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Abstract

We present Forstand, a new code for constructing dynamical models of galaxies with the Schwarzschild orbit-
superposition method. These models are constrained by line-of-sight kinematic observations and applicable to
galaxies of all morphological types, including disks and triaxial rotating bars. Our implementation has several
novel and improved features, is computationally efficient, and has been made publicly available. Using mock data
sets taken from N-body simulations, we demonstrate that the pattern speed of a bar can be recovered with an
accuracy of 10–20%, regardless of orientation, if the 3D shape of the galaxy is known or inferred correctly.

Unified Astronomy Thesaurus concepts: Galaxy dynamics (591); Galaxy structure (622)

1. Introduction

The orbit-superposition approach was introduced by Martin
Schwarzschild (1979) as a practical method for constructing
triaxial stellar systems in dynamical equilibrium, the existence
of which had been conjectured (e.g., Binney 1978) but not
previously demonstrated. In this method, the distribution
function (DF) of stars is represented as a weighted super-
position of δ-functions in the space of integrals of motion—in
practice, numerically computed orbits in the given potential.
Dynamical self-consistency requires that the density generated
by this weighted ensemble of orbits is related to the potential
via the Poisson equation. To ensure this, the density profile of
each orbit r xi ( ) and of the entire system r x( ) is discretized into
a number of basis elements mik, Mk. The weights of orbits wi

are then assigned in a way that solves the linear equation
system å == w m Mi

N
i ik k1

orb for all k, with the restriction that
wi�0.

Many subsequent studies used this method to explore the
properties of various stellar systems, e.g., galactic bars (Pfenniger
1984) or triaxial galaxies with density cusps (Merritt & Fridman
1996), with particular emphasis on the importance of different
orbit families, the role of chaos, etc. Another application is the
generation of equilibrium initial conditions for N-body simulations.

It was also quickly realized that this method may be used to
construct flexible models of real galaxies, constrained by some
sort of kinematic information in addition to the requirement of
self-consistency (e.g., Richstone & Tremaine 1984). In this
context, the main focus is on the determination of the range of
gravitational potentials in which the DF produces adequate fits
to the observed kinematics. In particular, almost all stellar-
dynamical estimates of masses of central supermassive black
holes (SMBH) are performed with the Schwarzschild method
(e.g., Gebhardt et al. 2003; Saglia et al. 2016). Large samples
of galaxies have been modeled using this method to measure
stellar mass-to-light ratios (M/L) and dark matter masses from
resolved kinematics (Cappellari et al. 2006; Thomas et al.
2007; Zhu et al. 2018); the latter study also brought the DF and
the orbital structure into focus.

The first aspect (construction and analysis of self-consistent
models with the given density profile) is more theoretical,
while the second (modeling of real galaxies and constraints on
their mass distribution) is an application of the method, which
is the main focus of the present paper.
Although there were several early efforts, e.g., the measure-

ment of the black hole mass in M87 by Richstone & Tremaine
(1985) or the studies of the triaxial Galactic bulge by Zhao
(1996) and Häfner et al. (2000), the history of modern
observational applications of the Schwarzschild method starts
with Rix et al. (1997), who introduced a practical approach for
constructing spherical orbit-superposition models constrained
by observed line-of-sight velocity distributions (LOSVD) in the
form of Gauss–Hermite (GH) moments. With subsequent
generalization to axisymmetry (van der Marel et al. 1998;
Cretton et al. 1999) and various other improvements (e.g.,
Krajnović et al. 2005; Cappellari et al. 2006), it came to be
known as the LEIDEN code. Another independent implementa-
tion of the axisymmetric Schwarzschild method was presented
in Gebhardt et al. (2000), Gebhardt et al. (2003), Thomas et al.
(2004), Siopis et al. (2009), and many other studies; this
implementation is known as the NUKERS code. Valluri et al.
(2004) created a third axisymmetric code MASMOD, which
has also been used up to the present day. Later, a triaxial
generalization of the LEIDEN code (in effect, an entirely new
one) was developed by van den Bosch et al. (2008) and van de
Ven et al. (2008); in absence of an official name, we refer
to it as the HEIDELBERG code. More recently, spherical and
axisymmetric variants of the method specifically tuned for
dwarf spheroidal galaxies were presented in Jardel & Gebhardt
(2012), Breddels et al. (2013), Kowalczyk et al. (2017), and
Hagen et al. (2019). For completeness, we mention related
approaches for constructing models by a linear superposition of
basis elements, such as finite-size DF blocks in the space of
integrals of motion (Merritt 1993; Jalali & Tremaine 2011;
Magorrian 2019), or N-body particles with adjustable weights,
as in the made-to-measure (M2M) method (Syer & Tremaine
1996). The relation between the latter and the classical
Schwarzschild method is discussed in Malvido & Sellwood
(2015).
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In this paper, we introduce yet another implementation of the
Schwarzschild orbit-superposition method, which is designed to
be both very general and highly optimized. The new code,
FORSTAND (Flexible orbit superposition toolbox for analyzing
dynamical models), is largely based on the techniques used in
the “theoretical” Schwarzschild modeling code SMILE (Vasiliev
2013; Vasiliev & Athanassoula 2015). However, it has been
almost entirely rewritten from scratch, and is augmented with the
ability to deal with various observational constraints. It is
included as part of the publicly available5 AGAMA library for
galaxy modeling (Vasiliev 2019). Some of our preliminary
results were presented in Vasiliev & Valluri (2019).

The paper is organized as follows. We describe various
technical aspects of the code in Section 2, highlighting the
differences with other existing implementations of the
Schwarzschild method. In Section 3, we perform various tests
on mock/simulated data, but refrain from going further: all
observational applications are deferred to forthcoming papers.
Section 4 discusses several remaining open questions, and
wraps up.

2. Code

2.1. Potential Representation

Any dynamical modeling technique must deal with the
gravitational potential of a galaxy. Earlier studies typically
adopted simple parametric models for the potential (e.g., a
flattened logarithmic profile for the dark halo), or represented
the density as a Multi-Gaussian Expansion (MGE; Emsellem
et al. 1994; Cappellari 2002), for which the potential can be
computed by a 1D numerical quadrature.

Following Vasiliev & Athanassoula (2015), we use an
approach where the potential is represented using two very
general and flexible approximations: Multipole expansion
for spheroidal components (bulge, halo) and/or CylSpline
azimuthal-harmonic expansion for disk and bar components.
They are described in more detail in Section 2 of Vasiliev
(2019) and in the Appendix of Vasiliev (2018). The former
approach is well-known and used in all four major Schwarzs-
child codes; however, it becomes inaccurate for strongly
flattened systems, for which the latter method is preferable.
Given an arbitrary triaxial6 density profile, the potential is
precomputed to any desired accuracy and stored on an
interpolation grid; the subsequent orbit integration uses this
interpolated potential and is very efficient (the cost of
evaluation is roughly the same for both approaches). In
practice, the density profile can be taken either as a sum of
analytic models (Sérsic, double power law, MGE, etc.), or—for
the tests on mock data described in Section 3—directly from an
N-body snapshot.

2.2. Deprojection

The Schwarzschild method was originally designed to
construct dynamically self-consistent models in which the
weighted combination of orbits reproduces the 3D density

profile corresponding to the potential in which these orbits were
integrated. In some cases, for instance, when modeling dwarf
galaxies, which are assumed to be dominated by dark matter,
one may both ignore the contribution of stars to the total
potential and skip the self-consistency constraints in modeling,
instead only requiring the model to satisfy observable
photometric and kinematic constraints. However, this is
generally not possible, and one needs to determine the intrinsic
3D density profile from the observed 2D surface brightness
profile.
This deprojection problem is a severe obstacle, because it is

already clear from the dimensional considerations that the
solution is nonunique. In fact, even for axisymmetric systems,
the intrinsic density (a function of two coordinates) cannot be
uniquely determined—except for the edge-on case, as shown in
a brief note by Rybicki (1987) and later explored in detail by
Gerhard & Binney (1996) and Kochanek & Rybicki (1996).
In order to construct a Schwarzschild model, we need to
systematically explore the range of 3D density profiles
consistent with observations. Unless the galaxy contains a thin
gaseous or stellar disk, which can be used to determine the
inclination, there is a range of possible inclinations—and there
could be a range of possible 3D shape for each values.
Romanowsky & Kochanek (1997) and Magorrian (1999)
present practical algorithms for constructing a series of smooth,
regularized solutions for the intrinsic density profile in the
axisymmetric case, and Chakrabarty (2010) proposed an even
more general Bayesian deprojection approach. Some image
fitting programs, such as IMFIT (Erwin 2015), can operate with
families of parametric 3D density profiles, which are compared
to the surface brightness maps after integrating along the line of
sight.
On the other hand, if the 3D density follows an ellipsoidally

stratified profile (i.e., equidensity surfaces are concentric
ellipsoids with constant axis ratios), then its projection is also
stratified on concentric ellipsoids, with the relations between
intrinsic and projected axis ratios and viewing angles given by,
e.g., Binney (1985) or Section 3 of van den Bosch et al. (2008).
Under this assumption, the observed surface brightness profile
composed of one or several ellipsoidally stratified components
(e.g., an MGE) can be deprojected uniquely for a given
orientation (except some degenerate cases). This is the
approach taken by the vast majority of papers in the literature,
and it appears to produce reasonable results for elliptical
galaxies. However, bars are manifestly not ellipsoidal (most
often, they are boxy) in shape, and the biases arising from
incorrect assumptions on the intrinsic shape are poorly known.
Figure 2 in Vasiliev & Valluri (2019) illustrates that, even in
the axisymmetric case, the deprojection of an MGE fit to a disk
galaxy seen at an intermediate orientation produces a 3D
density profile substantially different from the true one—and
this biases the measurement of the BH mass.
In the present paper, we do not address the deprojection

problem; rather, we test the method on the mock data generated
from N-body simulations for which the 3D shape is known.
We defer a detailed treatment of deprojection of the light
distribution and its application to observed galaxies to a later
study.

2.3. From Light to Mass

Even assuming that the intrinsic light density profile could
be determined, the mass density profile needs to be specified.

5 http://agama.software
6 The potential approximations can be used for even more general density
profiles lacking triaxial symmetry, but the orbit-superposition technique
assumes a steady-state system, presumably excluding nontriaxial features such
as spiral arms or lopsided perturbations. However, see Brown & Magorrian
(2013) for a counterexample in the context of the eccentric nuclear disk
of M31.
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Most often, a constant (but a priori unknown) M/L ϒ is
assumed for the entire stellar population, which is then
constrained by kinematics. Several studies have explored the
effect of a variable stellar M/L: for example, McConnell et al.
(2013) allowed for a radial gradient of ϒ, and Erwin et al.
(2018) used two different values for the bulge and the disk
components. When using an MGE representation of the density
profile, one may ascribe different values of ϒ to different
Gaussian components, approximating the radial variation
inferred from stellar population modeling (e.g., Valluri et al.
2005; Nguyen et al. 2018).

One often-used trick is to rescale all mass components in the
galaxy (central SMBH, dark halo, etc.) by the same factor ϒ,
retaining the self-similarity of the potential. In this case, the
series of rescaled mass models has the same orbital structure,
but the values of velocity recorded in the orbit library should
be multiplied by ¡ before comparing to the observations.
Therefore, the same orbit library can be reused multiple times,
but the optimization problem needs to be solved separately for
each ϒ.

