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1.  Introduction

The dissemination of the Guide to the Expression of Uncertainty 
in Measurement (GUM) [1] has facilitated the worldwide har-
monization of uncertainty evaluation in metrology. The GUM 
uncertainty framework uses the propagation of variances 
based on a linear, or linearized, model for the measurand. 
Supplement 1 to the GUM (GUM-S1 [2]) expands the scope 
of the GUM to non-linear models by replacing the propaga-
tion of uncertainties with the so-called propagation of distri-
butions. In the presence of an input quantity for which type 
A information is available, the distribution produced for the 
measurand has been shown to be equivalent to a Bayesian 
inference that uses specific non-informative priors for the 
measurand and for the variance of the distribution from which 
the data of the type A input quantity are assumed to have been 
drawn [3–7]. Since the GUM type A evaluation can be viewed 

as a frequentist one [8], GUM-S1 also evoked a change of par-
adigm towards the Bayesian point of view regarding type A 
evaluation of measurement uncertainty, along with an incon-
sistency of corresponding results.

Several papers [9–12] have raised criticisms of GUM-S1. 
While [10, 11] provided examples for which GUM-S1 showed 
an unsatisfying long-run success rate, [9] criticized GUM-S1 
for approaching the Bayesian point of view and, particularly, 
for using non-informative priors. In [12], on the other hand, it 
is argued that the uncertainty produced by GUM-S1 can be a 
poor estimate for the standard deviation of the estimate of the 
measurand. In this paper, we add a further critical aspect by 
showing that the GUM-S1 type A evaluation does not satisfy 
the requirement of transferability, a key requirement for any 
uncertainty evaluation method applied in metrology.

One essential task of metrology is to ensure the trace-
ability of measurements performed on the shop floor level to 
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the international system of units (SI), see figure 1. The result 
of each step in such a measurement chain, and in particular 
the uncertainty associated with the reported estimate, is taken 
as the input of the subsequent measurement. It is mandatory 
that the applied method of uncertainty evaluation is transfer-
able in the sense that ‘ it should be possible to use directly 
the uncertainty evaluated for one result as a component in 
evaluating the uncertainty of another measurement in which 
the first result is used’ [1]. And this statement intends to not 
just require the technical possibility of re-using uncertainties 
subsequently, but that such a re-use leads to reliable results. 
The GUM calculus for the propagation of variances meets this 
requirement for linear models which may be one reason for 
its successful application throughout so many applications in 
metrology.

We demonstrate in terms of simple examples that the 
GUM-S1 type A evaluation of uncertainty fails to generally 
ensure the requirement of transferability. It is shown that even 
for linear models unsatisfactory results can be obtained. An 
asymptotic analysis is carried out that explains the behavior 
for the considered sequence of linear models. We discuss the 
underlying reason for our findings, which turns out to be the 
automatic choice of the non-informative prior involved in 
the GUM-S1 type A evaluation. Our reasoning is not based 
on an objection against Bayesian methods in general, or the 
use of non-informative priors in particular; rather, we argue 
that results obtained in a Bayesian inference based on a non-
informative prior are generally not suitable for re-use in a sub-
sequent analysis. In fact, we show for one of the non-linear 
examples that a more suitable choice of the non-informative 
prior applied to all data and the whole sequence of models 
at the same time leads to satisfactory results. However, such 
a procedure is neither practicable nor desirable for applica-
tions in metrology. Possible alternatives to the GUM-S1 type 
A uncertainty evaluation are discussed, namely a subjective 
Bayesian inference and the use of vaguely informative proper 
priors.

The paper is organized as follows: in section 2, the GUM-S1 
results for three different examples are presented. Section 3 
then provides an asymptotic analysis for the sequence of 
linear models that explains the observed behavior. The unsat-
isfactory transferability of results for the non-linear models is 
then discussed in section 4 including results obtained by the 
reference posterior for one of the non-linear models. Section 5 
contains a critical assessment about the use of non-informa-
tive priors in metrology and discusses possible alternatives. 
Finally, we draw some conclusions from our findings.

