PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PAcIFIC, 122:1375-1388, 2010 November
© 2010. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

Searchable Sky Coverage of Astronomical Observations: Footprints and Exposures

TAMAS BUDAVARI, ALEXANDER S. SZALAY, AND GYORGY FEKETE

Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
Received 2010 May 14, accepted 2010 September 13; published 2010 October 28

ABSTRACT. Sky coverage is one of the most important pieces of information about astronomical observations.
We discuss possible representations and present algorithms to create and manipulate shapes consisting of general-
ized spherical polygons with arbitrary complexity and size on the celestial sphere. This shape specification inte-
grates well with our Hierarchical Triangular Mesh indexing toolbox, whose performance and capabilities are
enhanced by the novel advanced features presented here. Our portable implementation of the relevant spherical
geometry routines comes with wrapper functions for database queries, which are currently being used within several
scientific catalog archives, including that of the Sloan Digital Sky Survey, the Galaxy Evolution Explorer, the
UKIRT Infrared Deep Sky Survey, SuperCOSMOS, VISTA, Hubble Legacy Archive, and the Footprint Service

of the Virtual Observatory.

Online material: color figures

1. INTRODUCTION

Astronomers have to keep accurate records of where their
observations are located on the sky. Beyond the direction
and angular size of the field of view, we have detailed informa-
tion available about the precise sky coverage derived from the
exact shape of our detectors. This coverage is invaluable for
most statistical studies, e.g., luminosity functions or, especially,
analyses of spatial clustering.

The de facto standard of the Flexible Image Transport Sys-
tem (FITS; Wells et al. 1981) has reserved keywords for the
World Coordinate System (WCS; Greisen & Calabretta
2002) specification, and parameters that specify the transforma-
tion from image pixels to sky coordinates (and the reverse) are
present in the header of most FITS files. While the WCS is per-
fectly adequate for individual exposures, multiple observations
are difficult to describe in a single system. Every field poten-
tially has a separate coordinate system; hence, moving from
field to field is convoluted and makes it cuambersome to answer
even simple questions, e.g., whether two separate fields overlap.

The footprint of a large-area survey might be complicated,
but the small-scale irregularities are even more problematic.
Not only does the depth of a survey change as a function of
the position on the sky, but parts of the observations are often
censored for various reasons, such as bright stars blocking the
view, satellite trails, and artifacts from reflections. If we would
like to represent all these on the sky, we need a scalable solution
that works for shapes of arbitrary complexity and size from the
subpixel level to the entire sky. We need tools to create and ma-
nipulate these descriptions right there where the data are and to
utilize the information efficiently.

1375

Geographic Information Systems (GIS) were designed with a
similar goal in mind. There are, however, subtle differences,
which are large enough that GIS are not quite applicable to as-
tronomy directly. The modern mapping systems do not extend
much beyond the basic features of projected maps, but they pro-
vide very efficient tools for finding nearby places, shortest
routes, etc. Even the most complicated GIS shapes are limited
to spherical polygons whose sides are great circles (or straight
lines in the projection). In astronomy, the approximations with
such polygons would be unacceptably inaccurate or prohibi-
tively redundant; hence, there is need for an extended set of fea-
tures to represent the geometries of the observations and
surveys.

Some of the concepts discussed in this article are not new and
have been introduced and studied previously in different fields.
Samet (1989, 1990) detailed the quad trees for spatial searches
that Barrett (1994) advocated using for astronomy data. Fekete
& Treinish (1990), Fekete (1990), and Short et al. (1995) devel-
oped an icosahedron-based methodology for Earth sciences, and
Kunszt et al. (2000, 2001) introduced the convex description
and the Hierarchical Triangular Mesh, a triangulation that
was also used by Lee & Samet (1998) with a different number-
ing scheme. A similar representation of shapes is also found in
Hamilton & Tegmark (2004) and Swanson et al. (2008). Good-
child et al. (1991); Goodchild & Yang (1992) and Songet al.
(2000) introduced the Discrete Global Grid for GIS systems,
an equal-area variant of the same triangulation idea. The inte-
gration to relational databases is discussed in Gray et al. (2004).

The goal this article is to provide the astronomy community
with a complete and consistent view of the current and much
improved methodology built on a new fully functional spherical

1376 BUDAVARI, SZALAY, & FEKETE

geometry framework and to describe the implementations and
interfaces used in several astronomy archives and tools today,
including the Sloan Digital Sky Survey’s SkyServer (Thakar
et al. 2008), the Hubble Legacy Archive (Greene et al. 2007),
the Galaxy Evolution Explorer in MAST (Budavari et al. 2004;
Conti et al. 2006), the UKIRT Infrared Deep Sky Survey’s
WFCAM Science Archive (Hambly et al. 2008), the SuperCOS-
MOS Science Archive (Hambly et al. 2004), and the NVO Foot-
print Service (Budavdri et al. 2007a). In § 2 we describe how to
specify spherical shapes and manipulate them. Section 3 deals
with the spherical geometry of the region representations and
§ 4 discusses an efficient search method based on the Hierarch-
ical Triangular Mesh. In § 5 we provide details of our software
solution, including the implementation of the database routines
and their usage. Section 6 summarizes the main results, along
with current and future applications in astronomy.

2. SHAPES ON THE CELESTIAL SPHERE

In cartography, maps are typically local projections, e.g., the
pages of an atlas that just overlap so that they provide enough
reference for navigating a road or a trail, and in general, moving
from one projection to another can be quite difficult. In astron-
omy, the usage pattern is different and usually more global,
which warrants the use of true spherical geometry.

Spherical polygons are closed geometric figures over the
sphere, formed by arcs of great circles. Generalized spherical
polygons (GSPs) are similar, but their arcs can also be small
circles. These are conceptually simple and yet versatile enough
to represent most common shapes in astronomy. They easily
describe circles and rectangles (even with curved sides), and
where they cannot precisely track a boundary, an accurate ap-
proximation is possible by a short series of arc segments. Not
only do they conveniently describe spherical shapes but they
also provide a very compact representation. For example, the
vertices and the equations of the edges (arcs) define the outline
of a generalized spherical polygon, and its inside can be deter-
mined by the order of the vertices. One convention is to define
the inside to be to the left as one traverses around the polygon.
Either a small or a great circle can be defined as the intersection
of the unit sphere with a three-dimensional (3D) plane. This en-
ables us to use another, dual representation, by using halfspace
constraints that define the interior surface area of these spherical
circles, instead of their outline. If we embed the surface of the
unit sphere in a 3D Euclidian space, we can use 3D directed
planar (halfspace) constraints and their Boolean combinations
to select parts of the sphere that represent various spherical
shapes of this family describable by GSPs. Regions that cannot
be represented this way would be the curves defined by inter-
sections of higher-order surfaces with the sphere, like quadrics.
These two alternative descriptions are formally equivalent, but
have different properties that make them preferable for certain
types of problems. Both have advantages and disadvantages, but
we do not have to choose one. In this section, we first elaborate

on the surface or convex representation in detail, with special
emphasis on its strengths, and then point out how to obtain
the outline algorithmically.