2.4. Construction of an Orbit Library

The Schwarzschild method operates in two stages. First, for
a given choice of potential, a large number of orbits Norb

spanning the entire model are integrated for a sufficiently long
time (typically 102( ) orbital periods), and their properties are
recorded in a suitable format. Second, the optimization problem
is solved to assign the orbit weights in a way that satisfies the
constraints as closely as possible. In this second step, only
some fraction of orbits receive positive weights, but if this
number is too small, the model will be implausibly “jagged.”
Hence, even though the method is intrinsically adaptive, it
works best if the orbit library was constructed wisely. On the
one hand, it needs to have a large enough variety of orbits to
choose from, but on the other hand, it should be tailored to the
expected orbital configuration of the stellar system. For
instance, in a disk galaxy, one would expect to find most stars
on close-to-circular orbits, with fv vR z, , hence the initial
conditions for the orbits should reflect this anisotropy.

Traditionally, the initial conditions are assigned on a grid
designed to sample the entire space of integrals of motion in a
regular way. One of these integrals is the energy E, with
typically 20–40 bins across the entire model. In axisymmetric
systems, the other classical integral is the z-component of the
angular momentum Lz, ranging from zero to the maximum
possible value of a circular orbit Lcirc(E). For the given E and Lz,
the nonclassical third integral (if it exists) determines the
thickness of the orbit in radius—or alternatively, its maximum
extent in z. Schemes for sampling the start space of axisym-
metric systems are largely similar between studies. Cretton et al.
(1999), in their Figure 3, use a regular grid in E and Lz, and
assign starting points for the given E, Lz at regularly spaced
locations on the zero-velocity curve in the meridional plane.
Subsequently, the LEIDEN code shifted to sampling the position
rather than Lz, I3 on a regular 2D grid in the meridional plane
(Figure 6 in Cappellari et al. 2006). A similar approach is
adopted in the MASMOD code (Valluri et al. 2004). The
NUKERS code additionally employs a Voronoi tesselation
scheme for the surface of section r versus vr to avoid repeated
sampling of the same phase-space region (Thomas et al. 2004).
In a triaxial system, the start space is typically split into two
parts: stationary (dropping orbits from the equipotential surface

with zero velocity) produces mostly box and high-order resonant
orbits, and principal-plane is similar to the axisymmetric case
and produces mostly tube orbits (Schwarzschild 1979; Merritt &
Fridman 1996; van den Bosch et al. 2008).
However, the regular grid-like structure of the start space

may lead to artifacts in the resulting orbital superposition.
Vasiliev & Athanassoula (2012) found that such models also
are not in perfect equilibrium when evolved as an N-body
system, because the integrals (most notably, energy) are
sampled only at discrete values, and unavoidable two-body
relaxation leads to blurring of the DF and associated changes in
the density profile. Therefore, we use an alternative approach,
where the initial conditions are sampled randomly rather than
regularly. The position is always sampled from the intrinsic
density profile of the given galaxy component (disk, halo, etc.),
and the velocity is assigned using one of the two possible
methods. The first method is more suitable for spheroidal
systems: we construct sphericalized density and potential
profiles by averaging the actual ones over the two angles,
and then determine the self-consistent, possibly anisotropic DF
using the Cuddeford (1991) inversion formula, which gen-
eralizes the Eddington and Osipkov–Merritt inversion techni-
ques. In this method, the velocity distribution at a fixed position
is the same in θ and f, but possibly different in r. The second
approach is more suitable for disks, and is based on solving the
anisotropic Jeans equation for the axisymmetrized potential and
density, in the formulation of Cappellari (2008), but for an
arbitrary profile (not necessarily an MGE). The velocity is then
drawn from a Gaussian distribution with the computed
dispersions, which are different in R and z directions, and a
nonzero mean in the f direction. Hence, it creates an orbit
library with a preferred rotation direction.
Each orbit is integrated typically for 100–200 dynamical

times (defined as the period of a circular orbit with the given
energy in the equatorial plane of the axisymmetrized potential).
We use a slightly modified version of the eighth-order Runge–
Kutta method DOP853 from Hairer et al. (1993), which allows
one to obtain a high-accuracy interpolated solution at any
moment of time regardless of the internal time step of the
integrator. When constructing models of barred disk galaxies,
the potential is assumed to be stationary in the rotating frame,
and the pattern speed Ω becomes another free parameter in the
model. The orbit integration in the rotating frame is only
slightly more complicated than in a nonrotating system, and the
kinematic observables are recorded in the inertial frame. It is
important to keep in mind that figure rotation breaks the
equivalence between prograde and retrograde orbits (which
otherwise look the same, except for the flipped sign of
velocity). In any case, the randomly sampled initial conditions
do not impose any symmetry between these orbits.
In a general rotating triaxial system, there is an overall

symmetry w.r.t. the reflection about the equatorial plane (flipping
of the sign of both z and vz), although individual orbits in certain
families (e.g., banana or saucer orbits) need not be symmetric.
The simultaneous change of sign of all three coordinates and
velocities also preserves the symmetry of the entire system.
Therefore, we impose a fourfold discrete symmetry of each orbit
when computing its contribution to the kinematic data cube (in a
nonrotating system, this would have been an eightfold symmetry
of reflection about each of the three principal planes). For
axisymmetric potentials, we further randomize the azimuthal
angle f before computing the projection of each point, and for
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spherical potentials, we randomly choose the orientation the
orbit on the sphere specified by two angles (θ and f).

During the orbit integration, we store various associated data
cubes that are later used in the modeling: the linear superposition
of data cubes of individual orbits is required to match the target
constraints as closely as possible. The most important targets are
the intrinsic density distribution and the LOSVDs on the image
plane, considered in the following sections. Additionally, we
store the 6D samples drawn from each trajectory at random
times, which can be used to generate an N-body representation
of the orbit library (if needed).

To improve the smoothness of orbit-superposition models, the
LEIDEN and HEIDELBERG codes use a “dithering” approach, in
which an individual orbit is split into a bunch of ∼100 orbits
with nearby initial conditions, and all observable data cubes are
averaged over this bunch. It would be straightforward to do this
in our code as well, but we prefer to use a larger number of orbits
together with regularization constraints (Section 2.8) to achieve
this goal.

2.5. Self-consistency Constraints

If the model is designed to be dynamically self-consistent
(i.e., when stars contribute to the total potential), we need to
record the density generated by each orbit, and ensure that it
matches the target density of the entire stellar system (or one of
its components).

There are several variants of density discretization schemes
discussed in the literature. For spherical systems, it is sufficient
to store the mass in spherical shells. For axisymmetric systems,
the density is discretized on a 2D grid in the meridional plane,
typically aligned with spherical coordinates (i.e., radial shells
further divided into angular bins). For triaxial systems, the grid
is further extended in the f dimension (e.g., van den Bosch
et al. 2008), or an alternative partitioning scheme with each
radial shell divided into three equal segments (in one of the
eight identical octants), and then further into several bins with
nearly equal areas (Schwarzschild 1979; Merritt & Fridman
1996). For a visualization, see Figure 7 in Vasiliev (2013).

A deficiency shared by all these schemes is that they only
constrain the average mass in each spatial bin, but provide no
control of the smoothness of the mass distribution in a bin. In
terms of approximation theory, the function (density) is
represented in a discrete way by a histogram, or by a basis

set with nonoverlapping ó-shaped basis elements. However,
one may do better by generalizing this scheme to higher-degree
finite-element basis sets, as suggested in Jalali & Tremaine
(2011). In common with other parts of the code, we choose
B-splines of degree D as the basis set; see, e.g., Chapter IX of
de Boor (1978). Histograms are just B-splines of degree zero,
and a better alternative are first-degree B-splines, or ∧-shaped
functions spanning two adjacent grid cells (Figure 1, left
panel).
In the present code, we provide several options for density

discretization: a cylindrically aligned meridional-plane grid, with
the f dimension represented by Fourier harmonics (only needed
for nonaxisymmetric systems, otherwise a single term is used);
the scheme of Merritt & Fridman (1996) for triaxial systems;
and a scheme based on multipole expansion of the density
(Vasiliev 2013). The first two options can be used with either the
traditional zeroth-degree B-splines (histograms) or (preferably)
with first-degree B-splines. The latter provide a better approx-
imation to the target density profile—and furthermore, they
enforce the smoothness of the orbit-superposition modelsʼ density.
In the third scheme, the radial variation of the density is
represented as a first-degree B-spline, and the angular variation at
each radius by a spherical-harmonic basis set. In all variants, the
target density profile r x( ) and the density generated by each orbit
r xi ( ) are discretized in exactly the same way, by computing their
Galerkin projections ò rº x x xm B dik i k

3( ) ( ) onto each element
xBk ( ) of the basis set. In the traditional discretization scheme,

these values are just the cell masses.

2.6. Kinematics

Almost all existing Schwarzschild modeling codes are
designed to deal only with LOSVD, not proper motions or
individual stellar velocities. For the Local Group objects, these
LOSVD or their moments are constructed by binning up
individual stellar velocities (e.g., Breddels et al. 2013; Jardel
et al. 2013; Kowalczyk et al. 2017), while for most extragalactic
objects, they come from long-slit or integrated field unit (IFU)
spectroscopy. In the latter case, the LOSVDs are measured in
some patches (apertures) on the image plane, which may consist
of individual spaxels or groups of them, often constructed with
the Voronoi binning approach of Cappellari & Copin (2003).
These represent the intrinsic LOSVDs convolved spatially with
the instrumental point-spread function (PSF). Therefore, to take

Figure 1. Left panel: density discretization using zeroth-degree B-splines (histogram, green) or first-degree B-splines (piecewise linear function, shown in blue). The
latter approximates the original density (red dotted line) far better, and provides additional smoothness constraints in the model. Center panel: representation of
LOSVD in terms of B-splines of degree 3. Contributions of individual basis functions are shown by different shades of blue and green, and their sum by a red dotted
line. Right panel: representation of LOSVD in terms of GH series. Blue is the dominant term (Gaussian), other colors are higher-order terms starting from h3, and red
dotted line is their sum.
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into account the limited spatial resolution, the LOSVD of the
model must also be convolved with the instrumental PSF before
comparing with the observations, especially when modeling
central regions of galaxies around SMBHs, whose radius of
influence is often comparable to or smaller than the PSF width.

By contrast, the velocity dimension usually represents the
intrinsic (deconvolved) velocity distribution, which comes out
of the spectral fitting procedure. There are several approaches
for deriving the LOSVD from a spectrum in a single spatial bin,
and they produce the data in different representations. In the
simplest case, only the mean velocity v and its dispersion σ are
fitted. This would completely describe the LOSVD, if it were a
Gaussian. However, in many cases, the profiles are strongly
non-Gaussian: for instance, they can be asymmetric in the
presence of fast rotation; flat-topped or spiky, respectively, in
the cases of tangential or radial anisotropy; or even double-
peaked in the case of counter-rotating disks.

A very general way of representing any function is via a
histogram, as in the NUKERS code (Gebhardt et al. 2000), or as
a cubic spline, as in Merritt (1997); both are special cases of a
B-spline basis set. In either case, the number of grid points in
the velocity space and associated free parameters (values of the
function at these points) is rather large (10–50), and a
maximum penalized likelihood method is used to recover only
the significant features in the data and to prevent overfitting.
Consequently, the effective number of free parameters is lower
(in the limit of infinite smoothing, only two—mean and
dispersion), and the uncertainties on the function values have a
nontrivial correlation matrix, which must be taken into account
when fitting a dynamical model. For instance, Gebhardt et al.
(2000, 2003) estimate that only half of their 13 velocity bins are
independent. Houghton et al. (2006) introduce a method for
converting the histogrammed representation of an LOSVD into
another set of numerically constructed basis functions (which
they call “eigen velocity profiles”), which orthogonalizes the
error correlation matrix, but this approach has seen very little
practical usage.

