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Abstract
The damped and parametrically driven nonlinear Dirac equation with arbitrary 
nonlinearity parameter κ is analyzed, when the external force is periodic in 
space and given by f (x) = r cos(Kx), both numerically and in a variational 
approximation using five collective coordinates (time dependent shape 
parameters of the wave function). Our variational approximation satisfies 
exactly the low-order moment equations. Because of competition between 
the spatial period of the external force λ = 2π/K , and the soliton width ls, 
which is a function of the nonlinearity κ as well as the initial frequency ω0 of 
the solitary wave, there is a transition (at fixed ω0) from trapped to unbound 
behavior of the soliton, which depends on the parameters r and K of the 
external force and the nonlinearity parameter κ. We previously studied this 
phenomena when κ = 1 (Quintero et al 2019 J. Phys. A: Math. Theor. 52 
285201) where we showed that for λ � ls the soliton oscillates in an effective 
potential, while for λ � ls it moves uniformly as a free particle. In this paper 
we focus on the κ dependence of the transition from oscillatory to particle 
behavior and explicitly compare the curves of the transition regime found 
in the collective coordinate approximation as a function of r and K when 
κ = 1/2, 1, 2 at fixed value of the frequency ω0. Since the solitary wave gets 
narrower for fixed ω0 as a function of κ, we expect and indeed find that the 
regime where the solitary wave is trapped is extended as we increase κ.
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1.  Introduction

The nonlinear Dirac (NLD) equation has had a long history in particle physics as a model 
field theory to describe the low energy behavior of the weak interactions starting with Fermi’s 
theory of beta decay [1]. This theory was recast by Feynman and Gell-Mann [2] as a nonlin-
ear quantum field theory with vector and axial vector 4-Fermi interactions. At the classical 
level, the Dirac equation was generalized to include local self-interactions by Ivanenko [3]. 
Classical versions of the NLD equation with different self-interaction terms and in different 
spatial dimensions have found many applications as models for various physical systems such 
as a model for extended particles [4–6], as a way of describing nonlinear optics [7], optical 
realizations of relativistic quantum mechanics [8–10], in honeycomb optical lattices hosting 
Bose–Einstein condensates [11], among others.

At the classical level, the various NLD equations allow for localized solutions with finite 
energy and charge [12]. This aspect of the NLD equation has led to its use as a model of 
extended objects in quantum field theory [13]. For the (1  +  1) dimensional NLD equation (i.e. 
one space dimension plus one time dimension), analytical solitary wave solutions have been 
obtained for the quadratic nonlinearity [14, 15], for fractional nonlinearity [16] as well as for 
general nonlinearity [17–19]. These results were summarized by Mathieu [20]. The interac-
tion dynamics of these solitary waves has been investigated in a series of works [10, 19, 
21–24] where quite insightful nonlinear phenomena have been found.

One interesting question is how these solitary waves behave when they are placed in trap-
ping potentials. Whether these solitary waves get trapped by these potentials or escape freely 
depends on competition between the effective size of the trapping potential and the soliton 
width. The effect of this competition in a spatially periodic parametric force proportional 
to cos(Kx) has been studied in several systems having soliton solutions: the sine-Gordon 
equation [25–27], self interacting ϕ4 theory, and in nonlinear Schrödinger (NLS) equations  
[28, 29]. The length-scale competition appears when the soliton width is comparable with the 
period λ = 2π/K . In this situation, the dynamics of the soliton is near a transition from bound 
to unbound behavior and is very sensitive to the specific details of the nonlinear dynamics. In 
this paper we will use the method of collective coordinates in a variational formulation which 
includes dissipation to study approximately the response of exact solitary wave solutions of 
the NLD equations with arbitrary nonlinearity parameter κ to forcing that is proportional to 
cos(Kx). The effect of the dissipation on the dynamics of the soliton will also be studied.

The use of collective coordinates to study solitary waves has a long history. In conserva-
tive systems, variational methods were used to study the effect of small perturbations on the 
solitary waves found in the Korteweg–de Vries (KdV) equation, the modified KdV equa-
tion and the NLS equation [30]. A similar approach was used to obtain the approximate time 
evolution of two coupled NLS equations [31], starting with trial wave functions based on the 
exact solution of the uncoupled problem. From a different perspective, Cooper and collabora-
tors were interested in using robust post-gaussian trial wave functions which were not in the 
class of exact solutions to understand how well one could approximate exact solutions using 
this class of functions and to also understand what properties of soliton dynamics did not rely 
on knowing the exact solution [32–36]. More recently it has been realized that if one chooses a 
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robust enough trial wave function one can obtain a good estimate of the stability of the solitary 
wave in external environments by studying the linear stability of the reduced set of collective 
coordinates. Specifically, this method presumes that the influence of the parametric force on 
the soliton can be captured by assuming that some shape parameters of the wave function 
become functions of time. An example of this is found in [37] and references therein.

