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Abstract
In this paper, we present a generalization of the Hamilton–Jacobi theory 
for higher order implicit Lagrangian systems. We propose two different 
backgrounds to deal with higher order implicit Lagrangian theories: the 
Ostrogradski approach and the Schmidt transform, which convert a higher 
order Lagrangian into a first order one. The Ostrogradski approach involves 
the addition of new independent variables to account for higher order 
derivatives, whilst the Schmidt transform adds gauge invariant terms to 
the Lagrangian function. In these two settings, the implicit character of the 
resulting equations will be treated in two different ways in order to provide a 
Hamilton–Jacobi equation. On one hand, the implicit Lagrangian system will 
be realized as a Lagrangian submanifold of a higher order tangent bundle that 
is generated by a Morse family. On the other hand, we will rely on the existence 
of an auxiliary section of a certain bundle that allows the construction of local 
vector fields, even if the differential equations are implicit. We will illustrate 
some examples of our proposed schemes, and discuss the applicability of the 
proposal.
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1.  Introduction

In classical mechanics there exist two main approaches to deal with mechanical systems: 
namely the Hamiltonian and the Lagrangian formalism [1, 4, 41]. Assuming that the configu-
ration space of a physical system is an n-dimensional manifold Q, the Lagrangian formulation 
of the dynamics is generated by a Lagrangian function L defined on the tangent bundle TQ. 
Physically, TQ can be considered as the velocity phase space of the dynamics whereas L is 
given as the difference of kinetic and potential energies. The extremals of the integral action 
lead to the determination of the Euler–Lagrange equations governing the motion. In a local 
chart (qA, q̇A) on TQ, the Euler–Lagrange equations can be written as

d
dt

∂L
∂q̇A − ∂L

∂qA = 0.� (1)

Note that, the Euler–Lagrange equations  conform a system of n second order differential 
equations.

On the other hand, Hamiltonian realization of a physical system is achieved on the cotan-
gent bundle T*Q, which is the momentum-phase space of a physical system. T*Q is equipped 
with a canonical symplectic (closed, and non-degenerate) two-form ΩQ [46, 50]. The non-
degeneracy of the symplectic two-form establishes that for an exact one-form dH, where H 
is the Hamiltonian function on T*Q, there exists a unique vector field XH on T*Q. This vector 
field is the Hamiltonian vector field and it is implicitly defined by the following equation:

ιXHΩ = dH.� (2)

Here, ι is a contraction operator or interior derivative [2, 63]. In most of the cases, the 
Hamiltonian function corresponds with the total energy of physical system, which is a mani-
festation of the skew-symmetry of ΩQ, and it is conserved all along the motion. There is a 
distinguished coordinate system (qA, pA), known as the Darboux’ coordinates, on T*Q. In 
this chart, the symplectic two form turns out to be ΩQ = dqA ∧ dpA, and the Hamilton equa-
tions (2) can be written as

q̇A =
∂H
∂pA

(qA, pA), ṗA = − ∂H
∂qA (q

A, pA).� (3)

Notice that, the Hamilton equations conform a system of 2n first order differential equations.
Two questions may arise at this point. One is how to find a passage between the Lagrangian 
and the Hamiltonian formulation of a given dynamical system. The other one is how to solve 
the Euler–Lagrange or/and the Hamilton equations. These two questions are essential and 
motivational for the present work. In this introductory part, we use local coordinates and 
avoid technical details as much as possible in order to exhibit the motivation and the aim of 
the present paper in a clearer form. Accordingly, we will explain the global definitions and 
mathematical foundations along the main body of the paper.

1.1. The Legendre transformation

To find a passage between the Lagrangian and the Hamiltonian formalisms of a dynamical 
system, one needs a one-to-one transformation from the tangent bundle TQ to the cotangent 
bundle T*Q. But, unfortunately, there is no canonical way to arrive at such a mapping between 
these two bundles [1, 4]. Nevertheless, by means of a Lagrangian function L, more concretely 
by taking the fiber derivative of L, we can define the Legendre transformation
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FL : TQ −→ T∗Q : (qA, q̇A) �→
(

qA,
∂L
∂q̇A

)
.� (4)

Here, the momenta is defined to be pA = ∂L/∂q̇A so that it is a function of the positions and 
the velocities (qA, q̇A). By referring once more to the Lagrangian function, define a real valued 
function

H = pAq̇A − L(qA, q̇A)� (5)

depending on the positions, the velocities and the momenta.
Considering the Legendre transformation (4), we see that there are two possibilities. One 

possibility is the case where all the velocities (q̇A) can be written as functions of the position 
and the momenta (qA, pA), which is the case when the Legendre transformation is locally 
invertible. This case occurs if the Lagrangian function is non-degenerate, that is if the Hessian 
matrix [∂2L/∂q̇A∂q̇B] has rank n. Other possibility occurs when some of the velocities cannot 
be written as functions of (qA, pA). That is, the Legendre transformation is not invertible, so 
the Hessian condition does not hold. Let us discuss these two cases one by one.

Non-degenerate Lagrangians. If the Lagrangian function is non-degenerate, that is, if the 
Hessian matrix [∂2L/∂q̇A∂q̇B] has rank n, then, the implicit function theorem guarantees the 
existence of a local solution q̇A = q̇A(q, p). That is, we can locally write the velocities as func-
tions of the positions and the momenta. In this case, the Legendre transformation (4) becomes 
invertible so that it turns out to be a local diffeomorphism. By substituting the local inver-
sion q̇A = q̇A(q, p) into the function (5), one arrives at a well-defined Hamiltonian function 
H = H(qA, pA) that only depends on the positions and momenta. It is now easy to compute 
that the Hamilton equation (3) generated by this Hamiltonian function are exactly the same 
as the Euler–Lagrange equation (1). So that, in this case, Hamiltonian analysis of the Euler–
Lagrange equations can be achieved immediately.

Degenerate Lagrangians. If, on the other hand, a Lagrangian function is degenerate, then the 
Legendre transformation (4) fails to be invertible even locally. In this case, the image FL(TQ) 
of the tangent bundle TQ under the Legendre transformation can at most be a (so called as the 
primary constraint) submanifold of T*Q [19]. Since some of the velocities in the set (q̇A) can-
not be written as functions of the positions and the momenta, the function H, in (5), must also 
depend on the velocities. That is, H = H(qA, pA, q̇A). One way to understand such a function 
is to consider it as a family of functions defined on T*Q parameterized by the variables (q̇A). 
More terminologically, H can be taken as a Morse family of functions [8, 46]. In this case, the 
dynamical equations on the cotangent bundle become implicit differential equations

q̇A =
∂H
∂pA

, ṗA = − ∂H
∂qA ,

∂H
∂q̇A = 0 ⇔ pA − ∂L

∂q̇A = 0.� (6)

A key observation here is to see that the explicit Hamiltonian dynamics in (3) and the implicit 
Hamiltonian dynamics in (6) are both Lagrangian submanifolds of the iterated tangent bundle 
TT*Q. This leads to a pure geometric approach to the Legendre transformation which makes 
this transformation even applicable in constrained or/and degenerate Lagrangians. This inter-
pretation was first introduced by Tulczyjew, and the passing from the higher order tangent to 
the higher order cotangent of manifold (and viceversa) is known as the Tulczyjew triple [67]. 
In the main body of the paper we shall present the theory of Tulczyjew triples in detail. Here, 
TT*Q is a symplectic manifold equipped with the symplectic two-form

ΩT
Q = dq̇A ∧ dpA + dqA ∧ dṗA� (7)
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obtained from the complete lift of the canonical symplectic two-form ΩQ on T*Q [65].
We wish to make an additional remark here by recalling an alternative way of reaching a 

well-defined explicit Hamiltonian formulation for degenerate systems. In this method, to have 
a Hamiltonian realization, one needs to employ the Dirac–Bergmann constraint algorithm [19] 
or its geometric equivalent, the Gotay–Nester–Hinds algorithm [27–29] to the system.

Implicit Hamiltonian dynamics. A Lagrangian submanifold of a symplectic manifold is 
determined by two conditions. One is that the dimension of the Lagrangian submanifold must 
be a half of the dimension of the symplectic manifold, and the second is that the symplec-
tic two-form must be identically zero when it is restricted to the Lagrangian submanifold. 
Notice that, direct substitutions of the explicit Hamiltonian dynamics in (3) or the implicit 
Hamiltonian dynamics in (6) into the symplectic two-form (7) result with the vanishing of 
the symplectic two-form. So that, both of them determine Lagrangian submanifolds of TT*Q.

In general, we say that a system of differential equations is a Hamiltonian system if it can 
be recast as a Lagrangian submanifold of a certain symplectic manifold. It is evident that if 
a Lagrangian submanifold is horizontal, according to the Poincaré lemma [46], there locally 
exists a Hamiltonian function generating the dynamics. This results with an explicit differ
ential system. The existence of Darboux’ coordinates on symplectic manifolds guarantees that 
such an explicit Hamiltonian system can be written in form (3). If a Lagrangian submanifold is 
non-horizontal then it is not possible to find either a Hamiltonian vector field or a Hamiltonian 
function [48]. Instead, it is possible to find (inevitably not a classical Hamiltonian function 
but) a generating function for a non-horizontal, Lagrangian submanifold, so that it can locally 
be written as

q̇A =
∂F
∂pA

, ṗA = − ∂F
∂qA ,

∂F
∂λα

= 0� (8)

for a Morse family of functions F. Notice that, in this local picture, F depends on auxiliary 
variables (λα) as well as on the position and the momenta (qA, pA). The existence of this local 
realization (8) is a manifestation of the generalized Poincaré lemma (also called as Maslov–
Hörmander theorem) [9, 33, 46, 69] under the light of special symplectic structures [35, 60].

1.2.  Hamilton–Jacobi theory

In order to find some possible analytical solutions of the Hamilton equations, one may employ 
the Hamilton–Jacobi (HJ) theory. The HJ theory is rooted in the idea of finding an appropriate 
canonical transformation [4, 9, 34] that leads the system to equilibrium and pairs of action-angle 
variables that render the dynamics trivial. This philosophy has brought many interesting results, 
deriving into integrability theories, reduction, KAM theory, among others [20, 24, 61, 62]. Our 
interest resides in the geometric interpretation of this theory [1, 46, 49], its formulation, and 
applications. See for example [11], where a geometric framework for the Hamilton–Jacobi 
theory was presented and the Hamilton–Jacobi equation was formulated both in the Lagrangian 
and in the Hamiltonian formalisms of autonomous and non-autonomous mechanics.

Let us describe this geometry in local coordinates. Consider a Hamiltonian system defined 
by a Hamiltonian vector field XH on the symplectic manifold (T∗Q,ΩQ). The time-independent 
Hamilton–Jacobi problem is a partial differential equation, whose solution is a function W 
defined on Q, given by

H
(

qA,
∂W
∂qA

)
= ε.� (9)
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Here, the function H is the Hamiltonian function generating the Hamiltonian dynamics, and ε 
is a constant real number. Notice that, in (9), the momenta is replaced by the partial derivative 
of a function W that is pA = ∂W/∂qA. We call a solution W of (9) general if it additionally 
depends on n number of some other variables (�A) as well, that is W = W(qA, �A).

The Hamilton–Jacobi theory finds solutions on the lower dimensional manifold Q and 
retrieves them on the higher dimensional manifold T*Q by the existence of a section dW  of 
the cotangent bundle. Here, W is a solution of the Hamilton–Jacobi equation (9). Let us now 
comment how we relate the solutions of Hamilton–Jacobi equation and the solutions of the 
Hamilton equations. Consider the differential equation

q̇A =
∂H
∂pA

∣∣∣∣
pA=∂W/∂qA

� (10)

on Q defined by taking the first set of the Hamilton equation (3) at pA = ∂W/∂qA. Notice 
that, the system (10) consists of a number n of first order differential equations, that is a half 
of the number of equations in (3). Accordingly, it is easier to solve this system than solving 
the Hamilton equations. If W is a solution of the Hamilton–Jacobi problem, then a solution of 
(10) can be lifted to a solution of the Hamilton equations. More concretely, if ϕt = (ϕA

t ) is a 
solution of (10) then (ϕt, ∂W/∂qA(ϕt)) is a solution of the Hamilton equations.

A Hamilton–Jacobi theory for implicit Hamiltonian dynamics. It is important to remark 
here that the classical HJ theory only deals with explicit Hamiltonian systems. In [25], we 
presented a generalization of the classical Hamilton–Jacobi theory that proved its suitability 
in the case of implicit Hamiltonian dynamics. To ellaborate this theory, we started with a 
(possibly non-horizontal) Lagrangian submanifold S of TT*Q. This submanifold S projects to 
a submanifold TπQ(S) of TQ by the mapping TπQ. Here, TπQ is the tangent mapping of the 
cotangent bundle projection πQ : T∗Q �→ Q. Note that TπQ(S) determines an implicit differ
ential equations on Q. The philosophy of the implicit HJ theory is to retrieve solutions of S, 
provided the solutions of TπQ(S). In similar fashion as in the classical Hamilton–Jacobi theo-
rem 1, in order to lift the solutions in Q to T*Q, we are still in need of a closed one-form dW  
on Q, but two ingredients of the theory are missing. One is that the base manifold, denoted by 
C = τT∗Q(S), is not necessarily the whole T*Q, but possibly a proper submanifold of it. The 
second is the nonexistence of a Hamiltonian vector field due to the implicit character of the 
equations. We present the following diagram to summarize this discussion:

� (11)

where τQ is the tangent bundle projection from TQ to Q whereas τT∗Q is the tangent bundle 
projection from TT*Q to T*Q.

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204
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Our first idea to work with a non-horizontal submanifold is to make use of the generalized 
Poincaré lemma, which affirms that there exists a Morse function F (a family of generating 
functions) that generates the dynamics of the implicit system. Recall this local realization 
exhibited in (8). The Morse function F plays the role of the Hamiltonian in the explicit picture. 
A Hamilton–Jacobi theory for this system consists in finding a function W on Q satisfying

F
(

qA,
∂W
∂qA ,λα

)
= ε,

∂F
∂λα

∣∣∣∣
pA=∂W/∂qA

= 0,� (12)

where ε is a constant.
The second idea is to deal with the implicit character of the system by constructing a local a 

vector field. For this construction we need to consider an auxiliary section σ : C ∩ Im(dW) → S, 
because since S is implicit, there may exist several vectors in S projecting to the same point in 
C. The role of the section σ is to reduce this unknown number to one. As a result, we arrive at a 
vector field Xσ that satisfies Hamilton-like equations, and which is suitable for the application 
of the classical HJ theory. We will show the details in the main body of the paper.

1.3.  Higher order systems

In our previous work [25], where the HJ formalism was generalized for implicit systems, we 
also addressed the problem of constructing HJ theory for degenerate Lagrangian theories. 
Now, as a complement to our previous work, in the present paper we wish to apply the implicit 
HJ theory to degenerate higher order Lagrangian systems.

Higher order Euler–Lagrange equations. The Euler–Lagrange equations (1) consist of sec-
ond order differential equations. It is also possible to formulate differential equations involv-
ing higher order derivatives in the realm of the Lagrangian formalism. Let us depict here 
the second order case and postpone the general case to the upcoming sections. Consider a 
Lagrangian function L depending on the acceleration as well as the position and the momenta, 
that is L = L(qA, q̇A, q̈A). Geometrically, the triplets (qA, q̇A, q̈A) are the elements of the second 
order tangent bundle T2Q. After the variational of the action integral, one arrives at the second 
order Euler–Lagrange equations

d2

dt2

∂L
∂q̈A − d

dt
∂L
∂q̇A +

∂L
∂qA = 0.� (13)

Note that, the second order Euler–Lagrange equations in (13) give rise to a system of fourth 
order differential equations if the term ∂L/∂q̈A depends on q̈A. In the literature, higher order 
systems make appearance in many physical theories involving the mathematical description 
of relativistic particles with spin, string theories, gravitation, Podolsky electromagnetism, in 
some problems of fluid mechanics and classical physics, and in numerical models arising from 
the geometric discretization of first order dynamical systems (see [56, 57] for a long but non-
exhaustive list of references).

Ostrogradski momenta. The Hamiltonian formulation of the second order Lagrangian form
ulation (13) is also possible. This can be, for example, achieved by means of the Ostrogradski 
momenta [55]

p(0)
A =

∂L
∂q̇A − d

dt

(
∂L
∂q̈A

)
, p(1)

A =
∂L
∂q̈A .� (14)

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204



7

See that, in this case, we have two sets of momenta denoted by p(0)
A  and p(1)

A . In this case, 
define a function

H = p(0)
A q̇A + p(1)

A q̈A − L(qA, q̇A, q̈A)� (15)

depending on the positions, the velocities, the accelerations, and the Ostrogradski momenta. A 
second order Lagrangian function is said to be non-degenerate in the sense of Ostrogradski if 
the rank of the matrix [∂2L/∂q̈A∂q̈B] is maximal. If the Lagrangian function is non-degenerate, 

then all the accelerations (q̈A) can be written as functions of the first order terms (qA, q̇A, p(1)
A ) 

by employing the implicit function theorem to the second momenta in (14). After the substitu-
tion of these solutions, the function in (15) turns out to be a well defined Hamiltonian function 
H = H(qA, q̇A, p(0)

A , p(1)
A ) on the iterated cotangent bundle T*TQ equipped with the local coor-

dinates (qA, q̇A, p(0)
A , p(1)

A ). In this case, the Hamilton equations are computed to be

dqA

dt
=

∂H

∂p(0)
A

,
dq̇A

dt
=

∂H

∂p(1)
A

,
dp(0)

A

dt
= − ∂H

∂qA ,
dp(1)

A

dt
= − ∂H

∂q̇A .

