave state [47] is in
good agreement with the theoretical results [89].

In this paper, we consider thewave packet dynamics in a one dimensional incommensurate optical lattice
with themobility edge in a compactly analytic form,which is described by the generalized AAmodel with a
special formof the on-site potential.We employ the density propagation, long-time survival probability and
mean square displacement to exhibit the dynamical properties of the intermediate phase and our numerical
results show the dynamics of themobility-edge regimemix both extended and localized features which is quite
different from that in themultifractal phase.We also apply the Loschmidt echo dynamics to distinguish the
intermediate regime from the other regimes shown in suchmodels.

2.Model and hamiltonian

As a concrete example, we choose a one-dimensional incommensurate optical lattice with a special formof the
on-site potential, which is described by [52]
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where cĵ is the annihilation operator of the particles at j site, =n c cj j jˆ ˆ ˆ† denotes the particle number operator and
J is the strength of the hopping term.λj is the on-site potential of a quasi-periodic form,whereλ is the strength of
the chemical potential,α is an irrational numberwhich is usually set as a = -5 1 2( ) in the literatures, δ is
an offset and bä[0,1) is in the half open interval.When b= 0, the system reduces to the AAmodel. By using
self-duality characteristic, all the eigenstates are localized forλ> 2J and extended forλ<2J, while the
eigenstates aremultifractal at the transition pointλ= 2J. There are nomobility edges in the standardAAmodel.
For ¹b 0 case, themobility edge separates the localized from extended states at energy Ec=2(J−λ/2)/b [52].

Tomeasure the localization of the eigenstates of the system,we study the inverse participation ratio (IPR) of
the eigenstate y ñn∣ corresponding to the eigenenergy En, = å CIPR n

j j
n 4∣ ∣( ) ( ) [31, 48, 52], containing information

of the eigenstate y ñ = å ñC jn j j
n∣ ∣( ) with theWannier basis ñj∣ being chosen at each lattice site j. The IPR shows

the scaling behaviorwith respect to the system size L, µ -LIPR n D2( ) withD2 being the correlation dimension of
thewave function. For an extended state,D2= d, where d is the dimension of the system,D2=0 in the localized
regime and 0<D2<1 for amultifractal one. If there exists a value of the IPR of the energyEnwhich separates
localized from extended states, the system exhibits amobility edge. Figure 1 shows the IPR as a function ofλ for
the system (1)with b=0.2, δ=0 and J being set as an unit energy.With the increase ofλ, extended,
intermediate and localized regimes emerge successively. The red solid line corresponds to the analytic result of
themobility edge and the intermediate regime shown inλä(1.48, 2.52) presents between the black dash lines.
In the next section, wewill study thewave packet dynamics in the intermediate regime. As a comparison, the
cases in the extended, localized andmultifractal phases are also considered.

3.Wave packet dynamics

We investigate expansion dynamics of awave function Y ñt∣ ( ) at time t governed by theHamiltonian (1). The
wave function is expressed as the linear combination of the eigenstates y ñn∣ of the systemwith the corresponding
eigenenergies En, the time evolution of which is accordingly
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*( ) ( ) ( ) . Thewave packet is initially localized at lattice j0, i.e. Y ñ = ñj0 0∣ ( ) ∣ .
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One of the important quantities we focus on is the density distribution at time t given by

r =t C t . 4j j
2( ) ∣ ( )∣ ( )

Infigure 2, we show the density distribution for the systemwith L= 301 at different temporal times, from top to
bottom rows at time t=10, 100, 500 and 104, respectively.We average 2000 quasi-disorder realizations by
choosing different phases δ for all the data. In the extended phase, the initial state at the center of the lattice
expands rapidly and after some long-time intervals, thewave function presents a ergodic character

Figure 1. IPR of the system (1)with b=0.2, δ=0 and J being set as an unit energy for differentλ. The red solid line shows the analytic
result of themobility edge and the black dashed lines represent the boundaries of the intermediate regime.

