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Abstract
Networks of excitable elements arewidely used tomodel real-world biological and social systems. The
dynamic range of an excitable network quantifies the range of stimulus intensities that can be robustly
distinguished by the network response, and ismaximized at the critical state. In this study, we examine
the impacts of backtracking activation on system criticality in excitable networks consisting of both
excitatory and inhibitory units.Wefind that, for dynamics with refractory states that prohibit
backtracking activation, the critical state occurs when the largest eigenvalue of theweighted non-
backtracking (WNB)matrix for excitatory units,lE

NB, is close to one, regardless of the strength of
inhibition. In contrast, for dynamics without refractory state inwhich backtracking activation is
allowed, the strength of inhibition affects the critical condition through suppression of backtracking
activation. As inhibitory strength increases, backtracking activation is gradually suppressed.
Accordingly, the system shifts continuously along a continuumbetween two extreme regimes—from
onewhere the criticality is determined by the largest eigenvalue of theweighted adjacencymatrix for
excitatory units,lW

E , to the other where the critical state is reachedwhenlE
NB is close to one. For

systems in between, wefind that l < 1E
NB andl > 1W

E at the critical state. Thesefindings, confirmed
by numerical simulations using both randomand synthetic neural networks, indicate that
backtracking activation impacts the criticality of excitable networks.

1. Introduction

Excitablenetworks have beenused tomodel a range of phenomena in biological and social systems including signal
propagation inneural networks [1–6], informationprocessing in brainnetworks [7–9], epidemic spread inhuman
population and informationdiffusion in social networks [10–13]. The collective dynamics of excitable nodes enable
the networked system todistinguish stimulus intensities varied by several orders ofmagnitude, characterized by a
large dynamic range in response to external stimuli. In previous studies, itwas found that, for a number of excitable
networkmodels, the dynamic range ismaximized at the critical state [1, 14–17]. As a result, understanding the
conditionof criticality is essential for improving the performance and functionality of excitable networks.

The critical condition for excitable networks composed of only excitatory nodes has been extensively
studied. In homogeneous randomnetworks, the critical state corresponds to a unit branching ratio [1]. Formore
general network structures, the criticality for dynamics without refractory state is characterized by the unit
largest eigenvalue of theweighted adjacencymatrix [14].More recently, it was shown that for dynamics with
refractory states, the critical state is governed by the largest eigenvalue of theweighted non-backtracking (WNB)
matrix [17]. In these studies, the largest eigenvalue of theweighted adjacencymatrix orWNBmatrix is used to
define the critical state of excitable networks.However, when inhibitory nodes are introduced, it is unclear how
criticality is related to the largest eigenvalues of these twomatrices.
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In this study, we explore the critical condition of excitable networks consisting of both excitatory (E) and
inhibitory (I)nodes. Inhibition presents inmany real-world systems and plays a critical role inmodel dynamics
and functions [18–23]. For instance, the introduction of inhibitory nodes into an excitable network operating
near the critical state leads to self-sustained network activity [22], and inhibitory connectivitymay be essential in
maintaining long-term information storage in volatile cortex [23]. In order to elucidate the relationship between
criticality and the largest eigenvalues of theweighted adjacencymatrix andWNBmatrix, we study an excitatory–
inhibitory (EI)networkmodel equippedwith a threshold-like activation rule [22]. Specifically, we focus on the
impact of backtracking activation paths on the critical condition.

Wefirst analyze themodel dynamics ofEI networks in two extreme conditionswhere backtracking
activation is allowedwithout restrictions or entirely prohibited.Wefind that, in the former case, the critical state
is better characterized by the largest eigenvalue of theweighted adjacencymatrix for excitatory nodes, lW

E , while
in the latter case, the criticality ismore related to the largest eigenvalue of theWNBmatrix for excitatory nodes,
lE

NB. For EImodels with refractory states that preclude backtracking activation, the critical state is achievedwhen
lE

NB is close to one. For EImodels without refractory state (i.e. with only resting and excited states), however, the
analytical formof the critical condition becomes intractable.We show that, qualitatively, the system gradually
shifts from the former case to the latter case as the strength of inhibition increases: for negligible inhibition, lW

E is
closer to one at the critical state; for strong inhibition, lE

NB is closer to one at the critical state; formoderate
inhibition, we find l < 1E

NB and l > 1W
E at the critical state. Using numerical simulations in both randomand

synthetic networks, we verify that a larger inhibitory strength tends to suppressmore backtracking activation,
which explains the transition between these two regimes. Ourfindings highlight the impact of backtracking
activation, a formof dynamical resonance, on the criticality of excitable networks, andmay provide new insights
into the study of similar dynamical processes in networked systems.