� (16)

After a direct substitution of the Hamiltonian function H = H(qA, q̇A, p(0)
A , p(1)

A ) into the 
Hamilton equations, one arrives at the second order Euler–Lagrange equation (13). This estab-
lishes a Hamiltonian realization of the higher order Lagrangian formalism. If a Lagrangian 
function is degenerate in the sense of Ostrogradski, then one cannot solve all the acceleration 

(q̈A) as functions of (qA, q̇A, p(1)
A ) referring to the second momenta in (14). So that, the func-

tion H in (15) cannot be written as a function depending solely on (qA, q̇A, p(0)
A , p(1)

A ). The 
accelerations cannot be accommodated by the first order terms. Hence, there is no explicit 
Hamiltonian function or no explicit Hamilton equations as given in (16). This results in sys-
tems of implicit differential equations defined on T*TQ. In this paper, we are interested in such 
kind of higher order degenerate Lagrangian systems.

Schmidt method. There is an alternative way to arrive at the Hamiltonian picture of a higher 
order Lagrangian system. For this, initially, one needs to recast a Lagrangian function depend-
ing on higher order derivatives into a Lagrangian function depending only on the first order 
derivatives. Then, one applies directly the classical Legendre transformation (4) to this first 
order formalism. There are two ways of writing a higher order Lagrangian as a first order one. 
The first method is based on the idea that consecutive time derivatives of the initial coordinates 
form new coordinates with the introduction of Lagrange multipliers. This eventually coincides 
with the method of Ostrogradski momenta (14). The second one is the Schmidt method [3, 21, 
59] where the acceleration is defined as a new coordinate instead of the velocity. One of the 
advantages of the Schmidt method is the non-existence of Lagrange multipliers in the reduc-
tion procedure. Instead, the Lagrangian function is modified by adding a gauge term such that 
the associated energy function contains additional terms preserving the equations of motion. 
Another important feature about the Schmidt method is that it equally deals with degenerate 
or non-degenerate Lagrangians.

Hamilton–Jacobi theory for higher order systems. In [17], the authors propose a HJ the-
ory for higher order systems that are explicit. Nonetheless, they do not propose any gener-
alization of the HJ formalism for higher order implicit equations. This observation has been 
another point of motivation for our present work. As we have pointed out, the degeneracy 
levels of Lagrangian function bring some complications when we pursue their Hamiltonian 
formulation. Apart from this, it is important to note that other technicalities appear in the 
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case of higher order dynamics. Notice that for the first order theory, the Lagrangian func-
tion is defined on TQ, whereas the Hamiltonian function is defined on T*Q. So that both the 
domain TQ and the range T*Q of the Legendre transformation have the same dimensions 2n. 
But, for example, in the second order case, the Lagrangian function is defined on T2Q, and its 
Hamiltonian counterpart is defined on T*TQ. The dimension of T2Q is 3n, whereas the dimen-
sion of T*TQ is 4n. This issue also becomes relevant when we write a Hamilton–Jacobi theory 
for higher order Lagrangians, and concerning the implicit character of the equations. Hence, 
one needs to perform a careful and coordinate-free analysis to have a correct picture. This is 
one of the reasons why we prefer to use tools of global analysis in the main body of the paper, 
while we use local expressions along the rest of the text.

1.4.  Statement of the problem and contents

After presenting some fundamentals and pointing out what is missing in the literature, we are 
now ready to state our aim in the present paper.

Goal of the present paper. In this paper, our goal is to construct a Hamilton–Jacobi theory for 
the higher order degenerate Lagrangians. More concretely, we will generalize the geometry 
that we have proposed [25] in such a way that it allows us to construct a Hamilton–Jacobi 
formalism for higher order systems. As we mentioned previously in [25], two main ideas are 
proposed to deal with the implicit character of the Lagrangian/Hamiltonian formulation: one 
is the use of Morse families, and other one is to introduce auxiliary sections. In the present 
work, we generalize both of these two ideas to a higher order degenerate frame. Further, in this 
paper, we aim to compare the Ostrogradski and Schmidt method in the realm of a HJ theory 
for both degenerate and non-degenerate higher order Lagrangians.

Organization of the present paper. The following section  is reserved for some basics as 
well as for a brief summary of Hamilton–Jacobi theory of implicit systems of first order. 
Additionally, Morse families and special symplectic structures, Tulczyjew triple for the first 
order dynamics are summarized. In section 3, we review the fundamentals of higher order tan-
gent bundles, Tulczyjew triples for higher order frameworks, and implicit higher-order differ
ential equations. In section 4, we construct a Hamilton–Jacobi theory for higher order implicit 
Lagrangian systems. We explain our two main approaches to work with the implicit character 
of the arising higher order implicit equations: one is the Lagrangian submanifold method or 
Morse family approach, and the second is the construction of a local vector field by the exis-
tence of an additional section that reduces the number of vectors in the implicit submanifold 
projecting to a same point of a lower dimensional bundle. For the Morse family approach, we 
will ellaborate a list of subcases considering the Ostrogradski method and the Schmidt trans-
formation, comparing both cases and illustrating their utility in nondegenerate and degenerate 
cases. Section 5 shows the applications of an implicit Hamilton–Jacobi theory for higher order 
dynamical systems in the particular case of second order Lagrangians. We will depict such 
application making use of the Ostrogradski approach and the Schmidt–Legendre transform. 
For second order Lagrangians, we also introduce the setting of the acceleration bundle for 
the Schmidt–Legendre transform, in order to deal likewise with degenerate or nondegenerate 
higher order implicit Lagrangians. Two particular examples are: a deformed elastic cylindri-
cal beam with fixed ends, and the end of a javelin. The Ostrogradski and Schmidt methods 
will be compared in this same section  for nondegenerate cases, as it is the case in which 
Ostrogradski applies. As more general models, we will depict the second and third order 
Lagrangians with affine dependence on their highest order terms. Section 6 contains further 
commentaries on the usefulness and the limitations of the theory that we propose, as well as 
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some open questions on possible Hamilton–Jacobi realizations of second order degenerate 
Lagrangian theories especially coming from the gravitation theory.

2.  Fundamentals

2.1.  Hamiltonian dynamics on the cotangent bundle

Consider an n-dimensional manifold Q and its cotangent bundle T*Q with the canonical pro-
jection πQ from T*Q to Q. T*Q is equipped with a canonical (Liouville ) one-form θQ defined 
as

θQ(X) = 〈TπQ(X), τT∗Q(X)〉,� (17)

where the pairing on the right hand side is the duality between T*Q and TQ, [1, 4, 41, 46, 69]. 
Here, TπQ is the tangent mapping of the projection πQ whereas τT∗Q is the tangent bundle pro-
jection from TT*Q to T*Q. To see these mapping more explicitly, we refer to the commutative 
diagram exhibited in (11). Minus of the exterior derivative of the canonical one form, that is 
ΩQ = −dθQ, is the canonical symplectic two-form on T*Q. A Hamiltonian system on T*Q is 
determined by the triple (T∗Q,ΩQ, H), where H being a Hamiltonian function. Geometrically, 
the Hamilton equations are defined by

ιXHΩQ = dH,� (18)

where XH is the Hamiltonian vector field associated with the Hamiltonian function H, and ιXH 
is the interior derivative [2, 63].

Local picture. Let (qA, pA) be bundle coordinates on T*Q that are Darboux coordinates for 
the symplectic form. In these coordinates, the canonical one-form reads θQ = pAdqA whereas 
the canonical symplectic two-form becomes ΩQ = dqA ∧ dpA. In this local picture, the 
Hamiltonian vector field XH is written as

XH =
∂H
∂pA

∂

∂qA − ∂H
∂qA

∂

∂pA
� (19)

so that the Hamilton equations turn out to be the ones in (3).

2.2.  Geometric Hamilton–Jacobi theory

Consider a Hamiltonian system (T∗Q,ΩQ, H) with the Hamiltonian vector field XH. Let γ  be 
a one-form on Q, and define a vector field Xγ

H  on Q by

Xγ
H = Tπ ◦ XH ◦ γ.� (20)

This definition implies the commutativity of the following diagram.

.� (21)

We state the geometric Hamilton–Jacobi theorem as follows [11, 37].
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Theorem 1.  For a closed one-form γ  on Q, the following conditions are equivalent:

	 (i)	�The vector fields XH and Xγ
H  are γ-related, that is

Tγ(Xγ
H) = XH ◦ γ.� (22)

	(ii)	�The equation is fulfilled

d (H ◦ γ) = 0.

Notice that, since a solution γ  is assumed to a closed one-form, by Poincaré lemma 
there locally exists a function W satisfying dW = γ. Substitution of this into the condition 
d (H ◦ γ) = 0 results with the classical formulation of the Hamilton–Jacobi problem (9) 
where the constant ε appears as a manifestation of the integration.

Geometric HJ theories in the literature. This realization of the Hamilton–Jacobi theory has 
been devised in various situations, as it is the case of nonholonomic systems [13, 24, 32, 36, 
52, 53], geometric mechanics on Lie algebroids [5], almost-Poisson manifolds [38], singu-
lar systems [40], Nambu–Poisson framework [44], control theory [7], classical field theories 
[37, 39, 45], partial differential equations in general [68], the geometric discretization of the 
Hamilton–Jacobi equation [43, 54], and others [6, 12].

2.3.  Lagrangian submanifolds and Morse families

Let (M,Ω) be a symplectic manifold, and SM be a submanifold of M. We define the symplectic 
orthogonal complement of TSM as the set of tangent vectors

TS⊥
M = {u ∈ TM| Ω(u, v) = 0, ∀v ∈ TSM}.� (23)

SM is called a Lagrangian submanifold of M if TSM = TS⊥
M . In this case, the dimension of 

SM is equal to the half of the dimension of M. For different types of manifolds (Poisson, 
Nambu–Poisson, etc), the definition of a Lagrangian submanifold has been accommodated 
to its background. See for example [46]. In the case of mechanical systems, the Lagrangian 
submanifolds have a physical interpretation as a generalization of the set of possible initial 
momenta of a given point in the configuration space.

Consider the canonical symplectic manifold (T∗Q,ΩQ). As it is well known, the image 
space of a closed one-form γ  on Q is a Lagrangian submanifold of T*Q. We call such kind 
of Lagrangian submanifolds as horizontal Lagrangian submanifolds. If a Lagrangian sub-
manifold of T*Q is non-horizontal, that is, if it is not possible to determine it as the image of 
a closed one-form, then one possibility is to employ the theory of Morse families in order to 
express the Lagrangian submanifold in terms of a generating function.

Morse families. Let (R, τ , N) be a fiber bundle. The vertical bundle VR over R is the space 
of vertical vectors U ∈ TR satisfying Tτ (U) = 0. The conormal bundle of VR is defined by

V0R = {α ∈ T∗R : 〈α, U〉 = 0, ∀U ∈ VR} .

Let E be a real-valued function on R, then the image of its exterior derivative is a submanifold 
of T∗R. We say that E is a Morse family (or an energy function) if

TzIm (dE) + TzV0R = TzT∗R,� (24)

for all z ∈ Im (dE) ∩ V0R. A Morse family defined on (R, τ , N) generates a Lagrangian sub-
manifold of the canonical symplectic manifold (T∗N,ΩN) in the following way [8]:
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SN = {w ∈ T∗N : T∗τ(w) = dE (z) , for some z ∈ T∗R} .� (25)

In this case, we say that SN is generated by the Morse family E. Note that, in the definition of 
SN, there is an intrinsic requirement that τ (z) = πN (w). The inverse of this statement is also 
true, that is, any Lagrangian submanifold is generated by a Morse family. This is known as the 
generalized Poincaré lemma [9, 33, 46, 66, 69]. Here, we are presenting the following diagram 
in order to summarize this discussion.

.� (26)

Local picture for Morse families. Assume that N is equipped with local coordinates (xa), and 
consider the bundle local coordinates (xa,λα) on the total space R. In this picture, a function 
E is called a Morse family if the rank of the matrix

(
∂2E
∂xaxb

∂2E
∂xa∂λα

)
� (27)

is maximal. In such a case, the Lagrangian submanifold (25) generated by E locally looks like

SN =

{(
xa,

∂E
∂xa (x,λ)

)
∈ T∗N :

∂E
∂λα

(x,λ) = 0
}

.� (28)

See that the dimension of SN is half of the dimension of T*N, and that the canonical symplectic 
two-form Ω vanishes on SN.

Special symplectic structures. Let P be a symplectic manifold carrying an exact symplectic 
two-form Ω = dΘ. Assume also that, P is the total space of a fibre bundle (P,π, N). A special 
symplectic structure is a quintuple (P,π, N,Θ,χ) where χ is a fiber preserving symplectic diffeo-
morphism from P to the cotangent bundle T∗N  [35, 60]. Here, χ can uniquely be characterized by

〈χ( p),π∗X(n)〉 = 〈Θ( p), X( p)〉� (29)

for a vector field X on P, for any point p  in P where π( p) = n. Note that, pairing on the left 
hand side of (29) is the natural pairing between the cotangent space T∗

n N  and the tangent 
space TnN. Pairing on the right hand side of (29) is the one between the cotangent space T∗

p P 
and the tangent space Tp P. We refer [8, 35, 60] for further discussions on special symplectic 
structures. Here is a diagram exhibiting the special symplectic structure.

.
� (30)

The two-tuple (P,Ω) is called as underlying symplectic manifold of the special symplectic 
structure (P,π, N,Θ,χ).

Let (P,π, N,Θ,χ) be a special symplectic structure. Assume also that SP be a Lagrangian 
submanifold of P. The image SN = χ(SP) of SP is a Lagrangian submanifold of T∗N . By refer-
ring to the generalized Poincaré lemma presented in the previous subsection, we argue that the 
Lagrangian submanifold SN can locally be generated by a Morse family E on a fiber bundle 
(R, τ , N). Accordingly, we call the Morse family E a generator of both SN and SP since they are 
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the same up to χ. The following diagram summarizes this discussion by equipping a Morse 
family (26) to a special symplectic structure (30).

.

� (31)

2.4. Tulczyjew triple

In this subsection, we demonstrate that the tangent bundle TT*Q admits two different special 
symplectic structures [65–67]. Let us start this analysis by elaborating the symplectic two-
form on TT*Q.

Symplectic structure on TT*Q. Consider the canonical symplectic manifold T∗Q equipped 
with the exact symplectic two-form ΩQ = −dΘQ. Define a derivation iT taking the symplectic 
two-form ΩQ on T*Q to a one-form on TT*Q as, for X in TTT*Q,

iTΩQ(X) = ΩQ(TτT∗Q(X), τTT∗Q(X)).

Here, TτT∗Q is the tangent mapping of the bundle projection τT∗Q whereas τTT∗Q is the tan-
gent bundle projection TTT*Q to TT*Q. Accordingly, we define two one-forms on TT*Q as 
θ1 = iTΩQ and θ2 = dTθQ where the derivation dT is the commutator [d, iT]. Minus of the 
exterior derivatives of these one-forms results with a symplectic two-form

ΩT
Q = −dθ1 = −dθ2� (32)

on TT*Q [65, 67]. In terms of the induced local coordinate chart (qA, pA; q̇A, ṗA), the potential 
one-forms are computed to be

θ1 = iTΩQ = ṗAdqA − q̇AdpA, θ2 = dTΘQ = ṗAdqA + pAdq̇A.� (33)

Notice that, in this case, the symplectic two-form ΩT
Q turns out to be the one in (7). Note that, 

the difference θ1 − θ2 is an exact one-form. Actually, it is the exterior derivative of coupling 
function q̇ApA in the Legendre transformation (4).

Special symplectic structures on TT*Q. The non-degeneracy of the canonical symplectic 
structure ΩQ on T*Q leads to the existence of the following symplectomorphism

Ω�
Q : TT∗Q �→ T∗T∗Q : X �→ ιXΩQ : (qA, pA, q̇A, ṗA) �→ (qA, pA,−ṗA, q̇A).

� (34)
It is a matter of a direct calculation to prove that, the quintuple

(TT∗Q, T∗Q, τT∗Q, θ1,Ω�
Q)� (35)

is a special symplectic manifold. Here, θ1 is the differential one-form defined in (33). There 
exists a canonical involution on TTQ. A dualization of this determines a symplectomorphism 
ΞQ from TT*Q to the cotangent bundle T*TQ. In local the coordinates, we obtain

ΞQ : TT∗Q �→ T∗TQ : (qA, pA, q̇A, ṗA) = (qA, q̇A, ṗA, pA).� (36)

Then it becomes easy to prove that
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(TT∗Q, TQ, TπQ, θ2,ΞQ)� (37)

is a special symplectic manifold. Here, θ2  is the differential one-form defined in (33). As a 
result, we provide two special symplectic structures for the symplectic manifold (TT∗Q,ΩT

Q). 
Tulczyjew triple is a combination of these two special symplectic structures in one commuta-
tive diagram as given below [30, 31, 48, 64, 66, 67].

.� (38)

We cite [22, 23, 70] for the Tulczyjew triple in the Lie group framework.

2.5.  Hamilton–Jacobi theory for implicit Hamiltonian systems

In [25], we have proposed two methods to construct Hamilton–Jacobi formulations of implicit 
Hamiltonian systems. The first method consists of a theory which does refer to Morse fami-
lies. The second is based on the construction of a local vector field defined on the image of a 
section, but not globally on the phase space.

