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Abstract.  Active polymers play a central role in many biological systems, 
from bacterial flagella to cellular cytoskeletons. Minimal models of semiflexible 
active filaments have been used to study a variety of interesting phenomena in 
active systems, such as defect dynamics in active nematics, clustering and laning 
in motility assays, and conformational properties of chromatin in eukaryotic 
cells. In this paper, we map a semiflexible polymer to an exactly solvable active 
Rouse chain, which enables us to analytically compute configurational and 
dynamical properties of active polymers with arbitrary rigidity. Upon mapping 
back to the semiflexible filament, we see that the center of mass diusion 
coecient grows linearly with an activity parameter that is renormalized by 
the polymer persistence length. These results closely agree with numerical data 
obtained from microscopic simulations.
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1.  Introduction

Active systems are characterized by constituents that consume energy to produce 
directed motion. These systems are inherently out-of-equilibrium, and thus lead to 
novel steady state behaviors [1, 2]. For example, simple model systems such as active 
nematics composed of microtubules driven by kinesin motor proteins can continu-
ously create and annihilate topological defects [3–7], and active Brownian particles can 
aggregate into ‘active solids’ [8, 9].

Active polymers are a class of active systems that are of considerable interest due 
to their prevalence in biological systems on multiple length scales, including the flagella 
of bacterial microswimmers [10, 11], chromatin in eukaryotic cells [12–17], and actin in 
cellular cytoskeletons [18, 19]. Many studies have focused on the collective dynamics 
of many such filaments [20–27], and found that activity can lead to behaviors such as 
formation of clusters [25] and spiral patterns [21, 28, 29].
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As in the context of self-propelled particle models [30–36], it is fruitful to under-
stand the properties of isolated active units to provide a framework for understanding 
the non-equilibrium steady states that emerge in these complex systems. While there 
are few analytical results available to date [37–43], a number of numerical studies have 
been undertaken to understand the statistical properties of single active filaments [12, 
13, 39, 41, 42, 44–50]. Filaments placed in a bath of active particles can have anomalous 
dynamic properties, including super- and sub-diusive motion [12, 13, 41, 42, 44, 45], 
as well as enhanced diusion coecients [39, 46–48]. Activity was also found to lead 
to the ‘softening’ of semiflexible filaments, eectively reducing the persistence length, 
while suciently large active forces could lead to chain swelling [40, 51]. Similar results 
have been found in the case where the active forces are directed along the filament 
tangent [47, 49], such as in actin or microtubule motility assays.

In this work, we seek to understand the influence of activity on the statistical prop-
erties of an isolated semiflexible filament subject to tangential active forces [28, 47, 49], 
using an analytically tractable model. Note that, neglecting excluded volume interac-
tions, a semiflexible filament with persistence length lp can be modeled as a Rouse 
chain with bond length b ≈ 2lp [52]. Motivated by this mapping, we consider a single 
active Rouse chain with activity directed along the tangent. We show analytically that 
activity leads to an enhanced diusion coecient that grows linearly with the strength 
of the active force, while the end to end distance of the polymer is independent of activ-
ity. Mapping the typical Rouse bond length, b, to the persistence length, lp, we obtain 
an analytical expression for the diusion coecient of an active semiflexible polymer. 
We compare these predictions to Langevin dynamics simulations of both Rouse chains 
and semiflexible filaments, and find that our analytical results are able to accurately 
describe both cases. These results are directly relevant for motility assay experiments 
[25, 53–56], and elucidate behaviors of active units with internal degrees of freedom.

