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ABSTRACT. In radio interferometry, information about a small region of the sky is obtained in the form of
samples in the Fourier transform domain of the desired image. Since this sampling is usually incomplete, the missing
information has to be reconstructed using additional assumptions about the image. The emerging field of com-
pressed sensing provides a promising new approach to this type of problem that is based on the supposed sparsity
of natural images in some transform domain. We present a versatile CS-based image reconstruction framework
called SparseRI, an interesting alternative to the CLEAN algorithm, which permits a wide choice of different reg-
ularizers for interferometric image reconstruction. The performance of our method is evaluated on simulated data as
well as on actual radio interferometry measurements from the VLA, showing that our algorithm is able to reproduce
the main features of the test sources. The proposed method is a first step toward an alternative reconstruction ap-
proach that may be able to avoid typical artifacts like negative flux regions, to work with large fields of view and
noncoplanar baselines, to avoid the gridding process, and, in particular, to produce results not far from those achiev-
able by human-assisted processing in CLEAN through an entirely automatic algorithm, making it especially well
suited for automated processing pipelines.

Online material: color figures

1. INTRODUCTION

Since the middle of the 20th century, interferometric tech-
niques have been used to obtain images of the sky at radio
wavelengths (Ryle & Vonberg 1946; Ryle & Hewish 1960;
Swenson. & Mathur 1968; Perley et al. 1989). The correlations
between the signals from multiple antennae yield information
about the spatial frequency content of the image, eventually al-
lowing the image itself to be reconstructed. Since the size of the
synthesized beam of such a telescope is inversely proportional
to the largest distance between any two antennae, very high spa-
tial resolutions can be obtained this way. However, the process
of reconstructing the image from incomplete frequency infor-
mation is highly nontrivial, as missing information has to be
appropriately reconstructed.

The reconstruction of missing information is only possible
by specifying additional prior information about the image,
such as its supposed smoothness, or the assumption that it con-
tains a minimal amount of energy or a maximum amount of
image entropy. Traditionally, the iterative deconvolution algo-

rithm CLEAN (Högbom 1974) is used for the reconstruction
of radio interferometric images. It implicitly assumes that the
image is composed of a small number of point sources. Even
though many extensions to the algorithm have been proposed
(§ 2), extended intensity distributions are still not always well
reconstructed by the algorithm, and the process may require
considerable user guidance in order to yield satisfactory results.

In addition, new telescopes like the Long Wavelength Array
(LWA) (Ellingson et al. 2009), the Low Frequency Array (LO-
FAR) (de Vos et al. 2009), or the Square Kilometer Array (SKA)
(Ekers 2003; Schilizzi 2004) that image large parts of the sky at
once require reconstruction algorithms that handle increas-
ing amounts of data and noncoplanar telescope geometries
(Cornwell et al. 2008; McEwen & Scaife 2008). With a growing
number of telescopes, a more automatic reconstruction pipeline
is also desirable.

A solution to many of these problems is proposed by the
emerging theory of compressed sensing (Candès et al. 2006a,
2006b; Candès 2006; Donoho 2006; Baraniuk 2007). It gener-
alizes and formalizes the notion of prior information about a
signal by relating it to its compressibility, a property that is
present in most natural images (Clarke 1985; DeVore et al.
1992) and distinguishes them from random noise. Compressed
sensing makes use of this fact in order to decide which of the
possible images that explain a set of measurements is most prob-
able, thereby turning the reconstruction problem into an optimi-
zation problem.
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Subsequent to the advent of compressed sensing, existing
reconstruction algorithms have been reinterpreted in the context
of the new theory. This includes the mature CLEAN algorithm,
which is an instance of a class of algorithms known as matching
pursuit algorithms (Lannes et al. 1997). In addition, a multitude
of new algorithms are now available to efficiently solve the nu-
merical problems that occur in compressed sensing (e.g., Fig-
ueiredo et al. 2007; Tropp & Gilbert 2007), and some have
successfully been applied to astronomy (Bobin et al. 2008),
including radio interferometry (Wiaux et al. 2009a, 2009b;
Suksmono 2009). In this article, we present SparseRI, a first
step toward a general compressed sensing reconstruction frame-
work for radio interferometry based on a recently developed ac-
celerated iterative shrinkage/thresholding technique by Wright
et al. (2009). We evaluate our algorithm using different sparsity
priors on synthetic as well as real data. The evaluation shows
that SparseRI is able to reproduce the main features of the test
sources (§ 4.1), and our reconstruction of real observations
(§ 4.2) proves its practical applicability.