Figure 2.Density distributions ρj(t) for L = 301 at different temporal times and from top to bottom rows, t = 10, 100, 500 and 104.
Four columns correspond to different parameters of the systems: (a) b=0.2,λ=1.2, (b) b=0.2,λ=1.8, (c) b=0.2,λ=2.8 and
(d) b=0,λ=2, respectively. All data in thisfigure are averaged 2000 quasi-disorder realizations by choosing different phases δ.
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(figures 2(a1)–(a4)). For b= 0.2,λ= 2.8, deep in the localized phase, thewave function nearly freezes its position
in timewhich is one of signatures of the localization (figures 2(c1)–(c4)). In the intermediate regime, i.e. b= 0.2
andλ= 1.8ä(1.48, 2.52) as shown infigures 2(b1)–(b4), the center part of the density fast decays to afinite
value and the other part of thewave packet spreads similarly to that in the extended regime. For long-time
dynamics, it reflects both localized and extended phenomena. Thewave packet evolution in themultifractal
phase is shown infigures 2(d1)–(d4). The center part decays with time and the expanding ismuch slower than
the onewith themobility edge.

To further distinct the dynamics of the system in different phases, we observe the long-time survival
probability P(r) [77]. The probability of detecting thewave packet in sites within the region (−r/2, r/2) after a
given time, = å  ¥- P r C tj j r j2

2
0

( ) ∣ ( )∣∣ ∣ , is proportional to
~

r L D2( ) forfinite distances where j0 is at the

center of the lattice and
~
D2 is the generalized dimension of the spectralmeasure [71, 72]. The relation of the

correlation dimensionD2 of thewave function and
~
D2 of the spectralmeasure is =~

D D d2 2 for the traditional
extended, localized andmultifractal cases [71, 72]. For one dimensional case, =~

D D2 2.We calculate
~
D2 by

using the box-countingmethod [71, 72, 90–93]. Given an energy spectrumpartitioned into boxesΩi(ε) ofwidth
εwith eÎ Di E1,[ ] andΔE being thewidth of the spectrum, a quantity can be defined as
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with j0 being the position of the center lattice. The quantity γ(ε) is the probability that two eigenfunctions picked
from the spectral decomposition of y ñn∣ have an energy distance less than ε [71, 90]. Infigure 3(a), we display the
scaling of γ(ε) of the spectralmeasures with L=28 657 (the 23rd number of the Fibonacci sequence) and
α= 17 711/28 657 in different phases under periodic boundary conditions. As shown infigure 3(a) for b=0.2,
λ=1.2, =~

D 12 and γ(ε) approximately approaches to 0with the decrease of ε in the extended regime. In the
localized regime, taking b=0.2,λ=2.8 as an example seen infigure 3(d), γ(ε) isfinite and independence of ε
with =~

D 02 . For b=0.2,λ=2 and 2.2 in the intermediate regime (figures 3(b) and (c)), we can see that
=~

D 12 but γ(ε) tends to afinite value when ε→ 0. Figure 3(e) shows the long-time survival probability P(r)
changes with r/L at t=104 for the systemwith L=2001 in the different phases.When the parameters are in the
extended regime (b=0.2,λ<1.48), since the probability offinding thewave packet at each site is the same, it
linearly increases with r,P(r)∝r/L. For the localized phase (b=0.2,λ>2.52),P(r) presents exponential rise
and rapidly reaches to (r/L)0=1 [77]. In the intermediate regime, P(r) exponentially increases for r/L=1 and
forfinite r, the increase ofP(r) is proportional to r/L again. In contrast, for themultifractal case, i.e. b=0,
λ=2, P(r)∝(r/L)1/2 and =~

D 1 22 has been shown in [70]. The integratedwave packet P(r) indicates in the
regimewith themobility edge, the spreadingwave packet presentsmixing features of both localized and
extended regimes for a long-time dynamics and is different from themultifractal dynamics.

