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1.  Introduction

The most dominant source of the periodic time variation 
of gravity acceleration g is the tidal phenomenon but other, 

sometimes very complex hydrology- and weather related 
environmental processes causing temporal change of the mass 
distribution of the Earth have also significant contribution 
in various segments of the full spectrum of time variation. 
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Abstract
This paper investigates the characteristics and the metrological limits of the calibration 
of spring type gravimeters by using a cylindrical test mass moved vertically around the 
gravimeter by a lifting device operated in the Mátyáshegy Observatory. The movement of the 
3100 kg iron mass generates a sinusoid-like calibrating signal having a peak-to-peak amplitude 
of 1102 nm s−2. The careful determination of the geometrical and physical parameters of the 
test mass combined with the analytical modeling of its gravitational effect and the related 
uncertainties provides an accuracy of 3 nm s−2 in absolute sense. The overall accuracy, 
however, is influenced by several other instrumental and environmental factors which are 
investigated in detail. The conclusions are based on more than 400 experiments with 5 LCR G 
instruments. As a unique case a Scintrex CG-5 instrument was also involved in the tests what 
is probably the very first moving mass calibration of this type of gravimeters.

Two processing methods, Max-Min and Full-Fit, based on L2 norm adjustment of the 
observations were developed and applied to obtain instrumental scale factor and other related 
parameters.

The results show that the observations corrected for the disturbing effects still contain a 
systematic constituent with amplitude of (10–20) nm s−2 regardless which LCR instrument 
was calibrated. It resembles the second time derivative of the calibrating signal that may 
indicate the non-uniform elastic response of the spring sensors to the rate of gravity change. 
Due to the problems mentioned above the overall dispersion of the resultant random and non-
random residuals of the calibration observations provided by Full-Fit method are typically 
10 nm s−2. The a posteriori standard deviations of the individual scale factors provide, 
however, measurement accuracy of 2 nm s−2.

Keywords: moving mass device, accuracy limits, LCR G gravimeters, Scintrex CG-5 
gravimeters, cylindrical ring mass, calibration of gravimeters
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Consequently all of those corrections which have to be applied 
to obtain a representative gravity acceleration value at a point 
on the earth’s surface free of any short term influences must 
be considered and modeled at the highest available accuracy.

The most advanced instrumentation for tidal investigation 
is based on superconducting gravimeters (SG) commonly 
calibrated by comparison with co-located absolute gravi-  
meters (AG). Both instruments are expensive and hence not 
available everywhere. However, a low cost technology might 
be sufficient for deriving tidal models fulfilling the accuracy 
requirements of even precise field gravimetry. It is based 
on co-located relative gravimeters like LaCoste-Romberg 
(LCR) (e.g. Pálinkáš 2006) and/or Scintrex CG-5 gravimeters 
(Meurers 2012, Benedek et al 2014, Papp et al 2018).

In order to make this obsolete instrumentation applicable 
for e.g. long-term tidal recording or microgravimetric (labo-
ratory) measurements, one needs careful examination of the 
LCR sensor characteristics (Götze and Meurers 1983) and 
adequate correction of distorting instrumental effects. For 
instance, sensitivity on tilt, temporal change of scale factors 
and beam-position dependent scale functions must be deter-
mined for observatory use of these instruments.

The scale factor s of the instruments, defined as the ratio 
of reference and observed gravity changes, may vary in time 
regardless if the gravimeters are equipped with feed-back 
systems or not. Furthermore, in the latter situation, the scale 
factor depends also on the index-beam position xib. Then, a 
function S has to be determined within the full measuring 
range of the sensor instead of a single scale factor value:

s = S(xib).� (1)

There are different ways to determine the scale factor or scale 
factor function of a gravimeter. The relative method is based 
on comparing the observations ĝ  given in any unit (e.g. mV, 
pixel, …) to measurements of a reference instrument ĝref  
or gravity data Γ (given in nm/s2) provided by a specific 
tidal model after removing any systematic instrumental and 
environmental signals (drift, air pressure variation, etc…), 
which are not common in both time series:

S (xib) = ĝref/ĝ,� (2)

S (xib) = Γ/ĝ.� (3)

In equations (2) and (3), the model errors of the non-common 
systematic signals and random noise influence the determina-
tion of S (xib). In equation (3), Γ is just an estimate of the true 
tides at specific location and time, regardless it is derived from 
a theoretical model or from observations, and hence not a real 
standard in the sense of metrology.

The relative method is commonly applied by collocated 
observations with AGs (Hinderer et  al 1991, Francis et  al 
1998), periodic platform movement (Richter et  al 1995) or 
well-calibrated spring gravimeters (Meurers 2012, Riccardi 
et al 2012). However, even if AGs providing the absolute value 
g of the gravity vector are involved, the obtained scale factors 
cannot be called absolute in the rigorous sense of metrology 
as not pure standards but individual instruments composed of 
very complex physical systems are compared through their 

observations. A moving test mass is an undoubtedly sim-
pler ‘instrument’ and a more robust (time invariant) standard 
than an AG the time variant accuracy and performance of 
which depends on very sophisticated and sensitive electrical, 
mechanical and optical components. Obviously the gravita-
tional effect of a test mass as a derived metrological standard 
has also uncertainties. However, as will be demonstrated, it 
is well below the microgal level and depends on only a few 
other basic standards like mass, length and the gravitational 
constant G. Moreover, using AGs or relative gravimeters as 
reference requires the validity of the assumption that all sen-
sors experience the same gravity signal. However, this is never 
fulfilled exactly due to the spatial and temporal separation of 
the sensors so the theoretical requirement of constrained cen-
tricity and synchrony derived as an analogy of Abbe principle 
of alignment is violated. These constraints, however, can be 
provided by the moving mass device due to the geometry of 
cylindrical ring mass much more rigorously.

The absolute method is based on comparing observations 
to a physically realized reference (Newtonian) signal g̃   gen-
erated by e.g. moving a test mass in a metrologically well-
controlled way:

S (xib) = g̃ /ĝ.� (4)

Warburton et  al (1975) have firstly applied this absolute 
method, called moving mass calibration (MMC) in the fol-
lowing, for the calibration of SGs. They used a 321 kg hollow 
steel sphere filled with mercury to generate a ~100 nm s−2 
test signal. Achilli et al (1995) obtained a 67 nm s−2 effect by 
lifting a ring mass of 272 kg around the T015 SG reaching a 
precision of 0.3% for the derived calibration factor.

The idea of MMC using a heavy cylindrical ring (about 
3100 kg) was described by Barta et  al (1986). The device 
developed for LCR gravimeters was installed in the 
Mátyáshegy Gravity and Geodynamic Observatory in 1990 
(Varga et al 1995). The aim was to provide a relative accuracy 
of 0.1%–0.2% for the calibration of spring-type gravimeters 
recording Earth tides. Although the device was used many 
times in the past, the huge magnetic effect of the steel cylinder 
on the metal spring of the LCR sensors was not recognized 
and handled. Thanks to the financial support of the Hungarian 
National Research Found Project Number K101603 the meth-
odology of MMC could be revisited and partly improved. 
In this paper the main problems of this method in terms of 
modeling accuracy, observation precision and environmental 
effects are investigated in detail.

