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Abstract
We study quantum bipartite systems in a random pure state, where
von Neumann entropy is considered as a measure of the entanglement.
Expressions of the first and second exact cumulants of von Neumann entropy,
relevant respectively to the average and fluctuation behavior, are known in
the literature. The focus of this paper is on its skewness that specifies the
degree of asymmetry of the distribution. Computing the skewness requires
additionally the third cumulant, an exact formula of which is the main result
of this work. In proving the main result, we obtain as a byproduct various
summation identities involving polygamma and related functions. The derived
third cumulant also leads to an improved approximation to the distribution of
von Neumann entropy.
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1. Introduction and the main result

Classical information theory is the theory behind modern development of computing, com-
munications, and other fields. As its classical counterpart, quantum information theory aims
at understanding the theoretical underpinnings of quantum science and technology. One of the
most fundamental features of quantum mechanics is the phenomenon of entanglement, which
is the resource and medium that enable quantum technologies.

In this work, we consider the quantum bipartite model proposed in the seminal work of
Page [1] in the year 1993, which becomes a standard model in describing the interaction of
a physical object and its environment. For such a model, we wish to understand the degree
of entanglement as measured by the von Neumann entropy, the statistical behavior of which
can be studied from its cumulants/moments. In principle, the knowledge of all moments
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determines uniquely the distribution of von Neumann entropy due to its compact support
(a.k.a. Hausdorff’s moment problem). In practice, a finite number of cumulants can be utilized
to construct approximations to the distribution of the entropy, where the higher cumulants
describe the tail distribution. The higher cumulants also provide information such as whether
the average entropy is typical [2]. In the literature, the mean and variance of von Neumann
entropy have been investigated in [1-6] among others. The focus of this paper is to study the
skewness (involves the second and third cumulants) of von Neumann entropy that measures
the degree of asymmetry of the distribution.

The bipartite model proposed by Page [1] is formulated as follows. Consider a compos-
ite quantum system that consists of two subsystems A and B of Hilbert space dimensions m
and n, respectively. The Hilbert space Ha+p of the composite system is given by the tensor
product of the Hilbert spaces of the subsystems, Hay+p = Ha ® Hp. A random pure state of
the composite system is written as a linear combination of the random coefficients x;; and the

complete basis { |i*) } and {|j®) } of H and Hp,

¥) =33 wlit)y @ 7). (1)

i=1 j=I
The corresponding density matrix in the random pure state is

m

p= 10wl =33 i i) (] @ [F) (), @)

ik=1jl=1

which has the natural constraint tr(p) = 1 (or equivalently (¢|¢)) = 1). This implies that the
m x n random coefficient matrix X = (x;;) satisfies

tr (XX') = 1. )

We assume without loss of generality that m < n. The reduced density matrix p4 of the smaller
subsystem A is computed by partial tracing of the full density matrix (2) over the other subsys-
tem B (interpreted as the environment) as

m

pa = trg(p ZZx,,xkdhA VI = Zw,k\z R )

ik=1 j=1 ik=1

where w; ; is the (i, k)th entry of the m x m Hermitian matrix W = XX'. The Schmidt decom-
position of p, is given by

pa = Ml (], ()
i=1

where 0 < )\; < 1is the ith eigenvalue of W with |¢) being the corresponding eigenvector.
The condition (3) now implies the fixed-trace constraint

in =1 (6)
i=1

The probability measure of p, is the Haar measure satisfying the additional constraint (6). The
corresponding eigenvalue density of W is well-known (see, e.g. [1])

F) = F(Zm) 0 (1 B ZM) I =[x (7)
=l i=1

I<i<j<m

2
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where §(-) is the Dirac delta function and the constant

C=[]T(n—-i+1nre. 8)

i=1

This fixed-trace ensemble (7) is also known as the (unitary) Hilbert—Schmidt measure. The
above discussed bipartite model is useful in describing the interaction of various real-world
quantum systems. For example, in [1] the subsystem A is the black hole and the subsystem B
is the associated radiation field. In another example [7], the subsystem A is a set of spins and
the subsystem B represents the environment of a heat bath. The degree of entanglement of
subsystems can be measured by entanglement entropies, which are functions of eigenvalues of
W. We consider the standard measure of von Neumann entropy of the subsystem!

m
S=—tr(palnpy) = —Z)\iln)\i, Se0,lnm], 9)

i=1
which achieves the separable state (S = 0) when \; =1, \; = --- = ), = 0 and the maxi-
mally-entangled state (S = Ilnm) when A\; = ... \,, = 1/m. Statistical information of the von

Neumann entropy is encoded through its moments
B[S, k=1,23,..., (10)

where the expectation is taken over the Hilbert—Schmidt measure (7). Note that for orthogo-
nal and symplectic Hilbert—Schmidt measures, the von Neumann entropy was studied in [8],
whereas its asymptotic distributions were obtained in [9]. Besides the von Neumann entropy,
other entanglement entropies including quantum purity [10], extreme eigenvalues [7, 11], and
Tsallis entropy [12] have also been studied over the Hilbert—Schmidt measure (7). For other
density matrix measures, such as the Bures-Hall measure, the corresponding quantum purity,
von Neumann entropy, and Tsallis entropy have been investigated in [13, 14]. For a compre-
hensive treatment of the density matrix formulism including the above mentioned measures
and entropies, we refer readers to the book [15] and references therein.

In general, the moment sequence, my, m;, ms, . . ., and the cumulant sequence, k1, K2, K3, - - -,
for a random variable are related: the ith moment is an ith degree polynomial in the first i
cumulants and vice versa. In particular, the relation pairs up to i = 3 are

m; = Kq (11)
my = Iig-i—li% Ko :mg—m% (12)
m3 = K3 + 3KaKk1 + /i? K3 = m3 — 3momy + Zm?. (13)

It turns out that the cumulants/moments of von Neumann entropy can be expressed through
polygamma functions, the ith order of which is defined as

o' InT(z) L 1
i) = =5 = H)*H!;W- (14)

For positive integer arguments, the digamma function (Oth order polygamma function) is sim-
plified to a finite sum as

! Note that since the composite system is in a random pure state, the von Neumann entropy of the full system is zero

[1].
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-1

1

tol)=—v+) ¢

k=1 (15)

with v & 0.5772 being the Euler’s constant, and the polygamma functions of order j > 1can
be also reduced to finite sums as

-1
k=1

where

=1
C(s) = ZE (17)

k=1

is the Riemann zeta function that converges when the real part of s satisfies $(s) > 1. In par-
ticular, the present paper involves finite sum form

e |
nl=¢-> 5 (18)
k=1

of the trigamma function, and finite sum form

-1
vall) =203 +23 5 (19)
k=1

of the second order polygamma function with
¢(3) ~ 1.20206 (20)

being the Apéry’s constant.

With the above definitions, we now discuss the state of the art in discovering the exact
cumulants of von Neumann entropy. The mean value of von Neumann entropy (first cumulant)
relevant to the typical behavior of entanglement was conjectured by Page, in the same work
[1] the bipartite model was proposed, as

m—+1
2n
Page’s conjecture was proved shortly afterwards in [3, 4] among others. The variance of von

Neumann entropy (second cumulant) that describes the fluctuation of entanglement around
the typical value was conjectured in [5] as

r1 = Yo(mn +1) = o(n) —

1)

(m+1)(m+2n+1)
4n*(mn + 1)

+
k= = (mn 1) T () - 22)

This variance formula was firstly proved in [6], and was independently proved in [2] recently,
see also [16] for a discussion on the latter proof. In the present work, we focus on the skewness
of von Neumann entropy defined as the third standardized moment

3
(S—,‘ﬂ) ‘| o R3 (23)
[ YN
2%} Ky
where the notation ~y; is due to Karl Pearson. The skewness quantifies the (lack of) symmetry
of a probability distribution, where a symmetric distribution such as the Gaussian distribution

v = Ef
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has a skewness of zero. As seen from the definition (23), calculating the skewness requires the
additional knowledge on the third cumulant of S, an expression of which is given by

m? + 3mn +n* + 1 (m? —1)(mn — 3n% + 1)
1
(mn+ 1)(mn+2) va(n) + n(mn + 1)>(mn + 2) tin 1)
(m+ 1) (2m*n 4 3m*n® + 2m* + 4mn® + 15mn* + 12mn — 2n* + 6n + 6)
4n3(mn + 1)2(mn + 2)

K3 =1 (mn+1) —

. (24)
Proving the above formula of the exact third cumulant of von Neumann entropy is the main
contribution of this work. Note that the third moment formula (24) has been recently reported
in [2], where the authors described the computations that led to the result (24) as “The compu-
tation is an herculean task but with the help of Wolfram’s Mathematica we are able to simplify
the exact formula for p3°. The rest of the paper is to decode the above description by providing
a proof to the claimed result (24). Note also that despite having a different starting point of the
calculation in [2, equation (S32)] than that in the current paper (60), the subsequent bulk of the
calculations omitted in [2] necessarily involves the calculations performed here in sections 2.2
and 2.3. To see the above statement in the second cumulant computation, we refer to [16].
Interestingly, as will be seen the proof relies crucially on new summation identities derived in
this work that in fact have not been implemented in Mathematica [17].