2.1. Halfspaces, Convexes, and Regions

Going from a two-dimensional representation of spherical
shapes to a three-dimensional description provides a uniform
framework with readily available geometrical concepts to build
on. A halfspace is a directed plane that splits the 3D space in
two. In our context, it represents a spherical cap when inter-
sected with the unit sphere. It is defined by a direction, i.e.,
a unit vector n, and a signed scalar offset ¢, measured along
the normal vector from the origin. Using a unit sphere centered
on the origin of a Cartesian coordinate system, the parameter ¢
can take values between 1 (an infinitely small cap) and —1 (the
whole sky). The value of 0 corresponds to a special case and
represents half the sky cut along a great circle. In general, ¢
is the cosine of the angular radius of the cap. The caps with
a negative c are called holes.

An intersection of halfspace constraints represents a (possi-
bly open) 3D convex polyhedron, which in turn describes a
more complicated shape when it intersects the unit sphere. Com-
mon shapes in astronomy include triangles, rectangles, and
other simple polygons in the tangent plane. One such example
is the geometry of a detector. Since a straight line in a tangent
plane projects onto a great circle on the surface of the sphere,
these shapes are convexes formed by the intersection of zero-
offset halfspaces. Figure 1 illustrates the construction of a
spherical triangle. The left panel shows its vertices along with
the cutting plane defined by the first two points of the polygon
and the center of the sphere. The cross product of the vertices
defines the normal vector of the corresponding halfspace, as
shown in the middle. The final convex, seen in the right panel,
is the intersection of all three halfspaces. Similarly, we can build
polygons with as many sides as needed.

Despite their simplicity in 3D, convexes can define a large
variety of spherical shapes, e.g., rings, diamonds, or other poly-
gons of straight or curved sides. In fact, they can even represent
multiply connected shapes of arbitrarily large topological com-
plexity. For example, the vertices and edges of a large-enough

o

F1G. 1.—Convex of a spherical triangle of great-circle arcs is constructed by
halfspaces, whose normal vector is along the cross product of the neighboring
vertices (see the text). See the electronic edition of the PASP for a color version
of this figure.

2010 PASP, 122:1375-1388

cube centered on the sphere can define eight disjoint generalized
spherical triangles as they poke through the surface.
Nevertheless, convexes are constrained in 3D and hence are
limited in what types of spherical shapes can be described. In
general, one cannot represent a spherical polygon of arbitrary
vertices as a convex. More general spherical regions can be de-
fined as the unions of convexes. This hierarchy of halfspaces,
convexes, and regions and their negation (or difference) pro-
vides a complete algebra over these spherical regions, enabling
extreme flexibility and efficiency, as we will see in § 2.3.

2.2. Point in a Region

One of the most common tasks is the containment test to
decide whether a point is inside a region. We start with the most
basic elements of the region, the halfspaces. A point (unit vector
r) is inside a halfspace (n, ¢), if the dot product of the two vec-
tors is greater than the offset:

n-r>c. (D

While this is straightforward to see, its computational simplicity
is striking and has serious consequences for the performance of
any implementation using this formalism. For example, the
computation requires only three multiplications and one com-
parison for a circle and four times that for a spherical quadran-
gle, regardless of the size and actual shape.

Testing a point against a convex simply consists of checking
whether the point is inside all its halfspaces. If yes, the point is
inside; otherwise, it is outside. As a region is the union of its
convexes, it contains a point if any of its convexes contains
the point.

2.3. Boolean Algebra of Regions

Within this framework, the Boolean algebra of regions maps
very well onto a basic set operations on the collections of half-
spaces and convexes. The set of regions is closed for the opera-
tions one routinely performs when deriving survey-specific
geometries. The same is not true for the convexes.

The union of two or more regions is a region that includes all
the convexes,

ROUR® = cMu...ucPucPu...ucl)

and
RWUR® = CyU...UC,.,, = R, 3)
by definition. The leftmost panel of Figure 2 shows the union of
two overlapping spherical rectangles in stereographic projec-

tion. The intersection of two or more convexes is a convex that
includes all their halfspaces,

2010 PASP, 122:1375-1388

SKY COVERAGE OF OBSERVATIONS 1377

L

F1G. 2.—Union of two overlapping rectangles (left) is turned into three dis-
joint convexes (middle) in the process of simplification. The outline (right) elim-
inates those parts of the arcs that are internal and cancel out. See the electronic
edition of the PASP for a color version of this figure.

cOnc® = BV, .aH nH n..0H 4)
and
cHWnC® = Hn...nH,,,, = C,)

and, in turn, the intersection of regions is a region whose
convexes are the pairwise intersections of the convexes, e.g.,
for two,

RIAR® = (' nC?). (6)

i,J

It is straightforward to define the differences of halfspaces,
convexes, and regions, even if not as simple as the preceding
operations. Let us first look at two halfspaces. We see that their
difference is

H\~H, = H,nH,, (7

where H is the negate or inverse of H, which is obtained by
simply flipping the sign of its normal vector and the offset. Si-
milarly, subtracting a halfspace from a convex is also simple, as
is the subtraction from a region. It might look logical to express
the difference of two convexes as a region whose convexes are

CONC® = Y(CNHP) = J(CInH?), @)

i i
but the constructed convexes would overlap; hence, the follow-
ing procedure is preferred to avoid the overlaps:

i—1
k

3

Figure 3 illustrates the difference of two spherical rectangles
and the resulting region. Also we difference a region and a con-
vex by subtracting the convex from all the convexes of the re-
gion. By substituting the all-sky coverage into C' of the
previous equation, we get the region of a negated convex:

n i—1

C = U(Hi kﬂlHk)' (10)

K3

1378 BUDAVARI, SZALAY, & FEKETE

FIG. 3.—Subtraction algorithm is illustrated on two rectangles (left). The dif-
ference consists of four disjoint rectangles (middle), whose outline (right) has
much fewer arcs than the patches. See the electronic edition of the PASP for a
color version of this figure.

The negate of a region is in turn the intersection of its inverted
convexes, by a simple application of De Morgan’s rule, i.e.,
C,uC,y = CnC,, or, in general,

R:UCi:ﬁ (11)

From these formulas we can also see that it is not enough to stop
at the level of the convexes, because even if the basic building
blocks of a particular geometry are simple, subsequent opera-
tions quickly yield more complicated descriptions that can only
be represented as a region.

3. SPHERICAL GEOMETRY

With this elegant formalism in hand, the practical challenge
is to derive irreducible representations of the results of these
operations, discarding empty regions and redundant constraints.
In general, this can be a compute-intensive task, but most of the
time it is very fast and done as a preprocessing step that is well
worth the effort. The description not only becomes more com-
pact, but the simpler form speeds up subsequent analyses. This
region simplification is the topic of this section, where one has
to move beyond the basic 3D concepts of the previous para-
graphs and solve the spherical geometry of the region.

3.1. Patches and Simplified Convexes

A region is the union of convexes, so one has to start by sim-
plifying all of its convexes individually. For many of the sub-
sequent tasks the frequency of intersections will depend on the
radii of the caps; thus, it is a good practice to sort the collection
by increasing size. After making sure that the smallest cap is
indeed finite (if infinitely small, the convex is empty and is
eliminated), we examine the pairwise relations of the half-
spaces. Based on the topology of the halfspaces, we can discard
those that are the same as another and those that fully contain
other halfspaces. If we find halfspaces that are each other’s in-
verse or simply disjoint, the convex is empty.