2. The Mátyáshegy MMC device

Csapó and Szatmári (1995) describe the physical and geomet-
rical properties of the cylinder made of steel. The total mass is 
3103.765  ±  0.021 kg with a height of 1030 mm, an inner diam-
eter of 320 mm and an outer diameter of 770 mm. The max-
imum (peak-to-peak) theoretical gravity variation produced 
by the moving the mass vertically along the vertical symmetry  
axis is 1102.48 nm s−2 (G  =  6.672  ×  10−11 m3 kg−1 s−2).  
A massive suspension construction with high load capacity and 
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a frequency driven winch provide a smooth up and down move-
ment of the mass, which is controlled by a PLC-programmed 
system. Different measurement schemes with different param
eters such as speed of movement, number of up and down cycles, 
one or more (up to 15) stops (mass positions and waiting times) 
during a cycle can be preset. The system outputs the vertical 
position of the mass in units of millimeters. The positioning acc
uracy is 0.1 mm. However, two consecutive outputs c and d  are 
rounded to integer numbers, therefore the standard deviation of 
rounding (Joglekar 2003), assuming uniform error distribution, is

(c − d)√
12

=
1 mm
3.46

= 0.29 mm.

An ICP-DAS 7017 type A/D converter with 16-bit resolution, 
or alternatively a special A/D converter with 22-bit resolution 
is used to digitize analogue outputs (CPI, electric level output, 
etc) of the tested gravimeters. A Linux based data acquisition 
system running on an industrial PC collects the digitized data 
and records all the necessary parameters with 1 Hz sampling 
rate. The whole system (figure 1) can be controlled remotely 
through the Internet. If the gravimeter data is recorded by a 
separate computer, like in case of the electro-optical readout 
(Papp et al 2018), the independent components of the whole 
recording system have to be synchronized to a common time 
server.

3.  Methods of scale factor determination

Two different methods are applied:

	 1.	� Max-Min method: the scale factor s as a function of xib 
(see equation (4)) is determined as the quotient of maximal 
theoretical and measured variations ∆g̃ = g̃max − g̃min 
and ∆ĝ = ĝmax − ĝmin respectively, generated by the 
moving mass:

s = S (xib) = ∆g̃/∆ĝ.� (5)

	 2.	� Full-Fit method: the scale factor is determined by fitting 
the observed gravity signal to the theoretical one over the 
full range of the reference signal following the common 
scheme of least squares adjustment:

ĝ (li) + ei = kg̃ (h0 − li) + g0� (6)

where li is the measured instantaneous height of the top of the 
moving cylinder, k = s−1 is the inverse of the unknown scale 
factor (equation (4)) given at a certain xib, h0 is the unknown 
vertical distance between the gravimeter sensor and the top 
of the moving mass in its initial position (li = 0), g0   is the 
unknown gravity value in the initial position of the moving 
mass (li = 0) and ei is the correction of observation provided 
by the general L2 norm condition:

N∑
i=1

pie2
i → min,� (7)

where N  is the number of observations and pi is the weight of 
the ith observation.

Before applying both methods, time dependent corrections 
gdrift (t) , gtide (t) , gτ (t) , gp (t) for drift, tides, tilt and air pres
sure respectively make the raw data free from any short-peri-
odic gravity fluctuations not contained in the reference signal. 
The magnetic effect of the moving steel mass has to be also 
considered. The detailed discussion on corrections is given in 
section 5.

According to e.g. Setiawan (2003), the theoretical gravity 
effect of the cylindrical body reads as:

g̃(h0 − li) = 2πG∆ρ
(»

(h0 − li)
2
+ r2

1 −
»
(h0 − li + L)2

+ r2
1

−
»
(h0 − li)

2
+ r2

2 +
»

(h0 − li + L)2
+ r2

2

)

� (8)
where li and h0 are defined as in equation (6); r1 and r2 are 
the outer and inner cylinder radius; L denotes the cylinder 
height and ∆ρ is the density difference between steel and air 
(figure 2a).

During the vertical movement of the cylindrical mass the 
recorded signal g (l) shows a sinusoid-like shape (figure 2b) 
with definite extremes if the start and end positions of the 
mass are sufficiently below and above the sensor of the gravity 
meter, respectively.

In the Max-Min method only the maximum and minimum 
values of the tide- and drift free observations ĝmax and ĝmin 
are determined. The difference

∆ĝ = ĝmax − ĝmin = max (ĝ)−min (ĝ) = max (g (t)− gdrift (t)− gtide (t)

−gτ (t)− gp (t))−min (g (t)− gdrift (t)− gtide (t)− gτ (t)− gp (t))
� (9)
can be directly compared to the theoretical value ∆g. The scale 
factor results from applying equation  (4) with g̃ = ∆g̃ and 
ĝ = ∆ĝ. Equation (9) provides the gravity meter response ∆ĝ 
to the gravitational change generated by the mass movement.

The maximum and minimum values of the observations 
can be simply obtained by fitting n degree polynomials

ĝ(l) ∼= ĝn (l) =
n∑

k=0

aklk, ĝ(l) ∼= ĝn (l) =
n∑

k=0

bklk� (10)

locally (e.g. in L2 norm) to the data within a proper range 
centered at the local extremes, providing the polynomial coef-
ficients ak  and bk . Beyond the fact that this procedure enables 
a posteriori error estimate, it may also diminish the unfavor-
able influence of measurement noise. Second and third degree 
approximations (n = 2, 3) were tested to determine their fit 
to the theoretical curve given by equation  (8) around the 
extremes. The effect of approximation errors turns out to be 
insignificant as long as those can be reduced by proper selec-
tion of the fit interval. The differences are well below 1 nm s−2 
if data only within a sufficiently small surrounding of the local 
extremes (figure 3) are used. The differences

δg = extr(ĝn)− extr(g̃) = ĝn(̂lextr)− g̃(̃lextr),
� (11)
where extr(ĝn) is the value of the local extreme at ̂lextr defined 
by the fitted polynomial approximation, are of the same order 
(table 1).

Although the favorable effect of a short fitting interval 
is clear, tests with real observations show that optimum 
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configurations have to be found experimentally because the 
interval length cannot be arbitrarily decreased due to the influ-
ence of observation noise. Its RMS is around  ±(10–20) nm s−2 
on a silent day or even higher due to strongly weather dependent 
microseismic activity (Papp et al 2012). So, one needs a suf-
ficiently broad fitting interval (including typically 100–200 
observations if 1 Hz sampling rate is applied) in order to obtain 
reliable local extremes. The limits of the interval, however, 
should be fixed in the range (−190 mm � l̃max � 160 mm 

approximately) defined by the two inflexion points preceding 
and following either the local maximum or the local minimum 
of the reference signal where it is concave or convex, respec-
tively (figure 3). Consequently the expected internal accuracy 
of the Max-Min method is about  ±0.5 nm s−2 for LCRs.

The site noise, however, is much less damped in case of 
CG-5 gravimeters, depending on the length of the integra-
tion period of data measured with 6 Hz internal sampling 
rate. Arbitrary repeat cycle can be defined for restarting data 

Figure 1.  Flowchart of the MMC.

Figure 2.  (a) The explanation of the symbols r1, r2, h0, L and li in (8). (b) Graphical representation of Max-Min and Full-Fit methods. 
Observations are given in nm/s2 unit and taken from calibration tests done by G1188 providing a scale factor close to 1 (see Section 6).
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sampling in regular time intervals. A few seconds are required 
between the cycles for internal data processing and storage. 
Typical RMS errors are  ±(20–40) nm s−2 for 54 s averaging 
periods and up to more than  ±200 nm s−2 for 2 s periods. This 
requires selecting broader fitting intervals which may bias 
the extreme determination. However, in this case, low-degree 
polynomials do no longer approximate the theoretical and 
observed signal within the fit interval with sufficient accuracy; 
they are not able to capture the true extrema due to smoothing, 
which leads to an underestimation of the max-min differ-
ence. This applies equally to both theoretical and observed 
data. Therefore, we determine the max-min difference of the 
reference signal by the same procedure as applied in case of 
observed data. Within the fit intervals, we select theoretical 
data samples just at the observed mass positions and adjust 
polynomials of same degree as for the observations.