2.Materials andmethods

2.1. The excitable networkmodel
Weconsider excitable networks consisting of both excitatory (E) and inhibitory (I)nodes [22]. Contrary to the
function of excitatory nodes, the effect of inhibitory nodes is to decrease the activation probability of their
neighbors once they are activated. In a networkwithNnodes, we use si(t) to represent the state of node i at time t.
Both types of nodes can be in one ofm+1 states: the resting state si(t)=0, the excited state si(t)=1, and
refractory states si(t)=2, 3,L,m. At each discrete time t, a resting node can be activated by an external stimulus
with a probability η, or activation propagation from its neighbors independently. Specifically, the signal input
strength from anode j to a neighboring node i, denoted by aij, satisfies aij>0 if node j is excitatory and aij<0 if
node j is inhibitory. If node j and node i are not connected in the network, we set aij=0. Theweighted adjacency
matrix { }= ´A aij N N thus fully describes the network structure aswell as the signal input strength between all
pairs of nodes. If a resting node i is not activated by the external stimulus, its activation probability in the next
time step t+1 is calculated by summing inputs from all neighbors through a transfer function (·)s :

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ( )) ( )ås t+ =

=

s t a s t1 1 with probability . 1i
j

N

ij j
1

Hereσ(·) is a piecewise linear function:σ(x)=0 for x 0; σ(x)=x for 0<x<1; andσ(x)=1 for x 1.
τ(·) is a characteristic function: when sj(t)=1, τ(sj(t))=1; otherwise, τ(sj(t))=0. A node can be activated by its
neighbors if the net input is positive. Once activated, node iwill transit to refractory states deterministically. That
is, si(t+1)=si(t)+1 if ( ) < s t m1 i and si(t+1)=0 if si(t)=m. Note that, ifm=1, therewill be no
refractory state and the nodewill directly return to the resting state after activation.

In this study, we use undirected networks inwhich signals can be transmitted in both directions, and assume
that the number of EnodesNe is larger than the number of InodesNi. Empirical studies on real-world excitable
systems reveals that themajority of neural inputs are excitatory [24]. For ease of analysis, we rearrange node
indices so that nodeswith index  i N1 e are excitatory and the rest are inhibitory.We consider both
homogeneous and heterogeneous networks. For homogeneous network structure, wefirst generate two Erdős–
Rényi (ER) randomnetworks consisting ofNe excitatory nodes andNi inhibitory nodes.Within each network,
each pair of nodes is connectedwith a probabilityα.We then randomly connect Enodes and Inodeswith a
probabilityβ. For heterogeneous network structure, two scale-free (SF)networks ofE nodes and Inodeswith a
power-law degree distribution ( ) µ g-P k k are generated using the configurationmodel [25]. These two
networks are then connected by randomly linking Enodes and Inodeswith a probabilityβ. In otherwords,
networks of same types of nodes are constructed using either an ERmodel with a pairwise linking probabilityα
or a configurationmodel for SF networkswith a power-law exponent γ. Different types of nodes are connected
randomly using a pairwise linking probabilityβ.We assume the absolute values of linkweights ∣ ∣aij are
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distributed uniformlywithin a range, and the effect of inhibitory nodes is solely represented by the connections
from I toE nodes.

In real-world excitable systems, themajority of units are excitatory. For instance, in cortex, approximately
20%of neuron inputs are inhibitory [24]. Togetherwith the fact that the inhibitory nodes need to be activated
first before their release of inhibitory signals, the effect of I–I interactions is quite nominal in response toweak
external stimuli. In somemodeling studies, the I–I interactions were even neglected [26]. In addition, we focus
on the relative strength of same-type and cross-type interactions. It would be sufficient to keep one constant and
vary the other (i.e.β). Considering these factors, we decided to study the effect of a varyingβ.