Having done the trivial pruning of halfspaces, there might
still be redundant constraints, but one can only reject them
by explicitly solving for the vertices and arcs of the convex.
The circumference of a halfspace, a circle, would generally in-
tersect other circles. We compute the roots (0, 1, or 2) for all
possible pairs of circles, keeping track of degenerate roots,
where multiple (more than two) halfspaces intersect. We now
collect the roots on each circle and form arcs around the circle
between the roots. Some of the roots and arcs may be outside the
convex (these we can ignore) and can also prune degenerate
ones, if any. At this point, one can start to form a chain (linked
list) of the remainder of the live arcs by matching their starting
and endpoints. Beginning with an arbitrary arc, we repeatedly
add new matching arcs until the starting point of the first is
reached and the loop is closed. This singly connected area en-
closed by the loop of arcs is called a patch. Figure 4 illustrates a
simple convex with two holes, whose single patch is determined
by the chain of arcs.

In general, a convex could have more than one patch, in
which case there could be leftover arcs after the first patch is
created. With these we can repeat the previous procedure to
form the remaining patches. In some sense, the patches are
the most basic and compact elements of the convexes. We derive
minimal enclosing circles for all patches and store them along
with other properties of the convex. The bounding circles facil-
itate quick rejections in containment tests for convexes of many
halfspaces and enable faster collision or overlap detections be-
tween shapes. In the process, we keep track of the halfspaces,
whose arcs are present in any of the patches; these are the half-
spaces that we have to keep in the simplified irreducible repre-
sentation. On top of these, we have to add those halfspaces that
are needed to reject the roots outside the convex. This may

F1G. 4.—Convex defined by three halfspaces, out of which two are holes, has
one patch, because a single chain of connected arcs can represent its boundary.
In this simple case, these arcs also form the region’s outline. See the electronic
edition of the PASP for a color version of this figure.

2010 PASP, 122:1375-1388

happen in situations such as the diamond shape that is defined as
the intersection of four holes. Since the surface of the sphere is a
closed manifold, these four negative halfspaces could define
two patches, so another halfspace is needed to select the patch
we want (see Fig. 5). By the end of the algorithm, the convex is
left with the minimum number of halfspaces that still describes
the same shape.

3.2. Region Simplification

Naturally, the simplification of a region starts by processing
its convexes one by one. If we know that the convexes are dis-
joint or if we are not interested in the analytic area calcula-
tion, then we are done. The following steps not only provide
a region description with disjoint convexes and precise areas,
but also enable a potential performance boost from a simpler
representation.

Building on the bounding circles, first an approximate colli-
sion graph is calculated, where the links note which convex (a
node in the graph) might overlap with others. It is possible that
some convexes simply contain others, in which case the smaller
ones are redundant, and thus quickly eliminated, simplifying the
collision graph.

Partial overlaps are more difficult to deal with, and here the
region algebra proves (see § 2.3) to be invaluable. To guarantee
disjoint convexes, one has to look for potential collisions be-
tween two convexes and derive new ones that do not intersect.
In practice, this is simply the convex subtraction, where one
keeps the larger convex and substitutes the smaller one with
the difference of the two. The collision graph is updated to in-
clude the new convexes that are now disjoint from the larger
one. Since the new convexes present a smaller area than their
progenitor, they can only collide with those that were linked to
the eliminated one. We repeat this procedure until the graph has

FiG. 5.—Concave diamond shape is described by four halfspaces of negative
offsets, whose arcs draw its outline, plus a fifth constraint that separates the
diamond from the remainder of the sphere outside the four holes. See the elec-
tronic edition of the PASP for a color version of this figure.

2010 PASP, 122:1375-1388

SKY COVERAGE OF OBSERVATIONS 1379

no links left. We proceed by working with the larger convexes to
guarantee that those are not broken up into many small pieces. It
is common for regions to have more convexes than the original
description after this step, but now they will be disjoint. During
this simplification process the number of collisions often grows,
as for every eliminated convex, we introduce one or more,
whose collision links are inherited and get queued for analysis.

It is worth noting that one can also eliminate convexes by
stitching them. For example, two adjacent rectangles next to
one another that share an arc and have neighboring halfspaces
that are identical can be substituted by a single convex. Stitching
is not only a cosmetic improvement, but in certain situations it
can also make a huge impact on the performance. One example
is when working with pixels that can be merged. Heuristic sim-
plifications can make use of this feature, as we will see in § 3.4.

3.3. The Outline of a Region

The dual halfspace convex region representation has many
advantages, as discussed before; in certain situations, a third re-
presentation—the outline—provides further new opportunities.
One obvious application is visualization, when we would like to
render regions projected on the sky. In § 4 we will also look at
how the outline can be used in advanced algorithms to accel-
erate searches for points in a region. We started by stating that
the surface and shape descriptions are theoretically equivalent,
but in practice, going from one to the other is not always
straightforward. Next, we discuss the outline and its derivation.
Going the other way, from outline to surface representation, is
less convenient and not really necessary when working primar-
ily with halfspaces and convexes.

The patches of a region are essentially the outlines of the
convexes, but not necessarily the outline of the region. For ex-
ample, the outline of a region with a single convex that has only
one patch consists of the patch’s arcs. This is also true if the
convex has multiple patches, as patches of the same convex
can never touch each other at more than one point. As soon
as multiple convexes are present, adjacent ones might share
arcs, at least partially. If a halfspace is part of one convex
and its negate is used in another convex, the arcs of their patches
can overlap and cancel out, as seen in middle panels of Figures 2
and 3. We can define a segment as part of a directed arc that has
a start and an endpoint, and there are no additional vertex points
along the arc between these two. The algorithm to create an out-
line would just have to remove those segments from all patches
that annihilate each other; i.e., there are two directed segments
which are identical in geometry but opposite in direction. The
first step is to break up each arc into unique segments, which is
performed by grouping the arcs by common circles, then order-
ing the circle, and breaking all arcs up into distinct segments. A
possible approach to identify the canceling segments is to look
along the common circles in the collection of all patches and for
every circle identify the places where two segments are opposite
to one another and hence cancel out. In this case both are

1380 BUDAVARI, SZALAY, & FEKETE

removed. To preserve the relation to the original patches, which
have precomputed bounding circles, we keep the structure of the
outline similar to that of the region, but the arcs of the patches
are replaced by smaller segments. Such representation is most
advantageous but lacks the connectivity of the arcs, which re-
quires the visualizer to draw the arcs independently lifting the
pen. A continuous outline is chained into a loop of the correct
order by checking the start and endpoints. The right panels of
Figures 2 and 3 illustrate the difference of the outline of the
region from the arcs of the patches shown in the middle.