Figure 3. Scaling of γ(ε)with L=28 657,α=17 711/28 657 and b=0.2 under periodic boundary conditions forλ = 1.2, 2, 2.2
and 2.8 in (a)–(d), respectively. (e) Integratedwave packet P(r) at t=104with L=2001 different b andλ.
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Mean-square displacementσ2(t) is an important quantity to estimate the spreading of thewidth of awave
packet [74], which is defined as

ås = -t j j C t . 6
j

j
2

0
2 2( ) ∣ ∣ ∣ ( )∣ ( )

The value ofσ2(t) grows in a power-law formof time given byσ2(t)∝tμ during the expansion process. Firstly,
we do not take quasi-disorder average into account. One follows the evolution of awave packet initially localized
at site j0.We consider a quench protocol, where the initial wave packet at site j0 is the eigenstate ofHamiltonian
(1) in atomic limit (J= 0), andwhose dynamics is takenwithHamiltonian (1) for J=1 in this case. Essentially,
the initial energy is fully encoded in the initial state, being precisely equal to l j0

. Infigure 4, we calculateσ2(t) for
different initial energies E iwith fixed δ=0. For a clean systemλ=0, it is clear that themean-square
displacement displays a ballistic diffusionwithμ=2 (see blue solid line infigure 5(a)) and oscillates around a
given value after some diffusion time intervals.We know that thewave packet expands for a clean system in the
long-time limit with nearly the same probability amplitude at each site, i.e. ~C t L1j ( ) and themean value of

themean-square displacement s » ´3.34 102 5 for L=2001which is an upper bound as shown infigure 5(b).
For the initial states with different energies atλ=1.2, the dynamical behaviors are the same as the clean case
(see figure 4(a1)) and s ~ 102 5 (see figure 4(a2)). Forλ=2.8where the post-quench system in the localized
regime shown infigures 4(c1) and (c2), the power-law indicesμ are equal to 0 for different initial energies and
s ~ 102 . For the intermediate case, we takeλ=2 as an examplewhere themobility edge atEc= 0. Themean-
square displacements of both initial energies greater and smaller than themobility edge display the ballistic
diffusionwithμ= 2 (figure 4(b1)). Infigure 4(b2), themean value of themean-square displacement for the
initial state with the energy smaller than Ec is of order 10

5. However, for the energy of the initial state above the
mobility edge, s2 ismuch smaller than that belowEc. As shown infigure 4(b2), for the initial energy E

i≈1.80,
themean value ofσ2(t)within tä[50 000, 55 000] in steps of 10 amounts to 5.0855×104 and forE i≈2.43,
s » ´3.1132 102 4. To understand the results of s2 in the intermediate regime, we define the probability of the
projection of the initial state to the final eigenstates with thefinal energies above themobility edge [84], i.e.

Figure 4. Single-shotmean-square displacement σ2(t) as the function of time twith L = 2001, b = 0.2, δ = 0 and the different initial
states with selected energies. The black dashed line indicates a power-law fitting. (a1), (a2)λ=1.2; (b1), (b2)λ=2; (c1), (c2)
λ=2.8.
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where Y ñi
Ei

∣ is the initial eigenstate with the energyE i and Y ñf
E f

∣ is thefinal eigenstate with the energyE f and
P(E i,<)=1−P(E i,>) for thefinal energies belowEc.We takeE i≈−1.67 and 2.43 as examples to do our
calculations for b=0.2,λ=2, δ=0 and L=2001.When the initial energy is smaller than Ec, i.e. P
(−1.67,<)=0.8643 and P(−1.67,>)=0.1357, the projection of the initial state to the final extended part is
dominant. However, P(2.43,<)=0.097 andP(2.43,>)=0.903 for the initial energy larger than Ec where the
projection of the initial state to the extended part ismuch smaller than to the localized one and s2 is greatly
decreased.Our results shows that the power-law indexμ does not depend on the choice of the initial state but
depends on the post-quench regime and themean value of themean-square displacement s2 is strongly
influenced by the initial energy for the single quasi-disorder realization case in the intermediate regime and this
can be of relevance for experiments with amuch smaller number of realizations available.

