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Abstract
We derive equations of motion for poles of elliptic solutions to the B-version 
of the Kadomtsev–Petviashvili equation (BKP). The basic tool is the auxiliary 
linear problem for the Baker–Akhiezer function. We also discuss integrals of 
motion for the pole dynamics which follow from the equation of the spectral 
curve.
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1.  Introduction

In the seminal paper [1] the motion of poles of singular solutions to the Korteweg–de Vries 
and Boussinesq equations  was investigated. It was discovered that the poles move as par-
ticles of the many-body Calogero–Moser system [2–4] with some additional restrictions in the 
phase space. In [5, 6] it was shown that in the case of the Kadomtsev–Petviashvili (KP) equa-
tion this correspondence becomes an isomorphism: the dynamics of poles of rational solutions 
to the KP equation is given by equations of motion for the Calogero–Moser system with pair-
wise interaction potential 1/(xi − xj)

2. This remarkable connection was further generalized to 
elliptic (double periodic) solutions by Krichever in [7]: poles xi of the elliptic solutions move 
according to the equations of motion

ẍi = 4
∑
k �=i

℘′(xi − xk)� (1)

of Calogero–Moser particles with the elliptic interaction potential ℘(xi − xj) (℘ is the 
Weierstrass ℘-function). This many-body system of classical mechanics is known to be 
integrable. For a review of the models of the Calogero–Moser type (including the models 
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associated with the classical root systems) see [8]. (For further progress, generalizations and 
related models see, e.g. [9–16].)

This result allows for generalizations in various directions. The extension to the matrix KP 
equation was discussed in [17]; in this case the poles and matrix residues at the poles move as 
particles of the spin generalization of the Calogero–Moser model known also as the Gibbons–
Hermsen model [9]. Another generalization of the Calogero–Moser many-body systems with 
elliptic interaction is their relativistic extension known also as the Ruijsenaars–Schneider 
systems [10, 11] and their versions with spin degrees of freedom [18]. These relativistic sys-
tems emerge as dynamics of poles of elliptic solutions to the two-dimensional Toda lattice  
(see [18]).

We are going to suggest a generalization in yet another direction: our goal is to find out 
what dynamical system governs the dynamics of poles of elliptic solutions to the B-version of 
the KP equation. We will see that the result is a new, previously unknown dynamical system 
with elliptic interaction which does not look like any kind of the Calogero–Moser system.

The method of derivation of equations of motion for the poles of singular solutions to inte-
grable non-linear equations suggested by Krichever consists in substituting the pole ansatz 
not in the non-linear equation itself but in the auxiliary linear problems for it. We apply this 
method in this paper.

In section 2 we derive equations of motion for poles of elliptic solutions to the B-version 
of the KP equation (BKP). The BKP equation is the first member of an infinite BKP hierarchy 
with independent variables (‘times’) t1, t3, t5, t7, . . . [19, 20], see also [21–23]. We set t1  =  x. 
The BKP equation  has the form of a system of two partial differential equations  for two 
dependent variables u, w:




3w′ = 10ut3 + 20u
′′′
+ 120uu′

wt3 − 6ut5 = w
′′′ − 6u

′′′′′ − 60uu
′′′ − 60u′u′′ + 6uw′ − 6wu′,

� (2)

where prime means differentiation w.r.t. x. In fact the variable w can be excluded and the 
equation can be written in terms a single dependent variable U =

∫ x udx . Equation (2) are 
equivalent to the Zakharov–Shabat (‘zero curvature’) equation ∂t5 B3 − ∂t3 B5 + [B3, B5] = 0 
for the differential operators

B3 = ∂3
x + 6u∂x, B5 = ∂5

x + 10u∂3
x + 10u′∂2

x + w∂x.� (3)

In its turn, the Zakharov–Shabat equation is the compatibility condition for the auxiliary linear 
problems

∂t3ψ = B3ψ, ∂t5ψ = B5ψ

for the Baker–Akhiezer function ψ which depends on a spectral parameter z.
The change of dependent variables from u, w to the tau-function τ = τ(x, t3, t5, . . .)

u = ∂2
x log τ , w =

10
3

∂t3∂x log τ +
20
3

∂4
x log τ + 20(∂2

x log τ)
2� (4)

makes the first of the equation (2) trivial and the other one turns into the bilinear form [20]
(

D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5

)
τ · τ = 0,� (5)

where Di are the Hirota operators. Their action is defined by the rule

P(D1, D3, D5, . . .)τ · τ = P(∂y1 , ∂y3 , ∂y5 , . . .)τ(x + y1, t3 + y3, . . .)τ(x − y1, t3 − y3, . . .)
∣∣∣
yi=0
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for any polynomial P(D1, D3, D5, . . .). The Baker–Akhiezer function is known to be expressed 
through the tau-function according to the formula

ψ = A(z) exp
( ∑

k�1, k odd

tkzk
) τ

(
t1 − 2z−1, t3 − 2

3 z−3, t5 − 2
5 z−5, . . .