2.  Performance of GUM-S1 for generic examples

In this section, the performance of the GUM-S1 type A uncer-
tainty evaluation is explored for three sequences of models: 
one that consists of linear models and two that include non-
linear models. The sequences of models are designed in such 
a way that they will mimic measurement chains as illustrated 
in figure 1. For the sake of simplicity, we consider the case 
in which all input quantities are ‘type A input quantities’, 

i.e. information about the input quantities shall be based on 
observed data. This reflects a situation in which the type A 
input quantities provide the dominant source of uncertainty 
and allows to focus on the suitability of the GUM-S1 type A 
evaluation method. It is likely that prior information about the 
type A input quantities is available; however, such informa-
tion is not considered here in accordance with GUM-S1. All 
examples are simulated examples so that the ground truth is 
known, and we will assess the performance of an uncertainty 
evaluation in terms of how well the expected size of the devia-
tions of the estimates from the known ground truth is charac-
terized by the uncertainties obtained.

We note that such long-run success rates, and in particular 
frequentist properties for repeatedly sampling the data, are 
generally not viewed as a relevant criterion for a subjective 
Bayesian inference (e.g. [13, 14]); we will come back to this 
issue in the discussion in section  5. Here, we just mention 
that, since GUM-S1 does not consider the use of subjective 
priors, and since a GUM-S1 type A uncertainty evaluation is 
based on the observed data only, its result ought to be reliably 
linked with the ground truth used for producing the data when 
repeatedly applied.

2.1.  Example 1—sequence of linear models

Consider the following sequence of linear models

Y1 =X1 ,
Y2 =Y1 + X2 ,

...

Yn =
1
n
(Yn−1 + Xn) ,

�

(1)

where the result of each model is subsequently fed into the next 
model. More precisely, for the ith model Yi = Yi−1 + Xi , it is 
assumed that information about Yi−1 and Xi is available only, 
but not about X1, X2, . . . , Xi−1. The particular sensitivity coef-
ficients in (1) have been chosen for the sake of convenience, 
and the obtained results can be considered representative for 

Figure 1.  Measurements performed on the shop floor are traced 
to the SI realization through an unbroken chain of calibrations. 
Estimates and uncertainties are transferred at each step.
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chains of linear models provided that the sensitivity coeffi-
cients are balanced and the final model for Yn is not dominated 
by one or only a few of all input quantities involved.

For each input quantity Xi, mi  >  1, repeated observations 
xi1, . . . , ximi shall be available which are assumed to have 
been drawn independently from a normal distribution with 
mean µi and variance σ2

i . The µi are the true values of the 
input quantities Xi and they are unknown to the analyzer, 
as are the variances σ2

i . For the simulation of example data, 
we chose the specific values µ1 = µ2 = . . . = µn = 0 and 
σ2

1 = σ2
2 = . . . = σ2

n = 1. Furthermore, the same number m 
of repeated observations was used for all input quantities, 
i.e. m1 = m2 = . . .mn = m. Here, the focus is on the uncer-
tainty evaluation associated with Yn, the measurand obtained 
at the end of the measurement chain. We note that, in [9], a 
model similar to (1) has been analyzed for the case n  =  2 with 
respect to the resulting coverage factors obtained by applying 
GUM and GUM-S1.

A simulation study has been conducted in which data for 
the input quantities have been simulated, to which GUM-S1 
has been applied as follows. A scaled and shifted t-distribution 
is assigned to the first input quantity X1 with scale and shift 
calculated from the observations on X1 as described in table 1 
of GUM-S1. This distribution is taken as the distribution for 
Y1. The distribution for Y1 is then taken as an input for the 
evaluation of the second model, along with a second scaled 
and shifted t-distribution for X2. Applying the propagation of 
distribution procedure from GUM-S1 yields the distribution 
for Y2, which is then taken as an input for the third model, and 
so on1. In this way, the distribution for Yn is obtained. From 

this distribution, a 95% coverage interval is then calculated as 
described in GUM-S1.

