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Abstract
In this paper we are developing a theory of rational (pseudo) difference 
Hamiltonian operators, focusing in particular on its algebraic aspects. We show 
that a pseudo-difference Hamiltonian operator can be represented as a ratio 
AB−1 of two difference operators with coefficients from a difference field F, 
where A is preHamiltonian. A difference operator A is called preHamiltonian 
if its image is a Lie subalgebra with respect to the Lie bracket of evolutionary 
vector fields on F. The definition of a rational Hamiltonian operator can be 
reformulated in terms of its factors which simplifies the theory and makes 
it useful for applications. In particular we show that for a given rational 
Hamiltonian operator H in order to find a second Hamiltonian operator K 
compatible with H one only needs to find a preHamiltonian pair A and B 
such that K  =  AB−1H is skew-symmetric. We apply our theory to study multi-
Hamiltonian structures of Narita–Itoh–Bogayavlensky and Adler–Postnikov 
equations.
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1.  Introduction

Poisson brackets play a fundamental role in the study of Hamiltonian systems of ordinary 
differential equations (ODE). For an ODE defined by a Poisson structure and a Hamiltonian 
function, its first integrals (conserved quantities) form a subalgebra of functions commut-
ing with respect to the Poisson bracket. When this subalgebra is large enough, the ODE is 
Liouville integrable and it can be integrated in quadratures [1]. As for their infinite dimen-
sional analogues, such as systems of partial differential equations  or of differential-differ-
ence equations, the notion of Poisson bracket is equivalently given in terms of the so-called 
Hamiltonian operators. The prototypical example is the Korteweg–de-Vries (KdV) equation

∂tu = 6uux + uxxx,

where the dependent variable u is a function of two variables: time t and space variable x. It is 
Hamiltonian with respect to the operator H1 = ∂x and the local functional

f =

∫ (
u3 − u2

x

2

)
,

that is, it can be written as

∂tu = H1δuf .� (1)

Here δuf  is the variational derivative. The Hamiltonian operator H1 defines a Poisson bracket 
{F, G}1 =

∫
δuF H1δuG (see [2, 3]). Zakharov and Faddeev have shown that the KdV equa-

tion can be viewed as a completely integrable Hamiltonian system in the sense of Liouville 
for Hamiltonian ODEs [2].

The concept of compatible pair of Poisson brackets (Hamiltonian structure) was introduced 
by Magri [4]. Equations which admit two compatible Hamiltonian structures are called bi-
Hamiltonian. For bi-Hamiltonian systems one can construct infinite hierarchies of symmetries 
and conservation laws [5, 6].

For example, the KdV equation  is a bi-Hamiltonian system. Its the second Hamiltonian 
structure is of the form

H2 = 4u∂x + 2ux + ∂3
x .

Starting from the translation symmetry ut1 = ux, one can generate the infinite hierarchy of 
symmetries

ut2n+1 = Kn(u, ux, . . . , ∂2n+1
x u) = Rnux, n = 0, 1, 2, . . .

of the KdV equation applying a Nijenhuis recursion operator R = H2H−1
1  which is a rational 

(pseudo) differential operator. It can be shown that all Kn ∈ Im ∂x, thus the action of R on Kn 
can be defined in the ring of polynomials of u, ux, . . . and all Kn are differential polynomials.

A natural extension from the continuous to the discrete setting is to study differential-
difference systems. The foundations of calculus for difference operators have been developed 
by Kupershmidt [7]. In all known examples of scalar differential-difference bi-Hamiltonian 
equations, except the Volterra chain, one or both Hamiltonian operators are rational. This jus-
tifies the necessity to develop a rigorous theory of rational Hamiltonian and recursion opera-
tors. We have made the first step in this direction in our paper [8] where we extended the 
results obtained in the differential setting [9] to the difference case. In [8], we have introduced 
the concept of preHamiltonian pairs of difference operators and demonstrated their connec-
tions with Nijenhuis operators. In particular, we have shown that rational recursion operators 
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generating the symmetries of an integrable differential-difference equation must be factoris-
able as a ratio of two compatible preHamiltonian difference operators.

In this paper we develop the theory of rational difference Hamiltonian operators, and study 
their interrelations with preHamiltonian operators. In particular we show that in the minimal 
decomposition of a pseudo-difference Hamiltonian operator H  =  AB−1 as a ratio of two dif-
ference operators A and B the operator A is preHamiltonian while B satisfies certain opera-
tor identity. Together with the skew-symmetry of H these properties of difference operators 
A, B can be taken as a definition of a rational Hamiltonian operator. It enables us to develop 
a theory of rational difference Hamiltonian operators and Hamiltonian pairs. We will illus-
trate our results using the Adler–Postnikov integrable differential-difference equation, whose 
Hamiltonian structure was not known previously [10].

Let us consider the well-known modified Volterra chain [11, 12]

ut = u2(u1 − u−1),� (2)

where u is a function of a lattice variable n ∈ Z and continuous time variable t. Here we use 
the standard notations

ut = ∂t(u), uj = S ju(n, t) = u(n + j, t)

and S  is the shift operator. The right hand side of the equation (2) belongs to the difference 
field F = C(..., u−1, u, u1, ...) of rational functions in the generators ui, i ∈ Z.

Equation (2) possesses a rational recursion operator

R = u2S + 2uu1 + u2S−1 + 2u2(u1 − u−1)(S − 1)−1 1
u

where (S − 1)−1 is standing for the inverse of S − 1. This recursion operator is only defined 
on the space uIm (S − 1). The operator R can be written as a ratio of two difference operators

R = AB−1, where A = u2(S − S−1)u(S + 1) and B = u(S − 1).� (3)

The pair of difference operator A and B generates the hierarchy of symmetries of the modified 
Volterra chain. We have shown in [8] that the difference operators A and B must then form a 
preHamiltonian pair, that is, any linear combination C = A + λB, λ ∈ C satisfies

[Im C, Im C] ⊆ Im C,

where the Lie bracket on F is given by [a, b] = Xa(b)− Xb(a) for a, b ∈ F and Xa =∑
n∈Z Sn(a) ∂

∂un
 is the evolutionary derivation with characteristic function a of the difference 

field F.
The recursion operator R can also be presented as R = H2H−1

1  with

H1 = u(S − 1)(S + 1)−1u and H2 = u2(S − S−1)u2.� (4)

The operators H1 and H2 are Hamiltonian operators. The difference operator H2 induces a 
Poisson bracket { f , g}2 = ∫ δu( f )H2δu(g) on the space of functionals f , g ∈ F′ = F/(S − 1)F, 
where δu denotes the variational derivative with respect to the dependent variable u

δu(a) =
∑
n∈Z

S−n ∂a
∂un

, a ∈ F.

The Hamiltonian operator H1 is rational, it can be represented as H1 = ÂB̂−1, where 
Â = u(S − 1) is preHamiltonian and B̂ = 1

u (S + 1). It induces a Poisson bracket on a smaller 
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space F′
B̂
= { f ∈ F′|δuf ∈ ImB̂}. The modified Volterra chain (2) is a bi-Hamiltonian system 

for the pair of compatible Hamiltonian operators H1, H2

ut = H1 δu(uu1) = H2 δu ln u.

It follows from theorem 4 in section 3.2 that the sequence RnH1, n ∈ Z, form a family of 
compatible rational Hamiltonian operators for equation (2).

The Modified Volterra equation is also known as discrete modified KdV. Under the Miura 
transformation w  =  uu1, it can be transformed into the Volterra lattice

wt = w(w1 − w−1).� (5)

The integrability of the Volterra system was discovered by Manakov [13] and independently 
by Kac and van Moerbeke [14]. Manakov called it the Langmuir chain since the system (5) 
appeared in the description of the fine structure of the spectra of Langmuir oscillations in a 
plasma by Zakharov et al [15]. One soliton solution of equation (5) was also found in [15]. 
The Volterra lattice can be viewed as a discretisation of the KdV equation and as a special case 
of the generalised Lotka–Volterra model for predator-prey interactions. The Volterra system 
(5) is exceptional, it is the only known scalar bi-Hamiltonian equation which possesses two 
difference Hamiltonian operators (see examples 1 and 2 in section 3.1 of this paper). All other 
known bi-Hamiltonian scalar integrable differential-difference evolutionary equations have at 
least one rational operator in a Hamiltonian pair.

The arrangement of this paper is as follows: in section 2 we introduce notations and recall 
some algebraic properties of the noncommutative ring of difference operators and the skew 
field of rational (pseudo) difference operators, i.e. operators of the form AB−1, where A and B 
are difference operators (a detail description of the properties with proofs the reader can find 
in our recent paper [8]). We then define the Fréchet derivative of rational operators, introduce 
the notion of bi-difference operators and prove two technical lemmas which are used in the 
other sections of the paper.