2.2.Dynamic range and criticality
The dynamic range of an excitable networkmeasures the range of stimulus intensities that are distinguishable
based on network response [1]. For a given stimulus intensity ηä(0, 1), the network response F is defined as

( )å=
¥ =

F
T

Slim
1

, 2
T t

T
t

0

where S t is the fraction of excited nodes at time t. The response F(η) increasesmonotonically with a growing
intensity of external stimulus η in a nonlinear fashion (see figure 1). For a strong stimulus intensity η→1, the
response F(η)will saturate and retain at amaximumvalue Fmax=1/(m+1). For a negligible stimulus intensity
η→0, theminimum response F0 depends on the state of the excitable system. In subcritical state, F(η) is a linear
function of η for η→0, i.e. F(η)∝η, with F0→0. At the critical state, F0 still approaches to zero but the
function F(η) becomes nonlinear: F(η)∝η1/2 (seefigure 1(a)). The exponent 1/2 is called the Steven’s exponent,
which characterizes the criticality of the collective dynamics [1, 27]. In supercritical state, the excitation caused
by external stimulus can be self-sustained. Therefore, F0 becomes a positive number.

The dynamic range of an excitable network is defined based on the function F(η). In particular, we define
dynamic rangeΔ as

( )
h

h
D = 10 log , 310

high

low

where ηhigh and ηlow are stimulus intensities corresponding to network responses Fhigh and Flow (here
Fx=F0+x(Fmax−F0) for xä[0, 1]). In this study, we use η0.9 and η0.1, discarding stimuli that are too close to
saturation or tooweak to be distinguished from F0. Previous studies have demonstrated that dynamic range is
maximized at the critical state of an excitable system [1, 14].Without forcing of external stimuli, excitation
activity will eventually die out in subcritical state but become self-sustained above the critical point. This feature
allows us to identify the critical point using themaximization of dynamic range.

Figure 1.Network response F in response to external stimulus intensity η.We show the response curves for anEInetwork constructed
by connecting two ERnetworks (Ne=3000,Ni=2000,α=3×10−3,β=1×10−3,m=4). The absolute linkweights ∣ ∣aij are
drawn uniformly from0.1 to 0.2.Wemultiply linkwights with different values to adjust the system to stay in the subcritical, critical
and supercritical states. The network response F is shown in logarithmic scale in (a) and linear scale in (b). At the critical state, we show
that F(η)∝η1/2 in (a). The dynamic range of the system is calculated based on the response curve.
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The criticality of the proposedmodel is closely related to percolation. As pointed out in a previous study [28],
activation or disease transmission in networks can bemapped to a bond percolation process. Inmodels with
only excitatory units, an absorbing state of activation extinction (or a negligible giant component in percolation)
exists for a low transmission probability. The criticality of the system corresponds to the transition point of the
stability of this absorbing state, which is determined by the branching ratio [1], defined as the average number of
secondary activations induced by one excited node. In disease transmission, this quantity is referred to as the
reproductive number. If the branching ratio is belowone, the absorbing state is stable as all activations eventually
die out; in contrast, if the branching ratio is larger than one, the absorbing state becomes unstable and any initial
activationwill amplify and converge to a non-zero absorbing state. This stability change is equivalent to the
emergence of a non-zero giant component in percolation. The introduction of inhibitory units reduces the
transmission probability of activation, thus delays the emergence of a non-zero absorbing state. In particular,
inhibitory inputs can be viewed as ameans of regulation of the system, and how inhibition is imposed on
excitatory units could affect when the stability transition occurs. The phase transition in systemswith both
excitatory and inhibitory units therefore depends on the competition and interplay between excitatory and
inhibitory signals. Depending onwhether an excited node can be activated immediately after its last excitation,
the effect of inhibitory units is different. This study aims to explore how inhibitory units would change the
condition of criticality.

3. Results

The number of refractory states inmodel dynamics determines whether backtracking activation is permitted.
Backtracking activation describes the following phenomenon of dynamical resonance: an excitatory node i
activated at time t increases the activation probability of its excitatory neighbors at time t+1, which in turn
increases the activation probability of node i at time t+2. This behavior is only possible when there is no
refractory state (i.e.m=1) so that excited nodes can directly return to the resting state at time t+1. For
dynamics with refractory states (i.e.m>1), nodes excited at time twill enter refractory states at time t+1 thus
cannot be activated again at time t+2. Following this dynamical rule, any backtracking activation is prohibited.

3.1.Dynamicswithout backtracking activation
Wefirst analyze the simpler casewhere backtracking is precluded by the existence of refractory states (i.e.
m>1). To account for the dynamics without backtracking, we formulate themodel evolution in amessage-
passing framework [17], which is frequently used in statistical physics and network science [29–31]. For a link
from i to j (i→j), we create a ‘cavity’ at node j by ‘virtually’ removing it from the network, and examine the
probability of node i being activated in the absence of node j, denoted by pi→j

t at time t. The procedure of creating
a virtual cavity at node j blocks the backtracking path i→j→i, and therefore excludes the contribution via the
consecutive activation i→j→i to the activation probability of node i. This framework precisely depicts the
model dynamics with refractory states.