3.4. Heuristic Simplification with Igloo

When none of the preceding simplification methods work
well, we can use hybrid techniques, where we combine the ad-
vantages of pixelization with the exact geometry. Let us imagine
an large-area survey that takes tens of thousands of pointed ob-
servations with a circular field of view, so that the circles fully
overlap. While the edges of the survey are rippled and need
many circles to represent it accurately, the inside of the region
is contiguous and simple. The aforementioned simplification
rules, including the stitching, will not be able to achieve much
improvement, although there should be a simpler form. The pre-
vious algorithms would eventually also choke on a region with
~50, 000 convexes, where every one of the convexes overlaps
with 12 others. This is similar to a good approximation for the
sky coverage of the Faint Images of the Radio Sky at Twenty cm
(FIRST; Becker et al. 1995) survey, as illustrated in Figure 6 on
the left.

If one could break up the region into small pieces that, unlike
small circles, can be stitched together seamlessly, then one
could potentially define a small number of larger convexes in
the middle of the region and eliminate the union of tens of
thousands of tiny caps. The algorithm is an elegant divide-and-
conquer recursion. We need a pixelization that is a hierarchical

subdivision of the surface of the sphere, where the pixels are not
only nicely adjacent but also share many halfspace constraints
that allow for extensive merging. Such pixelization is achieved
by the Igloo scheme (Crittenden 2000). We start with a region
and build a tree, e.g., using the (3:0:3) pixelization, where only
those nodes are kept that collide with the region. Every Igloo
pixel is a simple convex as we have defined this term: namely,
a generalized spherical triangle or a rectangle; hence, the usual
region operations can be directly applied. The depth-first recur-
sion is very efficient when one records (for every node of the
tree) the convexes of the region that it overlaps with, so that on
the deeper levels of the tree with more and more nodes, less and
less convexes are to be tested per each node. We typically
specify the stopping criteria for building the tree by pixel size
(maximum number of levels) or by the maximum number of leaf
nodes. Once the tree is ready, the geometry of every leaf is ex-
amined. We subtract the colliding convexes of the region from
each leaf one by one and calculate its area (see § 3.5). If the
pixel is completely covered, we take the convex of the pixel;
otherwise, we derive its exact shape. The merging of the pixels
into larger and larger convexes is done along the tree using the
full pixels only, and once the fragmentation of the region stops
the pixels from growing, one can stitch the neighboring pixels, if
they are on the same level. This procedure yields the exact re-
gion with alternative internal convexes, as seen in the right panel
of Figure 6.

Taking it one step further, we can also create an even simpler
region by keeping the full pixels for nodes where the overlap
area is large, even if not completely full. For these nodes,
we define another region called the mask that defines the over-
shoot area of the approximation. Typical footprints already have
such masks to censor areas covered by bright stars, satellite
trails, etc., and adding some more does not make the subsequent
analyses more difficult; instead, it can significantly simplify the
description of the region.

e R
I O

=0 © 6 6 (E——

O 9
W

FiG. 6.—Part of the FIRST footprint illustrates the power of the heuristic simplification based on a hierarchy of Igloo pixels. The brute-force method (/eft) runs much
slower and produces many more disjoint convexes than the novel technique (right) that fills the inside of the region with stitchable convexes and merges them well. See

the electronic edition of the PASP for a color version of this figure.

2010 PASP, 122:1375-1388

3.5. Area Calculation

A patch is just a generalized spherical polygon bounded by
small (and/or great) circles, whose arcs are ordered by design.
The trick is to break a patch up into more regular pieces, whose
areas we can calculate. Let us pick a point arbitrarily on the
sphere, e.g., at the center of mass of the patch’s vertices, and
break up the polygon into spherical triangles such that one
of the vertices of every triangle is this selected point and oppo-
site to that is an arc of the patch. Now every one of these slices
has two great-circle arcs and one of the original arcs. We follow
the approach of Goodchild & Yang (1992), by subdividing this
shape into a triangle of great-circle arcs and the leftover shape,
known as the semilune. The area of the former is given by the
Girard formula that has several variants (Todhunter 1863). Here,
we list the one that is the most robust against degeneracy and
hence should be preferred for numerical calculations over equa-
tions that appear to be simpler algebraically:

Ag =4tan"!/z, (12)

with

S s—a s—b s—c
z—tan<2>tan< 5)tan< 5 >tan(5), (13)
where s is half the circumference of the triangle, with the sides
a, b, and c in radians.
The area of a semilune is also calculated analytically, but it is
more convoluted. For completeness, we show the formulas
without further explanation here and refer the reader to publica-

tions by Goodchild & Yang (1992) and Szalay et al. (2005) for
more details. The semilune area is given by

Ag=a—bcosb, (14)

where 6 is the half angle of the small circle, i.e., the radius of the
cap, and

a = 2 arcsin(tan(arcsin)/ tan 0) (15)

and

SKY COVERAGE OF OBSERVATIONS 1381
b = 2arcsin(r/ sin 6), (16)

with 7 being half the Euclidian distance between the endpoints
of the arc. The area of the slice is A = Ay + Ag, and the sum of
the slices yields the total area of the patch.

The situation is slightly complicated by the fact that certain
patches are actually holes, which can emerge from halfspaces
with cos @ < 0. The area of these patches is propagated with
a negative sign to obtain the correct total area of the region.

4. THE HIERARCHICAL TRIANGULAR MESH

Another pixelization of the sphere in combination with the
region representation enables fast spatial searches for catalog
entries of stars, galaxies, and other astronomical sources that
are within a spherical region on the sky. The idea is to apply
a coarse filter to the entire data set, reject most of the sources
that are outside the search region, and perform the computation-
ally more expensive geometry test on a much smaller subset of
candidates that already passed the filter.

Our choice for such a filter is based on the Hierarchical Tri-
angular Mesh (HTM; Kunszt et al. 2000). Next, we discuss the
properties and features of the HTM, then introduce the algo-
rithms for creating efficient coarse filters for regions that
map very well onto the indexing facilities of currently available
relational database engines.

4.1. Address of a Point

We can paint the sphere with triangular pixels that we call
trixels, defined by the HTM. The top nodes are the eight faces
defined by an octahedron projected onto the sphere. The chil-
dren of each node are obtained by subdividing the existing tri-
angular nodes into four new triangles. The subtriangles have the
current corners and the current arc’s midpoints as their corners.
Finer detail is created as new levels are added by repeating the
process for each triangle. In the limit, the recursive subdivision
approaches the ideal sphere, as in Figure 7. For its nice proper-
ties, the HTM pixelization scheme is also utilized in the current
state-of-the-art visualization tool for the sky called the World-
Wide Telescope as the basis of its Tessellated Octahedral Adap-
tive Subdivision Transform (TOAST) projection (Surendran
2009).

FI1G. 7.—Recursive subdivision of the octahedron, illustrated previously, is at the heart of the HTM.

2010 PASP, 122:1375-1388

1382 BUDAVARI, SZALAY, & FEKETE

&

, 4
82320
82323

FiG. 8. —Naming of the hierarchical trixels provides unique identifiers. The
ensemble of all trixels at a given level can be thought of as a space-filling curve
on the surface of the sphere.

All the triangles at any level have a unique identifier or trixel
ID. It is an integer number that encodes the position of the trixel
in the hierarchy and is composed through the following recur-
sive algorithm. The level O trixels are the faces of the octahe-
dron. We name them with NO, N1, N2, and N3 and SO, S1, S2,
and S3, where N and S refer to the northern and southern hemi-
spheres, respectively. In the recursion, each triangle has four off-
springs that are named by appending the index 0, 1, 2, or 3 to the
parent’s name. Figure 8 illustrates the naming convention in the
subdivision on a few examples.