The main results are presented in section 3 where we explore the interrelations between 
preHamiltonian and Hamiltonian operators. In section 3.1. we show that a Hamiltonian opera-
tor is a skew-symmetric preHamiltonian operator with simple conditions on its coefficients:

		 A difference operator H =
∑N

i=1 h(i)Si − S−ih(i) is Hamiltonian ⇐⇒ H is preHamilto-
nian and h(i) = h(i)(u, ..., ui) for all i = 1, ..., N .

In section  3.2 we discuss the extension of the definition of Hamiltonian difference opera-
tors to the case of rational (pseudo difference) operators. We re-cast the definition of rational 
Hamiltonian operator H  =  AB−1 in terms of its factors (definition 8). It enables us to replace 
a tedious verification of the Jacobi identity for pseudo-difference operators by a relatively 
simple and algorithmic confirmation of two identities for the factors which are difference 
operators. In particular, we need to check that the first factor A is preHamiltonian. We dem-
onstrate that preHamiltonian pairs provide us with a method to find compatible Hamiltonian 
rational operators to a given (rational) Hamiltonian operator. We have shown the following

		 Let H be a rational Hamiltonian operator and A, B be a preHamiltonian pair of differ-
ence operators. Then the rational operator K  =  AB−1H is Hamiltonian if and only if it is 
skew-symmetric. Moreover, it is compatible with H.

In section 4, we apply our theory to a new integrable equation derived by Adler and Postnikov 
[10]:

ut = u2(u2u1 − u−1u−2)− u(u1 − u−1).� (6)
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We show that equation (6) is a Hamiltonian system

ut = Hδu ln u

with the rational Hamiltonian operator

H = u2u1u2
2S2 − S−2u2u1u2

2 + S−1uu1(u + u1)− uu1(u + u1)S
+ u(1 − S−1)(1 − uu1)(Su − uS−1)−1(1 − uu1)(S − 1)u .

In [8] we have found a rational Nijenhuis recursion operator R for equation (6). We show that 
the sequence RnH, n ∈ Z forms a family of compatible rational Hamiltonian operators for (6).

2.  Difference and rational difference operators

In this section, we briefly recall some notations and statements that were introduced and dis-
cussed in detail in section 2 of our paper [8]. In the end of this section, we prove two lemmas 
on (bi)difference operators, which we are going to use in the next section. Although in this 
paper we consider only the scalar case, most of our results can be generalised to the case of 
rational matrix operators.

Let k  be a zero characteristic base field, such as C, R  or Q. We define the polynomial ring

K = k[. . . , u−1, u0, u1, . . .]

in the infinite set of variables {u} = {uk; k ∈ Z} and the corresponding field of fractions

F = k(. . . , u−1, u0, u1, . . .).

Note that every element of K  and F depends on a finite number of variables only.
There is a natural automorphism S  of the field F, which we call the shift operator, defined 

as

S : a(uk, . . . , ur) �→ a(uk+1, . . . , ur+1), S : α �→ α, a(uk, . . . , ur) ∈ F, α ∈ k.

We often use the shorthand notation ai = S i(a) = a(uk+i, . . . , ur+i), i ∈ Z, and omit the index 
zero in a0 or u0 when there is no ambiguity. The field F equipped with the automorphism S  is 
a difference field and the base field k  is its subfield of constants.

The partial derivatives ∂
∂ui

, i ∈ Z are commuting derivations of F satisfying the conditions

S ∂

∂ui
=

∂

∂ui+1
S .� (7)

A derivation of F is said to be evolutionary if it commutes with the shift operator S . Such a 
derivation is completely determined by one element of a ∈ F and is of the form

Xa =
∑
i∈Z

S i(a)
∂

∂ui
, a ∈ F.� (8)

The element a is called the characteristic of the evolutionary derivation Xa. For b ∈ F element 
Xa(b) ∈ F can also be represented in the form

Xa(b) = b∗[a],

S Carpentier et alNonlinearity 33 (2020) 915
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where b*[a] is the Fréchet derivative of b = b(up, . . . , uq) in the direction a, which is defined 
as

b∗[a] :=
d
dε

b(up + εap, . . . , uq + εaq)|ε=0 =

q∑
i=p

∂b
∂ui

ai.

The Fréchet derivative of b = b(up, . . . , uq) is a difference operator represented by a finite sum

b∗ =

q∑
i=p

∂b
∂ui

S i.� (9)

Evolutionary derivations form a Lie k-subalgebra A in the the Lie algebra of derivations 
of the field F. Indeed,

αXa + βXb = Xαa+βb, α,β ∈ k,
[Xa, Xb] = X[a,b],

where [a, b] ∈ F denotes the Lie bracket

[a, b] = Xa(b)− Xb(a) = b∗[a]− a∗[b].� (10)

The bracket (10) is k-bilinear, antisymmetric and satisfies the Jacobi identity. Thus F, equipped 
with the bracket (10), has a structure of a Lie algebra over k .

Definition 1.  A difference operator B of order ord B := (M, N) is a finite sum of the form

B = b(N)SN + b(N−1)SN−1 + · · ·+ b(M)SM , b(k) ∈ F, M � N, N, M ∈ Z,
� (11)

where b(N) and b(M) are non-zero. The term b(N)SN  is called the leading monomial of B. The 
total order of B is defined as OrdB = N − M. The total order of the zero operator is defined 
as Ord 0 := {∞}.

The Fréchet derivative (9) is an example of a difference operator of order ( p, q) and total 
order Ord b∗ = q − p. For an element a ∈ F the order and total order are defined as ord a∗ and 
Ord a∗ respectively.

Difference operators form a unital ring R = F[S ,S−1] of Laurent polynomials in S  with 
coefficients in F, equipped with the usual addition and multiplication defined by

aSn · bSm = aSn(b)Sn+m, a, b ∈ F, n, m ∈ Z.� (12)

This multiplication is associative, but non-commutative. It follows from (12) that zero total 
order operators are invertible.

The ring R is a right and left Euclidean domain and it satisfies the right (left) Ore property, 
that is, for any A, B ∈ R their exist A1, B1, not both equal to zero, such that AB1 = BA1, (resp. 
B1A = A1B). In other words, the right (left) ideal AR∩ BR  (resp. RA ∩RB) is nontrivial. 
Its generator M has total order OrdA + OrdB − OrdD, where D is the greatest left (resp. right) 
common divisor of A and B. The domain R can be naturally embedded in the skew field of 
rational pseudo-difference operators.

Definition 2.  Rational pseudo-difference operators are elements of

Q = {AB−1 |A, B ∈ R, B �= 0}.

We shall call them rational operators for simplicity.
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Any rational operator L  =  AB−1 can also be written in the form L = B̂−1Â, Â, B̂ ∈ R and 
B̂ �= 0. Thus any statement for the representation L  =  AB−1 can be easily reformulated to 
the representation L = B̂−1Â. In particular, we have shown in [8] that rational operators 
Q form a skew field with respect to usual addition and multiplication. The decomposition 
L = AB−1, A, B ∈ R of an element L ∈ Q is unique if we require that B has a minimal pos-
sible total order with the leading monomial being 1.

The definition of the total order for difference operators (definition 1) can be extended to 
rational operators:

Ord (AB−1) := Ord A − Ord B, A, B ∈ R.

Definition 3.  A formal adjoint operator A† for any A ∈ Q can be defined recursively by the 
rules: a† = a for any a ∈ F, S† = S−1, (A + B)† = A† + B† and (A · B)† = B† · A† for any 
A, B ∈ Q. In particular (A−1)† = (A†)−1 and (aSn)† = S−na = a−nS−n.

A rational operator K ∈ Q is called skew-symmetric if K† = −K .

While difference operators act naturally on elements of the field F, rational operators can-
not be a priori applied to elements of F. Similarly to the theory of rational differential opera-
tors [16] for L = AB−1 ∈ Q and a, b ∈ F we define the correspondence a  =  Lb when there 
exists c ∈ F  such that a  =  Ac and b  =  Bc.

Finally we define the Fréchet derivative of difference operators and rational difference 
operators.

Definition 4.  The Fréchet derivative of a difference operator B (11) in the direction of 
a ∈ F is defined as

B∗[a] = b(N)
∗ [a]SN + b(N−1)

∗ [a]SN−1 + · · ·+ b(M)
∗ [a]SM .� (13)

Here we can also view B* as a bi-difference operator in the sense that, for a given a ∈ F, 
both B∗[•](a) and B*[a] are in R, i.e. difference operators on F. For convenience, we intro-
duce the notation DB as the following bi-difference operator:

(DB)a(b) = B∗[b](a) for all a, b ∈ F.� (14)

This definition can be naturally extended to rational operators:

(AB−1)∗[c] = A∗[c]B−1 − AB−1B∗[c]B−1.

We complete this section by proving two lemmas on (bi)difference operators, which we are 
going to use in section 3. For a bi-difference operator M and an element a ∈ F we denote the 
difference operator M(a, •) by Ma.

Lemma 1.  Let C and D be two difference operators and P, Q be two bi-difference operators 
on F such that CPa = QaD for all a ∈ F. Then there exists a bi-difference operator M such 
that Pa = MaD for all a ∈ F.

