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Abstract
We investigate a one-parameter family of Coulomb gases in two dimensions, 
which are confined to an ellipse due to a hard wall constraint, and are subject 
to an additional external potential. At inverse temperature β = 2 we can use 
the technique of planar orthogonal polynomials, borrowed from random matrix 
theory, to explicitly determine all k-point correlation functions for a fixed 
number of particles N. These are given by the determinant of the kernel of the 
corresponding orthogonal polynomials, which in our case are the Gegenbauer 
polynomials, or a subset of the asymmetric Jacobi polynomials, depending on the 
choice of external potential, as shown in a companion paper recently published by 
three of the authors. In the rotationally invariant case, when the ellipse becomes 
the unit disc, our findings agree with that of the ensemble of truncated unitary 
random matrices. The thermodynamical large-N limit is investigated in the local 
scaling regime in the bulk and at the edge of the spectrum at weak and strong 
non-Hermiticity. We find new universality classes in these limits and recover the 
sine- and Bessel-kernel in the Hermitian limit. The limiting global correlation 
functions of particles in the interior of the ellipse are more difficult to obtain but 
found in the special cases corresponding to the Chebyshev polynomials.

Keywords: two-dimensional Coulomb gas, planar orthogonal polynomials, 
weak non-Hermiticity, universality
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1.  Introduction

Coulomb gases in two dimensions are constituted by a set of particles that interact logarith-
mically and that are subject to some confining potential, that may for example be given by a 
Gaussian or a hard wall constraint on a certain domain. At specific values of the temperature 
T = 1/(kBβ) (with the Boltzmann constant kB) they can be studied using non-Hermitian ran-
dom matrix theory (RMT), where the complex matrix eigenvalues represent the locations of 
the charged particles. The three classical Ginibre ensembles [1] for instance, which all have a 
Gaussian potential, correspond to one-component plasmas with a suitable background charge, 
see [2, 3].

On the one hand, Coulomb gases at general temperature β are objects of intense study 
and pose challenging open problems, e.g. the formation of the so-called Abrikosov lattice at 
large β, and we refer to [4] for a review. Typically, for large systems of N � 1 particles with 
β ∼ O(1), the eigenvalues condense into a droplet, the circular law for the rotationally invari-
ant Gaussian potential, and local fluctuations around this density as well as higher order cor-
relation functions are of interest. The case of a growing droplet where particles are constantly 
fed in has applications to viscous fluids, or more generally can be viewed as Laplacian growth 
models [5]. The case of a hard wall imposed at the edge of the droplet has been studied in 
[6]. When forcing the gas away from its equilibrium position, phase transitions may occur, 
see [7] for more general potentials and the general situation in d dimensions. Likewise, when 
β = 2c/N → 0 at fixed c, a smooth transition to a Gaussian is observed [8], including the 
weakly attractive case c ∈ (−2, 0].

On the other hand, the specific value of β = 2 that is tractable via RMT enjoys an exact 
analytical solution for finite N. Moreover, these examples find themselves in various applica-
tions e.g. in scattering in open quantum systems or in quantum field theories with chemical 
potential, see [9] and [10] for respective reviews. A powerful technique providing an exact 
solution of such Coulomb gases uses orthogonal polynomials in the complex plane. Exploiting 
the fact that at β = 2 the joint density of complex eigenvalues forms a determinantal point 
process, one can explicitly construct the kernel of such planar polynomials and thus deter-
mine all eigenvalue correlation functions. Taking the complex elliptic Ginibre ensemble as an 
example, which is not rotationally invariant and supported on the full complex plane C, these 
planar polynomials are provided by the Hermite polynomials [11]. They are orthogonal with 
respect to a Gaussian weight function, with different variances in real and imaginary parts  
[12, 13]. Based on the explicit solution for the kernel various large-N limits can be taken. At 
strong non-Hermiticity, the global eigenvalue density condenses onto an ellipse in the com-
plex plane. Nevertheless, the local eigenvalue correlation functions at the edge and in the bulk 
of the spectrum agree with that of the rotationally invariant complex Ginibre ensemble. In fact 
much further reaching universality results for complex Wigner ensembles are known [14].

A particularly interesting limit called weak non-Hermiticity was introduced in [15] for 
the elliptic Ginibre ensemble. Whereas in this limit the global density collapses to the semi-
circle on the real line, locally correlations of O(1/N) still extend into the complex plane. In 
the bulk the limiting kernel at weak non-Hermiticity is a one-parameter deformation of the 
celebrated sine-kernel, known from one-dimensional Wigner–Dyson statistics in RMT, which 
is highly universal [16]. The universality of this deformed, weakly non-Hermitian kernel was 
first shown heuristically in [11], using supersymmetry for independent matrix elements, and 
more recently proven for a class of non-Gaussian deformations [17], including fixed trace 
ensembles which are non-determinantal. This concept of weak non-Hermiticity was applied 
to other ensembles [18, 19] and different scaling limits were found also at hard [18, 19] and 
soft edges [20] of the spectrum, see [21] for a list of many known kernels that deform the three 
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classical ensembles and their chiral counterparts. For the scaling limit in the vicinity of a cusp 
or close to a hard wall we refer to [6, 22].

In this paper we will take the large-N limit of a new class of Coulomb gases that are 
confined by a hard wall constraint to live on an ellipse at finite-N already, subject to an addi-
tional potential. The solution is based on another class of classical orthogonal polynomials 
that were shown in a companion paper [23] to be orthogonal on such a domain, subject to 
certain families of external potentials: the Gegenbauer (or ultraspherical) polynomials, which 
are the Jacobi polynomials with symmetric indices, and a subset of the Jacobi polynomials 
with unequal ones. At present we do not have a non-trivial random matrix representation for 
the determinantal point process solved by these polynomials. Only in the rotationally invari-
ant case, when the ellipse degenerates to the unit disc, it follows from the complex eigenvalue 
distribution of truncated unitary matrices, with monomial orthogonal polynomials [18].

The outline of this paper is the following. In section 2 we introduce the family of Coulomb 
gases that we will study and discuss limiting cases to known results in two and one dimen-
sions. Section  3 reviews the determinantal structure of these at the special inverse temper
ature β = 2, see [23]. The corresponding planar orthogonal Gegenbauer polynomials and their 
corresponding kernel are presented. The limits to known kernels are given, in order to prepare a 
later comparison of the microscopic kernels. Section 4 comes to our new results and is devoted 
to the local, microscopic correlations in the weak non-Hermiticity limit. Section 4.1 deals with 
the scaling limit in the bulk, close to the origin, then turning to the edge scaling limit in sec-
tion 4.2. In both limits we find new one-parameter universality classes deforming the sine- and 
Bessel-kernel that we recover in the Hermitian limit. A large weak non-Hermiticity parameter 
is known to lead to strong non-Hermiticity, which we thus explore indirectly. In the bulk we 
find a new limiting kernel as well, and recover a well-known bulk result (the Ginibre kernel) in 
a limit of a potential parameter. At the edge, on the other hand, we recover the result from the 
truncated unitary matrix ensemble. As a further check the edge kernel is found to be asymptoti-
cally similar to the bulk kernel, thus underlining its conjectured universality. The global large-N 
limit is addressed in section 5 for a special case of the Chebyshev polynomials of the second 
kind, being orthogonal with respect to the flat measure [29]. Two families of the non-symmetric 
Jacobi polynomials and their corresponding Coulomb gases that were introduced in [23] for 
finite N are analysed in appendix A, giving rise to two further local universality classes at the 
edge. In appendices B and C, the global regime is again considered for Coulomb gases related 
to the remaining Chebyshev polynomials that were known to be orthogonal, see [30].

2.  A family of Coulomb gases on an ellipse

In this section we will introduce the particular Coulomb gas that we will investigate. We also 
point out limits to systems of charged particles previously known from RMT. Let us consider 
a two-dimensional, static one-component Coulomb gas with a Hamiltonian

H =

N∑
j=1

V(zj)−
N∑

j<l

log |zj − zl| .� (2.1)

The locations of the particles interacting logarithmically in the plane are denoted by complex 
numbers zj = xj + iyj ( j = 1, 2, · · · , N) with the standard map (xj, yj) ∈ R2 �→ zj ∈ C. We 
impose the particles to be confined to an ellipse, which is given in the following parametrisation.

E =

{
z = x + iy

∣∣∣∣
2τ

1 + τ
x2 +

2τ
1 − τ

y2 � 1
}

, 0 < τ < 1.� (2.2)
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Here x and y  are real. The one-particle potential in the Hamiltonian (2.1) is given by

V(z) = −a
2
log

(
1 − 2τ

1 + τ
x2 − 2τ

1 − τ
y2
)

, a > −1 .� (2.3)

This potential mimics a charged mirror at the boundary of the ellipse which is either attractive 
(a  <  0) or repulsive (a  >  0). The resulting probability distribution function for the particles to 
be at equilibrium at an inverse temperature 1/(kBT) = β = 2 is known to be

P(z1, z2, · · · , zN) =
1

ZN
e−βH =

1
ZN

N∏
j=1

w(zj)

N∏
j<l

|zj − zl|2 .� (2.4)

Here, we define a one-particle weight function

w(z) =
(

1 − 2τ
1 + τ

x2 − 2τ
1 − τ

y2
)a

= e−βV(z),� (2.5)

which is real and non-negative, w(z) = w(z̄) � 0 (∀z ∈ E), and use the integration measure ∏N
j=1 d2zj =

∏N
j=1 dxjdyj. The notation z̄ denotes the complex conjugate of z. The point pro-

cess in (2.4) is determinantal, as shown in section 3, see [23]. The partition function that nor-
malises the distribution (2.4) is defined as

ZN =

N∏
j=1

∫

E
d2zj w(zj)

N∏
i<l

|zi − zl|2 .� (2.6)

Let us point out several limits of the distribution (2.4) known from RMT. First, we consider 
the rotationally invariant limit. Here, we have to rescale the positions as

xj �→ xj/
√

2τ , yj �→ yj/
√

2τ ,� (2.7)

and then take the limit τ → 0. In this limit the ellipse E in (2.2) becomes the unit disc. The 
limiting weight function becomes

wtruncated(z) =
(
1 − |z|2

)a
, a > −1,� (2.8)

which is radially symmetric. For an integer a the limiting joint density from (2.4) then agrees 
with the distribution of the complex eigenvalues of the ensemble of truncated unitary random 
matrices introduced in [18]. It is obtained from a unitary matrix U ∈ U(N) distributed accord-
ing to the Haar measure, truncated to the upper left block of U of size M × M , with N  >  M 
and the resulting parameter

a = N − M − 1 .� (2.9)

The complex eigenvalue correlation functions of such a truncated unitary matrix were com-
puted in [18], using monomials Mn(z) = zn as orthogonal polynomials with respect to the 
weight (2.8).

In the second limit, we want to make contact with the eigenvalues of Hermitian RMT and 
the corresponding Dyson gas of particles confined to (a subset of) the real line, while still 
interacting logarithmically, that is with Coulomb interaction in two dimensions. Taking the 
limit τ → 1 on the ellipse E in (2.2) enforces the imaginary part to condense on a narrow strip 
about the real line and eventually to vanish, y → 0, and thus maps E to the interval [−1, 1]. 
Because the initial measure is in two dimensions, in (2.4) we still have to integrate out the 
imaginary parts �(zj) = yj, leading to an additional contribution to the weight function, see 
[23, remark 3.7] for details. We arrive at the following limiting weight function

T Nagao et alJ. Phys. A: Math. Theor. 53 (2020) 075201
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wJacobi(x) =
(
1 − x2)a+ 1

2 ,� (2.10)

with joint density (2.4) projected to the real parts �(zj) = xj ∈ [−1, 1] ( j = 1, 2, · · · , N). It 
agrees with a special case of the weight where the eigenvalues result from the Jacobi ensemble 
of Hermitian random matrices [24, 25]. The eigenvalue correlation functions are computed 
with the help of the Jacobi polynomials, in our case with symmetric indices, when the Jacobi 
polynomials reduce to the Gegenbauer polynomials (also called the ultraspherical polynomi-
als). At a  =  0 these become the Chebyshev polynomials of the second kind.