The Full-Fit method is an extension of the Max-Min 
method since it applies L2 norm fitting not only locally but on 
the full observation segment recorded during the mass move-
ment. The fitting process provides the optimum estimate of the 
parameter set (s, h0, g0) based on (6) in the observation range 
〈ĝmin, ĝmax〉. Eventually, the solution of equation (6) adjusts 
equation (8) to the observations by scaling and translation.

In practice the same data sets recorded by the acquisition 
systems at e.g. 1 Hz sampling rate during the movement of the 
test mass can be used in both methods for the calibration of 
LCR gravity meters. So it is optional if the full data set (Full-Fit 
method) or just parts of it around local extrema (Max-Min 
method) are involved in the computation of the scale factor.

In order to check the effect of noise and its influence on the 
results of Max-Min and Full-Fit methods simulated data sets 
composed of the synthetic signal and noise ε with both normal 
ε ∈ N (0; 15) and uniform ε ∈ U (−26, 26) distributions were 
processed. Table 2 shows that Max-Min method gives slightly 
larger scale factors than what is provided by the Full-Fit 
method, which is in a good accordance with the negative dif-

ferences given by (11) and listed in table 1. If δg
Ä̃

lmax

ä
< 0 

and due to symmetry δg
Ä̃

lmin

ä
> 0 then the difference 

∆ĝ = ĝmax − ĝmin
∼= max (ĝn)−min (ĝn) =

Ä
g̃max + δg

Ä̃
lmax

ää
  

−
Ä

g̃min + δg
Ä̃

lmin

ää
= ∆g̃ +

Ä
δg
Ä̃

lmax

ä
− δg

Ä̃
lmin

ää
< ∆g̃. 

So the scale factor estimated by (5) is greater than 1. In order 
to check how a disturbing systematic signal (see section 6.1.2) 
not modeled in the right hand side of equation (6) but hidden 
in the observations can bias the parameter estimation simula-
tion data composed of the synthetic and a disturbing signal 
having average amplitude Asignal was also processed. The 
results in table  2 clearly show that the tendentious relation 
sMax−Min > sFull−Fit  may reverse whereas the value of sFull−Fit 
remains almost unchanged indicating the robustness of the 
Full-Fit method in case of realistic disturbing signals dis-
cussed in section 6.1.2.

Different data acquisition schemes, however, are required 
for Scintrex CG-5 gravimeters as commercial CG-5 s do not 
provide an analog output signal. As it was mentioned above 
averaging is necessary to diminish the dispersion of a single 
CG-5 observation. Averaging the 6 Hz samples over 54 s 
periods enables taking measurements with 1 min sampling 

Figure 3.  Approximation of the theoretical signal by polynomials around its maximum in height intervals of (a)  −100 mm–100 mm and 
(b)  −80 mm–50 mm. The sign of differences is defined by (11).

Table 1.  Statistics and results of the L2 norm fitting of n = 2 and n = 3 degree polynomials to the theoretical gravitational change given 
by equation (8). The theoretical minimum value g̃max = 551.07 nm s−2 at l̃max = −13.9 mm. µ0 is the standard deviation of unit weight 
observable. δg is defined by (11).

Interval

n  =  2 n  =  3

l̂max max (ĝn) µ0 δg l̂max max(ĝn) µ0 δg

mm nm s−2 nm s−2 mm nm s−2 nm s−2

−100 mm–100 mm −15.57 550.56 0.58 −0.51 −15.51 550.55 0.58 −0.52
−80 mm–50 mm −14.94 550.94 0.24 −0.13 −13.83 550.94 0.12 −0.13
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which provides only a few data collected during the con-
tinuous upward and downward movement (ca. 2  ×  15 data 
during 2  ×  15 min depending on the speed of movement) of 
the test mass. Therefore, in case of CG-5 experiments, the 
mass is moved rather stepwise and kept at constant height 
during 3 min intervals. Only those observations are used, 
where the mass did not move during the integration period. In 
this way an arbitrary number of observations can be provided 
theoretically but taking the increasing uncertainties (environ
mental effects, tidal model, instrumental drift, etc…) caused 
by the increasing measuring time into account an optimal con-
figuration of timing of the measurements has to be found.

When operating the CG-5 in continuous recording mode 
providing time series for Full-Fit method the averaging period 
of the 6 Hz samples was selected by 2 s. 2 s averages have 
been taken during the upward and downward movements of 
the mass for determining the mass position as well.

For LCR gravity meters without feedback system, the 
derived scale factor s is defined by equation (1). Consequently, 

by taking the data series g (l), a suitable average index beam 
position (either in pixel or mV units) has to be determined 
from the sample set of observations (figure 4)

xib = M {g} =

∑N
i=1 g (li)

N
� (12)

to investigate the scale factor change in the range of the free 
movement of the beam. The value of N  depends on the length 
and the speed of movement (typically 1300 mm and 1.2 mm s−1,  
respectively) and the sampling rate (1 Hz). So, the gravita-
tional signal (8) is represented by about 1125 samples per 
upward or downward movement.

The basic requirement for both methods is that the 
observed gravity changes reflect only the gravitational effect 
of the moving mass. Instrumental drift, tides and environ
mental effects like instrumental tilt and air pressure varia-
tion must not ‘contaminate’ the observations. In practice, of 
course, it is impossible to fulfill this requirement. However, 
if one restricts the time of calibrations to those periods where 

Table 2.  L2 norm estimations of parameters s, g0, h0 introduced in (6) using simulated (noiseless and contaminated by noise and disturbing 
signal) calibration data. N and U stand for noise sets having normal and uniform distributions, respectively. The description of disturbing 
signal is given in section 6.1.2. The reference parameters: s0 = 1, g0 = 600 nm s−2, h0 = 130 mm . Polynomial degree n = 2 in Max-Min 
method (see equation (10)). The reference signal was computed from the corresponding parameters (mass, dimensions) of the calibration 
device described in section 2. The data g0, Asignal, ei and σnoise are given in nm/s2.

Method Adjusted parameters Noiseless data

With noise ei With disturbing signal

N(ei;σei)

Asignal = 5.5U(min
i

ei,max
i

ei)

N(0; 15) U(−26, 26) Noiseless N(0; 15)

Max-Min s 1.000 97 1.000 94 1.001 70 0.992 69 0.992 40

Full-Fit s 1.000 00 0.999 82 1.001 09 0.999 99 0.999 81
g0 600.00 601.27 599.45 600.81 602.07
h0 130.00 130.74 129.73 130.84 131.57

Figure 4.  Typical observation day on the 29.06.2017. Calibrated instrument: LCR G949 with electro-optical readout system. The red/
black and green/gray curves show the observed gravity change and the long level (Y) tilt, respectively. 1 mV  =  2.1 arcsec tilt. Please note 
the effort to set Y tilt nearly zero (⩽0.1 mV) at the beginning of each experiment and the in situ test to determine the tilt sensitivity of the 
instrument (Papp et al  2018) between hours 91 and 92. The micrometer was reset right after this test.
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the tidal signal is nearly linear within a sufficient tolerance 
interval, then a common linear model determined from the 
observations can be used to remove both instrumental drift 
and tidal signal. For example, if the maximum non-linear 
tidal (peak-to-peak) contribution is limited to 5 nm s−2, then 
time intervals of 30–40 min and 80–120 min around max-
imum/minimum tides and inflexion points, respectively, can 
be selected. At least 9–10 experiments can be done during a 
day in the selected time slots, dominantly depending on the 
phase relations of the main tidal constituents (figure 4). The 
micrometer of the LCR without feedback system has to be 
adjusted to scan the whole measuring range (about 10 µm 
s−2) where the index beam freely moves and a correct deter-
mination of its position (e.g. by evaluating CCD images) is 
possible. The same procedure can be applied for instruments 
using the CPI readout.