Data simulation for all input quantities and calculation of 
a 95% coverage interval for Yn, has been repeated a 10 000 
times, and the number of cases in which a 95% coverage 
interval contained the true value of Yn was counted. The whole 
procedure was carried out for different lengths n of the meas-
urement chain and different numbers m of repeated observa-
tions for the input quantities. The left graph in figure 2 shows 
the resulting mean values of the half lengths of the 95% cov-
erage intervals (i.e. expanded uncertainties) in dependence on 
the number of input quantities n and the number of obser-
vations m per input quantity. For m  >  2, a decrease in the 
average coverage interval length with an increasing number 
of input quantities can be observed, which could be expected 
since model (1) equals the average of the input quantities. 
Interestingly, this decrease is not observed for m  =  2; instead, 
the coverage interval lengths turns out to be almost inde-
pendent with respect to the number of input quantities. The 
success rates for 95% coverage intervals to contain the true 
value for Yn shown in the right graph of figure 2 reveal that, for 
a single input quantity n  =  1, GUM-S1 yields perfect long-
run success for all values of m. When the number of input 
quantities increases, the success rates quickly approach values 
above 0.95. In terms of long-run success, this indicates that 
the coverage interval length has been overestimated by GUM-
S1. The small fluctuations in the long-run success rates shown 
in figure 2 are due to the finite number of 10 000 repetitions 
used.

These results demonstrate that, for the sequence of linear 
models (1), the GUM-S1 type A uncertainty evaluation leads 
to a marked overestimation of the expanded uncertainty with 
respect to the long-run success criterion, especially when 
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Figure 2.  Mean value of half length of 95% coverage intervals (left graph) and long-run success rates (right graph) obtained by applying 
GUM-S1 for the sequence of linear models (1) in dependence on the number of models n, and for different numbers of observations m per 
input quantity. The dashed line in the right graph indicates a success rate of 95%.

1 Yn can equivalently be obtained through the convolution of n t-distributed 
random variables.
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the number of observations of each input quantity is small. 
Overestimation of uncertainty may be seen as critical, par
ticularly when it causes expensive (and unnecessary) actions, 
e.g. in conformity assessment. Moreover, according to the 
GUM [1], uncertainties should be ‘realistic’; the use of ‘safe’ 
or ‘conservative’ uncertainties is deprecated. An asymptotic 
analysis of the GUM-S1 results for the sequence of linear 
models (1) is provided in section 3.

2.2.  Example 2—sequence of products of quantities

Consider the following sequence of products of quantities

Y1 =X1 ,
Y2 =Y1X2 ,

...
Yn =Yn−1Xn ,

�

(2)

where, similar to the sequence of linear models (1), the result 
of each model is subsequently fed into the next model. In the 
context of the ith model, the only information used shall be the 
measurand Yi−1 of the previous model and the current input 
quantity Xi. Non-linear models of the kind in (2) arise, for 
example, when multiplicative correction factors are applied.

For the sequence of products (2), we again assume m 
repeated observations xi1, . . . , xim to be available for each 
input quantity Xi, where these observations have been drawn 
independently from a normal distribution with unknown mean 
µi and unknown variance σ2

i . For the simulation of example 
data, we chose the specific values µ1 = µ2 = . . . = µn = 1 
and σ2

1 = σ2
2 = . . . = σ2

n = 1. Similarly to the example with 

the sequence of linear models, 10 000 data sets were simulated 
and subsequently analyzed by applying GUM-S1. Following 
table  1 in GUM-S1, scaled and shifted t-distributions were 
assigned to the input quantities Xi. The GUM-S1 performance 
was then assessed in terms of the resulting half length of the 
coverage intervals, and in terms of the long-run success rate 
given by the portion of 95% coverage intervals for Yn con-
taining the true value of Yn.

Figure 3 (left) shows the resulting mean values of the 
half lengths of 95% coverage intervals in dependence on 
the number of models n, and for different numbers m of 
repeated observations. As can be seen, the half lengths of 
the coverage intervals increase with an increasing number of 
models n, while for m  =  2 observations per input quantity 
large coverage intervals are obtained (note the logarithmic 
ordinate in the left graph of figure  3). The corresponding 
long-run success rates are shown in figure 3 (right), where 
perfect long-run success rates for all values of m were 
recorded for n  =  1 . Note that, for n  =  1, model (2) equals 
(1). Similarly to the sequence of linear models (1), long-
run success rates of almost 1 arise for m  =  2 and n  >  2, 
indicating that applying GUM-S1 to the sequence of prod-
ucts (2) can lead to overestimated expanded uncertainties. 
However, the situation for model (2) appears to be more 
complex, since for this model also long-run success rates 
well below 0.95 can be obtained. For example, for n  =  20 
and m  =  10, the long-run success rate is only about 0.75, 
which indicates an underrating of the expanded uncertainty. 
These findings illustrate that application of the GUM-S1 
type A uncertainty evaluation to a sequence of non-linear 
models does not in general lead to results that can be trans-
ferred reliably.
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Figure 3.  Mean value of half lengths of 95% coverage intervals (left graph) and long-run success rates (right graph) obtained by applying 
GUM-S1 for the sequence of products models (2) in dependence on the number of models n, and for different numbers of observations m 
per input quantity. Note the logarithmic scale of ordinate used for the half length of 95% coverage intervals (left graph). The dashed line in 
the right graph indicates a success rate of 95%.
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2.3.  Example 3—sequence of sums of squared quantities

Consider the following sequence of sums of squared quantities

Y1 =X2
1 ,

Y2 =Y1 + X2
2 ,

...