Finally, as also pointed out in [23], a map to the elliptic Ginibre ensemble exists, thus 
removing the hard wall constraint, with E becoming the entire complex plane after rescaling. 
This is achieved by making the scaling transformations (for a  >  0)

xj �→ xj/
√

2τa, yj �→ yj/
√

2τa,� (2.11)

and then taking the limit a → ∞. Hence, the particles are pushed away from the boundary 
until it has no contact at all. Due to the scaling we zoom into the origin and find the limiting 
weight function (2.5) which is a Gaussian,

wGinibre(z) = exp
(
− 1

1 + τ
x2 − 1

1 − τ
y2
)

.� (2.12)

The resulting limiting distribution (2.4) agrees with that of the complex eigenvalues of the 
elliptic Ginibre ensemble of complex random matrices [26], including the rotationally invari-
ant Ginibre ensemble at τ = 0. The elliptic Ginibre ensemble was analysed as a Coulomb gas 
in [13], deriving and using the orthogonality property of the Hermite polynomials with respect 
to the weight (2.12). All complex eigenvalue correlation functions of the elliptic Ginibre 
ensemble were derived later in [11].

The rotationally invariant limit (2.8) and the real limit (2.10) will provide us with consistency 
checks for our Coulomb gas in the large-N limit, and lead to a better understanding of the issue 
of universality. A comparison to the elliptic Ginibre ensemble is more difficult which is related 
to the fact that its initial support is the full complex plane. Even after taking the large-N limit, the 
correlations at the edge of the limiting elliptic support only decay exponentially, in contrast to the 
hard constraint present in our case. This difference will be discussed in more detail in section 4.1.

3.  Density correlation functions at finite-N

Let us recall that the probability distribution functions of the form (2.4) with β = 2 is a 
determinantal point process. Thus all density correlation functions are given in terms of a 
kernel of orthogonal polynomials in the complex plane. Suppose that the polynomials 
Mn(z) = zn +O(zn−1) in monic normalisation satisfy the following orthogonality relation

∫

D
d2z w(z)Mm(z)Mn(z̄) = hnδm,n, m, n = 0, 1, 2, · · · ,� (3.1)

for a given non-negative weight function w on some domain D. Here, z = x + iy (x and y  are 
real) and d2z = dxdy. In our case the integration domain D is given by the ellipse E in (2.2), 
and the weight function w(z) (satisfying w(z) = w(z̄)) is (2.5). Then, in general the k-point 
density correlation function defined as

ρ(z1, z2, · · · , zk) =
N!

(N − k)!

∫

D
d2zk+1

∫

D
d2zk+2 · · ·

∫

D
d2zNP(z1, z2, · · · , zN),

�

(3.2)

T Nagao et alJ. Phys. A: Math. Theor. 53 (2020) 075201
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can be written in a determinantal form, in terms of the kernel KN of these polynomials Mn(z) 
from (3.1), see [27]:

ρ(z1, z2, · · · , zk) = det [KN(zj, zl)]j,l=1,2,··· ,k .� (3.3)

Here, the kernel is given by the sum over the orthonormalised polynomials,

KN(zj, zl) =
√

w(zj)w(z̄l)

N−1∑
n=0

1
hn

Mn(zj)Mn(z̄l).� (3.4)

Therefore, in order to see the asymptotic behaviour of the correlation functions in any par
ticular limit N → ∞, we only need to evaluate the limit of the kernel KN(z1, z2).

Let us now specify the polynomials for our elliptic domain (2.2). In [23] the following 
orthogonality relation was proven5:

∫

E
d2z

(
1 − 2τ

1 + τ
x2 − 2τ

1 − τ
y2
)a

C(a+1)
m (z)C(a+1)

n (z̄)

=

√
1 − τ 2

2τ
π

n + a + 1
C(a+1)

n

(
1
τ

)
δm,n, a > −1,

�
(3.5)

for m, n = 0, 1, 2, · · · on the ellipse E in (2.2). The polynomials C(a+1)
n  are the Gegenbauer 

polynomials given by

C(a+1)
n (z) =

�n/2�∑
j=0

(−1) jΓ(n + a − j + 1)
Γ(a + 1)Γ( j + 1)Γ(n − 2j + 1)

(2z)n−2j,� (3.6)

where �n/2� is the floor function, meaning the greatest integer that is less than or equal to n/2. 
Equivalently, they can be expressed in terms of Gauß’ hypergeometric function, or in terms of 
the Jacobi polynomials [28]

P(α,γ)
n (z) =

1
(1 − z)α(1 + z)γ

(−1)n

2nn!
dn

dzn

[
(1 − z)n+α(1 + z)n+γ

]
,� (3.7)

with symmetric indices α = γ = a +
1
2

, see (3.17) below. In particular they have parity sym-

metry, C(a+1)
n (−z) = (−1)nC(a+1)

n (z). We find that the corresponding monic orthogonal poly-
nomials read

Mn(z) =
Γ(a + 1)Γ(n + 1)
Γ(n + a + 1)2n C(a+1)

n (z),� (3.8)

and that the normalisation constants resulting from (3.5) are obtained as

hn =
Γ(a + 1)Γ(n + 1)
Γ(n + a + 2)2n

π
√

1 − τ 2

2τ
Mn

(
1
τ

)
.� (3.9)

Notice that for n  =  0 we obtain the normalisation of our weight over E,

A =

∫

E
d2z

(
1 − 2τ

1 + τ
x2 − 2τ

1 − τ
y2
)a

=
1

a + 1
π
√

1 − τ 2

2τ
.

� (3.10)

5 Compared to [23] where the ellipse is parametrised by (x/a)2 + (y/b)2 � 1 with a  >  b  >  0, we have chosen a 
one-parameter family, setting a2 = (1 + τ)/2τ  and b2 = (1 − τ)/2τ  and thus a2 − b2 = 1, with foci located at 
z = ±1.
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In [23] the orthogonality of two families of the Jacobi polynomials with non-symmetric indi-
ces on an ellipse was also derived. Their analysis is deferred to appendix A.

In the special case a  =  0, when the Gegenbauer polynomials reduce to the Chebyshev 

polynomials of the second kind, Un(z) = C(1)
n (z), the proof of the orthogonality relation (3.5) 

was previously known, see [29, 30]. It follows that the kernel KN(z1, z2) of the orthonormal-
ised Gegenbauer polynomials is given by

KN(z1, z2) =

(
1 − 2τ

1 + τ
x2

1 −
2τ

1 − τ
y2

1

)a/2 (
1 − 2τ

1 + τ
x2

2 −
2τ

1 − τ
y2

2

)a/2

× 2τ
π
√

1 − τ 2

N−1∑
n=0

n + a + 1

C(a+1)
n (1/τ)

C(a+1)
n (z1)C(a+1)

n (z̄2) .

�

(3.11)

This completes the computation of all correlation functions via (3.3) for finite-N.
Before evaluating the asymptotic of this kernel in various limits N → ∞ in the following 

sections, let us show how the kernel reduces to known limiting cases at finite-N, the rotation-
ally invariant case and the Hermitian limit.

We begin with the rotationally invariant limit. After the rescaling (2.7) and sending τ → 0, 
we map the ellipse (2.2) to the unit disc, E → {z = x + iy | x2 + y2 � 1}. The orthogonal poly
nomials of the limiting weight function (2.8) are now monomials, Mn(z) = zn, and the orthog-
onality relation is given by

∫

|z|�1
d2z(1 − |z|2)azmz̄n = htruncated

n δm,n,� (3.12)

with norms

htruncated
n = π

Γ(a + 1)Γ(n + 1)
Γ(n + a + 2)

.� (3.13)

For the limit of the kernel (3.11) we obtain

Ktruncated
N (z1, z2) = lim

τ→0

1
2τ

KN

(
z1√
2τ

,
z2√
2τ

)

= (1 − |z1|2)
a
2 (1 − |z2|2)

a
2

N−1∑
n=0

Γ(n + a + 2)
πΓ(a + 1)Γ(n + 1)

(z1z̄2)
n.

� (3.14)
For non-negative integer values of a it agrees with the kernel derived in [18] for the ensem-
ble of truncated unitary random matrices, with relation (2.9) between the parameter a and 
the matrix dimensions. The rescaled 1-point density correlation functions (particle densities) 
describing the approach to the rotationally invariant limit τ → 0 are illustrated in figure 1. As 
the plot clearly highlights the spectrum concentrates on the one-dimensional ellipse and has 
only exponential tails into its interior.

In the Hermitian limit τ → 1 the ellipse (2.2) is mapped to [−1, 1]. In order to be able to 
take the limit of the orthogonality relation (3.1), with (3.8) and (3.9), we have to divide the 
orthogonality relation by the normalisation A from (3.10), yielding the normalised integral, 
see [23]

1 = lim
τ→1

1
A

∫

E
d2z

(
1 − 2τ

1 + τ
x2 − 2τ

1 − τ
y2
)a

=
1
B

∫ 1

−1
dx(1 − x2)a+ 1

2 ,� (3.15)

T Nagao et alJ. Phys. A: Math. Theor. 53 (2020) 075201
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with

B =

√
πΓ

(
a + 3

2

)
Γ(a + 2)

.� (3.16)

The limit τ → 1 of the monic polynomials Mn(z) is non-singular (and remains monic), and due 
to the relation between the Gegenbauer and Jacobi polynomials with symmetric indices [31],

C(a+1)
n (z) =

Γ(n + 2a + 2)Γ
(

a +
3
2

)

Γ(2a + 2)Γ
(

n + a +
3
2

)P(a+ 1
2 , a+ 1

2 )
n (z),� (3.17)

they can also be expressed in terms of the latter,

Mn(z) =
2nΓ(n + 1)Γ(n + 2a + 2)

Γ(2n + 2a + 2)
P(a+ 1

2 , a+ 1
2 )

n (z) .� (3.18)

Figure 1.  The rescaled particle densities ρτ→0 = 1
2τN  KN

(
x+iy√

2τ
, x+iy√

2τ

)
 for N  =  10, 

a  =  1, and τ = 0.5 (upper figure) as well as τ = 0.005 (lower figure).
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It remains to evaluate Mn(1) in the limiting norms (3.9), where we can use [31]

C(a+1)
n (1) =

Γ(n + 2a + 2)
Γ(2a + 2)Γ(n + 1)

,� (3.19)

together with (3.8). Inserting all ingredients, using the doubling formula for the Gamma 
function

√
πΓ(2z) = 22z−1Γ(z)Γ

(
z +

1
2

)
,� (3.20)

and multiplying with B after taking the limit (3.15), we arrive at the following orthogonality 
relation for the weight (2.10)

∫ 1

−1
dx(1 − x2)a+ 1

2 Mm(x)Mn(x) = hJacobi
n δm,n,� (3.21)

with

hJacobi
n =

πΓ(n + 1)Γ(n + 2a + 2)
22n+2a+1Γ(n + a + 2)Γ(n + a + 1)

.� (3.22)

Together with (3.18) this agrees with the standard orthogonality relation of the Jacobi poly-
nomials [3]. We have drawn the rescaled 1-point density correlation functions (particle densi-
ties) for this limit in figure 2. The spectrum evidently concentrates on the two extremal points 
z = ±1 because the Hermitian Jacobi ensemble, to which it converges, has square root singu-

larities at these points.
It is also possible to recover the Hermite polynomials Hn(z), which are orthogonal with 

respect to the weight (2.12) in the full complex plane [13], after taking the scaling limit 
a → ∞ with (2.11). This limit to the elliptic Ginibre ensemble requires more preparation. 
While the limit of Gegenbauer polynomials with rescaled argument, as required by (2.11), is 
well-known [31, 18.7.24]:

lim
a→∞

a−n/2C(a)
n (z/

√
a) =

1
n!