2. INTERFEROMETRIC IMAGE FORMATION

In radio interferometry, correlations between multiple anten-
nae are used to synthesize an aperture the size of the largest
baseline. After applying a bandpass filter to select the desired
frequency, the measured visibility V ðbÞ for a baseline b depends
on the intensity IðsÞ of the sky in the direction s according to

V ðbÞ ¼
Z

IðsÞe�2πis·bdΩ: (1)

Under the assumption that the sources being imaged are con-
fined to a small region of the sky, this corresponds to a two-
dimensional Fourier transform multiplied by a phase (e.g.,
Perley et al. 1989). This approximation may be rendered obso-
lete by compressed sensing techniques in the future (§ 5).

Obtaining the sky image from the visibilities is an ill-posed
inversion problem, and several approaches have been used to
solve it. The CLEAN algorithm (Högbom 1974), the standard
reconstruction method used in radio interferometry software
like AIPS5 and CASA,6 starts from the dirty image and succes-
sively subtracts a user-defined fraction of the point-spread func-
tion around the brightest spots of the image. This process works
well for images of isolated point sources, but does not always
produce satisfying results for extended sources. Also, the con-
vergence of the algorithm as well as the uniqueness of its solu-
tions are not always guaranteed (Schwarz 1978, 1979). Regions
that are supposed to be dark in the image are often excluded
from the reconstruction process by hand in order to avoid arti-
facts in these regions, although some modifications to the algo-

rithm try to reduce this and other objectionable effects
(Segalovitz & Frieden 1978; Cornwell 1983; Schwab 1984)
and to achieve better reconstructions of extended sources using
multiscale approaches (e.g., Cornwell 2008).

Other reconstruction algorithms used in the context of radio
interferometry include the maximum entropy method (Cornwell
& Evans 1985), which attempts to maximize an entropy func-
tional while satisfying the constraints imposed by the measured
data, and more generally, any algorithm that maximizes a plau-
sibility function.

The compressed sensing method that we are going to present
allows for a mathematically very well-founded formulation of
an important subclass of such algorithms. In simple terms, our
algorithm searches the space of all images that are consistent
with the measurements for a solution that minimizes an appro-
priate metric: for example, the magnitude of the coefficients
of the image in a wavelet or gradient domain representation.
Results similar to those of CLEAN can be obtained when the
magnitude of the pixels is minimized instead.

3. COMPRESSED SENSING

The theory of compressed sensing, recently introduced by
Candès and others (Candès et al. 2006a, 2006b; Candès
2006; Donoho 2006; Baraniuk 2007), generalizes the way of
thinking about sampling. While the usual Shannon-Nyquist
sampling theory requires that a band-limited signal be sampled
with at least twice its highest frequency, compressed sensing
states that a signal that is not necessarily band-limited but is
sparse in some basis (i.e., the majority of its coefficients in that
basis are zero) can be reconstructed from a small number of
measurements in another basis (i.e., a number of linear combi-
nations of these coefficients). As a trivial example, if a signal is
known to consist of a single Gaussian, it can be reconstructed
perfectly from three known points even though the signal is not
band-limited. Similarly, a signal that is sparse in the spatial do-
main (i.e., a combination of a small number of point sources)
can be reconstructed from a small number of Fourier coeffi-
cients, which is typically the case in radio interferometry.