2. The active Rouse model

A Rouse chain is a simple polymer model wherein we have N beads connected by har-
monic bonds. Assuming this chain is in a highly viscous medium with thermal noise, 
we obtain the familiar Rouse equation of motion for the nth bead [52]

γ
∂rn
∂t

= k(rn+1 + rn−1 − 2rn) +
√

2γkBTξn(t),� (1)

where γ is the damping coecient, and k the spring constant. Note that the Rouse 
chain simply collapses to a point in the zero temperature limit. A non-zero temperature 
is necessary to give the polymer a finite size. The root-mean-square (RMS) bond length 
is given by b20 = dkBT/k, where d is the system dimensionality. The thermal noise ξn(t) 
is Gaussian white noise with moments

〈ξn(t)〉 = 0 and

〈ξαn (t)ξβm(t′)〉 = δαβδnmδ(t− t′).
� (2)

https://doi.org/10.1088/1742-5468/ab6097
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Equation (1) holds for n = 2, . . . ,N − 1. At the ends, we have

γ
∂r1
∂t

= k(r2 − r1) +
√

2γkBTξ1(t),

γ
∂rN
∂t

= k(rN−1 − rN) +
√
2γkBTξN(t).

However, we can extend equation (1) to hold for all n provided we allow for ‘ghost’ beads 
such that r0 = r1 and rN+1 = rN . This Rouse model describes an idealized filament in 
a dry system and has served as an important model for obtaining physical intuition 
about the statistical properties of polymers [52].

We add tangential activity to this polymer by supposing that the bonds of the poly-
mer impart a force on their attached beads. That is, if the nth bond connects beads n 
and n  +  1, then each of those beads experiences some force An/2 (so that the total force 
generated by the bond is An). We consider the simple case where

An = fa × (rn+1 − rn),

with f a a constant parameter, in which the equation of motion for an active Rouse chain 
is

γ
∂rn
∂t

= k(rn+1 + rn−1 − 2rn) + fa

(
rn+1 − rn−1

2

)

+
√

2γkBTξn(t).

� (3)

Note that activity could have been implemented by making the beads active, rather 
than the bonds. But, adding activity to the beads also requires constraining the orien-
tation of the active force, leading to additional complexity (see appendix A). Our imple-
mentation of activity is the most tractable for analytical computation, and successfully 
captures the phenomenology of tangential driving as shown below.

3. Analytical results

Assuming a Rouse chain with a contour length much longer than the bond length b0, 
we take the continuous limit of equation (3) to obtain

γ
∂r(n, t)

∂t
= k

∂2r(n, t)

∂n2
+ fa

∂r(n, t)

∂n
+
√

2γkBTξ(n, t)� (4)

with the boundary conditions

∂r(n, t)

∂n

∣∣
n=0,N

= 0,� (5)

which physically correspond to force-free boundary conditions. We non-dimensionalize 

this equation by measuring time in units of dγ/k, distance in units of b0 =
√

dkBT/k, 
and energy in units of kBT . Finally, we let α = faNb20/2dkBT  be a measure of activity 
in our system. As such, α is a measure of the ratio of work performed by the active 
force to the thermal energy. Our equation of motion now takes the form

https://doi.org/10.1088/1742-5468/ab6097
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∂r̃

∂t̃
= d

∂2r̃

∂n2
+

2dα

N

∂r̃

∂n
+
√
2ξ̃(n, t̃).� (6)

3.1. Eigenfunction expansion

The general solution of (6) is

r(n, t) =
∞∑
p=0

cp(t)φp(n)� (7)

where the φp(n) are the eigenfunctions

φp(n) = Ape
−αn/N

[
cos

(
ωpn

N

)
+

α

ωp

sin

(
ωpn

N

)]
� (8)

where ωp = πp+ iαδp,0, and Ap  is a normalization factor:

A2
p =

2

N

{
αe−α/2 sinhα p = 0,

π2p2/(π2p2 + α2) p > 0.� (9)

The decaying exponential in these eigenfunctions encodes the breaking of the head-tail 
symmetry due to the active forces.

The φp are orthonormal with respect to the weight function w(n) = e2αn/N; that is,
∫ N

0

dnw(n)φp(n)φq(n) = δpq.� (10)

We can check that in the limit α → 0, this reduces to the standard cosine series, which 
is the correct set of eigenfunctions for the passive Rouse chain [52].