)

τ(t1, t3, t5, . . .)
.� (6)

Here A(z) is the normalization factor.
Our aim is to study double-periodic (elliptic) in the variable t1  =  x solutions of the BKP 

equation. For such solutions the tau-function is an ‘elliptic polynomial’ in the variable x:

τ = Aecx2/2
N∏

i=1

σ(x − xi)� (7)

with some constants A, c, where

σ(x) = σ(x|ω,ω′) = x
∏
s�=0

(
1 − x

s

)
e

x
s +

x2

2s2 , s = 2ωm + 2ω′m′ with integer m, m′,

is the Weierstrass σ-function with quasi-periods 2ω , 2ω′ such that Im(ω′/ω) > 0. It is 
connected with the Weierstrass ζ- and ℘-functions by the formulas ζ(x) = σ′(x)/σ(x), 
℘(x) = −ζ ′(x) = −∂2

x log σ(x). The roots xi are assumed to be all distinct. Correspondingly, 
the function u = ∂2

x log τ  is an elliptic function with double poles at the points xi:

u = c −
N∑

i=1

℘(x − xi).� (8)

The poles depend on the times t3, t5. We will show that the dependence on the time t3  =  t is 
described by the equations of motion

ẍi + 6
∑
j�=i

(ẋi + ẋj)℘
′(xi − xj)− 72

∑
j�=k �=i

℘(xi − xj)℘
′(xi − xk) = 0.

� (9)

This is the main result of the paper. A characteristic feature of the system (9) is the presence of 
both two-body and three-body interaction and dependence on the first time derivatives. Note 
that the latter is also the case for the relativistic Calogero–Moser systems [10, 11] while the 
former seems to be a novel phenomenon for classical integrable systems.

In section 3 we discuss integrals of motion for the dynamical system (9). It is shown that 
there is a large set of integrals of motion. In section 4 properties of the spectral curve are stud-
ied. Section 5 is devoted to analytic properties of the ψ-function on the spectral curve.

2.  Elliptic solutions to the BKP equation and dynamics of poles

According to Krichever’s method [7], the basic tool for studying t-dynamics of poles is the 
auxiliary linear problem ∂tψ = B3ψ for the function ψ, i.e.

∂tψ = ∂3
xψ + 6u∂xψ.� (10)

Since the coefficient function u is double-periodic, one can find double-Bloch solutions ψ(x), 
i.e. solutions such that ψ(x + 2ω) = bψ(x), ψ(x + 2ω′) = b′ψ(x) with some Bloch multipli-
ers b, b′. Equations (6) and (7) tell us that the Baker–Akhiezer function has simple poles at the 
points xi. The pole ansatz for the ψ-function is
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ψ = exz+tz3
N∑

i=1

ciΦ(x − xi,λ),� (11)

where the coefficients ci do not depend on x. Here we use the function

Φ(x,λ) =
σ(x + λ)

σ(λ)σ(x)
e−ζ(λ)x

which has a simple pole at x  =  0 (ζ is the Weierstrass ζ-function). The expansion of Φ as 
x → 0 is

Φ(x,λ) =
1
x
+ α1x + α2x2 + . . . , x → 0,

where α1 = − 1
2 ℘(λ), α2 = − 1

6 ℘
′(λ). The parameters z and λ are spectral parameters, they 

are going to be connected by equation of the spectral curve. Using the quasiperiodicity proper-
ties of the function Φ,

Φ(x + 2ω,λ) = e2(ζ(ω)λ−ζ(λ)ω)Φ(x,λ),

Φ(x + 2ω′,λ) = e2(ζ(ω′)λ−ζ(λ)ω′)Φ(x,λ),

one can see that ψ given by (11) is indeed a double-Bloch function with Bloch multipliers

b = e2(ωz+ζ(ω)λ−ζ(λ)ω), b′ = e2(ω′z+ζ(ω′)λ−ζ(λ)ω′).

We will often suppress the second argument of Φ writing simply Φ(x) = Φ(x,λ). We will also 
need the x-derivatives Φ′(x,λ) = ∂xΦ(x,λ), Φ′′(x,λ) = ∂2

xΦ(x,λ), etc.
It is evident from (8) and (10) that the constant c in the pole expansion for the function u can 

be eliminated by the simple transformation x → x − 6ct, t → t (or ∂x → ∂x, ∂t → ∂t + 6c∂x  
for the vector fields). Because of this we will put c  =  0 from now on for simplicity.

Substituting (11) into (10) with u = −
∑

i
℘(x − xi), we get:

∑
i

ċiΦ(x − xi)−
∑

i

ciẋiΦ
′(x − xi) = 3z2

∑
i

ciΦ
′(x − xi) + 3z

∑
i

ciΦ
′′(x − xi) +

∑
i

ciΦ
′′′(x − xi)

−6z
(∑

k

℘(x − xk)
)(∑

i

ciΦ(x − xi)
)
− 6

(∑
k

℘(x − xk)
)(∑

i

ciΦ
′(x − xi)

)
.

It is enough to cancel all poles which are at the points xi (up to fourth order). It is easy to see 
that poles of the fourth and third order cancel identically. A direct calculation shows that the 
conditions of cancellation of second and first order poles have the form

ciẋi = −(3z2 + 6α1)ci − 6z
∑
k �=i

ckΦ(xi − xk)− 6
∑
k �=i

ckΦ
′(xi − xk) + 6ci

∑
k �=i

℘(xi − xk),� (12)

ċi = −6zα1ci − 12α2ci − 6z
∑
k �=i

ckΦ
′(xi − xk)− 6zci

∑
k �=i

℘(xi − xk)

−6
∑
k �=i

ckΦ
′′(xi − xk) + 6ci

∑
k �=i

℘′(xi − xk)

� (13)
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which have to be valid for all i = 1, . . . , N. These conditions can be rewritten in the matrix 
form as linear problems for a vector c = (c1, . . . , cN)

T:



Lc = (3z2 + 6α1)c

ċ = Mc,
� (14)

where

L = −Ẋ − 6zA − 6B + 6D,� (15)

M = −(6zα1 + 12α2)I − 6zB − 6zD − 6C + 6D′� (16)

and the matrices X, A, B, C, D, D′, I are given by Xik = δikxi, Iik = δik,

Aik = (1 − δik)Φ(xi − xk),

Bik = (1 − δik)Φ
′(xi − xk),

Cik = (1 − δik)Φ
′′(xi − xk),

Dik = δik

∑
j �=i

℘(xi − xj),

D′
ik = δik

∑
j �=i

℘′(xi − xj).