During a complete experiment consisting of one upward 
and downward movement, the tilt τ  changes due to ground 
coupling between the instrument pier and the frame holding 
the cylindrical mass (figure 5). The largest tilt effects are 
caused by the initial takeoff and the final landing of the mass 
from and on three parking bucks (benches) fixed to the floor, 
respectively. The Mátyáshegy laboratory is located inside a 
karstic cave system and the instrument pier is isolated from 
the pier (a concrete foundation block) holding the moving 
mass device. Both piers stand on the solid limestone basement. 
Hence, when the parking bucks are unloaded and the frame of 
the lifting device takes and redistributes the full load, then the 
stress field deforming the basement rock is changed locally. 
Consequently the instrument pier is also tilted according to 
the deformation of the basement rock.

4.  Error analysis

4.1.  Application of the error propagation law on the formula of 
the theoretical signal

Knowing the estimates on the accuracy of the dimensions of 
the cylindrical ring and its mass one can derive the uncertainty 
of the calibrating signal based on equation (8).

Since the density ∆ρ cannot be determined directly it is 
defined as a function of the volume V of the cylinder and the 
mass difference ∆M  between the iron cylinder and the air:

∆ρ =
∆M

V
=

∆M
πL

(
r2

2 − r2
1

) .� (13)

Replacing ∆ρ in equation (8) by the mass difference, it reads 
as

g̃ (h0 − l) = 2G
∆M

L
(
r2

2 − r2
1

)
(»

(h0 − l)2
+ r2

1 −
»
(h0 − l + L)2

+ r2
1

−
»

(h0 − l)2
+ r2

2 +
»

(h0 − l + L)2
+ r2

2

)

= 2Gf (h0, l, L, r1, r2,∆M) .
� (14)
Based on the law of error propagation the variance µ̃g  of (14) 
can be estimated analytically if the variances of its uncorre-
lated variables are known and the partial derivatives of the 
function f  are derived:

µg̃ = 2Gµf , where

µf =

…Ä
∂f
∂h0

ä2
µ2

h0
+
Ä
∂f
∂l

ä2
µ2

l +
Ä
∂f
∂L

ä2
µ2

L +
Ä

∂f
∂r1

ä2
µ2

r1
+
Ä

∂f
∂r2

ä2
µ2

r2
+
Ä

∂f
∂∆M

ä2
µ2
∆M

� (15)
provided that all of the parameters h0, L, r1, r2,∆M and the 
variable l are independent of each other. As figure 6 shows 
the error contribution ε due to the uncertainty µ  of the para-  

meter par ∈ {h0, L, r1, r2,∆M} defined as εpar =
√(

g̃′par
)2
µ2

par  

changes as l changes during the movement of the test mass. 
The formulae of the partial derivatives ( g̃′par) used in the error 
propagation analysis are listed in the Appendix.

The total error of the signal provided by equation (15) in 
figure 6 is a kind of maximum error estimate since some of the 
error sources can be excluded by a proper calibration method 
detailed in the following sections. Generally spoken, the most 
dominant error sources are the uncertainties of the inner and 
outer radii r1 and r2 respectively and that of h0. Fortunately 
the latter has not much contribution around the maximum and 
minimum places of the calibrating signal which play a promi-
nent role in the calibration process.

4.2.  Effect of the systematic error of h0

Although this problem was already investigated partly in 
the previous section and partly in the Appendix the estima-
tion given there characterizes only the effect of the non-sys-
tematic component in the error budget of the parameter h0 
which is the exact vertical sensor position of the gravimeter. 

Figure 5.  Typical stages of the calibration process and its effect on observed gravity (red/black) and instrumental tilt (green/gray). 
Calibrated instrument: LCR G949 with electro-optical readout system. 0.1 mV  =  0.21 arcsec tilt. P—parking position, H—hanging 
position, MU—upward movement of the mass, MD—downward movement of the mass. Note the reversed sign of the observed gravity 
change.
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It is, however, unknown and appears as non-linear quantity 
in equation  (8). Therefore, we have to provide an estimate 
of the sensor position and introduce its systematic deviation 
dh from h0 as unknown in the adjustment process. However, 
the gravity response to the mass movement is non-linear 
with respect to dh as well, so that linearization is required 
by truncating a Taylor series expansion after the linear term. 
Unfortunately, the misfit of the truncated Taylor series to the 
exact formulation (equation (8)) correlates with the theor
etical signal (figure 7) and hence will produce a systematic 
bias of the estimated calibration factor (table  3). The bias 
depends on dh. Therefore it is important to estimate the sensor 
position h0 as exactly as possible or to solve this problem by 
an iterative adjustment approach. Subsequent iterations let h0 
converge to a value which minimizes the bias of other param
eters being estimated.

4.3.  Effect of the eccentricity of gravimeter sensor

Due to mathematical difficulties this specific effect cannot be 
investigated by the method provided by error propagation law. 
Since closed analytical formula of the gravitational field of 
the cylinder exist only for points located on its vertical axis, 
the effect of eccentricity of the gravimeter sensor mass related 
to the vertical axis was computed from a model of cylindrical 
ring mass approximated by special polyhedral volume ele-
ments (right triangular prisms) with the same height as of the 
cylindrical ring (figure 8). The triangular bases are approxi-
mately isosceles triangles, the total number of which was 
21 600. This provides an approximation accuracy of first 
derivatives of the gravitational potential (Benedek 2016) in 
the inner and near area of the cylindrical ring better than 10−2 
nm s−2. This method was used to calculate the gravitational 
effect in off-axis points shown in figure  8, where the hori-
zontal sensor displacement varied between 0 mm and 50 mm 

in 10 mm steps. Due to cylindrical symmetry 2D horizontal 
displacements can be simplified to radial displacements.

Knowing the inner structure of the sensor boxes of both 
LCR and CG-5 gravity meters and the limited possibility of 
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Figure 6.  Error contributions from the non-systematic uncertainties of the parameters of the cylindrical ring to the total error (shown by 
black dashed line) of the calibrating signal (red/black dotted line) as a function of l (height of the top of the cylinder above the reference 
point of the sensor). µ∆M = ±0.021 kg, µL = µr1 = µr2 = ±0.0002 m, µh0 = ±0.001 m, µl = ±0.0001 m, µL = ±0.0002 m.

Figure 7.  Misfit (i.e. the quadratic and higher order terms in 
the Taylor series expansion) of the linearization approach for 
dh  =  +10 mm (light gray solid line), dh  =  −10 mm, (light gray 
dashed line), dh  =  +20 mm (black solid line), dh  =  −20 mm, (black 
dashed line). Dotted black: theoretical signal.