Infigure 5, we present themean-square displacement as the function of twith L=2001, differentλ and b
and all the data are averaged 100 to 1000 quasi-disorder realizations. Thewave packet is initially localized at the
center of the lattice. As shown infigure 5(a), the power-law increasing of the time-dependent σ2(t) in the
extended and intermediate regimes shares the same behavior as that of the clean system. The extracted power-
law indices imply that the dynamical evolution in both extended and intermediate phases is a ballistic process, in
contrast to the zero power-law index forλ=2.8, b=0.2 corresponding to the localized process.We also
calculateσ2(t) in themultifractal regimewithλ=2 and b=0, which shows the power-law indexμ=1.
According to our results, the power-law index of themean-square displacement is not changed by considering
the quasi-disorder average and is twice

~
D2, i.e. m = ~

D2 2 which is in agreementwith [70, 71]. A theoretical
analysis about the origin of the ballistic behavior ismade in [94] by aWentzel–Kramers–Brillouin semiclassical
approximation. Figure 5(b) shows the distributions of the time-dependent σ2(t) formuch longer time intervals
with L=2001, b=0.2 andλ=0, 1.2, 1.8, 2, 2.2 and 2.8, respectively. After some time intervals, themean-
square displacement oscillates around a given value and the black dashed line infigure 5(b) represents themean
value of themean-square displacement s2 within tä[50 000, 55 000] in steps of 10. s » ´3.32 102 5 for
λ=1.2, b=0.2 and comparingwith the clean case, the relative deviation is less than 0.6%.When the system is
driven through the intermediate regime, s » ´2.1 102 5 forλ=1.8, s » ´1.4 102 5 forλ=2.0 and
s » ´1.1 102 5 forλ=2.2 as shown infigure 5(b).We can see that s2 reduces with the increase ofλ due to the
decreasing of extended part in the spectrum.When all the eigenstates are localized, s2 ismuch smaller, such as
λ= 2.8, b= 0.2 case, s » 7.862 . It indicates that though the power-law indices of themean-square

Figure 5. (a) Log–log plot of themean-square displacement σ2(t) as the function of time twith averaging over the quasi-periodic
configurations. Thewave packet is initially localized on the center of the lattice. The black dashed line indicates a power-law fitting. (b)
Time dependent ofσ2(t) formuch longer time intervals with differentλ and b = 0.2. And the black dashed line represents themean
value ofσ2(t)within tä[50 000, 55 000] in steps of 10.Here, L = 2001 and data are averaged 100–1000 quasi-disorder realizations.
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displacement for thewave packet expanding in the extended and intermediate regimes are the same, the values
of s2 depend on the proportion of the localized part in the energy spectrum.

Asmentioned above, at b= 0,λ= 2, the curve of themean-square displacement as for theHamiltonianwith
a sharp localized to extended phase transition has a t scaling.However, for afinite b andλ= 2, the intermediate
phase emerging, the curve has a t2 scaling for long time. The case of different values of b requires further
exploration. Figure 6 shows the log–log plot ofσ2(t) as the function of twith different b,λ= 2 and L= 2001. In
short time,σ2(t) spread as t for small b cases, i.e. b= 0.05 and 0.1 shown infigure 6, since time scale is not enough
to distinguish the energy scale defined by b andλ= 2.With the increase of b, the transition time of t scale
decreases. As shown infigure 6, it hardly detects such region at b= 0.5. For longer time,σ2(t) deviates away from
t and becomes t2 since eventually the extended part dominates.

4. Loschmidt echo dynamics

Loschmidt echo is a powerfulmethod for analyzing nonequilibriumdynamics [95–111], which can exhibit a
series of zero points if the initial and the post-quench systems are located in different phases at some time
intervals. Up to now, it has been successfully applied in a series ofmodels, such as transverse field Isingmodel
[95], XYmodel [104, 105], topologicalmodels [103, 106–108], Hubbard and Falicov-Kimballmodels [97] and
disordermodels [109]. Yang et al [109] suggest that the Loschmidt echo dynamics can characterize the
localization-delocalization transition in the standardAAmodel. If both the initial and post-quench system are in
the extended regime or localized regime, the values of the Loschmidt echo are always positive and if they locate in
different regimes, the oscillations of the Loschmidt echo decay to zero in some time intervals. However, the
behavior of the Loschmidt echo for the systemwith themobility edge is still puzzled.We in the following
consider the systembeing initially prepared in an eigenstate of theHamiltonian lH b,i iˆ ( ) and then quenched to
thefinalHamiltonian lH b,f fˆ ( ). The Loschmidt echo can be defined as