Yn =Yn−1 + X2
n .

� (3)

Similarly to the previous examples, the result of each model 
is subsequently fed into the next model and it is assumed that, 
for the ith model, the only information available is on Yi−1 
and Xi. Here, we shall assume, that for each input quantity 
Xi, a single observation xi drawn from a normal distribution 
with unknown mean µi and known variance σ2

i  is given. In 
the sense of GUM-S1, a normal distribution with mean xi 
and variance σ2

i  is then assigned to each input quantity Xi. 
For the simulation of example data, we chose the same values 
µ1 = µ2 = . . . = µn = µ and σ2

1 = σ2
2 = . . . = σ2

n = 1 for all 
input quantities. The focus is again on the uncertainty evalua-
tion associated with Yn, the measurand obtained at the end of 
the measurement chain. Sum-of-squares models similar to (3) 
arise, for example, when evaluating the energy of a discrete 
time-dependent signal where the uncertainty for each observa-
tion is known [15].

Sequential application of GUM-S1 to the sequence of 
models (3) is equivalent to one application of GUM-S1 to the 
single model

Yn = X2
1 + X2

2 + . . . ,+X2
n ,� (4)

for which in [11] already the insufficiency of the long-run suc-
cess performance of GUM-S1 was demonstrated, and a similar 
conclusion for a related model was drawn in [10]. Our point in 
iterating some of those results for this model is that of viewing 
it as a sequence of models, for which at each stage i only the 
information on the previous measurand Yi−1 and the current 
input quantity Xi is assumed to be available. This prevents one 
from taking a more favorable non-informative prior in view of 
the final model, which will be discussed in section 4.

Figure 4 shows the distribution of Yn obtained by means 
of GUM-S1 for a typical set of simulated data when choosing 
n  =  20 models and µ = 1, together with the underlying true 
value. The GUM-S1 distribution is clearly separated from the 
location of the true value around which its probability density 
is practically zero; thus, applying GUM-S1 would result in a 
completely incorrect conclusion about the value of the meas-
urand here.

As in to the previous examples above, many data sets have 
been simulated according to the models (3) and analyzed 
by applying GUM-S1. Owing to a possible skewness of the 
GUM-S1 distribution arising for this example, the long-run 
success rates were evaluated here using 95% highest poste-
rior density intervals [16]. Figure 5 (left) shows corresponding 
results in dependence on the number of models n, and on the 
mean values µ1 = · · · = µn = µ. Reasonable success rates 
above, say, 90% are achieved only for small values of n and/or 
when µ is large. For increasing values of n, a clear drop of the 

success rate is observed; for a setting of, for example, n  =  20 
and µ = 1, the coverage rate is practically zero (see figure 4). 
That is, for this setting, the true value is almost never found 
within a 95% GUM-S1 coverage interval.

3.  Asymptotic behavior of the sequence of linear 
models

In the following, the results obtained for the sequence of 
linear models (1) are studied analytically as the number of 
subsequent measurements becomes larger. The analysis of the 
sequential model (1) is equivalent to that of

Yn =
1
n

n∑
i=1

Xi,� (5)

with data xij ∼ N(µ, 1), j = 1, . . . , m, where µ denotes the 
common value of all input quantities Xi, i = 1, . . . , n, and 
where m � 4 is assumed. Let xi denote the mean and s2

i  the 
squared standard deviations of the m repeated observations for 
Xi. Since GUM-S1 assigns scaled and shifted t-distributions 
to each Xi with means xi, the estimate produced by GUM-S1 
is given via

yn =
1
n

n∑
i=1

xi.� (6)

Since xi|µ ∼ N(µ, 1/m), one obtains

yn|µ ∼ N (µ,ϕ/n) ,� (7)

where

ϕ =

(
1
n

n∑
i=1

1
m

)
=

1
m

.� (8)