Table 3.  Regression coefficient of the gravity effect represented 
by a truncated Taylor series versus exact gravity effect based on 
equation (8).

dh/mm +10 −10 +20 −20

Regression coefficient 
(linear approx. versus 
theoretical effect)

1.000 56 1.000 56 1.002 23 1.002 24
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the horizontal positioning of the gravity meters inside the 
inner ring of the cylinder the sensor mass eccentricity is cer-
tainly much less than 50 mm. Consequently the error due to 
sensor mass eccentricity is much less than 1 nm s−2. Probably 
it is around 0.1 nm s−2.

5.  Corrections of the observations

As already indicated in section  2, different standard (tidal, 
drift, barometric) and non-standard (tilt, magnetic) correc-
tions (figure 1) have to be applied on the raw gravity data 
during the data processing:

ĝ = g (t)− gdrift (t)− gtide (t)− gτ (t)− gp (t)− g (B) .
� (16)

5.1.  Standard corrections

5.1.1.  Barometric correction.  Barometric corrections were 
computed from the differences between normal and measured 
atmospheric pressure p by applying the single admittance 
concept (U.S. Standard Atmosphere 1976):

gp = 3 ·
Ä

pair − 1013.25 · (1 − 0.0065 · H/288.15)5.2559
ä (

nms−2)
� (17)
where pair is the observed air pressure (hPa), and H  is the 
instrument elevation (m). This effect results typically in a cor-
rection of a few nm/s2 during a calibration cycle while its error 
µgp < 1 nm s−2 according to the accuracy (µp = 0.1 hPa) of 
the barometer used.

5.1.2. Tidal and drift correction.  In the case of LCR gravime-
ters, it was assumed that drift and tides are sufficiently linear 
during a complete mass movement cycle (up and down, dura-
tion ~30 min) when experiments are scheduled to epochs of 
local extrema and inflexion of the tidal variation (figure 4). In 
practice it means that with careful selection of the observation 

periods non-linear tidal residuals remain in the range of 
±(2 − 3) nm s−2. The combined effect (tidal and drift) was 
corrected by subtracting a straight line (defined by the para-  
meters ĝ0 and m) adjusted to the data acquired during hang-
ing periods (figure 5) before and after a complete movement 
cycle:

gdrift(t) + gtide(t) = g(t)− gτ (t)− gp(t) = ĝ0 + mt,�
(18)

where time t is also recorded. Applying (18) in (16) one 
obtains reduced observations ĝ  reflecting only the gravity 
field variation caused by the moving mass.

Alternatively, tides can be predicted based on precise tidal 
models if available as for the Mátyáshegy site. Tidal resid-
uals, if present, can then be modelled together with the instru-
mental drift by low-degree polynomials, even in an iterative 
process. This approach has been used for the CG-5 experi-
ments in both calibration methods. The commonly strong 
instrumental drift of the CG-5 has been adjusted by consid-
ering all repeated observations at the different mass positions 
similarly as done in conventional field surveys. For the asta-
tized and feed-back-less instruments this method, however, 
cannot be applied due to the unknown scale factor function 
which makes the computation of the measured tidal effect 
at an arbitrary index beam position xib impossible with the 
required accuracy.

5.2.  Non-standard corrections of observations

5.2.1.  Magnetic effect of the mass.  As the calibration mass 
is made of steel, its magnetic effect significantly modifies the 
Earth’s magnetic field where the instrument is set up during 
the experiments. Practically the magnetic field of the Earth 
almost disappears inside the cylinder near to its centre of 
mass. This was already revealed earlier and it was one of the 
main objections against the facility. Though presumed it was 
neither considered nor discussed up to now.

height of sensor/(m)

εxy /(nm s-2)

0 0.2 0.4 0

(a) (b)
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Figure 8.  (a) The effect of the horizontal eccentricity of the gravimeter sensor εxy as a function of its vertical position measured from the 
lower plane (L) of the cylindrical mass. εxy is determined for five different radial offset values (see the embedded legend). The thick vertical 
lines at 0 m and 1.03 m show the position of the lower (L) and upper planes (U) of the cylindrical mass, respectively. (b) The sketch of the 
approximation of the cylindrical ring by polyhedrons which were applied in the determination of εxy.
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The magnetic effect must be corrected for, at least for 
metal spring gravimeters; otherwise, the scale factors may be 
strongly biased. An early experiment with LCR D9/Feedback 
SRW-D (Schnüll et al 1984) in 1994 and 1995 was re-eval-
uated proving the strong distortions due to this effect. The 
feedback of LCR D-9 was carefully calibrated before the 
experiments on the Hannover calibration line (Kanngieser 
et al 1983). The scale factor bias was 2%–3% due to a sys-
tematic deviation of observed gravity from the theoretical 
signal. Figure 9 compares the adjusted response of different 
gravimeters and the theoretical gravity variation. While the 
CG-5 response closely follows the theoretical gravity effect, 
the LCR deviates remarkably, when the mass is in up- posi-
tion. It is assumed that this is caused by the magnetic effect 
of LCR D-9.

It is not simple at all to measure the magnetic effect of 
such an enormous steel-mass. The geomagnetic instruments 
generally used in observatories and at field works are useless 
in this case. The vector magnetometers are measuring the var-
iation of geomagnetic field with high accuracy (sub-nT) but 
in a very narrow range (few µT only). Scalar magnetometers  
are able to measure the required measuring range but do not 
provide direction information. Therefore the new FluxSet 
magnetometer (figure 10(a)) was tested, which measures the 
magnetic field strength in three perpendicular spatial direc-
tions simultaneously. The total maximum magnetic effect of 
the calibration mass (figure 10(b)) is about 48 µT and exceeds 
significantly the magnitude of Earth’s magnetic field. It was 
also measured by two Honeywell HMC5983 magnetic sen-
sors calibrated in Helmholtz coils a priori. The results of 
both instrument types are the same. Consequently, the LCR 
instruments containing metal springs are certainly influenced 
by this effect exerting a disturbing non-gravitational force 
(Torge 1989, Pálinkáš et al 2003).

The response of gravimeters to magnetic forces was 
determined experimentally in a Helmholtz coil following 
the scheme given by Pálinkáš et al (2003). During the tests 
the excited magnetic induction field components Bx, By and 
Bz in directions X (cross level), Y (long level) and the ver-
tical respectively, varied between  −80 to  +80 µT with steps 
of 10 µT (figure 11). The magnetic induction and its effect 
on gravimeter readings were registered with 1 Hz sampling 
rate. Based on (1) the accuracy of the FluxSet magnetometer 
measurements (µB = B/100) defined by its technical specifi-
cations and (2) the error propagation analysis of the magnetic 
sensitivity functions (which are sufficiently linear in the field 
interval between  −40 000 nT and 40 000 nT) the error of the 
magnetic correction (e.g. in x  direction) is given:

εBx =
»

(µa)
2
+ (µb)

2B2
x + (µBx)

2b2.� (19)

In (19) a and b are the parameters of the linear sensitivity 
model (g(Bx) = a + bBx), µa, µb, µBx are the a posteriori 
standard deviations of the adjusted model parameters a, b and 
the measured magnetic field component Bx , respectively. In 
the case of LCR G949 the largest influence of the magnetic 
field on the readings is in y direction (figure 12(b)). The esti-
mated error contribution of the By  field component εBy    is 
0.21 pixel (≈ 1.6 nm s−2) using the following parameters: 
a = 0.1973 pixel, b = −0.000 2086 pixel nT−1, By = 40 000 
nT, µa = 0.114 84 pixel, µb = 0.000 003 76 pixel nT−1 and 
µBy = 400 nT. Regarding the sensitivity functions in figure 12 
the maximum uncertainty of the magnetic corrections is prob-
ably less than 2 nm s−2.