The more commonly used alternative is the GH expansion
(van der Marel & Franx 1993; Gerhard 1993), in which the
LOSVD is given by
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where Ξ is the overall amplitude, v0 and s are the center and
width of the Gaussian function, m are (modified) Hermite
polynomials, and hm are the coefficients of expansion (it is
convenient to normalize Ξ so that h0= 1). If all coefficients
with m>0 are zero, this corresponds to a pure Gaussian
function with mean v0 and dispersion s. In general, however,
both the mean velocity v and the dispersion σ depend on all
coefficients hm, and may differ from v0 and s, respectively.

It is important to keep in mind that v0 and s are parameters of
the basis set (in the same way as grid points in velocity space
for a histogram representation), while hm are the coefficients of
expansion of a particular function, so they are conceptually
different. In other words, a given function f (v) can be
approximated by a GH series for any choice of v0 and s. Of
course, the coefficients hm would be different for each choice,
and usually the goal is to build a good approximation with as
few terms as possible. It is easy to show that if and only if v0

and s are chosen to be the mean and width of the best-fit
Gaussian approximation of the function f (v), then h1=h2=0.
The GH basis set is orthogonal (for a fixed choice of v0, s),
meaning that one may construct truncated expansions with
different orders M, and all coefficients with m�M will not
depend on the choice of M. On the other hand, when using the
GH parameterization of the LOSVD in spectral fitting, the
function f (v) to be approximated is unknown a priori, and it is
common to vary the parameters Ξ, v0, s and coefficients h3..hM
simultaneously to obtain the best fit, while still keeping h0=1,
h1=h2=0. This is the approach used in the popular spectral
fitting code PPXF (Cappellari & Emsellem 2004). In this case,
the best-fit values v0, s and all coefficients hm do depend on the
truncation order M.
The advantage of the GH parameterization is that the

uncertainties are nearly uncorrelated, at least when the GH
coefficients h3..hM are small; see Equation (11) in van der
Marel & Franx (1993). However, dealing with uncertainties in
v0, s is awkward because these are nonlinear parameters of the
basis set, rather than coefficients of the linear expansion of the
LOSVD. Therefore, it is customary to treat v0, s as fixed
parameters, and translate their uncertainties v0, òs into the
uncertainties on h1, h2, whose measured values are zero: in the
linear approximation, =  s2h v1 0 ( ) and =  s2h s2 ( )
(Equation (12) in Rix et al. 1997).
We note that, in practice, the normalization of the LOSVD is

not known from observations, due to uncertainties regarding
sky subtraction and other factors. Hence, it must be determined
from the surface density profile, convolved with the PSF of the
spectroscopic instrument, and integrated over each aperture.
Even though the self-consistency constraints on the 3D density
profile imply that its projection should also follow the
observational surface brightness profile, previous studies
usually found it beneficial to constrain it separately. We follow
this practice, computing the normalization of the LOSVD in
each aperture from the surface density profile of the model,
convolved with the PSF. It is then required to be reproduced by
the weighted sum of orbit contributions to each aperture (orbit
LOSVD collapsed along the velocity axis).
In our code, LOSVDs of each orbit are first recorded as three-

dimensional data cubes (two image-plane coordinates and the
velocity axis), and represented in terms of a basis set of tensor-
product B-splines with a degree ranging from 0 (histograms) to 3
(cubic splines), chosen by the user. These B-splines are defined
by grids separately in each dimension; the velocity axis is
illustrated in Figure 1, central panel. For each point sampled
from the trajectory during orbit integration, we accumulate its
projection onto each basis function in all three dimensions.
Spatial convolution is performed in terms of B-spline repre-
sentation, and then the LOSVDs are rebinned in the two spatial
dimensions onto the set of apertures (defined by arbitrary
polygons in the image plane) in which observations were
recorded (e.g., elements of a long slit, Voronoi bins, etc.). The
convolution and rebinning are expressed as a single matrix-
vector multiplication, which is very efficient on modern
processors. For each orbit, a two-dimensional array of
coefficients of B-spline expansion is stored in the orbit library
(one dimension is the velocity axis, the other is the index of the
aperture). The technical details of this approach are explained in
Appendix A. When fitting the model to kinematic observables,
we further convert this B-spline representation, possibly scaled
by ¡ as explained in Section 2.3, into the required form
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(histogram or GH series, as shown in Figure 1, right panel) in
each aperture.

In other implementations of the Schwarzschild method,
LOSVDs of the orbit library are usually represented by
histograms, which are a special case of B-splines (of degree 0).
Spatial convolution is performed either by fast Fourier transform
(NUKERS and MASMOD codes) or by randomly perturbing the
coordinates of points stored during orbit integration (LEIDEN and
HEIDELBERG codes). Our approach is significantly more efficient
and more accurate, when used with second- or third-degree
B-splines; see Figure 5 in Appendix B. On the one hand, higher-
degree basis functions enforce greater smoothness of the LOSVD.
On the other hand, at a fixed grid spacing, they can represent
steeper gradients, which means that one can use coarser grids
(with spacing comparable to the spaxel size) and still resolve all
relevant features (with accuracy of order 1%), while saving
storage space and computational time.

Regardless of whether the observed LOSVD is represented
in terms of a histogram or a GH series, the LOSVD of each ith
orbit can be expanded in the same basis set, and the resulting
coefficients uin form the matrix of linear equations to be fitted
in the least-square sense (Section 2.7). In doing so, we may
actually use an order of GH expansion (e.g., M= 10) that is
higher than the observed one (typically four or six), requiring
the higher-order GH terms to be zero, with some fiducial
uncertainty of a few percent. This reduces the propensity of the
model to produce unphysically jagged LOSVDs.

Alternatively, a linear-superposition problem may be
formulated for the “classical” (as opposed to GH) moments
of the LOSVD, namely, the mean velocity v , its full second
moment sº +v v2 2 2, and possibly higher terms such as v4.
These quantities are easily calculated from the B-spline
representation of each orbit’s LOSVD, although in the
spherical Schwarzschild code of Breddels et al. (2013), they
are computed directly during orbit integration. Because
monomials of v form yet another basis set, the solution is still
linear in orbit weights (this would not be so, had we used σ

instead of v2 as the observational constraint; see Zhao 1996). In
practice, GH moments are somewhat better determined
observationally, being less sensitive to the often poorly
measured wings of the LOSVD than the “classical” moments.

2.7. Solution of the Optimization Problem

After the orbit library has been constructed, and possibly
rescaled in velocity (Section 2.3), the orbit weights º =w wi i

N
1

orb{ }
are determined as the best-fit solution to the constrained
optimization problem. Specifically, we write down the objective
function w( ) to be minimized:

å
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where Un are the values of observational constraints, Un are
their measurement uncertainties, uin are the same observables
recorded for each orbit, and  w( ) is the optional regularization
term discussed in Section 2.8. The solution must satisfy the
non-negativity constraints

=w i N0, 1 .. , 3i orb ( )

and possibly some other equality constraints (e.g., the self-
consistency constraints for the intrinsic density profile, as

described in Section 2.5):

å = =
=

w m M k N, 1 .. . 4
i

N

i ik k
1

cons

orb

( )

Without these constraints—and ignoring the regularization
term, for the moment—Equation (2) is the classical non-
negative linear least-square problem, which is usually solved
using the method of Lawson & Hanson (1974). This approach
is followed in the MASMOD, LEIDEN, and HEIDELBERG codes.
However, the venerable old algorithm is far from being optimal
in performance, and cannot deal with equality constraints.
Because of the latter reason, many studies treat the intrinsic
density constraints as another set of approximate constraints,
assigning them some arbitrary but small relative uncertainties
(typically 1%–2%). However, this complicates the interpreta-
tion of the confidence intervals on the model parameters,
because the χ2 values have contributions from both observable
quantities and the additional intrinsic density constraints.
Alternatively, Equations (2)–(4) can be reformulated as a

quadratic programming problem (see Dejonghe 1989), introdu-
cing an auxiliary vector of Nobs slack variables sn and
associated equality constraints

å + = =
=

w u s U n N, 1 .. . 5
i

N

i in n n
1

obs

orb

( )

Combined with Equation (4), we have a system of
Ncons+Nobs linear equations for Norb+Nobs variables,
satisfying the non-negativity constraints (3), and the objective
function becomes

å c= + º +
= 

  w w
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After experimenting with many black-box quadratic pro-
gramming solvers, we found the open-source CVXOPT7 library
to be most efficient for our purposes. Most commercial solvers
such as CPLEX, GUROBI, MOSEK, and GALAHAD (the latter was
used for some time in the HEIDELBERG code) are optimized to
deal with sparse matrices of linear and quadratic constraints. In
our case, the matrix of linear constraints is typically quite
dense, but the matrix of quadratic constraints is diagonal (if the
regularization term  is just a sum of squared orbit weights).
We have modified the CVXOPT library to take advantage of this
structure of the problem. It can utilize highly optimized, state-
of-the-art, dense linear algebra libraries, such as OPENBLAS,
taking advantage of both multicore parallelization and the
SIMD instruction set of modern CPUs. For instance, with 64
threads, it reaches a peak performance of ∼100Gflops per
CPU core on a 2GHz Intel Xeon processor, i.e., 50 flops per
CPU cycle—something that would be nearly impossible to
achieve in programs written in a conventional coding style,
without extensive architecture-specific low-level fragments.
The massive speedup of the optimization procedure is one of

the key improvements in our code, allowing it to solve a
problem with 105( ) orbits and 104( ) constraints in just a few
minutes on a high-end multicore CPU.
We note, however, that this efficient optimization solver can

be used only when the quadratic objective function is diagonal,
or in other words, when there are no correlations between
observational errors. Moreover, when the linear-superposition

7 http://cvxopt.org
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method is used to fit discrete-kinematical data (velocities of
individual stars rather than LOSVDs), as in Chaname et al.
(2008) and Magorrian (2019), the objective function is not
quadratic in orbit weights anymore, and the problem requires a
general nonlinear optimization solver.

2.8. Regularization

Since the number of orbits in Schwarzschild models is
usually much larger than the number of observational
constraints, the solution for the orbit weights is highly
nonunique. Magorrian (2006) argues that, if one is interested
in comparing the likelihood of different potentials, not the DF
itself (essentially the orbit weights), then one needs to
marginalize over all possible DFs allowed by each potential.
Naturally, this is almost infeasible computationally, although
he demonstrates the possibility of performing such a margin-
alization in a toy model. More recently, Bovy et al. (2018)
revisited this approach in the context of the made-to-measure
method applied to a toy harmonic potential. Still, a full
Bayesian treatment of the DF as a set of nuisance parameters in
a realistic potential and with many thousand orbits is a remote
goal at the moment.

Putting aside the question of marginalization, one has to be
content with a single best-fit solution for the orbit weights for
the given choice of potential parameters. The dynamical
inverse problem—determination of the DF from its noisy
projection into the observable space—is a classic example of an
ill-conditioned problem, which usually requires some sort of
regularization technique to produce a meaningful solution; see
the discussion in, e.g., Merritt (1993).

There are two commonly used approaches to regularization in
the context of Schwarzschild models: local and global. In the
first case, one seeks a solution in which nearby orbits in the
space of integrals of motion would preferably have similar
weights. This is usually implemented as a penalty term  w( ) in
the objective function (2) that is proportional to the squared
second derivative of the DF as a function of integrals of motion.
In the absence of a complete set of classical integrals (essentially
in any nonspherical system), they are substituted by the initial
positions of orbits in a regularly structured start space
(Section 2.4). This approach is followed in the LEIDEN,
HEIDELBERG, and MASMOD codes. However, one disadvantage
of our random sampling scheme for assigning initial conditions
is that it does not provide any measure of proximity of orbits in
the integral space. In any case, in the local approach, the penalty
function  is a bilinear form of the solution vector with a
nondiagonal matrix, which would prevent the possibility of
using the optimized quadratic-programming solver.