The matrices A, B, C  are off-diagonal while the matrices D, D′ are diagonal. The equation of 

the spectral curve is det
(

L − (3z2 + 6α1)I
)
= 0.

The linear system (14) is overdetermined. Differentiating the first equation  in (14) with 
respect to t, we see that the compatibility condition of the linear problems (14) is

(
L̇ + [L, M]

)
c = 0.� (17)

One can prove the following matrix identity (see the appendix):

L̇ + [L, M] = −12D′
(

L − (3z2 + 6α1)I
)
− Ẍ + 12D′(6D − Ẋ) + 6Ḋ − 6D′′′,

� (18)

where D′′′
ik = δik

∑
j�=i

℘′′′(xi − xj). It then follows that the compatibility condition (17) is 

equivalent to vanishing of all elements of the diagonal matrix

−Ẍ + 12D′(6D − Ẋ) + 6Ḋ − 6D′′′.

This gives equations of motion for the poles xi. Writing the diagonal elements explicitly, we 
get:

ẍi + 6
∑
j�=i

(ẋi + ẋj)℘
′(xi − xj)− 72

∑
j�=i

∑
k �=i

℘(xi − xj)℘
′(xi − xk) + 6

∑
j�=i

℘′′′(xi − xj) = 0.

Taking into account the identity ℘′′′(x) = 12℘(x)℘′(x), we obtain the equations of motion (9):

ẍi + 6
∑
j�=i

(ẋi + ẋj)℘
′(xi − xj)− 72

∑
j�=k �=i

℘(xi − xj)℘
′(xi − xk) = 0.

� (19)
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The rational limit (when ℘(x) → 1/x2) reads

ẍi − 12
∑
j�=i

ẋi + ẋj

(xi − xj)3 + 144
∑

j�=k �=i

1
(xi − xj)2(xi − xk)3 = 0.� (20)

3.  Integrals of motion

The Lax representation of equation (9) is missing. Instead of it, we have the matrix relation

L̇ + [L, M] = −12D′
(

L − (3z2 + 6α1)I
)

� (21)

equivalent to the equations of motion. This is a sort of the Manakov’s triple representation 
[24]. This relation means that in contrast to the KP case, where we have the Lax equation for 
the Lax matrix of the elliptic Calogero–Moser system, eigenvalues of our ‘Lax matrix’ L are 
not conserved and the evolution L → L(t) is not isospectral. Nevertheless, the equation of the 

spectral curve, det
(

L − (3z2 + 6α1)I
)
= 0, is an integral of motion. Indeed,

d
dt

log det
(

L − (3z2 + 6α1)I
)
=

d
dt

tr log
(

L − (3z2 + 6α1)I
)

= tr
[
L̇
(

L − (3z2 + 6α1)I
)−1]

= −12 trD′ = 0,

where we have used relation (21) and the fact that tr D′ =
∑

i�=j
℘′(xi − xj) = 0 (℘′ is an odd 

function). We recall that α1 = − 1
2 ℘(λ). The expression

R(z,λ) = det
(

3(z2 − ℘(λ))I − L
)

is a polynomial in z of degree 2N. Its coefficients are integrals of motion (some of them may 
be trivial).

The matrix L = L(z,λ), which has essential singularities at λ = 0, can be represented in 
the form L = GL̃G−1, where L̃ does not have essential singularities and G is the diagonal 
matrix Gij = δije−ζ(λ)xi. Therefore,

R(z,λ) =
2N∑

k=0

Rk(λ)zk,

where the coefficients Rk(λ) are elliptic functions of λ with poles at λ = 0.
Let us give some examples. At N  =  2 we have

det
(

3(z2 − ℘(λ))I − L
)
= 9z4 + 3z2

(
ẋ1 + ẋ2 − 18℘(λ)

)
− 36z℘′(λ)− 3℘(λ)(ẋ1 + ẋ2)

+ ẋ1ẋ2 − 6(ẋ1 + ẋ2)℘(x1 − x2)− 27℘2(λ) + 9g2,

where g2 is the coefficient in the expansion of the ℘-function near x  =  0: ℘(x) = x−2+ 
1
20 g2x2 + 1

28 g3x4 + O(x6). Therefore, in this case we have two integrals of motion: 
I1 = ẋ1 + ẋ2, I2 = 1

2 (ẋ
2
1 + ẋ2

2) + 6(ẋ1 + ẋ2)℘(x1 − x2).