Hn(z),� (3.23)

for the norm (3.9) we also need the corresponding limit without rescaling the arguments. It 
follows from the generating function for Gegenbauer polynomials [31, 18.12.4]

∞∑
n=0

C(a)
n (x)rn = (1 − 2rx + r2)−a .� (3.24)

After rescaling r → r/a and taking a → ∞,

lim
a→∞

∞∑
n=0

1
an C(a)

n (x)rn = e2rx =

∞∑
n=0

(2x)n

n!
rn,� (3.25)

we obtain the relation

lim
a→∞

a−nC(a)
n (x) =

1
n!
(2x)n .� (3.26)

Note the difference in the power of a compared to (3.23). Putting these together and rescaling 
as in (2.11), we obtain
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KGinibre
N (z1, z2) = lim

a→∞

1
2τa

KN

(
z1√
2τa

,
z2√
2τa

)

= exp

[
− x2

1

2(1 + τ)
− y2

1

2(1 − τ)
− x2

2

2(1 + τ)
− y2

2

2(1 − τ)

]

× 1
π
√

1 − τ 2

N−1∑
n=0

(τ
2

)n 1
n!

Hn

(
z1√
2τ

)
Hn

(
z̄2√
2τ

)
.

�

(3.27)

It agrees with the kernel of the elliptic Ginibre ensemble [11]. The Hermite polynomials sat-
isfy [12, 13]
∫

C
d2z exp

[
− x2

1 + τ
− y2

1 − τ

]
Hn

(
z√
2τ

)
Hm

(
z̄√
2τ

)
= hGinibre

n δn,m,

hGinibre
n = n!π

√
1 − τ 2

(τ
2

)−n
,

�

(3.28)

Figure 2.  The rescaled particle densities ρτ→1 = 1
N2 KN

(
x + i y

N , x + i y
N

)
 for a  =  1, 

τ =
(

1 + s2

2N2

)
−1 with s  =  1, and N  =  10 (upper figure) as well as N  =  30 (lower 

figure).
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for 0 < τ < 1. As before, we illustrated the rescaled 1-point density correlation functions 
(particle densities) in the limit to the elliptic Ginibre ensemble a → ∞, see figure 3. This time 
the spectrum fills out the whole ellipse so that a well defined bulk is available.

4.  Local correlations at weak non-Hermiticity

In this section we come to our new results and will mainly be concerned with local correlation 
functions in the weakly non-Hermitian situation. For a discussion of strong non-Hermiticity 
we refer to the respective sections 4.1 and 4.2. With weak non-Hermiticity we mean a double 
scaling limit N → ∞ and τ → 1, the Hermitian limit, taken such that the global density col-
lapses to the real line, the interval [−1, 1] in our case, whereas local correlation functions still 
extend into the complex plane. In the elliptic Ginibre ensemble the phenomenon of weak 
non-Hermiticity happens at different scales in N in the bulk [11] and at the soft edge [20] of 
the spectrum. In contrast, in our Coulomb gas living on a finite ellipse this happens on the 
same scale in N, that is τ = 1 − O(1/N2). In our ensemble, with edge we mean the vicinity 
of the endpoints ±1, and with bulk we mean the vicinity of interior points of the open interval 

Figure 3.  The rescaled particle densities ρa→∞ = 1
2τa KN

(√
N(x+iy)√

2τa
,
√

N(x+iy)√
2τa

)
 for 

N  =  10, τ = 0.5, and a  =  1 (upper figure) as well as a  =  100 (lower figure).
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(−1, 1), away from the edges. In view of the fact that for a = O(1) the limiting global density 
of the known Jacobi ensemble [24, 25] diverges like a square root at the endpoints ±1, we 
expect hard edge behaviour at our edge points. For the chiral ensemble [19] the scaling of 
weak non-Hermiticity in N also agrees with the bulk scaling [11], which is consistent with our 
findings. Notice that for any τ < 1 the foci of our ellipse (2.2) are located at ±1 in the interior 
of the ellipse.

Let us emphasise that our bulk limit is special though, as in this limit the edges of the ellipse 
become close to the real interval (−1, 1). Thus our bulk points become squeezed between 
these edges, representing hard walls, in the vicinity of the interval. For that reason we may 
expect that our bulk limit differs from the bulk limit of the Ginibre ensemble. Only when the 
bulk becomes broader again we recover the Ginibre result, see section 4.1.

The weak non-Hermiticity limit both in the bulk and at the edge of the spectrum is defined 
by taking the limit τ → 1 such that

1
τ
= 1 +

s2

2N2 , 0 < s < ∞,� (4.1)

with N → ∞, and the weak non-Hermiticity parameter s is kept fixed6. For later use we col-
lect the following expressions

τ =
1

1 +
s2

2N2

,
τ

1 − τ
=

2N2

s2 ,
τ

1 + τ
=

2N2

4N2 + s2 .
� (4.2)

Given that the Gegenbauer polynomials can be expressed in terms of the Jacobi polynomi-
als, e.g. in (3.17), it turns out that in both the bulk and edge limits the following asymptotic 
form of the general Jacobi polynomials P(α,γ)(z) will be useful, [31, 18.11.5]:

P(α,γ)
n

(
1 − Z

2n2

)
∼ nα

(√
Z

2

)−α

Jα
(√

Z
)

, n → ∞,� (4.3)

with fixed real α and γ , and Z = X + iY  (X and Y are real) kept fixed. Recall that the poly-
nomials P(α,γ)(x) are orthogonal with respect to the weight (1 − x)α(1 + x)γ on [−1, 1], and 
satisfy the following reflection symmetry:

P(α,γ)
n (−z) = (−1)nP(γ,α)

n (z),� (4.4)

and that the asymptotic form (4.3) zooming into the vicinity of  +1 is independent of γ .

4.1.  Weak non-Hermiticity in the bulk

In this subsection we consider the bulk scaling limit in the vicinity of the origin, by rescaling 
the complex variables inside the kernel (3.11) as

zj = xj + iyj =
ẑj

N
, j = 1, 2,� (4.5)

where ẑj = x̂j + iŷj ( x̂j and ŷj are real) are kept fixed when N → ∞. We expect that the limit-
ing kernel, after some suitable modification, does not depend on the location in the bulk, and 
we will check this conjecture with a consistency check in the next section 4.2.

6 Note that in [11] this parameter is typically found to be proportional to (1 − τ)N .
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As a short calculation for the scaling limit (given by (4.1) and (4.5)) of the pre-factors of 
the kernel in the first line of (3.11), that originate from the weight function, we obtain

lim
N→∞

(
1 − 2τ

1 + τ
x2

j −
2τ

1 − τ
y2

j

)a/2

=

(
1 − 4

ŷ2
j

s2

)a/2

,� (4.6)

for j = 1, 2. Here, only the imaginary part of the scaling variable ẑj = x̂j + iŷj appears. From 
this limit we can read off the domain of the scaling variables ẑj ( j = 1, 2) in the bulk limit:

DBulk =

{
ẑ
∣∣∣∣
s2

4
� ŷ2 and −∞ < x̂ < ∞

}
,� (4.7)

with ẑ = x̂ + iŷ ( x̂ and ŷ are real).
In the kernel (3.11) the sum will turn into an integral. Because we split the sum into its 

even and odd parts, let us present the details of this step. For f n some continuous and integrable 
function depending on n we have

N−1∑
n=0

(n + a + 1) fn =

� N−1
2 �∑

�=0

(2�+ a + 1) f2� +
� N−2

2 �∑
�=0

(2�+ a + 2) f2�+1

∼ N2

2

∫ 1

0
dc c

(
f
(

2�
N

= c
)
+ f

(
2�+ 1

N
= c

))
,

�

(4.8)

in the limit N → ∞, where � = �n/2�. We also introduced the integration variable

c =
n
N

=
2�
N

or
2�+ 1

N
∈ [0, 1],� (4.9)

and use that

2
N

L∑
�=0

→
∫ 1

0
dc, for L =

⌊
N − 1

2

⌋
or

⌊
N − 2

2

⌋
.� (4.10)

For the asymptotic form of the Gegenbauer polynomials inside the sum of (3.11), we can 
apply the asymptotic form of the Jacobi polynomials (4.3). As we zoom into the origin with 
small argument of the Gegenbauer polynomials (4.5), while the asymptotic (4.3) is in the 
vicinity of the endpoint, we cannot use the standard mapping (3.17) of the Gegenbauer poly-
nomials to the symmetric Jacobi polynomials. Fortunately a different map exists, and we 
begin with the even Gegenbauer polynomials. Using [31, 18.7.15], we have

C(a+1)
2� (x) =

(a + 1)�
(1/2)�

P(a+ 1
2 , − 1

2 )

� (2x2 − 1)

=
Γ(�+ a + 1) Γ(1/2)

Γ(a + 1) Γ
(
�+

1
2

) (−1)�P(− 1
2 , a+ 1

2 )

� (1 − 2x2),
� (4.11)
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where (b)n = Γ(b + n)/Γ(b) is the Pochhammer symbol. From (4.3) we thus obtain

lim
N→∞

1
Na (−1)�C(a+1)

2�

(
ẑ
N

)
=

√
πca

2aΓ(a + 1)
lim

N→∞
�

1
2 P(− 1

2 , a+ 1
2 )

�

(
1 − 2

ẑ2

N2

)

=

√
πca

2aΓ(a + 1)

(
cẑ
2

) 1
2

J− 1
2
(cẑ)

=
ca

2aΓ(a + 1)
cos(cẑ).

�

(4.12)

Here, c = 2�/N  is fixed in the limit N → ∞, and in the last step we have used [32, 8.464.2]

J− 1
2
(z) =

√
2
πz

cos(z).� (4.13)

The very same steps can be taken for the asymptotic form of the odd Gegenbauer polynomials. 
Using [31, 18.7.16], we start from the map

C(a+1)
2�+1 (x) =

(a + 1)�+1

(1/2)�+1
xP(a+ 1

2 , 1
2 )

� (2x2 − 1)

=
Γ(�+ a + 2) Γ(1/2)

Γ(a + 1) Γ
(
�+

3
2

) (−1)�xP( 1
2 , a+ 1

2 )

� (1 − 2x2).
�

(4.14)

Once again (4.3) leads to

lim
N→∞

1
Na (−1)�C(a+1)

2�+1

(
ẑ
N

)
=

√
πca

2aΓ(a + 1)
lim

N→∞

ẑ
N
�

1
2 P( 1

2 , a+ 1
2 )

�

(
1 − 2

ẑ2

N2

)

=

√
πca

2aΓ(a + 1)

(
cẑ
2

) 1
2

J 1
2
(cẑ)

=
ca

2aΓ(a + 1)
sin(cẑ).