The measurement of a signal x using a linear measurement
operator M can be written as y ¼ Mx, where y is the resulting
vector of measurements. In radio interferometry, y contains the
visibilities,M is a sampled Fourier transform, and x is the vector
of image pixels. If x has a sparse representation s ¼ Bx in a
sparsity basis B, then x ¼ BT s (because B, representing a
change of basis, is orthonormal by design), and y ¼ MBT s.

The possibility of perfect reconstruction of the signal x de-
pends on the properties of the combined measurement and spar-
sity matrix MBT . Candès & Tao (2005) prove that perfect
reconstruction occurs when (in simple terms) all sets of a suffi-
ciently high number of columns of MBT are approximately
orthonormal. The required number of columns depends on the
sparsity level of the signal. In particular, any random measure-
ment—or a randomly sampled Fourier measurement—satisfies

5 See http://aips.nrao.edu/.
6 See http://casa.nrao.edu/.
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this criterion with high probability (Candès 2006). Stable recon-
struction is possible even when y is perturbed by measurement
error andwhen s is not perfectly sparse (Candès et al. 2006b): two
properties that are important for real-world applications.

A sparse signal s can be reconstructed from its measurement
vector y by finding the sparsest vector s that satisfies y ¼ MBT s
(Candès et al. 2006a). Finding the sparsest vector is equivalent
to minimizing the ℓ0 norm, which is defined as the number of
nonzero coefficients of a vector. Unfortunately, the ℓ0 norm
minimization problem is computationally not tractable for
large-scale problems. With increasing dimension of the vector
s, however, the solution of the ℓ0 norm minimization approaches
that of an ℓ1 norm minimization, which can be solved effi-
ciently. Algorithms also exist for the case of vector-valued
entries of y and s, such as the different polarization components
of a signal (Fornasier & Rauhut 2008).

As opposed to the procedural definition of CLEAN, the re-
sult of the optimization algorithm is mathematically uniquely
defined. Therefore, it does not depend on any specific imple-
mentation or parameter set, and theoretical analysis of the algo-
rithm is greatly simplified. The only parameters that influence
the optimal solution are the expected noise level of the measure-
ment and the chosen sparsity prior.

3.1. Sparsity Priors

The selection of a sparsity basis or sparsity prior represents
our assumptions about the image to reconstruct and, as such,
can strongly influence the reconstruction. For example, the pixel
basis is obviously well suited to represent the assumption of
isolated point sources and is therefore implicitly used in the con-
ventional CLEAN algorithm. In contrast, most terrestrial images
are likely to contain large regions of homogeneous or slowly
changing intensity, possibly with small-scale perturbations or
sharp edges, and appropriate sparsity bases are known that
can also be used for astronomical imaging. For example, differ-
ent wavelet representations like those proposed by Daubechies
(1988) or Cohen et al. (1992) efficiently compress many natural
images because they provide a scaling-independent but local-
ized basis. Minimizing the total variation (which is not a basis
in the strict sense, however) will reliably localize extended
emissive regions, because in this case, sharp edges are not
penalized more than smooth gradients. In § 4, we provide sam-
ple reconstructions using pixel and wavelet sparsity priors.

3.2. Reconstruction Algorithm

In previous work (Wiaux et al. 2009a, 2009b), basis pursuit
algorithms were used to recover simulated images of different
radio sources (random Gaussians and string signals) from simu-
lated measurements as a proof of concept. Suksmono (2009)
applied similar methods to data from the Very Large Array
(VLA), using total variation minimization for regularization.
However, the exact solver employed there is not suitable for

large-scale problems. We implement a different algorithm that
can also be shown to work with data from real radio interferom-
eters and that permits a wide choice of different regularizers in
order to reconstruct a wider range of sources. It is also stable
with respect to the errors introduced by the physical measure-
ment process (Zhu 2008) and, as an approximate solver, is more
efficient for high-dimensional problems.

