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Abstract
The stationary Schrödinger equation can be cast in the form Hρ = Eρ, where 
H is the system’s Hamiltonian and ρ  is the system’s density matrix. We 
explore the merits of this form of the stationary Schrödinger equation, which 
we refer to as SSEρ, applied to many-body systems with symmetries. For a 
nondegenerate energy level, the solution ρ  of the SSEρ is merely a projection 
on the corresponding eigenvector. However, in the case of degeneracy ρ  is 
non-unique and not necessarily pure. In fact, it can be an arbitrary mixture 
of the degenerate pure eigenstates. Importantly, ρ  can always be chosen to 
respect all symmetries of the Hamiltonian, even if each pure eigenstate in 
the corresponding degenerate multiplet spontaneously breaks the symmetries. 
This and other features of the solutions of the SSEρ can prove helpful by 
easing the notations and providing an unobscured insight into the structure 
of the eigenstates. We work out the SSEρ for a general system of spins 
1/2 with Heisenberg interactions, and address simple systems of spins 1. 
Eigenvalue problem for quantum observables other than Hamiltonian can also 
be formulated in terms of density matrices. As an illustration, we provide 
an analytical solution to the eigenproblem S2ρ = S(S + 1)ρ , where S is the 
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total spin of N spins 1/2, and ρ  is chosen to be invariant under permutations 
of spins. This way we find an explicit form of projections to the invariant 
subspaces of S2.

Keywords: density operators, lattice models, quantum Heisenberg model

(Some figures may appear in colour only in the online journal)

1.  General properties of the Stationary Schrödinger equation for density 
matrices

The conventional form of the stationary Schrödinger equation (which we refer to as SSEΨ) 
reads

H |Ψ〉 = E |Ψ〉 ,� (1)

where H is the Hamiltonian of a quantum system, E is its eigenenergy and |Ψ〉 is the corresponding 
eigenvector. Obviously, this equation  implies an operator identity H |Ψ〉 〈Ψ| = E |Ψ〉 〈Ψ|, 
where |Ψ〉 〈Ψ| is the projection onto the eigenvector |Ψ〉. One can extend this identity by con-
sidering an arbitrary density matrix ρ  instead of a projection operator. This way one obtains 
the stationary Schrödinger equation for density matrices:

Hρ = Eρ.� (2)

In the present paper we explore the properties and the merits of this equation which we refer 
to as SSEρ. Our studies are somewhat close in spirit to the research avenue on the contracted 
Schrödinger equation, see e.g. [1] and references therein. Some important differences will be 
discussed below when we apply the SSEρ to a particular spin system in section 2.

We remind that a density matrix should satisfies three conditions,

ρ† = ρ, trρ = 1, ρ > 0.� (3)

The following relations between the SSEΨ and SSEρ follow immediately.

	 (i)	�Equations (1) and (2) share the same set of eigenvalues E.
	(ii)	�If a given eigenvalue E is nondegenerate, then the corresponding |Ψ〉 and ρ  are related 

according to ρ = |Ψ〉 〈Ψ|.
	(iii)	�In the case of degeneracy any solution of the SSEρ reads

ρ =
∑

i

pi |Ψi〉 〈Ψi| , pi � 0,
∑

i

pi = 1,� (4)

		 where vectors |Ψi〉 constitute a basis in the corresponding degenerate subspace of the 
Hamiltonian.

Properties (ii) implies that in the nondegenerate case SSEΨ and SSEρ are, in fact, identical 
up to notations (however, even in this case SSEρ can be more convenient compared to SSEΨ, 
in particular for spin systems, see e.g. [3]). An important advantage of the SSEρ shows up 
in the case of a degeneracy induced by some symmetry of the Hamiltonian. Assume that the 
Hamiltonian is symmetric under some symmetry group G, i.e.