For sparse networks without toomany short loops, the probabilities pi→j
t for neighboring nodes aremutual

independent. Under this condition, the probability pi j
t for each node i can be recursively written as follows:

⎡
⎣
⎢⎢

⎛
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Here ⧹¶i j is the set of neighbors of node i excluding j. The probability that node i is excited at time t+1,
denoted by +pi

t 1, is calculated by putting node j back to the network:

⎡
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Note that, although equations (4)–(5) are derived for locally tree-like sparse networks, it has been found that
results based on the sparseness assumptionworkwell even for some networks with dense clusters [32].

3.1.1. Analysis in the case of negligible inhibition
The piecewise transfer functionσ(·) imposes a threshold-like activation rule that depends on the collective
dynamics of all neighbors. Because the value of net input ⧹å Î¶ a pk i j ik k i

t is unknown, it becomes complicated to

expand the right-hand-side of equation (4) except for some extreme cases. Here, we consider a special case where
the cross-type interactionβ is negligible, i.e.β→0. Under this extreme condition, excitatory and inhibitory
nodes in effect form twonearly separate communities. In particular, inhibitory nodes are unlikely to be activated
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in response toweak stimuli as they almost only receive signals from inhibitory peers. As a consequence, it is
suffice to consider only excitatory nodes to compute network response.

In the steady state, denote the limiting probabilities as =¥  p plimt i j
t

i j and =¥p plimt i
t

i. For

excitatory nodes, equations (4)–(5) becomes

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )

⧹
åh h= - + - 
Î¶

p mp a p1 1 , 6i j i j
k i j

ik k i
E

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( ) ( )åh h= - + -

Î¶
p mp a p1 1 , 7i i

k i
ik k i

E

where  i N1 e,  j N1 e and∂Ei is the set of excitatory neighbors of node i. To solve the self-consistent
equations, we introduce two auxiliary variables: ( ) ( ) ⧹h h h= + - å  Î¶ G p a p, 1i j k i j ik k iE

,
( ) ( )h h h= + - å Î¶ G p a p, 1i k i ik k iE

.We rearrange equations (6)–(7) and obtain
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For η=0 (that is, without external forcing), equation (8) has a trivial solution: pi→j=0 for all links i→j. The
stability of this solution determines the critical state of the system. If the solution is stable, the network activity
triggered by aweak stimulus will eventually disappear; otherwise, the response willmaintain at a nonzero level.

The stability of the zero solution depends on the Jacobianmatrix { } =   
E

k l i j
E

, defined on all pairs of
links k→l and i→j between Enodes. Specifically, we have
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HereGi→j=0when η=0 and pi→j=0 for all i→j. According to the definition ofGi→j, the partial derivative
ofGi→j is given by

⎧⎨⎩ ( )
{ }
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a l i j kif and ,
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k l p
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0, 0i j

The elements ofE
are =  ak l i j

E
lk, if l=i and ¹j k and 0 otherwise. Note that,  k l i j

E
, is non-zero

only if the links k→l and i→j are consecutive (l=i) but not backtracking ( ¹j k). Theweighted non-
backtracking (WNB)matrix, orHashimotomatrix [33], has recently found applications in several problems in
network science [30, 34–40]. Because the stability of the zero solution is determined by the largest eigenvalue

lE
NB of

E
, the system reaches the critical state if l = 1E

NB .

3.1.2. Numerical results for dynamics with inhibition
For the general casewhere inhibition cannot be neglected, it is challenging to derive the analytical condition of
criticality from equation (4). As a result, we have to use numericalmethods tofind the critical state. In particular,
we are interested in how the largest eigenvalue of theWNBmatrix for Enodes lE

NB changes with the inhibitory
strengthβ at the critical state.We treat the increasing level of inhibition as a perturbation to the special case of
β=0, and examine towhat extend the critical condition l = 1E

NB will remain valid. In order to tune the system
to the critical state, for afixed inhibitory strengthβ, we randomly draw absolute linkweights ∣ ∣aij from a uniform
distribution between 0.1 and 0.2, and thenmultiply ∣ ∣aij with a varying constant until the dynamic range of the

system ismaximized (i.e. the critical state is reached). The largest eigenvalue lE
NB of

E
is then computed using

a powermethod [41]. Infigure 2, we show the relationship between dynamic range and the largest eigenvalues of
fourmatrices (i.e. theweighted adjacencymatrix for all nodes, theweighted non-backtrackingmatrix for all
nodes, theweighted adjacencymatrix forEnodes, and theweighted non-backtrackingmatrix forEnodes). The
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curves present the largest eigenvalues of differentmatrices at the critical statewhere dynamic range is
maximized.