Approximations to the distribution of von Neumann entropy can be constructed from the
closed-form cumulant expressions. For convenience, we first standardize the von Neumann
entropy as

X — N K1
NG (25)

so that the first two cumulants of the random variable X become

Y=o, kM=l (26)
The higher order cumulants of S and X, beyond the first two in (21), (22) and (26), are related
by

x) _ K .
K= W Jj=3. 27
2

In principle, the probability density function of the standardized variable X can be represented
as [18]

Jx(x) = px(x) + rx(x), (28)

where the function rx(x) is the reminder term of the initial approximation ¢y (x). Since the
variable (25) is supported in X € (—oo, 00) with the first two cumulants given by (26), we
consider a standard Gaussian distribution as the initial approximation, i.e.
1 _ip
X) =~ px(x) = —e 2.
() = ox() =
The corresponding initial Gaussian approximation to S incorporates its first two cumulants
(21) and (22) through the affine transformation (25). The reminder term rx(x) associated with
px(x) in (29) admits different types of expansions. We shall adopt an expansion based on
orthogonal polynomials that are induced from the initial approximation ¢x(x), where the
reminder term is formally expanded as [18]

(29)
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PV‘&

= aer (30)
k=1

The kth derivative <Px ( ) of the Gaussian distribution (29) gives rise to the (probabilists’)
Hermite polynomials H;(x) of degree k as

ox) (%) = (— 1) Hi (x) px (x). (31)
The Hermite polynomials satisfy the orthogonality relation [18, 19]

[ee]
/ (px(x)Hk(x)Hl(x)dx = kléy (32)
with §y; being the Kronecker delta function, where the first a few of Hy(x) are
Hy(x) =1, Hi(x) =x (33)
Hy(x) =x* — 1, Hs(x) = x* — 3x. (34)

With the choices of ¢x(x) in (29) and rx(x) in (30), the expansion (28) is also known as the
type-A Gram—Charlier series [18]. Its kth coefficient d; can be conveniently expressed as a
polynomial in the first kK cumulants of the standardized random variable X in (25). In particular,
it can be directly verified by the orthogonality relation (32) and the results (33) and (34) that

diy=d,=0 (35)

and that d3 equals the negative of ng)’ which also equals the negative of the skewness of S

(see (27) and (23)), as
x) _ ks _
dz = —Kz = T 32 —71- (36)
Ko
As aresult, a refined approximation (see (29)) to the distribution of standardized von Neumann
entropy (25) is obtained as

— 4,

Fex) = ex(x) + 3 ek (1) (37)
k=1 "

~ 4 o)

~ ox() + 310K (@), (38)

where the correction term

ds
3!

o3 () = = /2H3< *)ex (¥) (39)

incorporates the derived third cumulant (24). In figure 1, we numerically compare the refined
approximation (38) to the initial Gaussian approximation (29), where the dimensions of
the subsystems are m =4 and n = 8. Comparing with the simulated true distribution, it is
observed that the new approximation (38) that incorporates the additional knowledge on the
skewness via the correction term (39) is more accurate than the first two cumulants based
Gaussian approximation (29). As compared to the symmetric Gaussian distribution, we also
see from figure 1 that the true distribution of von Neumann entropy is indeed a skewed one.
The distribution appears to be left-skewed (a.k.a. a negative skewness), where the left tail of
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Figure 1. Probability densities of standardized von Neumann entropy (25) of
subsystem dimensions m = 4 and n = 8: a comparison of Gaussian approximation (29)
(dashed line in blue) to the refined approximation (38) (dash—dot line in red) with the
K3 correction term (39). The solid line in black represents simulated true distribution.

the distribution is longer. In figure 2, we perform another numerical study by simultaneously
increasing the subsystem dimensions to m = 16 and n = 32 with their ratio

c= Pl (40)
kept the same as the value in figure 1. We observe from figure 2 that both the simulated and the
approximate (38) distributions of X approach the standard Gaussian distribution (29), where
the three curves almost overlap. As the author has learnt from Sean O’Rourke, the observed
asymptotic Gaussian behavior is typical for a wide class of linear spectral statistics> over dif-
ferent random matrix ensembles. In fact, we conjecture the following central limit theorem
for the linear spectral statistics of von Neumann entropy (9) over the fixed-trace ensemble (7).

Conjecture (O’Rourke-Wei). In the limit
m
m— o0, n— oo, —=cé¢(0,1], (41)
n
the standardized von Neumann entropy defined in (25) converges in distribution to a Gaussian
random variable with zero mean and unit variance.

Note that the regime (41) is a typical asymptotic regime in random matrix theory (a.k.a.
high-dimensional asymptotic regime), where both dimensions m and n approach infinity. This
is different from the classical asymptotic regime as studied in, e.g. [1, 2], where the dimension

2 A linear spectral statistics can be defined as ZZ’: S (x;), where x;,i = 1,...,m, are the eigenvalues of an m x m
Hermitian random matrix.
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Figure 2. Probability densities of standardized von Neumann entropy (25) of subsystem
dimensions m = 16 and n = 32: a numerical support to the conjectured Gaussian limit.
The solid line in black, the dashed line in blue, and the dash—dot line in red represents
the simulated true distribution, the standard Gaussian distribution (29), and the refined
approximation (38), respectively.

m is fixed as n goes to infinity. Proving the above conjecture requires showing that all the
higher cumulants (27) vanish in the regime (41), i.e.

SO ;
Féj = Hé./z — 0, ] > 3. (42)

With the obtained main result (24) of this work, we can show that the third cumulant of X van-
ishes in the regime (41) as follows. First, by the asymptotic behavior of polygamma functions

Yi(x) = © (xl]) s Xx—o0, j=1, (43)

with ©(+) being the big-theta notation of the family of Bachmann-Landau symbols, the sec-
ond cumulant (22) and third cumulant (24) of S scale in the limit (41) as

1

Ky =© (’12> , (44)
1

K3 = O <n4> , (45)

and
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0 Behavior of higher order cumulants
10 — 1 - - T 1 T T 1 T 1T

Absolute value of cumulants

—-—-- Simulation /

—— Asymptotic behavior (X)

10-3 1 1 1 1 1
10 12 14 16 18 20 22 24

Subsystem dimensions (m = n)

Figure 3. Log—log plot of absolute value of a few higher cumulants of standardized
von Neumann entropy (25) of various subsystem dimensions when 7 = n: a numerical
support to the conjectured convergence rate (48). Solid lines represent the conjectured
rate (48), and dashed lines represent simulated true cumulants with the exception that
the dashed line of the third cumulant is obtained by the formula (24), see also (27).

respectively. Consequently, as claimed, the third cumulant of X (or the skewness of 5)

w0 Ky O(1/nY) _®<1>

n

e = 2 = AT 46

3 27 6(1/nd) (46)
vanishes in the regime (41). In addition, based on the structure of the first three exact cumu-
lants and the asymptotic results (44) and (45), we further conjecture the limiting behavior of

all higher cumulants as

1 .
Iij = @ (,12j2> s J 2 4, (47)
or equivalently, see (42) and (44),
1 .
/{](X) =0 (nl—2> , j=4 (48)

In figure 3, we provide some numerical evidence to support the conjectured convergence
rate (48) of the higher order cumulants (27) by comparing the asymptotic rate (48) with the
simulated value of cumulants. We choose log—log scale for the axes and plot absolute value
of the cumulants, where some constants for the rate (48) are been chosen for illustration pur-
poses. We see from figure 3 that the simulated cumulants of finite dimensions approach rather
rapidly to their corresponding asymptotic slopes predicted by the conjectured rate (48).

The rest of the paper is organized as follows. In section 2, we derive the main result (24) on
the third cumulant of von Neumann entropy. Specifically, in section 2.1 the original problem

9
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is reduced to the task of computing three integrals (83)—(85) by exploring the relation to a
more convenient random matrix ensemble. The three integrals are calculated explicitly in
section 2.2 to the form of finite summations involving polygamma functions. The remaining
part of the derivation is performed in section 2.3, where we evaluate and simplify the resulting
sums with the help of two types of polygamma summation identities. The relevant summation
identities are listed in the appendices, where we also discuss the strategies in finding them.

2. Derivation of the third cumulant

2.1. Cumulant relation

The task of this subsection is to convert the third cumulant of von Neumann entropy to that
of a related random variable, the computation of which can then be conveniently performed.

We start by studying the relation between the third moments. By construction, the random
coefficient matrix X has a natural relation with a Wishart matrix YYT as

\'e'dl

XX = ———,
tr (YY')

(49)

where Y is an m x n (m < n) matrix of independently and identically distributed complex
Gaussian entries. The density of the eigenvalues 0 < 6,, < --- < #; < oo of YY' equals [19]

m

1
s@=z [I @-o)[[ee™ (50)

1<i<j<m i=1

where C is given by (8) and the above ensemble is known as the Wishart-Laguerre ensemble.
The trace of the Wishart matrix

r=1 (YY) =36, (5D
i=1
follows a gamma distribution with the density
h ( ) 1 e’ mn—1 c [O )
mn\l') = r s 5 .
'(mn) " o (52)

The relation (49) induces the change of variables

N=2 i=1,...,m, (53)

bi
r
that leads to a well-known relation (see, e.g. [1]) among the densities (7), (50), and (52) as

m

F ) hn(r)dr [T di = g (6) [ ] d- (54)

i=1 i=1

The above relation implies that r is independent of each \;, i = 1, ..., m, since their densities
factorize. We now define the random variable

T = Z&ilnei, (55)
i=1

10
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as the induced entropy® over the Wishart-Laguerre ensemble (50). The relation (54) has been
utilized to convert the first and second moment of S to 7 in [1] and [6], respectively. In a
similar manner, the computation of the third moment of S can be also converted to that of T as
follows. First, by the change of variables (53), one has

- 0 9
Zin 2 Inr—T
=Y = ), 56
and consequently
§3 =73 (—T3 +T23rInr — T3 I r + 1’ r) (57)
=3 (—T3 + 82373 Inr — 8373 In? r + #° In? ”) , (58)

where the second equality is obtained by replacing T (except for the the highest power term
T%) by S using the relation (56). As will be seen, the form (58) makes it possible to utilize
the independence between r and A so as to perform the subsequent calculations. The third
moment of S can then be computed as

Er [33] = /}\ r3 (—T3 +83P Inr— 832’ r+ - 1n° r) H d);

i=1

(59)
= /)\r’3 (—T3 + 837 Inr — 32 % r + P 1l r) H d\; / 3 (F
| —E[1] + 3B, [P Inr] Ef[$?] - 3B, [P 0’ r| By[S] + ) [ 1n’ ] )
N (mn); ’
where in the second line we multiple an appropriate constant
1= / i3 (r)dr, (61)

and the last equality (60) is obtained by the using identity (with (a), denoting the Pochhammer’s
symbol)
P (7)

r_Shmn r)= P
+3( ) (mn)3

(62)

as well as the change of measures (54) for the T° term along with the fact that 7 and X are inde-
pendent (so that the integrals involving r and S are evaluated separately). In (60), the expected
values over the density 5,,,(r) in (52) are computed by the identities

| e = r@n. R >0 (©3)
0

3 For convenience of the discussion, we refer to the random variable T as an induced entropy, which may not have
the physical meaning of an entropy.