�

(4.15)

Here, c = (2�+ 1)/N is fixed in the limit N → ∞, and in the last step we have used  
[32, 8.464.1]

J 1
2
(z) =

√
2
πz

sin(z).� (4.16)

For the Gegenbauer polynomials from the normalisation in the denominator inside the sum 
of (3.11), the argument is 1/τ . Using (4.1), we see that we can directly use (4.3) together with 
the standard map (3.17), valid for both even and odd polynomials alike. By analytic continu-
ation of the asymptotic (4.3) to imaginary argument, Z → iZ , we obtain for the normalising 
Gegenbauer polynomial of the scaling variable (4.1)

lim
n→∞

1
N2a+1 C(a+1)

n

(
1 +

s2

2N2

)
=

Γ
(
a + 3

2

)
Γ(2a + 2)

(
2
cs

)a+ 1
2

Ia+ 1
2
(cs),� (4.17)

with c  =  n/N fixed. Here, Iα(z) is the modified Bessel function of the first kind.
Putting all the above together we obtain the following result for the bulk scaling limit of the 

kernel (3.11) around the origin:
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KBulk(ẑ1, ẑ2) = lim
N→∞

1
N2 KN

(
ẑ1

N
,

ẑ2

N

)

=

(
1 − 4ŷ2

1

s2

) a
2
(

1 − 4ŷ2
2

s2

) a
2 1
πs

sa+ 1
2 Γ(2a + 2)

23a+ 1
2 Γ

(
a +

3
2

)
Γ(a + 1)2

×
∫ 1

0
dc

ca+ 1
2
(
cos(cẑ1) cos(c¯̂z2) + sin(cẑ1) sin(c¯̂z2)

)
Ia+ 1

2
(cs)

=
2

sπ
3
2 Γ(a + 1)

(
1 − 4ŷ2

1

s2

) a
2
(

1 − 4ŷ2
2

s2

) a
2
∫ 1

0
dc

(cs/2)a+ 1
2

Ia+ 1
2
(cs)

cos(c(ẑ1 − ¯̂z2)).

�

(4.18)

In the second step we have used an addition theorem for the trigonometric functions and 
(3.20).

The corresponding microscopic level density only depends on the imaginary part, see 
(4.18), and reads

�(ŷ) = KBulk(x̂ + iŷ, x̂ + iŷ).� (4.19)

In figure 4 we illustrate the effects of the parameters a and s. While an increasing non-Her-
miticity s presses the spectrum away from the real axis to the boundary, see figure 4(a), a 
growing a results in the opposite effect, see, figure 4(b). The parameter a represents the charge 
of the hard wall of the boundary of the ellipse leading to a repulsion of the particles from the 
boundary. When both parameters grow large and one zooms into the real axis we find the 
translation invariant bulk statistics of the Ginibre ensemble, see figure 4(c).

The limiting kernel (4.18) is a deformation of the sine-kernel in the complex plane. It holds 
inside the domain (4.7), where the two pre-factors originating from the weight have non-
negative arguments. We conjecture that the same limiting kernel is found, when we zoom into 
any point x0 ∈ (−1, 1), and make a bulk scaling limit there, with an appropriate shift of the 
weight and rescalings. This conjecture is supported by the fact that a similar asymptotic form 
(4.52) holds in the vicinity of the edge, as the bulk limit of the edge kernel.

We note here that—in addition to the pre-factors stemming from the weight function—the 
deformed sine-kernel in the bulk scaling limit at the origin (4.18) also differs inside the int
egral from what is obtained as a deformed sine-kernel in the weak non-Hermiticity limit of the 
elliptic Ginibre ensemble [11], see [21, equation (2.22)] for a comparison in that form. There, 
the pre-factor multiplying cosine is replaced by a simple exponential. This difference remains 
valid for any fixed value of a  >  −1 as well as for large arguments, as we will see below.

In the following we will take two limits of the bulk kernel (4.18) in order to compare to 
other known results. We begin with the Hermitian limit as a consistency check.

	(1)	�The Hermitian limit s → 0:
		 In this limit the local bulk kernel is mapped back to the real axis. This can be seen from 

the support (4.7) of length s in ŷ-direction shrinking to zero, leading to ŷ1, ŷ2 → 0 in 
(4.18). For the denominator of the integrand we have the small argument asymptotic 
relation of the modified Bessel-function, see e.g. in [32, 8.445]

Ia+ 1
2
(cs) ∼ (cs/2)a+ 1

2

Γ
(
a + 3

2

) , s → 0.� (4.20)

T Nagao et alJ. Phys. A: Math. Theor. 53 (2020) 075201



16

		 Before taking the limit s → 0 we have to recall that the ellipse E and [−1, 1] are normal-
ised differently, see (3.10) and (3.16). Because from (4.2) we can read off the constant 

A ∼ 1
N

sπ
2(a + 1)

, we propose to take the following normalised Hermitian limit

lim
s→0

sπ
2(a + 1)B

KBulk(ẑ1, ẑ2)

∣∣∣∣
ŷ1=ŷ2=0

=
π

2(a + 1)B
2Γ

(
a + 3

2

)

π
3
2 Γ(a + 1)

∫ 1

0
dc cos(c(x̂1 − x̂2))

=
1
π

sin(x̂1 − x̂2)

x̂1 − x̂2
.

�

(4.21)

		 It results into the well-known universal sine-kernel. It is known to hold for the Jacobi 
ensemble in the bulk of the spectrum [24], as well as for other ensembles.

	(2)	�The strong non-Hermiticity limit s → ∞:
		 This limit is expected to reproduce the limiting kernel at strong non-Hermiticity, when 

rescaling z̃j = x̃j + iỹj = ẑj/s for j = 1, 2 ( x̃j and ỹj are real). The same mechanism was 
applied in the elliptic Ginibre ensemble in [11]. The corresponding domain (4.7) gets 
mapped to

DBulk, strong =

{
z̃
∣∣∣∣
1
4
� ỹ2 and −∞ < x̃ < ∞

}
,� (4.22)

		 with z̃ = x̃ + iỹ ( x̃ and ỹ are real). It is an infinite strip of unit width parallel to the x̃-axis. 
We obtain the following expression for the limit of the integral in (4.18):

Ja = lim
s→∞

s
∫ 1

0
dc

(cs/2)a+ 1
2

Ia+ 1
2
(cs)

cos(c(ẑ1 − ¯̂z2))

= lim
s→∞

∫ s

0
dt
(t/2)a+ 1

2

Ia+ 1
2
(t)

cos(t(z̃1 − ¯̃z2))

=

∫ ∞

0
dt
(t/2)a+ 1

2

Ia+ 1
2
(t)

cos(t(z̃1 − ¯̃z2)).

�

(4.23)

Figure 4.  Microscopic level density (4.19) as a function of the imaginary part ŷ for 
various charges a of the ellipses boundary and for various values of the non-Hermiticity 
parameter s. In the plot (a) with a  =  1 and plot (b) with s  =  1 fixed we employ the 
scaling of the strong non-Hermiticity limit with the domain (4.22), hence, the fixed 
support of ŷ is the interval [−1/2, 1/2]. In contrast, we want to illustrate the limit to the 
Ginibre result (dashed straight line on the height 2/π) in the plot (c). Therefore, here the 
size of the support grows with 

√
a.
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		 Here we have changed the integration variable to t  =  cs . The final answer for the limiting 
kernel at strong non-Hermiticity on the domain (4.22) thus reads

KBulk,strong(z̃1, z̃2) = lim
s→∞

s2KBulk(sz̃1, sz̃2)

=
2

π
3
2 Γ(a + 1)

(
1 − 4ỹ2

1

) a
2
(
1 − 4ỹ2

2

) a
2

∫ ∞

0
dt
(t/2)a+ 1

2

Ia+ 1
2
(t)

cos(t(z̃1 − ¯̃z2)).
�

(4.24)

		 Although we have derived the kernel (4.24) indirectly via the weak non-Hermiticity limit 
at the origin, we conjecture it to be universal, after an appropriate shift of the weight away 
from the origin plus rescalings. Because the appropriate Mehler or Poisson formula for 
the kernel (3.11) is lacking, when extending the sum to infinity7, we have been unable to 
directly take the strong non-Hermiticity limit.

Notice that the kernel (4.24) does not agree with the Ginibre kernel in the bulk of the spectrum 
of the elliptic Ginibre ensemble. In oder to recover the Ginibre kernel, we need to take the 
limit a → ∞ with a suitable scaling, as explained below. Furthermore, yet another limiting 
kernel exists, which is obtained when imposing a hard edge (at the otherwise soft edge) for 
the Ginibre ensemble, see [6, theorem 2.3]. Apparently the role of a hard edge differs when 
imposed for a confining potential as for Ginibre, or for a non-confining potential as here, gen-
eralising the Jacobi ensemble.

Let us explain how to recover the Ginibre kernel in the limit a → ∞. A series expansion 
[31, 10.25.2]

Ia+ 1
2
(t) =

( t
2

)a+ 1
2

∞∑
�=0

(t2/4)�

�! Γ
(
�+ a + 3

2

)� (4.25)

is known for the modified Bessel function. Introducing a new variable ̂t = t/
√

a and using the 
asymptotic relation

Γ
(
a + 3

2

)

Γ
(
�+ a + 3

2

) ∼ a−�, a → ∞,� (4.26)

for a fixed non-negative integer �, we obtain

Ia+ 1
2
(
√

ât) ∼
(√

ât
2

)a+ 1
2 et̂2/4

Γ
(
a + 3

2

) , a → ∞,� (4.27)

from (4.25). Here ̂t is fixed. We put this asymptotic form into (4.23) and find

Ja =
√

a
∫ ∞

0
d̂t

(√
ât/2

)a+ 1
2

Ia+ 1
2
(
√

ât)
cos(

√
ât(z̃1 − ¯̃z2))

∼
√

a Γ

(
a +

3
2

)∫ ∞

0
d̂t e−̂t2/4 cos

(̂
t(u1 − ū2)

)

=
√
πa Γ

(
a +

3
2

)
e−(u1−ū2)

2
,

� (4.28)

7 Notice that a different Poisson kernel exists for the general Jacobi polynomials, see [33].
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where uj =
√

az̃j ( j = 1, 2). Then it follows that

K̃Ginibre(u1, u2) = lim
a→∞

KBulk, strong
(
u1/

√
a, u2/

√
a
)
/a

=
2
π
exp

[
−|u1|2 − |u2|2 + 2u1ū2 − i�(u2

1 − u2
2)
]

.
�

(4.29)

This kernel is equivalent8 to the Ginibre kernel KGinibre(u1, u2), presented below.
Though the Ginibre kernel was originally found in [1] for the Gaussian random matrix 

model (with the kernel (3.27) in the limit τ → 0), it can also be derived from truncated unitary 
random matrices [18]. Starting from the kernel function (3.14) of truncated unitary random 
matrices, one can take the aymptotic limit N → ∞ and obtains

Ktruncated(z1, z2) = lim
N→∞

Ktruncated
N (z1, z2)

= (1 − |z1|2)
a
2 (1 − |z2|2)

a
2

∞∑
n=0

Γ(n + a + 2)
πΓ(a + 1)Γ(n + 1)

(z1z̄2)
n

=
a + 1
π

(1 − |z1|2)
a
2 (1 − |z2|2)

a
2

(1 − z1z̄2)
a+2 ,

�

(4.30)

for fixed z1 and z2 satisfying |z1|  <  1 and |z2|  <  1. Introducing variables uj =

√
a
2

zj ( j = 1, 2) 
and taking the limit a → ∞, one arrives at the Ginibre kernel

KGinibre(u1, u2) = lim
a→∞

Ktruncated
(

u1/
√

a/2, u2/
√

a/2
)
/(a/2)

=
2
π
exp

(
−|u1|2 − |u2|2 + 2u1ū2

)
.