Without loss of generality, we assume r(n, 0) = 0, so that

cp(t) =

∫ t

0

dse−λ2
p(t−s)ξp(s),� (11)

where

λ2
p =

d

N2
× [π2p2 + (1− δp,0)α

2]� (12)

and

ξp(t) =
√
2

∫ N

0

dnw(n)φp(n)ξ(n, t).� (13)

Unlike a passive Rouse chain, these noise modes are now correlated, so that

〈ξαp (t)ξβq (t′)〉 = Gpqδαβδ(t− t′)� (14)

where

Gpq = 2

∫ N

0

dnw(n)2φp(n)φq(n).� (15)

https://doi.org/10.1088/1742-5468/ab6097
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We now use the eigenfuncton representation of the exact solution to compute the 
center-of-mass diusion coecient and RMS end-to-end distance.

3.2. Diusion coecient

The center of mass X(t) of the chain is given by

X(t) =
1

N

∫ N

0

dnr(n, t) =
∞∑
p=0

cp(t)φ̄p� (16)

where φ̄p =
∫
dnφp(n)/N  is the average value of φp over the interval n ∈ [0,N ]. From 

this, we compute the mean square displacement (MSD) as

MSD = 〈X(t)2〉

=
∑
p,q

φ̄pφ̄q〈cp(t) · cq(t)〉

= dG00φ̄
2
0t+ F (t),

�

(17)

where F (t) is a function that contains only terms that are constant or decay with time 
(see appendix B). From this, we find the diusion coecient to be

D(α) = lim
t→∞

MSD

2dt
=

1

2
G00φ

2
0 = D0α cothα� (18)

where D0  =  1/N is the diusion coecient of a passive Rouse chain. Notably, this gives 
the limiting behaviors

D(α) ∝
{
D0(1 + α2/3) α � 1,

D0α α � 1.� (19)

This result shows that when the active work per bead is small compared to the thermal 
energy, the diusion coecient grows with the square of activity, which is reminiscent 
of the behavior of an active Brownian particle [57]. However, for α � 1, i.e. when the 
active work is large compared to the thermal fluctuations, the diusion coecient 
grows linearly with activity.

At timescales shorter than the rotational relaxation time (discussed in the next sec-
tion), we expect to see evidence of the active driving through a nonlinear growth in the 
MSD. After considering the possible eects of inertia, the MSD takes the form

MSD(δt) ≈ 2dD(α)δt+ B(α)δt2

for δt � 1. Here, the coecient B(α) describes the ballistic motion of the filament at 
short times scales. Interestingly, we can show that B(α) actually decays with increasing 
α. This is discussed further in appendix C.

3.3. Conformational dynamics

There are two relevant parameters that encode the conformational dynamics of the 
active polymer: the end-to-end length (or the radius of gyration, see appendix D), 

https://doi.org/10.1088/1742-5468/ab6097
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which captures its size, and the relaxation time over which correlations in the end-to-
end vector decay. We compute each of these quantities here.

The end-to-end vector L is given by

L(t) = r(N , t)− r(0, t) =
∞∑
p>0

cp(t)∆φp,� (20)

where ∆φp = φp(N)− φp(0), and the p   =  0 mode vanishes since ∆φ0 = 0. In the long-
time limit, we obtain

〈L2〉 =
∑
p,q>0

∆φp∆φq lim
t→∞

〈cp(t) · cq(t)〉

= d
∑
p,q>0

Gpq
∆φp∆φq

λ2
p + λ2

q

.
� (21)

While this series representation is the exact result, it converges slowly and does not 
lend itself to analytical approximation. We compute the sum numerically (see appendix 
E) and find that

〈L2〉 ≈ N .� (22)

That is, 〈L2〉 is independent of the strength of the active force.
This result can be understood in the context of the microscopic equations of motion 

given in equation (3) as follows. Since there are no terms that lead to correlations in 
bond vector orientations in the model, we can envision the polymer as being constructed 
of uncorrelated active rods. The active forces exerted by these rods cannot change their 
own lengths, and so the overall length of the polymer is left unchanged. Interestingly, 
this result does not necessarily hold if the beads are made active instead of the bonds 
(see appendix A for more details). Further, we expect this result to be modified in the 
context of the semiflexible polymer where orientational correlations between the bonds 
can modify the end-to-end length, as discussed in the subsequent sections.