Note that yn|µ in (7) denotes the distribution of y n under 
repeated sampling given the values of µ and ϕ/n. It follows 
that y n is unbiased (i.e. E(yn|µ) = µ); since Var(yn|µ) → 0 

0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03 GUM-S1
Reference posterior
True value

Figure 4.  Posterior distributions obtained for the sequence of non-
linear models (3) via GUM-S1 (black) and reference posterior (red) 
for a typical example when µ1 = · · · = µn = 1 and a measurement 
chain of n  =  20 models. The green star indicates the location of the 
true value ytrue = 20.
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as n → ∞, y n also is a consistent estimator of the measurand. 
Because

(
1

nm

n∑
i=1

s2
i

)
P→ϕ ,� (9)

as n → ∞ (where 
P→ indicates convergence in probability), 

and since, for yn =
∑

i xi/n, application of the central limit 

theorem yields 
√

n ((yn|µ)− µ)
D→N(0, 1/m) = N(0,ϕ) 

(where 
D→ stands for convergence in distribution), it follows 

that

lim
n→∞

P


yn|µ ∈


µ±

√√√√ 1
nm

n∑
i=1

s2
i

√
1
n

z[1−(1−α)/2]






= 2Φ(z[1−(1−α)/2])− 1 = α,
�

(10)

where Φ denotes the distribution function of the standard 
Gaussian distribution and zq its qth quantile (see, e.g. example 
2.10 in [17]). Hence,


yn ±

√√√√ 1
nm

n∑
i=1

s2
i

√
1
n

z[1−(1−α)/2]


� (11)

is asymptotically an exact 100α% confidence interval around 
the estimate produced by GUM-S1. However, (11) does not 
equal the 100α% coverage interval produced by GUM-S1.

The distribution produced by GUM-S1 is that of the 
average of n scaled and shifted t-distributions with m  −  1 
degrees of freedom, each having mean xi and variance 
s2

i /m × (m − 1)/(m − 3) (recall that m � 4 is assumed). The 
mean of this distribution equals the average of all xi, and its 
variance equals 

∑
i s2

i /m × (m − 1)/(m − 3)× 1/n2. Let Ỹn 
denote the random variable characterized via the GUM-S1 dis-
tribution. Application of the central limit theorem yields that 
Ỹn asymptotically follows a Gaussian distribution with mean 
yn =

∑
i xi/n, and variance 

∑
i s2

i /(nm)× (m − 1)/(m − 3)/n. 

Hence, the GUM-S1 100α% coverage interval is asymptoti-
cally given by


yn ±

√√√√ 1
nm

n∑
i=1

s2
i

√
(m − 1)
(m − 3)

√
1
n

z[1−(1−α)/2]


 .� (12)

Comparison with (11) shows that the 100α% coverage 
interval of GUM-S1 is larger than the exact 100α% con-
fidence interval and that GUM-S1 thus overestimates the 
expanded uncertainty by the factor 

√
(m − 1)/(m − 3) , 

irrespective of the chosen coverage level. From the asymp-
totic distribution of yn|µ, it follows that the long-run success 
rate of the GUM-S1 100α% coverage interval (12) equals 
2Φ(

√
(m − 1)/(m − 3)z[1−(1−α)/2])− 1 > 2Φ(z[1−(1−α)/2]) 

−1 = α. The results shown in figure 2 indicate that approxi-
mate asymptotic behavior can be reached already for n ≈ 20, 
meaning that the long-run success rates determined for m  =  10 
and n  >  15 are in accord with the asymptotic value of 0.974 
obtained via the above analysis.

4.  Reference prior for sequence of non-linear 
models

The results produced by the application of GUM-S1 to data 
from the two sequences of non-linear models in section 2 are 
unsatisfactory. Figure  4 demonstrates that the estimation of 
the measurand can even fail completely. It is evident that the 
choice of non-informative prior made implicitly by applying 
GUM-S1 is not adequate for the particular example of figure 4. 
In fact, when applying the reference prior principle [18–20] 
to the non-linear model (4), the resulting reference posterior 
(see [21]) also shown in figure 4 yields excellent long-run suc-
cess rates (see figure 5). The non-informative prior underlying 
GUM-S1 appears to simply be inadequate.