1



J. Phys. A: Math. Theor. 53 (2020) 075302 L Wei

/Oooe_’r“_1 In* rdr = T'(a) (v5(a) + 1 (a)) R(a) >0 (64)

/Oooe_’r“_l In® rdr = I'(a) (3 (a) + 3¢o(a)vi(a) + ¥a(a)) . R(a) >0

(65)
obtained by taking derivatives with respect to the parameter a of gamma function
/ e r" dr = T'(a), R(a) > 0, (66)
0
as
Ey [P Inr] = (mn)3ipo(mn + 3) (67)
E, [r3 In? r] = (mn); (w(%(mn +3) 4+ 1 (mn + 3)) (68)
E, [r3 In’® r} = (mn)3 (3 (mn + 3) + 3¢bo(mn + 3)b; (mn + 3) + o (mn + 3)) .
(69)
The first and second moment of S in (60) are also known, see (11), (12), (21), and (22),
Er[S] = ki (70)
Ef[S?] = k2 + K. (71)

Therefore, to obtain Ey [$?] the remaining term to compute in (60) is E, [T°]. Since

=Y "6W'0,+3 >  676,In*6In6+6 > 6:6,0In6;In6;no,,
i=1 1<i#i<m 1<ij#k<m

the computation of E, [T3] involves one, two, and three arbitrary eigenvalue densities, denoted
respectively by g1 (x1), g2(x1,x2), and g3(x1, x2, x3), of the Wishart-Laguerre ensemble (50) as

oo -1 oo oo
E, [T3] = (T) /0 x? In® x; g1(xr)dx; + 3(’;1) (ml ) /0 /0 x%xz In? x; Inxp
X 82 ()C],Xz) dX|dX2 =+ 6<’;1) / / / X1X2X3 lIl)C| 111)62 IDX3 83 (xl,xz,xz) dxldXQd)C3.
0 0 0

It is a well-known result in random matrix theory that the joint density gy(xi,...,xy) of N
(out of m) arbitrary eigenvalues of various matrix models, including the Wishart-Laguerre
ensemble, can be written in terms of a determinant of a correlation kernel K (x;, xj) as [19]

~N)!
en(Xr . xy) = (’"mi') det (K (xi ), - (72)

The determinant in (72) is known as the N-point correlation function, where the symmetric
correlation kernel K (x;, x;) uniquely specifies the random matrix ensemble. As a result of (72),

the arbitrary eigenvalue densities needed to compute E, [Tﬂ are

1
gi(x1) = %K(xlaxl) (73)

12
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g (x1,x) = ﬁ (K (x1,x1)K (x2,%2) — K*(x1,%2)) (74)

1
g3(x1,x2,x3) = ( (K (x1,x1)K (x2, %) K (x3,x3) + K(x1,%2)K (x2, X3)

m(m —1)(m —2)
x K (x3,x1) + K(x1,x3)K(x3,%2) K (x2,x1) — K(x1,%2)K (%2, x1)K (%3, x3)
— K(x1,x3)K (x3,x1)K (%2, X2) — K (2, x3) K (%3, %2) K (x1,%1)),

(75)

and consequently the third moment of 7 can be written as

oo

oo 3 0o
Eg[T3] = (/0 xlnxK(x,x)dx) +3/0 xlnxK(x,x)dx/ x* In® x K (x, x)dx

+/ £ In’ x K(x,x)dx — 3/ xlnxKxxdx/ / xylnxlny
x K2 (x,y)dxdy — 3//xyln xlny K2(x,y) dxdy+2/ //xyz

x Inxlnylnz K(x,y)K(y, z)K(z, x)dxdydz. (76)

We now turn to the third cumulant of the induced entropy 7, which will result in a more
compact expression (82) than that of the corresponding moment (76). Similarly as the third

moment (76), the first two moments of 7 can also be represented as integrals involving the
correlation kernel as

E,[T] = /Ooxlnx K (x, x)dx (77)
0

oo 2 o0
E, [T?] </0 xlnxK(x,x)dx) +/O x? In? x K (x, x)dx

—/ / xylnxIny K?(x,y)dxdy. (78)
o Jo

The above integrals have been computed in [4] and [6], respectively, as

E,[T] = mniy(n) + %m(m +1) (79)

E, [T%] = mn(m + n); (n) + mn(mn + 1)3§(n) + m(m*n + mn
1 ) (80)
+m+2n+ 1)o(n) + Zm(m—|— 1) (m* +m+2).

Inserting the first three moments (77), (78), and (76) into the moment-to-cumulant relation
(13), the third cumulant of 7 is simplified to

Ky =B [T°] — 3B, [T?] K, [T] + 2E;[T] (81)

=1y — 3l + 2c, (82)

where we denote the integrals

IA:/ x31n3xK(x,x)dx (83)
0

13
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o0 o0
Iy = / / x?yln? xIny K?(x,y)dxdy (84)
o Jo

(o) o0 o0
Ic= / / / xyzInxInylnz K(x,y)K(y,z)K(z, x)dxdydz. (85)
o Jo Jo

By the relations (11)—(13) and the existing results (79) and (80), it remains to compute the int-
egrals 14, I, and I in order to obtain the final result (24). The prior results discussed so far also
allow us to express the desired third cumulant of § in terms of the first three cumulants of 7 as

6 3(2 3 4
(_@T_i_ T§+(m”+)r (T)3

- (mn)3 mn 1" mnt 12 w2\
3B3mn+4) , ;2 6(mn+2) ,
N _ Sumn + 2) 1. 86
mn(mn + 1) ( 1) mn + 1 Fi |+ a(mn 1) (86)
where (79) and (80) directly lead to
1
ki = mnio(n) + sm(m+1) (87)

2

Ky = mn(m + n) (n) + mnyg(n) +m (m+ 2n + 1) o(n) + %m(m +1),

(88)
and we have also utilized the identities below, see (16), in simplifying (86),
n—1 1
l = l —_—
voll +n) %(H%Hk (89a)
n—1 1
l = I —
Yi(l+n) =i (]) N ETE (89D)
n—1 1
= 2 .

k=0

The rest of the paper is to compute the integrals I4, I, Ic, where we will eventually show that

HgilA *SIB*'“ZIC (90)

= mn (m2 + 3mn + n* + 1) ¥a(n) + 6mn(m + n)ipo(n)i (n)
+m (2m* + 12mn + 3m + 6n” + 3n + 1) 1 (n) + 2mny; (n) 1)
+ 3m(m + 3n + 1)g(n) + 6m(m 4+ n + 1)(n) + m(m + 1).

Inserting the above expression as well as (87) and (88) into (86), the claimed main result (24)
will then be established.

2.2. Calculations of integrals I, Ig, and I

To compute the remaining integrals (83)—(85), we need the following results on the Wishart—
Laguerre ensemble. First, its correlation kernel can be explicitly written as [19]

14
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-l Cr(x)Cr(x
K (x;,x7) = /e %% (xx;)"— mzkln—m+1k" (92)
where
Culx) = (1L () (93)
with
L) = 3y (” o k) z e

i=0
being the (generalized) Laguerre polynomial of degree k. Similarly as the Hermite polynomi-
als (32), the Laguerre polynomials also satisfy an orthogonality relation [19]

n—m+k)!

J R e T [ ©5)
0 .

Instead of the summation form (92), the one arbitrary eigenvalue density (73) admits a more
convenient form by the Christoffel-Darboux formula [4, 19] as

_ ( — 1) me—x (n—m+1) (n—m+1) (n—m+1)
o) = e (L)~ L Ly )
(96)
We also need the following integral, due to Schrodinger [20], that generalizes the identity (95)

to
= qefo(oc)( )L(ﬁ)( )dx = ( 1)S+t mii(ft) q—o q—p F(q +1+ k)
S e e s—k)\r—k i

0 k=0
o7
where $(g) > —1. By taking up to the third derivatives of the Schrodinger’s integral (97) with

respect to g, we obtain three more useful integrals shown in (100) (see also [4]), (102), and (104)
below, denoted respectively by A(a A (g), Bﬁ,‘f’ﬁ ) (¢),and C, 5?6 ) (g), where we have also denoted

Ui =vi(q+1+k)+iilg—a+1)+ilg—B+1)
—Yilg—a—s+1+k) —vi(g—B—t+1+k).