Wefirst analyze homogeneous network structure.Without loss of generality, we assume there are 3
refractory states (m=4). For ER networkswithNe=3000 excitatory nodes andNi=2000 inhibitory nodes,
we set thewithin-type connection probabilityα=3×10−3. An increasing level of inhibitory strength
β=1×10−4, 5×10−4, 1×10−3, 2×10−3 and 3×10−3 are tested. For eachβ, we slowly tune the link
weights to drive the system to the critical state, and record the largest eigenvalue of theWNBmatrix forE nodes
lE

NB.We perform300 realizations of this procedure, and report the distributions of lE
NB in figure 3. For

comparison, we also computed the largest eigenvalue of theweighted adjacencymatrix forEnodes lW
E at

criticality.
Interestingly, evenwith non-negligible inhibition, lE

NB consistently distributes around one at the critical
state for an increasing inhibitory strengthβ. In contrast, lW

E distributes well above one.We note that the
variation of lE

NB and lW
E is attributed to the finite network size and numerical inaccuracy, as pointed out in a

previous study on excitable networks with only Enodes [17]. The numerical results infigure 3 indicate that the
criticality ofEInetworkswith refractory states occurs when lE

NB is close to one, regardless of the strength of
inhibitionβ. A closer inspection of figure 3 reveals that the average value of lE

NB is slighted larger than one and
slowly increases withβ. This slight shift of lE

NB indicates that inhibition does impact the critical condition but its
impact is very limited.

According tomodel dynamics, the function of I nodes is passive—they need to befirst activated before they
can release inhibition signals.Without external stimuli, the conduction of inhibitory signals proceeds as follows:
a set of excitedEnodes activate an Inode at time t; at time t+1, the excited I node exerts inhibitory signals to all
its neighbors, amongwhich the excited Enodes enter refractory state.With the presence of nodes in refractory
state, we hypothesize that the inhibition effect is weakened. To demonstrate this, we plot F0 as a function of lE

NB

and lW
E for increasingβ infigure 3(f). Although the inhibitory strengthβ intensifies, the F0 curve does not

change significantly, especially near the transition point from F0=0 to F0>0. This result directly shows that,
for dynamics with refractory states, the impact of inhibitory nodes is rather limited near the critical state.

We performed the same analysis in SF networks withNe=6000,Ni=4000 and the power-law exponent
γ=3. Results infigure 4 show that, consistent with the results for ERnetworks, lE

NB is close to one at the critical
state. The effect of inhibitory nodes near the critical state is also nominal as the F0 curves are almost identical for
different values of inhibitory strength β.

3.2.Dynamicswith backtracking activation
Wenow explore themore complicated dynamics inwhich backtracking activation is allowed. In this case, nodes
have only two states—resting and excited. For each node i, denote pi

t as the probability that node i is excited at

time t. According to themodel dynamics, the evolution of pi
t is described by

Figure 2.The relationship between dynamic range and the largest eigenvalues of fourmatrices for dynamics with 3 refractory states (a)
andwithout refractory state (b). Here,λW,λNB, lW

E and lE
NB are the largest eigenvalues of the weighted adjacencymatrix for all nodes,

the weighted non-backtrackingmatrix for all nodes, theweighted adjacencymatrix forE nodes, and theweighted non-backtracking
matrix forE nodes, respectively.We perform the experiment on an EInetwork constructed using twoERnetworks (Ne=3000,
Ni=2000,α=3×10−3,β=1×10−3), and vary linkweights to change the state of the system. For each setting of linkweights, we
calculate the dynamic range and the corresponding largest eigenvalues. The setting thatmaximizes the dynamic range corresponds to
the critical state.We use this numericalmethod tofind the critical state of an EInetwork. At criticality, wefind thatλ E

NB is close to one
for =m 4 and lW

E is close to one form=1.λW (λNB) is always smaller than lW
E (lE

NB) due to the existence of inhibitory nodes.
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Backtracking activation is properly represented in equation (12): if we expand pk
t on the right-hand-side of

equation (12) in terms of the activation probability at time t−1, +pi
t 1becomes explicitly dependent on -pi

t 1.
This implies, the activation probability of eachE node at a given time can contribute to the probability of its