D Rudneva and A Zabrodin﻿J. Phys. A: Math. Theor. 53 (2020) 075202
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At N  =  3 a non-trivial calculation leads to the following result:

det
(

3(z2 − ℘(λ))I − L
)
= 27z6 + 9

(
I1 − 45℘(λ)

)
z4 − 540℘′(λ)z3

+

[
3
2

I2
1 − 3I2 − 54℘(λ)I1 − 1215℘2(λ) + 243g2

]
z2 − 36℘′(λ)

(
I1 + 9℘(λ)

)
z

+I3 − I1I2 +
1
6

I3
1 + 3℘(λ)

(
I2 −

1
2

I2
1

)
− 27℘2(λ)I1 + 9g2I1 − 135℘3(λ)− 27g2℘(λ) + 216g3,

where

I1 = ẋ1 + ẋ2 + ẋ3,

I2 = 1
2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
+ 6ẋ1

(
℘(x12) + ℘(x13)

)
+ 6ẋ2

(
℘(x21) + ℘(x23)

)

+6ẋ3

(
℘(x31) + ℘(x32)

)
− 36

(
℘(x12)℘(x13) + ℘(x12)℘(x23) + ℘(x13)℘(x23)

)
,

I3 = 1
3

(
ẋ3

1 + ẋ3
2 + ẋ3

3

)
+ 6ẋ2

1

(
℘(x12) + ℘(x13)

)
+ 6ẋ2

2

(
℘(x21) + ℘(x23)

)

+6ẋ2
3

(
℘(x31) + ℘(x32)

)
+ 12ẋ1ẋ2℘(x12) + 12ẋ1ẋ3℘(x13) + 12ẋ2ẋ3℘(x23)

−864℘(x12)℘(x13)℘(x23)

�

(22)

are integrals of motion (here xik ≡ xi − xk ).
In general, we can prove that the following quantities are integrals of motion:

I1 =
∑

i

ẋi,

I2 =
1
2

∑
i

ẋ2
i + 6

∑
i�=j

ẋi℘(xij)− 18
∑

i�=j�=k

℘(xij)℘(xik).

� (23)

In the expression for I2 the last sum is taken over all triples of distinct numbers i, j, k from 1 
to N. The conservation of I1 means that the center of masses moves uniformly, i.e. 

∑
i
ẍi = 0.

For the prove that İ1 = 0 we write, using equations of motion (9) and permuting the sum-
mation indices,

İ1 =
∑

i

ẍi = 72
∑

i�=j�=k

℘(xij)℘
′(xik)

= 12
∑

i�=j�=k

(
℘(xij)℘

′(xik) + ℘′(xij)℘(xik)

+ ℘(xji)℘
′(xjk) + ℘′(xji)℘(xjk)

D Rudneva and A Zabrodin﻿J. Phys. A: Math. Theor. 53 (2020) 075202
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+ ℘(xki)℘
′(xkj) + ℘′(xki)℘(xkj)

)

= 12
∑

i�=j�=k

[
∂xi

(
℘(xij)℘(xik)

)
+ ∂xj

(
℘(xji)℘(xjk)

)
+ ∂xk

(
℘(xki)℘(xkj)

)]
= 0,

where we have used the identity

∂xi

(
℘(xij)℘(xik)

)
+ ∂xj

(
℘(xji)℘(xjk)

)
+ ∂xk

(
℘(xki)℘(xkj)

)
= 0.� (24)

It is in fact equivalent to the well known identity
∣∣∣∣∣∣

1 ℘(xij) ℘′(xij)

1 ℘(xjk) ℘′(xjk)

1 ℘(xki) ℘′(xki)

∣∣∣∣∣∣
= 0

and can be proved by expanding near the possible poles at xi = xj and xi = xk.
For the proof that İ2 = 0 we write:

İ2 =
∑

i

ẋiẍi + 6
∑
i �=j

ẍi℘(xij) + 6
∑
i �=j

ẋi(ẋi − ẋj)℘
′(xij)− 36

∑
i �=j�=k

(ẋi − ẋj)℘
′(xij)℘(xik).

Substituting the equations of motion, we have:

İ2 = −6
∑
i�=j

ẋi(ẋi + ẋj)℘
′(xij) + 72

∑
i�=j �=k

ẋi℘(xij)℘
′(xik)

−36
∑
i�=j

∑
k �=i

(ẋi + ẋk)℘(xij)℘
′(xik) + 432

∑
i �=l

∑
j�=k �=i

℘(xij)℘
′(xik)℘(xil)

+6
∑
i�=j

ẋi(ẋi − ẋj)℘
′(xij)− 36

∑
i �=j�=k

(ẋi − ẋj)℘
′(xij)℘(xik).

The terms containing velocities cancel automatically (taking into account that ℘′(xij) = − 
℘′(xji)) and we are left with

İ2 = 432
∑
i�=l

∑
j �=k �=i

℘(xij)℘
′(xik)℘(xil)

= 36
∑

i �=j�=k �=l

[
℘′(xij)℘(xik)℘(xil) + ℘(xij)℘

′(xik)℘(xil) + ℘(xij)℘(xik)℘
′(xil)

+ ℘′(xji)℘(xjk)℘(xjl) + ℘(xji)℘
′(xjk)℘(xjl) + ℘(xji)℘(xjk)℘

′(xjl)

+ ℘′(xki)℘(xkj)℘(xkl) + ℘(xki)℘
′(xkj)℘(xkl) + ℘(xki)℘(xkj)℘

′(xkl)

+ ℘′(xli)℘(xlj)℘(xlk) + ℘(xli)℘
′(xlj)℘(xlk) + ℘(xli)℘(xlj)℘

′(xlk)
]

+72
∑

i�=j�=k

[
℘(xij)℘

′(xik)℘(xik) + ℘′(xik)℘
2(xij)− ℘′(xik)℘(xkj)℘(xik)− ℘′(xik)℘

2(xkj)
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+ ℘(xik)℘
′(xij)℘(xij) + ℘′(xij)℘