�
(4.31)

4.2.  Weak non-Hermiticity at the edge

In this subsection we consider the weak non-Hermiticity limit at the edge of the spectrum. 
Because the Gegenbauer polynomials have parity, without loss of generality we magnify the 
region around the focus at  +1, in choosing the scaling

zj = 1 −
Zj

2N2 , j = 1, 2,� (4.32)

together with the weak non-Hermiticity limit (4.1). Here, the complex numbers Zj = Xj + iYj  
are fixed (Xj  and Yj  are real). In this limit the pre-factors of the kernel (3.11) from the weight 
turn into

(
1 − 2τ

1 + τ
x2

j −
2τ

1 − τ
y2

j

)a/2

∼ N−a

(
s2

4
+ Xj −

(
Yj

s

)2
)a/2

,� (4.33)

in the limit N → ∞ as (4.1) and (4.32). Once again we keep the parameter a fixed in this 
limit. Equation (4.33) implies that the limiting domain of the scaled particle positions (Xj, Yj) 
becomes the parabolic domain

8 Two kernels are equivalent if they agree up to multiplication by f (u1)/f (u2) as they yield the same correlation 

functions in (3.3), with f (u1) = e−i�u2
1 here.
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DEdge =

{
(X, Y)

∣∣∣∣∣X �

(
Y
s

)2

− s2

4

}
,� (4.34)

which is a magnified part around the right focus of the ellipse, that is the right endpoint of 
[−1, 1].

The pre-factor of the sum in the second line of (3.11) is easily evaluated by using (4.2), to 
give

2τ
π
√

1 − τ 2
=

2
π

√
τ

1 − τ

τ

1 + τ
∼ 2N

sπ
.� (4.35)

Due to the relation (3.17) of the Gegenbauer polynomials to the symmetric Jacobi polynomi-
als, and their asymptotic form (4.3) in the vicinity of unity, we find the following asymptotic 
relation,

C(a+1)
n (zj) = C(a+1)

n

(
1 −

Zj

2N2

)
∼ N2a+1

Γ

(
a +

3
2

)

Γ(2a + 2)

(√
Zj

2c

)−a− 1
2

Ja+ 1
2

(
c
√

Zj
)

.� (4.36)

Because the limit of the squared norms does not depend on the point we magnify, we may use 
again the asymptotic (4.17) from the previous subsection.

Inserting (4.33), (4.35), (4.36) and (4.17) together in (3.11), and replacing the sum by an 
integral, yields the following asymptotic formula for the limiting kernel at the edge

KEdge(Z1, Z2) = lim
N→∞

1
4N4 KN(z1, z2)

=
1

4
√
πΓ(a + 1)

( s
2

)a− 1
2

(
s2

4
+ X1 −

(
Y1

s

)2
) a

2
(

s2

4
+ X2 −

(
Y2

s

)2
) a

2

×
(√

Z1Z̄2

)−a− 1
2
∫ 1

0
dc

ca+ 3
2

Ia+ 1
2
(cs)

Ja+ 1
2

(
c
√

Z1
)

Ja+ 1
2

(
c
√

Z̄2

)
,

�

(4.37)

with a fixed a  >  −1. This limiting kernel is a deformation of the Bessel-kernel into the com-
plex plane, holding inside the domain (4.34) where the two pre-factors from the weight have 
non-negative arguments. From symmetry the same limiting kernel is obtained at the left edge 
of the ellipse. Not only the pre-factors from the weight but also the pre-factor in the inte-
grand inversely proportional to the modified I-Bessel function differs from the pre-factor 
of the deformed Bessel-kernel of the chiral ensemble [19], given by an exponential. There, 
a + 1

2 = ν, and for integer values it corresponds to the number of zero-modes therein. This 
difference remains valid for any fixed values a  >  −1, and shows the influence of the bound-
ary. It pertains also for large arguments, as we will see below. We expect that the limiting 
edge-kernel (4.37) is also universal.

Again we define a microscopic density which depends this time on both the real and imagi-
nary parts, due to the loss of translation invariance, i.e.

�̂(X, Y) = KEdge(X + iY , X + iY).� (4.38)

Its dependence on an increasing non-Hermiticity s and an increasing charge a is illustrated 
in figures 5 and 6, respectively. Note that the positive direction of the horizontal axis is the 
direction to the left to reflect the position of the edge where we zoom into the spectrum. At the 
edge we have a similar picture compared to the microscopic bulk regime. The spectrum lies in 
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a constant competition between s, which tries to spread and squeeze it into the boundary, and 
a, which creates a repulsion from exactly the same boundary.

Below we will take two limits of the kernel (4.37) to compare with known asymptotic 
kernels in random matrix theory, the Hermitian and strong non-Hermiticity limit. In addition 
we take a third limit of large argument, that brings us back to the result in the bulk from the 
previous subsection.

	(1)	�The Hermitian limit s → 0:
		 In this limit, we can see from the domain (4.34) that it requires Yj   =  0, and the real parts 

are confined to the half line, Xj � 0. For the normalisation of this Hermitian limit we 
follow (4.21), and for the pre-factor inside the integral in (4.37) we may use again the 
asymptotic (4.20). This leads to the following result:

lim
s→0

sπ
2(a + 1)B

KEdge(Z1, Z2)

∣∣∣∣
X1,2�0, Y1,2=0

=
1
4
(X1X2)

− 1
4

∫ 1

0
dc c Ja+ 1

2

(
c
√

X1
)

Ja+ 1
2

(
c
√

X2
)

,

�
(4.39)

		 with a fixed a  >  −1. This reproduces a well-known universal result, the Bessel-kernel, 
derived for the symmetric Jacobi ensemble of random Hermitian matrices [25] with weight 
(2.10). Note that the non-constant pre-factor (X1X2)

−1/4 is cancelled in the expressions of 
the correlation functions, when we make variable transformations Xj �→ X2

j .
	(2)	�The strong non-Hermiticity limit s → ∞:
		 Let us next consider the opposite limit s → ∞, to obtain the limiting kernel at strong 

non-Hermiticity. For that purpose, we introduce new scaling variables

X̃j =
2
s

Xj +
s
2

, Ỹj =
2
s

Yj,� (4.40)

		 where we keep X̃j  and Ỹj fixed when taking the limit s → ∞. In terms of these new 

variables the determining equation for the domain (4.34) becomes 
s
2

X̃j �
Ỹ2

j

4
. Thus in the 

limit the scaled particle positions (X̃j, Ỹj) are confined to the half plane, that is 0 � X̃j < ∞ 
and −∞ < Ỹj < ∞. Now we use the asymptotic formula [28] for u → ∞,

Figure 5.  The rescaled microscopic level density (4.38) s2�̂(X, Y)/4 at the edge for 
increasing non-Hermiticity s = 110 100 (from left to right) at fixed charge a  =  1 of 
the boundary. The color coding of the graph highlights the height of the function. The 
scaling of the real and imaginary parts are those of the strong non-Hermiticity limit, 
see (4.40).
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Jb (uz) ∼
(

2
πuz

)1/2

cos
(

uz − π

2
b − π

4

)
,� (4.41)

		 for a fixed real index b and a fixed complex z, to obtain

(√
Zj

)−a− 1
2

Ja+ 1
2

(
c
√

Zj

)
∼

( s
2

)−a− 1
2
(πcs)−1/2 exp

[
cs
2

(
1 − 1

s

(
X̃j + iỸj

))]
,

� (4.42)
		 for s → ∞. Together with the large-s asymptotic for the modified Bessel functions, see 

[32, 8.451.5],

Ia+ 1
2
(cs) ∼ (2πcs)−1/2 ecs, s → ∞,� (4.43)

valid for any fixed a, it then follows for the scaling (4.40) that

KEdge,strong(Z̃1, Z̃2) = lim
s→∞

s2

4
KEdge(Z1, Z2)

=

(
X̃1X̃2

)a/2

4πΓ(a + 1)

∫ 1

0
dc ca+1 exp

[
− c

2
(X̃1 + X̃2)− i

c
2
(Ỹ1 − Ỹ2)

]
,

�

(4.44)

		 with a fixed a  >  −1. This limiting kernel is not new and, as we will show below, agrees 
with the kernel found for truncated unitary matrices [18] in what the authors call weakly 
non-unitary limit. What we call strongly non-Hermitian here is to be understood in the 
sense that by taking the limit s → ∞ we reestablish rotational invariance.

Starting directly from the kernel of the truncated unitary matrix ensemble (3.14), we may 
introduce scaled real variables X̂j  and Ŷj that remain fixed when N → ∞,

zj = 1 −
X̂j

2N
− i

Ŷj

2N
,� (4.45)

magnifying the edge region of the unit circle at unity. Then, we obtain

lim
N→∞

1
4N2 Ktruncated

N (z1, z2) =

(
X̂1X̂2

)a/2

4πΓ(a + 1)

∫ 1

0
dc ca+1 exp

[
− c

2
(X̂1 + X̂2)− i

c
2
(Ŷ1 − Ŷ2)

]
.� (4.46)

It is in agreement with the asymptotic formula (4.44), and the scaled density 
ρ(Z̃1) = KEdge,strong(Z̃1, Z̃1) agrees with the density computed in [18, equation (21)].

Figure 6.  The rescaled microscopic level density (4.38) s2�̂(X, Y)/4 at the edge for 
increasing charge a = 0, 1, 5 (from left to right) at fixed non-Hermiticity s  =  1. Again 
we have employed the scaling (4.40), see also figure 5.
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	(3)	� The bulk limit:

		  It is known that, in taking the large argument limit, the correlations at the edge get mapped 
back to the correlations in the bulk, see e.g. [34]. Thus this limit will allow us to check our 
conjecture that a similar asymptotic form to the kernel (4.18) is valid in the entire bulk.

		  Let us therefore introduce scaled complex variables ẑj = x̂j + iŷj for the arguments of the 
edge kernel (4.37) as

Zj = κh − 2
√

hẑj,� (4.47)

		  where κ > 0 and ẑj remain fixed, and we will take the limit of h positive to become 
large, h → ∞. In these variables the defining equation  for the domain (4.34) with 
Z = X + iY = κh − 2

√
hẑ becomes

κh − 2
√

hx̂ �
4hŷ2

s2 − s2

4
,� (4.48)

		  leading to the domain

DBulk =

{
ẑ
∣∣∣∣
s2

4
κ � ŷ2 and −∞ < x̂ < ∞

}
,� (4.49)

		  where ẑ = x̂ + iŷ.

For the scaling (4.47) we can readily see that

√
Zj ∼

√
κh −

ẑj√
κ

, h → ∞.� (4.50)

Then, we can utilize (4.41) to find that

Ja+ 1
2

(
c
√

Zj
)
∼

(
2

cπ
√
κh

)1/2

cos

(
c
√
κh −

cẑj√
κ
− π

2
a − π

2

)
, h → ∞.

� (4.51)
Putting the above asymptotic results for the scaling (4.47) together in (4.37), we obtain

KBulk(ẑ1, ẑ2) = lim
h→∞

4hKEdge(Z1, Z2)

=
2

sπ
3
2 Γ(a + 1)κa+1

×
(
κ− 4ŷ2

1

s2

) a
2
(
κ− 4ŷ2

2

s2

) a
2
∫ 1

0
dc

(cs/2)a+ 1
2

Ia+ 1
2
(cs)

cos

(
c√
κ
(ẑ1 − ¯̂z2)

)
,

� (4.52)
which is similar to the asymptotic kernel (4.18) computed at the origin, in agreement with our 
conjecture.

5.  Global correlations for unit weight w(z) = 1

In this section we will look at global correlation functions in the interior region (global regime) 
of the ellipse. Note that most of the N particles are concentrated in the vicinity of the edge of 
the ellipse due to the repulsion among them, and that only a negligibly small portion of the 
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particles exist in the interior. In the simplest case of an unweighted ellipse, that is with weight 
w(z) = 1 corresponding to a  =  0, we are able to derive the global asymptotic formulas for the 
correlation functions in the limit N → ∞, which are valid in the whole interior of the ellipse.