l l l l= áY Y ñl- t b b b b; , , , , e , , 8i i f f i i tH b i ii , 2f f( ) ∣ ( )∣ ∣ ( ) ∣ ( )ˆ ( )

where lY ñb,i i∣ ( ) denotes the eigenstate of the initial Hamiltonianwith the parametersλ i and b i, and the
superscript i ( f ) is corresponding to before (after) the quench. Figure 7 shows the evolutions of Loschmidt echo
with b f=0.2, differentλ f, L=2001 for (a)–(b) and L=12001 for (c). The initial state is the ground state of the
systemwithλ i=0, l  ¥i andλ i=2, b i=0 shown infigures 7(a)–(c), respectively.We can see the
oscillations of Loschmidt echo display a similar behavior, when the parametersλ f, b f after the quench process
are located in either the extended or intermediate regimewithλ i=0. The evolution of Loschmidt echowithout
decaying for long-time intervals can not touch zeros but rapidly decays to zero for l  ¥i , which is shown in
figures 7(a) and (b). However, for the cases quenched to the localized phaseλ f=2.8, the evolutions of
Loschmidt echo present the opposite results comparedwith those in former cases.We also calculate the
evolution of Loschmidt echo quenched fromλ i=2, b i=0 (amultifractal ground state) to different regimes of

Figure 6. Log–log plot ofσ2(t) as the function of twith different b,λ=2 and L=2001. The data are averaged 100 different quasi-
disorder realizations.
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theHamiltonian (1)with b f=0.2. As shown infigure 7(c), the Loschmidt echoes can approach zero in long-
time intervals, which is consistent with conventional conclusions [109].

We notice that similar results are shown for quenched to extended and intermediate regimes fromboth
limits (λ i=0 and l  ¥i ). To further discriminate extended and intermediate regimes by Loschmidt echo
dynamics, we consider the quench process from the eigenstates in the intermediate regimewith different initial
energiesE i to the extended regime. Figure 8 shows the evolutions of Loschmidt echowithλ i=2, b i=0.2 and
different initial eigenstates quenched toλ f=1.2, b f=0.2 located in extended regime. Asmentioned above, we
know that forλ i=2, b i=0.2, it is deep in the intermediate regimewith themobility edge atEc=0.We
choose the initial eigenstates with the energies smaller or greater than Ec. As shown infigure 8, for an extended
eigenstate with energy smaller thanEc (E

i=−1.8660 andE i=−1.7395 for δ= 0), the Loschmidt echo
oscillates without decaying for long time and has a positive lower bound. If the eigenstate of intermediate regime
with the energy greater than Ec quenches to the extended regime (E i=0.0919 andE i=2.0037 for δ=0), the
decay of l l t b b; , , ,i i f f( ) is obvious and the evolution of Loschmidt echo approaches zero after some time
intervals. The results suggest that the dynamics of Loschmidt echo can distinguish the intermediate regime from
the extended, localized andmultifractal ones.

5. Conclusions

In summary, we study the spatial expansion of awave packet in a one-dimensional incommensurate optical
lattice systemwith a special formof on-site potential described by equation (2). The extended, intermediate,
localized andmultifractal phases can be found in such system. By observing the density propagation, long-time
survival probability andmean-square displacement of thewave packet in these regimes, our numerical results
indicate that the dynamics of thewave packet in the intermediate phase behaves as amixture of extended and
localized phases. The evolution of Loschmidt echo is also considered to distinguish different phases emerging in
suchmodel.

Figure 7.Evolutions of Loschmidt echo l l t b b; , , ,i i f f( )with b f=0.2 and differentλ f. The initial states arefixed as the ground
states of theHamiltonianwith (a)λ i=0, (b) l  ¥i and (c)λ i=2, b i=0.Here, (a), (b) L=2001 and (c) L=12001.
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