Figure 12 presents the magnetic sensitivity g(B) of the LCR 
G instruments in three directions. The response to magnetic 
field variations is different for each instrument and strongly 
depends on the direction.

Based on these sensitivity functions, corrections for the 
magnetic effect of the moving steel-mass can be calculated 
for each instrument individually (figure 13). If e.g. a linear 
approximation is used to model the magnetic response of a 
gravimeter for all 3 components then the field variation meas-
ured inside the cylindrical ring mass (figure 10(b)) can be 
converted to reading corrections. The magnetic effect biasing 
the gravity observations may vary in a range of ±70  nm s−2 
depending on the instrument (figure 13).

5.2.2. Tilt corrections.  Based on the paper by Riccardi et al 
(2009), the tilt sensitivity, i.e. the response of LCR G meters 
to unit tilt at a given index beam position xib, was determined 
as described by Papp et al (2018). However, one should note 
that the tilt sensitivity in Y (long level) direction investigated 
in the latter paper is more complex (due to the astatized sensor 
characteristics) than just the simple geometrical relation

gτ = g · (1 − cos (τ))� (20)

causing negligible differences (|gτ | ∼= 10−8 nm s−2), if e.g. 
g = 1000 nm s−2 and |τ | � 2 arcsec hold. This condition for 
τ  can be easily provided during an experiment (figure 5) so 
the determination of the tilt sensitivity function only in Y (long 
level) direction is sufficient. In X direction (20) can be used but 

Figure 9.  Comparison of adjusted gravity response of CG-5 
SN#40236 (December 2017) and LCR D-9/SRW-FB (1994 and 
1995) with the theoretical signal.
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it has no significant effect on the readings. Since the output 
signal of the LCR levels are given in mV unit, the instrument 
dependent factors to convert mV unit to arcsec were determined 
by a spirit level balance device of the Geodetic and Geophysical 
Institute MTA CSFK with an accuracy of 0.1 arcsec.

For those LCR instruments which are not equipped with 
feed–back system (G220, G949, G963) the effect of tilt (sup-
posed that |τy| < 2 arc sec)  on the gravity readings may reach 
even more than 100 nm s−2 when the index beam is close to the 
limiters of the free movement range. For G1188 the effect is 
negligible since the beam stays always around the tilt insensi-
tive position (reading line) in case of proper instrument adjust-
ment. As figures 4 and 5 show, the tilt τ  can be kept easily in 
the interval |τ | � 2 arcsec ≈ 0.93 mV in each direction if the 
levels are set to (nearly) zero before each experiment.

Equation (19) can formally be used to estimate the error of 
the tilt corrections εgτy

 since the tilt sensitivity (as the function 
of xib) is linear (Papp et al 2018):

δgτy (xib) = a + bxib.� (21)

It gives the response of the gravimeter to unit tilt at a given 
index beam position. The following parameters derived from 
almost 900 tilt experiments done for the determination of 
the tilt sensitivity function of LCR G949 gravimeter can be 
used first to estimate the accuracy of tilt sensitivity µδgτy

: 
a = −2.6586 pixel mV−1, b = −0.0323 mV−1, µa = 0.162 22 
pixel mV−1 and µb = 0.000 41 mV−1. Substituting Bx  with 
xib and µBx with µxib and letting xib = 700 pixel as the max-
imum value of index beam position and µxib = 1 pixel in 
(19), one obtains that µδgτy

= 0.33125 pixel mV−1 as the 

Figure 10.  (a) FluxSet magnetometer on the top of the instrument pillar of the calibrating device, (b) magnetic effect of the moving mass.

Figure 11.  (a) Raw data series of LCR-G 220 with induced magnetic field variations in Y (long level) horizontal direction. (a) The  
green/light gray and the blue/dark gray curves on the upper chart show the readings during zero and non-zero induction By , respectively. 
(b) Magnetic sensitivity function of LCR-G 220 in Y direction.
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maximum uncertainty of the tilt sensitivity value. Since the 
tilt is limited as it was discussed above the error is defined as 
εgτy

= max (τy)µδgτy
= 0.93 µδgτy

� 0.3 pixel ≈ 2.4 nm s−2.  

Figures  4 and 5 however show that the accuracy is usually 
higher since the tilt τy is only a fraction of 0.9mV (around  ±0.2 
mV) during a calibration cycle therefore the error of tilt cor-
rection is probably less than 1 nm s−2.

For CG-5 gravimeters, tilt is observed and automatically 
corrected for by the internal data processing.

6.  Calibration results

6.1.  LCR G gravimeters

6.1.1.  Comparison of results obtained by Max-Min and  
Full-Fit methods.  Five LCR G meters were tested in the cali-
bration device at different micrometer settings doing 5–11 

mass movement cycles each day. The calibration range was 
~10 µm s−2 in case of LCR G949 (optical reading), ~6 µm 
s−2 in case of LCR G220 and G963 (CPI) and 200 µm s−2 in 
case of LCR G1188 (with feed-back). Table 4 shows the total 
number of mass movement cycles (1 cycle  =  1 up and 1 down 
movement) for the individual instruments.

During the tests, the gravity reading gi, the long (Y) and 
cross (X) level data (τy)i and (τx)i respectively, the instanta-
neous moving-mass height li, the air pressure pi and UTC time 
were recorded at 1 Hz sampling frequency.

The scale functions depending on the index beam position 
xib were determined by both the Max-Min and the Full-Fit 
method for each gravity meter (figure 14). As expected, 
the scale factors of instruments equipped with CPI or CCD 
ocular strongly depend on xib, while the scale factor of LCR 
G1188 equipped with ALIOD-100 feed-back system is con-
stant within the accuracy of the calibration measurements. 

Figure 12.  The magnetic sensitivity of LCR G gravimeters, determined using Helmholtz coils. Instruments: (a) LCR G220, (b) LCR G949, 
(c) LCR G963 and (d) LCR G1188.

Figure 13.  Correction for the magnetic effect of the moving mass, based on the individual magnetic sensitivity functions of LCR G 
gravimeters. The total effect of the magnetic variation on readings is represented by the dashed black lines on each sub chart. Instruments: 
(a) LCR G220, (b) LCR G949, (c) LCR G963 and (d) LCR G1188.
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In case of instruments with CPI, significant anisotropy is 
indicated depending on the direction of the mass movement 
(figure 14). The scale functions resulting from the two pro-
cessing methods show slight differences too for all the investi-
gated instruments. The Max-Min method gives systematically 
higher scale factors than that of the Full-Fit method which 
is a consequence of the different characteristics of local and 
global adjustments of the observations to a part or the whole 
of the reference signal (8), respectively.