2(xik)− ℘′(xij)℘(xkj)℘(xij)− ℘′(xij)℘
2(xkj)

+ ℘(xij)℘
′(xjk)℘(xjk) + ℘′(xjk)℘

2(xij)− ℘′(xjk)℘(xki)℘(xjk)− ℘′(xjk)℘
2(xki)

]

= 36
∑

i�=j�=k �=l

[
∂xi

(
℘(xij)℘(xik)℘(xil)

)
+ ∂xj

(
℘(xji)℘(xjk)℘(xjl)

)

+ ∂xk

(
℘(xki)℘(xkj)℘(xkl)

)
+ ∂xl

(
℘(xli)℘(xlj)℘(xlk)

)]

+72
∑

i �=j�=k

(
℘(xij)+℘(xjk)+℘(xki)

)[
∂xi

(
℘(xij)℘(xik)

)
+ ∂xj

(
℘(xji)℘(xjk)

)
+ ∂xk

(
℘(xki)℘(xkj)

)]
,

where we permuted the summation indices and separated the terms with l  =  j  and l  =  k. The 
last line vanishes because of identity (24). The rest also vanishes due to the identity

∂xi

(
℘(xij)℘(xik)℘(xil)

)
+ ∂xj

(
℘(xji)℘(xjk)℘(xjl)

)

+ ∂xk

(
℘(xki)℘(xkj)℘(xkl)

)
+ ∂xl

(
℘(xli)℘(xlj)℘(xlk)

)
= 0.

� (25)

The proof of this identity is standard. The left hand side is an elliptic function of xi. Expanding 
it near the possible poles at xi = xj, xi = xk, xi = xl one can see that it is regular, so it is a 
constant independent of xi. By symmetry, this constant does not depend also on xj, xk and xl. 
To see that this constant is actually zero, one can put xi  =  x, xj   =  2x, xk  =  3x, xl  =  4x.

Another integral of motion for any N is

J = det
1�i,j�N

[
δijẋi − 6δij

∑
k �=i

℘(xik)− 6(1 − δij)℘(xij)
]
.� (26)

The conservation of J follows from the fact that J = lim
λ→0

R(λ−1,λ). Indeed, since

Φ′(x,λ) = Φ(x,λ)
(
ζ(x + λ)− ζ(x)− ζ(λ)

)

and

Φ̃(x,λ) = eζ(λ)xΦ(x,λ) = λ−1 + ζ(x) +
1
2
σ′′(x)
σ(x)

λ+ O(λ2),

we have

L̃(z,λ) = (z − λ−1)Y(z,λ) + Ẋ − 6D − 6Q + O(λ),

where Q is the matrix with matrix elements Qij = (1 − δij)℘(xij) and Y(z,λ) is a matrix which 
is regular at z = λ−1. Therefore, R(λ−1,λ) = det(Ẋ − 6D − 6Q) + O(λ).
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4. The spectral curve

The equation of the spectral curve is

R(z,λ) = det
(

3(z2 − ℘(λ))I − L(z,λ)
)
= 0.� (27)

It is easy to see that L(−z,−λ) = LT(z,λ), so the spectral curve admits the involution 

ι : (z,λ) → (−z,−λ). We have R(z,λ) =
∑2N

k=0
Rk(λ)zk, where Rk(λ) are elliptic functions 

of λ such that Rk(−λ) = (−1)kRk(λ). The functions Rk(λ) can be represented as linear com-

binations of ℘-function and its derivatives. Coefficients of this expansion are integrals of 
motion (see examples for N  =  2 and N  =  3 in the previous section). Fixing values of these 
integrals, we obtain via the equation  R(z,λ) = 0 the algebraic curve Γ which is a 2N-sheet 
covering of the initial elliptic curve E realized as a factor of the complex plane with respect to 
the lattice generated by 2ω , 2ω′.

In a neighborhood of λ = 0 the matrix L̃ can be written as

L̃ = −6λ−1(z − λ−1)(E − I)− 6(z − λ−1)S + O(1),

where E is the rank 1 matrix with matrix elements Eij  =  1 for all i, j = 1, . . . , N  and S is the 
antisymmetric matrix with matrix elements Sij = ζ(xi − xj), i �= j, Sii  =  0.

Therefore, near λ = 0 the function R(z,λ) can be represented in the form

R(z,λ) = det
(

3(z2 − λ−2)I + 6λ−1(z − λ−1)(E − I) + 6(z − λ−1)S + O(1)
)

= det
(

3(z − λ−1)2I + 6λ−1(z − λ−1)E + 6(z − λ−1)S + O(1)
)

= 3N(z − λ−1)2N det

(
I +

2
zλ− 1

E +
2λ

zλ− 1
S + O(λ2)

)
.

Using the fact that det
(

A + εB
)
= detA

(
1 + ε tr (A−1B)

)
+ O(ε2) for any two matrices A, 

B and the relation (I − αE)−1 = I + α
1−Nα E , we find

det

(
I +

2
zλ− 1

E +
2λ

zλ− 1
S + O(λ2)

)

= det

(
I +

2
zλ− 1

E + O(λ2)

)(
1 +

2λ
zλ− 1

tr
(

S − 2
zλ+2N−1

ES
)
+ O(λ2)

)
.

But for any antisymmetric matrix S tr S = tr (ES) = 0, so we are left with

R(z,λ) = 3N(z − λ−1)2N det

(
I +

2
zλ− 1

E + O(λ2)

)
.