The method of Morse families. By referring to the special symplectic structure (35) accom-
modated on the right wing of the Tulczyjew triple, we see that for every Lagrangian submani-
fold S of TT*Q, there exists a Morse family F generating S so that

S =

{(
qA, pA;

∂F
∂pA

,− ∂F
∂qA

)
∈ TT∗Q :

∂F
∂λa = 0

}
� (39)

where F = F(qA, pA,λa). Notice that F is defined on a fiber bundle R (equipped with coordi-
nates (qA, pA,λa)) over the cotangent bundle T*Q. Here is the diagram summarizes the Morse 
family.

� (40)

where we have employed the right wing of the Tulczyjew triple (38).
We consider the restriction of the momenta (p A) to the image space of a closed one-form 

γ = γAdqA on Q. This reads the following restricted submanifold

S|Im(γ) =

{(
qA, γA(q);

∂F
∂pA

∣∣∣∣
Im(γ)

,− ∂F
∂qA

∣∣∣∣
Im(γ)

)
∈ TT∗Q :

∂F
∂λa

∣∣∣∣
Im(γ)

= 0

}
.

� (41)
Note that, if the Lagrangian submanifold S is the image of a Hamiltonian vector field XH, then 
S|Im(γ) reduces to the image space of the composition XH ◦ γ. Since the submanifold S|Im(γ) 
does not depend on the momentum variables, we can project it to a submanifold Sγ of TQ via 
the tangent mapping TπQ as follows
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Sγ = TπQ ◦ S|Im(γ) =

{(
qi,

∂F
∂pA

∣∣∣∣
Im(γ)

)
∈ TQ :

∂F
∂λa

∣∣∣∣
Im(γ)

= 0

}
.� (42)

The submanifold Sγ defines an implicit differential equation on Q. We state the generalization 
of the Hamilton–Jacobi theorem 1 as follows [25].

Theorem 2.  The following conditions are equivalent for a closed one-form γ:

	 (i)	�The Lagrangian submanifold S in (39) and the submanifold Sγ in (42) are γ-related, that 
is

Tγ(Sγ) = S|Im(γ)

	(ii)	�dF(q, γ(q),λ) = 0, where F is the Morse family generating S.

In a local chart, we can take γ  as the exterior derivative a function W = W(q). Hence, 
the local version of the second condition in theorem 2 turns out to be (12). Notice that, if 
the Lagrangian submanifold S is horizontal, then the Morse function F becomes independ-
ent of the auxiliary variables (λa). In this case, the Morse function F becomes a well defined 
Hamiltonian function on T*Q so that the implicit HJ theorem 2 reduces to the classical HJ 
theorem 1.

The method of local vector fields. Assuming that the integrability conditions are all satis-
fied [47], let S be a (possibly non-horizontal) Lagrangian submanifold of TT*Q, and consider 
it projection C = τT∗Q(S). Due to the non-horizontal character of S, there may exist several 
vectors in S projecting to the same point in C, so that C does not have to be the whole T*Q. 
Define an auxiliary section σ : T∗Q → TT∗Q satisfying σ(C) ⊂ S . The role of the section σ 
is to reduce this unknown number to one. We are additionally require that the domain of the 
section σ be the intersection of Im(γ) and C. Here, γ  is a closed one-form on Q. As a result, 
we arrive at a vector field Xσ. Note that Xσ satisfies

ιXσ
ΩQ = Θ(γ(q))� (43)

for an arbitrary one-form Θ defined on γ(q). We record here the following diagram in order to 
visualize the sections more explicitly.

.

We define a vector field Xγ
σ on the tangent bundle TQ as

Xγ
σ = Tπ ◦ Xσ ◦ γ.� (44)
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In local coordinates, the vector field Xσ and its projection Xγ
σ can be written as

Xσ = σA(q, γ(q))
∂

∂qA + σA(q, γ(q))
∂

∂pA
, Xγ

σ = σA(q, γ(q))
∂

∂qA ,� (45)

respectively. Using a one-form section γ  on Q, the tangent lift of the projected vector field 
Xγ
σ is

Tγ (Xγ
σ) = σA

(
∂

∂qA +
∂γB

∂qA

∂

∂pB

)
.� (46)

Using (44), we find an expression relating the section σ and the vector fields as follows.

σA(q, γ(q))
∂γB

∂qA (q) = σB(q, γ(q)).� (47)

We are ready now to state the following theorem [25].

Theorem 3.  Given the conditions above, we say that: the two vector fields Xσ and Xγ
σ are 

γ-related if and only if (47) is fulfilled.

3.  Higher order dynamical systems

Let us consider differential manifolds and standard tensor bundle calculus. It is assumed 
throughout the text that all structures and mappings are smooth (C∞-class). For very detailed 
descriptions of fundamentals, we refer to [14] and we shall skip to our notation and brief com-
ments on the essentials.

3.1.  Geometry of higher order bundles

Jet bundles. Given a fibration (P,π, N), consider the dimension of P be p  and that of N be n. 
Consider a section s : N → P and let us denote by Sec(P) the set of all sections on P. We say 
that two sections s, s′ ∈ Sec(P) are k-related for 0 � k � ∞ in a point x ∈ N if s(x) = s′(x) 
and for all functions f : P → R, the function f ◦ s − f ◦ s′ : N → R is flat of order k at x, that 
is, this function and all the derivatives up to order k included are zero at x. The equivalence 
class determined by the k-relation is called jet of order k for a section j ks(x) [58]. The set of 
all k-jets at x is denoted by Jk

x(P,π, N). For the union of all of them at any point x, we say 
Jk(P,π, N). More generally, we can define now at a point a mapping from N to P. Consider a 
function f : N → P, then the equivalence class determined by the k-equivalence is called the 
k-jet of f  at x. For a representative of the class we use j kf (x) and the set of k-jets is represented 
by Jk

x(P, N) and again, the union of these at every x will be represented by Jk(P,N). Notice 
that the manifold Jk(P,π, N) is a submanifold of Jk(P,N) and so the above projections admit 
restrictions to it.

Both in the case of sections or mappings it is possible to define jets for local sections or 
mappings. For it, one works with the germs, which are the equivalence classes determined by 
the relation that two section/mappings are related if they have the same value at every point in 
the intersection of their domains.

The k-jet manifold of section/mappings can be fibered in different ways, we have

αk : Jk(P, N) → N; αk( f k(x)) = x,� (48)
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βk : Jk(P, N) → P αk( f k(x)) = x� (49)

ρk
r : Jk(P, N) → Jr(P, N) ρk

r( f k(x)) = f r(x), r � k.� (50)

Here the αk projection is called the source projection and βk is the target projection. Now, 
consider J1(Jk(P, N),αk, N) be a manifold of 1-jets of αk : Jk(P, N) → N . The inter-
est of this manifold is that the fibered manifold Jk+1(P,N) can be regularly immersed into 
J1(Jk(P, N),αk, N).

such that

u(x) = J1(ρk+1
k ◦ u)(x)� (51)

for a function u : N → Jk+1P. Note that Jk+1P ⊂ J1(JkP). We can set local coordinates for jets, 

the jet manifold Jk(P,N) has an atlas when it is modeled in the space R p × Rn × Jk(R p,Rn), 

locally we may think Jk(P,N) as Jk(R p,Rn). Locally, (xa, ξA, ξA
a(r)) with 1 � r � k  is the coor-

dinate representation of a point of Jk(P,N).

Higher order tangent bundles. Now, a particular type of jet manifold is the tangent bundle 
of higher order. Consider Q a configuration space of dimension n, TQ is the tangent bundle 
and T*Q is the cotangent bundle or phase space for a dynamical system. The k-order tangent 
bundle can be identified with k order jets in the following way

TkQ = Jk
0(R× Q,π1,R).� (52)

So that TkQ is a submanifold of Jk
0(R× Q,π1,R). Here, π1 is the projection from R× Q to 

the first factor R . One has the same type of fibrations as for the jets above. In fact, if r � k, 
we have the canonical projection ρk

r : TkQ → TrQ, given by ρk
r(σ

k(0)) = σr(0), and the target 
projection is βk : TkQ → Q, given by βk(σk(0)) = σ(0). One has obviously ρk

0 = βk, where 
T0Q is identified canonically with Q.

To describe the local coordinates in TkQ, let (U,ϕ) be a local chart in Q, with ϕ = (ϕA), 
1 � A � n, and ϕ : R → Q is a curve in Q such that ϕ(0) ∈ U ; by writing φA = ϕA ◦ φ, the 
k-jet φ̃k(0) is uniquely represented in 

(
βk
)−1(U) = TkU  by

(qA
(0), qA

(1), qA
(2), ..., qA

(k)) := (qA, q̇A, q̈A, ..., q(k)A)� (53)

where

qA = φA(0) ; qA
(i) =

d(i)φA

dt(i)

∣∣∣∣
t=0

in the open set 
(
βk
)−1(U) ⊆ TkQ. The local expression of the canonical projections βk and 

ρk
r  are

ρk
r

(
qA
(0), qA

(1), . . . , qA
(k)

)
=

(
qA
(0), qA

(1), . . . , qA
(r)

)
, βk

(
qA
(0), qA

(1), . . . , qA
(k)

)
=

(
qA
(0)

)
.
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Hence, local coordinates in the open set 
(
βk
)−1(U) ⊆ TkQ adapted to the ρk

r -bundle structure 
are

(
qA
(0), . . . , qA

(r), qA
(r+1), . . . , qA

(k)

)
,

and a section s ∈ Γ(ρk
r) is locally given in this open set by

s(qA
(0), . . . , qA

(r)) =
(

qA
(0), . . . , qA

(r), sA
(r+1), . . . , sA

(k)

)
,

where sA
( j) (with r + 1 � j � k) are local functions. This approach is very useful to work on 

the tangent bundle TTk−1Q. Accordingly, we denote the induced coordinates on TTk−1Q as

(qA
(κ); q̇A

(κ)) = (qA
(0), qA

(1), ..., qA
(k); q̇A

(0), q̇A
(1), ..., q̇A

(k)) ∈ TTk−1Q,

where κ runs from 0 to k  −  1.

3.2. Tulczyjew triples for higher order bundles

Consider the natural embedding of TkQ into the iterated tangent bundle TTk−1Q of Tk−1Q. This 
is locally given by

ι : TkQ �→ TTk−1Q : (qA
(0), qA

(1), . . . , qA
(k)) �→ (qA

(0), qA
(1), . . . qA

(k−1); qA
(1), . . . qA

(k−1), qA
(k)),� (54)

see [42]. Here, the induced coordinates on TTk−1Q are assumed to be

(qA
(κ); q̇A

(κ)) = (qA
(0), qA

(1), ..., qA
(k−1); q̇A

(0), q̇A
(1), ..., q̇A

(k−1)) ∈ TTk−1Q,� (55)

where κ runs from 0 to k − 1. For future reference, let us record here the particular case s  =  2 
that is

T2Q −→ TTQ : (qA
(0), qA

(1), qA
(2)) −→ (qA

(0), qA
(1); qA

(1), qA
(2)).� (56)

This embedding will enable us to study the dynamics on the higher order bundles in the frame-
work of Tulczyjew triples.

Recall first the first order Tulczyjew triple presented in section 2.4. By replacing the con-
figuration manifold Q in the clasical first order Tulczyjew triple by the (k − 1)th order tangent 
bundle Tk−1Q, we draw the following generalized Tulczyjew triple [21] proper for the higher 
order frameworks

� (57)
Here, πTTk−1Q is the cotangent bundle projection, TπTk−1Q is the tangent lift of πTk−1Q, τT∗Tk−1Q 
is the tangent bundle projection, and πT∗Tk−1Q is the cotangent bundle projection.

Since T∗Tk−1Q is a cotangent bundle, the pair (T∗Tk−1Q,ΩTk−1Q) is a symplectic mani-
fold with the canonical symplectic two-form ΩTk−1Q = dΘTk−1Q. On T∗Tk−1Q, the Darboux 
coordinates are

(qA
(κ); p(κ)A ) = (qA

(0), qA
(1), ..., qA

(k−1), p(0)
A , p(1)

A , ..., p(k−1)
A ) ∈ T∗Tk−1Q,
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so we write the canonical two-form as

ΩTk−1Q =
k−1∑
κ=0

dp(κ)
A ∧ dqA

(κ).� (58)

On TT∗Tk−1Q, introduce the following local coordinate system

(qA
(κ), p(κ)A , q̇A

(κ), ṗ(κ)A ) ∈ TT∗Tk−1Q� (59)

where κ runs from 0 to k − 1. The pair 
(

TT∗Tk−1Q,ΩT
Tk−1Q

)
 is a symplectic manifold with 

lifted symplectic two-form. In terms of the coordinates, ΩT
Tk−1Q can be written as

ΩT
Tk−1Q =

k−1∑
κ=0

dṗ(κ)A ∧ dqA
(κ) +

k−1∑
κ=0

dp(κ)
A ∧ dq̇A

(κ).� (60)

Then, we define the adapted symplectic diffeomorphism ΞTk−1Q and Ω�
Tk−1Q from the sym-

plectic diffeomorphism ΞQ and Ω�
Q in the first order Tulczyjew triple (57). Accordingly, they 

are computed as

ΞTk−1Q(q(κ), p(κ), q̇(κ), ṗ(κ)) = (q(κ), q̇(κ), ṗ(κ), p(κ)),

Ω�
Tk−1Q(q(κ), p(κ), q̇(κ), ṗ(κ)) = (q(κ), p(κ), ṗ(κ),−q̇(κ)), κ = 0, . . . , k − 1.

� (61)
We remark here that both the left and the right wings of the higher order Tulczyjew triple are 
special symplectic structures, and the triple is merging them to enable a Legendre transforma-
tion for the singular or/and constrained higher order dynamical systems.

3.3.  Explicit higher order differential equations

Consider the bundle projection π1 : R× Q → R onto the first factor. If φ : R → Q is a curve 
in Q, the canonical lifting of φ to TkQ is the curve jkφ : R → TkQ. We consider the mod-
ule of vector fields X(πr

s) along the projection πr
s : Jrπ → Jsπ. The kth holonomic lift of 

X = Xo∂/∂t ∈ X(R) is given by

jkX = Xo

(
∂

∂t
+

k∑
i=0

qA
(i+1)

∂

∂qA
(i)

)
.

Using the identification Jkπ ∼= R× TkQ and denoting by π2 : R× Q → Q the natural projec-
tion onto the second factor, and all the induced projections in higher order jet bundles, we have 
the following diagram.

.
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Definition 1.  A curve ψ : R → TkQ is holonomic of type r, 1 � r � k , if 
jk−r+1φ = ρk

k−r+1 ◦ ψ, where φ = βk ◦ ψ,φ : R → Q; that is, the curve ψ is the lifting of a 
curve in Q up to Tk−r+1Q.

.

In particular, a curve ψ is holonomic of type 1 if jkφ = jk0φ, with φ = βk ◦ ψ. Throughout this 
paper, holonomic curves of type 1 are simply called holonomic.

Definition 2.  A vector field X ∈ X(TkQ) is a semispray of type r, 1 � r � k , if every int
egral curve ψ of X is holonomic of type r.

The local expression of a semispray of type r is

X = qA
(1)

∂

∂qA
(0)

+ qA
(2)

∂

∂qA
(1)

+ . . .+ qA
(k−r+1)

∂

∂qA
(k−r)

+ FA
k−r+1

∂

∂qA
(k−r+1)

+ . . .+ FA
k

∂

∂qA
(k)

� (62)

where FA
k−r+1, . . . , FA

k  are functions of q(i), i = 1, . . . , k . Observe that semisprays of type 1 in 
TkQ are the analogue to holonomic vector fields in first order mechanics. Their local expres-
sions are

X = qA
(1)

∂

∂qA
(0)

+ qA
(2)

∂

∂qA
(1)

+ . . .+ qA
(k)

∂

∂qA
(k−1)

+ FA ∂

∂qA
(k)

.� (63)

If X ∈ X(TkQ) is a semispray of type r, a curve φ : R → Q is said to be a path or solution of X 

if jkφ is an integral curve of X; that is, j̃kφ = X ◦ jkφ, where j̃kφ denotes the canonical lifting 
of jkφ from TkQ to TTkQ.

3.4.  Implicit higher order differential equations

Consider a kth order system

Φl(q, q̇, q̈, . . . , q(k)) = 0, l = 1, . . . , r

of differential equations  defined by r number equations  on a configuration manifold Q. 
Geometrically, the functions Φl  define a submanifold S of TkQ. Using the induced coordinates 
on the higher order tangent bundle, this submanifold is given locally by

S = {q := (q, q̇, q̈, . . . , q(k))| Φl(q) = 0}.� (64)

A differentiable curve φ on Q whose canonical k-lifting is a curve ψ = jk0φ on TkQ is a solu-
tion of S ⊂ TkQ if the lifted curve lies in S. The submanifold S can be understood as a first 
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order differential equation defined on TTk−1Q as well. To this end we first consider the natural 
embedding of TkQ into the iterated tangent bundle TTk−1Q of Tk−1Q. This is locally described 
as in (54). For s  =  2, recall (56). Using the mapping in (54), image ι(S) of S is a submanifold 
of TTk−1Q. The differential equation S is called explicit if there exists a vector field X on Tk−1Q 
such that Im(X) is ι(S). Otherwise, S is called an implicit differential equation.

Looking for a Lagrangian function generating a differential equation is the inverse problem 
of calculus of variations. See, for example, [51] for a geometric approach to this problem for 
the case of s  =  1. For the fourth order explicit systems, in [26], some conditions are proposed 
for the existence and uniqueness of a Lagrangian function. In this work, we assume that there 
exists already a Lagrangian function generating the dynamics.