The second approach dispenses with the requirement that
orbit weights should be similar locally, and instead imposes
integral constraints on the overall distribution of orbit weights.
Richstone & Tremaine (1988) introduced the maximum-
entropy approach in a general context, which was subsequently
adopted in the NUKERS code. The regularization penalty term
in the objective function is proportional to the Boltzmann
entropy ò- x v x v x vf f d d, ln , 3 3( ) ( ) . Expressed in terms of
orbit weights, the entropy is å = w w w wlni

N
i i i i1

orb( ˜ ) ( ˜ ), where wi˜ is
the prior on the orbit weight. In the NUKERS code, wi˜ are the
phase volumes associated with each orbit, computed from the
Voronoi tesselation of the surface of section (Thomas et al.
2004). Increasing this penalty term makes the distribution of
orbit weights more uniform. The nonlinear functional form of

this penalty means that a quadratic programming method is not
applicable; instead, the solution is obtained by a more general
Newton’s method with special adaptations to enforce non-
negativity of the solution vector. On the other hand, Boltzmann
entropy does not play a special role in this context, and any
convex function would produce a similar regularizing effect.
Accordingly, we choose to use a diagonal quadratic penalty
similar to that used by Merritt & Fridman (1996):

ål= -

=

S N w w , 7
i

N

i iorb
1

1

2
orb

( ˜ ) ( )

where again wi˜ are priors on orbit weights—in our random
sampling approach for the generation of initial conditions, these
values are all identical and equal to M/Norb, but a more
sophisticated choice of priors is also possible.
In all regularization schemes, a free parameter (called λ in

the above equation) determines the relative importance of
regularization penalty term in the overall objective function.
The standard practice is to choose it in such a way that the
quality of fit does not significantly deteriorate, or in other
words, χ2 (the first term in Equation (2)) increases by  1( )
compared to the case without regularization. Alternatively, one
may determine the optimal value of λ via cross-validation
(McDermid et al. 2019, private communication). We find that
values of l ~  1( ) produce adequate results, but defer a more
thorough exploration of the regularization to a future study.

2.9. Analysis of the Orbital Structure

We may explore the internal structure of the best-fit model in
several ways. For each orbit, we compute the intrinsic
kinematic properties, such as the velocity moments, discretized
on a suitable 3D grid. These quantities are then multiplied by
the orbit weights in the solution and summed up to obtain the
overall profiles.
For spheroidal systems, it is instructive to consider the

velocity anisotropy coefficient b s s sº - +q f1 2 r
2 2 2( ) ( ).

Figure 1 in Vasiliev & Valluri (2019) illustrates the well-
known fact that models with the same observed kinematics
but different potentials have rather different profiles of β(r),
generalizing the anisotropy inversion approach (Binney &
Mamon 1982) to nonspherical systems. It also demonstrates
that the intrinsic kinematic properties may change rather
drastically outside the radius where the model is constrained
by kinematic observations. Since the photometry is usually
available out to larger distances than kinematics, the intrinsic
density profiles behave more regularly.
Another way of looking into the orbit distribution is

provided by analyzing the weights of orbits as functions of
integrals of motion (or their approximations) such as E, time-
averaged inclination of the orbital plane ºi L Lcos z , or the
orbit circularity parameter L L Ez circ( ) introduced in Zhu et al.
(2018). In Section 3.3, we demonstrate that the Schwarzschild
models are able to recover the orbit distribution for the best-fit
(correct) values of parameters, and concur with the authors of
the LEIDEN and HEIDELBERG codes that it is advisable to use a
nonzero regularization coefficient λ to reduce fluctuations and
unrealistic sudden changes in the orbital structure.
A more sophisticated analysis of the orbital structure of

triaxial systems is possible with tools such as frequency maps
(Valluri & Merritt 1998; Valluri et al. 2016), which highlight
various resonant families. These tools a were part of the earlier
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version of our Schwarzschild code (SMILE; Vasiliev 2013), but
are not yet included in the current version. This kind of analysis
is especially interesting in application to bars; see, e.g., a similar
study by Portail et al. (2015) in the context of M2M models.

Finally, an orbit-superposition model may be converted into an
N-body model by sampling a number of points from each orbit in
proportion to its weight. This could be useful, e.g., for testing the
stability of a given solution. Of course, the Schwarzschild method
itself can serve as a way of creating equilibrium models with
prescribed density profiles, not necessarily constrained by any
observations; SMILE has been used in this context (Vasiliev &
Athanassoula 2012, 2015).

2.10. Implementation and Workflow

The present Schwarzschild modeling code forms part of the
AGAMA framework for galaxy modeling, together with other
methods based on DFs in action space, Jeans equations, etc. It
shares many aspects (such as the collection of potential models
or the representation of velocity distribution in terms of
B-splines) with those methods, but many tasks are performed
somewhat differently. For instance, in DF-based methods, any
observable quantity (such as an LOSVD) is computed directly
from DF for any point on the sky, whereas in the orbit-
superposition method, one needs to specify the sky-plane
apertures before building the orbit library and obtaining the
solution of the optimization problem. Similarly, sampling
N-body particles from a DF can be done at any time, but in the
Schwarzschild method, these samples must be collected during
orbit integration.

The computational core of the AGAMA library is written in
C++, but the top-level workflow of the Schwarzschild modeling
method is implemented in Python for a greater flexibility. The
computationally intensive functions (construction of potential
and density models, preparation of initial conditions, definition
of density and LOSVD targets, orbit integration, computation of
GH moments, and quadratic optimization solver) are contained
in the core of the library and are accessible through its Python
interface. These operations are all OpenMP-parallelized, and
hence can use all available CPU cores of a single machine. The
choice of density/potential components, various parameters of
the model, and data acquisition and preparation are usually
specific to each galaxy, so they should be provided by the user in
the Python script.

The workflow usually consists of defining a model (all
parameters of potential, geometry, etc., up to an overall mass-
to-light ratio ϒ), reading and preparing observational con-
straints, constructing the orbit library, and solving the
optimization problem for different choices of ϒ using the
same orbits but rescaling the velocity, as explained in
Section 2.3. Typically ϒ is not the only free parameter in the
model, and separate orbit libraries should be constructed for
different choices of all other parameters; these independent
subsets of models can be run in parallel on different machines.
The values of χ2 for all models are then plotted in a common
parameter space, and if necessary, marginalized over some
dimensions (e.g., M/L) to obtain final confidence intervals for
parameters of interest (e.g., SMBH mass).

A more detailed description of the code is included in
the AGAMA reference documentation (Vasiliev 2018). We
provide examples of the entire workflow, as well as an
interactive Python script for analyzing the modeling results
(plotting the contours of χ2 in the parameter space maps of

v0, s, and higher GH moments for different models and the
original data, examining LOSVDs in individual apertures, etc.)

3. Tests

3.1. Generation of Mock Data Sets

In order to validate the code, we prepare mock input data
with parameters similar to the commonly used observational
data sets.
We use several different DF-based or N-body models of disk

galaxies with and without bars, which will be described in more
detail in subsequent sections. We choose dimensional scaling
units in such a way as to mimic a Milky Way-sized galaxy,
with stellar mass ~ ´ M5 1010

, half-light radius of ∼3kpc,
and peak circular velocity of ∼200–250 km s−1. We place the
galaxy at a fiducial distance 20Mpc, hence 1″;100 pc.
Each N-body model is used to create several mock data sets

with different inclinations, and in the case of triaxial models,
orientations of the major axis of the bar. As explained in
Section 2.2, inferring the 3D shape of the galaxy from the
projected surface brightness profile is a difficult and under-
constrained problem, although adding the kinematic informa-
tion may lift some degeneracies, as explored by van den Bosch
& van de Ven (2009) in the context of triaxial spheroidal
galaxies. We leave this topic for a future study, and in the
present paper we assume that the 3D shape of the galaxy is
known, thereby sidestepping the deprojection problem. In
practice, we construct a smooth nonparametric representation
of the 3D potential on a cylindrical grid, as explained in
Section 2.1, directly from the input N-body snapshot, and only
vary the overall normalization ϒ during the fit, as explained in
Section 2.3.
We construct two kinematic data sets: a low-resolution (LR)

data set covering a large spatial region, roughly up to one half-
light radius; and a high-resolution (HR) data set covering only
the central region, but with a much smaller PSF. For the
former, we adopt parameters similar to those of large-scale IFU
instruments such as SAURON/ATLAS3D or VIMOS: field-of-
view (FoV) 60″×60″, pixel size 1 , spatial resolution (width
of the Gaussian PSF) 1″. See Table 1 in Zou et al. (2019) for a
compilation of properties of various IFU instruments. For the
HR data set, we take the typical parameters of AO-assisted IFU
such as NIFS or SINFONI: FoV 2″×2″, pixel size 0 05, PSF
width 0 1. In both cases, the IFU is centered on the galaxy and
the kinematic data are point-symmetrized so that the observed
LOSVD = - - - X Y V X Y V, , , ,( ) ( ). This allows one to
use only half of the image plane, irrespective of the orientation
of the IFU, even for barred galaxies. We use the Voronoi
binning approach (Cappellari & Copin 2003) to group the
pixels into ∼50–100 apertures in each data set, roughly
maintaining a constant total flux per bin.
The LOSVDs in each bin are computed either from N-body

particles or directly from the analytic DFs of the models, using
the same sequence of operations as when sampling points from
orbits during the Schwarzschild modeling. We then convert the
LOSVDs into the GH representation with 6 GH moments. The
intrinsic discreteness (Poisson) noise is fairly low when using
HR N-body simulations, and negligible when using analytic
DFs. We assign the formal uncertainties typical of the modern
instruments: = , 5v s0 km s−1, and = 0.02h h...3 6 . We use
both the “clean” mock kinematic maps, with negligibly low
Poisson noise, and “noisy” maps, in which each quantity is
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perturbed by a Gaussian error with the quoted standard
deviation.