To keep things consistent, we introduce a straightforward
mapping between the name and the ID of a trixel. The ID is
a 64 bit integer and is more compact than the human-readable
name that can be up to 25 bytes long. First, we assign the bits 11
to N and 10 to S and convert the trixel’s number between 0 and
3 to binary (00 and 11) and append it to the previous bits. We
repeat until the desired level is reached. For example, the trixel
named S2320 will convert to binary 1010111000 or decimal

696. The longer the name of a trixel, the deeper it is in the hier-
archy. For practical purposes, we stop at level 20, approximately
corresponding to a positional accuracy of about 0.3”. This
special level 20 trixel ID is called the HtmID in our system.
A 64 bit integer can hold a trixel number to level 30, although
the standard IEEE double-precision floating-point representa-
tion breaks down after level 25, where the positional accuracy
would be about one-hundredth of an arcsecond. A property of
the trixel ID numbers is that the descendants of a trixel have
IDs that form a consecutive list of numbers. For example,
the four children of S2320, namely, the set of {S23200,
$23201,523202,523203}, form the range of numbers
2784-2787. The level 20 offsprings of the same trixel form
the HtmID range 11957188952064-11974368821247. This is
important, because we can represent any level trixel with either
a single number or with a pair of low—high HtmID values. The
consequence of using the latter representation is that regions
with variable-size trixels can be expressed uniformly, because
the numbering provides partial coherence of the HtmID
numbers.

Since trixels partition the sphere, any location is inside ex-
actly one trixel, so a level 20 trixel ID, or the HtmID, is a fairly
accurate approximation of the position. This property is
exploited in our spatial search algorithm detailed in the subse-
quent paragraphs.

4.2. Approximate Region Covers

Simply put, a cover is a set of trixels that fully covers a re-
gion. It is an approximation of the shape by the union of a set of
spherical triangles. Given a region, the algorithm starts with the
eight level O trixels that make up the entire globe. The S2 in
Figure 8 is one of these eight trixels that are initially marked
as unprocessed. In the recursion, all unprocessed trixels are ana-
lyzed and get marked with one of three possible tags. The inner
trixels are fully inside the region, reject trixels are completely
outside, and partial trixels are on the outline. Dealing with inner

FiG. 9.—Sample region from the SDSS geometry illustrates the various spherical concepts: (a) Circles of all halfspace constraints of the region. (b) The outline as
used in the HTM algorithm. The inner (filled gray) and outer (open triangles) covers of the region using (c¢) larger and (d) smaller trixels. See the electronic edition of the

PASP for a color version of this figure.

2010 PASP, 122:1375-1388

and reject trixels is easy. Inner trixels are saved for output, and
the rejects are discarded from further consideration. A partial
trixel is subdivided into four smaller trixels that are placed at
the back of the unprocessed list. Eventually, all trixels are
tagged to the desired level of detail.

It is very often useful to have an approximation of the inside
of the region that does not touch the outline. Sources in the inner
cover are guaranteed to be inside the region and hence do not
require extra geometry tests. This inner cover is the union of all
the inner trixels, while the aforementioned outer cover is the
union of the inner and partial trixels. In fact, it is possible to
obtain both sets at the same time without much extra processing.
Figure 9 illustrates the anatomy of a typical SDSS region and its
corresponding inner and outer covers at two different resolu-
tions. As to where to stop, there is no universal optimum,
and the answer will depend on the actual data set and region,
as well as on the implementation of the search engine and even
its hardware configuration. Fortunately, sensible heuristics exist
and the performance of the searches are considerably better than
the naive implementation for any reasonable cover shapes.

4.3. Searching with HTM

Let us now examine how spatial searching is performed
using an HTM cover. Assume that every source of our data
set has a precomputed HtmID that constrains its location on
the celestial sphere to within a particular level 20 trixel. The
outside cover of the region can be represented as a set of HtmID
intervals. If the sources are ordered by their HtmID, fetching
sources in these intervals is extremely fast. If the data set resides
on disk, which is the case for any massive live astronomical
catalog, getting sources in an interval consists of reading se-
quentially from the hard drive. At the end of every interval,
the disk head is raised and repositioned to the beginning of
the next interval. This seek time is the source of the penalty
one would pay for a very accurate cover that is represented
by many short intervals. A couple of dozen HTM ranges often
provide accurate representations that select a small-enough can-
didate list with which modern CPUs can keep up with proces-
sing the exact geometry calculations. In general, any custom
stopping criterion can be utilized, e.g., based on elapsed time
or resolution size. One particularly interesting possibility is
to monitor the area of the inner and outer covers and stop at
a desired limit on their ratio. In fact, the area ratio can be ap-
proximated by the ratio of the number trixels in the two covers.
The areas of trixels on the same level vary less than about 40%,
but the collections of (random) trixels would average out this
variance to a more precise estimation of the area ratio.

"' Visit http://microsoft.com/net.

2010 PASP, 122:1375-1388

SKY COVERAGE OF OBSERVATIONS 1383

5. SOFTWARE PACKAGES

Our design of the software implementation was driven by
several requirements. It needed to be architecture- and operat-
ing-system-independent and to also integrate well with the re-
lational database technology, which is at the core of most
modern astronomy archives today. We chose to build our solu-
tion in the .NET Framework' programming model that satisfies
our development, maintenance, portability, and performance re-
quirements. Such managed code runs in a virtual machine called
the Common Language Runtime (CLR). In addition to Micro-
soft’s CLR implementation of the Common Language Infra-
structure, there is also an open-source cross-platform runtime
by the Mono Project.” The .NET Framework is not only OS-
independent but also allows for development in several pro-
gramming languages and the integration of projects in a mixture
of languages. Using the C# programming language, we built a
set of class libraries that depend on each other, so that applica-
tions in any one of the supported languages can choose to in-
clude the appropriate modules selectively.

5.1. The Spherical Library

The basic module or assembly contains the routines to deal
with the spherical geometry. Generic container classes are used
to store the collection of halfspaces in a convex and the collec-
tion of convexes that make up a region. Thus, managing a shape
is as simple as working with lists. Here, we show the C# listings
of a trivial example with a convex of two halfspaces to illustrate
the simplicity of the coding. First, we define the centers of the
caps using J2000 (R.A., decl.) coordinates,

Cartesian pl = new Cartesian (180, 0);
Cartesian p2 = new Cartesian (181, 0);

then set the radius of the caps and create the halfspaces using the
centers

double theta = Math.PI / 180; // 1 degree radii
Halfspace hl =newHalfspace(pl, Math.Cos (theta)) ;
Halfspace h2 =newHalfspace (p2, Math.Cos (theta)) ;

The convex is a collection of halfspaces that are added one by
one, after which we invoke the simplification of the description
that also derives the arcs and patches of the shape, along with its
analytic area in square degrees.

Convex ¢ = new Convex();

c.Add (hl) ;

c.Add (h2) ;

c.Simplify () ;
Console.Out.WriteLine(c.Area) ;

% Visit http://www.mono-project.net.