4. The Hamilton–Jacobi problem for higher order implicit systems

For regular higher order Lagrangians, the submanifold S in TT∗Tk−1Q projects via TπTk−1Q 
on the whole T∗Tk−1Q. In the singular case, this projection is only a part of T∗Tk−1Q. If we 
would like to construct a Hamilton–Jacobi theory in this setting, there must be a way in which 
we obtain a Lagrangian submanifold of TT∗Tk−1Q. To find a solution, we need to find a 
section γ : T∗Tk−1Q → TT∗Tk−1Q. Nonetheless, starting from an implicit differential equa-
tion on TT∗Tk−1Q, by the projection TπTk−1Q, we arrive at a submanifold in TTk−1Q. Hence, 
we need to make use of Tulcyjew triple (57) to pass from the Lagrangian to Hamiltonian pic-
tures TTk−1Q and T∗Tk−1Q through some morphisms. In this section we develop a geometric 
Hamilton–Jacobi theory for higher order implicit differential equations using two different 
approaches.

The first method consists of a theory which does refer to vector fields, that we will refer to 
as the Morse family method. The second is based on the construction of a local vector field 
defined on the image of a section, but not defined globally on the phase space. In this case, the 
definitions above apply locally, and the philosophy of the Hamilton–Jacobi approach matches 
the explanation above. Let us then start first with the method which is not so related to the 
usual definitions and that implements as a novelty the use of Lagrangian submanifolds gener-
ated by a Morse function. Hence, we start with our so-called Morse family method. Notice 
also that we will rely on the Ostrogradski approach (59) in this subsection, but there is an 
alternative, the Schmidt approach that we will introduce in the next section.

4.1. The Morse family method—general approach

Let us start with the first method. We start with a Lagrangian submanifold S of the symplec-

tic manifold TT∗Tk−1Q equipped with the symplectic two-form ΩT
Tk−1Q exhibited in (60). 

If it is a horizontal Lagrangian submanifold then it is possible to find a Hamiltonian vector 
field on T∗Tk−1Q whose image is exactly the submanifold itself [60]. This corresponds to an 
explicit dynamical system. If the Lagrangian submanifold fails to be horizontal then there is 
no Hamiltonian vector field generating the Lagrangian submanifold. In this case, dynami-
cal equations governing the dynamical system can only be written in an implicit differential 
equation form. We now propose a Hamilton–Jacobi formalism valid for both the explicit and 
implicit systems.

Lagrangian submanifolds of TT∗Tk−1Q Consider a Lagrangian submanifold S of 
TT∗Tk−1Q. If it is projectable, by projecting S via the mapping τT∗Tk−1Q, we reach a submani-
fold of T∗Tk−1Q. On the other hand, if we project S with TπTk−1Q, we reach a submanifold 
of TTk−1Q, where we have a first order implicit differential equation. Accordingly, we can 
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iteratively project these resulting bundles: from T∗Tk−1Q to Q. Let us summarize this in the 
following diagram.

where τ k−1
Q : Tk−1Q → Q. Notice that if S is integrable, then TπTk−1Q(S) is integrable too. 

We see this by considering the projection TπTk−1Q(V) of an element V ∈ S . Note that, if ϕ is 
a curve lying in T∗Tk−1Q and it is tangent to V ∈ S , then πTk−1Q ◦ ϕ is curve on Tk−1Q that 
is tangent to TπTk−1Q(V). This shows that the projections of the solutions of S are solutions 
of TπTk−1Q(S). The inverse question is precisely the basis of a Hamilton–Jacobi theory, i.e. if 
starting from the solutions of TπTk−1Q(S) we are able to construct solutions of S, that is to lift 
the solutions on TTk−1Q to the iterated bundle TT∗Tk−1Q.

Notice that S may not be projectable, that means that S is only projectable when it is 
restricted to the image space of a differential one-form γ  on Tk−1Q. We denote the restric-
tion of S to the image space of a one-form γ  as follows S|Im(γ). For this procedure, we need 
to introduce a section γ : Tk−1Q → T∗Tk−1Q such that for a solution ψ : R → Tk−1Q of 
Sγ = TπTk−1Q(S), we have that γ ◦ ψ : R → T∗Tk−1Q is a solution of S. We say that S and Sγ 
are γ−related. In accordance to the usual Hamilton–Jacobi theory [5, 12, 13, 38], recall (1), 
we have

.

� (65)

Morse families. In this case, since S and Sγ are implicit, we do not have a vector field. 
Nonetheless, as we have discussed previously, for every Lagrangian submanifold S 
in TT∗Tk−1Q, there exists a Morse family E defined over a smooth bundle structure 
(R, τ , T∗Tk−1Q) generating S. Let us recall in a diagram the Lagrangian submanifold that is 
generated and the Lagrangian submanifold we need for a Hamilton–Jacobi theory:
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� (66)
where the triangle is the special symplectic structure presented as the right wing of the 

Tulczyjew triple (57). Here, D is the image of S under the musical mapping Ω�
Tk−1Q hence a 

Lagrangian submanifold of T∗T∗Tk−1Q. Assume the local coordinates (qA
(κ), p(κ)A ,λα) on the 

fiber bundle R. Here (qA
(κ), p(κ)A ) is the Darboux’ coordinates on T∗Tk−1Q since κ runs from 0 

to k  −  1. The Lagrangian submanifold S, generated by the Morse family E = E(q(κ), p(κ),λ), 
can be written as

D =

{(
qA
(κ), p(κ)A ;

∂E
∂qA

(κ)

,
∂E

∂p(κ)
A

)
∈ T∗T∗Tk−1Q :

∂E
∂λα

= 0

}
.� (67)

The isomorphic image of D is the Lagrangian submanifold describing the dynamics and com-
puted to be

S =

{(
qA
(κ), p(κ)A ;

∂E

∂p(κ)
A

,− ∂E
∂qA

(κ)

)
∈ TT∗Tk−1Q :

∂E
∂λα

= 0

}
.� (68)

The Lagrangian submanifold S generates the following systems of implicit differential 
equations

q̇A
(κ) =

∂E

∂p(κ)
A

, ṗ(κ)A = − ∂E
∂qA

(κ)

,
∂E
∂λα

= 0.� (69)

We introduce a closed one-form γ  on Tk−1Q with local picture

γ(q(κ)) = γ
(κ)
A dqA

(κ),

where γ(κ)
A  are real valued functions on Tk−1Q. See that, Im(γ) is a Lagrangian submani-

fold of T∗Tk−1Q, so that there is an inclusion ι : Im(γ) �→ T∗Tk−1Q. We use the inclusion 
to pull the bundle (R, τ , T∗Tk−1Q) back over Im(γ). By this, one arrives at a fiber bundle 
(ι∗R, ι∗τ , Im(γ)).

.
� (70)

Here, the total space the pull-back bundle is

ι∗(R) =
{
(γ(q(κ)), z) ∈ Im(γ)× R : τ(z) ∈ Im(γ)

}

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204



23

with ε is the corresponding inclusion. Although restriction of the Morse family on ι∗(R) 
should formally be written as E ◦ ε, we will abuse notation using E. The submanifold gener-

ated by E = E(q(κ), γ(κ),λ) is given by

S|Im(γ) =

{(
qA
(κ), γ

(κ)
A ;

∂E

∂q(κ)
A

,− ∂E
∂qA

(κ)

)
∈ TT∗Tk−1Q :

∂E
∂λα

= 0

}
.� (71)

Note that, if the Lagrangian submanifold S was explicit, and would be understood as the image 
of a Hamiltonian vector field XH, then S|Im(γ) reduces to the image space of the composition 
XH ◦ γ.

The submanifold S|Im(γ) exhibited in (71) does not depend on the momentum variables. 
This enables us to project it to a submanifold Sγ of TQ by the tangent mapping TπQ as follows

Sγ = TπTk−1Q ◦ S|Im(γ) =

{(
qA
(κ),

∂E

∂q(κ)
A

(q(κ), γ(κ),λ)

)
∈ TTk−1Q :

∂E
∂λα

= 0

}
.� (72)

Note that the submanifold Sγ defines an implicit differential equation on Tk−1Q. We state the 
generalization of the Hamilton–Jacobi theorem 1 as follows.

Theorem 4 (Higher order implicit HJ theorem).  The following conditions are equiva-
lent for a closed one-form γ  that is a solution of the implicit higher order Hamilton–Jacobi 
problem:

	 (i)	�The Lagrangian submanifold S in (67) and the submanifold Sγ in (72) are γ-related, that 
is

Tγ(Sγ) = S|Im(γ)

	(ii)	�The Morse family E that generates the submanifold S fulfills the equation

dE(q(κ), γ(κ),λ) = 0.� (73)

Proof.  The one-form γ = γ
(κ)
A dqA

(κ) is closed, that is, ∂γ(κ)
A /∂qB

(κ̂) = ∂γ
(κ̂)
B /∂qA

(κ). The first 

assertion in theorem 4 can be written locally as

δκκ̂
∂γ

(κ)
A

∂qA
(κ̂)

∂E

∂p(κ)
A

+
∂E

∂qA
(κ)

= 0,� (74)

for A = 1, . . . , n, and κ̂,κ = 1, . . . , k − 1 and with the condition ∂E/∂λα = 0. Let us now 
compute

dE(q(κ), γ(κ),λ) =
∂E

∂qA
(κ)

dqA
(κ) +

∂E

∂p(κ)
A

γ
(κ,κ̂)
A dqA

(κ̂) +
∂E
∂λα

dλα.� (75)

Note that, after the substitution of (74) into (75) and by employing the closure of the one-form, 
we conclude that the exterior derivative of E vanishes when p(κ) = γ(κ).� ■ 

4.1.1. The Morse family method—Ostrogradski momenta.  Now, we come to the problem of 
deciding the total space R of the bundle T∗Tk−1Q. We are proposing two alternative ways 
for this. In this case our interest is focused in the Lagrangian submanifolds generated by a 
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Lagrangian function. Accordingly, consider a Lagrangian function depending on higher order 
differential terms on the higher order tangent bundle TkQ of the configuration space Q. If Q 

is an n-dimensional manifold with a local chart (qA
(0)), then TkQ is a (k + 1)× n-dimensional 

manifold with the induced local chart (qA
(0), qA

(1), . . . , qA
(k)). Now, consider the Whitney product

W = TkQ ×Tk−1Q T∗Tk−1Q� (76)

equipped with the local coordinates

(qA
(κ), qA

(k), p(κ)A ) = (qA
(0), . . . , qA

(k−1), qA
(k), p(0)

A , . . . p(k−1)
A )� (77)

of the higher order tangent bundle TkQ and the iterated cotangent bundle T∗Tk−1Q fibered 

over Tk−1Q. Here, we have assumed the canonical coordinates (qA
(κ), p(κ)A ) on T∗Tk−1Q where 

κ runs from 0 to k  −  1. Note that, we can realize this Whitney product as the total space of the 
smooth fiber bundle

τ : TkQ ×Tk−1Q T∗Tk−1Q �→ T∗Tk−1Q : (qA
(κ), qA

(k), p(κ)A ) �→ (qA
(κ), p(κ)A ),

� (78)

where the base is T∗Tk−1Q. In this fibration the fibers are given by (qA
(k)) and they are 

n-dimensional.

For a given higher order Lagrangian L = L(qA
(0), . . . , qA

(k)), the corresponding energy function 
E is defined on the Whitney product TkQ ×TQ T∗Tk−1Q and explicitly given by

E(qA
(κ), qA

(k), p(κ)A ) = p(0)
A qA

(1) + p(1)
A qA

(2) + · · ·+ p(k−1)
A qA

(k) − L.� (79)

It is immediate to see that E is a Morse family and that it generates a Lagrangian submani-
fold of the cotangent bundle T∗T∗TQ, as it was mentioned in the theory on Morse families. 
Diagrammatically, we replace the total space R with the Whitney product in (76) with the 
projection (78). Hence, the Lagrangian submanifold D in (67) takes the particular form

(
qA
(κ), p(κ)A ;− ∂L

∂qA
(0)

, p(0)
A − ∂L

∂qA
(1)

, . . . , p(k−2)
A − ∂L

∂qA
(k−1)

, qA
(1), . . . qA

(k)

)
� (80)

equipped with constraints

p(k−1)
A − ∂L

∂qA
(k)

= 0.� (81)

See that the Lagrangian submanifold exhibited in (80) and (81) is in T∗T∗Tk−1Q where qA
(k) 

are auxiliary variables presenting the implicit character of the system. In this framework, 
Ostrogradski momenta are given by

p(κ) =
k−1∑
j=κ

(
− d

dt

) j−κ (
∂L

∂q(κ+1)

)
� (82)

where κ runs from 0 to k  −  1.

Legendre transformation by means of Tulczyjew triple. Using the right wing of the 

Tulczyjew’ triple (57), and referring directly to the musical isomorphism ΩT
Tk−1Q in (61), we 

map the Lagrangian submanifold in (80) and (81) to TT∗Tk−1Q. This reads
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(qA
(κ), p(κ)A ; qA

(1), . . . , qA
(k),

∂L
∂qA

(0)
,

∂L
∂qA

(1)
− p(0)

A , . . . ,
∂L

∂qA
(k−1)

− p(k−2)
A ).� (83)

The submanifold in (80) and (81) is a Lagrangian submanifold of TT∗Tk−1Q. The dynamics 
in this submanifold is represented by a systems of implicit differential equations

q̇A
(0) = qA

(1), . . . , q̇A
(k−1) = qA

(k), ṗ(0)
A =

∂L
∂qA

(0)
,

ṗ(1)
A =

∂L
∂qA

(1)
− p(0)

A , . . . , ṗ(k−1)
A =

∂L
∂qA

(k−1)
− p(k−2)

A , p(k−1)
A − ∂L

∂qA
(k)

= 0

� (84)
equipped with the constraints given in (81). It is immediate now to check that the Lagrangian 
submanifold (80) and (81), or the system of implicit equations (84) correspond to the higher 
order Euler–Lagrange equations

∂L
∂qA

(0)
− d

dt
∂L
∂qA

(1)
+

d2

dt2

∂L
∂qA

(2)
· · ·+ (−1)k dk

dtk

∂L
∂qA

(k)
= 0.� (85)

Note that these identifications are independent of the regularity of the Lagrangian functions.

Hamilton–Jacobi equations. Introduce a closed one-form γ  on Tk−1Q given locally by

γ = γ
(κ)
A dqA

(κ) = γ
(0)
A dqA

(0) + γ
(1)
A dqA

(1) + · · ·+ γ
(k−1)
A dqA

(k−1).� (86)

Now we apply the implicit Hamilton–Jacobi theorem 4 to the first order implicit system given 
in (84), which is equivalent to the higher order Euler–Lagrange system. More concretely, we 
are employing the second condition (73) in theorem 4 to the present case. This reads

d
(
γ
(0)
A qA

(1) + γ
(1)
A qA

(2) + γ
(k−1)
A qA

(k) − L(q(0), q(1), . . . , q(k))
)
= 0.

Accordingly, we compute the following system of equations

∂γ
(0)
A

∂qB
(0)

qA
(1) + · · ·+ ∂γ

(k−1)
A

∂qB
(0)

qA
(k) −

∂L
∂qB

(0)
= 0,

∂γ
(0)
A

∂qB
(1)

qA
(1) + γ

(0)
B + · · ·+ ∂γ

(k−1)
A

∂qB
(1)

qA
(k) −

∂L
∂qB

(1)
= 0,

. . .

∂γ
(0)
A

∂qB
(k−1)

qA
(1) +

∂γ
(1)
A

∂qB
(k−1)

qA
(1) + · · ·+ γ

(k−2)
B +

∂γ
(k−1)
A

∂qB
(k−1)

qA
(k) −

∂L
∂qB

(1)
= 0

γ
(k−1)
A − ∂L

∂qA
(k)

= 0.

�

(87)

Since γ  is a closed one-form, then in a local chart, one may take γ  as the exterior derivative 
dW  of a real-valued function W on Tk−1Q. In this case, we integrate the system as

∂W
∂qA

(0)
qA
(1) +

∂W
∂qA

(1)
qA
(2) + · · ·+ ∂W

∂qA
(k−1)

qA
(k) − L(q(0), q(1), . . . , q(k)) = 0,

∂W
∂qA

(k−1)
− ∂L

∂qA
(k)

= 0.

� (88)
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Hamilton–Jacobi equations for nondegenerate cases. Note that, we may solve the Lagrange 

multipliers qA
(k) from the definition of conjugate momenta p(k−1)

A  using the constraint (81) if 

the matrix 
[
∂2L/∂qA

(k)∂qB
(k)

]
 is nondegenerate. In this case, the solution has the form

qA
(k) = ΣA

(
q(0), q(1), ..., q(k−1), p(1)

)
.

Further, in a local chart, one may take γ  as the exterior derivative dW  of a real-valued function 
W on Tk−1Q. In this case the requirement that E is constant on the image of dW  results in a 
Hamilton–Jacobi equation in form

∂W
∂qA

(0)
qA
(1) +

∂W
∂qA

(1)
qA
(2) + · · ·+ ∂W

∂qA
(k−1)

ΣA − L(q(0), q(1), , . . . , q(k−1),Σ) = 0.

� (89)

4.1.2. The Morse family method—the Schmidt–Legendre transformation for second order  
systems.  We start by recalling some basics on the acceleration bundle and refer the reader to 
[21] for further details.