U H U† = H ∀ U ∈ G,� (5)
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where U is a unitary operator. In this case the eigenbasis of H is split into blocks which deter-
mine degenerate subspaces invariant under the group G. As a rule, a spontaneous symmetry 
breaking phenomenon occurs in some of this subspaces, which means that any eigen basis in 
such a subspace contains eigenvectors not invariant with respect to G. The most trivial exam-
ple of a system with the spontaneous symmetry breaking is a single spin 1/2 with a vanishing 
Hamiltonian, H  =  0. Such Hamiltonian is invariant under the group of rotations, however 
any its eigenstate (i.e. any pure state of a single spin 1/2) lacks this symmetry. In general, 
an important class of spin systems with Heisenberg interactions demonstrate spontaneous 
symmetry breaking (either in the ground state or in excited states). Some examples of such 
systems will be considered in what follows. The phenomenon of the spontaneous symmetry 
breaking, while being of paramount importance for physics [4], can sometimes cause various 
inconveniences. In particular, it obscures calculations of the correlation functions invariant 
with respect to G. In contrast to SSEΨ, one can always avoid the spontaneous symmetry 
breaking in the solutions of SSEρ, according to the following simple lemma.

Lemma. Consider a Hamiltonian H invariant under the symmetry group G (G-invariant, for 
short). For any eigenvalue E of this Hamiltonian there exists a G-invariant density matrix ρG  
which is a solution of the Schrödinger equation (2).

Proof.  Consider a (not necessarily G-invariant) density matrix ρ  which is a solution of 
equation (2) corresponding to a given E. A G-invariant solution ρG  can be obtained from ρ  by 
averaging over the group G with the Haar measure dµ(U) [5, 6]:

ρG =

∫

G
UρU†dµ(U)� (6)

where the normalization condition 
∫

G 1 dµ(U) = 1 is implied. It is easy to see that thus ob-
tained ρG  is indeed a legitimate density matrix (i.e. satisfies conditions (3)) and is invariant 
under the group G (i.e. U ρG U† = ρG ∀ U ∈ G).� □ 

Obtaining G-invariant objects by averaging over the group G with the Haar measure is 
a standard tool of the group theory [5], and mixed states of the form (6) naturally appear in 
various resource theories [6–9]. It should be emphasized, however, that we use such averaging 
only as a formal tool to prove the existence result contained in the above Lemma. In practice, 
we propose to ensure the G-invariance by expanding the density matrix in G-invariant basis 
operators, without explicitly performing the averaging (6). We apply this approach to specific 
examples in what follows.

It is worth highlighting why the averaging over the group analogous to that in equation (6) 
can not be applied directly to vectors in the Hilbert space. This is because such averaging 
does not conserve the normalization, and one can obtain a zero vector (which lacks physical 
interpretation) as a result. This indeed happens, as can be seen in the trivial example of a single 
spin 1/2 with H  =  0 discussed above. In contrast, averaging (6) of density matrices conserves 
the trace and thus the normalization.

The Schrödinger equation (2) entails

[H, ρ] = 0.� (7)

In fact, this equation  holds not only for the solutions of the SSEρ but for any stationary 
state, i.e. a state not evolving under the Liouville–von Neumann equation. Equation  (7) is 
widely used to obtain constraints on expectation values of various observables in equilibrium  
[11–13]. For our purposes it is essential that this equation does not contain E and can be used 
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to reduce the dimensionality of the more computationally demanding eigenvalue problem. 
This is discussed in more detail in the next section.

In the rest of the paper we illustrate the concept of the SSEρ by considering specific spin 
systems.

2.  System of spins 1/2 with the Heisenberg interaction

In the present section we specialise the SSEρ for a system of N spins with the Heisenberg 
interaction. The Hamiltonian of this system reads

H =
∑
i<j

Jij (σiσj) , i, j = 1, 2, ..., N,� (8)

where σi  is the vector consisting of three Pauli matrices of the ith spin, Jij is the coupling con-
stant between ith and j th spins and (σiσj) is the corresponding scalar product of sigma-matri-
ces. This Hamiltonian is invariant with respect to a global SU(2) symmetry, in other words, to 
the simultaneous rotations of all spins. In addition, it is T-invariant, i.e. invariant with respect 
to the inversion of time. This Hamiltonian, apart from being a popular theoretical playground, 
is of practical importance in material science, both for finite [15] and for infinite [16] N.