For the solitary waves of the NLD equation, the question of length scale competition for 
the NLD equation with parametric driving of the type proportional to cos(Kx) was studied 
in [38] using a recently developed five collective coordinates (5CC) approximation [39]. In 
that paper, which only considered nonlinearity parameter κ = 1 (the interaction term in the 
Lagrangian density being (g2/2)(Ψ̄Ψ)2) it was shown that the behavior of the collective coor-
dinates agreed quite well with numerical simulations of the various moments. It was also 
found that at K  =  0, the center of the soliton moved (apart from rapid small oscillations) like a 
free particle. Once K was turned on, as long as the solitary wave was moving, when 2π/K > ls 
the solitary wave gets trapped and the collective coordinates of the solitary wave oscillate 
with two frequencies, the faster one being around 2ω0, where ω0 is the initial frequency of 
the soliton solution. When 2π/K � ls , the effect of the driving term which acts as a trapping 
potential goes to zero and the solitary wave again moves freely with small rapid oscillations 
given approximately by 2ω0. In the intermediate regime the solitary wave was subject to insta-
bilities at late times that are found in numerical simulations. This effect was not captured by 
the 5CC approximation [38].

In this paper we consider a generalization of the problem studied in [38], where the nonlin-
earity term in the Lagrangian is taken to an arbitrary power κ. This power controls the width 
and shape of the solitary wave: as one increases κ one decreases the width of the solitary 
wave. Exact solutions of the NLD equation at arbitrary κ and their stability properties were 
studied in [18]. We will use the form of these solutions in the 5CC approximation to study 
the transition region between trapped and unconfined motion in the presence of parametric 
driving. Because the shape dependence is a function of κ, we expect and indeed find that at 
fixed value of K, and the same initial conditions, one can go from the ‘free particle’ regime to 
the trapped regime by increasing κ. When the dissipation is included the soliton loses energy 
until it disappears. As we increase κ for fixed ω0, the solitary wave gets more ‘spike like’ so 
that it looks closer to a point particle. As a result of this the domain where the solitary wave is 
trapped gets enhanced. We map out this domain using the collective coordinate approach. We 
also compare the motion of the solitary wave at κ = 1/2 and κ = 2 with numerical simulation 
of the NLD equations and get qualitative agreement. The transition regime curves would have 
been impossible to determine from numerical simulations for both numerical reasons and time 
feasibility constraints.

The paper is organized as follows. In section 2 both the parametric force and the damping 
are introduced in the NLD equation and dynamical equations for the charge, the momentum 
and the energy are derived. We also show that the equations of motion can be obtained from 
a Lagrangian when we include a dissipation function [40]. In section 3 an ansatz with five 
collective coordinates is used as an approximate solution of the parametrically driven NLD 
equation and the equations of motion for the collective coordinates are obtained. Then, in 
section 4 we present numerical solutions of the collective coordinates equations and discuss 
the transition of behavior as a function of κ for fixed K as well as the transition of behavior 
from oscillatory to free for κ = 1/2, κ = 1 and κ = 2 as we increase K. Finally, the main 
results of the work and the conclusions are summarized in section 6.
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2.  Damped and parametrically driven NLD equation

The parametrically driven nonlinear Dirac equation was recently investigated in [38]. Here we 
generalize this study taking into account that an arbitrary parameter κ affects the nonlinear 
term, so that the parametrically driven and damped NLD equation is given by

iγµ∂µΨ− mΨ+ g2(Ψ̄Ψ)κΨ = f (x)Ψ� − i ρ γ0 Ψ ,� (2.1)

where

γ0 = σ3 =

(
1 0
0 −1

)
, γ1 = iσ2 =

(
0 1
−1 0

)
,� (2.2)

σ2  and σ3 are the Pauli matrices, ρ  is the dissipation coefficient, and the force reads

f (x) = r cos(Kx),� (2.3)

where r and K are real parameters, which represent the amplitude and the wave number, 
respectively. Therefore, the inhomogeneous parametric force has a period λ = 2π/K . The 
corresponding adjoint NLD equation is

i∂µΨ̄γµ + mΨ̄− g2(Ψ̄Ψ)κΨ̄ = −f �(x)Ψ̄� − i ρ Ψ̄ γ0 .� (2.4)

The equations (2.1) and (2.4) are derived in a standard fashion from the Lagrangian density

L =

(
i
2

)
[Ψ̄γµ∂µΨ− ∂µΨ̄γµΨ]− mΨ̄Ψ +

g2

κ+ 1
(Ψ̄Ψ)κ+1 − 1

2
f Ψ̄Ψ� − 1

2
f �Ψ̄�Ψ,� (2.5)

and from the dissipation function

F = −i ρ (Ψ̄γ0∂tΨ− ∂tΨ̄γ0Ψ).� (2.6)