Proof.  There exist two bi-difference operators M and R such that

Pa = MaD + Ra and Ord Ra < Ord D for all a ∈ F.

Indeed, if we write Pa =
∑UP

n=LP
P(n)(a)Sn, P(n) ∈ R and D =

∑UD
k=LD

d(k)Sk, d(k) ∈ F and 

if UP − LP > OrdD = UD − LD , then one can define P̃a = Pa − P(UP)(a)SUP−UD(d(UD))−1D. 
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OrdP̃a < UP − LP for all a ∈ F and we conclude by induction on UP − LP. We know that 
CPa = QaD, that is CRa = NaD, where Na = Qa − CMa for all a ∈ F. Let us assume that 
Ra �= 0. There exist difference operators R(j ) and N(i) such that for all a ∈ F,

Ra =

k∑
j=l

ajR( j), Na =

n∑
i=m

aiN(i).� (15)

In particular OrdR( j) < OrdD for all j = l, ..., k . If fSr is the leading term of C we must have

N(n)D = fSrR(k),� (16)

which implies that OrdR(k) � OrdD contradicting to Ord Ra < Ord D.� □ 

Lemma 2.  Let C, D and E be non-zero difference operators such that C + λD divides 
E on the right for all λ ∈ k . Then there exists a ∈ F and a difference operator X such that 
XC  =  aXD and E  =  XD.

Proof.  We first prove the statement in the case where Ord C = Ord D = 0. Since C and D 
are invertible difference operators, we can assume that C  =  1 and D  =  bSn. We want to show 
that if a difference operator E is divisible on the right by 1 + λbSn  for all λ ∈ k , then n  =  0. 
Assume that n �= 0 and define the difference operator Mλ for λ ∈ k  uniquely by

E = Mλ(1 + λbSn).� (17)

It is clear since n �= 0 that the coefficients of Mλ are elements of F[λ,λ−1]. In other words, 
Mλ is an element of R[λ,λ−1]. We get a contradiction looking at (17) in R[λ,λ−1] since we 
assumed E �= 0. Hence n  =  0.

We now prove the lemma in the general case by induction on Ord E. If Ord E = 0 then 
Ord (C + λD) = 0 for all λ ∈ k , which implies that Ord C = Ord D = 0, which we have 
treated already. Assume then that Ord E > 0 and that C + λD divides E on the right for all 
λ ∈ k . Let MC  =  ND be the left least common multiple (llcm) of C and D. Both C and D 
divide E on the right, hence so does their llcm. Therefore there exists a difference operator G 
such that E  =  GMC  =  GND. As earlier we define for all λ ∈ k  the operator Mλ by

E = Mλ(C + λD).� (18)

Substituting E  =  GMC in (18) and using the definition of the llcm there exist Pλ ∈ R for all 
λ ∈ k  such that

GM − Mλ = PλM; λMλ = PλN.� (19)

Similarly there exist Qλ ∈ R for all λ ∈ k  such that

GN − λMλ = QλN; Mλ = QλM.� (20)

From (19) and (20) we can see that for all λ ∈ k , G = Pλ + Qλ and

GN = Qλ(N + λM); λGM = Pλ(N + λM).� (21)

If Ord C = Ord D = 0 we have nothing to prove. Otherwise, without loss of generality, we 
can assume that Ord D > 0. Hence Ord GN < Ord E . We see from (21) that N + λM divides 
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GN on the right for all λ ∈ k . By the induction hypothesis, one can find a difference operator 
Y and an element a ∈ F such that YN  =  aYM and GN  =  YM. Let X  =  YM. We have XC  =  YM
C  =  YND  =  aYMD  =  aXD, which concludes the proof.� □ 

3.  PreHamiltonian and Hamiltonian operators

In this section, we start by recalling the definitions of preHamiltonian and Hamiltonian dif-
ference operators and pairs. Then we extend the definition to the class of rational (pseudo-
difference) Hamiltonian operators and study their relations with preHamiltonian difference 
operators. In particular, we prove that given a (rational) Hamiltonian operator H, to find a 
Hamiltonian operator compatible to H is the same as to find a preHamiltonian pair A and B 
such that the operator AB−1H is skew-symmetric.

3.1.  Definitions and interrelations with examples

Definition 5.  A difference operator A is called preHamiltonian if Im A is a Lie subalgebra, 
i.e.

[Im A, Im A] ⊆ Im A.� (22)

By direct computation, it is easy to show that (22) is equivalent to the existence of a two-form 
ωA on F, such that (see [17])

A∗[Aa](b)− A∗[Ab](a) = A(ωA(a, b)) for all a, b ∈ F,� (23)

where A* denotes the Fréchet derivative of the operator A. More precisely, ωA is a bi-difference 
operator, i.e. a finite sum of the form

ωA(a, b) =
∑

ω
(i,j)
A S i(a)S j(b), ω

(i,j)
A ∈ F.

Using the notation introduced in (14), the identity (23) is equivalent to

A∗[Aa]− (DA)aA = AωA(a, •) for all a ∈ F.� (24)

The preHamiltonian operator A defines a Lie algebra on F/ kerA with the Lie bracket

A([a, b]A) = [Aa, Ab].

The bracket [a, b]A is anti-symmetric, k-linear and satisfies the Jacobi identity. The latter fol-
lows from the fact that A(F) is a Lie subalgebra with respect to the standard Lie bracket (10).

We can construct higher order preHamiltonian operators from known ones using the fol-
lowing two lemmas. The first one appeared in [17] in the context of scalar preHamiltonian 
differential operators of arbitrary order.

Lemma 3.  Assume that A is a preHamiltonian difference operator. For any difference op-
erator C, the operator AC is preHamiltonian if and only if

ωA(Ca, Cb) + C∗[ACa](b)− C∗[ACb](a) ∈ Im C

for all a, b ∈ F.
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Proof.  On F it should exist a bi-linear from ωAC  such that

AC (ωAC(a, b)) = (AC)∗[ACa](b)− (AC)∗[ACb](a) = A (ωA(Ca, Cb) + C∗[ACa](b)− C∗[ACb](a))

for all a, b ∈ F.� □ 

Remark 1.  If A is a preHamiltonian operator with associated form ωA and Q is an invertible 
difference operator then B  =  AQ is also preHamiltonian. The proof of lemma 3 provides us 
with an explicit expression for ωB

ωB(a, b) = Q−1(ωA(Qa, Qb) + Q∗[Ba](b)− Q∗[Bb](a)).

Lemma 4.  If A and B are preHamiltonian difference operators, then their right least com-
mon multiple is also preHamiltonian.

Proof.  Let M  =  AD  =  BC be the right least common multiple (rlcm) of A and B. Then 
[Im M, Im M] = [Im AD, Im AD] ⊆ [Im A, Im A] ⊆ Im A since A is a preHamiltonian opera-
tor. Similarly, [Im M, Im M] ⊆ Im B. Moreover we have Im M = Im A ∩ Im B (lemma 10 in 
[8]). Therefore, [Im M, Im M] ⊆ Im M .� □ 

Similarly to Hamiltonian operators, in general, a linear combination of two preHamiltonian 
operators is no longer preHamiltonian. This naturally leads to the following definition:

Definition 6.  We say that two difference operators A and B form a preHamiltonian pair if 
A + λB is preHamiltonian for all constant λ ∈ k .

A preHamiltonian pair A and B implies the existence of two-forms ωA, ωB and ωA+λB =  
ωA + λωB. They satisfy

A∗[Ba](b) + B∗[Aa](b)− A∗[Bb](a)− B∗[Ab](a) = AωB(a, b) + BωA(a, b) for all a, b ∈ F.
� (25)

Using the notation introduced by (14), equation (25) is equivalent to

A∗[Ba] + B∗[Aa]− (DA)aB − (DB)aA = AωB(a, •) + BωA(a, •) for all a ∈ F.
� (26)

Proposition 1.  Let A and B be a preHamiltonian pair. If there exists an operator C such 
that AC and BC are both preHamiltonian, then they again form a preHamiltonian pair.

Proof.  Let ωA and ωB be the 2-form associated to preHamiltonian operators A and B, that is,

A∗[Aa] = (DA)aA + AωA(a, •), B∗[Ba] = (DB)aB + BωB(a, •)

for all a ∈ F. The forms ωA and ωB satisfy (25) since A and B form a preHamiltonian pair. Ac-
cording to lemma 3, we know that there exist two bi-difference operators M and N such that 
for all a, b ∈ F

ωA(Ca, Cb) + C∗[ACa](b)− C∗[ACb](a) = CM(a, b);
ωB(Ca, Cb) + C∗[BCa](b)− C∗[BCb](a) = CN(a, b).

Substituting them into (25) for Ca and Cb, we get

(AC)∗[BCa](b) + (BC)∗[ACa](b)− (AC)∗[BCb](a)− (BC)∗[ACb](a) = ACN(a, b) + BCM(a, b),
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which implies that AC and BC for a preHamiltonian pair.� □ 

Before we move on to justify the terminology preHamiltonian, we first recall the definition 
of a Hamiltonian difference operator.