Due to the presence of the above symmetries, we can look for a solution ρ  of the SSEρ 
which is constructed of scalar products of sigma matrices. To this end, we define a multi-index 
A enumerating the set of pairs (ip, jp):

A = (i1, j1) · · · (im, jm) , 1 � m � [N/2],� (9)

where [N/2] is the integer part of N/2, while ip  and j p  enumerate spins and for any p  satisfy

ip < ip+1, jp > ip, jp �= il, jl ∀ l �= p, 1 � ip, jp � N.� (10)

These conditions ensure that the sum over A runs over all distinct sets of pairs of indices 
in which each index is found at most once. We denote the number of pairs in A by |A| (e.g. 
|A| = m in equation (9)). Finally, we define an operator AA as a product of |A| scalar products 
of Pauli matrices according to

AA = (σi1σj1) (σi2σj2) ... (σimσjm) ,� (11)

where A is given by equation (9). We supplement this definition by a convention A0 ≡ 1.
Our ansatz for ρ  can now be written as

ρ =
1

2N

(
a0A0 +

∑
A

aAAA

)
.� (12)

Here aA are numerical coefficients and the sum is over all sets A of the form (9) and (10). Note 
that normalization implies a0 = 1. Obviously, such ρ  is both SU(2)-invariant and T-invariant. 
In fact, any SU(2)- and T-invariant operator with a unit trace can be represented in this form. 
Let us briefly explain why. First, observe that due to the equalities

(σ1σ2)
2 = 3 − 2(σ1σ2),

(σ1σ2)(σ2σ3) = (σ1σ3)− i(σ1σ2σ3),
� (13)

one can avoid terms with repeating spin indexes, as is indeed the case in equation (12). Here 
(σ1σ2σ3) is the mixed product of vectors consisting of Pauli matrices of three spins. Further, 
observe that the mixed product changes its sign under time inversion and thus does not enter 
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ρ . As for the even powers of mixed products, they can always be expressed through the scalar 
products [10].

One can now substitute the ansatz (12) into the stationary Schrödinger equation  (2). 
Exploiting formulae (13), after straightforward but tedious calculations one obtains the fol-
lowing equations for the coefficients aA:

E a0 = 3
∑
i<j

Jija(i,j),� (14)

E aA =

|A|−1∑
l=1

|A|∑
m=l+1

(
(Jimjl + Jiljm − Jiljl − Jimjm)a(il,im)( jl,jm)Al,m

+ (Jilim + Jjljm − Jiljl − Jimjm)a(il,jm)( jl,im)Al,m

)

+
∑

p, q: p<q
p,q/∈A


3 Jpq a( p,q)A +

|A|∑
m=1

Jpq(a(im,p)(q,jm)Am + a(q,im)( jm,p)Am)




+
∑
p/∈A

|A|∑
m=1

(
Jpjm a( p,im)Am + Jpim a( p,jm)Am

)
+

|A|∑
m=1

Jimjm (aAm − 2aA),

� (15)

0 =
∑
p/∈A

[
(Jpj − Jpi)a(ij)(pk)A + (Jpk − Jpj)a(ip)(jk)A + (Jpi − Jpk)a(ik)(pj)A

]

−
(
(Jik − Jjk)a(ij)A + (Jjk − Jij)a(ik)A + (Jij − Jik)a(jk)A

)
, ∀ i, j, k /∈ A and i < j < k.

� (16)

The multi-index (il, jm)( jl, im)Al,m  is obtained from A by dropping pairs (il, jl), (im, jm) and 
adding pairs (il, jm), ( jl, im). Other multi-indices used in the above equations are obtained from 
A analogously.

Note that equation  (16) is due to equation  (7). While equations  (14) and (15) represent 
an eigenvalue problem, equation (16) is a homogeneous linear equation. Solving the latter is 
computationally less demanding than solving the former. Thus it can be numerically efficient 
to first eliminate as many variables as possible with the help of equation (16), and then solve an 
eigenvalue problem with a smaller number of variables. We also note that an equation similar 
to equation (16) was used to explicitly construct local integrals of motions for the integrable 
instance of the Heisenberg Hamiltonian (8) [17, 18].

We remark that in the paradigm of the Contracted Schrödinger equation  [1] the spin 
Hamiltonian should be first turned into a fermionic Hamiltonian as in [2]. While this is eas-
ily done for one-dimensional spin chains by means of the Jordan–Wigner transformation, in 
higher dimensions this leads to nonlocal interactions. In contrast, in our procedure transforma-
tion to fermionic representation is not required.