Straightforward calculations show that by inserting (2.5) and (2.6) into

∂µ
∂L
∂(∂µΨ̄)

− ∂L
∂Ψ̄

=
∂F
∂(∂tΨ̄)

,� (2.7)

∂µ
∂L
∂(∂µΨ)

− ∂L
∂Ψ

=
∂F
∂(∂tΨ)

,� (2.8)

equations (2.1) and (2.4) are obtained, respectively.
For a soliton solution of equation (2.1), the charge, the momentum and the energy, are, 

respectively, defined as

Q =

∫ +∞

−∞
dx Ψ̄ γ0 Ψ,� (2.9)

P =
i
2

∫ +∞

−∞
dx

(
Ψ̄x γ

0Ψ− Ψ̄ γ0 Ψx
)

,� (2.10)

E =

∫ +∞

−∞
dx

[ i
2
(Ψ̄ γ0Ψt − Ψ̄t γ

0 Ψ)− L
]
.� (2.11)

Although the dependence of κ is not explicitly shown in equations (2.9)–(2.11), the expres-
sions for the charge, the momentum and the energy do depend on κ as is immediately shown 
in the next sections.
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Moreover, analogous to what has been studied in [38], the evolution of the charge, the 
momentum and the energy are, respectively, given by

dQ
dt

= −2ρQ − i
∫ +∞

−∞
dx [ f Ψ̄Ψ� − f �Ψ̄� Ψ],� (2.12)

dP
dt

= −2 ρP +

∫ +∞

−∞
dx [ f Ψ̄xΨ

� + f �Ψ̄�Ψx],� (2.13)

dE
dt

=

∫ +∞

−∞
dxF .� (2.14)

3.  Five collective coordinates ansatz

In this section an ansatz is suggested as an approximate solution of equation (2.1). This solu-
tion will depend on time only through the so-called collective coordinates. In particular, for 
the NLD equation without perturbation, i.e. equation (2.1) with ρ = 0 and f (x) = 0, the two 
spinor components of a moving soliton solution are given by

Ψ1(x, t) = [cosh(η/2)A(x′) + i sinh(η/2)B(x′)] e−iωt′ ,� (3.1)

Ψ2(x, t) = [sinh(η/2)A(x′) + i cosh(η/2)B(x′)] e−iωt′ ,� (3.2)

where x′ = γ(x − vt), t′ = γ(t − vx), and

A(x′) =
√

m + ω

[
(κ+ 1)β2

g2

] 1
2κ

[
1

m + ω cosh(2κβx′)

]κ+1
2κ

cosh(κβx′),

� (3.3)

B(x′) =
√

m − ω

[
(κ+ 1)β2

g2

] 1
2κ

[
1

m + ω cosh(2κβx′)

]κ+1
2κ

sinh(κβx′).

� (3.4)

In the above equations ω  is a constant frequency, γ = cosh(η) = 1/
√

1 − v2  is the Lorentz 
factor, η is the rapidity, and β =

√
m2 − ω2  [18].

Due to the smallness of the perturbation, it is assumed that the only modification to the 
exact solutions (3.1) and (3.2) of the NLD equation is that the constant parameters and linear 
time dependent variables become unknown time dependent functions [39]. This implies that 
in equations (3.1) and (3.2) we replace

vt → q(t); ω → ω(t); η → η(t);
ωt′ = γω(t − vx) → φ(t)− p(t)(x − q(t)), x′ = γ(x − vt) → z = (x − q(t)) cosh η(t).

Thus, our trial wave function, with the five collective coordinates qi = q(t), ω(t), η(t), 
φ(t)p(t), reads [39]

Ψ1a(x, t) = e−iφ(t)+ip(t)[x−q(t)] {cosh[η(t)/2]A(z, t) + i sinh[η(t)/2]B(z, t)} ,
� (3.5)

Ψ2a(x, t) = e−iφ(t)+ip(t)[x−q(t)] {sinh[η(t)/2]A(z, t) + i cosh[η(t)/2]B(z, t)} ,
� (3.6)

F Cooper et alJ. Phys. A: Math. Theor. 53 (2020) 075203
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where the variable z will be useful when we perform integrations over all x. Moreover, A(z, t) 
and B(z, t) are given by

A(z, t) =

√
m + ω(t)

m + ω(t) cosh(2κβ(t)z)

{
(κ+ 1)β(t)2

g2[m + ω(t) cosh(2κβ(t)z)]

} 1
2κ

cosh[κβ(t)z],� (3.7)

B(z, t) =

√
m − ω(t)

m + ω(t) cosh(2κβ(t)z)

{
(κ+ 1)β(t)2

g2[m + ω(t) cosh(2κβ(t)z)]

} 1
2κ

sinh[κβ(t)z],� (3.8)

where now β(t) =
√

m2 − ω2(t) is a time dependent function.
Inserting (3.5) and (3.6) into (2.5) and integrating over x we determine the effective 

Lagrangian for the variational parameters. For L we have

L(ω, p,φ, η, q, q̇, φ̇) =
∫

Ldx = Q(ω)
[

pq̇ + φ̇− p tanh η
]

− I0(ω)[cosh η − q̇ sinh η]− ω Q(ω)

cosh η
− U(ω, p,φ, η, q).