Assuming E ⊂ C is a simply connected domain, t is a fixed point in E, and F is the con-
formal mapping (the Riemann map) of E onto the unit disc D, normalised by the conditions 
F(t) = 0 and F′(t) > 0. As is well-known, these conditions determine F uniquely.

Then, the following theorem [35, p 33] establishes the relationship between the Bergman 
kernel (called Kglobal below) and the Riemann map

Theorem (Unweighted case).  The conformal mapping F and the Bergman kernel function 
Kglobal of E are related as follows:

Kglobal (z, t̄) =
1
π

F′(z)F′(t) and F′(z) =
√

π

Kglobal (t, t̄)
Kglobal (z, t̄) for z ∈ E.� (5.1)

In particular when F is the Riemann mapping of the ellipse into unit disk, this is cumber-
some, a first attempt for the Chebyshev polynomials of the second kind was made in [36]. 
However, our representation below will be somewhat more explicit, allowing for a consistency 
check in the rotationally symmetric limit, but we do not expect further simplification.

When setting a  =  0 the Gegenbauer polynomials reduce to the Chebyshev polynomials of 

the second kind, Un(x) = C(1)
n (x). Prior to taking the large-N limit we introduce the rescalings 

zj �→ zj/
√

2τ  ( j = 1, 2), thus mapping the ellipse (2.2) to

Erescaled =

{
z = x + iy

∣∣∣∣
x2

1 + τ
+

y2

1 − τ
� 1

}
, 0 < τ < 1 .� (5.2)

This is done in order to be able to take the limit of maximal Hermiticity τ → 0 at the end of 
the calculation as a consistency check.

Setting a  =  0 and rescaling the arguments, the kernel function (3.11) takes the form

KN

(
z1√
2τ

,
z2√
2τ

)
=

2τ
π
√

1 − τ 2

N−1∑
n=0

n + 1
Un(1/τ)

Un

(
z1√
2τ

)
Un

(
z̄2√
2τ

)
.

� (5.3)
We introduce a complex variable ω  and a real variable v as

z√
2τ

=
1
2

(
ω +

1
ω

)
,

1
τ
=

1
2

(
v2 +

1
v2

)
,� (5.4)

which are uniquely determined for z/
√

2τ /∈ (−1, 1) by satisfying the relations

1 � |ω| < v .� (5.5)

This implies that z is in the interior of the ellipse (5.2). The parametrisation (5.4), also called 
Joukowsky map, allows to simplify the Chebyshev polynomials Un, and we have [30]

Un

(
z√
2τ

)
=

ωn+1 − ω−n−1

ω − ω−1 , Un

(
1
τ

)
=

v2n+2 − v−2n−2

v2 − v−2 .� (5.6)

Putting these relations into the kernel, we obtain
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KN

(
z1√
2τ

,
z2√
2τ

)
=

4
π

1
(ω1 − ω−1

1 )(ω̄2 − ω̄−1
2 )

×
N−1∑
n=0

(n + 1)
(ωn+1

1 − ω−n−1
1 )(ω̄n+1

2 − ω̄−n−1
2 )

v2n+2 − v−2n−2 ,
�

(5.7)

where

z1√
2τ

=
1
2

(
ω1 +

1
ω1

)
,

z2√
2τ

=
1
2

(
ω2 +

1
ω2

)
,� (5.8)

with 1 � |ω1| < v and 1 � |ω2| < v. The sum can be rewritten as

KN

(
z1√
2τ

,
z2√
2τ

)
=

4
π

1
(ω1 − ω−1

1 )(ω̄2 − ω̄−1
2 )

×
∞∑

j=0

∂

∂λ

∣∣∣∣
λ=1

N−1∑
n=0

(
(ξjω1ω̄2)

n+1 − (ξjω1/ω̄2)
n+1 − (ξjω̄2/ω1)

n+1 + (ξj/(ω1ω̄2))
n+1) ,

�

(5.9)

by introducing the auxiliary variable

ξj =
λ

v2(1+2j) .� (5.10)

The differential operator

∂

∂λ

∣∣∣∣
λ=1

� (5.11)

means putting λ = 1, after taking a derivative with respect to λ. We can now evaluate the sums 
over n as finite geometric series, and find

KN

(
z1√
2τ

,
z2√
2τ

)
=

4
π

1
(ω1 − ω−1

1 )(ω̄2 − ω̄−1
2 )

×
∞∑

j=0

∂

∂λ

∣∣∣∣
λ=1

[
(ξjω1ω̄2)

1 − (ξjω1ω̄2)
N

1 − (ξjω1ω̄2)
− (ξjω1/ω̄2)

1 − (ξjω1/ω̄2)
N

1 − (ξjω1/ω̄2)

−(ξjω̄2/ω1)
1 − (ξjω̄2/ω1)

N

1 − (ξjω̄2/ω1)
+ (ξj/(ω1ω̄2))

1 − (ξj/(ω1ω̄2))
N

1 − (ξj/(ω1ω̄2))

]
.

� (5.12)
Because of 1 � |ω1| < v and 1 � |ω2| < v , we observe that for all j  

∣∣∣ω±1
1 ω̄±1

2 /v2(1+2j)
∣∣∣ < 1 .� (5.13)

Thus we can take the limit N → ∞ (with τ  fixed) to obtain

Kglobal(z1, z2) = lim
N→∞

1
2τ

KN

(
z1√
2τ

,
z2√
2τ

)

=
2
πτ

1
(ω1 − ω−1

1 )(ω̄2 − ω̄−1
2 )

∞∑
j=0

∂

∂λ

∣∣∣∣
λ=1

[
ξjω1ω̄2

1 − (ξjω1ω̄2)

−
ξjω1/ω̄2

1 − (ξjω1/ω̄2)
−

ξjω̄2/ω1

1 − (ξjω̄2/ω1)
+

ξj/(ω1ω̄2)

1 − (ξj/(ω1ω̄2))

]
.

�

(5.14)
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Taking the derivative with respect to λ yields

Kglobal(z1, z2) =
2
πτ

1
(ω1 − ω−1

1 )(ω̄2 − ω̄−1
2 )

×
∞∑

j=0

[
ηjω1ω̄2

(1 − (ηjω1ω̄2))2 −
ηjω1/ω̄2

(1 − (ηjω1/ω̄2))2

−
ηjω̄2/ω1

(1 − (ηjω̄2/ω1))2 +
ηj/(ω1ω̄2)

(1 − (ηj/(ω1ω̄2)))2

]
,

�

(5.15)

with

ηj =
1

v2(1+2j) .� (5.16)

This is the limiting kernel on a global scale, valid in the entire interior of the ellipse (5.2). 
Because of (3.3) that remains valid in this limit, it determines all k-point correlation functions 
on a global scale. At present we are only able to derive such a global asymptotic formula 
for the simplest case a  =  0. In appendices B and C we present a similar analysis for the 
Chebyshev polynomials of the first and third kind, with a non-flat measure on the ellipse.

To get an impression of the τ -dependence of the kernel, we consider the origin z  =  0. Here, 
we can use ω = ±i from (5.4), to obtain

Kglobal(0, 0) =
2

πτv2

∞∑
j=0

v4j
v8j +

1
v4(

v8j − 1
v4

)2 ,� (5.17)

with the relation between v and τ  from (5.4).
It is not justified to take the weak non-Hermiticity limit (N → ∞ with the scaling (4.1)) of 

(5.15) because of the restriction (5.5) being violated, which was crucial for our analysis above. 
In the opposite limit of maximal non-Hermiticity τ → 0, which due to 1 < v and (5.4) implies 
that v → ∞, we introduce the rescaled variables

ωj = vζj, j = 1, 2,� (5.18)

with ζj fixed. Then, it follows that zj ∼ ζj in the limit v → ∞. Moreover, in the sum of (5.15) 
only the first term ηjω1ω̄2/(1 − (ηjω1ω̄2))

2 with j   =  0 survives in the limit v → ∞. We accord-
ingly obtain for the global limiting kernel in the rotationally symmetric case

lim
τ→0

Kglobal(z1, z2) =
1
π

1
(1 − z1z̄2)2 ,� (5.19)

when |zj |  <  1 ( j = 1, 2) according to (5.2). It is in agreement with the known result for the 
radially symmetric weight (2.8) with a  =  0, as can be easily seen from the limit (4.30) of the 
corresponding kernel in (3.14).

6.  Summary

In this paper (including appendices) we have introduced three new families (two were studied 
in appendix A) of Coulomb gases in two dimensions at the specific temperature β = 2, that 
are constrained to a hard-walled ellipse whose boundary is charged as well, and which repels a 
finite number of particles inside. In some examples in Appendices B and C the potentials include 
singularities at the foci of the ellipse. These results were made possible using the technique of 
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planar orthogonal polynomials on that domain, together with newly derived orthogonality results 
for the classical polynomials of Gegenbauer and Jacobi type from a companion paper [23].

We have discussed the local correlation functions in large-N limit, at weak and strong non-
Hermiticity in the bulk and at the edge of the spectrum, by determining the corresponding lim-
iting kernels. We found several new universality classes of deformed sine- and Bessel-kernels 
in the complex plane, that all showed the influence of the edges. Several different families led 
to the same limiting kernel, thus underlying their conjectured universality. In the Hermitian 
limit we could recover the universal sine- and Bessel-kernel of the Jacobi ensemble. At strong 
non-Hermiticity we were led back to the corresponding limiting kernel of the ensemble of 
Gaussian and truncated unitary random matrices.

For the global correlation functions in the interior of the ellipse, we could only present 
partial results, based on the Chebyshev polynomials of the first, second and third kind.

It would be very interesting to find the global asymptotic formulas for all families of 
Coulomb gases presented here, perhaps taking a closer look at the Riemann mapping theo-
rem. A further direction of investigation is a comparison with the local correlations of both the 
standard elliptic Ginibre ensemble, and that with a hard constraint imposed. A popular tool in 
comparison with data is the number variance. Although it follows from the kernel it remains 
to be seen, if it could be further simplified in the various limits we have taken.
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Appendix A. Two families of asymmetric Jacobi polynomials

In this appendix we study the weak non-Hermiticity limit for two further families of planar 
orthogonal polynomials derived in [23]. Let us give a reason for the existence of these classes 
in addition to (3.5). As we saw in the transformations (4.11) and (4.14) of the Gegenbauer 
polynomials—which are usually expressed in terms of the Jacobi polynomials with symmetric 

indices (3.17)—these can also be mapped to the Jacobi polynomials P(
a+ 1

2 ,± 1
2 )

n (z). By using 

these mappings, one can see that the resulting Jacobi polynomials are also orthogonal on the 
same ellipse, but with different weights. In this appendix, we evaluate the asymptotic behav-
iour of the Coulomb gas associated to those weights.