For illustrative purposes we apply the SSEρ to the system of three spins:

H = J12 (σ1σ2) + J23 (σ2σ3) + J13 (σ1σ3) ,� (17)

8ρ = a0 + a12 (σ1σ2) + a23 (σ2σ3) + a13 (σ1σ3) .� (18)

E Shpagina et alJ. Phys. A: Math. Theor. 53 (2020) 075301
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In this case equations (14), (15) and (16) read



0 3J12 3J23 3J13

J12 −2J12 J23 J13

J23 J12 −2J23 J13

J13 J12 J23 −2J13







a0

a12

a23

a13


 = E




a0

a12

a23

a13


 ,� (19)

0 = a12 (J23 − J13) + a23 (J13 − J12) + a13 (J12 − J23) .� (20)

Note that the homogeneous linear equation  (20) is, in principle, redundant, but in practice 
can be useful for simplifying the eigenproblem (19), as discussed above. We also remark that 
the size of eigenproblem is twice smaller than what one would obtain by a straightforward 
application of the conventional Schrödinger equation  (1) to the system of three spins 1/2. 
This size is even more reduced if the Hamiltonian posses additional symmetries, see below. 
This can prove useful for exact diagonalization studies of small spin clusters, which can be of 
interest for understanding magnetic response of correlated materials [19] (for alternative ways 
of accounting for symmetries see [15, 20]).

If J12 = J23 = J13 = 1, equation (19) leads to two sets of solutions:

E = 3, a0 = 1, a12 = a23 = a13 =
1
3

;� (21)

E = −3, a0 = 1, a12 + a23 + a13 = −1,� (22)

see figure 1 for illustration.

3. Total spin of N spins 1/2: projections on invariant subspaces

Total spin operator is formally equivalent to the Heisenberg Hamiltonian with long-range 
interactions. We seek to solve the eigenproblem for total spin of N qubits

S2ρ = λρ,� (23)

with an additional constraint that ρ  is invariant under permutations of spins,

ρ =
1

2N


1 +

[N/2]∑
m=1

amAm


 ,� (24)

where Am is the sum of all possible products (11) of m scalar products of sigma matrices. It 

can be easily found that S2 = 1
4 (3N + 2A1) and

A1Am = (N − 2m + 2)(N − 2m + 1)
(

3
2
+ (m − 1)θ(N − 2m + 1)

)
Am−1

+ 2m ((N − 2m)θ(N − 2m)− 1)Am+(m + 1)θ(N − 2m − 1)Am+1,m = 1, ...[N/2].
� (25)

Here, θ(x) is 1 if x  >  0 and 0 otherwise. The above relation defines a tridiagonal matrix which 
has eigenvalues λ = S(S + 1), as we verified numerically. It leads to the recursive formula for 
the coefficients am:

E Shpagina et alJ. Phys. A: Math. Theor. 53 (2020) 075301
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a1 =
4λ− 3N

3N(N − 1)
,

a2 =
(4λ− 7N + 12)a1 − 2

5(N − 2)(N − 3)
θ(N − 3),

am =
(4λ− (4m − 1)N + 8m2 − 12m + 4)am−1 − 2(m − 1)am−2

(N − 2m + 2)(N − 2m + 1)(2m + 1)
, m = 3, 4, ...[N/2].

�

(26)

It can be verified that thus obtained density matrices (24) coincide up to normalization with 
the projections to invariant subspaces of S2.

4.  Systems of spins 1

In this section we briefly outline how SSEρ can be applied to systems of spins 1. While for a 
spin 1/2 three operators of spin projections along with the identity operator span the whole 
space of self-adjoint operators, this is not the case for a spin 1. As a result, the ansatz for an 
invariant density matrix becomes more complicated. Let us start from a system of two spins 1 
with the Hamiltonian invariant under rotations,

H = (S1S2),� (27)

where Si is the spin at ith site, (SiSi) = 2. A general form of the rotationally-invariant density 
matrix reads

ρ = a0 + a1 (S1S2) + a2 (S1S2)
2 .� (28)

Higher powers of the scalar product (S1S2) are linearly dependent on the first two powers 
according to

(SiSj)
3
= 2 + (SiSj)− 2 (SiSj)

2 .� (29)

The SSEρ then reads



0 0 2
1 0 1
0 1 −2







a0

a1

a2


 = E




a0

a1

a2


� (30)

with the solution

E = 1, (a0, a1, a2) = (1/15, 1/10, 1/30),
E = −1, (a0, a1, a2) = (1/3,−1/6,−1/6),
E = −2, (a0, a1, a2) = (−1/3, 0, 1/3),
�

(31)

where the normalization condition trρ = 1 is taken into account.
Now we turn to the case of three spins with interactions invariant under rotations, time rever-

sal and permutations. A density matrix respecting these symmetries can be parameterized as

ρ = a0 + a1

∑
i<j

(SiSj) + a21

∑
i�=j �=k

(SiSj) (SjSk) + a22

∑
i<j

(SiSj)
2
+ a3

∑
i �=j�=k

(SiSj) (SjSk) (SiSk) ,

� (32)

where 
∑

i�=j �=k is the sum over six triples of distinct i, j and k. All other polynomials con-
structed of scalar products are linear dependent on those presented in equation (32). The nor-
malization condition implies

E Shpagina et alJ. Phys. A: Math. Theor. 53 (2020) 075301
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27a0 + 108a22 + 144a3 = 1.� (33)

Thus the ansatz contains only four real parameters (say, a1, a21, a22, a3), to be compared to 
2 × 33 − 1 = 53 real parameters required to parameterize a pure state in the Hilbert space of 
three spins 1 without account for symmetries.

We consider two different three-spin Hamiltonians respecting the above symmetries. The 
first one is

H = (S1S2) + (S2S3) + (S3S1).� (34)

The SSEρ for this Hamiltonian reads



0 0 0 6 0
1 0 4 3 4
0 1 0 0 2
0 1 0 −2 2
0 0 1 0 −2







a0

a1

a21

a22

a3




= E




a0

a1

a21

a22

a3




.� (35)

The eigenvalues are (−3,−2, 0, 3). The coefficient (a0, a1, a21, a22, a3) are also easily found 
from equations (35) and (33), we omit them for brevity.

Another Hamiltonian we consider reads

H = (S1S2)
2 + (S2S3)

2 + (S3S1)
2.� (36)

Figure 1.  The set of SU(2)- and T-invariant density matrices of three spins 1/2 [14]. The 
solutions (21) and (22) of the SSEρ with the Hamiltonian (17) with J12 = J23 = J13 = 1 
correspond respectively to the tip and to the base of the cone. The point in the center of 
the base of the cone corresponds to the maximally symmetric (permutation-invariant) 
solution of the form (22) with a12 = a23 = a13 = −1/3.
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The SSEρ for this Hamiltonian is given by



0 6 24 −36 −72
0 3 −2 2 4
0 0 3 0 0
1 −2 −8 15 24
0 0 1 −1 1







a0

a1

a21

a22

a3




= E




a0

a1

a21

a22

a3




.� (37)

The eigenvalues are (3, 5, 8).
For an arbitrary number of spins 1 an ansatz for states invariant under rotations, permuta-

tions and time reversal has a form analogous to equation (32): it contains symmetric polyno-
mials in scalar products of spin operators, each spin entering each term of this polynomial at 
most twice. If the system lacks the permutation symmetry, the polynomials need not be sym-
metric. This ansatz can be readily used to obtain a SSEρ for any number of spins.

5.  Summary

We have studied the properties and merits of the stationary Schrödinger equation (2) with den-
sity matrices instead of wave functions. This equation produces the same spectrum of eigen-
values as the conventional Schrödinger equation. The main advantage of equation (2) shows 
up when the Hamiltonian is invariant under some symmetry group which induces degen-
eracies of the spectrum. In this case for any eigenenergy one can choose a solution of equa-
tion (2) which is invariant under the symmetry group. This is in contrast to the conventional 
Schrödinger equation, where the spontaneous symmetry breaking can prevent one from find-
ing an invariant eigenvector. We have exemplified equation (2) by applying it to a system of 
spins 1/2 with the Heisenberg interactions on an arbitrary lattice. Further, we have applied an 
equation analogous to equation (2) to find invariant subspaces of the operator of the total spin 
of N spins 1/2. Finally, we outlined how the same technique can be applied to higher spins. 
We conclude by a remark that it can be interesting to extend the methods of the present paper 
to the time-dependent Schrödinger equation and to master equations describing evolution of 
open quantum systems. The latter topic is addressed in a spirit somewhat similar to that in the 
present paper in the recent article [21].
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