The matrix E has eigenvalue 0 with multiplicity N  −  1 and another eigenvalue equal to N. 
Therefore, we can write R(z,λ) in the form

R(z,λ) = 3N
(

z + (2N − 1)λ−1 − f2N(λ)
)(

z − λ−1 − f1(λ)
) 2N−1∏

i=2

(
z − λ−1 − fi(λ)

)
,� (28)
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where f i are regular functions of λ at λ = 0. The involution ι implies that f 2N and f 1 are odd 
functions: f2N(−λ) = −f2N(λ), f1(−λ) = −f1(λ) and the other sheets can be numbered in 
such a way that fi(−λ) = −f2N+1−i(λ), i = 2, 3, . . . , N. This means that the function z has 
simple poles on all sheets at the points Pj  ( j = 1, . . . , 2N) located above λ = 0. Its expansion 
in the local parameter λ on the sheets near these points is given by the multipliers in the right 
hand side of (28). So we have the following expansions of the function z near the ‘points at 
infinity’ Pj :

z = λ−1 + fj(λ) near Pj, j = 1, . . . , 2N − 1,

z = −(2N−1)λ−1 + f2N(λ) near P2N .
� (29)

Similarly to the spectral curve of the elliptic Calogero–Moser model [7], one of the sheets is 
distinguished, as it can be seen from (28). We call it the upper sheet. There is also another 
distinguished sheet, where the point P1 is located (and where the corresponding function f 1 
is odd). We call it the lower sheet for brevity. The points P1, P2N are two fixed points of the 
involution ι.

Let us find genus g of the spectral curve Γ. Applying the Riemann–Hurwitz formula to the 
covering Γ → E , we have 2g − 2 = ν, where ν  is the number of ramification points of the 
covering. The ramification points are zeros on Γ of the function ∂R/∂z. Differentiating equa-
tion (28) with respect to z, we can see that the function ∂R/∂z has simple poles at the points 
Pj  ( j = 1, . . . , 2N − 1) on all sheets except the upper one, where it has a pole of order 2N  −  1. 
The number of poles of any meromorphic function is equal to the number of zeros. Therefore, 
ν = 2(2N − 1) and so g  =  2N.

The spectral curve Γ is not smooth because in general position the genus of the curve which 
is a 2N-sheet covering of an elliptic curve is g = N(2N − 1) + 1.

5.  Analytic properties of the ψ-function on the spectral curve

Let P be a point of the curve Γ, i.e. P = (z,λ), where z and λ are connected by the equa-
tion R(z,λ) = 0. The coefficients ci in the pole ansatz for the function ψ, after normalization, 
are functions on the curve Γ: ci = ci(t, P). Let us normalize them by the condition c1(0,P)  =  1. 
In fact the non-normalized components ci(0,P) are equal to ∆i(0, P), where ∆i(0, P) are suit-
able minors of the matrix 3(z2 − ℘(λ))I − L(0). They are holomorphic functions on Γ outside 
the points above λ = 0. After normalizing the first component, all other components ci(0, P)  
become meromorphic functions on Γ outside the points Pj  located above λ = 0. Their poles 
are zeros on Γ of the first minor of the matrix 3(z2 − ℘(λ))I − L(0), i.e. they are given by 

common solutions of equation  (27) and the equation  det
(

3(z2 − ℘(λ))δij − Lij(0)
)
= 0, 

i, j = 2, . . . , N . The location of these poles depends on the initial data.
On all sheets except the lower one the leading term of the matrix L̃ as λ → 0 is propor-

tional to E  −  I. Finding explicitly eigenvectors of the matrix E  −  I, one can see that in a 
neighborhood of the ‘points at infinity’ Pj  ( j = 2, . . . , 2N) the functions ci(0,P) have the form

ci(0, P) =
(

c0( j)
i + O(λ)

)
e−ζ(λ)(xi(0)−x1(0)), 2 � i � N, j = 2, . . . 2N − 1,

� (30)
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where 
∑N

i=2
c0( j)

i = −1 and

ci(0, P) =
(

1 + O(λ)
)

e−ζ(λ)(xi(0)−x1(0)), 2 � i � N, j = 2N� (31)

(on the upper sheet). On the lower sheet, the leading term of the matrix L̃ as λ → 0 is O(1). 
Expanding the matrix L̃ in powers of λ, we have

ΛI − L̃ = 6f ′1(0)E + Ẋ − 6D − 6Q + O(λ),

where Q is the matrix with matrix elements Qij = (1 − δij)℘(xi − xj). Let c0(1)
i  be the eigen-

vector of the matrix in the right hand side (taken at t  =  0) with zero eigenvalue normalized by 

the condition c0(1)
1 = 1, then in a neighborhood of the point P1 we can write

ci(0, P) =
(

c0(1)
i + O(λ)

)
e−ζ(λ)(xi(0)−x1(0)), 2 � i � N, j = 1.� (32)

The fundamental matrix S(t) of solutions to the equation ∂tS = MS , S(0) = I , is a regular 
function of z,λ for λ �= 0. Using equation (21) (which plays the role of the Lax equation for 
our system), we can write

(
L̇ + [L, M] + 12D′(L − ΛI)

)
c(t) = 0,

where Λ = 3(z2 − ℘(λ)). Substituting c(t) = S(t)c(0) and M = ṠS−1, we can rewrite this 
equation as

[
∂t

(
S−1(L − ΛI)S

)
+ 12S−1D′(L − ΛI)S

]
c(0) = 0

or, equivalently, in the form of the differential equation

∂tb(t) = W(t)b(t), W(t) = 12S−1D′S ,

for the vector b(t) = S−1(L − ΛI)c(t) with the initial condition b(0) = 0. This differential 
equation with zero initial condition has the unique solution b(t) = 0 for all t  >  0. Therefore, 
since the matrix S  is non-degenerate, it then follows that c(t) = S(t)c(0) is the common solu-
tion of the equations ċ = Mc and Lc = Λc. Thus the vector c(t, P) has the same t-independent 
poles as the vector c(0, P).