The Full-Fit method utilizing a common L2 norm adjust-
ment allows for assessing both the overall calibration accuracy 
and the reliability of the adjusted parameters involved in equa-
tions  (6)–(8) (table 5). The most important quantity among 
them is the average standard deviation (SD) µs of the scale 
factors (s = k−1) determined from each single cycle of moving 
mass experiment (table 5). It clearly shows that the a posteriori 
reliability of the scale factors for most of the tested instrument 
varies between 0.004 and 0.008 (either in (nm/s2)/mV or (nm/
s2)/pixel unit, respectively) which means an accuracy of (1–2) 
nm s−2 in case of a 500 mV/150 pixel g variation equivalent to 
about 1100 nm s−2 peak-to-peak signal amplitude. LCR G1188 
proved to be the best instrument having a firm calibration 
factor providing 1.3 nm s−2 accuracy formally. These results 
are in good agreement with those derived from the analysis of 
tidal time series recorded by well-maintained spring gravity 
meters equipped by feedback system (e.g. Pálinkáš 2006, Papp 
et al 2018). In favorable conditions the SD of the residuals ei  
obtained from conventional tidal adjustment (Wenzel 1996) of 
the observations are in the range of a few nm/s2 for records 
as long as a year at least. Table 6 shows the SD-s provided by 
the adjustment procedure (6) for both upward and downward 
directions of the measurement cycles. Based on the SD values 
of raw data one could conclude that the calibration process 
cannot provide better overall accuracy than 10 nm s−2 in the 
range of tidal signal. This, however, depends strongly on the 
environmental noise and is still much better than what can be 
generally obtained by the spring type gravity meters in field 
survey applications (typically  ⩾50 nm s−2). It is a clear indica-
tion of the favorable laboratory environment ensured by the 
Mátyáshegy Observatory.

6.1.2. Time- and frequency domain analysis of observation 
residuals.  Residuals computed for LCR G meters show a 
non-random systematic effect both in upward and downward 
directions (supplementary material, figure  1 (stacks.iop.org/
MET/57/015006/mmedia)). This result, however, could be 

difficult to interpret as the influence of (1) any of the error 
sources discussed in section 4 and/or (2) the imperfection of the 
applied corrections discussed in section 5. The most probable 
explanation of this specific characteristic is the rheology of the 
astatized spring sensors causing delayed response to the rela-
tively quick change of the gravity field induced by the moving 
mass. Due to the high noise (±200 nm s−2) at 2 s sampling rate, 
the CG-5 could not either support or disprove this assumption 
undoubtedly. No residual signal similar to those of the LCR 
G meters can be seen (figure 1, supplementary material). This 
might be expected as CG-5 is a linear, non-astatized gravime-
ter. Note that the signal shown in the top panel of figure 15 is a 

modification of ∂
2 (̃g)
∂l2  by subtracting a linear trend fitted to the 

second derivatives in the height interval 0 � h � 1310 mm. It 
simply equalizes the amplitudes of local peaks (see the ratios 
of local extrema shown either in figure 7 or 8), consequently 
it makes the visual comparison easy. A discussion of the fre-
quency content of the residuals is provided in the supplemen-
tary material.

6.2.  CG-5 gravimeter

Finally, a well-calibrated CG-5 has been used as reference in 
order to evaluate the performance of the calibration device. 
CG-5 S/N 070340236 is calibrated twice a year on a vertical 
calibration line controlled by AG measurements. The scale 
factor proved to be constant at an accuracy level better than 
0.05 per mille so far (Meurers 2018). Using this scale factor 
CG-5 immediately provides the observations in mGal (10−5 
m s−2) unit so the value of the scale factor derived from MM 
calibration is expected to be close to 1.

Figure  16 presents exemplarily the result from the first 
CG-5 experiment on 2017 12 06. Figure  16(a) shows the 
adjustment of data within a fit interval centered at the extrema. 
The solid lines in figure 16(b) display the 3rd degree polyno-
mials locally adjusted to theoretical (black) and observed (gray 
dashed) gravity sampled at exactly the same mass positions.

Figure 17 presents the results of all experiments. Regarding 
the Max-Min approach (filled circles/triangles in figure 17), 
experiment 171206_1 is the only one extending over 4 mass 
movement cycles, all the others covered only one cycle each. 
The sensor height h0 used in equation (8) was estimated by 
about 145 mm. The scale factors differ by a few per mille 
depending on the way how the extremes of the theoretical 
signal are determined. Expectedly, the accuracy increases 
with the number of observations. The scale factor is close to 

Table 4.  Time table of calibration experiments.

Instrument Date Nr of cycles

LCR G949 (optical) A: 09 July–22 July 2013 64
B: 23 April–30 April 2014 56
C: 29 March–04 April 2016 58
D: 26 June–03 July 2017 67

LCR G220 (CPI) 27 October–31 October 2014 38
LCR G963 (CPI) 04 August–10 August 2015 43
LCR G1188 (ALIOD 100 FB) 17 February–01 March 2016 71
CG-5 S/N 070340236 04 December–06 December 2017 16
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unity and the overall accuracy is about one per mill. Averaging 
over repeated experiments will certainly increase this number 
further.

The CG-5 observations show much higher noise level 
than the LCR gravimeters do (figure 18). Consequently much 
broader intervals around the extremes are needed for reliable 
determination of the extremes in the Max-Min approach. A 
systematic bias of the scale factors can clearly be seen if the 

theoretical max-min difference of the reference signal is used 
(filled triangles in figure 17). Therefore, it is recommendable 
to determine the max-min difference of the reference signal 
in the same way as done for observed gravity, i.e. by using 
theoretical and observed data acquired at exactly the same 
mass positions (filled circles in figure 17, see also section 3).

The results of the full fit method obviously show much 
larger uncertainty. This is mainly due to the very high scatter 

Figure 14.  Experimental scale functions of the tested instruments. (a) LCR G949/B, (b) LCR G949/C, (c) LCR G949/D, (d) LCR G220, 
(e) LCR G963 and (f) LCR G1188.

Metrologia 57 (2020) 015006



A Koppán et al

15

of the CG-5 observations averaged over periods of as small 
as 2 s, while the experiments using 54 s intervals suffer from 
low sample numbers entering the adjustment procedure 
(figure 18). Experiment 171206_1 with 54 s integration period 
and  >560 observations fits best to the expected scale factor.

For both approaches, the same results with scale fac-
tors close to unity were obtained as expected. In particular, 
this holds for the most reliable experiment 171206_1. The 
standard deviation of the mean over all experiments is about 7 
per mill in both cases.

Table 5.  A posteriori accuracy estimates of the parameters s, h0 and g0 involved in the adjustment model (Full-Fit method) of the 
observations recorded during the calibration campaigns. The data are average values of output results provided by the adjustment of each 
observation cycle (up and down movement). The fourth column shows the error contribution of µs normalized to 1100 nm s−2 peak-to-peak 
signal using a suitable average value s of the scale factor.

Instrument (epoch) Processed cycles

Parameters

µs/scale unit µs · 1100 nm s2/s /(nm/s2) µh0/(mm) µg0/reading unit

LCR G220 37 0.0036 (nm/s2)/mV 1.7 0.84 0.36 mV
LCR G949 (B) 46 0.0083 (nm/s2)/pixel 1.2 0.53 0.07 pixel
LCR G949 (C) 49 0.0083 (nm/s2)/pixel 1.1 0.57 0.07 pixel
LCR G949 (D) 62 0.0060 (nm/s2)/pixel 0.8 0.40 0.05 pixel
LCR G963 43 0.0065 (nm/s2)/mV 2.0 0.98 0.27 mV
LCR G1188 69 0.0012 1.3 0.64 0.07 nm s−2

Table 6.  Standard deviations of all the residuals (supplementary material figure 1 (stacks.iop.org/MET/57/015006/mmedia), black dots) 
obtained from all calibration cycles based on Full-Fit method. Corrected residuals represent the residual data after the removal of the 
average residual signal (supplementary material figure 1 gray lines) which can be sufficiently modeled with a 5th degree polynomial.