3.2. Axisymmetric Disk Models

We first test the new Schwarzschild code in the axisym-
metric regime. For this exercise, we construct models defined
by DFs in action space, using the iterative approach
implemented in AGAMA. The models have a nearly exponential
disk with scale length 3kpc, scale height 0.3kpc, an optional
central Sérsic bulge with scale radius ∼1kpc, a nearly
Navarro–Frenk–White (NFW) halo, and a central BH. The
total mass of the disk and the bulge is 5×1010Me (the bulge,
if present, contains 20% of this mass), the contribution of the

halo to the rotation curve reaches 50% at R; 10 kpc, and the
central BH has a mass ´-

+M10 3
disk bulge. The top row of

Figure 2, shows the rotation curves of the models, which are
similar to that of the Milky Way. The central velocity
dispersion is σ∼100 km s−1, corresponding to the radius of
influence sº = r G M 20pc 0. 2infl •

2  , twice as large as the
HR PSF width 0 1. These values are typical for recent studies
of SMBH in galaxies of similar σ, distance, and M•; see, e.g.,
Krajnović et al. (2018) or Tables 1 and 5 in Thater et al. (2019).
Since axisymmetric models have fourfold symmetry when

the kinematic data cube is aligned with the major axis, we use
only one quadrant on the sky plane. Both LR and HR data sets
contain 50 Voronoi bins, i.e., 300 kinematic constraints. We
also fit the intrinsic 3D density profile discretized on a

Figure 2. Properties of axisymmetric mock data sets and modeling results. Top row: circular velocity curves of the model with a central bulge (center panel) and
without a bulge (right panel). The contributions of disk (+bulge), halo, central SMBH, and the total circular velocity º Fv R d dRcirc are shown by red dashed, blue
dotted–dashed, black dotted, and green solid lines, respectively, as functions of the distance from the galaxy center (1″=0.1 kpc). The left panel shows the
degeneracy between stellar M/L ratio ϒ and the mass of the dark halo (for a fixed M• equal to the true value), with the true values marked by a cross. All models within
the ellipses have χ2<2.3 (when using noiseless data, the absolute values of χ2 do not have any special meaning, but these models are essentially perfect fits to the
data). The outer dashed ellipse shows unregularized models, and the inner dotted–dashed one shows models with a relatively large regularization coefficient λ=10.
The circular velocity curves of the latter series of models are shown as shaded regions in the middle panel; both disk and halo contributions have much larger
uncertainty than the total circular velocity within the range of radii probed by the data (shown as a magenta vertical arrow). The SMBH radius of influence is marked
by a cyan vertical arrow; note that it is significantly smaller than the radius at which the gravity is dominated by the SMBH. Middle row:contours of Δχ2 (difference
in χ2 between the given model and the best-fit model) in the parameter space (M•vs. ϒ), for several choices of models: with or without a bulge, inclination angle
β=90° (edge-on) or 45°, and one model placed at half the distance (10 Mpc vs. the default 20 Mpc). Purple dashed lines represent noiseless data and unregularized
models (Δχ2 = 2.3, 6.2, 11.8). Blue dotted–dashed lines indicate the same data, λ=10 (with only the inner contour shown). Orange solid lines show one realization
of noise, λ=10. The true parameters are shown by a red cross. Bottom row: contours of Δχ2 as functions of M•, marginalized over the other parameter (ϒ) for the
same models as in the previous row. Wider curves are for the noiseless models (magenta dashed: without regularization, blue dotted–dashed: with the regularization
coefficient λ = 10), while the other colored curves show five different realizations of noise in each case (all with λ = 10, although the curves look rather similar for
other choices of λ). Vertical red dashed line marks the true value of M•.

9

The Astrophysical Journal, 889:39 (16pp), 2020 January 20 Vasiliev & Valluri



cylindrical grid with 300 constraints, and the surface density
profile (LOSVD integrated along the velocity dimension in
each aperture), requiring an exact fit in both cases. Hence, the
χ2 values reflect only the difference in kinematic constraints.
We use 20,000 orbits for all models (20–30× higher than the
number of total or kinematic constraints), and vary the
regularization parameter λ in (7) between zero (no regulariza-
tion) and 10 (relatively strong one).

First, we run the code on the “clean” (noise-free) mock data,
while still using the formally assigned error bars. Of course, in
this case, the values of χ2 do not have any statistical meaning
—only the region of the parameter space with essentially
perfect fits (χ2≈ 0) is significant, as it illustrates the intrinsic
flexibility and degeneracy of the models.

The total potential is composed of the stellar disk (including
the bulge), the dark halo, and the central BH. For the halo, we
use a spherical NFW profile with a fixed scale radius of 20kpc
and adjustable normalization, even though it is somewhat
different from the actual halo density profile of our models. We
find that, with the adopted spatial coverage of the kinematic
maps (up to one half-light radius), we are not able to
disentangle the contribution of the disk and the halo to the
total potential: the halo normalization is strongly degenerate
with the stellar M/L ratio ϒ (Figure 2, top left panel). This
remains true even for the data sets with added noise, so we
conclude that a larger FoV would be needed to constrain
the halo properties. We fix the halo normalization to the true
value henceforth.

We next focus on the two remaining parameters: ϒ and M•.
The middle row of Figure 2 shows that, in the noise-free case,
the constraints on M•are very weak: any value between 0 and
5–10× the true BH mass is equally consistent with the data.
Such flat-bottomed χ2 contours have been previously demon-
strated by Valluri et al. (2004) in a similar context. This is not
unexpected, since the models are very flexible and can
accommodate a wide range of the BH mass by counter-
balancing changes in the orbital structure at larger radii.

A closer examination reveals that the models at the edge of
the allowed parameter space are less realistic, having large
disparity in orbit weights and significant fluctuations in the
kinematic structure outside the range of radii constrained by the
data. The first two panels in the middle row of our Figure 2, or
Figure 1 in Vasiliev & Valluri (2019), show that by increasing
the regularization parameter λ or the spatial coverage of the
kinematic maps, one obtains tighter constraints on both ϒ and
M•by eliminating extra freedom in orbital structure. For further
discussion, see Cretton & Emsellem (2004).

In the case of spherical models, Dejonghe & Merritt (1992)
have shown that the 2D DF f (E, L) can be uniquely recovered
from the observed LOSVD  R v,( ) in the given potential Φ.
They further conjectured that the constraints on Φ coming from
the non-negativity of the recovered DF are quite tight, but did
not rigorously demonstrate this. Our experiments suggest that,
as the spatial coverage increases, the constraints on Φ indeed
get tighter, possibly even shrinking to a single point in the
ϒ–M•plane as the maps cover the entire galaxy. However, this
applies only to a restricted two-parameter family of models,
and it is not clear if this statement is true or can be proven in a
general case. We leave a more thorough exploration of this
question for a future study.

Magorrian (2006) confirmed that flat-bottomed χ2 contours
appear in the noise-free case, but argued that, with a realistic

level of noise, even the intrinsically flexible Schwarzschild models
cannot fit the data perfectly, and χ2 has a well-defined nonzero
minimum as a function of model parameters. Figure 2, bottom
row, illustrates this behavior for several noise realizations, plotting
χ2(M•), marginalized over ϒ. The curves usually have well-
defined minima, but are sometimes quite noisy with multiple
local minima. The minimum values of χ2∼400 are significantly
smaller than the number of constraints (Nobs= 600), indicating
that the models are still overfitting the noise, regardless of the
regularization parameter λ (within the range considered).
The confidence intervals on the model parameters are quoted

at a particular level of c c cD º -M2 2
• min

2( ) . The standard
approach is to use Δχ2=1 as the 68% (“1σ”) confidence
interval for one degree of freedom (M•only, after margin-
alization over the remaining parameters). We see that the true
value of M•is often outside the formal 1σ intervals, although
still within 2–3σ (Δχ2= 4 or 9, correspondingly). Some
authors (e.g., van den Bosch et al. 2008, and subsequent
papers) argue that the statistical uncertainty in the value of χ2

itself is dc = N2 12
obs  , and use the latter value to define

the confidence intervals. Indeed, the scatter in cmin
2 between

different noise realizations is consistent with the above
estimate; however, for a given noise realization, this scatter is
irrelevant for the purpose of determining the confidence
intervals. On the other hand, it is universally acknowledged
that using Δχ2=1 produces unrealistically small uncertain-
ties. More importantly, the use of a fixed cutoff value of
Δχ2=1 for one degree of freedom ignores the fact that the
orbit-superposition models have Norb hidden free parameters,
for which we take only the best-fit values but do not
marginalize over them—a point raised by Magorrian (2006).
It is clear that a more rigorous statistical analysis is needed to
robustly determine the confidence intervals on the model
parameters and to explore the role and the optimal level of
regularization; we leave this for a future study.
Interestingly, the allowed intervals of ϒ and M•become

broader when we place the mock galaxy at half the distance
of our fiducial models (10Mpc) while keeping all other
parameters unchanged (Figure 2, second column in the last two
rows). Despite the sphere of influence now being 2× larger on
the sky plane, M•is constrained even less well, due to a greater
freedom available to the model to rearrange the orbits in the
outer parts, not covered by the LR data set. This underlines the
need to use the kinematic data across the entire galaxy, even
when interested only in the central part of it, or else to put some
physically motivated priors on the distribution of orbits not
explicitly constrained by observations.

3.3. Barred Disk Models

We now apply the Schwarzschild code to a barred disk
galaxy, using a snapshot from the N-body simulation of
Fragkoudi et al. (2017) taken after several Gyr of evolution,
when an X-shaped bar has fully developed. The N-body system
is scaled to resemble the Milky Way, has 107 particles in the
disk component, and is embedded in a live dark matter halo.
We again place it at a fiducial distance 20Mpc, and use only
the LR data cube with size 60″×60″, since the models do not
contain any central SMBH. In this case, we use one half of the
sky plane, because general triaxial models are only point-
symmetric, and cover it with 200 Voronoi bins (i.e., 1200
kinematic constraints). We also use twice as high a number of
intrinsic density constraints (600), with the same cylindrical
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grid but two angular harmonic terms (m= 0 and m= 2), and
another 200 surface density constraints. Accordingly, we
increase the number of orbits to 50,000, and use a mild
amount of regularization (λ= 1), which is not expected to bias
the solution (see Valluri et al. 2004).

We consider two inclination angles (β= 45° and 90°) and
three choices of bar orientation w.r.t. the line of nodes
(intersection of the galaxy disk and sky planes): α=0° (bar
along the projected major axis of the disk), 90° (bar
perpendicular to the major axis, or seen end-on in case of
90° inclination), and 45° (intermediate case, when both the
photometry and kinematics have twists). We additionally rotate
the FoV by γ=30° w.r.t. the line of nodes in the sky plane. As
explained before, we use the true 3D shape of the N-body
system and only consider one choice of viewing angles (the
correct one) for each mock data set.

Figure 3 shows the noise-free kinematic maps and the range
of parameters ϒ, Ω for which the Schwarzschild models
produce essentially perfect fits. As in the previous case, ϒ is
nearly degenerate with parameters of the dark matter halo
profile, so we fix the latter to the initial profile and mass (even
though it has likely changed in the course of evolution). The
correct value of ϒ is recovered to within 10%, and Ω is also
fairly well-constrained. Figure 4 confirms that, even in the
presence of noise, the best-fit values of ϒ and Ω are close to
the true ones (Ω is systematically overestimated by ∼10%),
although the formal uncertainty intervals are likely too tight to
be realistic.

The good accuracy of measurement of the pattern speed by
the Schwarzschild method is quite remarkable. The well-known
alternative approach for determining Ω, credited to Tremaine &
Weinberg (1984), deals with a greatly reduced subset of data:
one-dimensional profiles of Σ(l) and vlos(l), measured along the
bar, with the coordinate l formally integrated from-¥ to+¥.
Due to the cancellation of positive and negative contributions
to the integrals, this method cannot be applied in symmetric
cases (four out of five shown in Figure 3), e.g., in the edge-on
orientation (β= 90°) or when the bar is aligned with the
photometric major or minor axes (α= 0° or α= 90°). It is also
sensitive to misalignment between the measurement direction
(slit) and the bar; see the discussion in Zou et al. (2019). By
contrast, the orbit-superposition method uses the entire 2D
kinematic map and full LOSVD information (although Ω is
mostly constrained by v0, s), and the correct value of Ω is
recovered even in these cases, although with larger uncertain-
ties. Of course, we stress again that we used the true shape of
the 3D density profile, simplifying the task of determining the
best-fit parameters, while the Tremaine–Weinberg method is
model-independent. In a realistic scenario, one would try
different combinations of intrinsic shape and viewing angles
that are all consistent with the observed surface brightness
profile, and use the kinematics to select the best combination.
Our preliminary tests indicate that this procedure indeed favors
the correct choice, but we leave a detailed investigation for a
future study.