For any element a ∈ F, we define an equivalent class (or a functional) 
∫

a by saying that 
two elements a, b ∈ F are equivalent if a − b ∈ Im(S − 1). The space of functionals is denoted 
by F′. For any functional 

∫
f ∈ F′ (simply written f ∈ F′ without confusion), we define its dif-

ference variational derivative (Euler operator) denoted by δuf ∈ F (here we identify the dual 
space with itself) as

δuf =
∑
i∈Z

S−i ∂f
∂ui

=
∂

∂u

(∑
i∈Z

S−if

)
.

Definition 7.  A difference operator H is Hamiltonian if the bracket

{ f , g}H := ∫ δuf · H(δug)� (27)

defines a Lie bracket on F′.

As in the differential case [18] this definition can be re-cast purely in terms of operators act-
ing on the difference field F and avoiding computations on the quotient space F′ of functionals.

Theorem 1.  A difference operator H is Hamiltonian if and only if H is skew-symmetric and

H∗[Ha]− (DH)aH = H(DH)a
† for all a ∈ F,� (28)

where (DH)a
† is the adjoint operator of (DH)a defined in (14).

Proof.  We first prove the following: if a ∈ F is such that 
∫

a · δuf = 0 for all f ∈ F′, then 
a  =  0. Since (S − 1)F ⊂ ker δu, we have δu(a · δuf ) = 0 for all f ∈ F′. In particular we can 
consider f   =  uuk for k ∈ Z. Let (m, p) be the order of a. We have for all k � 0,

ak + a−k +

p∑
n=m

(uk−n + u−k−n)S−n(
∂a
∂un

) = 0.� (29)

For a given n and for k large enough in (29), after applying ∂
∂un−k

 we get

Sk(
∂a

∂u−n
) = S−n(

∂a
∂un

).� (30)

Since (30) holds for all k large enough, we deduce that ∂a
∂un

= 0. Hence a  =  0.

The anti-symmetry of (27) is equivalent to the skew-symmetry of the operator H. Indeed, 
(27) is anti-symmetric if and only if

∫ δuf · (H + H†)(δug) = 0 for all f , g ∈ F′.� (31)

From what we just proved, this is equivalent to say that (H + H†)(δuf ) = 0 for all f ∈ F′, 
hence that H + H† = 0 since nonzero difference operators have finite dimensional kernel over 
the constants.
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Finally we look at the Jacobi identity. For this, we take a = δuf , b = δug and c = δuh, 
where f , g, h ∈ F′. Note that

{ f , {g, h}H}H = ∫ a · H(δu(b · Hc)) = −∫ Ha · δu(b · Hc) = ∫ Ha · δu(c · Hb)

= ∫(c · Hb)∗[Ha] = ∫ c · (Hb)∗[Ha] + ∫ Hb · c∗[Ha].
� (32)

Similarly, we have

{g, {h, f}H}H = −{g, { f , h}H}H = −∫ c · (Ha)∗[Hb]− ∫ Ha · c∗[Hb].� (33)

As for the third term, we simply write

{h, { f , g}H}H = ∫ c · H(δu(a · Hb)).� (34)

Since c∗ = c†∗, this leads to

{ f , {g, h}H}H + {g, {h, f}H}H + {h, { f , g}H}H

= ∫ c ·
(
(Hb)∗[Ha]− (Ha)∗[Hb] + H(a†∗(Hb) + (Hb)†∗(a))

)
= 0,

which itself is equivalent to

[Hb, Ha] = (Ha)∗[Hb]− (Hb)∗[Ha] = H(a†∗(Hb) + (Hb)†∗(a)).� (35)

Using the notation introduced in (14), we have (Hb)∗ = (DH)b + Hb∗ for all b ∈ F, which 
leads to (Hb)†∗ = (DH)

†
b + b†

∗H† = (DH)
†
b − b†

∗H. Since a* and b* are self-adjoint, we can 
write

a†
∗(Hb) + (Hb)†∗(a) = a∗(Hb)− b∗(Ha) + (DH)

†
b(a).

Moreover, (Ha)∗[Hb] = H∗[Hb](a) + H(a∗[Hb]) = (DH)aHb + H(a∗[Hb]). Therefore from 
(35) we deduce that (28) holds on δuF × δuF. We proved that equation  (35) holds for any 
(a, b) ∈ F × F since it is enough to check that it holds for any (a, b) ∈ V × V , where V  is a 
subspace of F infinite dimensional over the constants, and V = δuF provides us with such a 
subspace.� □ 

This theorem immediately implies that a Hamiltonian operator H is preHamiltonian with

ωH(a, b) = (DH)
†
a(b).� (36)

Note that the skew-symmetry of operator H is a necessary condition since ωH is a two-form. 
This can be used as a criteria to determine whether an operator is Hamiltonian. Using (36), we 
have the following result for scalar difference operators:

Theorem 2.  A skew-symmetric operator H =
∑k

i=1

(
h(i)S i − S−ih(i)

)
 of total order 2k 

(k > 0) is Hamiltonian if and only if it is preHamiltonian and its coefficients h(i) only depend 
on u,...,ui for all i = 1, ..., k.

Proof.  First we assume that H is a Hamiltonian operator, and show that its coefficients h(i) 
only depend on u,...,ui. It follows that H satisfies (28), that is,

H∗[Ha] = (DH)aH + H(DH)a
† for all a ∈ F.� (37)
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This identity is an equality between bi-difference operators, that is between summands of the 
form banSm for b ∈ F and n, m ∈ Z. The left hand side of (37) is a difference operator in S  of 
order (−k, k), or in other words a sum of terms of the form banSm with |m| � k. Hence so must 
be the right hand side of (37) (RHS). We can rewrite the RHS as

k∑
i=1

(ai − a−iS−i)h(i)
∗H −

k∑
i=1

Hh(i)†
∗(aS i − ai).� (38)

In the second term of (38), it is clear that every summand banSm is such that |m − n| � k. Com-
bining this remark with the fact that as a difference operator in S  (38) has order (−k, k), we 
deduce that any subterm banSm appearing in the first term of (38) must be such that |m| � k or 
|m − n| � k. Therefore, given i such that 1 � i � k, as a difference operator in S , a−iS−ih(i)

∗H  
cannot involve powers of S  below S−i−k. This implies that h(i)

∗ does not depend on negative 
powers of S  (recall that H has order (−k, k)). Similarly, the operator aih(i)

∗H  cannot involve 
powers of S  strictly bigger than Sk+i, which implies that h(i)

∗ can only depend on 1, ...,S i.
Conversely, we need to show that a skew-symmetric preHamiltonian operator H such that 

all its coefficients h(i) depend only on u,...,ui is Hamiltonian. For any a ∈ F, we write

Pa = H∗[Ha]− (DH)aH − H(DH)a
†.

We want to prove that Pa is identically zero. Under the assumption, we have that Pa is skew-
symmetric and its total order is at most 4k. We also know since H is preHamiltonian that H 
divides Pa on the left for all a ∈ F. Of course H must also divide Pa on the right since Pa and 
H are both skew-symmetric. Therefore by lemma 1 there exists Q bi-difference operator such 
that Pa = HQaH  for all a ∈ F. Moreover, Qa is skew-symmetric, hence its total order is at 
least 2 if it is non-zero. Therefore Q  =  0.� □ 

A recent classification of low order scalar Hamiltonian operators in the framework of mul-
tiplicative Poisson λ-brackets [19] is consistent with this theorem.

Example 1.  Consider the well-known Hamiltonian operator H = u(S− S−1)u = uu1S− 
S−1uu1 of the Volterra equation ut = u(u1 − u−1). Obviously, H is skew-symmetric and its 
coefficient h(1) = uu1 only depends on u,u1. To conclude that it is indeed Hamiltonian using 
theorem 2, one needs to check that H is preHamiltonian. Indeed, for all a, b ∈ F:

H∗[Ha](b)− H∗[Hb](a) = H
(

1
u
(bH(a)− aH(b))

)
.� (39)

Example 2.  We can do the same for the second Hamiltonian operator of the Volterra equa-
tion

K = u(SuS + uS + Su − uS−1 − S−1u − S−1uS−1)u

= uu1u2S2 + (u2u1 + uu2
1)S − S−1(u2u1 + uu2

1)− S−2uu1u2.

Note that it is skew-symmetric and its coefficients h(1) = u2u1 + uu2
1 depending on u,u1 and 

h(2) = uu1u2 depending on u,u1 and u2. To check that K is preHamiltonian, we denote A = K 1
u 

and it follows from
A∗[Aa](b)− A∗[Ab](a) = A(u(a1b−1 + a1b + ab−1 − a−1b − ab1 − a−1b1)) for all a, b ∈ F.
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In the same manner, we can use (36) to determine a Hamiltonian pair. The operators H and 
K form a Hamiltonian pair if and only if

ωH(a, b) = (DH)
†
a(b),ωK(a, b) = (DH)

†
a(b) and ωH+λK(a, b) = (DH+λK)

†
a(b) for all a, b ∈ F.