However, in order to apply the reference prior to the 
sequence of non-linear models, the whole sequence of models 
needs to be known in advance and all data must be treated 
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Figure 5.  Long-run success rates for the sequence of non-linear models (3) for various settings of the length n of the measurement chain 
and mean values µ1 = · · · = µn = µ of the input quantities. The left graph shows the success rates obtained for GUM-S1, while the right 
graph shows those of the reference posterior (see section 4). The color scale indicates the range of long-run success rates and the black lines 
in both graphs show isocontour lines at the levels indicated.
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simultaneously. This is not in accordance with the rationale 
of the GUM to completely capture the result of one experi-
ment in an estimate and its associated uncertainty, or in a dis-
tribution. With these constraints in mind, the reference prior 
principle would not have been applicable for this sequence of 
non-linear models. Furthermore, when considering an input 
quantity itself, the non-informative prior underlying GUM-S1 
equals the corresponding reference prior. From figure 2, we 
can observe that the behavior of the inference on one of the 
input quantities obtained for n  =  1 in the sequence of linear 
models in (1) is excellent.

For many models, the reference prior principle yields 
reasonable inferences with good frequentist properties. The 
essential point is that, via this principle, the prior is chosen in 
dependence on the properties of the statistical model involved. 
However, since prior to the re-use of a result one does not 
know about future models, a Bayesian inference in combi-
nation with the reference prior principle does not guarantee 
transferability in metrology.

The conclusion drawn for the reference prior is valid 
with the same reasoning for any other principle used to 
select a non-informative prior that depends on the statis-
tical model employed. On the other hand, a non-informative 
prior chosen on a priori grounds (such as the constant prior) 
will not perform well for all possible models, as demon-
strated by the results of the constant prior for the sequence 
of models (4).

5.  Discussion

Metrological tasks such as calibration or ensuring traceability 
require an uncertainty evaluation method whose results can 
safely be transferred and re-used as inputs in subsequent 
experiments. Bayesian uncertainty evaluation appears to 
be a natural choice in this regard. The prior belief about all 
unknowns is updated in the presence of new data by using 
Bayes’ theorem, resulting in the posterior distribution, which 
then completely characterizes one’s degree of belief about 
the measurand considered. The posterior distribution can 
be re-used as a prior distribution in a subsequent measure-
ment in which the current measurand is entered as an input 
quantity. In this way, Bayesian uncertainty evaluation sug-
gests itself and the paradigm shift for type A evaluation made 
by GUM-S1 towards the Bayesian point of view appears to 
be natural. However, the shortcomings of GUM-S1 observed 
in the context of the simple examples studied in section 2 are 
discouraging. In the following, we reveal the reason for the 
poor behavior observed for GUM-S1 and discuss possible 
alternatives.

5.1.  GUM-S1 and automatic Bayes

The GUM-S1 type A uncertainty evaluation is a Bayesian 
inference with an automatically chosen non-informative prior. 
The use of non-informative priors is controversial within the 
Bayesian community, see arguments against and in favor of it 
given in [22, 23].

One motivation for using non-informative priors is to 
avoid the specification of an informative prior distribution. 
For example, it can be difficult or expensive for the analyst 
to specify a proper probability distribution that precisely 
reflects their state of knowledge. Another motivation could be 
that the results should depend only on the data. At the same 
time, the advantages of Bayesian inference, e.g. to make prob-
ability statements about the quantities of interest after the data 
have been observed or to re-use a posterior as a prior in a 
subsequent analysis, shall be shared. However, there exists 
no unique non-informative prior, and many different princi-
ples have been proposed for selecting a non-informative prior, 
see [24]. As a consequence, applying a Bayesian inference 
with a non-informative prior cannot be seen as expressing 
the analyst’s degree of belief unless the number of observa-
tions is large enough that the data dominate the posterior2. 
Furthermore, since no unique non-informative prior exists, 
the posterior of an automatic Bayesian inference depends 
not only on the data, but generally also on the particular non-
informative prior chosen. Hence, Bayesian inference using 
non-informative priors can be viewed as being in between 
a frequentist and a subjective Bayesian inference. Since the 
posterior cannot be strictly seen as expressing the analyst’s 
degree of belief, and as the prior is chosen automatically in the 
same way whenever a model of the considered type is faced, 
the behavior of the resulting inference under repeated applica-
tions becomes relevant, and long-run success rates are a valid 
criterion for judging a non-informative prior [23, 25, 26] (see 
also [27] for a discussion on the success rates of Bayesian 
credible intervals and frequentist confidence intervals). It is 
for these reasons why we have looked at the performance of 
the GUM-S1 type A evaluation in the way described in the 
previous sections. This differs completely from a subjective 
Bayesian inference, see below.