Figure 4 illustrates the recovery of the internal kinematics
and the orbital distribution by the Schwarzschild models. We
plot the orbit circularity λzas the time-averaged value of Lz
normalized to the maximum possible angular momentum at
the given energy, Lcirc(E), introduced in Zhu et al. (2018).
This quantity is different from the instantaneous normalized
Lz in a triaxial system, at least for box orbits, which have

time-averaged Lz≈0, but a nonzero Lz at any given time.
In the bar region, no orbits have λz close to unity, because
the bar rotates rather slowly in these models, and bar-trapped
orbits are strongly noncircular. At larger radii, most stars are
on disk orbits with λz;1. The gaps and bands at the transition
between the bar and the disk are caused by resonances.
The bottom row shows the intrinsic velocity moments in
cylindrical coordinates as functions of radius. Overall, the
Schwarzschild models are able to recover the orbital popula-
tions and kinematic profiles remarkably well, at least in the bar
region where they are constrained by observations. We also see
that regularization helps to avoid sudden and implausible
variations in these quantities at large radii not covered by
observations.

4. Discussion

We present a new, publicly available implementation of the
Schwarzschild orbit-superposition method for constructing
equilibrium models constrained by observations. Its most
important features are:

1. It is applicable to systems with any shape and density
profile, ranging from spherical to triaxial, including
strongly flattened disks and rotating bars (in this case,
the models are stationary in the rotating frame).

2. The dynamical self-consistency (if desired) is achieved
by constraining the 3D density profile discretized into
several types of basis elements, in particular, piecewise-
linear basis functions.

3. It can deal with kinematic constraints provided in the
form of classical or Gauss–Hermite velocity moments, or
the full LOSVD.

4. The internal representation of the kinematic data cube
uses high-accuracy second- or third-degree B-splines.

5. Initial conditions for the orbit library are sampled
randomly instead of on a regular grid, using one of
several auxiliary approaches, such as DF inversion or
Jeans equations.

6. The use of a very efficient quadratic optimization solver
for determining the orbit weights makes it possible to
deal with very large problems (e.g.,  105( ) orbits and
 104( ) constraints).

7. The code is highly optimized and parallelized for multi-
core CPUs.

We illustrated the performance of the method on simulated
data sets constructed from N-body or DF-based models, with
parameters mimicking a Milky Way–sized galaxy at a distance
of the Virgo cluster observed by a typical modern IFU. We
considered several test cases: axisymmetric galaxies with a
central SMBH, or a triaxial barred disk galaxy, all observed at
different orientations. When using the true shape of the 3D
density distribution, the code is able to recover the true values
of the M/L and the pattern speed with small uncertainties. At
the same time, with the chosen parameters of the mock data
sets, we were not able to put strong constraints on the SMBH
mass or on the DM halo properties.
On the other hand, we raised several conceptual issues but did

not address them in detail. Most importantly, for our mock tests
we assumed a known 3D shape, but in reality it needs to be
inferred from the projected light distribution. This problem has no
unique solution in a general case, despite the existence of methods
such as MGE decomposition, which produce a solution belonging
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to a particular class of models. However, this class of ellipsoidally
stratified profiles may not be adequate for barred disky galaxies,
as illustrated in Figure 2 of Vasiliev & Valluri (2019). Ideally, one

would need a method for systematically exploring the range of
possible shapes and orientations consistent with the observed light
distribution, and determine the best-fit one by constructing a full

Figure 3. Kinematic maps and modeling results for a barred disk galaxy observed at different orientations, parameterized by Euler angles (contours on the maps show the
projected density, with contour lines spaced by one magnitude): inclination angle β and rotation angle of the bar w.r.t. the line of nodes (the latter shown by a horizontal
dashed–dotted line) α, while the angle γ is fixed to 30°. Second column shows the intrinsic axes of the system (dashed when behind the image plane) and its equatorial plane
as a rectangle. We use six GH moments in the models, but show only the first four noise-free maps here, since the features in h5, h6 are very similar to those in h3, h4 with
inverted sign. Left column shows the ranges of the two model parameters (pattern speed Ω andM/L ϒ) consistent with the noiseless data (χ2 = 2.3, 6.2, 11.8; since there is no
noise, the minimum value of χ2 is essentially zero). The true parameters are marked by red crosses, and the explored models by gray dots. Second-last row: same model as in
the first row, but with added noise. Note a narrower range of Ω in the left panel. Bottom row: contours of Δχ2 (difference in χ2 between the given model and the best-fit
model) as functions of Ω, marginalized over the other parameter (ϒ), for the five orientations shown on the previous figure. Wider dotted–dashed curves are for the noiseless
models, while the other colored curves show five different realizations of noise in each case. Vertical red dashed line marks the true value of Ω.
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series of Schwarzschild models for each choice of the 3D shape.
Clearly, the task of exploring all possible deprojections consistent
with the observed photometry can be considered independently
from the task of constructing a dynamical model for each of these
deprojected density profiles.

The second aspect is the intrinsic nonuniqueness of dynamical
models—or more specifically, the range of possible gravitational
potentials in which the tracer population reproduces the given
3D kinematic data cube (LOSVD as a function of two sky-plane
coordinates). Our tests on noiseless mock data sets demonstrate

Figure 3. (Continued.)

Figure 4. Top row shows the orbital structure of the barred models, visualized as the density of orbits in the phase space: mean radius (horizontal axis) vs. orbit
circularity l º L L Ez z circ( ). Left column is the original N-body model, and the remaining columns are Schwarzschild models with the correct values of ϒ and Ω, and
orientation angles α=45°, β=45° (fourth row on Figure 3): noiseless, noisy without regularization, and noisy regularized. Color and size of the points show the
orbit weight (blue and green indicate low values close to N1 orbits, while red and purple represent large weights). In nonregularized models, there are very few orbits
with large weights, while regularized ones have a more uniform weight distribution. Overall, the Schwarzschild models recover the orbital population of the original
N-body model quite well. Bottom row: internal kinematics of the same set of models (left is the original N-body model, and the remaining columns are Schwarzschild
models). Shown are radial profiles of the mean rotational velocity fv and three components of velocity dispersion tensor s fR z, , (averaged over azimuthal angle and
vertical direction). Schwarzschild models recover well the internal kinematics within the range of radii constrained by the data (up to 3–5 kpc, indicated by a purple
vertical arrow), although the nonregularized model exhibits large fluctuations.
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that models with a wide range of SMBH masses are able to
produce perfect fits to the observed kinematic maps. However,
upon closer examination, it appears that the models near the
edges of this parameter space look less realistic than the models
with true parameters. Namely, they have large and rapid
variations in the internal structure, especially outside the range
of radii covered by observed kinematics. The range of allowed
potentials shrinks when increasing the spatial coverage of
kinematic constraints, but it remains an open question whether
this range shrinks to zero in the limit of infinite coverage, or if
there still remains some degree of intrinsic degeneracy in the
models. Furthermore, increasing the value of the regularization
parameter λ also narrows down the range of allowed potentials
by eliminating the models with large variations in orbit weights.
Larger values will progressively bias the solution toward the
priors set by the adopted procedure for assigning initial
conditions, and there is no obvious way to choose the optimal
value of λ in the noise-free case.

A third aspect, related to the previous one, is a statistically
sound method for determining the confidence intervals on
model parameters (in particular, M•) in the realistic case of
noisy data. Our tests with mock data perturbed by several
different realizations of noise indicate that the best-fit value of
M•often differs from the correct one by a factor of few.
Moreover, the difference in χ2 between the best-fit and the true
parameters (Δχ2) is several times larger than would have been
expected for the χ2 distribution with one degree of freedom. In
principle, there are no compelling reasons to expect that Δχ2

should satisfy that distribution, given that the models have a
large number of hidden parameters (orbit weights), which are
ignored in this comparison. These experiments (fitting models
to many realizations of noise and examining the distribution of
Δχ2 between the best-fit and the true parameters) may be used
to calibrate the choice of threshold in Δχ2 for various
confidence intervals, but are complicated by the noisiness of
the χ2 profiles. They are also influenced by the choice of the
regularization parameter λ, the optimal choice of which may be
guided by statistical considerations such as cross-validation.

Despite these conceptual questions, each of them probably
deserving a separate study, the Schwarzschild method
continues to be a powerful tool for analyzing the structure
and dynamical properties of galaxies. By providing our
implementation of the method to the community, we hope to
reduce the entry threshold for its usage, facilitate its application
to the actual observations, and catalyze research into its
theoretical foundations.

E.V. acknowledges support from the European Research
Council (ERC) Horizon 2020 program under grant 308024.
M.V. acknowledges support from the National Science Founda-
tion (grant NSF-AST-1515001), and HST-AR-13890.001 and
JWST-ERS-01364.002-A.

Appendix A
B-spline Representation of LOSVD

In this section, we present the mathematical method for
handling the LOSVD in terms of basis-set expansion using
tensor-product B-splines.

A one-dimensional B-spline of degree D is a piecewise
polynomial defined by grid knots xg, g=1..G, and can be
represented as a linear combination of basis functions ej(x),

j=1.. B with amplitudes fj:

å=
=

f x f e x . 8
j

B

j j
1

˜ ( ) ( ) ( )

The number of basis functions is = + -B G D 1. Each
function is nonzero on at most D+1 consecutive intervals
between knots, and has D−1 continuous derivatives at each
knot. The case D=0 is equivalent to a histogram (basis
elements are ó-shaped blocks), D=1 to a linear interpolation
(∧-shaped blocks spanning two grid segments), and D=3 to a
clamped cubic spline.
B-splines form a B-dimensional basis in the subset of all

piecewise-continuous functions f (x) on the interval x1..xG. We
define the inner product of two functions f and g as

òá ñ ºf x g x f x g x dx, , 9
x

xG

1

( ) ( ) ( ) ( ) ( )

and if the second function is one of the basis elements ei, we
call it a projection operator

º á ñ f f x e x, . 10i i{ } ( ) ( ) ( )

Any function f (x) may be approximated by a B-spline f x˜ ( )
with the vector of amplitudes ºf fi computed from the
requirement that the projection of function f (x) onto each basis
element is the same as the projection of its approximated
counterpart (i.e., Galerkin projection):

å= = =

º º á ñ
=

 f f M f i B

M e x e x

for all 1 .. ,

where the matrix , . 11

i i
j

B

ij j

ij i j

1

M

{ } { ˜}

( ) ( ) ( )

When constructing the LOSVD of an orbit, we record its
position and velocity at discrete moments of time tn, n=1.
Nsamples (for simplicity, equally spaced, but this is trivially
generalized). Consider, for instance, the velocity dimension (the
two spatial coordinates are treated in the same way). The original,
discretely sampled LOSVD is d= å --

=f v N v vn
N

nsamples
1

1
samples( ) ( ),

and its projection on the ith basis function is =i

å-
=N e vn

N
i nsamples

1
1

samples ( ). The B-spline representation of the LOSVD
is then given by (8) with amplitudes fj found by solving the linear
system = M fij j i.
The convolution of a function f (x) with a kernel K(x) is

defined as

òº * º ¢ - ¢ ¢f x f K f x K x x dx . 12K
x

xG

1

( ) ( ) ( ) ( )

The B-spline approximation of the convolved function fK(x)
may be constructed by the following procedure:
–obtain the projections  f ;{ }
–find the amplitudes for the B-spline approximation f̃ of the

original function: = - f M f ;1 { }
–convolve º å =f x f e xj

B
j j1

˜ ( ) ( ) with the kernel K and
obtain its projections

ò ò å

å

= ¢ - ¢ ¢
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=

=

 f f e x K x x dx e x dx
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where the matrix K is defined as

ò òº ¢ ¢ - ¢K dx dx e x e x K x x ; 14ij
x

x

x

x

i j
G G

1 1

( ) ( ) ( ) ( )

–find the amplitudes of the convolution approximation:

= = =- - - - f ff f . 15K K
1 1 1 1M M K M K M{ ˜ } { } ( )

Of course, the matrices M and - -1 1M K M may be precom-
puted in advance for the given B-spline basis and kernel, so that
the amplitudes fK are obtained in one matrix–vector multi-
plication, requiring B2 operations. Note that, in the trivial case of
a delta-function kernel K(x)=δ(x), the matrix =K M, and
hence the convolution of the B-spline representation f̃ does not
change the amplitudes, as expected.