�

(3.9)

Here I0(ω) is represented by equation  (A.1) (see the appendix), and the charge 
Q(ω) =

∫
dxΨ†Ψ =

∫
dx(|Ψ1a|2 + |Ψ2a|2) is calculated by using the ansatz (3.5) and (3.6), 

and is given by

Q(ω) =
1
κβ

[
(κ+ 1)β2

g2(m + ω)

]1/(κ)

Iκ[α2,κ],� (3.10)

where

Iκ[α2,κ] =B(1/2, 1/κ)2F1(1 + 1/κ, 1/2, 1/2 + 1/κ;α2)

+ α2B(3/2, 1/κ)2F1(1 + 1/κ, 3/2, 3/2 + 1/κ;α2).
�

(3.11)

Here B(x, y) and 2F1 denote Beta function and hypergeometric function, respectively. The 
calculations to obtain the above expression for the charge are similar to the ones presented in 
[18] and for this reason are omitted. The effective potential reads (see the appendix)

U =
r

cosh η

(
(κ+ 1)β2

g2ω

)1/κ

×
{
cos(Kq(t) + 2φ(t))

[
m
ω

Ip[a, b−, c, ν]− β2

ω2 Ip[a, b−, c, ν + 1]
]�

+cos(Kq(t)− 2φ(t))
[

m
ω

Ip[a, b+, c, ν]− β2

ω2 Ip[a, b+, c, ν + 1]
]}

,� (3.12)

where Ip[a, b, c, ν], a, b, c and ν  are parameters defined in appendix.
Note that U explicitly depends on q(t) when K �= 0 so there is now a force coming from the 

driving term. Momentum is no longer conserved in the presence of this type of forcing which 
breaks the parity symmetry once q(t) is not zero.

By inserting (3.5) and (3.6) into (2.6) and integrating over x we can calculate the dissipa-
tion function F for the collective coordinate equations. We obtain

F Cooper et alJ. Phys. A: Math. Theor. 53 (2020) 075203
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F = −2ρ
[
I0 sinh ηq̇ + Q( pq̇ + φ̇)

]
.� (3.13)

We see that the effect of dissipation is to modify the equation for the momentum conjugate to 
q and the charge Q which is conjugate to φ.

4.  Lagrange equations for the collective coordinates

From the Lagrangian (3.9) and the dissipation function equation (3.13), we obtain the equa-
tions of motion for the collective coordinates using the Lagrange equations and Rayleigh’s 
dissipation functional formalism [40]. We obtain the canonical momentum conjugate to q(t) as

Pq =
∂L
∂q̇

= Q p + I0 sinh η,� (4.1)

which obeys the equation

Ṗq = −2ρPq −
∂U
∂q

.� (4.2)

This leads to the equation of motion:

Qṗ + p
dQ
dω

ω̇ + I0 cosh ηη̇ +
dI0

dω
sinh ηω̇ = −∂U

∂q
− 2ρPq.� (4.3)

The Lagrange equation obtained by choosing qi = φ reads

dQ
dt

=
dQ
dω

ω̇ = −∂U
∂φ

− 2ρQ.� (4.4)

This equation can be written as

ω̇ = −
2ρQ + ∂U

∂φ

dQ/dω
.� (4.5)

Choosing qi  =  p  we obtain

Q (q̇ − tanh η) =
∂U
∂p

,� (4.6)

which leads to the first-order equation:

q̇ = tanh η +
1
Q
∂U
∂p

.� (4.7)

Choosing qi = ω we get
[

pq̇ + φ̇− p tanh η − ω

cosh η

]
dQ
dω

− Q
cosh η

− dI0

dω
[cosh η − q̇ sinh η] =

∂U
∂ω

.