Our algorithm is an adaptation of the very general com-
pressed sensing framework SpaRSA by Wright et al. (2009).
The algorithm minimizes a functional of the form

‖y�MBT s‖22 þ λfðsÞ; (2)

where y is the vector of measurements, M describes the mea-
surement operation—in this case, a Fourier transform—and s ¼
Bx is the sparse representation of the vector x of image pixels to
be reconstructed. The first term (the data term) promotes con-
sistency with the measurements, while the second term (the reg-
ularizer) demands plausibility of the reconstructed image.

The plausibility metric fðsÞ can be any (preferably convex)
function for which the simpler term,

‖u� s‖22 þ βfðsÞ; (3)

can easily be minimized with respect to s for any u and β. When
this minimization problem is solved as a substep of the SpaRSA
algorithm, u is replaced by a local linear approximation of the
data term ‖y�MBT s‖22, forcing s to move toward the subspace
where y ¼ MBT s. The parameter β, on the other hand, is

FIG. 1.—Image reconstruction pseudocode.
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composed of the regularization parameter λ and a step size,
which will become evident from the pseudocode description
of the algorithm.

A notable example for a plausibility metric is the ℓ1 norm of
s, defined as ‖s‖1 ¼

P
ijðsÞij, for which the minimum of equa-

tion (3) is analytically given as

ðsÞi ¼
maxðjðuÞij � β; 0Þ

maxðjðuÞij � β; 0Þ þ β
ðuÞi: (4)

Implementations for many different wavelet transforms that
work well with ℓ1 minimization are available in the WaveLab
package (Buckheit et al. 2005). Another useful plausibility

metric is the total variation—which can be regarded as the ℓ1
norm of the gradient image of the image x—for which numer-
ical solvers are available (e.g., Chambolle & Darbon 2009). In
this case, B is conveniently chosen as the identity matrix, so
that s ¼ x.

In equation (2), the parameter λ describes the balance be-
tween data fidelity and a priori plausibility of the image. In prac-
tice, it is most appropriately chosen so that ‖y�MBT s‖22 lies
just within the expected noise level of the instrument when the
optimization is finished. This can be implemented by starting
with a relatively large λ, which is then successively decreased
in a so-called continuation scheme (Wright et al. 2009) until the
noise level is reached.

FIG. 2.—Synthetic sources (b) with reconstructions from simulated measurements using CLEAN with the default parameters (c) and SparseRI’s Daubechies wavelet
minimization (d), respectively. Contour levels are plotted—except for the noise-free originals (b)—at�1; 1; 2; 4;…; 2n times the respective 3σ rms noise. All images are
256 by 256 pixels (256 by 256 s of arc), and the UV coverage is 4.2%. The lower left corner of each image shows the FWHM of the CLEAN beam. See the electronic
edition of the PASP for a color version of this figure.
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The algorithm for reconstructing an image x from visibilities
y ¼ Mx ¼ MBT s, given a sparsity basis B and the rms noise
level σ, can be written in pseudocode, as shown in Figure 1.

In Figure 1, ← assigns a value to a variable, T denotes the
matrix adjoint (or transpose), ‖x‖∞ ¼ maxi jðxÞij is the maxi-
mum norm, and ‖ · ‖2 is the Euclidean norm. For efficiency
reasons, matrix products with M and MT are implemented as
two-dimensional forward and backward fast Fourier transforms
(FFTs), respectively. Since in practice the visibilities do not lie
on a regular grid as required by the FFT, gridding is necessary,
which inevitably introduces slight quantization errors. If com-
putation time is no primary issue, these errors may be reduced
by applying convolution-based gridding and degridding before
and after the forward and backward transforms, respectively. In
addition, gridding may be avoided entirely by future extensions
of our framework (§ 5).

4. EVALUATION

In the following, we evaluate the performance of SparseRI
using two different data sets: a synthetic one and one from the
Very Large Array.