In order to find ci(t, P) near the pre-images of the point λ = 0 it is convenient to pass to the 
gauge equivalent pair L̃, M̃, where

L̃ = G−1LG, M̃ = −G−1∂tG + G−1MG

with the same diagonal matrix G as before. Let c̃ = G−1c be the gauge-transformed vector 
c = (c1, . . . , cN)

T, then our linear system is

L̃c̃ = 3(z2−℘(λ))c̃, ∂tc̃ = M̃c̃.

By a straightforward calculation one can check that the following relation holds:

M̃ = −λ−1L̃ + (3zλ−2−4λ−3)I + 6(z − λ−1)(Q − D) + O(1).� (33)

(It should be taken into account that z is of order O(λ−1), see (29), so the terms proportional 
to z have to be kept in the expansion.) Applying the both sides to an eigenvector c̃ of L̃ with 
the eigenvalue 3(z2−℘(λ)) = 3(z2 − λ−2) + O(λ2), we get

∂tc̃ = −z3c̃ + (z − λ−1)3c̃ + 6(z − λ−1)(Q − D)c̃ + O(1).� (34)
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Therefore, since z = λ−1 + O(1) on all sheets except the upper one, we have

∂tc̃( j) = −(z3 + O(1))c̃( j), j = 1, . . . , 2N − 1,� (35)

so

c̃( j)(t, P) = (c0( j) + O(λ))e−z3t, j = 1, . . . , 2N − 1.

In order to find the time dependence of the vector c̃(2N) on the upper sheet, we note that the 
corresponding eigenvector of the matrix L̃ is proportional to the vector e = (1, 1, . . . , 1)T  
with an addition of terms of order O(1) and also note that (Q − D)e = 0. Therefore, since 
z = −(2N − 1)λ−1 + f2N  on the upper sheet, we have

∂tc̃(2N) =
(
−z3 + k3(λ) + O(1)

)
c̃(2N),� (36)

where

k(λ) = −2Nλ−1 + f2N ,

so

c̃(2N)(t, P) = (e + O(λ))e(−z3+k3(λ))t.

Coming back to the vector c(t, P), we obtain after normalization

c( j)
i (t, P) = cij(λ)e−ζ(λ)(xi(t)−x1(0))+νj(λ)t,� (37)

where νj = −z3 for j = 1, . . . , 2N − 1, ν2N = −z3 + k3(λ) and cij(λ) are regular functions in 
a neighborhood of λ = 0. Their values at λ = 0 are

c1j(0) = 1, j = 1, . . . , 2N, cij(0) = c0( j)
i , i � 2, j �= 2N, ci 2N(0) = 1,� (38)

with 
∑N

i=2
c0( j)

i = −1 for j = 2, . . . , 2N − 1.

After investigating the analytic properties of the vector c(t, P) let us turn to the function ψ:

ψ(x, t, P) =
N∑

i=1

ci(t, P)Φ(x − xi,λ)ezx+z3t.

The function Φ(x − xi,λ) has essential singularities at all points Pj  located above λ = 0. It fol-
lows from (37) that in the function ψ these essential singularities cancel on all sheets except 
the upper one, where ψ ∝ ek(λ)x+k3(λ)teζ(λ)x1(0). From (38) it follows that ψ has simple poles 
at the points P1, P2N (the two fixed points of the involution ι) and no poles at the points Pj  
for j = 2, . . . 2N − 1. The residue at the pole at P1 is constant as a function of x, t. This is in 
agreement with the fact that the differential operators B3, B5 (3) have no free terms, and so the 
result of their action to a constant vanishes.

The function ψ also has other poles in the finite part of the curve Γ, which do not depend 
on x, t. Presumably, their number is 2N  −  2 but the argument which allows one to count the 
number of poles of the ψ-function in the KP case (see [7]) does not work for BKP.

6.  Conclusion

In this paper we have derived equations of motion for poles of double-periodic (elliptic) solu-
tions to the BKP equation (equations (9)). In contrast to the equations of motion for poles of 
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elliptic solutions to the KP equation, where interaction between ‘particles’ (poles) is pair-
wise, in the BKP case there are both two-body and three-body interactions. To the best of our 
knowledge, many-body integrable systems with three-body interaction were never mentioned 
in the literature (see, however, [25, 26], where some three-body integrable systems with three-
body interaction were discussed). Instead of the Lax representation, the equations of motion 
admit a kind of the Manakov’s triple representation.