This equation can be simplified using equation (A.13), namely that dI0
dω + Q(ω) = 0, which 

leads to
[

pq̇ + φ̇− p tanh η − ω

cosh η

]
dQ
dω

− Q sinh η(q̇ − tanh η) =
∂U
∂ω

.� (4.8)

F Cooper et alJ. Phys. A: Math. Theor. 53 (2020) 075203
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Using equation (4.7), we can eliminate q̇ to obtain:
[

p
Q
∂U
∂p

+ φ̇− ω

cosh η

]
dQ
dω

− sinh η
∂U
∂p

=
∂U
∂ω

.� (4.9)

The equation for φ(t) reads

φ̇ =
ω

cosh η
− p

Q
∂U
∂p

+ sinh η

∂U
∂p
∂Q
∂ω

+
∂U
∂ω
∂Q
∂ω

.� (4.10)

Choosing qi = η we obtain

(ω sinh η − p)
Q

cosh2 η
− I0(sinh η − q̇ cosh η) =

∂U
∂η

.� (4.11)

Using the equation for q̇ we can reduce this to an algebraic equation relating the five collective 
coordinates:

(ω sinh η − p)
Q[ω]

cosh2 η
+ I0[ω]

1
Q[ω]

∂U[ p,ω, η,φ, q]
∂p

cosh η =
∂U[ p,ω, η,φ, q]

∂η
.

� (4.12)
This nonlinear algebraic equation (4.12) allows one to determine p(0) in terms of ω0, η0,φ0 
and q0 at t  =  0.

So we have five coupled equations to solve. Four are ODE’s for ω , q, φ, and η, namely equa-
tions (4.7), (4.3), (4.10), (4.5) and then an algebraic equation for p , namely equation (4.12). 
The condition for collapse of the wave function is that β → 0, which happens when there is 
dissipation.

Notice that from (4.1) and (3.9), we obtain

L(ω, p,φ, η, q, q̇, φ̇) = Pq q̇ + Q(ω) φ̇− E,� (4.13)

where the energy E is obtained by inserting the ansatz in equation  (2.11). This procedure 
yields

E = Pq tanh η +
M0

cosh η
+ U,� (4.14)

where M0 = I0 + ω Q. It is also worth mentioning that by inserting the ansatz in equation (2.10), 
we obtain that the field momentum is equal to the canonical momentum P(t)  =  Pq(t).

In our previous paper [38] which discussed the case κ = 1 we showed that these 5 CC equa-
tions satisfy exactly the moment equations for the evolution of charge Q (2.12), momentum P 
(2.13), energy E (2.14) (which leads to 2 CC equations) and first moment of the charge.

4.1.  No force, and no damping

Equation (4.2) implies Pq dissipates exponentially with t in the absence of external forcing but 
when the dissipation ρ  is non-zero. From the equations of motion, we recover the exact soliton 
solution when U  =  0, and ρ = 0. First, from equation (4.5) ω = ω0, a constant is obtained. 
Second, (4.7) leads to the usual connection between q̇ and η, namely q̇ = tanh η. Third, equa-
tion (4.10) leads to

φ̇ =
ω

cosh η
.� (4.15)

F Cooper et alJ. Phys. A: Math. Theor. 53 (2020) 075203
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Moreover, U  =  0 in (4.12) implies p = ω sinh η, and that η and ω  are constant so that by inte-
grating equation (4.15) we obtain

φ(t) =
ωt

cosh η
.� (4.16)

Finally, the total phase is

φ(t)− p(t)(x − q(t)) ≡ ωt′ = ω cosh η(t − vx),� (4.17)

where v = q̇ = tanh η . Thus in this case the trial wave function becomes the exact wave 
function.

5.  Numerical study

Numerical simulations of the parametrically driven NLD equation  (2.1) have been per-
formed in order to check the validity of the approximate solution (3.5)–(3.8), with the five 
collective coordinates q(t),ω(t), η(t),φ(t) and p(t). For these simulations, we have taken 
as initial condition the ansatz (3.5)–(3.8) evaluated at t  =  0, by specifying the initial values 
q(0),ω(0), η(0),φ(0), and p(0), taking into account that p(0) is determined by the algebraic 
equation (4.12). In all the simulations we have fixed m  =  1, g  =  1, ω0 = 0.9 and q(0) = 0. A 
Runge–Kutta–Verner algorithm with variable time step and a spectral method for the spatial 
derivatives have been employed, and periodic boundary conditions have been set. The sys-
tem has been discretized by taking N  =  3200 points separated by a constant spatial interval 
∆x = 0.02. Due to the periodic boundary conditions, the system length L = N∆x = 64 has 
to be an integer multiple of the spatial period λ = 2π/K , that is L = nλ. Additionally, λ has 
to be commensurable with ∆x, that is λ = j∆x. Both conditions imply N  =  nj, with n and j  
being integers. Since N = 3200 = 27 · 52, the possible values of n and j  in the simulations are 
restricted to multiples of 2, 5, 25 or products of them.

When there is no dissipation in the system, ρ = 0, the energy of the soliton is a conserved 
quantity as seen from equation (2.14). For a first test, we have considered the special case of 
a solitary wave at rest η(t) = p(t) = 0, and centered at the origin q(t) = 0. In this case, the 
solitary wave obeys at all times the equations:

φ̇ = ω +
∂U
∂ω
∂Q
∂ω

,� (5.1)

and

ω̇ =
−∂U

∂φ

dQ[ω]/dω
,� (5.2)

where in the potential function U, we have set p = q = η = 0. As a consequence, U becomes 
independent of the parameter K.