Next, we compute the end-to-end vector autocorrelation function to obtain the 
rotational relaxation time, τR, using the approximation

〈L(t+ τ) · L(t)〉 ∝ e−τ/τR� (23)

in the t → ∞ limit. Using (20), we see that

〈L(t+ τ) · L(t)〉 =
∑
p,q>0

∆φp∆φq〈cp(t+ τ) · cq(t)〉

= d
∑
p,q>0

Gpq
∆φp∆φq

λ2
p + λ2

q

e−λ2
pτ .

�

(24)

As with equation (21), this sum cannot be computed analytically. Assuming it can be 
approximated by the slowest decaying term (∝ e−λ2

1t), we find the rotational relaxation 
time to be

τR = 1/λ2
1 =

τ 0R
1 + α2/π2

,� (25)

https://doi.org/10.1088/1742-5468/ab6097
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where τ 0R = N2/π2d is the relaxation time of a passive Rouse filament. Activity there-
fore reduces the relaxation time. It is worth noting that the approximation in equa-
tion  (23) is limited in that no individual term of equation  (24) dominates. Though 
equation (25) is the slowest relaxation time, it is not necessarily the dominant one. See 
appendix F for more details.

3.4. Mapping to a semiflexible filament

Now, we generalize the above results to the case of a semiflexible polymer. Consider a 
filament as a chain of N beads connected via inextensible bonds of length b0, with rigid-
ity encoded through the potential

H({ri}) =
1

2
κ

N−2∑
i=1

t̂i · t̂i+1,

where ti = ri+1 − ri and ̂ti = ti/|ti|. Activity is added in the same manner as in the case 
of the Rouse filament. For simplicity, we will neglect excluded volume interactions in 
these considerations; these will be incorporated in our computational model later.

Suppose our semiflexible filament is constructed of N bonds with typical bond 
length b0. We can also view the filament as being constructed of n rigid segments of 
length b = 2lp. Then using Nb0  =  nb, we have

α =
faNb20
2dkBT

=
fanb

2

2dkBT

b0
b
=

α̃b0
2lp

.

That is, there is an eective activity α̃ for a semiflexible filament that is related to that 
of a simple Rouse chain through

α̃ = 2αlp/b0.� (26)
We hypothesize that if we substitute this renormalized activity into the results for the 
Rouse chain, they will generalize to the case of an active semiflexible polymer. In par
ticular, equation (18) becomes

D(α,κ)/D0 = (2αlp/b0) coth(2αlp/b0),� (27)
which implicitly depends on the stiness κ through lp. We test this hypothesis using 
numerical simulations in the next section.

4. Simulation results

In this section, we perform numerical simulations to: (a) validate the continuum 
approximation of the Rouse chain used to obtain the analytical results, and (b) test the 
hypothesis of their generalization to semiflexible active polymers with a renormalized 
activity parameter.

https://doi.org/10.1088/1742-5468/ab6097


Statistical properties of a tangentially driven active filament

9https://doi.org/10.1088/1742-5468/ab6097

J. S
tat. M

ech. (2020) 013216

4.1. Active Rouse filaments

To test the continuum limit approximation, we integrate the discrete equations  of 
motion of a Rouse chain, equation  (3), for a filament with Natoms = 51 atoms. As 
before, we non-dimensionalize by measuring energy in units of kBT , time in units of 

dγ/k, and length in units of 
√

dkBT/k. Additionally, fa = 2dα/N where 0 � α � 10 

and N = Natoms − 1 = 50 is the number of bonds. We use a time step of ∆t = 10−3 and 
integrate for a total of 108 steps.

We start by considering the steady-state mean square end-to-end length 〈L2〉. For 
a passive Rouse polymer, we know that 〈L2〉 = Nb20, and we expect from equation (22) 
that this will hold even for an active filament. Indeed, we can see in figure 1 that the 
polymer size is independent of the strength of the active force. The same result was 
found when testing chains with shorter lengths as well.