Moreover, we are able to prove the statement on the relation between perHamiltonian and 
Hamiltonian pairs.

Theorem 3.  Let A and B be a preHamiltonian pair. Assume that there exists a difference 
operator C such that AC is skew-symmetric and BC is Hamiltonian. Then AC is also Hamilto-
nian and forms a Hamiltonian pair with BC.

In the next section we shall give a more general result in theorem 4 and the proof of the 
above theorem will be a simple corollary. A special case of theorem 3 is when the operator 
C  =  1, which leads to the following result.

Corollary 1.  Let A and B be a preHamiltonian pair such that A is skew-symmetric and B is 
Hamiltonian. Then A is also Hamiltonian and forms a Hamiltonian pair with B.

Example 3.  Consider the Volterra chain ut = u(u1 − u−1). It possesses a recursion operator

R = AB−1, where A = u(S + 1)(uS − S−1u), B = u(S − 1),

and A, B form a preHamiltonian pair. Take C = (1 + S−1)u. In example 1, we verified that 
BC is Hamiltonian. Notice that AC is skew-symmetric. Using the above theorem, we obtain 
that it is a Hamiltonian operator and forms a Hamiltonian pair with BC.

3.2.  Generalisation to rational difference operators

In examples 1–3 we illustrated our theory using the Hamiltonian structure of the Volterra hier-
archy. Actually, the Volterra equation is the only example known to us of a scalar nonlinear 
difference equation possessing a compatible pair of difference Hamiltonian operators4. For 
all other integrable differential-difference equations known to us at least one Hamiltonian is a 
rational (pseudo-difference) operator. In this section we give all required definitions, develop 
the theory of rational Hamiltonian operators and study their relations with pairs of preHamil-
tonian difference operators.

Let H be a skew-symmetric operator with a decomposition H  =  AB−1. It is defined on the 
following subspace of F′ denoted by F′

B, that is,

F′
B = { f ∈ F′|δuf ∈ Im B}.� (40)

Note that if a difference operator C divides B on the left, then F′
B ⊆ F′

C since Im B ⊆ Im C.

Example 4.  The domain of the rational operator H1 with the decomposition 
u(S − 1)( 1

u (S + 1))−1 introduced for the modified Volterra chain (4) is

{ f ∈ F′|
∑

n

∂fn
∂u

∈ 1
u
(S + 1)F}.

4 In the recent preprint [19] the authors classified difference Hamiltonian operators of total order less or equal to 10. 
However, it turned out that for the Hamiltonian pairs appeared in this classification, the hierarchies obtained through 
the Lenard scheme techniques were all equivalent to the Volterra chain [20].
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It follows from H† = −H  that

B†A = −A†B.� (41)

The pair A, B naturally defines an anti-symmetric bracket {•, •}A,B : F′
B × F′

B �→ F′
B . For 

f , g ∈ F′
B there exist a, b ∈ F such that Ba = δuf  and Bb = δug. Then the bracket {f ,g}A,B can 

be defined as follows (see (27))

{ f , g}A,B = ∫ Ba · Ab.� (42)

It is independent on the choice of a and b. Indeed,

∫ δuf · Ab = ∫ Ba · Ab = ∫ a · B†Ab = −∫ a · A†Bb = −∫ Aa · δug,

since A†B is skew-symmetric (41). This also implies that the bracket {•, •}A,B itself is 
anti-symmetric:

{ f , g}A,B = ∫ δuf · Ab = −∫ Aa · δug = −{g, f}A,B.

Proposition 2.  Let A and B be two difference operators such that their ratio AB−1 is skew-
symmetric and such that the bracket {•, •}A,B is a Lie bracket on F′

B. Assume that the form 
∫(r · δuf ), where r ∈ F, f ∈ F′

B is non-degenerate. Then the operator A is preHamiltonian 
satisfying

A(ωA(a, •)) = A∗[Aa]− (DA)aA, ∀a ∈ F,� (43)

and the operator B satisfies

B∗[Aa]− (DB)aA + (DB)
†
aA + (DA)

†
aB = B(ωA(a, •)), ∀a ∈ F.� (44)

Proof.  We know that {•, •}A,B is a Lie bracket on F′
B, which implies that { f , g}A,B ∈ F′

B  
for all f , g ∈ F′

B and thus δu{ f , g}A,B ∈ B(F). Let W be the k-linear space W = {a ∈ F |
(Ba)∗ = (Ba)†∗} , or in other words for any element a ∈ W  there exists f ∈ F′

B  such that 
Ba = δuf . The space W is infinite dimensional over k  since the form ∫(r · δuf ) is non-degen-
erate. For all a, b ∈ W  we have

δu(Ba · Ab) = (Ba)†∗(Ab) + (Ab)†∗(Ba) = (Ba)∗[Ab] + (Ab)†∗(Ba)

= B∗[Ab](a) + Ba∗[Ab] + b†∗A†B(a) + (DA)
†
c(Ba)

= B∗[Ab](a) + Ba∗[Ab]− b†∗B†A(a) + (DA)
†
b(Ba)

= B∗[Ab](a) + Ba∗[Ab]− (Bb)†∗(Aa) + (DB)
†
b(Aa) + (DA)

†
b(Ba)

= B∗[Ab](a) + Ba∗[Ab]− (Bb)∗(Aa) + (DB)
†
b(Aa) + (DA)

†
b(Ba)

=
(

B∗[Ab]− (DB)bA + (DB)
†
bA + (DA)

†
bB

)
(a) + B (a∗[Ab]− b∗[Aa]) .

This implies the existence of a form ω  such that for all a ∈ F,

B∗[Aa]− (DB)aA + (DB)
†
aA + (DA)

†
aB = B(ω(a, •)).

Indeed, if M is a bi-difference operator such that M(a, b) ∈ Im B for all a, b ∈ V , where V  is 
a subspace of F infinite-dimensional over k , then there exists a bi-difference operator N such 
that M(a, b) = B(N(a, b)) for all a, b ∈ F. In terms of ω  we have for all a, b ∈ W
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B(ω(a, b) + b∗[Aa]− a∗[Ab]) = δu(Bb · Aa).� (45)

Let f , g, h ∈ F′
B be such that δuf = Ba, δug = Bb, and δuh = Bc  for some a, b, c ∈ W . The first 

term in the Jacobi identity is

{ f , {g, h}A,B}A,B = −∫ B(a) · A(ω(b, c) + c∗[Ab]− b∗[Ab]).

The second term is:

{g, {h, f}A,B}A,B = ∫ Ab · δu(Bc · Aa) = −∫ Ab · δu(Ba · Ac)

= −∫ Ab · (Ba)†∗(Ac)− ∫ Ab · (Ac)†∗(Ba) = −∫ Ab · (Ba)∗[Ac]− ∫ Ba · (Ac)∗[Ab]

and similarly, the third term is

{h, { f , g}A,B}A,B = ∫ Ac · δu(Ba · Ab) = ∫ Ac · (Ba)∗[Ab] + ∫ Ba · (Ab)∗[Ac].

Hence we get

∫ Ba · (A(ω(b, c) + c∗[Ab]− b∗[Ac]) + (Ab)∗[Ac]− (Ac)∗[Ab]) = 0.� (46)

Therefore

A (ω(a, b)) = A∗[Aa](b)− A∗[Ab](a)� (47)

for all a, b ∈ W . Since W is infinite-dimensional over k , (47) holds for all a, b ∈ F, which is 
to say that A is preHamiltonian.� □ 

The converse statement is also true:

Proposition 3.  Let A and B be two difference operators such that their ratio H  =  AB−1 
is skew-symmetric. Assume that the operator A is preHamiltonian , i.e. there exists a 2-form 
ωA such that (43) holds and that the operator B satisfy the equation (44). Then the bracket 
{•, •}A,B is a Lie bracket on F′

B.

Proof.  The bracket {•, •}A,B is well-defined on F′
B. Indeed, for all a, b ∈ W  equation (45) 

holds. Moreover, since A is preHamiltonian, equation  (46) is satisfied for all a, b, c ∈ W . 
Therefore the bracket {•, •}A,B satisfies the Jacobi identity.� □ 

Proposition 3 can be seen as an analogue of proposition 7.8 in [21] in the case of rational 
differential Hamiltonian operators, which has been proven by methods of Poisson vertex alge-
bras. Note that in the proof of proposition 3 we do not make any assumptions on the dimen-
sion of the space F′

B. In particular we do not require the form ∫(r · δuf ) to be non-degenerate. 
Although the properties of the Poisson bracket, such as anti-symmetry and Jacobi identity 
have to be verified only on the elements of F′

B, the operator identities obtained are satisfied on 
all elements of F. This reflects the Substitution Principle (see [22], exercise 5.42). In general 
it is very difficult to characterise the space F′

B, the substitution principle enables us to check 
the identities over the difference field F. Having it in mind and as well the propositions 2 and 
3 we can give a new and easily verifiable definition of a rational Hamiltonian operator.