A.1. The Jacobi polynomials P(a+ 1
2 , 1

2 )
n (z)

It is shown in [23] that the Jacobi polynomials P
(a+ 1

2 , 1
2 )

n (z) satisfy the orthogonality relation
∫

E
d2z w+(z)P

(a+ 1
2 , 1

2 )
m (z)P(

a+ 1
2 , 1

2 )
n (z̄)

= 4

√
1 − τ

2τ
Γ(n + 3

2 )
2Γ(a + 1)2

(2n + a + 2)Γ(n + a + 2)2 C(a+1)
2n+1

(√
1 + τ

2τ

)
δmn,

�

(A.1)
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where a  >  −1, E is the elliptic domain (2.2), and C(a+1)
n (z) are the Gegenbauer polynomials 

(3.6). The one-particle weight function w(z) in (2.4) defining this type of Coulomb gas takes 
the form

w+(z) = (1 − µ(z))a,� (A.2)

and

µ(z) =
2τ

1 − τ

(√
1 + τ

2τ

√
(1 + x)2 + y2 − 1 − x

)
,� (A.3)

with z = x + iy. This weight function is different from (2.5), except in the case a  =  0, when 
the indices of the Jacobi polynomials again become symmetric. Note that the monic orthogo-
nal polynomials Mn(z) = zn + · · · are given by [31]

Mn(z) = 2nn!
Γ(n + a + 2)
Γ(2n + a + 2)

P(
a+ 1

2 , 1
2 )

n (z).� (A.4)

We obtain the kernel KN(z1, z2) in (3.4) as

KN(z1, z2) =
1
4
(1 − µ(z1))

a/2(1 − µ(z̄2))
a/2

√
2τ

1 − τ

1
Γ(a + 1)2

×
N−1∑
n=0

(2n + a + 2)Γ(n + a + 2)2

Γ(n + 3
2 )

2C(a+1)
2n+1

(√
(1 + τ)/(2τ)

)P(
a+ 1

2 , 1
2 )

n (z1)P
(a+ 1

2 , 1
2 )

n (z̄2).

� (A.5)
In the following, we will evaluate the asymptotic forms of this kernel in the weak non-Her-
miticity limit at the edges, that is around the foci of the ellipse z  =  +1 and z  =  −1. Because 
in section 4 we have seen that the bulk limit can be recovered from the edge limit, we will 
first derive the latter. However, due to the indices of the Jacobi polynomials now being non-
symmetric, we expect the limits at the endpoints ±1 to be different, because of the lack of 
parity symmetry, see (4.4).

	(1)	�Edge limit at the focus z  =  +1:
		 In order to magnify this region, we recall the weak non-Hermiticity limit (4.1)

1
τ
= 1 +

s2

2N2 ,� (A.6)

		 and the rescaling (4.32) around the right focus  +1:

zj = 1 −
Zj

2N2 , j = 1, 2.� (A.7)

		 We will take the double scaling limit N → ∞ and τ → 1 such that the positive number 
s and complex numbers Zj = Xj + iYj  are kept fixed. In this scaling limit the function 
inside the weight (A.2) gets mapped to

1 − µ

(
1 − Z

2N2

)
∼ 1

4N2

(
s2

4
+ X − Y2

s2

)
,� (A.8)

		 from which we can read off the domain of our scaling variables, being in the parabolic 
domain (4.34). Here Z = X + iY  is kept fixed. In analogy to (4.17) we have
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C(a+1)
2n+1

(√
1 + τ

2τ

)
∼ N2a+1 Γ(a + 3

2 )

Γ(2a + 2)

( s
8c

)−a− 1
2

Ia+ 1
2
(cs),� (A.9)

		 with the ratio c  =  n/N being kept fixed. Using (4.3), we can readily find the asymptotic 
for the polynomials

P(
a+ 1

2 , 1
2 )

n

(
1 − Z

2N2

)
∼ Na+ 1

2

(√
Z

2

)−a− 1
2

Ja+ 1
2

(
c
√

Z
)

.� (A.10)

		 Putting these asymptotic formulas together with the identities (4.2) into (A.5), and 
replacing the sum by an integral, we obtain exactly the same asymptotic formula (4.37) 
for KEdge(Z1, Z2) = limN→∞ KN(z1, z2)/(4N4). This fact indicates the universality of this 
kernel.

		 The Hermitian and strongly non-Hermitian limit as well as the bulk limit then follow as 
in section 4.2.

	(2)	�Edge limit at the focus z  =  −1:
		 Next, we use the scaling in the weak non-Hermiticity limit (A.6) and magnify the region 

around the left focus z  =  −1 in the same way as in (A.7):

zj = −1 +
Zj

2N2 , j = 1, 2,� (A.11)

		 with s  >  0 and Zj = Xj + iYj  fixed in the limit N → ∞. It is straightforward to derive the 
asymptotic form of the weight function

1 − µ

(
−1 +

Z
2N2

)
∼ 1 − 2

s2

(√
X2 + Y2 − X

)
.� (A.12)

Here Z = X + iY  is kept fixed. For this factor to be non-negative it can be seen that the points 
(Xj, Yj) have to lie inside the parabolic domain (4.34). For the asymptotic form of the Jacobi 
polynomials with non-symmetric indices we have

P(
a+ 1

2 , 1
2 )

n

(
−1 +

Z
2N2

)
= (−1)nP(

1
2 ,a+ 1

2 )
n

(
1 − Z

2N2

)
∼ (−1)nN

1
2

(√
Z

2

)− 1
2

J 1
2

(
c
√

Z
)

,�

(A.13)
in the limit N → ∞, after using (4.4) and (4.3). These asymptotic formulas together with 
(A.9) are put into the kernel (A.5) and yield

KEdge(Z1, Z2) = lim
N→∞

1
4N4 KN(z1, z2)

=
(s/2)a− 1

2

4
√
πΓ(a + 1)

(
1 − 2

s2 (|Z1| − X1)

)a/2 (
1 − 2

s2 (|Z2| − X2)

)a/2

×
(√

Z1Z̄2

)− 1
2
∫ 1

0
dc

ca+ 3
2

Ia+ 1
2
(cs)

J 1
2

(
c
√

Z1
)

J 1
2

(
c
√

Z̄2

)
.

=
(s/2)a− 1

2

2π3/2Γ(a + 1)

(
1 − 2

s2 (|Z1| − X1)

)a/2 (
1 − 2

s2 (|Z2| − X2)

)a/2

× 1√
Z1Z̄2

∫ 1

0
dc

ca+ 1
2

Ia+ 1
2
(cs)

sin
(
c
√

Z1
)
sin

(
c
√

Z̄2

)
.

�

(A.14)
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In the last step the J-Bessel functions are expressed in terms of sine, using (4.16). For a �= 0 
this edge kernel is clearly different from the one obtained for the Gegenbauer polynomials in 
(4.37) in section 4.2. While the local asymptotic form of the Jacobi polynomials around this 
focal point yields J 1

2
 (represented by means of the sine function), the influence of the edge is 

obviously still present through the dependence of the other factors on a.
In the Hermitian limit s → 0, the coordinates (Xj, Yj) are confined to the domain satisfying 

Xj � 0 and Yj   =  0, as we saw already in the section 4.2. Using (4.20) and normalising the area 
as in (4.39), we find the asymptotic formula

lim
s→0

sπ
2(a + 1)B

KEdge(Z1, Z2)

∣∣∣∣
X1,2�0,Y1,2=0

=
1
4
(X1X2)

− 1
4

∫ 1

0
dc c J 1

2

(
c
√

X1
)

J 1
2

(
c
√

X2
)

.

�

(A.15)

It agrees with the Bessel-kernel of the Jacobi ensemble (4.39) at a  =  0.
In the strong non-Hermiticity limit s → ∞ we use the scaling variables X̃j  and Ỹj defined 

in (4.40), together with the asymptotic relation

1 − 2
s2 (|Zj| − Xj) ∼

2
s

X̃j, s → ∞,� (A.16)

and (4.41). The resulting limit lims→∞(s2/4)KEdge(Z1, Z2) exactly reproduces the formula 
(4.44).

The bulk limit h → ∞, with the scaling variables ẑj = x̂j + iŷj defined as in (4.47) by 
Zj = κh − 2

√
hẑj (κ > 0), can be evaluated by means of the relation

1 − 2
s2 (|Zj| − Xj) ∼ 1 − 4

κs2 ŷ2
j , h → ∞,� (A.17)

and (4.41). As a result we obtain exactly the same formula (4.52) for the asymptotic kernel 
KBulk(ẑ1, ẑ2) = limh→∞ 4hKEdge(Z1, Z2). From this, we again conjecture that the bulk scaling 
limit has a similar form, when we zoom into any point x0 ∈ (−1, 1). Thus all three limits of 
the kernel (A.14) lead back to the classes we have already found in section 4.

A.2. The Jacobi polynomials P(a+ 1
2 ,− 1

2 )
n (z)

The Jacobi polynomials P
(a+ 1

2 ,− 1
2 )

n (z) satisfy the orthogonality relation [23]
∫

E
d2z w−(z)P

(a+ 1
2 ,− 1

2 )
m (z)P(

a+ 1
2 ,− 1

2 )
n (z̄)

= 2

√
1 − τ

2τ
Γ(n + 1

2 )
2Γ(a + 1)2

(2n + a + 1)Γ(n + a + 1)2 C(a+1)
2n

(√
1 + τ

2τ

)
δmn,

�
(A.18)

where a  >  −1, E is the elliptic domain (2.2), and C(a+1)
n (z) are the Gegenbauer polynomials 

(3.6). Moreover, w(z) in (2.4) takes the form
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w−(z) =
(1 − µ(z))a

|1 + z|
,� (A.19)

with µ(z) defined in (A.3). Notice that also for a  =  0 the polynomials and weight are different 
from those in section 3.

The monic orthogonal polynomials Mn(z) = zn + · · · are given by [31]

Mn(z) = 2nn!
Γ(n + a + 1)
Γ(2n + a + 1)

P(
a+ 1

2 ,− 1
2 )

n (z),� (A.20)

and for the kernel function KN(z1, z2) in (3.4) we obtain from the above

KN(z1, z2) =
(1 − µ(z1))

a/2(1 − µ(z̄2))
a/2

2|1 + z1|1/2|1 + z2|1/2

√
2τ

1 − τ

1
Γ(a + 1)2

×
N−1∑
n=0

(2n + a + 1)Γ(n + a + 1)2

Γ(n + 1
2 )

2 C(a+1)
2n

(√
(1 + τ)/(2τ)

)P(
a+ 1

2 ,− 1
2 )

n (z1)P
(a+ 1

2 ,− 1
2 )

n (z̄2).
�

(A.21)

As in the previous subsection we will first determine the weak non-Hermiticity limit at the 
edges.

	(1)	� Edge limit at the focus z  =  +1
		  In the vicinity of the focus  +1, we can again utilise the scalings (A.6) and (A.7), finding 

the same domain (4.34) as before. From (4.3), we find

P(
a+ 1

2 ,− 1
2 )

n

(
1 − Z

2N2

)
∼ Na+ 1

2

(√
Z

2

)−a− 1
2

Ja+ 1
2

(
c
√

Z
)

,� (A.22)

in the limit N → ∞. It agrees with (A.13) because of its independence of the second 
index of the Jacobi polynomials.
We put this together with (A.9)—which does not change to leading order under the shift 
2n + 1 �→ 2n—and (A.8) into (A.21), and again find exactly the same asymptotic formula 
(4.37) for KEdge(Z1, Z2) = limN→∞ KN(z1, z2)/(4N4). After the analysis of the previous 
subsection this universality is not unexpected. The corresponding limits to Hermiticity, 
strong non-Hermiticity and the bulk thus follow alike.

	(2)	� Edge limit at the focus z  =  −1
		  Finally we use the scalings (A.6) and (A.11) to study the asymptotic behaviour of the 

kernel in the vicinity of z  =  −1. As in the previous subsection the coordinates (Xj, Yj) are 
in the domain (4.34). For the asymptotic behaviour we now find

P(
a+ 1

2 ,− 1
2 )

n

(
−1 +

Z
2N2

)
∼ (−1)nN−1/2

(√
Z

2

)1/2

J−1/2

(
c
√

Z
)

,� (A.23)

in the limit N → ∞, due to (4.4) and (4.3). This formula (A.9) being also true for shifted 
index 2n + 1 �→ 2n, and (A.12) are put into the kernel (A.21). The result is
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KEdge(Z1, Z2) = lim
N→∞

1
4N4 KN(z1, z2)

=
(s/2)a− 1

2

4
√
πΓ(a + 1)

(
1 − 2

s2 (|Z1| − X1)

)a/2 (
1 − 2

s2 (|Z2| − X2)

)a/2

×

(√
Z1Z̄2

|Z1Z2|

) 1
2 ∫ 1

0
dc

ca+ 3
2

Ia+ 1
2
(cs)

J− 1
2

(
c
√

Z1
)

J− 1
2

(
c
√

Z̄2

)

=
(s/2)a− 1

2

2π3/2Γ(a + 1)

(
1 − 2

s2 (|Z1| − X1)

)a/2 (
1 − 2

s2 (|Z2| − X2)

)a/2

× |Z1Z2|−1/2
∫ 1

0
dc

ca+ 1
2

Ia+ 1
2
(cs)

cos
(
c
√

Z1
)
cos

(
c
√

Z̄2

)
.