Next, note that based on equation  (25), the slowest relaxation time occurs for a 
passive Rouse chain, for which τR ≈ 102 for the units chosen here. Thus, for lag times 
t > τR, the filament orientations should decorrelate, and so the mean square displace-
ment (MSD) should grow linearly in time. Figure 2 (top) shows the MSD results com-
puted from simulations, which exhibit diusive motion for times t � 102 for all active 
force strengths. From these results, we can compute the activity-dependent diusion 
coecient D(α) (figure 2 (bottom)). Here, we observe close agreement between the pre-
diction of equation (18) and the simulation results. In particular, we see the expected 
linear scaling of the diusion coecient with activity for α > 1.

4.2. Active semiflexible filaments

To see if the results above are valid beyond the Rouse limit, we consider a more real-
istic model that incorporates sti bonds, resistance to bending, and excluded volume 
interactions. We add these properties by including the potential

Figure 1.  The mean square end-to-end length 〈L2〉 normalized by the number of 
bonds N is shown as a function of activity α. The horizontal line is the predicted 
value based on equation (22), the symbols are results from computer simulations, 
and the error bars show the 95% confidence interval. For all simulation results in 
this article, we used Natoms = 51 beads.

https://doi.org/10.1088/1742-5468/ab6097
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U({rn}) =
N−1∑
n=1

1

2
k(|tn| − b0)

2 +
N−2∑
n=1

κ(1− t̂n · t̂n+1)

+
∑
i �=j

UWCA(|rj − ri|)
�

(28)

where tn = rn+1 − rn, b0 is the preferred bond length, and k and κ set the strength of 
the bond and angle potentials, respectively. The potential UWCA(r) is a purely repulsive 
Weeks–Chandler–Andersen potential [58], defined as

UWCA(r) =

{
4ε

[(
σ
r

)12 − (
σ
r

)6
+ 1

4

]
r � 21/6σ,

0 r > 21/6σ.
� (29)

The equation of motion for the nth bead of the semiflexible polymer is therefore

γ
∂rn
∂t

= − ∂U

∂rn
+ fa

(
rn+1 − rn−1

2

)
+
√
2γkBTξn(t).� (30)

We choose b0 = kBT = 1, σ = b0, ε = kBT , and k  =  200, and we vary κ ∈ [20, 100].

Figure 2.  Dynamics of active Rouse chains. Top: the mean square displacement 
(MSD) for Rouse chains as a function of time for various activities, computed from 
simulation trajectories. For the range of times shown, all of the filaments exhibited 
purely diusive motion, with higher activities leading to larger growth in the MSD 
with time. Bottom: the ratio of the active diusion coecient D(α) to the passive 
diusion coecient D0 for a range of activities. The points are simulation data, 
and the line is the prediction from equation (18).

https://doi.org/10.1088/1742-5468/ab6097
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We again start by investigating how activity aects the polymer size, in this case 
looking at both the normalized mean-square end-to-end distance 〈L2〉(α,κ)/〈L2〉(0,κ) 
and the persistence length lp (see figure 3), which is computed by fitting the tangent-
tangent correlation function Ct(m) = 〈t̂(n+m) · t̂(n)〉 to the exponential e−mb0/lp. In 
general, we find that activity reduces the size of the polymer, but this eect is weak 
over the range of activities tested. As such, we see that lp ≈ κ for all α, as is expected 
for a passive semiflexible filament. The decrease in persistence length with activity indi-
cates that activity leads to a slight ‘softening’ of the filament. This behavior has been 
studied in-depth in recent work on polymers with directed active forces [28, 47, 49].

We compute the diusion coecient D(α,κ) for semiflexible polymers and find linear 
scaling with the parameter αlp for αlp � 1, as shown in figure 4, with D(α,κ) ≈ 2αlp. 
To fully test the applicability of equation  (27), we performed additional simulations 
for αlp � 1 and found excellent agreement between the measured and predicted values 
over more than five orders of magnitude.