5.2.  Vaguely informative priors

Vaguely informative priors have become popular in metrology 
recently (see, e.g. [28, 29]). Vaguely informative priors are 
proper priors that capture available prior knowledge while pre-
serving some sort of vagueness at the same time. For example, 
when identifying the quantities µ1, . . . ,µn in the sequence of 
non-linear models (4) with some physical quantity, the analyst 
could easily provide reasonable lower and upper bounds for 
them in a safe way, rather than letting any value, however big, 
be equally likely a priori. Let us therefore assume that ±10 
would be appropriate vague lower and upper bounds for the 
quantities µ1, . . . ,µn, and that the analyst chooses a uniform 
distribution over that interval. It happens that the results are 
just the same as those obtained by the GUM-S1 evaluation 
and that they are even insensitive when doubling or halving 
the width of the uniform prior. Hence, Bayesian inference in 
combination with vaguely informative priors can encounter 

2 Under mild conditions, the posterior will be dominated completely by the 
data when the number of observations grows without bound (see, e.g. [17]). 
However, such asymptotic behavior is usually not relevant in metrology, 
where often small samples sizes are chosen.
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exactly the same pitfalls as when using non-informative 
priors; thus, vaguely informative priors will in general not 
enable a transferable uncertainty calculus either.

In fact, this conclusion can be widened to any Bayesian 
inference for which some vagueness remains in the selection 
of a prior. The reason is that one cannot be sure about the 
consequences of this vagueness upon subsequent re-use of 
the resulting posterior. Even when the posterior for a chosen 
vague prior is insensitive under reasonable variations of the 
prior, one cannot conclude that this holds for any subsequent 
re-use of the posterior in other models.

5.3.  Fully subjective Bayesian inference

In a subjective Bayesian inference, the analyst specifies their 
prior degree of belief completely, and the resulting posterior 
distribution expresses their degree of belief after accounting 
for the information contained in the data. While the analyst 
will be as careful as possible when forming their prior belief, 
there is no guarantee that the opinion they have formed is con-
sistent with the ground truth (see section 2.4 in [23]). Once the 
data are observed, the degree of belief of the analyst will be 
updated following probability calculus, irrespective how con-
sistent or inconsistent data and prior belief are. Each single 
Bayesian inference represents a unique task characterized 
through the particular prior knowledge that is available for it, 
and the question of long-run success does not pose itself, and 
especially not the ‘performance’ under repeated sampling. 
Actually, long-run success would in a sense measure how con-
sistent prior knowledge and underlying truth are; yet, in a real 
application, the truth is unknown, and the best the analyst can 
do is to account for all they know about the task. The observed 
data will then teach how their state of knowledge is updated. 
Again, the question of long-run success does not pose itself.

Subjective Bayesian inference provides a transferable 
uncertainty calculus. An assessment between degree of belief 
and ground truth is not seen as a well-posed question; thus, 
the observed shortcomings from section  2 would not arise. 
The posterior simply describes the degree of belief of the 
analyst who does their best when forming their prior belief. 
The posterior captures the final result without the possibility 
of deriving the separate influence the employed prior and the 
observed data had on it. From what has been said above about 
the lack of transferability when using vaguely informative 
priors, the analyst should not introduce any vagueness into 
their prior but rather express precisely their degree of belief. 
Transferability throughout metrology then requires that any 
analyst adopts the degree of belief of any previous analyst. 
Note that, in many cases, this situation already applies today 
for results based on type B evaluations.

6.  Conclusions

Supplement 1 to the GUM has shifted the type A uncer-
tainty evaluation of the GUM towards a Bayesian uncertainty 

analysis. However, rather than using available prior knowl-
edge the prior underlying GUM-S1 is an improper non-infor-
mative prior. We have demonstrated in terms of examples that, 
as a result of such an implicit choice of prior, the transfer-
ability of results achieved with the GUM-S1 type A evaluation 
approach is challenged. The lack of transferability can be gen-
eralized to Bayesian type A uncertainty evaluations utilizing 
other non-informative or vaguely informative priors.
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