Acceleration bundle. Consider the set Kq(Q) of smooth curves passing through q ∈ Q whose 
first derivatives vanish at q, that is

Kq(Q) = {γ ∈ Cq(Q) : D( f ◦ γ)(0) = 0, ∀f : Q �→ R} .� (90)

Define an equivalence relation on Kq(Q) by saying that two curves γ  and γ′ are equivalent if 
the second derivatives of γ  and γ′ are equal at the point q, that is if

γ(0) = γ′(0) = q, D2( f ◦ γ)(0) = D2( f ◦ γ′)(0), ∀f : Q �→ R

for all real valued functions f  on Q. An equivalence class is denoted by aγ(0). The set of all of 
these equivalence classes is called acceleration space AqQ at q ∈ Q. If Q is an n-dimensional 
manifold then union of all acceleration spaces

AQ =
⊔
q∈Q

AqQ.

is a 2n-dimensional manifold called as the acceleration bundle of Q. The induced local coor-
dinates on AQ are defined to be

(qA
(0), aA

(0)) : AQ −→ R2n : aγ(0) −→ (qA
(0) ◦ γ(0), D2(qA

(0) ◦ γ)(0)).� (91)

We note that, the third order tangent bundle T3Q and the tangent bundle of the acceleration 
bundle are isomorphic. If the induced coordinates assumed on the tangent bundle TAQ are (

qA
(0), aA

(0); qA
(1), aA

(1)

)
, then the isomorphism S locally takes the form

S : TAQ → T3Q :
(

qA
(0), aA

(0); qA
(1), aA

(1)

)
→

(
qA
(0), qA

(1); aA
(0), aA

(1)

)
.� (92)

Gauge invariance of the Lagrangian formalism and Schmidt method. Consider a second 
order Lagrangian function

L = L
(
q(0), q(1), q(2)

)
� (93)

on T2Q. The gauge invariance of the second order Euler–Lagrange equations implies that the 
equations of motion generated by L and L + (d/dt)F  are the same for any smooth function F 
on T2Q. When we consider F, we come up with a third order Lagrangian
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L̂
(
q(0), q(1), q(2), q(3)

)
= L

(
q(0), q(1), q(2)

)
+

d
dt

F
(
q(0), q(1), q(2)

)

= L
(
q(0), q(1), q(2)

)
+

∂F
∂qA

(0)
qA
(1) +

∂F
∂qA

(1)
qA
(2) +

∂F
∂qA

(2)
qA
(3)

� (94)

defined in T3Q with local coordinates 
(
q(0), q(1), q(2), q(3)

)
. By recalling the isomorphism in 

(92), we pull back the Lagrangian L̂ to the tangent bundle TAQ, so it results in a first order 
Lagrangian function

L2 : TAQ �→ R : (qA
(0), aA

(0); qA
(1), aA

(1)) �→ L
(
q(0), q(1), a(0)

)
+

∂F
∂qA

(0)
qA
(1) +

∂F
∂qA

(1)
aA
(0) +

∂F
∂aA

(0)
aA
(1)

� (95)
defined on the first order tangent bundle TAQ. The Euler–Lagrange equations generated by L2 
are computed to be

∂L2

∂qA
(0)

− d
dt

∂L2

∂qA
(1)

= 0,
∂L2

∂aA
(0)

− d
dt

∂L2

∂aA
(1)

= 0.� (96)

The second set of equations in (96) can be rewritten as
(

∂L
∂aA

(0)
+

∂F
∂qA

(1)

)
+

∂2F
∂qA

(1)∂aB
(0)

(aB
(0) − qB

(2)) = 0.� (97)

Assume that the second order Lagrangian function L is a nondegenerate, that is the rank of 

the Hessian matrix 
[
∂2L/∂aA

(0)∂aB
(0)

]
 is maximal, and assume also that the auxiliary function 

F satisfies

∂L
∂aA

(0)
+

∂F
∂qA

(1)
= 0.� (98)

In this case, the non-degeneracy of the matrix 
[
∂2L/∂aA

(0)∂aB
(0)

]
 implies the non-degeneracy 

of the matrix [∂2F/∂aA
(0)∂qB

(1)]. Given this, the equations (97) reduce to the set of constraints 

aB
(0) − qB

(2) = 0. In this case, the first set in (96) results in the same Euler–Lagrange equa-
tions generated by L in (93).

Morse family generating the Lagrangian submanifold. Assuming the dual coordinates (
qA
(0), aA

(0), p(0)
A ,π(0)

A

)
 on the cotangent bundle T*AQ, define the following Morse family

E
(

q(0), a(0), p(0),π(0), q(1), a(1)

)
= p(0)

A qA
(1) + π

(0)
A aA

(1) − L2
(
q(0), a(0); q(1), a(1)

)

= p(0)
A qA

(1) + π
(0)
A aA

(1) − L(q(0), q(1), a(0))−
∂F
∂qA

(0)
qA
(1) −

∂F
∂qA

(1)
aA
(0) −

∂F
∂aA

(0)
aA
(1)

�

(99)

on the Whitney sum TAQ ×AQ T∗AQ over the base manifold T∗AQ. The conjugate momenta 
are defined by the equations

0 =
∂E
∂qA

(1)
= p(0)

A − ∂L2

∂qA
(1)

, 0 =
∂E
∂aA

(1)
= π

(0)
A − ∂L2

∂aA
(1)

= π
(0)
A − ∂F

∂aA
(0)

.

�

(100)
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If we substitute the momenta π(0)
A  in the definition of the Morse family (99) which makes the 

family free of (aA
(1)), it results in

E(q(0), a(0), p(0),π(0), q(1)) = p(0)
A qA

(1) − L(q(0), q(1), a(0))−
∂F
∂qA

(0)
qA
(1) −

∂F
∂qA

(1)
aA
(0)� (101)

defined on the Whitney sum T∗AQ ×Q TAQ. A further reduction on the Morse family is 

possible. For this, recall the assumption that the matrix [∂2F/∂aA
(0)∂qB

(1)] is nondegenerate. 
So that we can, at least locally, solve qA

(1) in terms of the momenta from the second equa-

tion π(0)
A = ∂F(q(0), q(1), q(2))/∂aA

(0) in (100). Let us write this solution as

qA
(1) = zA

(
q(0), a(0),π(0)

)
.� (102)

This results with a well-defined Hamiltonian function

H
(

q(0), a(0); p(0),π(0)
)
= p(0)

A zA − L
(
q(0), z, a(0)

)
− ∂F

∂qA
(0)

zA − ∂F
∂qA

(1)
aA
(0)

� (103)
on T*AQ.

Hamilton–Jacobi theory in the acceleration bundle framework. Now, we are ready to 
write the Hamilton–Jacobi theory for second order nondegenerate Lagrangian functions. For 
this, assume a real valued function W defined on the acceleration bundle AQ and a Hamiltonian 
vector field XH on T*AQ associated to the Hamiltonian function H in (103). We can define a 
vector field Xγ

H  on the acceleration bundle AQ

Xγ
H = TπAQ ◦ XH ◦ γ� (104)

according to the commutativity of the diagram

.� (105)

Theorem 5 (HJ theorem in the acceleration bundle).  Let γ = dW  be a closed one-
form on AQ, we say that γ  is a solution of the Hamilton–Jacobi problem in the acceleration 
bundle if the following two equivalent conditions are satisfied

	 (i)	�The vector fields XH and Xγ
H  are γ-related

	(ii)	�d (H ◦ γ) = 0.

We can rewrite the second condition as an equation the function W = W(q(0), a(0)) satisfying 
the partial differential equation

∂W
∂qA

(0)
zA

(
q(0), a(0),

∂W
∂q(0)

)
− L

(
q(0), z, a(0)

)
− ∂F

∂qA
(0)

zA
(

q(0), a(0),
∂W
∂q(0)

)
− ∂F

∂qA
(1)

aA
(0) = E,

� (106)
where E is a constant.
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Let us write the second condition explicitly for a particular case. Determine the auxiliary 

function F(a(0), q(1)) = −δABaA
0 qB

(1) in (95). In the light of condition (98), the Lagrangian 
is quadratic with respect to second order time derivatives. More concretely, we see that 

∂L/∂aA
(0) = δABaB

(0). In this case, the Hamiltonian function (103) reduces to

H
(

q(0), a(0); p(0),π(0)
)
= δABp(0)

A π
(0)
B − L

(
q(0),π(0), a(0)

)
+ δABaA

(0)a
B
(0).

� (107)
In this case, for a closed one-form

γ =
∂W
∂qA

(0)
dqA

(0) +
∂W
∂aA

(0)
daA

(0),

the second condition in theorem 5 provides the following Hamilton–Jacobi equation for the 
nondegenerate second order Lagrangian function L

δAB ∂W
∂qA

(0)

∂W
∂qB

(0)
− L

(
q(0),

∂W
∂a(0)

, a(0)

)
+ δABaA

(0)a
B
(0) = E.� (108)

4.1.3.  Comparisons of HJ formalisms for nondegenerate cases.  Let us consider again the 
auxiliary function F = F(q(0), q(1), q(2)) on the second order tangent bundle T2Q and let 
us write T2Q locally as a product space AQ ×Q TQ. Here, the function will have a form 
F = F(q(0), q(1), a(0)). In this case, the cotangent bundle of T∗T2Q can be identified with the 
product space T∗AQ × T∗TQ. The image of the exterior derivative dF determines a Lagrang-
ian submanifold of T∗AQ × T∗TQ hence a symplectic diffeomorphism between T*AQ and 
T*TQ. Explicitly, the symplectic diffeomorphism is computed to be

T∗AQ → T∗TQ :
(

qA
(0), aA

(0); p(0)
A ,π(0)

A

)
→

(
qA
(0), zA

(
q(0), a(0),π(0)

)
, p(0)

A − ∂F
∂qA

(0)

(
q(0), z

(
q(0), a(0),π(0)

)
, a(0)

)
,− ∂F

∂zA

)
.

�

(109)

This symplectic diffeomorphism establishes the link between the Morse families (79) (when 
k  =  1) and (101). To see this directly, let us now pull back the Morse family E given in (79) by 
the mapping (109). We compute the result as follows

p(0)q(1) + p(1)q(2) − L(q(0), q(1), q(2))

=

(
pq −

∂F
∂q

(q, z (q, a, pa) , a)
)

z − ∂F
∂z

a − L(q, z, a)

= pqz − L(q, z, a)− ∂F
∂q

z − ∂F
∂z

a

�

(110)

which is exactly the Hamiltonian function in (103). Here, we have employed the identification 

aA
(0) = qA

(2). The following examples compare the two methods we have exhibited so far.

Example. Let us consider a pure quadratic one-dimensional Lagrangian

L =
1
2
µq2

(2).� (111)
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If we first apply the Ostragradski method, the momentum p (1) is computed to be µq(2). The 
Hamilton–Jacobi equation (89) for this system is

∂W
∂q(0)

q(1) +
1
2
µ

(
∂W
∂q(0)

)2

= c.� (112)

Let us now apply the Schmidt method presented in section 4.1.2 to the Lagrangian (111). 
Condition (98) integrates the function F as

F = −µaq(1) + g(q(0))� (113)

where g is an arbitrary function which can be chosen as zero without loss of any generality. 
This enables us to use the Hamilton–Jacobi equation in (106), which is exactly

− ∂W
∂q(0)

∂W
∂a(0)

+
1
2
µa2

(0) = c� (114)

and which can be solved assuming that ∇aW  does not equal to zero, and rewrite the Hamilton–
Jacobi problem in the form

∂W
∂q(0)

=
1
2µa2

0 − c
∂W
∂a(0)

= c2� (115)

where c2 is a constant. Its solution reads:

W(q(0), a(0)) = c2q(0) +
1

6c2
µa3

(0) −
c
c2

a(0).� (116)

4.1.4. The Morse family method—the Schmidt method for the third order Lagrangians.  Let 
us start with a third order Lagrangian function L(q(0), q(1), q(2), q(3)) defined on T3Q. Recall-
ing the local diffeomorphism in (92), we pull back the Lagrangian function L to the tangent 
bundle TAQ of the acceleration bundle. By this, we arrive at a first order Lagrangian function 
L = L

(
q(0), a(0); q(1), a(1)

)
. Now, we define a manifold M with local coordinates m , its tan-

gent bundle TM with coordinates (mA
(0), mB

(1)) and the first order Lagrangian function

L3 = L
(
q(0), a(0); q(1), a(1)

)
+

∂F
∂qA

(0)
qA
(1) +

∂F
∂qA

(1)
aA
(0) +

∂F
∂aA

(0)
aA
(1) +

∂F
∂mA

(0)
mA

(1)

� (117)
on the tangent bundle T(AQ × M) equipped with local coordinates

(qA
(0), aA

(0); qA
(1), aA

(1); mA
(0), mA

(1)).

Here, the auxiliary function F depends on (q(0), q(1), a(0), m(0)). The Euler Lagrange equa-
tions generated by the Lagrangian L3 are equal to the Euler–Lagrange equations generated by 
the third order Lagrangian function L if the requirement

det[∂2F/∂qA
(1)∂mB

(0)] �= 0� (118)

is assumed [21].

We consider the conjugate momenta on T∗(AQ × M) determined locally by ( p(0)
A ,π(0)

A ,µ(0)
A ) 

and the energy function associated with L3 is
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E = p(0)
A qA

(1) + π
(0)
A aA

(1) + µ
(0)
A mA

(1) − L3

= p(0)
A qA

(1) + π
(0)
A aA

(1) + µ
(0)
A mA

(1) − L − ∂F
∂qA

(0)
qA
(1) −

∂F
∂qA

(1)
aA
(0)

− ∂F
∂aA

(0)
aA
(1) −

∂F
∂mA

(0)
mA

(1).

�

(119)

Notice that this energy function is a Morse family on the Whitney sum T(AQ × M)× T∗(AQ × M) 
and, in accordance with the following diagram.

� (120)
The family E generates a Lagrangian submanifold D of T∗T∗(AQ × M), and using the musical 

isomorphism Ω�
(AQ×M), we map this Lagrangian submanifold to a Lagrangian submanifold S 

of TT∗(AQ × M), that is a symplectic manifold equipped with the lifted symplectic two-form 

ΩT
(AQ×M). This Lagrangian submanifold exactly determines the third order Euler–Lagrange 

equations generated by the Lagrangian L = L(q(0), q(1), q(2), q(3)).
Let us now apply the implicit Hamilton–Jacobi theorem to this case. Assume a closed one-

form γ  on AQ × M given locally by

γ = γAdqA
(0) + αAdaA

(0) + βAdmA
(0).� (121)

The restriction of the Lagrangian submanifold S to the image space of γ  will be denoted by 
S|Im(γ). Then project S|Im(γ) to the tangent bundle T(AQ × M) by means of the tangent map-
ping TπAQ×M . This results in a (possibly non horizontal) submanifold Sγ = TπAQ×M (S|Im) of 
T(AQ × M). Let us depict these in the following diagram

.� (122)

Theorem 6 (HJ theorem for implicit third order Lagrangians in the acceleration 
space).  A solution of the implicit Hamilton–Jacobi problem for third order Lagrangians in 
the acceleration space is a closed one-form γ  that fulfills the two following equivalent rela-
tions:

	 (i)	�The Lagrangian submanifold S|Im(γ) and the submanifold Sγ are γ-related, that is 
Tγ(Sγ) = S|Im(γ).

	(ii)	�d(E(qA
(0), aA

(0), mA
(0); γA,αA,βA; qA

(1), aA
(1), mA

(1))) = 0.

The second condition reads the implicit HJ equation

E = γAqA
(1) + αAaA

(1) + βAmA
(1) − L3 = c,
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where c being a constant. Taking the exterior derivative of this equation, we arrive at the fol-
lowing local picture of the Hamilton–Jacobi equation

∂γA

∂qB
(0)

qA
(1) +

∂αA

∂qB
(0)

aA
(1) +

∂βA

∂qB
(0)

mA
(1) −

∂L3

∂qB
(0)

= 0

∂γA

∂aB
(0)

qA
(1) +

∂αA

∂aB
(0)

aA
(1) +

∂βA

∂aB
(0)

mA
(1) −

∂L3

∂aB
(0)

= 0

∂γA

∂mB
(0)

qA
(1) +

∂αA

∂mB
(0)

aA
(1) +

∂βA

∂mB
(0)

mA
(1) −

∂L3

∂mB
(0)

= 0

γA − ∂L3

∂qA
(1)

= 0,

αA − ∂L3

∂aA
(1)

= 0,

βA − ∂L3

∂mA
(1)

= 0,

�

(123)

where L3 is the Lagrangian function in (117). As a particular case, we consider that the auxil-

iary function is taken to be F = δABqA
(1)m

B
(0). In this case the Lagrangian function L3 reduces to

L3
(
q(0), a(0); q(1), a(1); m(0), m(1)

)
= L

(
q(0), a(0), q(1), a(1)

)
+ δABqA

(1)m
B
(0).