It is also straightforward to compute integrals of f̃ over a
predefined set of intervals x x..s s,low ,upp, s=1..S, by expressing
them as another matrix-vector multiplication operation:

ò

ò

åº =

º º

=

 f x dx Q f

Q e x dx

,

where the matrix . 16
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The LOSVD of each orbit in the model is first recorded as a
projection ijk onto a 3D grid of tensor-product B-splines (two
coordinates on the image plane X, Y indexed by i, j, and the
line-of-sight velocity V indexed by k). The two indices i, j are
combined into a single flattened index p, hence the projections
are represented by a matrix º pk with BX BY rows and BV

columns. Each kth slice of this data cube along the velocity axis
is then convolved with the spatial PSF and rebinned onto the
array of apertures, indexed by s, by analytically integrating the
2D B-spline over the area of each aperture (defined by an
arbitrary non-self-intersecting polygon in the image plane). The

combination of convolution and rebinning operations is
described by a single matrix º RspR , precomputed in advance
by multiplying the matrices - -, , ,X Y X Y

1 1M M K K and Q in the
appropriate order. Finally, the projections along the velocity
axis are also converted into the amplitudes º fskf of B-spline
expansion for f vs̃ ( ) in each sth aperture. The entire sequence of
operations can be written as a series of matrix multiplications:
= - V

1f R M , with the overall cost of +B B B B NX Y V V apertures( )
operations, which are extremely efficient on modern processors
when using optimized linear algebra libraries such as EIGEN.

Appendix B
Accuracy Tests

In this section, we demonstrate the accuracy of B-splines for
representing the LOSVD. As explained in Section 2.6, we
represent each orbit’s LOSVD on a 3D grid (two image plane
coordinates X, Y and the line-of-sight velocity V ) using a basis
set of tensor-product B-splines of degree D, ranging from
0 to 3: = åf X Y V A B X B Y B V, , i j k ijk i j k, ,( ) ( ) ( ) ( ). Each velocity
slice of the data cube is then separately convolved with the
spatial PSF and rebinned onto the given array of arbitrarily
shaped regions (apertures) in the image plane on which the
observed LOSVDs are measured.
The first test determines the accuracy of representation of 1D

LOSVD in a given aperture in terms of B-splines. Figure 5, left
panel, shows that a Gaussian velocity profile is approximated to
better than 1% relative accuracy with D=2 or D=3
B-splines, even when the velocity-grid spacing is equal to the
velocity dispersion. To resolve finer details in the LOSVD, the
sixth-order GH moment is usually sufficient, and it needs a
velocity grid that is roughly twice finer (or denser). By contrast,
to achieve a similar accuracy with the conventionally used
histogram representation of the LOSVD, one would need to

Figure 5. Left panel: accuracy of B-spline representation of an LOSVD. Shown are rms errors ò -f f dv2( ˜ ) in approximating a given f (v) with a Dth degree

B-spline f v˜ ( ), as functions of grid spacing h measured in units of velocity dispersion σ. Lighter colors and lower errors are for a pure Gaussian = f v v( ) ( ). Darker
colors and higher errors are for the sixth GH moment =  f v v v6( ) ( ) ( ), which has a higher frequency. With second- or third-degree B-splines, a velocity grid
spacing of ∼(0.5–0.6)×σ is sufficient to achieve subpercent accuracy for any reasonable LOSVD, even if it has significant features in h6; one would need to have a
grid with h0.1σ in order to obtain a similar accuracy with conventionally used histograms (D = 0). Right panel: accuracy of B-spline representation and
convolution of 2D functions on the image plane. We first construct a B-spline basis set of degree D over a 2D regular grid with spacing h, and approximate a δ function
with this basis. This approximation is then convolved with a 2D Gaussian PSF of width σ, and reinterpolated onto the same basis. Next, we compute the integral of the
B-spline representation over a circular aperture with radius σ, centered on the input point, and compare it with the analytical value - - »1 exp 0.3931

2
( ) . This

procedure is identical to the one used in constructing the PSF-convolved LOSVD of an orbit in a given aperture on the image plane. Plotted are the rms errors of this
approximation, averaged over 103 randomly placed points, as functions of grid spacing h measured in units of PSF width σ. With second- or third-degree B-splines,
the relative error is already 1% at h=σ, and rapidly drops with decreasing h, whereas one would need a grid 5× finer to achieve the same accuracy in the case of
histograms (D = 0).
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have (5–10)× finer grids. We conclude that the velocity grid
should extend to ±3× the highest value of σ encountered in the
input data, and have a resolution ∼0.5× the lowest value of σ.
Of course, one needs to take into account that the velocities are
scaled as ϒ1/2 when comparing the model to the data, so the
extent and resolution might need to be increased to cover the
likely range of ϒ values in the models.

The second test determines the requirements on the internal
spatial grid for recording the LOSVDs of orbits. Figure 5, right
panel, demonstrates that a grid spacing roughly equal to the
PSF width is sufficient to achieve 1% relative accuracy for
D=2 or D=3 B-splines. Of course, the apertures or pixel
sizes in the observed data set need not be similar to the PSF
width. If the observed data are oversampled relative to PSF, the
internal grids do not need to be finer, because the rebinning
procedure is geometrically exact (the contribution of each basis
function of the internal grid to each observed aperture is
computed analytically), and there are no features with scales
smaller than PSF width in the convolved data cube. In the
opposite case, when the apertures are much larger than the PSF
(most commonly, in the outer parts of the galaxy), the internal
grid spacing may be made comparable to the aperture widths.
The B-spline grids in x, y need not be uniformly spaced (for
instance, they could be denser around origin) and can be
tailored to the spatially varying aperture sizes. Alternatively,
separate internal data cubes may be used for two or more
observational data sets with very different aperture sizes. One
also needs to use a separate internal data cube for each data set
with a different PSF. In our approach, the PSF may consist of
one or more circular Gaussians.

ORCID iDs

Eugene Vasiliev https://orcid.org/0000-0002-5038-9267
Monica Valluri https://orcid.org/0000-0002-6257-2341

References

Binney, J. 1978, ComAp, 8, 27
Binney, J. 1985, MNRAS, 212, 767
Binney, J., & Mamon, G. 1982, MNRAS, 200, 361
Bovy, J., Kawata, D., & Hunt, J. 2018, MNRAS, 473, 2288
Breddels, M., Helmi, A., van den Bosch, R., van de Ven, G., & Battaglia, G.

2013, MNRAS, 433, 3173
Brown, C., & Magorrian, J. 2013, MNRAS, 431, 80
Cappellari, M. 2002, MNRAS, 333, 400
Cappellari, M. 2008, MNRAS, 390, 71
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126
Cappellari, M., & Copin, Y. 2003, MNRAS, 342, 345
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138
Chakrabarty, D. 2010, A&A, 510, 45
Chaname, J., Kleyna, J., & van der Marel, R. 2008, ApJ, 682, 841
Cretton, N., de Zeeuw, T., van der Marel, R., & Rix, H.-W. 1999, ApJS,

124, 383
Cretton, N., & Emsellem, E. 2004, MNRAS, 347, 31
Cuddeford, P. 1991, MNRAS, 253, 414
de Boor, C. 1978, A Practical Guide to Splines, Appl. Math. Sci., Vol.27

(Berlin: Springer)
Dejonghe, H. 1989, ApJ, 343, 113
Dejonghe, H., & Merritt, D. 1992, ApJ, 391, 531
Emsellem, E., Monnet, G., & Bacon, R. 1994, A&A, 285, 723
Erwin, P. 2015, ApJ, 799, 226

Erwin, P., Thomas, J., Saglia, R., et al. 2018, MNRAS, 473, 2251
Fragkoudi, F., di Matteo, P., Haywood, M., et al. 2017, A&A, 607, L4
Gebhardt, K., Richstone, D., Kormendy, J., et al. 2000, AJ, 119, 1157
Gebhardt, K., Richstone, D., Tremaine, S., et al. 2003, ApJ, 583, 92
Gerhard, O. 1993, MNRAS, 265, 213
Gerhard, O., & Binney, J. 1996, MNRAS, 279, 993
Häfner, R., Evans, N., Dehnen, W., & Binney, J. 2000, MNRAS, 314, 433
Hagen, J., Helmi, A., & Breddels, M. 2019, A&A, 632, A99
Hairer, E., Nørsett, S., & Wanner, G. 1993, Solving Ordinary Differential

Equations (Berlin: Springer)
Houghton, R., Magorrian, J., Sarzi, M., et al. 2006, MNRAS, 367, 2
Jalali, M. A., & Tremaine, S. 2011, MNRAS, 410, 2003
Jardel, J., & Gebhardt, K. 2012, ApJ, 746, 89
Jardel, J., Gebhardt, K., Fabricius, M., Drory, N., & Williams, M. 2013, ApJ,

763, 91
Kochanek, C., & Rybicki, G. 1996, MNRAS, 280, 1257
Kowalczyk, K., Łokas, E., & Valluri, M. 2017, MNRAS, 470, 3959
Krajnović, D., Cappellari, M., Emsellem, E., et al. 2005, MNRAS, 357, 1113
Krajnović, D., Cappellari, M., McDermid, R., et al. 2018, MNRAS, 477, 3030
Lawson, C., & Hanson, R. 1974, Solving Least-squares Problems (Englewood

Cliffs, NJ: Prentice–Hall)
Magorrian, J. 1999, MNRAS, 302, 530
Magorrian, J. 2006, MNRAS, 373, 425
Magorrian, J. 2019, MNRAS, 484, 1166
Malvido, J., & Sellwood, J. 2015, MNRAS, 449, 2553
McConnell, N., Chen, S.-F., Ma, C.-P., et al. 2013, ApJL, 768, L21
Merritt, D. 1993, ApJ, 413, 79
Merritt, D. 1997, AJ, 114, 228
Merritt, D., & Fridman, T. 1996, ApJ, 460, 136
Nguyen, D., Seth, A., Neumayer, N., et al. 2018, ApJ, 858, 118
Pfenniger, D. 1984, A&A, 141, 171
Portail, M., Wegg, C., & Gerhard, O. 2015, MNRAS, 450, L66
Richstone, D., & Tremaine, S. 1984, ApJ, 286, 27
Richstone, D., & Tremaine, S. 1985, ApJ, 296, 370
Richstone, D., & Tremaine, S. 1988, ApJ, 327, 82
Rix, H.-W., de Zeeuw, T., Cretton, N., van der Marel, R., & Carollo, M. 1997,

ApJ, 488, 702
Romanowsky, A., & Kochanek, C. 1997, MNRAS, 287, 35
Rybicki, G. 1987, in Proc. IAU Symp. 127, Structure and Dynamics of

Elliptical Galaxies, ed. P. T. de Zeeuw (Dordrecht: Reidel), 397
Saglia, R., Opitsch, M., Erwin, P., et al. 2016, ApJ, 818, 47
Schwarzschild, M. 1979, ApJ, 232, 236
Siopis, C., Gebhardt, K., Lauer, T., et al. 2009, ApJ, 643, 946
Syer, D., & Tremaine, S. 1996, MNRAS, 282, 223
Thater, S., Krajnović, D., Cappellari, M., et al. 2019, A&A, 625, 62
Thomas, J., Saglia, R., Bender, R., et al. 2004, MNRAS, 353, 391
Thomas, J., Saglia, R., Bender, R., et al. 2007, MNRAS, 382, 657
Tremaine, S., & Weinberg, M. 1984, ApJL, 282, L5
Valluri, M., Ferrarese, L., Merritt, D., & Joseph, C. 2005, ApJ, 628, 137
Valluri, M., & Merritt, D. 1998, ApJ, 506, 686
Valluri, M., Merritt, D., & Emsellem, E. 2004, ApJ, 602, 66
Valluri, M., Shen, J., Abbott, C., & Debattista, V. 2016, ApJ, 818, 141
van de Ven, G., de Zeeuw, T., & van den Bosch, R. 2008, MNRAS, 385, 614
van den Bosch, R., & van de Ven, G. 2009, MNRAS, 398, 1117
van den Bosch, R., van de Ven, G., Verolme, E., Cappellari, M., &

de Zeeuw, T. 2008, MNRAS, 385, 647
van der Marel, R., Cretton, N., de Zeeuw, T., & Rix, H.-W. 1998, ApJ,