Note that the explicit kernel expression (92) together with the corresponding Schrodinger’s inte-
gral (97) (and its higher order derivatives) of the Wishart—Laguerre ensemble, unavailable for

the fixed-trace ensemble, makes the subsequent calculation possible. This fact is the motivation
behind the approach of moments (cumulants) conversion (60) between the two ensembles.

(98)

A59(0) = [ de ma LO@L) e Rig) > -1 99)
0
- s—k)\t—k k! 0
k=0
o0
Bg? ) (q9) = / e *In’ x Lga)(x)L,(ﬁ) (x)dx, R(g) > —1 (101)
0

15
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min(s,r)
s g—a\[(qg—B\T(g+1+k
= (=1t <Sk><tk><k!)(\lf§+\lu). (102)
k=0
o (g) = / M I’ x L LD (Wdr,  R(g) > —1 (103)
0
o g —a) (g— B\T(g+14k)
= (=) > o)) T (W30 4 ).
=0 (104)

2.2.1. Computing 1a. Inserting the one arbitrary eigenvalue density (96) (see also (73)) into
(83), 14 is expressed via the integral (103) as

! _ _ _ _
Iy = ﬁ (C,(nnfffl,j,l’ln erl)(n —m+3)— C,(,:LZ"";"" '"H)(n —m+ 3)) ,
(105)

where the integrals in (105) are evaluated by invoking the identity (104) and then collecting
the non-zero contributions. In particular, the non-zero contributions consist of indeterminate
terms as a result of zero or negative arguments of gamma and polygamma functions. These
indeterminacy can be resolved by interpreting the gamma and polygamma functions involved
as the limits € — 0 of (with [ > 0)

(=1

D(=l+€) = == (14 ol + De + 0 (€)) (106a)
Yol(—1+ ) = ==+ o1+ 1)+ Qun(1) = i1+ D) e+ 300+ e +0 () (106b)
1/)1(*l+€):612*wl(l+1)+¢1(1)+C(2)+0(6) (106¢)
Yol €)= =5 4 gall+ 1) +4a(1) +2003) + 0 (). (1064)

By the above procedure, the integrals CUTTMTMTD (G 4 3)  and

m—1,m—1
¢l mtn=m) (n — m + 3) are evaluated, respectively, as

m—2,m
bt (- 3) (107)
[e’e) 2
- /0 e X I x (Lf:jl’”“)(x)) dx (108)

—1)!
:H (18m2n +39m* — 30mn — 57m + 12n + 30 + 3(13m*n + 12m* + 4mn’
m — !

—3mn — 4m — 4n® + 2n + 4)1po(n) + 6 (3m2n + m* 4 4mn* 4 3mn + m — nz)
X (1/13(11) + 11(n)) + 2n (m2 +4mn +m+ n* — n) (ng(n) + 3o (n)hy (n) + wz(n)))
= 6(n—k)! 303 1 4 1
+; m—3 4 <k+2 AR E (k+2)2> (Yo +1-8)
200k + 240(1) + 3). (109)
16
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and
Clrym b= (n — i+ 3) (110)
:/ e I x LT (L0 (x)de (111)
0
:u(40mnfm2+69mf32n738+8(8mn7m2+9m+3n2+5n+1)
8(m — 2)!

x o(n) +2 (8mn — m* + 5m + 180 + 26n + 6) (¢3(n) +1(n)) +8n(n+1)

m—4 1 4 4
x (15(n) + 300(m)r (n) + o )+Z _k W <2kk+]+k+3

1 n 6
2(k+4)  (k+2

)2> (o(n — k) — o (k +2) — ho(k) + 2¢o(1) +3). (112)

Inserting (109) and (112) back into (105), we arrive at a finite summation form of 7.

2.2.2. Computing Ig. Similarly, inserting the kernel expression (92) into (84), /5 is expressed
via the integrals (99) and (101) as

m—1 k!gAl((nk—m,n—m) (n —m+ I)B]Enk—m,n—m) (I’l —m+ 2)

IB: : -
kZ; (k+n—m)?
m—2m—k— 22| k A(n mp—m) 1B(n mp—m) 2
+Z Z ik +j+ DA 0 (n—m+ DB (n—m+2) (113)
= = (j+n—mlk+j+n—m+1)! ’

By the identities (100), (102) and with the help of (106), the integrals A,((";c_m’"_m) (n—m+1)
and B,Ef;:m’"fm) (n —m +2)in (113) are calculated as

AT (= m 1) (114)
oo 2
:/ e I (L,E""”)(x)) dx (115)
0
k+n—m)
:%((Zk—ernJrl)wo(k+n—m+l)+2k+1), (116)
BUT™ ™ (n—m o+ 2) (117)
0 2
_ / wome il x (L0 () de (118)
0
_ |
:W (; (17K + k(4n — 4m +7) + 4) +2(7K> + k(4n — 4m + 7) + 2n

_2m+3)¢0(k+n_m+l)+(6k2+6k("—m—|—1)+(n—m+2)(n—m+l))
k
X (Yok+n—m+1)+ ¢ (k+n—m+1) +ZZ —l+n—m+2)

3003 1 4 I
X(ii—2+i2+(i—1)2+(i—2)2>>’ (19

17
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. (n—m,n—m)
and the integrals Aj’k it

sions for different ranges of k as

(n—m+1)and B}",:rﬁ"l_m) (n — m + 2) admit different expres-

A =t 1) (120)
- /0 27 e I L™ ()L™ (x)d (121)
i+n—m)! . . 3j
__70 7 ) ((J+n—m+l)w0(]+n—m+l)+2J+n—m+2 ,
(122)
AT (= m 4 1) (123)
- /0 2 e I L™ ()L (x)d (124)
(j+n—m) (j+n—m+1 J
= - 1) k 09
Mkt 1) k k+2 ” (125)
B (0 —m + 2) (126)
— /0 272 i x L ()L™ (x)dx (127)
2(j+n—m) (77 5 i
- (J+'?' m) <J_|_](n—m—|—3)—|—2n—2m—|—5—|—(16j—|—j(6n—6m
Ji 2 "2 3
38 ) . . .
+5 | =m0 —m) +8 |o(jn—m A1)+ (j+n—m+1)(2+n
(=l +n—m+2)!
m+2)(¢§(j+nm+1)+w1(j+nm+1)))+2 U ;'11),"” )
=3 ’
1 3003 1 2 2
_ _3, 3 _r_o 2 (128)
X( T AN R R (1—1)2>’
B (0 —m + 2) (129)
- /0 22 I L ()L™ (x)d (130)

18
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_(jH+n—m)! 10] 2]
N ;! 3 73

+j(44n — 44m +87) + 6(n —m+3)(3n —3m+4))o(j+n—m+ 1)+ (j+n

1
Z(Tn—Tm+20) + (n m)2+9(n—m)+l3+8(25j2

—m+1)(j+n—m+2) (1/1(2)(j+n—m+1)+7/J1(j+n—m+1))>

4(j—1l4+n—m+2)! 1 1 1 1 |
+Z (j=0! (3(l+1)_24(l+2)_3(1—1)+24(l—2)+ﬁ)’ (131)

BU T (n—m + 2) (132)
/ P72 i x L ()L (x) d (133)
i _ |
S % (ﬁ (K* — Tk + 244(1) + 56) + j(K*(2m — 2n — 5) + k(18n
He—=1)s

—18m + 55+ 12(n — m + 2)1o(1)) + 4(3(3n — 3m + 4)3o(1) + 18n — 18n + 31))
+ (k+2)(k+3)(3m* — 6mn — 13m +3n* + 13n+ 12+ 2(n —m+ 1)(n —m +2)
x Yo(1)) +2(12/* + 6j(k(n —m+2) +3n —3m+4) + (k+2)(k+ 3)(n —m + 1)

X (n—m+2)) (o(j+n—m+1)— ) Z j—lti;m+2)

1
Uikt =Dk hkrirny T (134)

Inserting (116), (119), (122), (125), (128), (131), and (134) back into (113), we obtain a finite
summation representation of /.

2.2.3. Computing Ilc. In the same manner, by inserting (92) into (85), I¢ can be expressed in
terms of the integral (99) as

_1 13 (n mpa—m) 3 me1l m—1 2;13 (n—mn—m) 2
LR [A] (n—m+1) il (A (n—m+1)

D305

M

=0 (en—m)P =57 (i+n=—m)(j+n—m)
X
(l+n ). (1+n m)! Lo e

i!j!k!Ag-'im’nim) (n—m+ I)A/.(;me’nfm)(n —m+ 1)A,Ef§.7m’"7m (n—m+1)

% (rn—ml(+n—mlk+tn—m) ' (135)

The integrals in the above expression have been computed in (116), (122), and (125), inserting
which back into (135) leads to a finite summation form of /.

19
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2.3. Evaluation of summations in I, Ig, and I

The rest of the task is to evaluate the summations in the finite summation forms of I4, Ip,
and /¢, after inserting back the computed integrals (109), (112), (116), (119), (122), (125),
(128), (131) and (134). The evaluation of the summations amounts to applying the closed-
form identities listed in appendices A.1 and B.1 as well as the semi closed-form identities
listed in appendices A.2 and B.2. The derivation of these identities is discussed in appendices
A.3 and B.3.

Evaluating the summations is a tedious but straightforward procedure, which eventually
leads to Iy, I, and I being expressed respectively by (136)—(138) as shown below. Interested
readers may contact the author for the Mathematica files that contain detailed steps in evaluat-
ing the summations leading to (136)—(138). The coefficients a;, b;, and c; in the expressions
(136)—(138) can be found in tables 1-3, respectively. As seen from (136)—(138), we have
shifted the argument of each polygamma function in I4, I, and I¢ to one of following: 1, m,
n,n —m,n — m + k, with the help of (89). This choice leads the coefficients in tables 1-3, to
become polynomials in m and n.