Figure 3.Distributions of lW
E and lE

NB at the critical state of homogeneous EInetworks with refractory states (m=4) (a)–(e).
Networks are constructed by connecting two ERnetworks (Ne=3000,Ni=2000,α=3×10−3), and varying the cross-type link
probabilityβ. For different settings ofβ, lE

NB is consistently distributed near one. The relationship between F0 and lW
E and lE

NB is
shown in (f) forβ=1×10−4 (up triangle), 5×10−4 (square), 1×10−3 (down triangle), 2×10−3 (circle), and 3×10−3

(diamond). The transition point from F0=0 to F0>0 is not affected by the strength of inhibitionβ.

Figure 4.Distributions of lW
E and lE

NB at the critical state of heterogeneous EInetworks with refractory states (m=4) (a)–(e).
Networks are constructed by connecting two SF networks (Ne=6000,Ni=4000, γ=3), and varying the cross-type link probability
β. For different settings ofβ, lE

NB is consistently distributed near one. The relationship between F0 and lW
E and lE

NB is shown in (f) for
β=1×10−4 (up triangle), 5×10−4 (square), 1×10−3 (down triangle), 2×10−3 (circle), and 3×10−3 (diamond). The
transition point from F0=0 to F0>0 is not affected by the strength of inhibitionβ.
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re-activation two time-steps later (as long as at least one of itsEneighbors are activated), which exactly depicts
the effect of backtracking activation.

3.2.1. Analysis in the case of negligible inhibition
Similar with our analysis of dynamics with refractory states, we first explore the extreme casewhere the cross-
type linking probabilityβ→0. In this case, we only consider the network of excitatory nodes. The stationary
activation probability = ¥p plimi t i

t satisfies

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )åh h= - + -

=

p p a p1 1 . 13i i
k

N

ik k
1

e

Without external stimuli, the systemhas a trivial solution pi=0 for  i N1 e. The stability of the zero
solution is determined by the largest eigenvalue lW

E of theweighted adjacencymatrix for excitatory nodes
{ }= ´A aE

ij N Ne e
. As a result, the critical state is characterized by l = 1W

E asβ→0.

3.2.2. Numerical results for dynamics with inhibition
Weperturb the extreme caseβ→0 by gradually increasing the cross-type linking probabilityβ, which
introducesmore inhibitory nodes connected to excitatory nodes.Without refractory states, an
‘excitatory→inhibitory→excitatory’ feedback loop appears: a group of excitedEnodes activate an inhibitory
node; the excited Inode then releases inhibitory signals and decreases the activation probability of the E nodes
who just activated it and now returned to the resting state. The inhibitory signals (negative inputs) impose a
threshold for the re-activation of those Enodes. As a consequence, contributions from certain backtracking
pathsmay not be realized. This phenomenon is caused by the threshold-like feature of the transfer functionσ(·).
If the contribution of a backtracking path is lower than the threshold imposed by inhibitory nodes, itmay never
contribute to the activation probability asσ(x)>0 only if the net input x>0. Following this line of reasoning,
equation (13) thus overestimates the effect of backtracking activationwhenmore inhibitory nodes are connected
to excitatory nodes. A stronger inhibitory strengthβwill suppressmore backtracking activations, which drives
the dynamics ofEInetworks closer to the opposite extreme casewhere backtracking activation is entirely
prohibited, described by equations (6)–(7).

We therefore hypothesize that, for a weak inhibitory strengthβ, lW
E is close to one at the critical state;

whereas for a strong inhibitory strength, lE
NB is close to one at the critical state. Varying the cross-type linking

probabilityβmodulates the system shifting between these two extreme regimes. For an intermediate inhibitory
strengthβ, we hypothesize that l < 1E

NB and l > 1W
E at the critical state.We verify this hypothesis using

numerical simulations in both homogeneous and heterogeneous networks.
We performed the same analysis as infigures 3 and 4, except using a differentmodel dynamics with only

resting and excited states. The distributions of lW
E and lE

NB at the critical state for ER networks is shown in
figure 5. In agreementwith our hypothesis, asβ increases, lW

E shifts fromnear one to above one, and lE
NB shifts

frombelow one to near one. The same phenomenon is also observed for SF networks infigure 6. In oder to
examine the effect of inhibitory nodes, we plot the F0 curve as a function of lW

E and lE
NB infigures 5(f) and 6(f). In

contrast to dynamics with refractory states, introduction ofmore inhibitory links effectively reduces F0, thus
strongly impacts the critical state of the system. Such impact is reflected by the change of the transition point
abovewhich F0 becomes non-zero.