493, 613
van der Marel, R., & Franx, M. 1993, ApJ, 407, 525
Vasiliev, E. 2013, MNRAS, 434, 3174
Vasiliev, E. 2018, AGAMA: Action-based galaxy modeling framework,

Astrophysics Source Code Library, ascl:1805.008
Vasiliev, E. 2019, MNRAS, 482, 1525
Vasiliev, E., & Athanassoula, E. 2012, MNRAS, 419, 3268
Vasiliev, E., & Athanassoula, E. 2015, MNRAS, 450, 2842
Vasiliev, E., & Valluri, M. 2019, arXiv:1909.03119
Zhao, H.-S. 1996, MNRAS, 283, 149
Zhu, L., van de Ven, G., van den Bosch, R., et al. 2018, NatAs, 2, 233
Zou, Y., Shen, J., Bureau, M., & Li, Z.-Y. 2019, ApJ, 884, 23

16

The Astrophysical Journal, 889:39 (16pp), 2020 January 20 Vasiliev & Valluri

https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-5038-9267
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://orcid.org/0000-0002-6257-2341
https://ui.adsabs.harvard.edu/abs/1978ComAp...8...27B/abstract
https://doi.org/10.1093/mnras/212.4.767
https://ui.adsabs.harvard.edu/abs/1985MNRAS.212..767B/abstract
https://doi.org/10.1093/mnras/200.2.361
https://ui.adsabs.harvard.edu/abs/1982MNRAS.200..361B/abstract
https://doi.org/10.1093/mnras/stx2402
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.2288B/abstract
https://doi.org/10.1093/mnras/stt956
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433.3173B/abstract
https://doi.org/10.1093/mnras/stt104
https://ui.adsabs.harvard.edu/abs/2013MNRAS.431...80B/abstract
https://doi.org/10.1046/j.1365-8711.2002.05412.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.333..400C/abstract
https://doi.org/10.1111/j.1365-2966.2008.13754.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.390...71C/abstract
https://doi.org/10.1111/j.1365-2966.2005.09981.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.366.1126C/abstract
https://doi.org/10.1046/j.1365-8711.2003.06541.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.342..345C/abstract
https://doi.org/10.1086/381875
https://ui.adsabs.harvard.edu/abs/2004PASP..116..138C/abstract
https://doi.org/10.1051/0004-6361/200912008
https://ui.adsabs.harvard.edu/abs/2010A&A...510A..45C/abstract
https://doi.org/10.1086/589429
https://ui.adsabs.harvard.edu/abs/2008ApJ...682..841C/abstract
https://doi.org/10.1086/313264
https://ui.adsabs.harvard.edu/abs/1999ApJS..124..383C/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJS..124..383C/abstract
https://doi.org/10.1111/j.1365-2966.2004.07374.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.347L..31C/abstract
https://doi.org/10.1093/mnras/253.3.414
https://ui.adsabs.harvard.edu/abs/1991MNRAS.253..414C/abstract
https://doi.org/10.1086/167689
https://ui.adsabs.harvard.edu/abs/1989ApJ...343..113D/abstract
https://doi.org/10.1086/171368
https://ui.adsabs.harvard.edu/abs/1992ApJ...391..531D/abstract
https://ui.adsabs.harvard.edu/abs/1994A&A...285..723E/abstract
https://doi.org/10.1088/0004-637X/799/2/226
https://ui.adsabs.harvard.edu/abs/2015ApJ...799..226E/abstract
https://doi.org/10.1093/mnras/stx2499
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.2251E/abstract
https://doi.org/10.1051/0004-6361/201731597
https://ui.adsabs.harvard.edu/abs/2017A&A...607L...4F/abstract
https://doi.org/10.1086/301240
https://ui.adsabs.harvard.edu/abs/2000AJ....119.1157G/abstract
https://doi.org/10.1086/345081
https://ui.adsabs.harvard.edu/abs/2003ApJ...583...92G/abstract
https://doi.org/10.1093/mnras/265.1.213
https://ui.adsabs.harvard.edu/abs/1993MNRAS.265..213G/abstract
https://doi.org/10.1093/mnras/279.3.993
https://ui.adsabs.harvard.edu/abs/1996MNRAS.279..993G/abstract
https://doi.org/10.1046/j.1365-8711.2000.03242.x
https://ui.adsabs.harvard.edu/abs/2000MNRAS.314..433H/abstract
https://doi.org/10.1051/0004-6361/201936196
https://ui.adsabs.harvard.edu/abs/2019A&A...632A..99H/abstract
https://doi.org/10.1111/j.1365-2966.2005.09713.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.367....2H/abstract
https://doi.org/10.1111/j.1365-2966.2010.17578.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.2003J/abstract
https://doi.org/10.1088/0004-637X/746/1/89
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...89J/abstract
https://doi.org/10.1088/0004-637X/763/2/91
https://ui.adsabs.harvard.edu/abs/2013ApJ...763...91J/abstract
https://ui.adsabs.harvard.edu/abs/2013ApJ...763...91J/abstract
https://doi.org/10.1093/mnras/280.4.1257
https://ui.adsabs.harvard.edu/abs/1996MNRAS.280.1257K/abstract
https://doi.org/10.1093/mnras/stx1520
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.3959K/abstract
https://doi.org/10.1111/j.1365-2966.2005.08715.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.357.1113K/abstract
https://doi.org/10.1093/mnras/sty778
https://ui.adsabs.harvard.edu/abs/2018MNRAS.477.3030K/abstract
https://doi.org/10.1046/j.1365-8711.1999.02135.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.302..530M/abstract
https://doi.org/10.1111/j.1365-2966.2006.11054.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.373..425M/abstract
https://doi.org/10.1093/mnras/stz037
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.1166M/abstract
https://doi.org/10.1093/mnras/stv419
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449.2553M/abstract
https://doi.org/10.1088/2041-8205/768/1/L21
https://ui.adsabs.harvard.edu/abs/2013ApJ...768L..21M/abstract
https://doi.org/10.1086/172979
https://ui.adsabs.harvard.edu/abs/1993ApJ...413...79M/abstract
https://doi.org/10.1086/118467
https://ui.adsabs.harvard.edu/abs/1997AJ....114..228M/abstract
https://doi.org/10.1086/176957
https://ui.adsabs.harvard.edu/abs/1996ApJ...460..136M/abstract
https://doi.org/10.3847/1538-4357/aabe28
https://ui.adsabs.harvard.edu/abs/2018ApJ...858..118N/abstract
https://ui.adsabs.harvard.edu/abs/1984A&A...141..171P/abstract
https://doi.org/10.1093/mnrasl/slv048
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450L..66P/abstract
https://doi.org/10.1086/162572
https://ui.adsabs.harvard.edu/abs/1984ApJ...286...27R/abstract
https://doi.org/10.1086/163455
https://ui.adsabs.harvard.edu/abs/1985ApJ...296..370R/abstract
https://doi.org/10.1086/166171
https://ui.adsabs.harvard.edu/abs/1988ApJ...327...82R/abstract
https://doi.org/10.1086/304733
https://ui.adsabs.harvard.edu/abs/1997ApJ...488..702R/abstract
https://doi.org/10.1093/mnras/287.1.35
https://ui.adsabs.harvard.edu/abs/1997MNRAS.287...35R/abstract
https://ui.adsabs.harvard.edu/abs/1987IAUS..127..397R/abstract
https://doi.org/10.3847/0004-637X/818/1/47
https://ui.adsabs.harvard.edu/abs/2016ApJ...818...47S/abstract
https://doi.org/10.1086/157282
https://ui.adsabs.harvard.edu/abs/1979ApJ...232..236S/abstract
https://doi.org/10.1088/0004-637X/693/1/946
https://ui.adsabs.harvard.edu/abs/2009ApJ...693..946S/abstract
https://doi.org/10.1093/mnras/282.1.223
https://ui.adsabs.harvard.edu/abs/1996MNRAS.282..223S/abstract
https://doi.org/10.1051/0004-6361/201834808
https://ui.adsabs.harvard.edu/abs/2019A&A...625A..62T/abstract
https://doi.org/10.1111/j.1365-2966.2004.08072.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..391T/abstract
https://doi.org/10.1111/j.1365-2966.2007.12434.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.382..657T/abstract
https://doi.org/10.1086/184292
https://ui.adsabs.harvard.edu/abs/1984ApJ...282L...5T/abstract
https://doi.org/10.1086/430752
https://ui.adsabs.harvard.edu/abs/2005ApJ...628..137V/abstract
https://doi.org/10.1086/306269
https://ui.adsabs.harvard.edu/abs/1998ApJ...506..686V/abstract
https://doi.org/10.1086/380896
https://ui.adsabs.harvard.edu/abs/2004ApJ...602...66V/abstract
https://doi.org/10.3847/0004-637X/818/2/141
https://ui.adsabs.harvard.edu/abs/2016ApJ...818..141V/abstract
https://doi.org/10.1111/j.1365-2966.2008.12873.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385..614V/abstract
https://doi.org/10.1111/j.1365-2966.2009.15177.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1117V/abstract
https://doi.org/10.1111/j.1365-2966.2008.12874.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.385..647V/abstract
https://doi.org/10.1086/305147
https://ui.adsabs.harvard.edu/abs/1998ApJ...493..613V/abstract
https://ui.adsabs.harvard.edu/abs/1998ApJ...493..613V/abstract
https://doi.org/10.1086/172534
https://ui.adsabs.harvard.edu/abs/1993ApJ...407..525V/abstract
https://doi.org/10.1093/mnras/stt1235
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.3174V/abstract
https://ascl.net/1805.008
https://doi.org/10.1093/mnras/sty2672
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.1525V/abstract
https://doi.org/10.1111/j.1365-2966.2011.19965.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3268V/abstract
https://doi.org/10.1093/mnras/stv805
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.2842V/abstract
http://arxiv.org/abs/1909.03119
https://doi.org/10.1093/mnras/283.1.149
https://ui.adsabs.harvard.edu/abs/1996MNRAS.283..149Z/abstract
https://doi.org/10.1038/s41550-017-0348-1
https://ui.adsabs.harvard.edu/abs/2018NatAs...2..233Z/abstract
https://doi.org/10.3847/1538-4357/ab3f34
https://ui.adsabs.harvard.edu/abs/2019ApJ...884...23Z/abstract

	1. Introduction
	2. Code
	2.1. Potential Representation
	2.2. Deprojection
	2.3. From Light to Mass
	2.4. Construction of an Orbit Library
	2.5. Self-consistency Constraints
	2.6. Kinematics
	2.7. Solution of the Optimization Problem
	2.8. Regularization
	2.9. Analysis of the Orbital Structure
	2.10. Implementation and Workflow

	3. Tests
	3.1. Generation of Mock Data Sets
	3.2. Axisymmetric Disk Models
	3.3. Barred Disk Models

	4. Discussion
	Appendix AB-spline Representation of LOSVD
	Appendix BAccuracy Tests
	References