Iy = ay + axho(n) + aztho(n — m) + agtho(1)tho(n — m) + asiho(m)ipo(n — m)
+ agtho(n)o(n — m) + ary(n — m) + asypo(1)4o(n)vbo(n — m)
+ agto(1)45(n — m) + argvbo(m)ibo(n)tho(n — m) + ario(m)ig(n — m)
+ apto(n)vg(n — m) + aizg (n — m) + awbr (n — m) + arsibo(n) by (n — m)

er]s’lbz(nf Jra ZM Z%k"'"— ) (136)
k=1

Ig = by + batpo(n) + b3tho(n — m) + barho(1)1po(n — m) + bsiho(m)io(n — m)
+ betg(n) + bywbo(n)tbo(n — m) + bsf (n — m) + botho(1)1ho(n)1ho(n — m)

+ biotho(1)165(n — m) + byyo(m)ao(n)ho(n — m) + biaahg(n)ibo(n — m)

+ bisto(m)g(n — m) + bratbo(n)d (n — m) + bisy(n — m) + bigthi (n)

+ bi7tpo(n — m)yi(n) + bisthi (n — m) + biotho (1)1 (n — m)

+ baotpo(m)ip1 (n — m) + baitho(n)h1 (n — m) + bxntbo(n — m)api(n — m)

(k+n—m 2 Yik4+n—m - k+n—m
+b2327r¢0 X )+b2427¢0( X )+b2527¢1( X )

— — — (137)
Ic = c1 + catho(n) + 3o (n — m) + carbo(1)ho(n — m) + csepo(m)apo(n — m)
+ ceg(n) + cro(n)bo(n — m) + s (n — m) + coto(1)bo(n)tho(n — m)
+ crotho(m)ibo(n)ho(n — m) + ey (n) + 1ot (n)ho(n — m)
+ c13tho (11§ (n — m) + cranho(m) g (n — m) + cistbo(n) v (n — m)
+ c16g (n — m) + c17301 (n) + c1sbo(n)ib1 (n) + crotho(n — m)h (n) + a0t (n — m)
+ ca1bo (1)1 (n — m) + coptho(m) i1 (n — m) + ca3tbo(n)2h1 (n — m)
+ cagbo(n — m)vr(n — m) + castha(n) + cagtha(n — m) + e M
=1

m 2 _ m _
T D L Z ke nzm), (138)

=1 o
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Table 1. Coefficients in (136) of I,4.

ap =

a) =

a3z =

ag =
as =
ae =

a; =

ag =

ap =
a =
ap =
apz =
ajg =
aps =
aie =

ay =

ag =

588 (37m3 +4012m%n — 30m? + 4410mn® — 330mn — 169m + 84n>
—30n% — 250n + 162)

— 27 (12m3 + 414m?n — 6m?* + 364mn® 4+ 6mn — 94m + Tn® — 6n>
—67n+ 90)

— 5 (Tm* + 352m3n + 18m* + 336m*n + 5m* — 352mn> + 360mn’
+216mn + 42m — Tn* + 6n° + 139n% 4 222n + 72)

7 (m3 + 28m?n 4 6m?* + 30mn® + 18mn + 11m + 6n*> + 26n + 6)
-3 (m3 + 28m?n + 6m> + 30mn® + 18mn + 11m + 61> + 26n + 6)
5 (30m2n — 18m? + 28mn® — 54mn + 26m + n> — 18n%> + 11n — 18)
i(m4 +28m3n + 6m> — 30m*n? + 6m>n + 11m> — 56mn’

—30mn* — 26mn + 6m — 2n* — 12n* — 22n* — 12n)

6mn (m2 +3mn +n® + 1)

6mn (m2 +3mn +n® + 1)

—6mn (m2 + 3mn 4 n® + 1)

—6mn (m2 +3mn+n? + l)

3mn (m2 +3mn +n® + 1)

—2mn (m2 +3mn +n® + 1)

% (m? 4 28m*n 4 6m* + 30mn* + 18mn + 11m + 6n* + 26n + 6)
3mn (m2 +3mn+n®+ l)

mn (m2 +3mn +n® + 1)

Z (m3 + 28m?n + 6m> + 30mn® + 18mn + 11m + 6n% +26n + 6
+12n (m* + 3mn + n* + 1) tho(n) + 24n (m? + 3mn + n* + 1) Yo(n — m))
—6mn (m2 +3mn +n® + l)

Finally, inserting (136)—(138) into (90), we observe substantial cancellation among the
terms in Iy — 31 + 2l¢. In particular, polygamma functions of argument n — m and the three
types of unsimplifiable sums

k _
ZM (139
k=1
m 2 k .
Z%( +k” m) (140)
1
"y (k+n—m)
> . (141)
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Table 2. Coefficients in (137) of I.

b

by =

by =

by =
bs
b6 =
b7 =

bs =

bip=
b=

big =
by =
big =

big =

by =
by =

g (111m? + 12036m*n 4 2198m* + 13 230mn? + 4530mn + 1629m
+252n% + 150n* — 414n — 194)

— 25 (36m’n + 1242m*n* + 174m*n + 72m* + 1092mn® + 690mn?
—234mn + 168m + 21n* + 14n3 — 3210 + 358n + 24)

—%2 (21m4 + 1056mn + 230m> + 864m>n + 255m® — 1056mn>
+360mn? 4 216mn + 94m — 21n* — 140’ 4 2490 + 434n + 144)

% (3m3 + 84m*n + 10m? + 90mn> + 6mn + 21m — 6n> + 66n + 14)

—% (3m3 + 84m2n + 10m?* + 90mn® + 6mn + 21m — 6n* + 66n + 14)

—%” (3m2 + 12mn —3m+n*> — 3n + 2)

é( — 12m3 4 90m?n* — 138m>n — 24m? + 84mn® — 150mn> + 66mn
—12m + 3n* — 5013 4 4517 — 46n)

- (3m* + 84mn + 26m*> — 90m?n* + 66m*n + 45m* — 168mn’
—66mn® — 66mn + 22m — 6n* — 36n® — 66n> — 36n)

2mn (3m2 +9mn —2m + 3n> — 2n + 3)

6mn (m2 + 3mn 4 n? + 1)

—2mn (3m® 4+ 9mn — 2m + 3n* — 2n + 3)

—4mn(m + n)

—6mn (m2 + 3mn 4 n® + 1)

mn (3m2 +9mn + 2m + 3n* + 2n + 3)

—2mn (m2 +3mn +n® + 1)

—gn (30m2n — 6m?* + 28mn® — 18mn + 26m + n® — 60> + 11n — 6)
—2mn (m2 +3mn +n® + l)

1'—2 (m4 +28m3n — 2m® 4 90m*n® — 18m*n — m?* + 56mn’ + 18mn?
+66mn + 2m + 2n* + 120> + 22n% + 12n)

—2mn (mz + 3mn 4 n® + 1)

2mn (m2 +3mn +n® + l)

mrz(m2+3mr172m+n2 —2n+ 1)

2mn (m2 +3mn +n® + 1)

%(3m3 + 84m*n + 10m> 4 90mn? + 6mn + 21m — 61> + 66n + 14
+12n (3m® + 9mn — 2m + 3n* — 2n + 3) ho(n) + 72n(m* + 3mn
+n? 4+ 1)ipo(n — m))

—6mn (m2 +3mn +n® + 1)

—2mn (m2 + 3mn 4 n® + 1)

cancel completely. The surviving terms give us

Iy —31g + 2Ic = 26’251/)2(1’1) + 20131/)0(71)1/)1 (i’l) + (2017 — 3b16) Uy (I’l) + 20111/18 (n)

+ (2¢6 — 3b) i (n) + (a2 — 3by + 2¢2) o(n) + ar — 3by + 2¢;
=mn (m* + 3mn +n* + 1) Yo (n) + 6mn(m + n)io(n)ih; (n)

+m (2m* + 12mn + 3m + 6n” + 3n + 1) 1 (n) + 2mny; (n)

+ 3m(m + 3n + 1)¢pd(n) + 6m(m +n + 1)abo(n) + m(m + 1),

which is the desired identity (91). This completes the proof of the main result (24).