4.1. Simulated data

For a synthetic source, the ground-truth image is known, al-
lowing us to objectively compare the performance of different
reconstruction algorithms. We provide three different error met-
rics: the signal-to-noise ratio (S/N), which is defined as S=N ¼
�20 log10ðσresidual=σoriginalÞ (cf. Wiaux et al. 2009a), the rms
error normalized to the average of the true image, and the dy-
namic range, which is the ratio of the highest peak in the recon-
struction to the standard deviation of the reconstruction noise

that can be measured in empty background regions of the image.
Since SparseRI and CLEAN are nonlinear reconstruction algo-
rithms, the dynamic range has to be interpreted with care.

In Figure 2, we present two simulated sources (Fig. 2b) that
are reasonably close to real extended radio sources while not
being particularly easy or difficult to reconstruct for either algo-
rithm: a uniform gradient with Gaussian decay and a series of
Gaussians of increasing size. The measurements were simulated
using the CASA simdata task. The large regions of extended
emission, together with comparatively low sampling density,
push the algorithms to their limits so that the differences in re-
construction quality become visible. The UV coverage—that is,
the fraction of grid cells for which visibility data is known after
gridding at the specified image resolution: in this case, 256 by
256 pixels—is 4.2% from a simulated 6000 s VLA observation
in the D configuration. Each pixel in the simulated image cor-
responds to 1", and the CLEAN beam has a full width at half-
maximum (FWHM) of 7.4 by 4.7".

As a reference, CLEAN reconstructions (Fig. 2c) were made
using the Clark (1980) algorithm from the CASA software
package. In order to make the results user-independent and
comparable, both reconstruction algorithms have been run with
their default parameters (for CLEAN, these were gain 0.1,
threshold 0 Jy, and natural weighting; however, the number
of CLEAN iterations had to be increased from 500 to 1000
for the first source and to 90,000 for the second source in order
to yield satisfying results). For the CLEAN reconstructions, the
S/N values are 6.1 dB and 15.9 dB, the dynamic ranges are 17.6
and 121.5, and the rms errors per pixel are 0.12 and 0.05% of the
true mean intensity for the first and second sources, respectively.
It is noticeable that in the second source, the Gaussians are not
clearly separated from each other.

FIG. 3.—Dirty beam for the simulated data set, displayed in the pixel domain (a) and in the Daubechies 8 wavelet domain using four scale levels (b), which was used
for the reconstruction in Fig. 2d. Both plots are in arbitrary units. See the electronic edition of the PASP for a color version of this figure.
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The SparseRI reconstructions using a Daubechies wavelet
basis (cf. Fig. 3) yield S/N values of 5.0 dB and 6.6 dB, dy-
namic ranges of 19.2 and 24.6, and rms errors per pixel of 0.13
and 0.15% of the true mean intensity (Fig. 2d). These metrics
indicate that the performance of SparseRI is comparable with
CLEAN, although the emerging algorithm is not yet on par with
its mature counterpart. The largest contribution to the lower S/N
values is due to the occurrence of negative flux regions, which
are not penalized in the current implementation (cf. § 5). How-
ever, visual comparison shows that SparseRI is able to resolve
the series of Gaussians, even though some larger-scale stripes
are present in the background. The computation time of the non-
optimized, single-threaded SparseRI algorithm was about 4.5 s

on conventional PC hardware. The automatic CLEAN recon-
struction took 3 s for the 1000 iterations of the first source
and 160 s for the 90,000 iterations of the second source.