Ideally, it would be desirable to show that the number of instances of backtracking activation decreases with
an increasing inhibitory strengthβ. However, as the activation of a node is collectively determined by a group of
nodes, it is difficult to disentangle such interaction and identify definitively which backtracking path is
responsible for the activation.Despite that, the impact of inhibitory nodes can be reflected by the threshold
values that they impose on excitatory nodes.We calculate the average input from Inodes toE nodes in ER and SF
networks. Specifically, for a given stimulus intensity η, we compute the average input of restingEnodes from
their excited inhibitory neighbors at each time step, and then average over all time steps. Infigures 7(a) and (c),
we show that the average threshold indeed increasesmonotonically withβ. In addition, a stronger external
stimulus η leads to a higher average threshold due to a larger number of excited nodes.

We further calculate the fraction of excitatory links connected to restingEnodeswhoseweights are lower
than the threshold. To be specific, for each resting E node, wefind its excited excitatory neighbors and focus on
the links connected to them. These links are potential candidates of backtracking activation, i.e. the actual
backtracking activation paths belong to this set of links. Among these links, we calculate the proportionwhose
weights are lower than the threshold of the E node. The contribution from such below-threshold links are likely
to be negated by the threshold. Therefore, the fraction of below-threshold links can partly reflect themagnitude
of backtracking suppression.We present an illustration for computing this below-threshold fraction infigure 8.
Themean fraction values averaged over all resting Enodes in all time steps for ER and SF networks are shown in
figures 7(b) and (d). For both network structures, the fraction of below-threshold links increases asβ growswith
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the presence of different levels of external stimuli. This analysis agrees with our hypothesis and partially explains
the transition between the two extreme cases.

3.3. Simulations in synthetic neural networks
We further validate ourfindings in synthetic neural networks that havemore realistic structures. As it is difficult
tofind a real-world neural network dataset that contains both excitatory and inhibitory neurons, we have to

Figure 5.Distributions of lW
E and lE

NB at the critical state of homogeneous EInetworks without refractory state (m=1) (a)–(e).
Networks are constructed by connecting two ERnetworks (Ne=3000,Ni=2000,α=3×10−3), and varying the cross-type link
probabilityβ. At the critical state, we show that in general l > 1W

E and l < 1E
NB . Asβ increases, lE

NB becomes closer to one and lW
E

shifts away fromone. The relationship between F0 and lW
E and lE

NB is shown in (f) forβ=1×10−4 (up triangle), 5×10−4 (square),
1×10−3 (down triangle), 2×10−3 (circle), and 3×10−3 (diamond). The transition point from F0=0 to F0>0 is significantly
affected by the strength of inhibitionβ.

Figure 6.Distributions of lW
E and lE

NB at the critical state of heterogeneous EInetworks without refractory state (m=1) (a)–(e).
Networks are constructed by connecting two SF networks (Ne=6000,Ni=4000, γ=3), and varying the cross-type link probability
β. At the critical state, we show that in general l > 1W

E and l < 1E
NB . Asβ increases, lE

NB becomes closer to one and lW
E shifts away

fromone. The relationship between F0 and lW
E and lE

NB is shown in (f) forβ=1×10−4 (up triangle), 5×10−4 (square), 1×10−3

(down triangle), 2×10−3 (circle), and 3×10−3 (diamond). The transition point from F0=0 to F0>0 is significantly affected by
the strength of inhibitionβ.
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construct a synthetic network using network generationmodels [26, 42, 43]. In particular, networks of neurons
in brain follow a clustered, distance-dependent connection pattern [43].We generate networkswith this
organizational pattern using a distance-dependentmethod employed in previous studies [43]. Specifically, 3000
excitatory nodes and 2000 inhibitory nodes are placed uniformly on the surface of a unit sphere (figure 9(a)). The
degree of each nodewas generated from anormal distribution.Nodes were then connected according to a
distance-dependent probability P∝1/d2, where d is the geodesic distance between two nodes on the spherical
surface.We assign the synaptic strength of all links from a uniformdistribution between 0.1 and 0.2, and
multiply a factor c to theweights of cross-type links in order to adjust the strength of inhibition. The value of c
reflects the inhibition strength in the system.