22
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Table 3. Coefficients in (138) of I¢.

cl =

Cy) =

3 =

Cq =

Cs
Co =
Cc7 =

Ccg =
[
Cl0 =
Ci1 =
Ci2 =
C13 =
Cl4 =
Ci5 =
Ci6 =
C17 =
Cig =
C19 =

€0 =

€1 =
Cn =
€23
Co4 =

€25 =

€26 =

€1 =

€28 =

€9 =

5a5 (37Tm? + 4012m*n + 1114m* + 4410mn* + 2430mn + 1043m
+84n* 4 90n* — 82n — 34)

— 55 (12m*n + 414m*n? + 90m*n — 36m* + 364mn> + 342mn*
—142mn + 12m + Tn* + 1013 — 1270 + 134n + 12)

— 2 (Tm* 4 352m*n + 106m* + 264m*n + 125m* — 352mn’
+26m — Tn* — 10n* + 55n% + 106n + 36)

7 (m3 + 28m?n 4 2m?* + 30mn® — 6mn + 5m — 6n> + 20n + 4)
-3 (m3 + 28m?n + 2m? + 30mn® — 6mn + 5m — 6n> + 20n + 4)
% (—6m2n + 3m? — 24mn® + 15mn + 3m — 2n® + 6n* — 4n)
—1(6m* — 30m>n* + 60m*n + 12m* — 28mn> + 48mn* — 20mn
+6m — n* + 160> — 17n% + 14n)

41(m4 +28mn + 10m> — 30m2n® + 30m*n + 17m* — 56mn’
—18mn? — 20mn + 8m — 2n* — 12n® — 2210 — 12n)
6mn(m2+3mn—m+n2—n+ 1)

—6mn (m2+3mnfm+n27n+ 1)

mn

—6mn(m + n)

6mn (m2 +3mn +n® + 1)

—6mn (m2 + 3mn +n? + 1)

3mn (m* +3mn+m+n*>+n+1)

—2mn (m2 +3mn +n® + 1)

}—1(4m3 — 30m2n® + 30m*n + 6m* — 28mn> + 30mn® — 20mn
+2m —n* +6n° — 11n* + 6n)

3mn(m + n)

—3mn (m2 +3mn +n® + 1)

Al—l(— 4m® + 30m*n? — 18m*n — 6m> + 28mn® + 6mn* + 20mn
—2m 4 n* 4 6n® + 11n% + 6n)

—3mn (m2 +3mn +n® + 1)

3mn (m2 +3mn +n® + 1)

—3mn(m + n)

3mn (m2 +3mn +n® + 1)

5 (m2+3mn+n2+ 1)

-5 (m2 + 3mn 4 n® + 1)

7 (m3 + 28m?n + 2m?* + 30mn® — 6mn + 5m — 6n> + 20n + 4
+12n (m? 4 3mn — m + n* — n+ 1) ¥o(n) + 24n(m* + 3mn
+n? + 1)1po(n — m))

—6mn (m2 + 3mn +n? + 1)

—3mn (m2 + 3mn 4 n? + 1)

Before the end of the paper, a few remarks are in order. Firstly, note that the results (136)—
(138) become indeterminate when m = n since some of the polygamma functions approach
infinity. The resulting identity (91) is still valid for m = n due to the cancellation of all
polygamma functions of argument n — m as observed in (142). On the other hand, the inde-
terminacy can be also resolved by taking appropriate limits using (106). Secondly, note that
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as a result of applying the semi closed-form formulas, we in fact ended up with four types of
unsimplifiable summations. Namely, in addition to (139)—(141), we also have

=~ 1o(
> el (144)

k=1
The sum (144), however, can be expressed by the sum (139) through the identity

— (Yolk +a) 4 Yok
> (M

) =to(m+ )tho(a+m+1) —o(1)vo(a+1) + -

p
X (Yola+m+1) —ola+1) —ho(m+ 1) +o(1)), (145)

which is a special case of the result [21, equation (23)]

i: (¢0(k+a) n ok + b)

k+b kta ):w"(“*m“)%(“mﬂ)—wo(a+1)¢o(b+1)

k=1

+$(w0(a+m+1)—¢o(b+m+1)—11)0((1—1-1)

+ (b + 1)). (146)
In the limit a approaches b, the above identity reduces to [21, equation (26)]
(k+a 1
Z %Ha =5 (Wilatm+1) —vi(a+ 1) +y5(atm+1) = ggla+ 1)), (147)

which has also been utilized in simplifying the summations. Since no further relation seems to
exist among (139)—(141), we call these sums bases in representing the unsimplifiable summa-
tions in Iy, I, and I¢. In the simplification, we also find that the unsimplifiable sum

y wira
k+a
always comes in pairs with the unsimplifiable sum

Z Py (k
k+ a
(149)

It can be verified by the principle discussed in appendix A.3 the following closed-form rela-
tion of the two unsimplifiable sums

(148)

Zwo (k+a)+ik+a) 1

T a 3(¢2(a+m+1)—¢2(a+1)+3¢o(a+m+l)

x Yi(a+m+1) = 3¢(a+ Di(a+1) +vg(a+m+1)
—via+1)). (150)

which excludes (148) or (149) being considered as an unsimplifiable sum basis. Finally, as
seen from this section, in computing the integrals in (105), (113) and (135) an essential task
that the formulation in [2] will also inevitably end up with is to capture the cancellation of
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each of the unsimplifiable sums (139), (140), (141) and (144). This in particular requires
deriving tailor-made semi closed-form formulas as listed in appendices A.2 and B.2, which are
unavailable in the computer algebra system Mathematica [17]. It is therefore unclear the state-
ment in [2] that the calculations were performed by using Mathematica to yield the result (24).

3. Conclusion and outlook

In this work, we derived the third cumulant formula (24) of von Neumann entanglement
entropy in a random pure state. In proving the result, we also obtain a considerable number
of new summation identities involving polygamma functions, which may be of independent
interest. Future work includes the study of the fourth cumulant of von Neumann entropy that
specifies its kurtosis. This provides insights into the structure of higher moments that may help
prove the conjectured Gaussian behavior in the limit (41). We are also looking for an alterna-
tive method of the cumulant calculation that would streamline or circumvent the need of the
tedious simplification task.
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Appendix A. Polygamma summation identities of the first type

In this appendix, we list finite summation identities of polygamma functions of the type
n

D kY (k+ a2 (k+ az) - (k + am) (A.1)

k=1
(hereinafter referred to as the first type) useful in the simplification process in section 2.3,
where {a;},, {bi}1,, {Jji}]",, and ¢, are non-negative integers. We list the corresponding
closed-form identities in appendix A.1 and semi closed-form identities (that contain an unsim-
plifiable term) in appendix A.2. Some remarks on derivation and implementation of the listed
formulas are provided in appendix A.3.

A.1. Closed-form expressions

Z%(’H‘a) =(@a+n)pola+n+1)—aola+1)—n (A.2)
k=1
kz:;kwg(k—Q—a) = % (—a®+a+n*+n)ola+n+1)+ %(a — Dap(a+1)

+ %n(Za —n—3) (A3)
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n

k=1

> Kok +a)=—
k=1

n

1 1
Zk2¢o(k+a) =¢ (Za3 —3d> +a+2n° +3n2+n) Yola+n+1)— 8a(2a2

1
—3a+ 1)¢0(a +1) = 5en (124* — 6an — 24a + 4n* + 15n + 17)

1

4

1
(a4—2a3+a2—n4—2n3—nz)d)o(a—kn—l—l)—ﬁ—z(a—1)2

1
x a*ola+1) — —n(— 124 + 6a*n + 30a* — 4an* — 18an — 26a

48
+3n® +14n® +21n + 10)

D Wik +a)=(a+n)fa+n+1) = Q2a+2n+ Ddola+n+1)—api(a+1)

k=1

+ 2a+1)o(a+1)+2n

1

n
1
de)é(k—l—a): 5(_az+a+n2+n)1/)§(a+n+1)+Z(6a2+4an—2a—2n2

k=1

n

k=1

n

k=1

—6n—2) X Yola+n+1)+

2

+ 2)1/)0(11 +1)+ %n(—6a +n+5)

1 1
—(a—Nayt(a+1)+ Z(_ 6a* + 2a

1 1
> KRk +a) = < (20 =3¢ +a+ 20 307 +n) Yila+n+ 1) - —(zzcﬁ

18

+12d°n — 21a* — 6an® — 24an — a + 4n® + 150> + 17n + 3)

X tPola+n+1)— éa (24> —3a+1)Y5la+1) + i(22a3

—2la® —a+ 3)¢o(a+ 1)+

390+ 79)

1
108

1
Zkawé(k—}—a) =-z (a* —2d° +a*> —n* —2n —n

18

—n(132a2 ~30an — 1924 + 8n’

1
Nvgla+n+1)+ ﬁ(25614

+ 12a°n — 384® — 6a’*n* — 30a*n + 11a* + 4an® + 18an® + 26an

1
4 20— 3n* — 14 — 21 — 1On>¢0(a+n+ D+ 3la—17a

1 1
x pila+1) — —a (25a’ — 38a*> + 1la+2) ho(a+ 1) + =—n

24

288

X (f 300a° + 78a%n + 606a> — 28an” — 162an — 410a + 9n°

1500 + 111n + 118)

26
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> uilka) - —Stlatnt 1)+ Sunlat 1) + (@t mgilatnt1) - (2

+2n+ D)Y3a+n+1)+3Q2a+2n+ Dola+n+1)—a

x hg(a+1) + %(2[1 + g (a+1) —3(2a+ )(a+ 1) — 6n (A.10)

;kwg(kJra)_i(Za 1)¢1(a+n+1)+%(72a+1)¢1(a+1)+%(7a2

—i—a—i—nz—ﬁ—n)z,/)g(a—l—n—l—l)—l—%(3a2+2an—a—n2—3n—l)

1
x P3(a+n+1)+ 3 (742a2 — 36an + 6a + 6n* + 30n + 14)

X ola+n+1)+ %(af Dai(a+1) + % (73a2 +a+1)
x Y2(a+1) + i (21a* = 3a —7) dola + 1) + é(42an — 32
727n> (A.11)

;k2¢3(k+a) = 1]—2 (—6a2+6a— 1) i(a+n+ 1)—1-% (6a2—6a+ 1) i(a+1)

1 1

+te (2a> = 3d> +a+2n° +3n* +n) Yila+n+1) - E(ZZaf

+ 12a*n — 21a* — 6an* — 24an — a + 4n® + 150* + 17n + 3)

xYia+n+1)+ L (170a3 + 132a*n — 123a* — 30an® — 192an
0 36

1
— 47a + 8n’ +39n2+79n+33)1/)0(a+n+ 1) = ga (2a*> —3a+ 1)