� (124)
In this case, the last equation in system (123) provides the definition of the Lagrange multi-

plier as qA
(1) = δACβC . So that the substitution of the Lagrangian (124) into (123), we the fol-

lowing reduced Hamilton–Jacobi equations

δACγC
∂γA

∂qB
(0)

+
∂αA

∂qB
(0)

aA
(1) +

∂βA

∂qB
(0)

mA
(1) −

∂L
∂qB

(0)

∣∣∣∣
qA
(1)=δABβB

= 0

δACγC
∂γA

∂aB
(0)

+
∂αA

∂aB
(0)

aA
(1) +

∂βA

∂aB
(0)

mA
(1) −

∂L
∂aB

(0)

∣∣∣∣
qA
(1)=δABβB

= 0

δACγC
∂γA

∂mB
(0)

+
∂αA

∂mB
(0)

aA
(1) +

∂βA

∂mB
(0)

mA
(1) −

∂L
∂mB

(0)

∣∣∣∣
qA
(1)=δABβB

= 0

γA − ∂L
∂qA

(1)

∣∣∣∣
qA
(1)=δABβB

− δABmB
(1) = 0,

αA − ∂L
∂aA

(1)

∣∣∣∣
qA
(1)=δABβB

= 0,

�

(125)

Hamilton–Jacobi theory for degenerate second order Lagrangians Notice that up to 
now, the non-degeneracy condition has not been assumed. This implies that we can apply 
this framework in both degenerate and nondegenerate third order Lagrangian systems. It is 
also interesting to note that we can further study the second order Lagrangian systems in the 
present framework. Let us study this particular case. In the definition of L3 given in (117), we 
choose L = L(q(0), a(0), q(1)), and consider an auxiliary function F = F(q(0), q(1), m(0)). So 
that, we have a Lagrangian function
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L2-deg
(
q(0), a(0); q(1), a(1); m(0), m(1)

)
= L

(
q(0), q(1), a(0)

)
+

∂F
∂qA

(0)
qA
(1) +

∂F
∂qA

(1)
aA
(0) +

∂F
∂mA

(0)
mA

(1)

� (126)
defined on the tangent bundle T(AQ × M). In this case, the energy function (119) is reduced to

E = p(0)
A qA

(1) + π
(0)
A aA

(1) + µ
(0)
A mA

(1) − L − ∂F
∂qA

(0)
qA
(1) −

∂F
∂qA

(1)
aA
(0) −

∂F
∂mA

(0)
mA

(1).

� (127)
This Morse family generates a nonhorizontal Lagrangian submanifold of TT∗(AQ × M). So 
that defines an implicit Hamiltonian system. We substitute the Lagrangian L2-deg into the 
Hamilton–Jacobi equation  (123). This gives the following Hamilton–Jacobi equation  for 
a second order degenerate Lagrangian L. The fifth equation  gives us that αA = 0. Under 
the light of the closure of the differential form γ , this reads γA = γA(q(0), m(0)) and that 
βA = βA(q(0), m(0)) so we have

∂γA

∂qB
(0)

qA
(1) +

∂βA

∂qB
(0)

mA
(1) =

∂L
∂qB

(0)
+

∂2F
∂qB

(0)∂qA
(0)

qA
(1) +

∂2F
∂qB

(0)∂qA
(1)

aA
(0) +

∂2F
∂qB

(0)∂mA
(0)

mA
(1),

∂L
∂aA

(0)
+

∂F
∂qA

(1)
= 0

∂γA

∂mB
(0)

qA
(1) +

∂βA

∂mB
(0)

mA
(1) =

∂2F
∂mB

(0)∂qA
(0)

qA
(1) +

∂2F
∂mB

(0)∂qA
(1)

aA
(0) +

∂2F
∂mB

(0)∂mA
(0)

mA
(1)

γB =
∂L
∂qB

(1)
+

∂2F
∂qB

(1)∂qA
(0)

qA
(1) +

∂F
∂qB

(0)
+

∂2F
∂qB

(1)∂qA
(1)

aA
(0) +

∂2F
∂qB

(1)∂mA
(0)

mA
(1)

βA =
∂F

∂mA
(0)

.

�

(128)

Let us study the Hamilton–Jacobi equation (128) for the particular choice of F = δABqA
(1)m

B
(0). 

As in the third order case, the last line of the system implies that qA
(1) = δACβC . Eventually 

we have

∂δACβCγA

∂qB
(0)

+
∂βA

∂qB
(0)

mA
(1) =

∂L
∂qB

(0)

∂L
∂aA

(0)
+ δABmB

(0) = 0

δACβC
∂γA

∂mB
(0)

+
∂βA

∂mB
(0)

mA
(1) = δBCaC

(0)

γB =
∂L
∂qB

(1)
+ δABmA

(1).

�

(129)

4.2.  Local vector field method

The second procedure to deal with an implicit higher-order implicit Lagrangian is based on 
the construction of a local vector field describing the dynamics. Consider an additional sec-
tion σ : T∗Tk−1Q → TT∗Tk−1Q in the same previous picture.
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where τ k−1
Q : Tk−1Q → Q.

A remark Recall that E is implicit, so there are several vectors in E projecting to the same 
point. The role of σ is to reduce the unknown number to one. We require that the domain of 
the section is included in the intersection of Im(γ) and C. Since for implicit systems C may not 
be the whole T∗Tk−1Q, as a result we arrive at a vector field Xσ that will satisfy a Hamilton 
equation of type

ιXσ
ΩTk−1Q = Θ(γ(q))� (130)

for a covector Θ defined at a point γ(q).
The construction of these local vector field using σ would imply the following diagram

.
� (131)

Explicitly, the locally constructed vector fields Xσ ∈ X(T∗Tk−1)Q and Xγ
σ ∈ X(Tk−1Q) in 

coordinates would read:

Xσ = σA
(κ)(q(κ), γ

(κ))
∂

∂qA
(κ)

+ σ
(κ)
A (q(κ), γ(κ))

∂

∂p(κ)
A

, Xγ
σ = σA

(κ)(q(κ), γ
(κ))

∂

∂qA
(κ)

.� (132)

If we use the one-form γ : Tk−1Q → T∗Tk−1Q and define the projected vector field

Xγ
σ = TπTk−1Q

◦ Xσ ◦ γ,� (133)

we have the following theorem.

Theorem 7 (Implicit HJ theorem with an auxiliary section).  The one-form γ  will 
be a solution of an implicit higher order Hamilton–Jacobi problem if it satisfies the following 
relation
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σA
(κ)(q

A
(κ), γ

(κ)
A (q(κ)))

∂γ
(κ)
A

∂qA
(κ)

= σ
(κ)
A (qA

(κ), γ
(κ)
A (q(κ))),� (134)

when σ is an auxiliary section σ : T∗Tk−1Q → TT∗Tk−1Q. It is fulfilled that σ−1(S) = C . 
Recall that since S is an implicit submanifold, it does not necessarily project on the whole 
T∗Tk−1Q, but in a submanifold C of it.

Proof.  It is straightforward using that

Tγ(Xγ
σ) = Xσ ◦ γ� (135)

and the expressions of Xγ
σ and Xσ in coordinates as in (132).� ■ 

5.  Applications

5.1.  A (homogeneous) deformed elastic cylindrical beam with fixed ends

Let Q be a one-dimensional manifold with coordinate q(0), and introduce the second order 
Lagrangian

L(q(0), q(1), q(2)) =
1
2
µq2

(2) + ρq(0)� (136)

in terms of a local coordinate system (q(0), q(1), q(2)) on T2Q.

The Morse family method—Ostrogradski momenta. We will first apply the Ostrogradski 
method. In this method, the corresponding energy function is computed to be

E(q(0), q(1), q(2), p(0), p(1)) = p(0)q(1) + p(1)q(2) −
1
2
µq2

(2) − ρq(0),� (137)

where q(2) ∈ R is the fiber component and (q(0), q(1), p(0), p(1)) are the canonical coordinates 
on T*TQ. Here, q(2) is a Lagrange multiplier. The Morse family E generates a Lagrangian sub-
manifold S of TT*TQ, that corresponds with

S = {(q(0), q(1), p(0),µq(2); q(1), q(2), ρ,−p(0)) ∈ TT∗TQ : q(2) ∈ R}.

This Lagrangian submanifold defines the following differential equation

....q(0) = − ρ

µ
,� (138)

which is exactly the fourth order Euler–Lagrange equation generated by the Lagrangian func-
tion L. The projection of S onto the cotangent bundle T*TQ results in the submanifold

C = {(q(0), q(1); p(0), p(1)) ∈ T∗TQ : p(1) = µq(2) ∈ R}.

Let us now consider a closed one-form γ = γ(0)dq(0) + γ(1)dq(1) and write the Hamilton–
Jacobi equations.




q(1)
∂γ(0)

∂q(0)
+ q(2)

∂γ(1)

∂q(0)
− ρ = 0

γ(0) + q(1)
∂γ(0)

∂q(1)
+ q(2)

∂γ(1)

∂q(1)
= 0

γ(1) − µq(2) = 0.

� (139)
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If we substitute the last equation into the Morse family (137) equal to constant, and we assume 
that γ = dW  for some real valued function W on TQ, we arrive at that

q(1)
∂W
∂q(0)

+
1

2µ

(
∂W
∂q(1)

)2

− ρq(0) = 0.� (140)

Note that, in this case, solving the Hamilton–Jacobi equation is much more difficult than solv-
ing (138).

The Morse family method—the Schmidt method. Let us now propose the Schmidt method 
section 4.1.2. In this case, we have a two-dimensional acceleration bundle AQ with coordinates 
(q(0), a(0)). Its tangent bundle TAQ is four-dimensional with coordinates (q(0), a(0); q(1), a(1)). 
We pull back the Lagrangian in (136) to TAQ by means of the isomorphism (92) which reads 
that

L =
1
2
µa2

(0) + ρq(0).

The compatibility condition (98) and the non-degeneracy of the Lagrangian suggests the aux-
iliary function F = −µa(0)q(1). So, the extended Lagrangian (95) turns out to be

L2 = ρq(0) −
1
2
µa2

(0) − µa(1)q(1).

The dual coordinates on the cotangent bundle T*AQ is given by (q(0), a(0); p(0),π(0)). The 
conjugate momenta is computed to be π(0) = −µq(1). According to (103), this results with the 
following Hamiltonian function

H =
1
2
µa2

(0) −
1
µ
π(0)p(0) − ρq(0).

To arrive at the Hamilton–Jacobi equation, assume a closed one-form γ = γdq(0) + αda(0) 

defined on the acceleration bundle AQ, that is ∂γ
∂a(0)

= ∂α
∂q(0)

. Recalling the Hamilton–Jacobi 

theorem asserts that the restriction of H on γ  is constant (139). Taking exterior derivative of 
this, we have the following set of equations

∂α

∂a(0)
α+

∂α

∂a(0)
γ = µ2a(0),� (141)

∂γ

∂q(0)
α+

∂α

∂q(0)
γ = −2ρ.� (142)

Note that, this Hamilton–Jacobi problem reduces to the example studied in section 4.1.3 if 

ρ = 0. In this case, we solve the system as γ = c2 and α = 1
c2
µ2a(0) + c, where c and c2 are 

constants.

5.2.  One dimensional version of the end of a javelin

Let us consider the following Lagrangian on T2Q of the one-dimensional manifold Q equipped 
with (q(0), q(1), q(2)) given by

L(q(0), q(1), q(2)) =
1
2

q2
(1) −

1
2

q2
(2).� (143)
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The Morse family method—Ostrogradski momenta. The associated energy function is 
given by

E(q(0), q(1), q(2), p(0), p(1)) = p(0)q(1) + p(1)q(2) +
1
2

q2
(2) −

1
2

q2
(1).

Here, q(2) ∈ R is the fiber component and (q(0), q(1), p(0), p(1)) are the canonical coordinates 
on T*TQ. The Morse function E generates the Lagrangian submanifold of TT*TQ given by

S = {(q(0), q(1), p(0),−q(2); q(1), q(2), 0, p(0) − q(1)) ∈ TT∗TQ : q(2) ∈ R}.

This Lagrangian submanifold defines the equations
...q(0) + ¨q(0) = c,

where c is a constant. The projection of S onto the cotangent bundle T*TQ is a three dimen-
sional manifold

C = {(q(0), q(1); p(0), p(1)) ∈ T∗TQ : p(1) = −q(2) ∈ R}.

for a fixed q(2). For a closed one-form γ(0)dq(0) + γ(1)dq(1), the Hamilton–Jacobi equa-
tion according to theorem (139) turns out to be




q(1)
∂γ(0)

∂q(0)
+ q(2)

∂γ(1)

∂q(0)
= 0

γ(0) + q(1)
∂γ(0)

∂q(1)
+ q(2)

∂γ(1)

∂q(1)
− q(1) = 0

γ(1) + q(2) = 0.

� (144)

We can solve q(2) from the last equation and if we substitute it in the equation E  =  C, (where C 
is a constant) under the image of γ = dW  for some real valued function W on TQ, we arrive at

∂W
∂q(0)

q(1) −
1
2

(
∂W
∂q(1)

)2

− 1
2

q2
(1) = 0.� (145)

There is a solution [18]

W(q(0), q(1)) = Aq(0) +
√

2
∫ √

Aq(1) −
1
2

q2
(1) − Bdq(1)

which results with a one-form γ  solving the system (144) in form

γ = Adq(0) +
√

2

√(
Aq(1) −

1
2

q2
(1) − B

)
dq(1).

The Morse family method—the Schmidt method. As an alternative realization of the 
Hamilton–Jacobi problem, we can use the Schmidt method in section 4.1.2. As in the previous 
subsection, we assume that acceleration bundle AQ is two-dimensional with local coordinates 
(q(0), a(0)), and TAQ is a four-dimensional manifold with (q(0), a(0); q(1), a(1)). We pull back 
the Lagrangian L in (143) by means of the isomorphism (92) and arrive at that

L =
1
2

q2
(1) −

1
2

a2
(0).� (146)
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In this case, the auxiliary function is taken to be F = a(0)q(1). Note that, F satisfies the com-
patibility condition in (98). So, the first order Lagrangian function (95) is computed to be

L2 =
1
2

q2
(1) +

1
2

a2
(0) + q(1)a(1).

The coordinates on the cotangent bundle T*AQ are (q(0), a(0); p(0),π(0)) and the conjugate 
momenta is computed to be π(0) = q(1). This results in the following Hamiltonian function

H = π(0)p(0) − 1
2
(π(0))2 − 1

2
a2
(0)

The Hamilton–Jacobi theorem in the acceleration bundle (5) asserts that the restriction of H on 
a closed one-form dW  is constant, say c. See that this can be written as

∂W
∂a(0)

∂W
∂q(0)

−
(

∂W
∂a(0)

)2

− 1
2

a2
(0) = c.

A solution of this equation can easily be computed to be

W =
1√
2

ln
(

a(0) +
√

a2
(0) + 2c

)
+

1
2
√

2
a(0)

√
a2
(0) + 2c.

5.3.  A simple degenerate model

Now we consider Q as a three dimensional manifold with coordinates (x, y, z) and consider the 
following degenerate second order Lagrangian

L =
1
2
(ẍ + ÿ)2.� (147)

The Morse family method—Ostrogradski momenta. On the cotangent bundle T*TQ, we 
introduce the momenta ( px, py, pz; pẋ, pẏ, pż) and the energy function

E = pxẋ + pyẏ + pzż + pẋẍ + pẏÿ + pżz̈ −
1
2
(ẍ + ÿ)2.� (148)

Assume a function W depending on (x, y, z; ẋ, ẏ, ż), then the Hamilton–Jacobi problem (87) 
reads

∂2W
∂x∂x

ẋ +
∂2W
∂x∂y

ẏ +
∂2W
∂x∂z

ż +
∂2W
∂x∂ẋ

ẍ +
∂2W
∂x∂ẏ

ÿ +
∂2W
∂x∂ż

z̈ = 0

∂W
∂x

+
∂2W
∂ẋ∂x

ẋ +
∂2W
∂ẋ∂y

ẏ +
∂2W
∂ẋ∂z

ż +
∂2W
∂ẋ∂ẋ

ẍ +
∂2W
∂ẋ∂ẏ

ÿ +
∂2W
∂ẋ∂ż

z̈ = 0

∂2W
∂y∂x

ẋ +
∂2W
∂y∂y

ẏ +
∂2W
∂y∂z

ż +
∂2W
∂y∂ẋ

ẍ +
∂2W
∂y∂ẏ

ÿ +
∂2W
∂y∂ż

z̈ = 0

∂W
∂y

+
∂2W
∂ẏ∂x

ẋ +
∂2W
∂ẏ∂y

ẏ +
∂2W
∂ẏ∂z

ż +
∂2W
∂ẏ∂ẋ

ẍ +
∂2W
∂ẏ∂ẏ

ÿ +
∂2W
∂ẏ∂ż

z̈ = 0

∂2W
∂z∂x

ẋ +
∂2W
∂z∂y

ẏ +
∂2W
∂z∂z

ż +
∂2W
∂z∂ẋ

ẍ +
∂2W
∂z∂ẏ

ÿ +
∂2W
∂z∂ż

z̈ = 0

∂W
∂z

+
∂2W
∂ż∂x

ẋ +
∂2W
∂ż∂y

ẏ +
∂2W
∂ż∂z

ż +
∂2W
∂ż∂ẋ

ẍ +
∂2W
∂ż∂ẏ

ÿ +
∂2W
∂ż∂ż

z̈ = 0.

�

(149)
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Although this system looks cumbersome, the set of constraints in (87) is simply computed as

∂W
∂ẋ

=
∂W
∂ẏ

= ẍ + ÿ,
∂W
∂ż

= 0,� (150)

what reduces this huge system to a more reasonable one. For example, the independece of W 
to ż from the last line of the system gives the independence of W to z. So that we have actually 
four number of equations. Then the first two constraints lead to the following reduced system 
of equations

∂2W
∂x∂x

ẋ +
∂2W
∂x∂y

ẏ +
∂2W
∂x∂ẋ

∂W
∂ẋ

= 0

∂W
∂x

+
∂2W
∂ẋ∂x

ẋ +
∂2W
∂ẋ∂y

ẏ +
∂2W
∂ẋ∂ẋ

∂W
∂ẋ

= 0

∂2W
∂y∂x

ẋ +
∂2W
∂y∂y

ẏ +
∂2W
∂y∂ẋ

∂W
∂ẋ

= 0

∂W
∂y

+
∂2W
∂ẏ∂x

ẋ +
∂2W
∂ẏ∂y

ẏ +
∂2W
∂ẏ∂ẋ

∂W
∂ẋ

= 0.