Definition 8.  Let H be a skew-symmetric rational operator. We say that H is Hamiltonian if 
there exists a decomposition H  =  AB−1 such that the operator A is preHamiltonian, i.e. if there 
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is a 2-form ωA such that for all a ∈ F

A(ωA(a, •)) = A∗[Aa]− (DA)aA� (48)

and if the operators A and B satisfy

B∗[Aa]− (DB)aA + (DB)
†
aA + (DA)

†
aB = B(ωA(a, •)) for all a ∈ F.� (49)

Remark 2.  Note that if a decomposition H  =  AB−1 satisfies equations (48) and (49), then 
so does a minimal decomposition of H = A0B0

−1. Indeed if a pair of difference operator A, 
B such that A is prehamiltonian and equation (49) is satisfied has a common right factor, i.e. 
A  =  A0C and B  =  B0C, then A0 is preHamiltonian and the pair A0, B0 satisfies (49) as well.

Remark 3.  Taking B  =  1 in definition 8 of rational Hamiltonian operators, one recovers the 
definition 7 of Hamiltonian difference operator. In the sequel, we will say Hamiltonian opera-
tor to refer to a (a priori rational) operator in Q satisfying definition 8.

Definition 8 can also be viewed as direct generalisation of theorem 1 as explained in the 
following statement.

Proposition 4.  Let H be a skew-symmetric rational operator with minimal decomposition 
H  =  AB−1. If H satisfies (28) for all a in the images of operator B, then there is a 2-form ωA 
satisfying (48) and (49) for all a ∈ F.

Proof.  For H  =  AB−1, we have H∗ = A∗B−1 − AB−1B∗B−1. Taking a = Bb, b ∈ F , we get

(DH)a = (DA)b − AB−1(DB)b.

Thus identity (28) leads to

A∗[Ab]− AB−1B∗[Ab]− (DA)bA + AB−1(DB)bA = AB−1
(
(DA)b

†B + (DB)b
†A

)
,

where we used H being skew-symmetric, that is,

A∗[Ab]− (DA)bA = AB−1
(

B∗[Ab]− (DB)bA + (DA)b
†B + (DB)b

†A
)

.� (50)

Let CA  =  DB be the left least common multiple of the pair A and B. It is also the right least 
common multiple of the pair C and D since AB−1 is minimal. It follows from (50) that

C (A∗[Ab]− (DA)bA) = D
(

B∗[Ab]− (DB)bA + (DA)b
†B + (DB)b

†A
)

.

Therefore there exists a two-form denoted by ωA satisfying (48) and (49).� □ 

Example 5.  We check that the operator H1 defined by (4) is indeed Hamiltonian. Note that

H1 = AB−1, A = u(S − 1), B =
1
u
(S + 1).

It is obviously skew-symmetric. For any a, b ∈ F we have A∗[Aa](b) = u(a1 − a)(b1 − b). 
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Hence A is preHamiltonian with ωA = 0. We have (DA)a = a1 − a and (DB)a = − 1
u2 (a1 + a). 

Thus we have

B∗[Aa] = −1
u
(a1 − a)(S + 1),(DB)aA =

1
u
(a1 + a)(S − 1),

(DB)
†
aA =

1
u
(a1 + a)(S − 1),(DA)

†
aB =

1
u
(a1 − a)(S + 1).

Therefore, (49) is satisfied and H1 is a Hamiltonian operator.

We now investigate how preHamiltonian pairs relate to Hamiltonian pairs.

Proposition 5.  Let A and B be compatible preHamiltonian operators. Assume that there 
exists a difference operator C such that BC−1 is skew-symmetric, B and C satisfy (49) and 
AC−1 is skew-symmetric. Then the operators A and C satisfy (49). In particular, the rational 
operator AC−1 is Hamiltonian.

Proof.  Since the difference operators A and B form a preHamiltonian pair, for all a ∈ F we 
have

A∗[Aa]− (DA)aA = AMa;� (51)

B∗[Ba]− (DB)aB = BNa;� (52)

A∗[Ba] + B∗[Aa]− (DB)aA − (DA)aB = ANa + BMa,� (53)

where Ma = ωA(a, •) and Na = ωB(a, •). From the assumption, we know that

C∗[Ba] + (DB)
†
aC + (DC)

†
aB − (DC)aB = CNa.� (54)

We need to prove that the operators A and C satisfy (49), that is, for all a ∈ F,

C∗[Aa] + (DA)
†
aC + (DC)

†
aA − (DC)aA = CMa.� (55)

Let Σ be the difference of the LHS with the RHS of (55). We are going to show that both 
A†Σ and B†Σ are skew-symmetric. We know that the rational operators AC−1 and BC−1 are 
skew-symmetric, that is, A†C  and B†C  are skew-symmetric. We first prove that A†Σ is skew-
symmetric. In the following we use the notation ≡ to say that two operators are equal up to 
adding an skew-symmetric operator. We have

A†Σ = A†C∗[Aa] + A†(DA)
†
aC + A†(DC)

†
aA − A†(DC)aA − A†CMa

≡ A†C∗[Aa] + A†(DA)
†
aC − A†CMa

≡ −A†
∗[Aa]C + A†(DA)

†
aC + C†AMa

≡ −M†
a A†C + C†AMa ≡ 0

since A†C  is a skew-symmetric operator and A is a preHamiltonian operator. We now check 
that B†Σ is also skew-symmetric:
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B†Σ = B†C∗[Aa] + B†(DA)
†
aC + B†(DC)

†
aA − B†(DC)aA − B†CMa

≡ −B†
∗[Aa]C + B†(DA)

†
aC + B†(DC)

†
aA − B†(DC)aA − B†CMa

≡ A∗[Ba]†C − A†(DB)
†
aC − N†

a A†C − M†
a B†C

+ B†(DC)
†
aA − B†(DC)aA + C†BMa

≡ −A†C∗[Ba]− A†(DB)
†
aC + N†

a C†A + B†(DC)
†
aA − B†(DC)aA

≡ −A†C∗[Ba]− A†(DB)
†
aC + C∗[Ba]†A + C†(DB)aA

≡ 0.

We used relations (52)–(54) and the fact that A†C  and B†C  are skew-symmetric operators. By 
now, we have proved that

A†Σ = −Σ†A and B†Σ = −Σ†B.� (56)

This leads to that for all λ ∈ k  we have (A + λB)†Σ = −(Σ)†(A + λB). By lemma 1 it im-
plies that (A + λB) divides Σ on the right for all λ ∈ k . If Σ �= 0, it follows from lemma 
2 that there exists b ∈ F and X ∈ R  such that XB  =  bXA. Hence we have H  =  AC−1 and 
X−1bXH = BC−1 are both skew-symmetric, that is bH̃ = H̃b and H̃ = XHX†. This can only 
be the case if b ∈ k  is a constant. But in this case we have nothing to prove. Thus Σ = 0 im-
plying that AC−1 is a Hamiltonian operator by definition 8.� □ 

The above proposition shows that for a preHamiltonian pair A and B, if there is a differ-
ence operator C such that the ratio with one of them is a Hamiltonian operator, so is the ratio 
with another one if it is skew-symmetric. We will give much stronger result in the following 
theorem:

Theorem 4.  Let A and B be compatible preHamiltonian operators and H be a rational 
Hamiltonian operator. Then, provided that K  =  AB−1H is skew-symmetric, it is Hamiltonian 
and compatible with H.

Proof.  Let CD−1 be a minimal decomposition of H. We start by writing B−1C as a right frac-
tion using the Ore condition BG  =  CP. We only need to check that AG and BG are compatible 
preHamiltonian operators and that the pair CP and DP satisfies (49). Since K  =  (AG)(DP)−1, 
we will then be able to conclude using proposition 5.

We are going to prove that AG is preHamiltonian by making use of lemma 4: if two dif-
ference operators are preHamiltonians, then their rlcm is preHamiltonian as well. The key 
is to write AG as the rlcm of two preHamiltonian operators. A priori B and C do not need 
to be left coprime. Let us write B = EB̃ and C = EC̃ , where B̃ and C̃ are left coprime. 
Since K and CD−1 are skew-symmetric, we have P†D†AG = −G†A†DP and C†D = −D†C. 
Therefore D†AG = C̃†X  and A†DP = −B̃†X  for some difference operator X since we have 
G†B† = P†C†. C and D are right coprime, hence a fortiori C̃ and D are right coprime. It fol-
lows that D† and C̃† are left coprime. Therefore there exist two difference operators Y and 
Z with Ord Y = Ord C̃ and Ord Z = Ord D such that D†Y = C̃†Z is the rlcm of D† and C̃†. 
From C†D = −D†C we see that Y divides C on the left hence that it is preHamiltonian (any 
left factor of a preHamiltonian operator is preHamiltonian). AG is the rlcm of Y and A. Indeed, 
from D†AG = C̃†X  we see that Y divides AG on the left. Moreover Ord Y = Ord C̃ = Ord G 
by definition of G, Y and C̃. AG is the rlcm of two preHamiltonian operators, hence it is pre-
Hamiltonian.
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The exact same argument to get AG being preHamiltonian can be applied to K + λCD−1 
for any λ ∈ k . It amounts to replace AG by AG + λBG . Therefore, we have proved that the 
two difference operators AG and BG form a compatible pair of preHamiltonian operators. Let 
us call N the bi-difference operator associated to BG  =  CP (that is to say ωBG(a, •) = Na for 
all a ∈ F).