Figure 3.  Configurational properties of active semiflexible filaments. Top: the 
mean-squared end-to-end length computed from simulation trajectories as a 
function of the activity α for various stinesses κ. The results are normalized by 
those of the passive (α = 0) case. In general, we observe 〈L2〉 decaying with α, 
though this eect is weak over the range of activities tested. Bottom: persistence 
length lp normalized by κ as a function of activity. This plot more clearly shows 
the reduction in lp with increasing activity, indicating a slight softening of the 
filament.

https://doi.org/10.1088/1742-5468/ab6097
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5. Summary and discussion

In this paper, we consider a simple model for an active filament in the form of a Rouse 
chain with an additional force acting along the tangent. By explicitly solving the 
equation of motion, equation (6), we analytically compute certain configurational and 
dynamical observables, in particular the MSD, diusion coecient, and the end-to-end 
length as a function of the active force strength. We find that the filament exhibits 
diusive motion for times larger than a rotational relaxation timescale, τR, which decays 
rapidly with activity (see equation (25)). This diusive motion is characterized by an 
activity-dependent diusion coecient that grows linearly with α for α � 1. This is 
in contrast to studies on passive filaments in an active bath (see, for example, [39, 41, 
45, 48]), which find the diusion coecient to grow with the square of the active force 
strength. In general, studies of polymers with configuration-independent active forces 
can be well described via an ‘eective temperature’, whereas configuration-dependent 
active forces, as studied here, cannot be readily described in this manner.

Figure 4.  Dynamics of active semiflexible filaments. Top: diusion coecients 
D(α,κ) for all simulation parameters as a function of αlp, the typical net active 
force exerted on a correlated segment of the filament of length lp. All of the data 
lie along the line D/D0 ∼ 2αlp (dashed line). Notably, we see the same linear 
scaling of the diusion coecient with activity as with the active Rouse chain (see 
figure 2). Bottom: diusion coecient measured at low αlp. The dashed line shows 
equation (27) using the modified activity parameter from equation (26).
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We verify these analytical results by performing molecular dynamics simulations of 
an active Rouse chain for a range of active force strengths. As evidenced by figures 1 
and 2, we observe excellent agreement between theory and simulation. To test whether 
the active Rouse model results can be extended to more realistic polymer models, we 
compare our analytical results to simulations of a semiflexible polymer with excluded 
volume interactions and sti bonds. We find that the persistence length is weakly 
dependent on activity over the range of activities tested (as shown in figure 3), with 
activity leading to a ‘softening’ of the filament. This result is consistent with other 
recent numerical studies on active polymers [28, 47, 49].

Additionally, we find that the diusion coecient D(α,κ) grows linearly with a 
renormalized activity parameter, α̃ = 2αlp/b0. This can be explained by envisioning the 
semiflexible filament as a Rouse chain with n bonds of length b equal to the Kuhn length 
2lp, and directly applying the results of equation (18). In principle, this depends non-
linearly on activity since the persistence length lp is also activity-dependent. However, 
for small activities, lp is approximately independent of α, and so we recover the linear 
scaling of the diusion coecient with activity.

Due to the simplicity of this model, it can be readily extended to incorporate richer 
interactions at the single-filament level. For example, future work could examine how 
attractive or solvent-mediated interactions aect the behavior of these filaments. These 
analytical results for the eective activity on an isolated filament can also serve as a 
starting point for understanding emergent behaviors of dense systems containing many 
active filaments.
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Appendix A. Mean square bond length with active beads

If we imagine a Rouse chain whose beads are the active components, then we must 
choose a canonical tangent direction for the bead to exert forces in, which must depend 
on the bond vectors associated to that bead. In particular, we can parameterize the 
possible tangent vectors tn by a parameter ν:

tn(ν) =
ν + 1

2
(rn+1 − rn)−

ν − 1

2
(rn − rn−1).� (A.1)

Consider a Rouse filament consisting of only two beads (and therefore only one bond 
vector b = r2 − r1). The equations of motion for these beads takes the simple form

γ∂tr1 = kb+
1

2
fa(ν + 1)b+ ξ1

γ∂tr2 = −kb− 1

2
fa(ν − 1)b+ ξ2.
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Subtracting the latter from the former, we obtain an equation of motion for the bond 
vector:

γ∂tb = −2(k/γ)(1 + αν/N)b+ ζ,� (A.2)
where we have introduced α = fN/2k and ζ = ξ2 − ξ1. This can be readily solved to 
find

b(t) = b(0)e−t/τ +

∫ t

0

dse−(t−s)/τζ(s),� (A.3)

where

τ =
γ

2k(1 + αν/N)
.� (A.4)

Squaring and averaging, we find that in the long time limit

b2 = lim
t→∞

〈b(t)2〉 = 2dkBTτ

γ
=

b20
1 + αν/N

,� (A.5)

where b20 = dkBT/k is the mean square bond length of the passive Rouse chain. Thus, 
we find that activity can lead to compression (ν < 0) or expansion (ν > 0) of the bonds. 
The bond length is unchanged if ν = 0; in fact, ν = 0 is equivalent to the case where 
the bonds are the active agents, as used in the main text.

Appendix B. Mean square displacement and the diusion coecient

As discussed in the main text, the MSD can be written as

MSD =
∑
p,q

φ̄pφ̄q〈cp(t) · cq(t)〉.

Using the definition of cp(t) given in equation (11), we have that

〈cp(t+ τ) · cq(t)〉

= dGpq ×

{
t p = q = 0

e−λ2
pτ 1−e

−(λ2p+λ2q)t

λ2
p+λ2

q
otherwise

.
� (B.1)

Thus, for τ = 0, this correlation function approaches a constant if either p   >  0 or q  >  0. 
The only term that grows without bound is the p   =  q  =  0 term. The other terms can 
be collected into the function F (t) as used in equation (17). In particular, we have that

lim
t→∞

〈cp(t) · cq(t)〉
t

= δp,0δq,0� (B.2)

which we use to compute the diusion coecient as in equation (18).
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Appendix C. Eect of inertia

The equation of motion for an active Rouse chain with inertia (in the continuum limit) 
would be

m
∂2r

∂t2
+ γ

∂r

∂t
= k

∂2r

∂n2
+ fa

∂r

∂n
+
√
2γkBTξ(n, t).

We can non-dimensionalize this in the same manner as in the main text, measuring 

time in units of dγ/k, distance in units of b0 =
√

dkBT/k, and energy in units of kBT . 
Defining α = faNb20/2dkBT , we find

τ
∂2r

∂t2
+

∂r

∂t
= d

∂2r

∂n2
+

2dα

N

∂r

∂n
+
√
2ξ(n, t),

where τ = mk/dγ2 is an inertial timescale. As before, we can write the solutions in 
terms of the eigenfunctions φp(n) as

r(n, t) =
∞∑
p=0

cp(t)φp(n).

The coecients cp(t) now takes the form

cp(t) =

∫ t

0

dsHp(t− s)ξp(s),

where

Hp(t) = e−t/2τ × 2 sinh(zpt/2τ)

zp
,

zp =
√

1− 4λ2
pτ , and λ2

p = (d/N2)[π2p2 + (1− δp,0)α
2], as in the main text. Note that 

for 4λ2
pτ > 1, zp  becomes imaginary and oscillatory behavior sets in. This is in contrast 

to the results found in the overdamped limit, where no oscillatory motion is present.
We can compute

lim
t→∞

〈cp(t+∆) · cq(t)〉

= dGpq ×
{
t p = q = 0

Fpq(∆) otherwise

� (C.1)

where

Fpq(∆) = 8τe−∆/2τ

{
(z2p − z2q + 4) sinh(zp∆/2τ) + 4zp cosh(zp∆/2τ)

zp(4− (zp − zq)2)(4− (zp + zq)2)

}
.� (C.2)

We therefore see that, in the long time limit, the p   =  q  =  0 term is again the only term 
that contributes to the MSD, and so the addition of inertia does not aect the diusive 
behavior of an active Rouse chain.

We can determine the eect of the active driving at short times by computing
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MSD(∆) = lim
t→∞

〈(X(t+∆)−X(t))2〉

= dG00φ
2
0∆−

∑′

p,q

[ fpq(∆) + fqp(∆)],� (C.3)

where fpq(∆) = Fpq(∆)− Fpq(0), and primed sums indicate summing over all terms 
except the p   =  q  =  0 term. To second order, we have

fpq(∆) ≈ 2

τ
×

(2∆τ +∆2)(z2p − z2q )− 2∆2

(4− (zp − zq)2)(4− (zp + zq)2)
.