1384 BUDAVARI, SZALAY, & FEKETE

Similarly, aregion is created by adding convexes to its collection.

Region r = new Region();
r.Add(cl);

r.Add(c2) ;

r.Simplify () ;
Console.Out.WriteLine(r.Area) ;

Naturally, the number of convexes in a region and halfspaces in
a convex are not limited to two (and can also be one); they are
only bound by system memory and computational power for
processing.

Boolean operations on the shapes are implemented to per-
form the computations in place wherever possible. For example,
the union of regions or the intersection of convexes can be done
within the instance on which the method is called, but the dif-
ference of two convexes or regions is implemented to return the
resulting region. On top of the straightforward translations of
the algorithms in § 2.3, most operations have a smart version
for simplified shapes. One of the advantages of using these
methods is the speedup for complicated shapes, where the pre-
computed bounding circles reduce the computational costs. The
other benefit is potentially even greater. For example, the union
of simplified regions can be done based on the assumption that
the convexes of the regions are already disjoint and can hence
check for collisions among the mixed pairs only. In code, the
snippets

r.Union(r2); // regions may not be simplified
r.Simplify(); // simplification from scratch

Console.Out.WriteLine (r.Area) ;
and

r.SmartUnion (r2); // both simplified
Console.Out.WriteLine(r.Area) ;

are conceptually identical, but the latter can take significantly
less time, as it can assume the arguments to be in the canonical
form.

The application programming interface (API) supports many
more advanced ways to create and manipulate regions of arbi-
trary complexity; the preceding working code snippets are here
to serve as guide.

5.2. Numerical Imprecisions

Numerical stability of the implementation of the spherical
algorithms is crucial and has not been easily achieved. Compu-
tations with floating-point numbers make errors that can accu-
mulate in a series of operations. These uncertainties can result in
erroneous determination of topological relations of points,
planes, convexes, and regions. One possible solution is to
not use floating-point arithmetic. Software packages exist that
work with rational numbers and represent them as a pair of in-

tegers: the numerator and the denominator. In this setting, the
values are always precise, but there is an efficiency penalty. In
spherical geometry, there is an even more severe problem with
this approach. The set of rational numbers is not closed for op-
erations that one has to routinely perform; e.g., the square root
of a rational number can be irrational.

We use IEEE Standard 754 double-precision floating-point
numbers in our implementations that most modern CPUs can
efficiently process, and we carefully analyze the code for nu-
merical stability and rounding problems. It is a surprisingly hard
task. For decades, linear algebra routines, e.g., those in LA-
PACK, have been strengthened and optimized by hand, because
no generic solution exists, only best practices. Classic examples
include the robust solution to the quadratic equation or evaluat-
ing the values of a? — b? and log(1 +). To illustrate the im-
portance, we describe real-life problems that make the spherical
geometry computations more difficult than expected, and we
explain our solutions briefly. The details of error propagation
in floating-point arithmetic are beyond the scope of this writing.
Rather, we refer the interested reader to Goldberg (1991).

Previously we said that deciding whether a point is inside a
halfspace, the most basic containment test discussed in § 2, in-
volves calculating the dot product of the point’s unit vector and
the direction of the plane and comparing the result to the half-
space’s offset, the cosine of the cap’s radius. The numerical im-
precision on the result translates to larger errors in the radius,
because the cosine function is quadratic at values near zero;
hence, using the sine can be more advantageous. Even then,
when the point is very close to the plane, it is essentially impos-
sible to decide which side it is on or whether it is contained in the
plane. We circumvent the problem not by trying to answer in or
out, but by allowing for an undetermined value within a margin
derived from the limitations of the representation of floating-
point numbers. This value is deep in the core of routines estab-
lishing the spatial topological relations of the shapes. If one na-
ively declared that a region overlaps another, if one of its vertices
is contained in that, the numerical imprecisions could result in
false intersections when the regions are merely touching each
other. With our three-valued logic, we can signal that a given
vertex is on the edge and determine the correct topological re-
lation based on the position of the other vertices and the arcs.

Another, more subtle, algorithmic problem is the solution of
the intersection of two planes and the derivation of the intersect-
ing points of two circles on the unit sphere. As discussed in
detail by Priamos (1992), an elegant robust solution (out of
many possible derivations) is based on optimizing for the errors
made in the computation of a point that the line crosses. The
idea is to pick one of the z — y, y — z, and x — 2 planes that
is most perpendicular to the direction of the line, and solve
for the point in that plane. This way, one of the coordinates
is readily fixed to be 0, and we only have to solve a 2D linear
equation for the other coordinates.

2010 PASP, 122:1375-1388

Halfspaces and vertices of spherical polygons become de-
generate very frequently as a result of routine operations while
building up the geometric description of observations. Without
controlled accuracy these degeneracies could not be spotted and
caught to derive correct representations or the regions. In our
implementation, we use a tolerance limit that appears to be op-
timal for double-precision and produces consistent results. The
test is simple: for any two intersecting arcs, whose circles are
defined by direction vectors and offsets subject to numerical in-
accuracy, the intersection point or points should be on the edge
of both arcs, when using the three-valued logic. This limit for
the IEEE 754 doubles turns out to be much larger than the nom-
inal accuracy of the doubles and yields an accuracy of about
4 mas. Higher precision can be achieved by using more accurate
numbers at the cost of somewhat higher memory requirements
(for storing more bits) and lower performance due to signifi-
cantly slower mathematical operations.

5.3. Modules for HTM

Classes and routines of the HTM implementation are divided
into two basic categories. The creation of the hierarchy of tri-
angles is a module of its own. The tree is usually not created for
its extremely large size, but computed on the fly. Once the algo-
rithm is fixed, the hierarchical trixels exists without the actual
tree in memory or disk. The methods provide the recursion and
the basic geometrical description of the pixels. For example, a
single call yields the HtmID,

Cartesian p = new Cartesian(180,0); // Point on the sky
Int64 htmID = Trixel.CartesianToHid20 (p); // and its ID

and another yields the trixel’s geometry,

Cartesian vl, v2, v3; // Vertices of the trixel
Trixel.ToTriangle (htmID, out vl, out v2, out v3);

On top of the core module is a set of classes that deal with the
regions and their topological relations to the trixels. Our effi-
cient implementation of the HTM makes use of the internal
structure of the region, the derived properties of its convexes
and patches, and the outline. In the API, all the complexity
is hidden behind simple

List<Int64> trixels = Cover.HidList (region) ;
Console.Out.WriteLine(trixels.Count) ;

Alternatively, one can explicitly instantiate a cover object and
investigate the properties during processing:

Cover k = new Cover (region) ;
k.Run(); // Default processing and stopping

// Call k.Step() for more control
List<Int64> inner = k.GetTrixels (Markup.Inner) ;
List<Int64> outer = k.GetTrixels (Markup.Outer) ;
List<Int64>partl =k.GetTrixels (Markup.Partial) ;

2010 PASP, 122:1375-1388

SKY COVERAGE OF OBSERVATIONS 1385

Similarly, the intervals are retrieved by a single method call and
print in the following example:

List<Int64Pair> ranges = Cover.HidRange (region) ;
for each (Int64Pair p in ranges)
Console.WriteLine (p)

As shown in the preceding examples, the HTM and Spherical
Library classes and routines work together seamlessly by de-
sign. They leverage all the information available to perform
the operations as fast as possible, while keeping the usage pat-
terns simple. Under these high-level routines, powerful methods
provide easy customization of the code for other type of prob-
lems and applications. One such example is the National Virtual
Observatory’s (NVO®) Footprint Service* (Budavéri et al.
2007a, 2007b), that uses high-resolution HTM ranges to look
for overlapping footprints or regions that contain a given
point.