� (151)

Notice that a solution of this can easily be noticed as

W = aẋ + bẏ.� (152)

5.4.  Second order Lagrangian systems with affine dependence on the acceleration

In this subsection we are employing the theoretical parts presented in the previous section to 
the particular case of second order Lagrangian theories with affine dependence on the accel-
eration. To this end, we first define the following generic Lagrangian function

L(q(0), q(1), q(2)) = fA(q(0), q(1))qA
(2) + g(q(0), q(1))� (153)

on the second order tangent bundle T2Q where f A and g are functions depending only on the 
position and the velocity.

The Morse family method—Ostrogradski momenta. Let us start with the first approach by 

introducing the Ostrogradski momenta ( p(0)
A , p(1)

A ) as the fiber coordinates of T*TQ. Then the 
energy function take the form

E = p(0)
A qA

(1) + p(1)
A qA

(2) − L = p(0)
A qA

(1) + p(1)
A qA

(2) − fA(q(0), q(1))qA
(2) − g(q(0), q(1)).� (154)

Now, let us introduce an exact one-form

γ = dW(q(0), q(1)) =
∂W
∂qA

(0)
dqA

(0) +
∂W
∂qA

(1)
dqA

(1)� (155)

as given (86) and study the system of Hamilton–Jacobi equations (87). In this case we have 
that
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∂2W
∂qB

(0)∂qA
(0)

qA
(1) +

∂2W
∂qB

(0)∂qA
(1)

qA
(2) =

∂fA
∂qB

(0)
qA
(2) +

∂g
∂qB

(0)

∂W
∂qB

(0)
+

∂2W
∂qB

(1)∂qA
(0)

qA
(1) +

∂2W
∂qB

(1)∂qA
(1)

qA
(2) =

∂fA
∂qB

(1)
qA
(2) +

∂g
∂qB

(1)

∂W
∂qA

(1)
= fA(q(0), q(1)).

�

(156)

Consider now the third equation in the system (156). Taking the partial derivative of this with 

respect to qB
(1) result with the following equality

∂2W
∂qA

(1)∂qB
(1)

=
∂fA
∂qB

(1)
(q(0), q(1)).� (157)

Notice that the left hand side is symmetric with respect to the indices A and B whereas this is 
not generally true for an arbitrary functions f A. This is the first restriction in the theory. Even 
though there are numerous physical systems satisfying this symmetry criteria in the literature. 
There are also interesting physical models involving affine terms violating this symmetry. We 
provide two example important examples for such kind of systems in the conclusions sec-
tion by pointing out some possible future works.

We can further investigate more on the integrability of the Hamilton–Jacobi equations. To 
this end, we substitute the last line of the system (156) into the first two equations. This reads

∂2W
∂qB

(0)∂qA
(0)

qA
(1) =

∂g
∂qB

(0)

∂W
∂qB

(0)
=

∂g
∂qB

(1)
− ∂fA

∂qB
(0)

qA
(1).

�

(158)

Taking the partial derivative of the second line with respect to ∂qA
(0) , multiplying by qA

(1), we 
arrive at the following differential equation

∂g
∂qB

(0)
− ∂2g

∂qB
(1)∂qA

(0)
qA
(1) +

∂2fC
∂qB

(0)∂qA
(0)

qC
(1)q

A
(1) = 0.� (159)

This is an integrability criterion for the Hamilton–Jacobi problem for second order Lagrangian 
fomalisms that are affine in acceleration. Assuming that this holds, the Hamilton–Jacobi prob-
lem can be written in a relatively easy form

∂W
∂qB

(0)
=

∂g
∂qB

(1)
− ∂fA

∂qB
(0)

qA
(1),

∂W
∂qA

(1)
= fA(q(0), q(1)).

� (160)

The Morse family method—the Schmidt method. In this case, we shall start with the 
Lagrangian function (153) once more, but in this case we investigate the associated Hamilton–
Jacobi problem by means of the Schmidt Legendre transformation in the framework of the 

acceleration bundle. By choosing the auxiliary function F = δABqA
(1)m

B
(0) we write the equiva-

lent Lagrangian function exhibited in (126) as follows
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L2-deg = fA(q(0), q(1))aA
(0) + g(q(0), q(1)) + δABqA

(1)m
B
(1) + δABaA

(0)m
B
(0)� (161)

which depends on the base components (q(0), a(0), m(0)) along with the velocities 
(q(1), a(1), m(1)). In this case, the energy function (127) turns out to be

E = p(0)
A qA

(1) + π
(0)
A aA

(1) + µ
(0)
A mA

(1) − fA(q(0), q(1))aA
(0) − g(q(0), q(1))− δABqA

(1)m
B
(1) − δABaA

(0)m
B
(0)

Assuming an exact one-form

γ = dW(q(0), a(0), m(0)) =
∂W
∂qA

(0)
dqA

(0) +
∂W
∂aA

(0)
daA

(0) +
∂W
∂mA

(0)
dmA

(0)� (162)

the Hamilton–Jacobi equation (129) turns out to be

∂2W
∂qA

(0)∂qB
(0)

qA
(1) +

∂2W
∂aA

(0)∂qB
(0)

aA
(1) +

∂2W
∂mA

(0)∂qB
(0)

mA
(1) =

∂fA
∂qB

(0)
aA
(0) +

∂g
∂qB

(0)

∂2W
∂qA

(0)∂aB
(0)

qA
(1) +

∂2W
∂aA

(0)∂aB
(0)

aA
(1) +

∂2W
∂mA

(0)∂aB
(0)

mA
(1) = fB + δABmA

(0)

∂2W
∂qA

(0)∂mB
(0)

qA
(1) +

∂2W
∂aA

(0)∂mB
(0)

aA
(1) +

∂2W
∂mA

(0)∂mB
(0)

mA
(1) = δABaA

(0)

∂W
∂qA

(0)
=

∂fB
∂qA

(1)
aB
(0) +

∂g
∂qA

(1)
+ δABmB

(1)

∂W
∂aA

(0)
= 0

∂W
∂mA

(0)
= δABqB

(1).

�

(163)

From the fifth line we see that W does not depend on a(0). So that, the second line determines 

the identity fB = −δABmA
(0). From the fourth and sixth equations, we substitute the Lagrange 

multipliers mB
(1) and qB

(1), in to the rest of the equations and we arrive at the following reduced 
system

δAC ∂2W
∂qA

(0)∂qB
(0)

∂W
∂mC

(0)

+ δAC ∂2W
∂mA

(0)∂qB
(0)

(
∂W
∂qC

(0)

− ∂fD
∂qC

(1)

aD
(0) −

∂g
∂qC

(1)

)
=

∂fA
∂qB

(0)
aA
(0) +

∂g
∂qB

(0)

δAC ∂2W
∂qA

(0)∂mB
(0)

∂W
∂mC

(0)

+ δAC ∂2W
∂mA

(0)∂mB
(0)

(
∂W
∂qC

(0)

− ∂fD
∂qC

(1)

aD
(0) −

∂g
∂qC

(1)

)
= δABaA

(0).

�

(164)

In this case, we have arrived at a relatively complicated PDE system comparing with the 
Ostrogradski method. Indeed, the choice of one of the two methods is important for resolving 
the equations.

5.5. Third order Lagrangian systems with affine dependence on the third order derivative 
term

In this subsection, in order to exhibit the application area of the theoretical framework we have 
proposed, we shall investigate possible Hamilton–Jacobi realization of some class of the third 
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order singular Lagrangian systems involving affine dependence to the third order derivative 
terms in the following form

L(q(0), q(1), q(2)) = fA(q(1), q(2))qA
(3) + g(q(0), q(1))� (165)

on the third order tangent bundle T3Q.

The Morse family method—Ostrogradski momenta. The energy function generating the 
dynamics of the Lagrangian (165) is

E = p(0)
A qA

(1) + p(1)
A qA

(2) + p(2)
A qA

(3) − fA(q(1), q(2))qA
(3) − g(q(0), q(1)),� (166)

where ( p(0), p(1), p(2)) are the conjugate momenta defining the fiber coordinates of the cotan-
gent bundle T∗T2Q. Consider an exact one-form on T2Q which is in coordinates given by

γ = dW(q(0), q(1), q(2)) =
∂W
∂qA

(0)
dqA

(0) +
∂W
∂qA

(1)
dqA

(1) +
∂W
∂qA

(2)
dqA

(2)� (167)

following (86). We write the system of Hamilton–Jacobi equations (87) as follows

∂2W
∂qA

(0)∂qB
(0)

qA
(1) +

∂2W
∂qA

(1)∂qB
(0)

qA
(2) +

∂2W
∂qA

(2)∂qB
(0)

qA
(3) =

∂g
∂qB

(0)

∂W
∂qB

(0)
+

∂2W
∂qA

(0)∂qB
(1)

qA
(1) +

∂2W
∂qA

(1)∂qB
(1)

qA
(2) +

∂2W
∂qA

(2)∂qB
(1)

qA
(3) =

∂fA
∂qB

(1)
qA
(3) +

∂g
∂qB

(1)

∂W
∂qB

(1)
+

∂2W
∂qA

(0)∂qB
(2)

qA
(1) +

∂2W
∂qA

(1)∂qB
(2)

qA
(2) +

∂2W
∂qA

(2)∂qB
(2)

qA
(3) =

∂fA
∂qB

(2)
qA
(3)

∂W
∂qB

(2)
= fB.

�

(168)

Let us try to simplify this system. See that the last line reads that ∂W/∂qB
(2) is independent of 

q(0), and leads to the observation that ∂fB/∂qA
(2) must be symmetric with respect to the indices 

A and B. Substitution of the last identity in (168) into the second and third lines we arrive at a 
fairly more simple system

∂W
∂qB

(0)
=

∂g
∂qB

(1)
+

∂2fB
∂qA

(1)∂qC
(1)

qA
(2)q

C
(2),

∂W
∂qB

(1)
= − ∂fB

∂qC
(1)

qC
(2),

∂W
∂qB

(2)
= fB.

�

(169)

See that, this system is coupled with the first line of the system (168). So that substitution 
of (169) into the first line of (168) must be identically satisfied. This compatibility condition 
reads

∂2g
∂qA

(0)q
B
(1)

qA
(1) +

∂3fB
∂qA

(0)∂qD
(1)∂qC

(1)

qD
(2)q

C
(2)q

A
(1) −

∂2fB
∂qC

(1)∂qA
(1)

qC
(2)q

A
(2) =

∂g
∂qB

(0)
.

�

(170)
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It is also important to know that one only needs to perform direct integration to find W after the 
functions f A and g are determined. But to do this, f A and g can not be arbitrarily chosen since 
they have to satisfy the integrability conditions arising form the system.

6.  Conclusions and comments

In this paper, we propose a Hamilton–Jacobi theory for higher order Lagrangians. Our theory 
works well for all non-degenerate and (a large class) of degenerate Lagrangians. The implicit 
character of singular systems has been studied in two different ways: the first one consisted 
on making use of Morse families that play the role of the Hamiltonian function, and that give 
rise to Lagrangian submanifolds as in equivalence to the image of γ , i.e. the solution of a 
Hamilton–Jacobi problem. The second method consists on the local construction of a vector 
field associated to the implicit equations and defined on a proper domain compatible with the 
implicit character. The higher order derivatives are studied through both the Ostrogradski–
Legendre and Schmidt–Legendre transformations. In the particular case of second order 
Lagrangians, we have employed the acceleration bundle picture.

As a future endeavour, we would like to generalize this formalism in such a way that we 
could be able to work with all degenerate higher order Lagrangian systems, e.g. singular 
higher order Lagrangians coming from the gravitational theory. Concerning this topic, we will 
be specifically interested in two examples. These examples cannot be studied in the geometry 
exhibited in the present framework because of the skew-symmetric Chern–Simon term.

	(1)	�One is the chiral oscillator in two dimensions, which accounts for mirror symmetry, and 
in the non-relativistic case, we have an oscillator with a Chern–Simons term (independent 
of the metric). It reads:

L = −λεABqA
(1)q

A
(2) +

m
2
δABqA

(1)q
B
(1)� (171)

		 where λ and m are nonvanishing constants [16]. Here, εAB is a skew-symmetric tensor 
with ε12 = 1. The Lagrangian (171) is quasi-invariant under the Galilean transformations.

	(2)	�The second example is the Clément Lagrangian, which is a second order degenerate 
Lagrangian function [15]. It is defined on the second order tangent bundle T2Q where Q 
is a semi-Riemannian manifold equipped with the Minkowskian metric θ = [θAB] with 
(+,−,−). The Clément Lagrangian is given by

L = −m
2
ζθABqA

(1)q
B
(1) −

2mΛ

ζ
+

ζ2

2µm
εABCqA

(0)q
B
(1)q

C
(2)� (172)

		 where ζ = ζ(t) is a function that allows arbitrary reparametrizations of the variable t, 
whereas Λ and 1/2m are the cosmological and Einstein gravitational constants, respec-
tively. Here, εABC  is a skewsymmetric three tensor determining the triple product, so this 
Lagrangian falls into the category of Lagrangians depending linearly on the acceleration 
[16]. For the Hamiltonian analysis of this singular theory, we cite [10].

Acknowledgments

We thank the anonymous referees for their comments and suggestions which improved our pre-
sentation. This work has been partially supported by MINECO Grants MTM2016- 76-072-P 

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204



44

and the ICMAT Severo Ochoa projects SEV-2011-0087 and SEV-2015-0554. C Sardón wishes 
to acknowledge Juan de la Cierva Formación financial support.

ORCID iDs

Cristina Sardón  https://orcid.org/0000-0001-9237-4373

References

	 [1]	 Abraham  R and Marsden  J  E 1978 Foundations of Mechanics 2nd edn (Reading, MA: 
Addison-Wesley)

	 [2]	 Abraham R, Marsden J E and Ratiu T 1988 Manifolds, Tensor Analysis, and Applications (Applied 
Mathematical Sciences vol 75) 2nd edn (New York: Springer)

	 [3]	 Andrzejewski K, Gonera J, Machalski P and Maś lanka P 2010 Modified Hamiltonian formalism 
for higher-derivative theories Phys. Rev. D 82 045008

	 [4]	 Arnol’d V I 1989 Mathematical Methods of Classical Mechanics 2nd edn (Berlin: Springer)
	 [5]	 Balseiro P, Marrero J C, Martín de Diego D and Padrón E 2010 A unified framework for mechanics: 

Hamilton–Jacobi equation and applications Nonlinearity 23 1887–918
	 [6]	 Barbero-Liñán  M, de León  M and Martín de Diego  D 2013 Lagrangian submanifolds and 

Hamilton–Jacobi equation Mon.hefte für Math. 171 269–90
	 [7]	 Barbero-Liñán M, de León M, Martín de Diego D, Marrero J C and Muñoz-Lecanda M C 2012 

Kinematic reduction and the Hamilton–Jacobi equation J. Geom. Mech. 4 207–37
	 [8]	 Benenti S 2011 Hamiltonian Structures and Generating Families (Berlin: Springer)
	 [9]	 Benenti S and Tulczyjew W M 1980 The geometrical meaning and globalization of the Hamilton–

Jacobi method Differential Geometrical Methods in Mathematical Physics (Berlin: Springer)  
pp 9–21

	[10]	 Çağatay Uçgun  F, Esen  O and Gümral  H 2018 Reductions of topologically massive gravity I: 
Hamiltonian analysis of second order degenerate Lagrangians J. Math. Phys. 59 013510

	[11]	 Cariñena J F, Gràcia X, Marmo G, Martínez E, Muñoz–Lecanda M C and Román–Roy N 2006 
Geometric Hamilton–Jacobi theory Int. J. Geom. Methods Mod. Phys. 3 1417–58

	[12]	 Cariñena J F, Gràcia X, Marmo G, Martínez E, Muñoz–Lecanda M C and Román–Roy N 2009 
Hamilton–Jacobi theory and the evolution operator Mathematical Physics and Field Theory 
Julio Abad, in Memoriam ed M Asorey et al (Prensas Universitarias de Zaragoza) pp 177–86

	[13]	 Cariñena J F, Gràcia X, Marmo G, Martínez E, Muñoz–Lecanda M C and Román–Roy N 2010 
Nonholonomic geometric Hamilton–Jacobi theory for nonholonomic dynamical systems Int. J. 
Geom. Methods Mod. Phys. 7 431–54

	[14]	 Choquet-Bruhat Y, de Witt-Morette C and Dillard-Bleick M 1982 Analysis, Manifolds and Physics 
(Amsterdam: North-Holland)

	[15]	 Clément  G 1994 Particle-like solutions to topologically massive gravity Class. Quantum Grav. 
11 L115

	[16]	 Cruz  M, Gómez-Cortés  R, Molgado  A and Rojas  E 2016 Hamiltonian analysis for linearly 
acceleration-dependent Lagrangians J. Math. Phys. 57 062903

	[17]	 Colombo L, de León M, Prieto-Martínez P D and Román-Roy N 2014 Geometric Hamilton–Jacobi 
theory for higher order autonomous systems J. Phys. A: Math. Theor. 47 235203

	[18]	 Constantelos G C 1984 On the Hamilton–Jacobi theory with derivatives of higher order Nuovo 
Cimento B (11) 84 91–101

	[19]	 Dirac P A M 1967 Lectures in Quantum Mechanics (Belfer Graduate School of Science) (New 
York: Yeshiva University)

	[20]	 Dominici  D, Gomis  J, Longhi  G and Pons  J  M 1984 Hamilton–Jacobi theory for constrained 
systems J. Math. Phys. 25 2439–60