Noting the terms that are asymmetric in p  and q, we can write

fpq(∆) + fqp(∆) = −∆2bpq

where

bpq =
8/τ

(4− (zp − zq)2)(4− (zp + zq)2)

=
1

2τ
× 1

τ 2(λ2
p − λ2

q)
2 + 2τ(λ2

p + λ2
q)
,

� (C.4)

where in the second line we have used the definition of zp  to rewrite the expression in 
terms of λp. Defining

B(α) =
∑′

p,q

bpq,� (C.5)

we can write the short-time MSD as

MSD(∆) ≈ 2dD(α)∆ + B(α)∆2,� (C.6)

where D(α) is the diusion coecient from equation  (18) and B(α) is an activity-
dependent coecient describing the ballistic motion of the system at short times. It’s 
not clear if the sum in equation (C.5) can be computed analytically; however, from the 
structure of the terms in equation (C.4) we can see that increasing activity reduces the 
value of B(α).

Appendix D. Radius of gyration

In addition to the mean-squared end-to-end distance, 〈L2〉, the radius of gyration, Rg, 
is a common descriptor of polymer conformations measured in experiments. It is cal-
culated as

R2
g =

1

N

∫ N

0

dn(r(n, t)−X(t))2

= d
∑
p,q>0

Gpq

λ2
p + λ2

q

[
1

N

∫ N

0

φp(n)φq(n)− φ̄pφ̄q

]
.

� (D.1)

https://doi.org/10.1088/1742-5468/ab6097


Statistical properties of a tangentially driven active filament

17https://doi.org/10.1088/1742-5468/ab6097

J. S
tat. M

ech. (2020) 013216

As with equation (21), this sum is not amenable to analytic computation, and must be 
numerically summed. We find that Rg is also independent of activity, and converges 
slowly to

R2
g ≈ N/12,� (D.2)

which is the same as that of the passive Rouse chain.

Appendix E. Mean square end-to-end distance computation

We claim that equation (21) converges such that equation (22) holds. Here, we give 
numerical evidence of our claim. Note that, after evaluating equation  (15), we can 
explicitly write the sum as

〈L2〉/N =
∑
p,q>0

sp,q,� (E.1)

where

sp,q = 16π4α× p2q2[(−1) pe−α − 1][(−1)qe−α − 1][(−1) p+qe2α − 1]

(π2p2 + α2)(π2q2 + α2)(π2( p+ q)2 + 4α2)(π2( p− q)2 + 4α2)
.

� (E.2)
We define the partial sum Sm(α) as

Sm(α) =
m∑
p=1

m∑
q=1

sp,q� (E.3)

so that

〈L2〉/N = lim
m→∞

Sm(α).� (E.4)

In figure  E1, we plot Sm(α) against m for a few values of α. In all cases, we see 
that Sm(α) → 1 as m increases, though for α > 1 the partial sum can grow rapidly 
before decaying, in many cases requiring many millions of terms before we begin to see 
convergence.

Figure E1.  Numerical evaluation of equation  (E.3) for various values of the 
activity parameter α as a function of the number of terms in the sum, m. The sum 
converges to 1 for all tested activities, for suciently large m, with more terms 
required for larger α values.
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Appendix F. Rotational relaxation time

As discussed in the main text, we find that the slowest relaxation time of an active 
Rouse chain is

τR =
N2

π2 + α2
.

However, this relaxation is not necessarily tied to the dominant term in the sum for 
〈L(t+ τ) · L(t)〉.

We measure the rotational relaxation time in the simulations by computing 
CL(τ) = 〈L(t+ τ) · L(t)〉 and finding the time τ ∗ at which CL(τ) = 1/e. Assuming 
CL(τ) = exp(−τ/τ effR ), we find that τ ∗ = τ effR , where τ effR  is the eective rotational relax-
ation time as measured from simulations. Comparisons of τR and τ effR  are shown in 
figure F1.
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