Although the soliton is at rest, it is found that its charge oscillates in time with frequency 
2ω0. This behavior is shown in figure 6, where soliton profiles have been plotted at t0  =  0 
(black solid line), t1  =  T/4 (blue solid line), and t2  =  T/2 (red solid line), with T = π/ω0 being 
the period of oscillations. For κ = 1/2 (top panel), the collective coordinates approximation 
(dashed lines) captures very well the soliton profiles, as well as the evolution in time of the 
charge displayed in the inset. However, for κ = 2 significant deviations appear around the 
maxima of the charge density, although the collective coordinates theory continues to fit well 
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the charge oscillations (see the inset). Interestingly, the amplitude of the charge oscillations 
depends on the nonlinearity parameter κ, but the oscillation frequency only depends on the 
choice of ω0.

The initial soliton charge grows fast and monotonically as the nonlinear parameter κ is 
increased. This feature can be clearly appreciated in the top panel of figure 2. On increasing 
κ, the soliton’s amplitude becomes larger but also its width becomes narrower as shown in the 
bottom panel, where normalized initial density of charge has been plotted for κ = 1/2 (black 
solid line), κ = 1 (blue dotted line) and κ = 2 (red dashed line).

In order to obtain a mobile soliton, it is necessary to give it an initial rapidity η(0) �= 0. 
In the limiting cases K  =  0 (constant parametric force) and K � 1 (λ much smaller than the 
soliton width), the soliton behaves as a free particle with constant energy and momentum. The 
width of the soliton does not play any particular role in the dynamics and consequently its 
velocity does not depend on the κ value.

When K � 1, the spatial period of the parametric force λ = 2π/K  is much larger than the 
width of the soliton. As a consequence, the soliton oscillates inside an effective potential and a 
second slow frequency, which depends on both K and κ, modulates all the collective variables. 
On increasing K, a length scale competition appears between the width of the soliton and the 

-2.5 0   2.5 
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0.025

0  3.5 7  
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0.147

0.151

-5  -2.5 0   2.5 5   
0

0.2

0.4

0.6

0  3.5 7  
2.1

2.2

Figure 1.  Oscillations of the charge density of a static soliton for t0 = 0, t1 = T/4 
and t2  =  T/2 (black, blue and red solid line, respectively), with T = π/ω(0) being the 
period of the oscillations. Upper panel: κ = 1/2. Lower panel: κ = 2. The black, blue 
and red dashed lines correspond to results from the collective coordinate theory. In the 
inset, the charge oscillations in time are shown (simulations with black dashed line, and 
collective coordinate results with red solid line). Parameters: m  =  1, g  =  1, r  =  0.02, 
and K = π/32. Initial conditions: q(0) = 0, ω(0) = 0.9, φ(0) = 0, η(0) = 0, and 
p(0) = 0.
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Figure 2.  Top panel: initial charge versus κ. Bottom panel: normalized initial density 
of charge for κ = 1/2 (black solid line), κ = 1 (blue dotted line) and κ = 2 (red dashed 
line). For both panels m  =  1, g  =  1 and ω(0) = 0.9.
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0.04

0.06

0.08

0.1

Figure 3.  Transition from oscillations to soliton net motion for κ = 1/2 (black solid 
line), κ = 1 (blue dotted line) and κ = 2 (red dashed line). For a given κ, the region at the 
left-hand side of the corresponding line represents oscillating states, while the region at 
the right-hand side represents free soliton motion. This result has been obtained using the 
collective coordinates theory for the initial conditions: q(0) = 0, ω(0) = 0.9, φ(0) = 0, 
η(0) = 0.01. The value of p(0) is obtained by solving the algebraic equation (4.12).
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spatial period of the parametric force. As was shown in a previous paper [38], this length scale 
competition destabilizes the soliton, giving rise to a transition from trapped motion to soli-
tary waves that move like a free particle. Here, we focus on the influence of the nonlinearity 
parameter κ on that transition.

In figure 3, the borders that separate soliton oscillations from unbounded motion have been 
plotted for κ = 1/2 (black solid line), κ = 1 (blue dotted line) and κ = 2 (red dashed line). 
These lines have been computed using the collective coordinates approximation, because it 
allows to vary smoothly the value of K for a fixed amplitude r. For a given κ, the region at 
the left-hand side of the corresponding line represents oscillating states, while the region at 
the right-hand side represents unbounded soliton motion. Note that for fixed r, the larger κ is, 
the larger K values are needed in order to achieve untrapped soliton motion. This is a direct 
consequence of the fact that the soliton width decreases with κ. Therefore, for instance, one 
should expect a transition from free motion to oscillations at r  =  0.02 and K = 5π/32 � 0.49 
as we go from κ = 1/2 to κ = 2. This is indeed observed in the time evolution of q(t) as 
shown in figure 4.