We run simulations ofmodel dynamics without refractory state (m=1) for c=1.We vary linkweights,
and calculate the dynamic range lW

E and lE
NB for eachweight setting. The relationship between the dynamic

range and lW
E and lE

NB is shown infigure 9(b). Similar with the results in randomnetworks, at the critical state,

Figure 7.The threshold of resting Enodes imposed by their inhibitory neighbors for EInetworks generated using ER (Ne=3000,
Ni=2000,α=3×10−3) (a) and SF (Ne=6000,Ni=4000, γ=3) (c)networks. The fraction of below-threshold links for resting
E nodes is reported in (b) and (d). For an increasing level of inhibition strengthβ, we tune the system to the critical state, and calculate
the threshold values and fraction of below-threshold links for different stimulus intensities η. Asβ and η increase, both threshold and
below-threshold fraction increase.

Figure 8.An example to show the calculation of threshold and fraction of below-threshold links for a resting E node i. Here, the resting
E node has a total input ∣ ∣+a aik ik2 3 for its activated Ineighbors. This value is defined as the threshold. Among the 4 links connected to
its activatedE neighbors, 2 links haveweights below the threshold ( ∣ ∣< +a a aij ik ik3 2 3 , ∣ ∣< +a a aij ik ik4 2 3 ). The fraction of below-
threshold links is calculated as 2/4=0.5.
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wefind that l > 1W
E and l < 1E

NB . In the inset, we show the values of lW
E and lE

NB at the critical state for an

increasing inhibition strength c. As c grows, at the critical state, lW
E shifts away fromone and lE

NB gets closer to

one. This result further corroborates our hypothesis that the system lies between two extremeswith (l » 1W
E )

andwithout (l » 1E
NB ) backtracking activation.

4. Conclusion

In this study, we explore the impact of backtracking activation on the criticality of excitable networkswith both
excitatory and inhibitory nodes.Wefind that, for dynamics with refractory state that precludes backtracking
activation, the critical state occurs when the largest eigenvalue of theWNBmatrix for excitatory nodes is close to
one.However, for dynamics without refractory state, the introduction of inhibitory nodes affects backtracking
activation and the critical condition of the system. TheEImodel with inhibition essentially provides an
intermediate systembetween two extreme cases inwhich backtracking activation is allowed or prohibited. For
the dynamics with amedium inhibitory strength, lW

E and lE
NB can be viewed as the upper and lower bound of the

critical condition: at the critical state, l > 1W
E and l < 1E

NB . In practice, this criterion can be used to assess

whether a systemmay be at the critical state. If a system resides in a statewhere l < 1W
E or l > 1E

NB , we can assert
that the system is not close to the critical state. Our results imply that a precise description ofmodel dynamics is
essential in theoretical analysis of phase transitions. These findings highlight the important role of backtracking
activation in excitable dynamics.

Critical behavior is common in biological systems [44]. Besides the commonly addressed neuronal
networks,fingerprint of criticality have been reported for calcium singallization inmyocytes [45], excitable beta
cells [46], oocytes [47], etc. The operation of these biological systems near critical statesmay be crucial for their
proper functioning. Certain inhibitorymechanisms exist in cells to regulate the dynamics of calcium signaling,
which could be potentially relevant to our findings in this study. Further, several experimental studies on
subcellular [48] aswell as on the cellular level [49] echo ourfindings that the refractory periods are important in
excitable dynamics. Another relevant field is the study on pacemaker activities induced by intracellular calcium
waves, which has been found essential in the interstitial cell of Cajal (ICC) in the gastrointestinal tract and
cardiac pacemaker cells in the heart. It has been shown that refractory phases are crucial to prevent backtracking
of activations in systems guided by pacemaker activities [50, 51]. Findings in this studymay find applications in
these biological systems in future works. It alsomerits further studywhether imposing inhibition on influencers
of excitable dynamics would result in efficient regulation ofmodel dynamics [52, 53].

Figure 9. (a)Generation of the synthetic neural network. 3000 excitatory nodes (blue) and 2000 inhibitory nodes (red) are uniformly
placed on the surface of a unit sphere. (b)Relationship between the dynamic range and lW

E and lE
NB for a synthetic neural network

(Ne=3000,Ni=2000, c=1, the degree distribution follows a normal distributionwith amean of 9 and a variance of 1).We vary
linkweights to change the state of the system, and calculate the dynamic range,λ E

W and lE
NB for each setting. At the critical state where

the dynamic range ismaximized, wefind l < 1E
NB and l > 1W

E , which agrees with our hypothesis. Inset shows the values of lW
E and

lE
NB at the critical state for an increasing inhibition strength c.
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