1 1

X yi(a+1)+ 15 (220 =216 —a+3) yi(a+1) - 3 (170a3
1

—123a® — 47a + 33)w0(a+ 1)+ 76(7 1020621 + 114an’

4 1248an — 160> — 1057% — 365n) (A.12)
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1
—Z(a4—2a3+a2—n4—2n3—n2)¢8(a+n+1)+T6(25a4

+ 12a%n — 38a® — 6a*n* — 30a*n + 11a* + 4an® + 18an® + 26an
1

9

+300a°n — 530a° — 784*n* — 606a°n + 174> + 28an® + 162an*

+2a— 3n* — 14> — 21n% — 10n)¢3(a tn+1) (415a4

+410an + 146a — 9n* — 50n° — 111n% — 1180 — 36)¢0(a tn+1)

4
1 4 3 2 1

+ % (415a* — 530a° + 17a® + 146a — 36) o(a + 1) + 152

X (4980a3n — 690a’n® — 8850a*n + 148an’ + 1134an® + 4790an

—27n* — 1820° — 5250% — 850n)

n

S vnk+a)=(a+n)ia+n+1)—api(a+1)+dola+n+1)—ola+1)
k=1

Zk%(k—&—a) = %((—az—}—a—l—nz—i—n) Pila+n+1)+ (a— Day(a+1)
k=1

+(=2a+ Dtola+n+1)+ (2a— Dhola+1) + n)

- 1
E kzwl(k+a):6((2a373a2+a+2n3+3n2+n)¢|(a+n+1)+a(a71)
k=1

x (=2a+ V)i (a+ 1) + (62 — 6a+ 1) ola+n+1) + (— 6>

+ 6a — 1>¢0(a+ 1) — 4an +n* +4n>

n

1
Zk31/)1(k+a) = ﬂ(6(fa4+2a3fa2+n4+2n3+n2)1/}](a+n+1)+6<a4
k=1

~ 243 +a2)1/)1(a +1) = 12a (2a* = 3a+ 1) tla+n+ 1) + 12a
X (2a2 —3a+1)Yo(a+1)+ 18a*n — 6an* — 30an + 2n* 4 9n
+13n>

> ok +a) = (a+n)p(a+n+1) —apyla+1)+2¢(a+n+1)
k=1

— 21/)1(&4— 1)

28

;k3w8(k+a) = %a (2a273a+ Dila+n+1)+ ia (72a2+3a7 i(a+1)

1 1
+ —(a—1*dP3(a+1) — T4 (25(13 —38a* + 1la + 2) Ya(a+1)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)
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(fa2+a+n2+n) Pala+n+1)+ %a(af Dpa(a+1)

| =

Zk¢2(k +a)=
k=1

+(2a+DY(a+n+ 1)+ 2a—Dp(a+1) —pla+n+1)
+tola+1) (A.19)

n
1
Zkzi/)z(k—l—a) = 6((2&3 —3d* +a+2n +3n* +n)r(a+n+1) +a(— 24°
k=1

+3a— 1)1/12(a+ 1)+2(6a276a+ 1) (a+n+ I)Jr2(76a2
+6a— 1)w1(a+ 1) +6(2a — Dpo(a+n+1) +6(—2a+ 1)

X oa+ 1) — 4n) (A.20)

¢ 1
Zk3w2(k+a) = Z((—a4 +2a° —a*+nt+20° + ) a(a+n+ 1)+ (a—1)°d?
k=1
X P (a+ 1)+4a(—2a2+3a— Dyi(a+n+ 1)+4a(2a2—3a+ 1)
x(a+1) —2(6a2—6a+ 1) vo(a+n+ 1)+2(6a2—6a+ 1)
x o(a+ 1) + 6an — n? fSn) (A21)

> ok +a)y(k+a) = (a+n)o(a+n+ Dipi(a+n+1) — avola+ 1) (a+ 1)
k=1

- %(2a+2n+ Di(a+n+1) + %(Za—i- Di(a+1)

3t n 1)~ golatnt 1)~ Sudat )

2
+dolat 1) (A22)

kao(k+a)1/)1(k+a) = %(2(7a2+a+n2+n)1/10(a+n+l)wl(a+n+1)
k=1

+2(a— Dao(a+ i(a+1) — (— 3a% — 2an + a + n?

+3n + 1>w1(a+n—|— )+ (=3a*+a+1)¢i(a+1)

+ (1 =2a)§(a+n+ 1)+ (6a+2n—1)hy(a+n+1)
+(2a—1)Y2(a+ 1)+ (1 — 6aypo(a+1) — 3n) (A.23)
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n
1
Zkzd)o(k—i— a)p1(k+a) = %(6 (2a —3a®> +a+2n° +3n* +n) Yo(a+n+1)
x Yi(a+n+1)—6a(2a* —3a+1)Yola+ i (a+1)
+ (f 224 — 12a*n + 21a* + 6an® + 24an + a — 4n°
— 158 = 170 =3)vr(a+n+1) + (224"~ 21a* — a+3)
xi(a+1)+3 (68 —6a+1)v(atn+1)+ (—66a2
— 2dan + 42a + 6n® + 24n + 1)¢0(a Y1) - 3(6a2 ~6a
+ 1)¢§(a+ 1) — (=662 + 42a + 1) vo(a + 1) + 44an
—5n? — 32n) (A.24)
1
288( 72(a472a3+a27n472n —n )wo(a+n+ )
x Yi(a+n+1)+72(a— 1)*a*Po(a+ 1) (a+1)
+ (150a4 + 72a’n — 2284 — 36a°n* — 180a*n + 664>

Zk3¢o<k+a)wl(k+a)

k=1

+ 24an® + 108an* + 156an + 12a — 18n* — 84n* — 126n*

- 60n)1/)1(a +n+ 1)+ (—150a* + 2284 — 66a* — 12a)

< pr(at1)—72a (28 —3a+ 1) ¥3a+n+1) - 12(

—50a® — 18a*n + 57a* + 6an® + 30an — 11a — 2n* — 9n?

30— 1)1/)0(a+n+ 1) +72a (2d> = 3a+ 1) 3 (a + 1)

+ 12 (=50a® + 57a* — 11a — 1) who(a + 1) — 450a’n

+ 78an’® + 606an — 14n* — 81n* — 205n). (A.25)

A.2. Semi closed-form expressions

Zlﬁok-i-awo Z

k=1
) - n¢0(n 1)+ (a+ Dpola+ 1) +2n (A.26)

Jo(n+1) = (a+n+ Dgolatn

Zk¢o(k+a)¢0(k): Z (’2 (2n(n+ Dbo(a+ n+ 1)iho(n+ 1)
k=1

k=1
+(a27a7n273n7 2)ola+n+1)+ (2a—n—3)n

X ho(n+1) = (a —2)(a+ 1)o(a+ 1) — 3an + n* + Sn) (A.27)
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~ o (k)
k +

+ i(lsn(n T+ 1)

S R+ a)(k) = ala— 1)(2a— 1) 108

k=1 k=1

+a
x ola+n+ Do(n+1 (4a3 —3ad®> — a+4n® + 1517
+17n+6)1/)0(a+n+ )+3n(— 124* + 6an + 24a — 4n*

150 — 17)1/)0(n+ 1) +3 (4> — 3 — a+ 6) vola+ 1)

+n (484 — 15an — 96a+ 8n* + 391+ 79)) (A.28)
> Kok + a)yo(k) = Z %(k) 25138 (72n2(n + 1)*ola+n+1)

k=1

x o(n+1) + 6<3a —24% —3d® + 2a — 3n* — 143 — 21

— 10n)¢0(a +n+1)+ 611(12613 — 6a*n — 30a* + 4an* + 18an
+26a — 3n® — 14n* — 21n — 10)1/)0(11 +1) —6a(a—1)(a+1)
x (3a — 2)o(a+ 1) + n(— 90a® + 27a*n + 219a* — 14an®

781an7205a+9n3+50n2+111n+118>). (A.29)

A.3. Remarks on the first type summation

The principles of evaluating finite sums of the first type (A.1), that led to the above listed
formulas, are simple. The idea is to change the order of sums by first replacing one poly-
gamma function at a time by the definition (16) and make use of the obtained lower order
summation formulas in a recursive manner. We demonstrate the principles by considering the
sum below as an example

n

> kg (k + a), (A.30)

k=1

which is a special case of (A.1). We first show the recursion in parameter b by the example
b=2,

n k+a— l’l/J k+a
Zwo kta)=> " ol Zwo k+a) (A31)
k=1 j=I
n k+ta—1 k a 1 n
=> > wo +a) (D=7 Dtk +a) (A.32)
k=1 j=a+1 j=1 J k=1
n lw n
J+a +ola+ 1)) vok +a) (A.33)

k=1 j=1
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= 1 Yo(k +a) +bo(a+1) ¢0k+a
]+

k=j+1 k=1
_ J n

:Zj-l-% <Z¢ok+a Z k+a>+¢o(a+1)k§:¢o(k+a)’
= =1
j (A.34)

which reduces to evaluating the sum (A.30) for » = 1. To illustrate the recursion in parameter
¢, we consider the example ¢ = 1 in (A.30)

n n k
S kgk+a)=> Y ¢ik+a) (A.35)
k=1 k=1 j=1
=> > Wik +a) (A.36)
j=1 k=j
j—1
_Z<Zq/z0k+a > g k+a>, (A37)
j=1 \k=1 k=1

which reduces to evaluating the sum (A.30) for ¢ = 0.