0   500 1000 1500
0

5

10

15

20

0   500 1000 1500 2000
-3

-1

1 

3 

Figure 4.  Motion of the soliton center q(t), for K = 5π/32, and r  =  0.02. The black 
continuous line represents simulations of the NLD equation  (2.1) while the blue 
dashed line corresponds to the collective coordinate approximation. In the top panel, 
κ = 1/2 and the motion is unbound. In the bottom panel, κ = 2 and there is oscillatory 
trapped behavior. Initial conditions: q(0) = 0, ω(0) = 0.9, φ(0) = 0, η(0) = 0.01, and 
p(0) = 0.009 012 83 if κ = 1/2 or p(0) = 0.009 048 66 if κ = 2.
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In the top panel, κ = 1/2 and the motion is unbound. In the simulations of the NLD equa-
tion  (2.1) represented by a black solid line, very fast oscillations with variable amplitude 
give rise to changes in the thickness of the line. The collective coordinate approach (blue 
dashed line) captures well the short time behavior but not the amplitude variations of the fast 
oscillations.

In the bottom panel of figure 4, κ = 2 and the soliton becomes trapped. There are signifi-
cant discrepancies between the collective coordinate theory and the simulations in the ampl
itude and in the frequency of the slow and large oscillations.

When dissipation is included in the system, i.e. ρ �= 0, the charge and the energy of the 
soliton decay exponentially, regardless of the value of κ and K.

6.  Conclusions

We investigated the dynamics of solitary waves in the nonlinear Dirac equation with scalar-
scalar self-interaction with arbitrary nonlinearity parameter κ and a parametric driving term 
of the form r cos(Kx). We used a variational approach with five collective coordinates. The 
resulting four ODEs plus one algebraic equation were solved numerically by a Mathematica 
program. The solutions are periodic in time which means that the solitary waves exhibit intrin-
sic oscillations, plus oscillations in the translational motion. These results were compared 
with simulations, i.e. numerical solutions of the driven nonlinear Dirac equation.

For a soliton at rest its profile depends strongly on κ. For κ = 1/2 the CC approximation 
captures very well the soliton profile (charge density), as well as the time evolution of the 
charge. However, for κ = 2 there are significant deviations in the time evolution of the charge 
density when comparing the CC approximation with the numerical solution. Nevertheless, the 
total charge Q(t) oscillations are described well by the CC theory (figure 1) when compared 
with numerical simulations.

For a moving soliton in the case K � 1 (spatial period λ = 2π/K  of the parametric force 
much smaller than the soliton width ls) the soliton behaves as a free particle with constant 
charge, momentum and energy. The velocity does not depend on κ. For K � 1, λ is much 
larger than ls. Here the soliton oscillates inside an effective potential with frequency 2ω(0), 
where ω(t) is a CC, and a second frequency, which is very low and depends on both K and κ, 
modulates all collective coordinates.

Increasing K, a length scale competition appears between ls and λ. In a plot of the ampl
itude r of the driving force versus K there is a border line that separates the trapped motion 
from the free motion of the soliton. This border line depends very strongly on the value of κ 
(figure 3). This transition curve would have been extremely difficult to obtain by numerically 
solving the NLD equation due to time feasibility and numerical constraints.

As in the case of κ = 1, we find very low frequency oscillations of the soliton position 
q(t). However, now we have a period of about 1400 for κ = 2 in the numerical simulations: 
see figure 4. This has to be compared to the period T = π/ω(0) = 6.98 of the fast oscilla-
tions. The CC theory agrees only qualitatively with the amplitude and period of the very low 
frequency oscillations, see bottom panel of figure 4. In the CC theory the fast oscillations are 
present but are not visible in the figure because their amplitude is too small. In the dissipative 
case when ρ  is nonzero, the charge Q goes to zero and the soliton vanishes rather quickly even 
for small values of ρ . For the particular values of K and r in figure 4 we display the fact that 
as we reduce κ one goes from trapped behavior to unbound behavior.
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In conclusion, the CC theory is an excellent way of understanding the qualitative (and often 
quantitative) behavior of the NLD equation solitons in various environments as a function of 
the parameters of the environment and the nonlinearity parameter κ. In this paper we showed 
that it is quite useful in determining the transition curve from trapped to free behavior when 
there is a spatially periodic parametric forcing term.
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Appendix.  Useful integrals

Here, we calculate some useful integrals. Inserting the ansatz (3.5) and (3.6) in the following 
expression, and integrating over x