There are some problems which require further investigation. First, the Hamiltonian struc-
ture of equations (9) is not known. Besides, since the Lax representation is missing, integra-
bility of equations (9) is not clear. Nevertheless, we believe that the system is integrable since 
the equation of the spectral curve depending on the spectral parameter provides a large supply 
of independent conserved quantities. Three of them are known explicitly for any N. Another 
problem is to complete the proof that the ψ-function (11) is the Baker–Akiezer function on 
the spectral curve. To do that, one should invent a way to count the number of poles of the 
ψ-function in the finite part of the spectral curve.
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Appendix

A.1.  Proof of equation (18)

Here we prove the main identity (18). Using the explicit form of the matrices L, M (15) and 
(16), we write

L̇ + [L, M] = 36z2
(
[A, B] + [A, D]

)

−6z
(

Ȧ − [Ẋ, B]
)

+36z
(
[A, C]− [A, D′] + 2[B, D]

)

−6
(

Ḃ − [Ẋ, C]
)
− Ẍ + 6Ḋ

+36
(
[B, C]− [B, D′] + [C, D]

)
.

First of all we notice that Ȧik = (ẋi − ẋk)Φ
′(xi − xk), Ḃik = (ẋi − ẋk)Φ

′′(xi − xk), and, there-
fore, we have Ȧ = [Ẋ, B], Ḃ = [Ẋ, C]. To transform the commutators [A, B] + [A, D], we use 
the identity

Φ(x)Φ′(y)− Φ(y)Φ′(x) = Φ(x + y)(℘(x)− ℘(y))� (A.1)
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which, in turn, follows from the easily proved identity

Φ(x,λ)Φ(y,λ) = Φ(x + y,λ)
(
ζ(x) + ζ(y)− ζ(x + y + λ) + ζ(λ)

)
.� (A.2)

With the help of (A.1) we get for i �= k
(
[A, B] + [A, D]

)
ik

=
∑
j �=i,k

Φ(xi − xj)Φ
′(xj − xk)−

∑
j�=i,k

Φ′(xi − xj)Φ(xj − xk)

+Φ(xi − xk)
(∑

j�=k

℘(xj − xk)−
∑
j �=i

℘(xi − xj)
)
= 0,

so [A, B] + [A, D] is a diagonal matrix. To find its matrix elements, we use the limit of (A.1) 
at y   =  −x:

Φ(x)Φ′(−x)− Φ(−x)Φ′(x) = ℘′(x)� (A.3)

which leads to
(
[A, B] + [A, D]

)
ii

=
∑
j�=i

(
Φ(xi − xj)Φ

′(xj − xi)− Φ′(xi − xj)Φ(xj − xi)
)
=

∑
j�=i

℘′(xi − xj) = D′
ii,

so we finally obtain the matrix identity

[A, B] + [A, D] = D′.� (A.4)

Combining the derivatives of (A.1) w.r.t. x and y , we obtain the identities

Φ(x)Φ′′(y)− Φ(y)Φ′′(x) = 2Φ′(x + y)(℘(x)− ℘(y)) + Φ(x + y)(℘′(x)− ℘′(y)),
�

(A.5)

Φ′(x)Φ′′(y)− Φ′(y)Φ′′(x) = Φ′′(x + y)(℘(x)− ℘(y)) + Φ′(x + y)(℘′(x)− ℘′(y)).� (A.6)

Their limits as y → −x  are

Φ(x)Φ′′(−x)− Φ(−x)Φ′′(x) = 0,� (A.7)

Φ′(x)Φ′′(−x)− Φ′(−x)Φ′′(x) = −1
6
℘′′′(x) + 2α1℘

′(x).� (A.8)

Using these formulas, it is easy to prove the following matrix identities:

[A, C] = 2[D, B] + D′A + AD′,� (A.9)

[B, C] = [D, C] + D′B + BD′ − 1
6

D′′′ + 2α1D′� (A.10)

which are used to transform L̇ + [L, M] to the form (18).
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A.2.  Some useful identities

Apart from already mentioned identities for the Φ-function for the calculations in section 3 we 
need the following ones:

Φ(x)Φ(−x) = ℘(λ)− ℘(x),� (A.11)

Φ′(x)Φ(−x) + Φ′(−x)Φ(x) = ℘′(λ),� (A.12)

Φ′(x)Φ′(−x) = ℘2(x) + ℘(λ)℘(x) + ℘2(λ)− 1
4

g2,� (A.13)

Φ(x)Φ′′(−x) = ℘2(λ) + ℘(λ)℘(x)− 2℘2(x),� (A.14)

Φ′(x)Φ′′(−x) =
(
℘′(λ)− ℘′(x)

)(
℘(x) +

1
2
℘(λ)

)
.� (A.15)

They eventually follow from the basic identity (A.2). We also need some identities for the 
Weierstrass functions:

2ζ(λ)− ζ(λ+ x)− ζ(λ− x) =
℘′(λ)

℘(x)− ℘(λ)
,� (A.16)

℘′2(x) = 4℘3(x)− g2℘(x)− g3,� (A.17)

℘(x + λ)− ℘(x − λ) = − ℘′(λ)℘′(x)
(℘(x)− ℘(λ))2 ,� (A.18)

℘(x + λ) + ℘(x − λ) =
1
2
℘′2(x) + ℘′2(λ)

(℘(x)− ℘(λ))2 − 2
(
℘(x) + ℘(λ)

)
,� (A.19)

2℘(x)
(
℘(x − a) + ℘(a) + ℘(x)

)
− ℘′(x)

(
ζ(x − a) + ζ(a)− ζ(x)

)

= ℘(x)℘(a) + ℘(x)℘(x − a) + ℘(a)℘(x − a) + 1
4 g2.

� (A.20)

The last identity can be proved by expanding the both sides near the poles at x  =  0 and x  =  a.
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