5.4. Region in a String

Our basic internal string representation of the regions follows
the simple structure of the collections. We enumerate the con-
vexes and all their halfspaces:

REGION
CONVEX CARTESIAN x1 y1 zl cl

CARTESIAN xN yN zN cN
CONVEX. . .

with arbitrary white space and linefeed characters. The Carte-
sian coordinates are the usual transformations of the J2000 («,
6) by equations

r = cos dcos a, 17
y = cosdsinq, (18)
z = siné. (19)

On top of this simple description, the interfaces also support
more advanced concepts via region parser based on our gram-
mar in the Backus-Naur form. The use of these constructs is
often more straightforward than spelling out the (z,y, z) coor-
dinates of the normal vectors. Here, we show the case for a cou-
ple of simple convexes often used by astronomers. The region
describes the union of a circle with a radius of 60" around the
center at (a, §) = (180°,0°) in the J2000 coordinate system and
a great-circle polygon specified by its ordered vertices given by
the angles:

? Visit http://us-vo.org.
* Visit http://voservices.net/footprint.

1386 BUDAVARI, SZALAY, & FEKETE

REGION
POLY J2000 180 0 182 0 182 2 180 2
CIRCLE J2000 180 0 60

The polygon can be built up by any number of vertices (greater
than two) and the region can have any combination of convex
constructs. Another useful feature is the convex hull of a point
set that is specified by the keyword CHULL. To specify Carte-
sian coordinates, one can replace the J2000 keyword with
CARTESIAN and enumerate the components of the unit vector
instead of the angular coordinates.

5.5. SQL Routines

One of the most attractive advantages of developing in the
NET programming model is the elegant integration with
SQL Server since the 2005 version. The runtime is actually
hosted inside the engine, which allows for the customization
of the database to satisfy the astronomy-specific requirements.
The custom assemblies can be loaded to be part of the database
along with the catalog data, and user-defined functions (UDFs)
can wrap the functionality of the managed code that is invoked
efficiently from SQL at query time. This way, custom programs
can run inside the database, right there where the data are, and
perform analyses without moving the bits on the network or
even outside the SQL engine.

Our harness for the spherical implementation is schema-
independent by design. This means that the same SQL routines
can be present and used in any astronomy science archive, re-
gardless of the layout of the database or the content of the tables.
In fact, it is currently in use in a wide variety of services that
include the Sloan Digital Sky Survey, the Galaxy Evolution Ex-
plorer, the UKIRT Infrared Deep Sky Survey, SuperCOSMOS,
the Hubble Legacy Archive, and it is being integrated into the
Spitzer and Chandra servers, as well as the Vista Science
Archive.

The regions are serialized into a compact binary format that
contains both the halfspace convex region representation and
the patches, along with their minimal enclosing circles. The
simplest way to create a region is by using the internal speci-
fication language that can describe any region, but the opera-
tions are also supported when starting with basic building
blocks. For example, the union of a 60 radius circle and the
spherical rectangle can be coded as follows:

DECLARE @s VARCHAR (MAX), @r VARBINARY (MAX),
@z VARCHAR (MAX), @u VARBINARY (MAX)

SELECT @s = 'REGION CIRCLE J2000 180 0 60',

@z = 'POLY J2000 180 0182 01822 1802",

@r = sph.fSimplifyString(@s),

@u=sph.fUnion(@r, sph.fSimplifyString(@z))
SELECT sph.fGetArea (@r), SELECT sph.fGetArea (Qu)
GO
::3.14151290574491 6.35572804450646

In SQL, the binary blobs of arbitrary size (up to 2 GB) are re-
presented as VARBINARY (MAX), and here we use variables of
that type. Naturally, one can also create tables with VARBIN-
ARY columns to save the resulting regions within SQL Server.
We note that the previous version of the SQL harness, e.g.,
currently deployed in the SDSS Catalog Archive Server, do
not use the separate sph schema but instead keep the UDFs
in the default dbo using an Sph prefix, e.g., in dbo.
fSphGetArea (Cr).

The HTM routines in SQL provide high-performance spatial
searches in combination with the built-in indexing mechanism.
Scalar-valued UDFs can compute the address of a point at the
default level of 20. Here, we list a simple example that updates a
table called PhotoObj to set the HtmID column for all rows
based on their J2000 coordinates

UPDATE PhotoObj SET HtmID = dbo.fHtmEg(RA,Dec)

Using spherical regions to search for sources is also very
straightforward and very efficient. In the following snippet
we fetch only the rows that are in the HTM cover and hence
are probably contained in the region:

WITH Cover AS
(
SELECT * FROM dbo.fHtmCoverRegion
('REGION CIRCLE J2000 180 0 10")
)
SELECT o0.0b3jID
FROM PhotoObj AS o INNER JOIN Cover AS c
ON o.HtmID BETWEEN c.HtmIDStart AND c.HtmIDEnd
GO

The UDF returns a table of the HTM ranges of the approximation
of the specified shape that overshoots, and the join instantly
returns all the possible rows. In a real-life search, the WHERE
clause of the query would have a separate containment test with
the region geometry. The sole purpose of the HTM cover is to
fetch the good candidates only from the disk, and it does this very
fast.

5.6. The Astronomical Data Query Language

As part of the current standardization efforts of the Interna-
tional Virtual Observatory Alliance® (IVOA), the Space-Time
Coordinate (STC) metadata provides an alternative to accurately
describing shapes on the celestial sphere. An STC region has
both XML (STC-X) and string (STC-S) serializations that
are well mapped onto our data structures, and translators are
being implemented to support them. The STC-X parser is de-
ployed and being tested as part of the NVO Footprint Service,

* Visit http://www.ivoa.net.

2010 PASP, 122:1375-1388

and the STC-S capabilities shall be part of future releases of our
software packages and the service. The plain string representa-
tion STC-S is very straightforward by default. The union of a set
of convexes looks like

Union J2000
(
Convex 1 0 0 0.1
-1 0 0 -0.5
Convex 0 1 0 0.0

)

The simplicity of the representation comes from the defaults
that are substituted automatically for the missing STC elements,
but it is also possible to be explicit about every detail and to
even have different coordinate systems for the components,
e.g., in

Union
(
Polygon FK5 J2000 180 0 182 0 182 2 180 2

Circle FK4 B1950 179 0 2

In addition to the union, STC sports a large set of features
that also include intersection, difference, and negation of any of
the shapes.