I0(ω) = −
∫

dx
(

i
2

)
[Ψ̄γ1Ψx − Ψ̄xγ

1Ψ]

=
β

m + ω

[
(κ+ 1)β2

g2(m + ω)

]1/κ

B
(

1
2

, 1 +
1
κ

)
2F1

(
1 +

1
κ

,
1
2

,
3
2
+

1
κ

;α2
)

,

� (A.1)
where α =

√
m−ω
m+ω

.
The effective potential (3.12) is defined as

U = −
∫

dxL3 = − 1
cosh[η(t)]

∫
dzL3,� (A.2)

where z = [x − q(t)] cosh[η(t)]. By inserting the ansatz (3.5) and (3.6) in L3 we obtain

L3 = −1
2

f Ψ̄Ψ� − 1
2

f �Ψ̄�Ψ = − r
2
cos

(
K

z
cosh[η(t)]

+ K q(t)
)[

A2(z, t) + B2(z, t)
]
cos

(
2

p(t)
cosh[η(t)]

z − 2φ(t)
)

= − r
2

2∑
n=1

{
cos (2φ+ (−1)nK q)

[
A2(z, t) + B2(z, t)

]
cos

(
2p + (−1)n+1K

cosh[η(t)]
z
)}

.

� (A.3)
Using the relation

A2 + B2 =

(
(κ+ 1)β2

g2 ω

)1/κ
[

m
ω

1(m
ω + cosh 2κβz

)1/κ − β2

ω2

1(m
ω + cosh 2κβz

)(κ+1)/κ

]
,� (A.4)
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we can write U in terms of the function

Ip[a, b, c, ν] =
∫ ∞

0
dz

cosh(ibz)
(a + cosh cz)ν

,� (A.5)

with a = m/ω, c = 2κβ , ν = 1/κ, and b takes one of the two following values 
b± = (2p ± K)/ cosh η . This integral is found in [41]. Note that if we take a derivative with 
respect to a we find

dIp[a, b, c, ν]
da

= −νIp[a, b, c, ν + 1].� (A.6)

Finally, we obtain

Ip[a, b, c, ν] =
Γ
(
ν − ib

c

)
Γ
( ib

c + ν
)

Γ(ν)

×
√

π
2 (a + 1)(

1
2 −ν)

2F1
( 1

2 − ib
c , ib

c + 1
2 ; ν + 1

2 ; 1−a
2

)

cΓ
(
ν + 1

2

) .

� (A.7)

For κ = 1, we have

Ip[a, b, c, 1] =
πcsch

(
πb
c

)
sin

(
b cosh−1(a)

c

)
√

a2 − 1c
,� (A.8)

so that

m
ω

Ip[a, b±, c, 1]− β2

ω2 Ip[a, b±, c, 2]

=

π( p ± K/2)sech(η)csch
(

π( p±K/2)sech(η)
β

)
cos

(
( p±K/2)sech(η) cosh−1( m

ω )
β

)

2β2 .

�

(A.9)

We find that for κ = 1 our results simplify to the expression found in [38]

U =
πrsech2(η)

2g2ω

×

(
(2p − K) cos(Kq + 2φ)csch

(
πsech(η)

(
p − K

2

)
β

)
cos

(
sech(η)

(
p − K

2

)
cosh−1 (m

ω

)
β

)

+ (K + 2p) cos(Kq − 2φ)csch

(
πsech(η)

(K
2 + p

)
β

)
cos

(
sech(η)

(K
2 + p

)
cosh−1 (m

ω

)
β

))
.

�

(A.10)

At κ = 1 we have

Q =
2β
g2ω

,� (A.11)

so the prefactor can also be written as

πrsech2(η)

2g2ω
=

rπQsech2(η)

4β
.� (A.12)
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From our expression for I0, and Q(ω) we find that

dI0

dω
+ Q(ω) =

√
π(κ+ 1)mΓ

(
1 + 1

κ

) ( (κ+1)(m−ω)
g2

) 1
κ

κω(m + ω)2
√

m2 − ω2
N[κ, m,ω],� (A.13)

where

N[κ, m,ω] = (m + ω)2
2F̃1

(
−1

2
, 1 +

1
κ

;
3
2
+

1
κ

;
m − ω

m + ω

)

− ω

(
2(m + ω) 2F̃1

(
1
2

, 1 +
1
κ

;
3
2
+

1
κ

;
m − ω

m + ω

)

+(m − ω) 2F̃1

(
3
2

, 2 +
1
κ

;
5
2
+

1
κ

;
m − ω

m + ω

))
≡ 0,

�

(A.14)

since this particular combination of hypergeometric functions sums to zero. Here 2F1[a, b; c; z] 
is the Gauss hypergeometric function and 2F̃1[a, b; c; z] is the regularized hypergeometric 
function as defined by WolframMathworld.
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