Using the principles as shown in the above examples, the listed formulas in this appendix
are derived. Despite being derived under the assumption of non-negative integers a, these
formulas can be analytic continued to be valid for any a in the complex plane except for
negative integers. This is essentially due to the fact that polygamma functions are analytic
functions. Some of these formulas can be found in the literature. In particular, the formulas
(A.2)—~(A.6), (A.10) and (A.22) are available in [22, chapter 5.1]. By keeping in mind the rela-
tion between harmonic numbers and polygamma functions (16), the formulas (A.2)—(A.13)
and (A.14)—(A.21) may be also derived from the result [23, theorem 2.2] and the result [23,
theorem 2.1], respectively.

Note that the results (A.22)—(A.25) can be also obtained by the relation

0 ¢ -
50 D Kulk+a) =23 kvolk +a)pi(k +a), (A.38)
k=1 k=1

and that the semi closed-form expressions (A.26)—(A.29) reduce to the corresponding closed-
form ones (A.6)—(A.9) when a = 0.

We also point out that currently the computer algebra system Mathematica is only
able to evaluate into closed-form expressions the sum of the first type (A.1) when b; =1,
by=---=b, =0,i.e. the sum [17]

> Kk + a). (A.39)

k=1

We are working with Wolfram Research to implement the polygamma summation (A.1) in an
algorithmic manner into future versions of Mathematica.
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Appendix B. Polygamma summation identities of the second type

In this appendix, we list finite summation identities of the type

" (n—k)!
smn =3 oW, m<n B.1)
(hereinafter referred to as the second type) that are utilized in the simplification process in sec-
tion 2.3. Here, f(k) is referred to as the test function that may involve a polygamma function
and (n — k)!/(m — k)!is referred to as the summation kernel.
We list the corresponding closed-form and semi closed-form identities in appendices B.1
and B.2, respectively. The strategy in deriving the listed formulas is discussed in appendix B.3.

B.1. Closed-form expressions

~(n—k!  nl 1
;(m—k)! S m-Dln—-m+1

(B.2)
“(n—k!'1
;(m_k)!;—%(¢0(”+1)—¢0(”—m+1)) (B.3)
SO = i Yo+ 1) — ol — m-+ 1) + o(1)
S m—k)! T = Din—m+ 1)\ 0 0
1

- w0
=z (n—k)!w(k)in'
;(mfk)! Ok m( (¢1( +1) = n(n—m+ 1) +4gn+1)

+ U —m+1)) + (1) (ol + 1) = o(n — m+ 1))

—Yo(n+ )po(n —m + 1)) (B.5)

m

(n—k)! Yo(n+1—k) 7(% +1) —thy(n—m+1) + ho(n+ D (o(n+ 1)
2 (m = k)l A (B.6)

—to(n —m+1))).

B.2. Semi closed-form expressions

" (n—k)! - - k+n— —Dl(k4+a—1)
; 'k+a_ (a+ 'Z] l(k+a+n—m)! (B.7)
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m
m!
k=1

I s |
+ U(n—m+ 1) = @(n+ 1)) + vo(n = m) (w(n + 1) = Yo(m + 1)
—Yo(n—m+1) +wo(1)>> (B.8)

(=R oK) _ nl ikt n—m) £ gk tn—m) ol
;(m—k)! (;)(2 *@; 1 X 0 —ﬁ(wo(n—m)

—%unﬁf””*[‘””+;L<—;(wm+1>
—¢2(n—:1+ 1) +g(n+1) —g(n—m+ 1)+ 3¢(n+ 1)
x Pi(n+1) —=3o(n —m+ 1) (n —m+ 1)) + (to(n —m)
— (1) (Y10 + 1) = Y1 (n—m+ 1) + 63 (n + 1)

— 3 —m+ 1)) = (Y10 —m) — 4 (n — m) + 2u(1)

x o —m) ) (o(m+ 1) = vio(n +1) +o(n —m+ 1)

- wo(l))> (B.9)

n—k)\! Yo(n+1—k n < k+n—m n+1 k+n—m n!
Z(( _k))l o ):m';df(Jr ) + Yo(n + 1)tho(k + )_‘_7

m
2
— k k m!

X <;¢z(n—m+1)— %¢2(n+1)+¢o(n—m+l)
><¢1(n—m+1)+wo(n+1)(;(¢1(n—m+1)

— i+ 1)+ 93— m+ 1) = Y30+ 1)) + toln —m)
X (Yo(n+1) —tho(n —m+ 1) — tho(m + 1) + 1o(1))

+1(n—m) =i (n+ 1)) = Yi(n—m)(tho(n —m+1)
+ tho(m + 1) — 1po(1)) + tho(n — m) (1 (n + 1)

—i(n—m+ 1))) (B.10)

34



J. Phys. A: Math. Theor. 53 (2020) 075302 L Wei

m m

(n—k)! B n! Yo(k+n —m)
k;(mfk)!wl(k)_7(m71)!(n7m+1); : k

N = =

n!
C(m— l)!(nm+1)( (Qﬁ'(nierl)*q/}‘(n)*%(n)

+UR(n— m+ 1)) + (= m)(bo(n) = Yo(m) — vo(n —m+ 1)

+wm»mu>¢“m‘%“‘m+”%“v. B.11)

n m

B.3. Remarks on the second type summation

The generic approach in deriving the summation identities of the second type (B.1) relies on
finding the recurrence relation between Sq{m,n) and S{m — 1,n — 1), where the summation
terminates after m recursions since S{0,n — m) = 0. For a given test function f(k), the recur-
rence relation can often be found by first rewriting (B.1) as

Sp(m.n) =" ((:1_ 11 _]2)!! Z:if(k), (B.12)

where the term

(n—1—k)!

m—1-k) (B.13)

is understood as the new kernel of the sum S{m — 1,n — 1) associated with the new test
function

n—k
m_kf(k). (B.14)
The relation between S{m,n) and S{m — 1,n — 1) can then be obtained by partial fraction
decomposition in the variable k of this modified test function (B.14).
To illustrate the above approach, we show in details the derivation of some of the listed
formulas as examples. The first example is when f(k) = 1/k, where the modified test function
is decomposed as

n—kl_nl n—m 1

- =— o B.1
m—kk mk m m—k (B.15)
The corresponding recurrence relation is deduced as
m

n n—m (n—1—k)!
Se(m,n) = —=Sg(m—1,n—1
y(m,m) = Sy (m —1,n— 1) + — kZ:; CE (B.16)

n (n—1)!

=—S(m—-1,n—1 , B.17
Sp(m = 1n—1) 4+ —, (B.17)

where we have used the formula (B.2). Iterating m times the above relation leads to the desired
expression (B.3). The next example is the case f(k) = 1o(k)/k, where similarly as in (B.15)
the test function is decomposed as
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n—ko(k) _ nio(k)  n—m k) (B.18)

m—k k m k m m—k

The recurrence relation is then calculated as

—m = (n—1—k)!
Sp(m,n) = %Sf(m —Ln—-1)+ n mm Z (n(m 1_ k)') Yo(k) (B.19)
k=1 ’

(n—1)!

m!

n
= ;Sf(m —Ln—-1)+ (o(n) —Yo(n —m+ 1) + (1)), (B.20)
where we have made use of the formula (B.4). After m recursions of the above relation, one
obtains the claimed identity (B.5). We also consider the case f(k) = 1/(k + a) as an example,
where the modified test function is decomposed as

n—k 1 n+a 1 n—m 1

mfkk+a:m+ak+a+m+am7k' (B.21)

The resulting recurrence relation is

s )_n—|—aS( ] 1)+n—m§:(n—1—k)!
r(m,n) = mra m—1,n m+als (m— 1! (B.22)
n+a (n—1)!
= Sr(m—1,n—-1 —_ .
m—|—af(m " )+(m—1)!(m—|—a) (B.23)

where we have utilized the result (B.2). The claimed identity (B.7) is established after m
iterations of the recurrence relation (B.23). Note that the formula (B.3) is a special case of
the formula (B.7), which is a useful identity that could transform a summation into one of the
listed sums in the appendices. The last example is when f(k) = 1/k?, where partial fraction
decomposition of the modified test function gives

n—ki_ﬁi n—ml n—m 1 (B.24)
m—kk2 mk? m? k m2 m—k '
The recurrence relation is then obtained as
n n—m e~ n—1-k)'1 m—1-k)!
=—S(m—1n—1 - A A
Sy(m.n) me(m = 1)+ m? (;(mlk)!k+; (m—k)!
n (n—1)l(n—m)
= ;Sf(m —1l,n—1)+ T(wo(n) — Po(n —m)), (B.25)

where we have used the identities (B.2) and (B.3). Iterating m times the above relation gives
the desired result (B.8).

Some of formulas in appendix B exist in the literature: the formula (B.2) is the well-known
Chu—Vandermonde identity [24, p 99] and the formula (B.3) can be also obtained via the con-
nection to a hypergeometric function of unit argument as [24, p 111]

LA —1)!
;((Zk))!k:é’;1))!3F2(1,1,1—m;z,1_n;1) (B.26)
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Moreover, the identity (B.8) recently appears in [6, equation (A12)].
Finally, we note that the listed formulas in appendix B are in fact valid for any complex
number n except for integers smaller than m, i.e.

neC\{m—-1m-2,...}. (B.28)

This fact provides an alternative derivation of the formulas (B.6) and (B.10) via the derivative
with respect to n on (B.3) and (B.8), respectively, i.e.

0 2’": (n—k)!1 :z’": (n—k)! Yo(n+1—k)

on ke (m —k)! ke ’

~ 1.2
(m— k) k< ¢ (B.29)

k=1 k=1
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