The IVOA is also working toward a standardized search lan-
guage called the Astronomical Data Query Language (ADQL),
which is an IVOA Recommendation available online.® ADQL is
an extended subset of the ANSI SQL-92 standard, which adds
geometrical constraints via simplified GIS-like functions (e.g.,
circle) and the full support of the aforementioned STC represen-
tation. Building on our legacy SQL routines that currently work
with the internal string representation, we are now creating new
versions that input STC-S, and we are designing an efficient
implementation that supports the full ADQL.

® ADQL specification at http://www.ivoa.net/Documents/cover/ADQL-
20081030.html.

SKY COVERAGE OF OBSERVATIONS 1387

6. SUMMMARY

We explored the properties of generalized spherical poly-
gons. We found the convex representation to be very compact
and efficient. The Boolean region operations are straightforward
within this framework but inevitably create convoluted and re-
dundant descriptions. The simplification involves solving the
spherical geometry of the region. In the process; we summarized
how to analytically calculate the areas and create the outlines of
the regions.

Pixelization schemes also significantly benefit from the bet-
ter representation. An optimal set of HTM triangles can be com-
puted to entirely cover a region, or just to approximate the
inside, in much less time than before. We introduced a heuristic
hybrid solution for simplifications based on the Igloo pixeliza-
tion hierarchy that can tackle massive geometries where the
brute-force method fails to deliver.

Our portable implementation in the .NET programming
model is available for developers on the project’s Web site.’
Its design enables quick development of new applications
and a clean and easy integration with the SQL Server database
engine that hosts several science archives today. The provided
working examples illustrate common search patterns in C# and
SQL. Future works include more algorithmic optimizations and
full support of the IVOA’s STC and ADQL standards.

The authors are grateful to Arnold Rots for his heroic work
on the Space-Time Coordinate standard, as well as to Gretchen
Greene, Steve Lubow, and Rick White for their feedback on
our software packages deployed in the Hubble Legacy Archive.
The authors acknowledge generous support from the following
organizations: Gordon and Betty Moore Foundation (GBMF
554), W. M. Keck Foundation (KECK D322197), National
Scientific Foundation and National Virtual Observatory
(AST-0122449), and NASA Applied Information Systems Re-
search Program (NNGO5GBO1G).

7 Visit http://voservices.net/spherical.

REFERENCES

Barrett, P. 1994, in ASP Conf. Ser. 77, Astronomical Data Analysis
Software and Systems IV, ed. R. A. Shaw, H. E. Payne, &
J. J. E. Hayes (San Francisco: ASP), 472

Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559

Budavidri, T., Conti, A., Seibert, M., & Szalay, A. S. 2004, BAAS,
36, 1410

Budaviri, T., Dobos, L., Szalay, A. S., Greene, G., Gray, J., & Rots,
A. H. 2007a, in ASP Conf. Ser. 376, Astronomical Data Analysis
Software and Systems XVI (San Francisco: ASP), 559

Budaviri, T., Szalay, A. S., Fekete, G., Dobos, L., Greene, G., Gray, J.,
& Rots, A. H. 2007b, in ASP Conf. Ser. 382, The National Virtual
Observatory: Tools and Techniques for Astronomical Research, ed.

2010 PASP, 122:1375-1388

M. J. Graham, M. J. Fitzpatrick, & T. A. McGlynn (San Francisco:
ASP), chap. 9, 75

Conti, A., Bianchi, L., Rodriguez, L., & Shiao, B. 2006, in ASP Conf.
Ser. 351, Astronomical Data Analysis Software and Systems XV
(San Francisco: ASP), 747

Crittenden, R. G. 2000, Astrophys. Lett. Commun., 37, 377

Fekete, G. 1990, IEEE Visualization, (Los Alamitos: IEEE), 176

Fekete, G., & Treinish, L. 1990, Proceedings of SPIE, 1259, 242

Goldberg, D. 1991, in Computing Surveys (New York: ACM), http://
docs.sun.com/source/806-3568/ncg_goldberg.html

Goodchild, M. F., & Yang, S. 1992, CVGIP: Graph. Models Image
Process., 54, 31, DOI: 10.1016/1049-9652(92)90032-S

1388 BUDAVARI, SZALAY, & FEKETE

Goodchild, M. F,, Yang, S., etal. 1991, Tech. Rep. 91-8 (Santa Barbara:
National Center for Geographic Information and Analysis)

Gray, J., Szalay, A. S., Fekete, G., Nieto-Santisteban, M. A.,
O’Mullane, W., Thakar, A. R., Heber, G., & Rots, A. H. 2004, Tech.
Rep. MSR-TR-2004-32 (Cambridge: Microsoft Research)

Greene, G., Lubow, S., Budaviri, T., & Szalay, A. 2007, in ASP Conf.
Ser. 376, Astronomical Data Analysis Software and Systems XVI
(San Francisco: ASP), 193

Greisen, E. W., & Calabretta, M. R. 2002, A&A, 395, 1061

Hambly, N., et al. 2004, in ASP Conf. Ser. 314, Astronomical Data
Analysis Software and Systems XIII (San Francisco: ASP), 137

Hambly, N., et al. 2008, MNRAS, 384, 637

Hamilton, A. J. S., & Tegmark, M. 2004, MNRAS, 349, 115

Kunszt, P. Z., et al. 2000, in ASP Conf. Ser. 216, Astronomical
Data Analysis Software and Systems IX, (San Francisco: ASP) 141

Kunszt, P. Z., Szalay, A. S., & Thakar, A. R. 2001, in Proc. MPA/ESO/
MPE Workshop, Mining the Sky,, ed. A. J. Banday, S. Zaroubi, &
M. Bartelmann (Heidelberg: Springer-Verlag), 631

Lee, M., & Samet, H. 1998, Tech. Rep. 3900 (College Park: Univ.
Maryland)

Priamos, G. 1992, in Graphics Gems III, ed. D. Kirk (New York:
Academic Press), 233, 519

Samet, H. 1989, The Design and Analysis of Spatial Data Structures
(Reading: Addison Wesley)

. 1990, Application of Spatial Data Structures, (Reading:
Addison Wesley)

Short, N. M., Cromp, R. E., Campbell, W. J., Tilton, J. C., LeMoigne,
J., Fekete, G., Netanyahu, N. S., Wichmann, K., & Ligon, W. B.
1995, IEEE Expert, 10, 24

Song, L., Kimerling, A. J., & Sahr, K. 2000, in Discrete Global Grids
(Santa Barbara: NCGIA), chap. 1; http://www.ncgia.ucsb.edu/
globalgrids-book/song-kimmerling-sahr/

Surendran, D. 2009, WWT SphereToaster Manual, (Cambridge:
Microsoft ~ Research); http://research.microsoft.com/en-us/um/
people/dinos/spheretoaster.pdf

Swanson, et al. 2008, MNRAS, 387, 1391

Szalay, A. S., Gray, J., Fekete, G., Kunszt, P., Kukol, P., & Thakar,
A. R. 2005, Tech. Rep. MSR-TR-2005-123, (Cambridge: Microsoft
Research)

Thakar, A. R., Szalay, A. S., Fekete, G., & Gray, J. 2008, Computing in
Science & Engineering, 10, 30

Todhunter, 1. 1863, Spherical Trigonometry (2nd ed.; New York: Mac-
millan), 67

Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363

2010 PASP, 122:1375-1388

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