	[21]	 Esen  O and Guha  P 2018 On the geometry of the Schmidt–Legendre transformation J. Geom. 
Mech. 10 251–91

	[22]	 Esen O and Gümral H 2014 Tulczyjew triplet for lie groups I: trivializations and reductions J. Lie 
Theory 24 1115–60

	[23]	 Esen O and Gümral H 2017 Tulczyjew triplet for lie groups II: dynamics J. Lie Theory 27 329–56

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204

https://orcid.org/0000-0001-9237-4373
https://orcid.org/0000-0001-9237-4373
https://doi.org/10.1103/PhysRevD.82.045008
https://doi.org/10.1103/PhysRevD.82.045008
https://doi.org/10.1088/0951-7715/23/8/006
https://doi.org/10.1088/0951-7715/23/8/006
https://doi.org/10.1088/0951-7715/23/8/006
https://doi.org/10.3934/jgm.2012.4.207
https://doi.org/10.3934/jgm.2012.4.207
https://doi.org/10.3934/jgm.2012.4.207
https://doi.org/10.1063/1.5021948
https://doi.org/10.1063/1.5021948
https://doi.org/10.1142/S0219887806001764
https://doi.org/10.1142/S0219887806001764
https://doi.org/10.1142/S0219887806001764
https://doi.org/10.1142/S0219887810004385
https://doi.org/10.1142/S0219887810004385
https://doi.org/10.1142/S0219887810004385
https://doi.org/10.1063/1.4954804
https://doi.org/10.1063/1.4954804
https://doi.org/10.1088/1751-8113/47/23/235203
https://doi.org/10.1088/1751-8113/47/23/235203
https://doi.org/10.1007/BF02721650
https://doi.org/10.1007/BF02721650
https://doi.org/10.1007/BF02721650
https://doi.org/10.1063/1.526452
https://doi.org/10.1063/1.526452
https://doi.org/10.1063/1.526452
https://doi.org/10.3934/jgm.2018010
https://doi.org/10.3934/jgm.2018010
https://doi.org/10.3934/jgm.2018010


45

	[24]	 Esen O, Jiménez V M, de León M and Sardón C 2018 Reduction of a Hamilton–Jacobi equation for 
nonholonomic systems SIGMA (arxiv:1810.04962) (submitted)

	[25]	 Esen O, de León M and Sardón C 2018 A Hamilton–Jacobi theory for implicit differential systems 
J. Math. Phys. 59 022902

	[26]	 Fels M 1996 The inverse problem of the calculus of variations for scalar fourth-order ordinary 
differential equations Trans. Am. Math. Soc. 348 5007–29

	[27]	 Gotay  M  J and Nester  J  M 1980 Generalized constraint algorithm and special presymplectic 
manifolds Geometric Methods in Modern Physics (Lecture Notes in Math.vol 775) (Berlin: 
Springer) pp 78–104 (Proc. NSF-CBMS Conf., Univ. Lowell, Lowell, Mass., 1979)

	[28]	 Gotay M J and Nester J M 1984 Apartheid in the Dirac theory of constraints J. Phys. A: Math. Gen. 
A 17 3063–6

	[29]	 Gotay M J, Nester J M and Hinds G 1978 Presymplectic manifolds and the Dirac–Bergmann theory 
of constraints J. Math. Phys. 19 2388–99

	[30]	 Grabowski J and Grabowska K 2013 Tulczyjew triples: from statics to field theory J. Geom. Mech. 
5 445–72

	[31]	 Ibort A, de León M, Marmo G and Martín de Diego D 1996 Nonholonomic constrained systems as 
implicit differential equations Rend. del Semin. Mat. di Torino 54 295

	[32]	 Iglesias-Ponte D, de León M and Martín de Diego D 2008 Towards a Hamilton–Jacobi theory for 
nonholonomic mechanical systems J. Phys. A: Math. Theor. 41 015205

	[33]	 Janeczko S 2000 On implicit Lagrangian differential systems Ann. Polonici Mathematici 74 133–41
	[34]	 José  J  V and Saletan  E  J 1998 Classical Dynamics: a Contemporary Approach (Cambridge: 

Cambridge University Press)
	[35]	 Lawruk  B, Sniatycki  J and Tulczyjew  W  M 1975 Special symplectic spaces J. Differ. Equ. 

17 477–97
	[36]	 Leok M, Ohsawa T and Sosa D 2012 Hamilton–Jacobi theory for degenerate Lagrangian systems 

with holonomic and nonholonomic constraints J. Math. Phys. 53 072905
	[37]	 de León M, Marrero J C and Martín de Diego D 2009 A geometric Hamilton–Jacobi theory for 

classical field theories Variations, Geometry and Physics (New York: Nova Sci Publ.) pp 129–40
	[38]	 de León  M, Marrero  J  C and Martín de Diego  D 2010 Linear almost Poisson structures and 

Hamilton–Jacobi equation applications to nonholonomic mechanics J. Geom. Mech. 2 159–98
	[39]	 de León M, Martín de Diego D, Marrero J C, Salgado M and Vilariño S 2010 Hamilton–Jacobi 

theory in k-symplectic field theories Int. J. Geom. Methods Mod. Phys. 7 1491–507
	[40]	 de León  M, Martín de Diego  D and Vaquero  M 2012 A Hamilton–Jacobi theory for singular 

Lagrangian systems in the Skinner and Rusk setting Int. J. Geom. Methods Mod. Phys. 9 1250074
	[41]	 de León M and Rodrigues P R 2011 Methods of Differential Geometry in Analytical Mechanics vol 

158 (Amsterdam: Elsevier)
	[42]	 de León M and Rodrigues P R 1985 Generalized Classical Mechanics and Field Theory (North-

Holland Math. Studies vol 112) (Amsterdam: Elsevier)
	[43]	 de León M and Sardón C 2017 Geometry of the discrete Hamilton–Jacobi equation. Applications 

in optimal control Rep. Math. Phys. 81 39–63
	[44]	 de León M and Sardón C 2017 Geometric Hamilton–Jacobi theory on Nambu–Poisson manifolds 

J. Math. Phys. 58 033508
	[45]	 de León M and Vilariño S 2014 Hamilton–Jacobi theory in k-cosymplectic field theories Int. J. 

Geom. Methods Mod. Phys. 11 1450007
	[46]	 Libermann P and Marle C M 1987 Symplectic Geometry and Analytical Dynamics (Dordrecht: D. 

Reidel Publishing Company)
	[47]	 Mendella G, Marmot G and Tulczyjew W M 1995 Integrability of implicit differential equations J. 

Phys. A: Math. Gen. 28 149
	[48]	 Marmo G, Mendella G and Tulczyjew W M 1997 Constrained Hamiltonian systems as implicit 

differential equations J. Phys. A: Math. Gen. 30 277–93
	[49]	 Marmo G, Morandi G and Mukunda N 1990 A geometrical approach to the Hamilton–Jacobi form 

of dynamics and its generalizations Riv. Nuovo Cimento 13 1–74
	[50]	 Marsden J E and Ratiu T S 2013 Introduction to Mechanics and Symmetry: a Basic Exposition of 

Classical Mechanical Systems vol 17 (Berlin: Springer)
	[51]	 Morandi G, Ferrario C, Vecchio G L, Marmo G and Rubano C 1990 The inverse problem in the 

calculus of variations and the geometry of the tangent bundle Phys. Rep. 188 147–284
	[52]	 Ohsawa T and Bloch A M 2011 Nonholomic Hamilton–Jacobi equation and integrability J. Geom. 

Mech. 1 461–81

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204

http://arxiv.org/abs/1810.04962
https://doi.org/10.1063/1.4999669
https://doi.org/10.1063/1.4999669
https://doi.org/10.1090/S0002-9947-96-01720-5
https://doi.org/10.1090/S0002-9947-96-01720-5
https://doi.org/10.1090/S0002-9947-96-01720-5
https://doi.org/10.1088/0305-4470/17/15/023
https://doi.org/10.1088/0305-4470/17/15/023
https://doi.org/10.1088/0305-4470/17/15/023
https://doi.org/10.1063/1.523597
https://doi.org/10.1063/1.523597
https://doi.org/10.1063/1.523597
https://doi.org/10.3934/jgm.2013.5.445
https://doi.org/10.3934/jgm.2013.5.445
https://doi.org/10.3934/jgm.2013.5.445
https://doi.org/10.1088/1751-8113/41/1/015205
https://doi.org/10.1088/1751-8113/41/1/015205
https://doi.org/10.4064/ap-74-1-133-141
https://doi.org/10.4064/ap-74-1-133-141
https://doi.org/10.4064/ap-74-1-133-141
https://doi.org/10.1016/0022-0396(75)90057-1
https://doi.org/10.1016/0022-0396(75)90057-1
https://doi.org/10.1016/0022-0396(75)90057-1
https://doi.org/10.1063/1.4736733
https://doi.org/10.1063/1.4736733
https://doi.org/10.3934/jgm.2010.2.159
https://doi.org/10.3934/jgm.2010.2.159
https://doi.org/10.3934/jgm.2010.2.159
https://doi.org/10.1142/S0219887810004919
https://doi.org/10.1142/S0219887810004919
https://doi.org/10.1142/S0219887810004919
https://doi.org/10.1142/S0219887812500740
https://doi.org/10.1142/S0219887812500740
https://doi.org/10.1016/S0034-4877(18)30019-3
https://doi.org/10.1016/S0034-4877(18)30019-3
https://doi.org/10.1016/S0034-4877(18)30019-3
https://doi.org/10.1063/1.4978853
https://doi.org/10.1063/1.4978853
https://doi.org/10.1142/S0219887814500078
https://doi.org/10.1142/S0219887814500078
https://doi.org/10.1088/0305-4470/28/1/018
https://doi.org/10.1088/0305-4470/28/1/018
https://doi.org/10.1088/0305-4470/30/1/020
https://doi.org/10.1088/0305-4470/30/1/020
https://doi.org/10.1088/0305-4470/30/1/020
https://doi.org/10.1007/BF02832785
https://doi.org/10.1007/BF02832785
https://doi.org/10.1007/BF02832785
https://doi.org/10.1016/0370-1573(90)90137-Q
https://doi.org/10.1016/0370-1573(90)90137-Q
https://doi.org/10.1016/0370-1573(90)90137-Q
https://doi.org/10.3934/jgm.2009.1.461
https://doi.org/10.3934/jgm.2009.1.461
https://doi.org/10.3934/jgm.2009.1.461


46

	[53]	 Ohsawa T, Bloch A M and Leok M 2011 Nonholonomic Hamilton–Jacobi theory via Chaplygin 
Hamiltonization J. Geom. Phys. 61 1263–91

	[54]	 Ohsawa T, Bloch A M and Leok M 2011 Discrete Hamilton–Jacobi theory SIAM J. Control Optim. 
49 1829–56

	[55]	 Ostrogradski M 1850 Mmoire sur les quations diffrentielles relatives au problme des isoprimtres 
Mem. Ac. St. Petersbourg. 6 385

	[56]	 Prieto-Martínez  P  D and Román-Roy  N 2011 Lagrangian-Hamiltonian unified formalism for 
autonomous higher order dynamical systems J. Phys. A: Math. Theor. 44 385203

	[57]	 Prieto-Martínez P D and Román-Roy N 2012 Unified formalism for higher order non-autonomous 
dynamical systems J. Math. Phys. 53 032901

	[58]	 Saunders D J 1989 The Geometry of Jet Bundles (London Mathematical Society, Lecture Notes 
Series vol 142) (Cambridge: Cambridge University Press)

	[59]	 Schmidt H J 1994 Stability and Hamiltonian formulation of higher derivative theories Phys. Rev. D 
49 6354

	[60]	 Śniatycki J and Tulczyjew W M 1972 Generating forms of Lagrangian submanifolds Indiana Univ. 
Math. 22 267–75

	[61]	 Sorrentino A 2017 Action-minimizing methods in Hamiltonian dynamics (MN-50) An Introduction 
to Aubry–Mather Theory (Princeton Scholarship online)

	[62]	 Su X, Wang L and Yan J 2016 Weak KAM theory for Hamilton–Jacobi equations depending on 
unknown functions Discrete Continuous Dyn. Syst. 36 6487–522

	[63]	 Şuhubi E 2013 Exterior Analysis: Using Applications of Differential Forms (Amsterdam: Elsevier)
	[64]	 Tulczyjew  W  M 1977 A symplectic formulation of particle dynamics Differential Geometrical 

Methods in Mathematical Physics (Berlin: Springer) pp 457–63
	[65]	 Tulczyjew W M 1977 The Legendre transformation Ann. de l’IHP Phys. Thorique 27 101–14
	[66]	 Tulczyjew  W  M and Urbanski  P 1996 Homogeneous Lagrangian Systems, Gravitation, 

Electromagnetism and Geometric Structures (Bologna, BO: Pitagora Editrice) pp 91–136
	[67]	 Tulczyjew W M and Urbanski P 1999 A slow and careful Legendre transformation for singular 

Lagrangians Acta Phys. Pol. B 30 2909–78
	[68]	 Vitagliano L 2011 Hamilton–Jacobi diffieties J. Geom. Phys. 61 1932–49
	[69]	 Weinstein A 1977 Lectures on symplectic manifolds CBMS Regional Conf. Series in Mathematics 

vol 9 p 48
	[70]	 Zajac M and Grabowska K 2016 The Tulczyjew triple in mechanics on Lie groups J. Geom. Mech. 

8 413–35

O Esen et alJ. Phys. A: Math. Theor. 53 (2020) 075204

https://doi.org/10.1016/j.geomphys.2011.02.015
https://doi.org/10.1016/j.geomphys.2011.02.015
https://doi.org/10.1016/j.geomphys.2011.02.015
https://doi.org/10.1137/090776822
https://doi.org/10.1137/090776822
https://doi.org/10.1137/090776822
https://doi.org/10.1088/1751-8113/44/38/385203
https://doi.org/10.1088/1751-8113/44/38/385203
https://doi.org/10.1063/1.3692326
https://doi.org/10.1063/1.3692326
https://doi.org/10.1103/PhysRevD.49.6354
https://doi.org/10.1103/PhysRevD.49.6354
https://doi.org/10.1512/iumj.1973.22.22021
https://doi.org/10.1512/iumj.1973.22.22021
https://doi.org/10.1512/iumj.1973.22.22021
https://doi.org/10.3934/dcds.2016080
https://doi.org/10.3934/dcds.2016080
https://doi.org/10.3934/dcds.2016080
https://doi.org/10.1016/j.geomphys.2011.05.003
https://doi.org/10.1016/j.geomphys.2011.05.003
https://doi.org/10.1016/j.geomphys.2011.05.003
https://doi.org/10.3934/jgm.2016014
https://doi.org/10.3934/jgm.2016014
https://doi.org/10.3934/jgm.2016014

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿A Hamilton﻿–﻿Jacobi formalism for higher order implicit Lagrangians﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿1.1. ﻿﻿﻿The Legendre transformation
	﻿﻿1.2. ﻿﻿﻿Hamilton﻿–﻿Jacobi theory
	﻿﻿1.3. ﻿﻿﻿Higher order systems
	﻿﻿1.4. ﻿﻿﻿Statement of the problem and contents

	﻿﻿2. ﻿﻿﻿Fundamentals
	﻿﻿2.1. ﻿﻿﻿Hamiltonian dynamics on the cotangent bundle
	﻿﻿2.2. ﻿﻿﻿Geometric Hamilton﻿–﻿Jacobi theory
	﻿﻿2.3. ﻿﻿﻿Lagrangian submanifolds and Morse families
	﻿﻿2.4. ﻿﻿﻿Tulczyjew triple
	﻿﻿2.5. ﻿﻿﻿Hamilton﻿–﻿Jacobi theory for implicit Hamiltonian systems

	﻿﻿3. ﻿﻿﻿Higher order dynamical systems
	﻿﻿3.1. ﻿﻿﻿Geometry of higher order bundles
	﻿﻿3.2. ﻿﻿﻿Tulczyjew triples for higher order bundles
	﻿﻿3.3. ﻿﻿﻿Explicit higher order differential equations
	﻿﻿3.4. ﻿﻿﻿Implicit higher order differential equations

	﻿﻿4. ﻿﻿﻿The Hamilton﻿–﻿Jacobi problem for higher order implicit systems
	﻿﻿4.1. ﻿﻿﻿The Morse family method﻿—﻿general approach
	﻿﻿4.1.1. ﻿﻿﻿The Morse family method﻿—﻿Ostrogradski momenta. 
	﻿﻿4.1.2. ﻿﻿﻿The Morse family method﻿—﻿the Schmidt﻿–﻿Legendre transformation for second order 
systems. 
	﻿﻿4.1.3. ﻿﻿﻿Comparisons of HJ formalisms for nondegenerate cases. 
	﻿﻿4.1.4. ﻿﻿﻿The Morse family method﻿—﻿the Schmidt method for the third order Lagrangians. 

	﻿﻿4.2. ﻿﻿﻿Local vector field method

	﻿﻿5. ﻿﻿﻿Applications
	﻿﻿5.1. ﻿﻿﻿A (homogeneous) deformed elastic cylindrical beam with fixed ends
	﻿﻿5.2. ﻿﻿﻿One dimensional version of the end of a javelin
	﻿﻿5.3. ﻿﻿﻿A simple degenerate model
	﻿﻿5.4. ﻿﻿﻿Second order Lagrangian systems with affine dependence on the acceleration
	﻿﻿5.5. ﻿﻿﻿Third order Lagrangian systems with affine dependence on the third order derivative term

	﻿﻿6. ﻿﻿﻿Conclusions and comments
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