Next we want to check that operators CP and DP satisfies (49). We already know that 
CP  =  BG is preHamiltonian, with bi-difference operator N. Hence, we need to verify that for 
all a ∈ F

(DP)∗[CPa] + (DCP)
†
aDP + (DDP)

†
aCP − (DDP)aCP = DPNa,� (57)

which follows from

CPaP = PNa + (DP)aCP − P∗[CPa],� (58)

where Ca is the bi-difference operator associated to the preHamiltonian C (i.e. Ca = ωC(a, •) 
for all a ∈ F). Indeed (recall that BG  =  CP), we have

CPNa = (CP)∗[CPa]− (DCP)aCP

= C∗(CPa)P − (DC)CaCP + CP∗(CPa)− C(DP)aCP

= C(CPaP + P∗(CPa)− (DP)aCP)

and we can simplify on the left by C since R is a domain. One deduces (57) from (58) multi-
plying on the left (58) by D and using the fact that the operators C and D satisfy (49).

By proposition 5, we obtain that AG and DP satisfy (49). In other words, K  =  (AG)(DP)−1 
is a Hamiltonian operator under the assumption that it is skew-symmetric. The same proof 
holds when replacing A by A + λB for λ ∈ k  and thus H and K are compatible.� □ 

This result is very strong. Theorem 3 corresponds to the special case when the Hamiltonian 
operator H  =  BC.

Example 6.  Consider the Narita–Itoh–Bogayavlensky lattice [23–25] of the form

ut = u(u1u2 − u−1u−2). It possesses a Nijenhuis recursion operator [26]

R = u(S2 − 1)−1(S − S−2)(S2uu1 − uu1S−1)(Suu1 − uu1S−1)−1(u1u2S3 − uu1)(S − 1)−1 1
u

= AB−1, B = u(S − 1)(Sa1 + b − S−1a)(S∆1 +∆),

where

a = uu−1 − u−1u−2; b = u1u−2 − uu−1;

∆ = u2
−3u−2u − u−3u−1u2 + u−4u−3u−2u−1 − u−4u−3u−1u + u−3u−2uu1 − u−2u−1uu1

and a rational Hamiltonian operator

H = uS−1(S3 − 1)(S + 1)−1u,

which can be proved as in example 5 following definition 8. Using the procedure described in 
the proof of proposition 6 in the next section we show that the operator B is preHamiltonian. 
Since R is Nijenhuis, thus A and B form a preHamiltonian pair [8]. It is easy to verify that RH 
is skew-symmetric, hence by theorem 4 the rational operator RH is a Hamiltonian operator.
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Theorem 5.  Let H and K be two compatible rational Hamiltonian operators. Then there 
exist two compatible preHamiltonian operators A and B such that HK−1 = AB−1.

Proof.  Let CD−1 (resp. PQ−1) be a minimal presentation of H (resp. K). Let DM  =  QN be 
the least right common multiple of D and Q and λ ∈ k . Then H + λK which by hypothesis 
is Hamiltonian can be rewritten as (CM + λPN)(DM)−1. For infinitely many λ, CM + λPN  
and DM  =  QN are right coprime. Hence CM + λPN  is preHamiltonian for infinitely many 
constants λ ∈ k . Notice that HK−1 = (CM)(PN)−1. We conclude the proof letting A  =  CM 
and B  =  PN.� □ 

Combining theorem 4 and 5, we are able to prove the following known statement:

Corollary 2.  Let H and K be two rational compatible Hamiltonian operators. Define 
L  =  HK−1. Then operator LnH is Hamiltonian for all n ∈ Z.

4.  An application to Hamiltonian integrable equations

In our recent paper [8] we constructed a recursion operator for the Adler–Postnikov 
equation [10]

ut = u2(u2u1 − u−1u−2)− u(u1 − u−1) := c� (59)

using its (rational) Lax representation. In this section, we show that it is a Hamiltonian system. 
We start by introducing some relevant basic definitions for differential-difference equations.

There is a bijection between evolutionary equations

ut = a, a ∈ F� (60)

and evolutionary derivations of F. With equation (60) we associate the vector field Xa.

Definition 9.  An evolutionary vector field with characteristic b ∈ F is a symmetry of equa-
tion (60) if [b, a] = 0.

The k-linear space of symmetries of an equation forms a Lie algebra. The existence of an 
infinite dimensional commutative Lie algebra of symmetries is a characteristic property of an 
integrable equation and it can be taken as a definition of integrability.

Often symmetries of integrable equations can be generated by recursion operators [27]. 
Roughly speaking, a recursion operator is a linear operator R : F → F mapping a symmetry to 
a new symmetry. For an evolutionary equation (60), it satisfies the following rational operator 
equation in Q

Rt = R∗[a] = [a∗, R].� (61)

It was shown in [9] for the differential case and in [8] for the difference case that a neces-
sary condition for a rational operator R to generate an infinite dimensional commutative Lie 
algebra of symmetries is to admit a decomposition R  =  AB−1 where A and B are compatible 
preHamiltonian operators. It follows then that R is Nijenhuis, and in particular that R is also a 
recursion operator for each of the evolutionary equations in the hierarchy ut = Rk(a), where 
k = 0, 1, 2, . . . . An alternative method for proving the locality of the hierarchy generated by 
a Nijenhuis operator is given in [26].
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Definition 10.  An evolutionary equation  (60) is said to be a Hamiltonian equation  if 
there exists a Hamiltonian operator H and a Hamiltonian functional 

∫
f ∈ F′ such that 

ut = a = Hδu
∫

f .
This is the same as to say that the evolutionary vector field a is a Hamiltonian vector field 

and thus the Hamiltonian operator is invariant along it, that is,

Ht = H∗[a] = a∗H + Ha†∗,� (62)

which follows immediately from equation (28) and the fact that for b ∈ F, b∗ = b∗† if and 
only if b is a variational derivative.

We now recall some relevant results for the equation (59) in [8]. The equation (59) pos-
sesses a recursion operator:

R = u
(
u(S2 − S−1)u + S−1 − 1

)
(Su − uS−1)−1 (u(S − S−2)u(S2 + S + 1) + S2 − S

)
(S2 − 1)−1 1

u

+ u(2S−1u − S−2u − Su + u − uS)(S2 + S + 1)(S2 − 1)−1 1
u

.

�
(63)

The rational operator R can be factorised as R  =  AB−1, where the operators A and B form a 
preHamiltonian pair. We have proved the following statement:

		 There exists d(n) ∈ F , n � 1 such that c(n+1) = B(d(n+1)) = A(d(n)) ∈ K for all n and 
[c(n), c(m)] = 0 for all n, m � 1.

Thus c(n) = Rn−1c, n ∈ N is a well defined hierarchy of local symmetries of equation (59).
In what follows, we show that the system (59) is Hamiltonian. Let H be the following skew-

symmetric rational operator

H = u2u1u2
2S2 − S−2u2u1u2

2 + S−1uu1(u + u1)− uu1(u + u1)S
+ u(1 − S−1)(1 − uu1)(Su − uS−1)−1(1 − uu1)(S − 1)u.

� (64)

Note that the equation (59) can be written in the form ut = Hδu ln u. We are going to prove 
that H is a Hamiltonian operator.

The operator (64) can be represented in the factorised form H  =  CG−1, where C, G  are dif-
ference operators. Indeed, it is easy to verify that

(1 − uu1)(S − 1)uG = (Su − uS−1)E

where

G = u1v2(u2v1 − u1v3)S − (u2v2v−1 − u1u−1v1v) + u−1v−1(u−2v − u−1v−2)S−1,
E = v2vu(u−1v1 − uv−1) + v2vu1(u2v1 − u1v3)S

and v = 1 − u−1u. Thus H  =  CG−1, where

C = (u2u1u2
2S2 − S−2u2u1u2

2 + S−1uu1(u + u1)− uu1(u + u1)S)G + u(1 − S−1)(1 − uu1)E.

We have C = C(3)S3 + · · ·+ C(−3)S−3, where

C(3) = u2u1u2
2u3(1 − u3u4)(u4 − u3 − u2u3u4 + u3u4u5).

Proposition 6.  The operator H given by (64) is a Hamiltonian operator.