4.2. Real Data

The applicability of our algorithm to actual noise-affected
measurements is demonstrated using snapshot observations
from the VLA in the D configuration at 14.965 GHz and a
UV coverage of 2.4%. Figure 4 shows a series of reconstruc-
tions of this data set containing the Sgr Awest region, including
the central minispiral. Figure 4b shows the reconstruction using
CLEAN in CASAwith default parameters. This CLEAN result

FIG. 4.—Sgr Awest reconstructed from VLA data using CLEAN with the default parameters (b), SparseRI’s pixel magnitude minimization (c), and CLEANwith user
guidance (d). Contour levels are plotted at �1; 1; 2; 4;…; 2n times the respective 3σ rms noise. The color scale is in arbitrary units, with the peak flux of all images
normalized to the same level. All images are cropped to the inner 210 by 210 pixels (about 250 by 250 s of arc), and the UV coverage is 2.4%. The lower left corner of
each image shows the FWHM of the CLEAN beam. See the electronic edition of the PASP for a color version of this figure.
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can be considerably improved by manually optimizing the sev-
eral parameters and constraining the intensity to specified re-
gions (commonly referred to as boxing). Figure 4d shows a
radio map that was produced in AIPS by coauthor Y.P. in such
a user-guided CLEAN session (100,000 iterations, gain 0.1, and
manual boxing). Finally, Figure 4c shows the results from
SparseRI using the pixel basis. All images share a cell size
of 1.2" and are convolved with the CLEAN beam with a FWHM
of 10.2 by 4.3". SparseRI appears to better reconstruct the image
than the automated CLEAN, but still shows some systematic
imaging effects at lower intensity levels. The dynamic range
of the reconstructions (assuming the right quarter of the image
is background) is 43.5 for CLEAN with the default parameters,
1367 for user-guided CLEAN, and 610 for SparseRI. The com-
putation time of the nonoptimized, single-threaded SparseRI
algorithm was 9 s on conventional PC hardware, the automatic
CLEAN reconstruction took about two s, and approximately
15 minutes were needed for the user-guided reconstruction, in-
cluding self-calibration steps.

5. CONCLUSION

The evaluation of our algorithm on simulated and real mea-
surements shows that SparseRI is able to provide interfer-
ometric image reconstructions that reproduce the main features
of complex sources without any manual parameter tweaking or
boxing, at comparable computation times as traditional recon-
struction algorithms. While SparseRI is a nonlinear algorithm,
the method has been proven to converge toward the optimal so-
lution as well as to be stable with respect to noise (Zhu 2008).
The reconstruction results of this first implementation are still
above the observational noise level. However, a number of ben-
eficial constraints and other potential improvements exist that
have not yet been explored. We are confident that the com-
pressed sensing approach has the potential to become on par
with and possibly surpass traditional reconstruction algorithms
and their modern variants, such as multiscale techniques, with
respect to automated performance and achievable resolution. A

quantitative comparison to several up-to-date approaches will
be the subject of future work.

A future systematic evaluation of different sparsity bases on a
large database of images may be a first step toward a sparsity
basis that is explicitly designed for typical radio images. How-
ever, one would have to make sure that the database does not
suffer from systematic errors (such as reconstruction artifacts in
the training database), and an efficient representation for such a
nonsystematic basis has yet to be found. A combination of the
previously discussed wavelet, pixel, and total variation repre-
sentations would also be able to increase the reconstruction
quality on a wider range of sources. In general, the choice of
sparsity basis will reflect which features or spatial frequencies
the user wants to emphasize.

Incorporating further constraints into SparseRI—such as
suppressing negative flux regions, which cause most of the re-
construction error in the current implementation—will further
increase reconstruction quality (cf. Wiaux et al. 2009a). Addi-
tionally, we aim to include calibration with respect to an abso-
lute flux scale, which is not yet implemented in the present
version.

We also consider implementing a fast, parallelized, three-
dimensional, nonuniform Fourier transform: for example, on in-
expensive graphics hardware. Such a general transform could
prevent the hitherto unavoidable gridding error, possibly further
decrease computation time, and enable fully three-dimensional
aperture synthesis for recent interferometry arrays with large
fields of view or noncoplanar baselines, such as Expanded Very
Large Array (EVLA) Atacama Large Millimeter/Submillimeter
Array (ALMA), European VLBI network (EVN), and Very
Long Baseline Array (VLBA), or the recent LWA, LOFAR,
and SKA systems.
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