�

(A.24)

In the last step we used (4.13), expressing the J-Bessel functions through cosine. Once again 
this edge kernel is different from that in (4.37) in section 4.2, with the influence of the edge 
clearly visible through the dependence on a.
In the Hermitian limit s → 0, we again put (Xj, Yj) in the domain satisfying Xj � 0 and Yj   =  0. 
As before (4.20) leads to

lim
s→0

sπ
2(a + 1)B

KEdge(Z1, Z2)

∣∣∣∣
X1,2�0,Y1,2=0

=
1
4
(X1X2)

− 1
4

∫ 1

0
dc c J− 1

2

(
c
√

X1
)

J− 1
2

(
c
√

X2
)

,

�
(A.25)

which agrees with (4.39) continued to a  =  −1,
In the strong non-Hermiticity limit s → ∞ we use the scalings (4.40) and the asymptotic 

relations (A.16) and (4.41). It follows that lims→∞(s2/4)KEdge(Z1, Z2) is identical to the result 
in (4.44).

The bulk limit h → ∞ with the scaling (4.47) can be treated along the same line as in the 
previous subsection, by using (A.17) and (4.41). We find exactly the same formula (4.52) for 
KBulk(ẑ1, ẑ2) = limh→∞ 4hKEdge(Z1, Z2). We again conjecture that a similar bulk asymptotic 
form holds for this model. Also for these polynomials all three limits lead back to known 
results.

Appendix B.  Correlations for Chebyshev polynomials of 1st kind

In this appendix we will derive the limiting microscopic and global kernel for the Chebyshev 
polynomials of the first kind Tn(z). The orthogonality relation was previously known [30], see 
[23, corollary 4.4], but it does not follow directly from that of the Gegenbauer polynomials 
presented in section 3:

∫

E
d2z wI(z)Tm(z)Tn(z̄) =




π

2n

√
1 − τ

2τ
C(1)

2n−1

(√
1 + τ

2τ

)
δmn, m > 0, n � 0,

2π log v, m = n = 0,
� (B.1)

on the ellipse (2.2), where

wI(z) =
1

|1 − z2|
,� (B.2)
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and

v =

√
1 + τ +

√
1 − τ√

2τ
, 0 < τ < 1 .� (B.3)

The weight function w(z) of the corresponding Coulomb gas model (2.4) is given by wI(z), 
with singularities at the foci ±1. The Chebyshev polynomials of the first kind are

Tn(z) =
√
π
Γ(n + 1)
Γ(n + 1

2 )
P(

− 1
2 ,− 1

2 )
n (z),� (B.4)

in terms of the Jacobi polynomials, which are again symmetric. Note that the corresponding 
monic orthogonal polynomials are Mn(z) = 2−n+1Tn(z) for n � 1, and M0(z) = T0(z) = 1. 
We find the kernel in (3.11) with w(z)  =  wI(z) as

KN(z1, z2) =
1
π

1√
|1 − z2

1||1 − z̄2
2|

×



√

2τ
1 − τ

N−1∑
n=1

2n

C(1)
2n−1

(√
(1 + τ)/(2τ)

)Tn(z1)Tn(z̄2) +
1

2 log v


 .

�

(B.5)

B.1.  Local edge scaling limit

In order to evaluate the asymptotic behaviour of this kernel around the focus z  =  1, we again 
adopt the scalings (A.6) and (A.7). Because the polynomials have parity we only need to anal-
yse one of the foci. It can readily be seen from (4.3) that

Tn

(
1 − Z

2N2

)
∼

√
πc1/2

(√
Z

2

)1/2

J− 1
2

(
c
√

Z
)

,� (B.6)

in the limit N → ∞ with c  =  n/N fixed. We use this formula, (A.9) valid to leading order at 
shifted index 2n + 1 �→ 2n − 1, and the expansion

v2 ∼ 1 +
s
N

, N → ∞,� (B.7)

that follows from (4.2). Inserting them into (B.5) we obtain

KEdge(Z1, Z2) = lim
N→∞

1
4N4 KN(z1, z2)

=
1
4

√
2
sπ

(√
Z1Z̄2

|Z1Z2|

) 1
2 ∫ 1

0
dc

c
3
2

I 1
2
(cs)

J− 1
2

(
c
√

Z1
)

J− 1
2

(
c
√

Z̄2

)
,

�

(B.8)

which is identical to (A.24) with a  =  0. Consequently, this kernel is also universal, and the 
corresponding Hermitian, strongly non-Hermitian and bulk limits follow as discussed in 
section A.2.

B.2.  Global correlations

In order to derive a global asymptotic formula for the kernel, we use the relations [30]
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Tn

(
z√
2τ

)
=

1
2

(
ωn +

1
ωn

)
,

z√
2τ

=
1
2

(
ω +

1
ω

)
,

� (B.9)
and
√

1 − τ

2τ
C(1)

2n−1

(√
1 + τ

2τ

)
=

√
1 − τ

2τ
U2n−1

(√
1 + τ

2τ

)
=

1
2

(
v2n − 1

v2n

)

�

(B.10)

(from (5.4) together with (5.6)), in (B.5) to find

KN

(
z1√
2τ

,
z2√
2τ

)
=

1
π

∣∣∣∣1 − z2
1

2τ

∣∣∣∣
−1/2 ∣∣∣∣1 − z̄2

2

2τ

∣∣∣∣
−1/2

×

[
N−1∑
n=1

n
v2n − v−2n

(
ωn

1 +
1
ωn

1

)(
ω̄n

2 +
1
ω̄n

2

)
+

1
2 log v

]
.

�

(B.11)

Here, we define z1/
√

2τ = (ω1 + ω−1
1 )/2 and z2/

√
2τ = (ω2 + ω−1

2 )/2 . As z1/
√

2τ  
and z2/

√
2τ  are in the interior of the ellipse (2.2), the conditions 1 � |ω1| < v and 

1 � |ω2| < v uniquely fix ω1 and ω2 for z1/
√

2τ , z2/
√

2τ /∈ (−1, 1). Now, in order to take the  
limit N → ∞, up to a pre-factor, we can use the same argument as in section 5. The result is

Kglobal(z1, z2) = lim
N→∞

1
2τ

KN

(
z1√
2τ

,
z2√
2τ

)

=
1

2πτ

∣∣∣∣1 − z2
1

2τ

∣∣∣∣
−1/2 ∣∣∣∣1 − z̄2

2

2τ

∣∣∣∣
−1/2

×




∞∑
j=0

(
ηjω1ω̄2

(1 − (ηjω1ω̄2))2 +
ηjω1/ω̄2

(1 − (ηjω1/ω̄2))2

+
ηjω̄2/ω1

(1 − (ηjω̄2/ω1))2 +
ηj/(ω1ω̄2)

(1 − (ηj/(ω1ω̄2)))2

)
+

1
2 log v

]
,

�

(B.12)

with ηj = 1/v2(1+2j).
Moreover, we can take the radially symmetric limit τ → 0 (v → ∞) and introducing the 

same scaling arguments as in (5.18) to obtain

lim
τ→0

Kglobal(z1, z2) =
1

π|z1||z2|
z1z̄2

(1 − z1z̄2)2 ,� (B.13)

when 0  <  |zj |  <  1, j = 1, 2. In the domain of validity this kernel is equivalent to the one in (5.19).

Appendix C.  Correlations for Chebyshev polynomials of 3rd kind

A similar procedure to that in appendix B can be applied to the Coulomb gas model (2.4), with 
the weight function w(z) given by

wIII(z) =
1

|1 + z|
or wIV(z) =

1
|1 − z|

.� (C.1)

These models correspond to the Chebyshev polynomials of the third and fourth kind, respec-
tively. It should be noted that the model with wIII(z) is a special case a  =  0 of the model studied 
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in section A.2. Moreover the model with wIV(z) is an image under the mapping z → −z of the 
model with wIII(z). Therefore, in the following, we only treat the global asymptotic formulas 
for the model with wIII(z). The corresponding Chebyshev polynomials of the third kind

Vn(z) =
2n + 1

P(
1
2 ,− 1

2 )
n (1)

P(
1
2 ,− 1

2 )
n (z),� (C.2)

satisfy the orthogonality relation [30]

∫

E
d2z wIII(z)Vm(z)Vn(z̄) =

2π
2n + 1

√
1 − τ

2τ
C(1)

2n

(√
1 + τ

2τ

)
δmn,� (C.3)

with m, n = 0, 1, 2, · · ·. The corresponding monic orthogonal polynomials are 
Mn(z) = 2−nVn(z). We use the relations [30]

Vn

(
z√
2τ

)
=

ωn+ 1
2 + ω−n− 1

2

w
1
2 + w− 1

2
,

z√
2τ

=
1
2

(
ω +

1
ω

)
,� (C.4)

and
√

1 − τ

2τ
C(1)

2n

(√
1 + τ

2τ

)
=

√
1 − τ

2τ
U2n

(√
1 + τ

2τ

)
=

1
2

(
v2n+1 − 1

v2n+1

)
,

�

(C.5)

to obtain the kernel function in (3.4) with w(z)  =  wIII(z). Here, v is defined in (B.3). The result 
is

KN

(
z1√
2τ

,
z2√
2τ

)
=

1
π

∣∣∣∣1 +
z1√
2τ

∣∣∣∣
−1/2 ∣∣∣∣1 +
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2τ

∣∣∣∣
−1/2

×
N−1∑
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2n + 1
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ω

n+ 1
2

1 + ω
−n− 1

2
1

)(
ω̄

n+ 1
2

2 + ω̄
−n− 1

2
2

)
(
ω

1
2
1 + ω

− 1
2

1

)(
ω̄

1
2
2 + ω̄

− 1
2

2

) ,
�

(C.6)

where z1/
√

2τ = (ω1 + (1/ω1))/2 and z2/
√

2τ = (ω2 + (1/ω2))/2, and again 1 � |ω1| < v 
and 1 � |ω2| < v. As before we use an argument similar to that employed in section 5 and 
appendix B, and find

Kglobal(z1, z2) = lim
N→∞

1
2τ

KN

(
z1√
2τ

,
z2√
2τ

)

=
1

2πτ
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z̄2√
2τ

∣∣∣∣
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2
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2
2 + ω̄
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)

×
∞∑

j=0

[
(ηjω1ω̄2)

1/2(1 + (ηjω1ω̄2))

(1 − (ηjω1ω̄2))2 +
(ηjω1/ω̄2)

1/2(1 + (ηjω1/ω̄2))
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+
(ηjω̄2/ω1)
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(1 − (ηj/(ω1ω̄2)))2

]
,

�

(C.7)

with ηj = 1/v2(1+2j). We can moreover take the radially symmetric limit τ → 0 (v → ∞) and 
obtain
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lim
τ→0

Kglobal(z1, z2) =
1

2π
√
|z1||z2|

1 + z1z̄2

(1 − z1z̄2)2 ,� (C.8)

when 0  <  |zj |  <  1 ( j = 1, 2). It differs from (B.13) and (5.19).
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