Proof.  We prove the statement by a direct computation. First we need to show that C is 
a preHamiltonian difference operator. Namely, we need to prove the existence of the form 
ωC(a, b) =

∑
n>m ωn,m(Sn(a)Sm(b)− Sn(b)Sm(a)), ωn,m ∈ F  satisfying the equation
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C(ωC(a, b)) = C∗[C(a)](b)− C∗[C(b)](a), ∀a, b ∈ F� (65)

and find its entries ωn,m explicitly. The order of the operator C is (−3, 3). The right hand side 
of (65) is a difference operator of order (−8, 8) acting on a (same for b). Thus ω(a, b) should 
be a difference operator of order (−5, 5) acting on a (same for b). Equation (65) represents the 
over-determined system of 50 linear difference equations on 20 non-zero entries ωn,m. We or-
der this system of equations according to the lexicographic ordering for products of variables 
ai = S i(a), bj = S j(b), namely aibj > anbm if i  >  n or if i  =  n and j   >  m. In this ordering of 
the basis the equations on ωn,m have a triangular form and can be solved consequently. The 
highest equation, corresponding to a8b3, is of the form

C(3)S3(ω5,0) = u2u1u2
2u2

3u4(−1 + u3u4)u2
5u6u2

7u8(−1 + u8u9)(u8 − u9 + u7u8u9 − u8u9u10).

Thus

ω5,0 =
uu1u2

2u3u2
4u5(1 − u5u6)(u4u5u6 − u5u6u7 + u5 − u6)

u−1u1u − u1u2u + u − u1
.

Then we eliminate ω5,0 and its shifts from the system obtained. Consequently we can find all 
twenty nonzero entries ωn,m = −ωm,n, where

−5 � m � 0 � n � 5, n � n − m � 5

and check the consistency of the system (65). In order to complete the proof we need to verify 
the identity

G∗[Ca]− (DG)aC + (DG)
†
aC + (DC)

†
aG = G(ωC(a, •)) for all a ∈ F,

which we have done by a direct substitution.� □ 

Theorem 6.  Let K  =  RH. Then K is skew-symmetric and hence K is a Hamiltonian opera-
tor.

Proof.  R is a recursion operator for ut  =  c, which means that

R∗[c] = c∗R − Rc∗.� (66)

H is a Hamiltonian operator and ut  =  c is Hamiltonian for H with density ln u, which means 
that

H∗[c] = c∗H + Hc∗†.

It is immediate that

K∗[c] = c∗K + Kc∗†.

Let L = K + K†. We want to check that L  =  0. We have

L∗[c] = c∗L + Lc∗†.
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If we consider the degree of u and its shifts, we can write K = K(0) + K(2) + K(4) + K(6) + K(8).  
Moreover, K(0) = R(−1)H(1) and K(8) = R(3)H(5) are obviously skew-symmetric since 
R(−1) (resp. R(3)) is recursion for ut = u(u1 − u−1) (resp. ut = u2(u1u2 − u−1u−2)) and 
ut = u(u1 − u−1) (resp. ut = u2(u1u2 − u−1u−2)) is Hamiltonian for H(1) (resp. H(5)). There-
fore we can write L = L(2) + L(4) + L(6). Let a = u2(u1u2 − u−1u−2). Then

L(6)
∗[a] = a∗L(6) + L(6)a∗†.

If P is a Laurent series in S−1 such that its coefficients are homogeneous of degree n and

P∗[a] = a∗P + Pa∗
†

it is straightforward looking at the leading term of P to see that n  =  3k  +  2 for some integer 
k. In that case, the order of P is 2k. Therefore L(6) = L(4) = 0 and L  =  L(2), with L of order 0. 
But we must also have

L∗[b] = b∗L + Lb∗†,

where b = u(u1 − u−1). But the only solution to this equation is L  =  u(S  −  S−1)u which has 
order 1. Therefore L  =  0. We know that R  =  AB−1 and A, B form a preHamiltonian pair. It 
follows from theorem 4 that the operator K  =  RH is Hamiltonian.� □ 

Theorem 7.  Let φ ∈ k[X, X−1]. Then φ(R)H  is a Hamiltonian operator.

Proof.  We know from [8] that R generates the hierarchy of (59). therefore φ(R) also gen-
erates an arbitrary large set of commuting flows. From theorem 5 in [8] we see that a mini-
mal decomposition of φ(R) must come from a pair of compatible preHamiltonian operators. 
Moreover, φ(R)H  is skew-symmetric. We conclude with theorem 4.� □ 

Theorem 8.  Every element in the hierarchy utn = c(n) is a Hamiltonian system with respect 
to the Hamiltonian operator H.

Proof.  We proceed by induction on n � 1. We know that the first equation can be written as 
ut  =  H(1/u). Let us assume that the first n equation are Hamiltonian for H. Let ut  =  a be the 
nth equation of the hierarchy and ut  =  b be the (n + 1)th equation. By the induction hypoth-
esis, a = H( f ) for some variational derivative f . Moreover, b = R( f ). Since RH = HR† and 
the total order of a reduced denominator for RH is 6, b is in the image of a reduced numerator 
for H. As was noticed at the end of section 4, since b is in the image of a reduced numerator of 
H, it is equivalent to say that ut  =  b is Hamiltonian for H and to say that

H∗[b] = b∗H + Hb∗
†.� (67)

Since Rn−1 is recursion for ut  =  b, the previous equation is equivalent to

(Rn−1H)∗[b] = b∗Rn−1H + Rn−1Hb∗
†.� (68)

But this holds thanks to the same principle: Rn−1H is a Hamiltonian rational operator and 
ut = g = Rn−1c is Hamiltonian for Rn−1H.� □ 
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Remark 4.  For instance, the second equation of the hierarchy is

ut2 = RH(δu log u) = Hδu(uu1u2 − u).� (69)

Moreover, it is easy to check that

δu(uu1u2 − u) = u1u2 + u−1u1 + u−1u−2 − 1 = R†(δu log u).

5.  Concluding remarks

In this paper, we have developed the theory of Poisson brackets, Hamiltonian rational opera-
tors and difference preHamiltonian operators associated with a difference field (k, {u},S), 
where k  is a zero characteristic base field of constants, {u} = {. . . u−1, u = u0, u1, . . .} is a 
sequence of a single ‘dependent’ variable and S  is the shift automorphism of infinite order 
such that S : uk �→ uk+1. This formalism is suitable for the description of scalar Hamiltonian 
dynamical systems.

It can be extended to the case of several dependent variables, i.e. the case when 
u = (u1, . . . , uN) is a vector. Some of the definitions concerning the algebra of difference 
and rational operators in the vector case were presented in [8]. The majority of the definitions 
and results of the current paper can be extended to the vector case. This includes the crucial 
propositions 2 and 3, theorems 4 and 5 as well as definitions 1–8. Rational matrix difference 
operators consist of ratios AB−1, where B is a regular matrix difference operator, that is not 
a zero-divisor. The fact that the ring of matrix difference operators is not a domain leads to 
technical difficulties. In particular, a generalisation of theorem 2 to the matrix case is not 
straightforward.

Not all integrable systems of differential-difference equations are bi-Hamiltonian. Some 
systems do possess an infinite hierarchy of commuting symmetries generated by a recursion 
operator which is a ratio of compatible preHamiltonian operators, but cannot be cast in a 
Hamiltonian form for any Hamiltonian operator. For example, let us consider the equation

ut1 = u(u1 − u) := f (1).� (70)

It can be linearised to vt1 = v1 using the substitution u = v1/v := φ, from which we find its 
hierarchy of commuting symmetries, corresponding to vtn = vn, n ∈ Z:

ut0 = 0, utn = (un − u)
n−1∏
k=0

uk := f (n), ut−n =
u−n − u∏n

k=1 u−k
:= f (−n), n � 1.

The recursion operator for the linearised equation is S . Thus the recursion operator for (70) is

R = φ∗Sφ−1
∗ = u(S − 1)u(S − 1)−1S 1

u
, φ∗ =

1
v
S − v1

v2 = u(S − 1)
1
v

.

It generates the hierarchy of symmetries of the system (70) as follows:

R−1( f (1)) = R( f (−1)) = 0, f (n+1) = Rn( f (1)), f (−n−1) = R−n( f (−1)), n > 0.

A minimal decomposition for the recursion operator is given by R  =  AB−1 with

A = u(S − 1)uS , B = u(S − 1)
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and difference operators A, B form a preHamiltonian pair. Indeed, the operator B is the same as 
in example 3 and it is preHamiltonian with the form ωB = 0. The difference operator A  =  BQ, 
where Q = uS is invertible operator. Thus A is also a preHamiltonian operator with the form 
ωA(a, b) = u(a1b − b1a) (see remark 1). It is easy to check that A and B are compatible.

However, the system (70) cannot be cast into a Hamiltonian form for any Hamiltonian 
rational operator H. Indeed, equation (62)

Ht = f (1)
∗ H + Hf (1)

∗
†

has no solutions for H ∈ Q, since the order of f (1)
∗  is (0, 1) while the order of f (1)

∗
†
 is (−1, 0).
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