Instrument (epoch)

Raw residuals Corrected residuals

SD (upward)/nm s−2 SD (downward)/nm s−2 SD (upward)/nm s−2 SD (downward)/nm s−2

LCR G220 17.04 17.59 15.43 15.71
LCR G949 (B) 12.22 10.56 9.83 8.42
LCR G949 (C) 12.52 10.37 10.36 9.10
LCR G949 (D) 9.27 8.35 7.57 6.67
LCR G963 20.88 18.35 6.60 6.52
LCR G1188 13.02 12.89 9.61 9.94

Figure 15.  (Top): The black solid line shows the second derivative ∂
2 (̃g)
∂l2  of (8) reduced by its linear trend computed for the interval 

0 � h � 1310 mm. (Bottom): Signals computed as the average of residuals provided by the Full-Fit method (6) as a function of mass 
height. Negative values of h show data for downward direction, therefore top and bottom positions are indicated at h = +/− 1310 mm and 
h = 0 mm, respectively.
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7.  Conclusions

The MMC device is able to generate fine and well controlled 
variations in the gravity field in a significantly narrower  
(typical tidal) range compared to the usual gravimeter calibra-
tion lines having a variation range of several 100 or 1000 µm 
s−2. The overall accuracy of the reference signal provided by the 
facility operated in the Mátyáshegy Gravity and Geodynamic 
Observatory Budapest is certainly better than 5 nm s−2 which 
is sufficient for many kinds of instrument tests. Consequently 
the applied method gives an accurate solution for the calibra-
tion of both LCR and Scintrex CG-5 gravimeters used in tidal 
research and for the investigation of the sensor characteristics 

of the instruments equipped with different reading utilities 
either or not supported by feed-back system.

The main advantage of the MMC against any other method 
is methodological. On one hand it provides the simplest 
metrological standard and on the other it satisfies the condi-
tions of constrained centricity and synchrony derived from 
an extended interpretation (generalization) of Abbe principle 
of alignment. But these positive features can probably be 
exploited only for microgravimetry, where the range of the 
signals to be measured does not exceed significantly the range 
of the signal generated by the movement of the mass, for 
example in tidal research or in experiments relying on highly 
precise determination of spatial gravity differences like in 

Figure 17.  Results of the MMC for Scintrex CG-5. Grey dashed line: average over all Full-fit experiments, black solid line: average over 
all Max-Min experiments (filled circles). See text for explanation of filled circles/triangles .

Figure 16.  Calibration experiment 20171206/1 (CG-5 SN#070340236) applying the Max-Min approach. (a) Drift free observations 
(white circles), drift approached by a 2nd degree polynomial (grey solid line), residuals of adjusted gravity (small grey dots), theoretical 
signal (black solid line). (b) Adjustment of the extremes, adjusted polynomials: theoretical (black), observed (dashed gray), observations 
(white circles).
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watt balance experiments (Jiang et al 2013, Liard et al 2014). 
It cannot replace the traditional calibration lines although it 
may help the investigation of the instruments used to establish 
such lines below microgal level.

Both the calibration mode and the data processing method 
can be adjusted to the noise characteristics of the sensors 
and to the technology of data acquisition implemented in the 
gravity meters investigated. Continuous and stop-and-go-
style movements of the test mass can be programmed and the 
observed data can be fitted using e.g. L2 norm to the theor
etical signal at around the maximum and minimum places or 
along the whole observation set using the Max-Min or Full-Fit 
methods, respectively. Although theoretically the two solu-
tions are equivalent slight systematic differences between the 
scale factors obtained by the application of the different pro-
cessing methods were indicated in case of real LCR G obser-
vations (figure 14). When Max-Min is used the scale factors 
are always smaller than those provided by Full-Fit from the 
same observation set. It agrees with the results obtained from 
the analysis of simulated observations described in section 3. 

The simulations draw attention to the unfavorable effect of 
environmental noise having even natural or technical origin 
showing a clear coupling between noise level and the a poste-
riori accuracy of calibration. But as section 6.1.2 indicated the 
residual signal provided by the Full-Fit method is not random 
exclusively since it correlates well with the second vertical 

derivative of the calibrating signal ∂
2 (̃g)
∂l2 . Although it certainly 

biases all the estimated parameters s, g0 and h0 the bias of s 
is less than 1/1000 due to the robustness of this solution. The 
most probable reason of the systematic residuals is the response 
characteristic (rheology) of the spring type sensors, therefore it 
means a definite limit for the accuracy of calibration from the 
viewpoint of instrumental capabilities. The amplitude of this 
persistent and systematic residual signal is around 10 nm s−2.  
It suggests that the relative calibration accuracy could not be 
better than 1% even if the accuracy of the calibrating signal 
was better by orders of magnitude. Despite—as it was demon-
strated in the previous sections—the a posteriori accuracy of 
a scale factor of a single calibration experiment provided by 
Full-Fit method is rather (2–3) nm s−2 (0.2%–0.3%). It agrees 

Figure 18.  Calibration of Scintrex CG-5 (top: gravity gi, bottom: mass position li). (a) with 5 s sampling rate (2 s integration interval and 
3 s processing/data storage) and continuous mass movement. (b) with 1 min sampling rate (54 s integration interval and 6 s processing/data 
storage) and ‘stop-and-go’ mass movement. One full cycle consisted of 60 predefined steps with denser stops close to the gravitational 
extrema, i.e. in the range of 100–350 and 1000–1200 mm, therefore a full cycle lasted almost 4 h.

Table 7.  The main error sources of the MMC method discussed in the paper and the estimated magnitudes of their effects.

Overall error of the calibrating signal due to the uncertainty of cylindrical ring parameters (figure 6, equation (15)) ⩽3 nm s−2

Instrumental/measuring 
errors

Error due to horizontal eccentricity of gravimeter sensor (figure 8(a)) ⩽0.1 nm s−2

Non-random systematic effect of LCR G meters due to the rheology of the astatized spring  
sensors (figure 15)

⩽20 nm s−2

Correction errors Accuracy of barometric correction (equation (17)) ⩽1 nm s−2

Accuracy of the linear approximation used for joint tidal and drift correction (equation (18)) ⩽3 nm s−2

Accuracy of magnetic effect (for metal spring gravimeters) (equation (19)) ⩽2 nm s−2

Tilt correction of LCR instruments which are not equipped with feed–back system  
(equation (21))

⩽0.5 nm s−2

Microseismic noise  
(supplementary material, 
figure 1)

LCR G meters (at 1 Hz sampling) ⩾10 nm s−2

Scintrex CG5 (at 0.5 Hz sampling) ⩾100 nm s−2
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well with the error estimations given for the applied instru-
mental and environmental corrections. Although this accuracy 
is superior for spring sensors it could be increased further (at 
least to 1 nm s−2) because the effect of the systematic part 
of the residual signal can be eliminated in the calculations. 
This possibility, however, could only be exploited if a new 
MMC device was constructed based on the careful analysis 
of the accuracy estimates provided by this paper. The authors 
have already considered the possible improvements and made 
a proposal to build a new device capable to host the leading 
edge mobile instruments like GWR iGrav (R. Warburton  
personal communication) and Muquans Absolute Quantum 
(B. Desruelle personal communication) gravimeters and test 
their temporal stability at level below 1 nm s−2 providing a 
uniform reference for the monitoring of g variations in the 
range of gravity tides. It is also worth to note that the pre-
calculated cost of a dedicated laboratory and the moving mass 
apparatus proposed is less than that of a leading edge absolute 
or superconducting gravity meter. For easy referencing the 
main error sources forming the error budget of the calibration 
process is listed in table 7.
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The partial derivatives of equation (14).
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