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1.  Introduction

Supersolid is an exotic state of matter, characterizing by the 
coexistence of solid and superfluid long-range orders [1–4]. 
Combination of these two apparently antithetical properties 
has attracted the attentions of both experimentalists and theo-
rists, and searching for this phase has become one of the main 
subjects of condensed matter and cold atoms physics [5–12]. 
An appropriate ground for searching various supersolid phases 
are quantum spin systems [13–34]. Recently it has been 
shown experimentally that mixed-spin systems, composed of 
two kinds of spin, display various supersolid phases in their 
ground state phase diagrams [35, 36]. Mixed-spin systems are 
a special class of spin models, where their universality class is 
completely different from uniform spin models [37–44, 89]. 
We recently have obtained the ground state phase diagrams 
of two mixed-spin systems on the square lattice with two dif-
ferent arrangements and demonstrated theoretically that aside 

from solid, superfluid and Mott insulating phases, they pos-
sess various supersolid phases in their ground state phase dia-
grams, even in the absence of long-range interactions [45, 46].

In this paper, in the first part we investigate the effects of 
thermal fluctuations on the stability of the ground state phases 
of the mixed-spin systems. Using cluster mean field theory 
(CMFT), we show that, in comparison with the off-diagonal 
superfluid order, the diagonal solid orders are more stable 
against thermal fluctuations. We demonstrate that various 
thermal solids and thermal insulators also emerge around 
the ground state solid and Mott insulating phases. We also 
show that the solid–solid and supersolid-Mott insulator phase 
transitions in these systems maintain first order even at high 
temperatures where the ground state phases around these 
transition points are washed out completely.

In the second part of this paper, we study thermodynamic 
properties and magnetocaloric effect (MCE) of the models. 
MCE, introduced by Warburg [47], is the temperature 
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variations of the magnetic systems in response to the adiabatic 
changes of magnetic field. In general, due to the accumula-
tion of entropy in the vicinity of the transitions [48–50], MCE 
highly enhances near the quantum phase transitions [49–62], 
so it would be an empirical quantity for measuring exper
imental phase diagram of different systems [63–71]. Aside 
form the fundamental interests, the magnetocaloric effect has 
great importance for magnetic cooling techniques. Certain 
progress has also been achieved to utilize this technique for 
room temperature refrigeration [72–80]. Different parameters 
affect the cooling rate. For example it has been shown that 
the higher the density of the magnetic moments and their spin 
number, the greater the cooling power of a refrigerant is [48]. 
Also, residual entropy in the frustrated spin systems results 
the larger cooling rate [48, 52, 53, 76, 81–85]. Moreover it 
is known that the magnetocaloric effect is quite large in fer-
rimagnetic materials [50, 86–88].

In this paper we study the MCE in the two different frus-
trated mixed-spin systems on the square lattice. We demon-
strate that at low temperatures, a large cooling rate is seen 
in the vicinity of the solid-supersolid, solid-superfluid and 
Mott insulator-superfluid quantum critical points, with the 
large accumulation of the entropy and the minimums of the 
isentropes. Up to our knowledge, this is the first study about 
the MCE in the supersolid phases, which a large cooling rate 
around this phase in addition to the multi-peak structure of the 
specific heat could be a signature of this phase.

This paper is organized as follows. In section 2, we intro-
duce our frustrated mixed-spin models on the square lattice 
with two different arrangements. In section  3, we briefly 
review the CMFT ground state phase diagrams of the intro-
duced models, and investigate the effects of thermal fluc-
tuations on the stability of the ground state phases. In this 
section  we also present the temperature phase diagram of 
the systems. In section 4, we study the isothermal and also 
temperature variations of different thermodynamic functions, 
such as magnetization, magnetic susceptibility, specific heat 
and entropy. The magnetocaloric effects in different phases 

are also investigated in this section. Finally, we will summa-
rize our results and give the concluding remarks in section 5.

2.  Mixed-spin-(1, 1/2) system with different 
arrangements

We consider a two-dimensional mixed-spin system, composed 
of two different spins: τ = 1 and σ = 1/2, interacting via the 
following Hamiltonian:

H = Hσ + Hτ + Hστ ,� (1)

where Hσ, Hτ , and Hστ  include the interactions between 
spins σ, spins τ , and spins σ and τ , respectively. Depending 
on the sequences of the spins σ and τ  on the square lattice, 
two different arrangements are considered in this paper. The 
first is an staggered mixed-spin system where each spin-1/2 
is surrounded by four spins τ  (SMS model) and the second 
is an stripe mixed-spin system where spin-σ chains are alter-
natively coupled to spin-τ  chains (coupled alternating spin 
chains (CAS) model). These two systems are schematically 
illustrated in figure 1.

The Hamiltonians Hσ, Hτ , and Hστ  for SMS and CAS 
models are respectively given by
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Figure 1.  Schematic illustration of the mixed-spin system with different arrangements. Left: mixed-spin system with a staggered sequences 
(SMS model), and right: alternatively coupled spin chains (CAS model). The small and large circles denote the spin 1/2 and 1, respectively. 
The solid and dotted lines are nearest neighbor and next nearest neighbor interactions, respectively. a is the lattice constant.
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where the summations 
∑

nn and 
∑

nnn run over nearest 
neighbor (NN) and next nearest neighbor (NNN) sites, V1 and 
V2 are respectively the NN and NNN interactions, and h is a 
magnetic field along z direction. These mixed (1/2,1) spins 
models correspond to modified Bose–Hubbard models with 
respectively hard-core and semi hard-core bosons with occu-
pancy up to one and two particles per lattice sites [45, 46].

Both spin models possess the rotational U(1) symmetry as 
well as the discrete translational symmetry of the square lat-
tice. The translational vectors in the SMS and CAS lattices 
are respectively 2ax̂ + 2aŷ and ax̂ + 2aŷ, where a is the lattice 
constant, as shown in figure 1. According to the spontaneously 
breaking of one or both of these symmetries various first- and 
second-order phase transitions occur and different diagonal 
and off-diagonal long-range orders appear in these systems. In 
the following section we will briefly review the ground state 
phases of the models (2) and (3), which are presented in [45, 
46], and then study the effects of thermal fluctuations on the 
stability of the ground state phases and obtain the temperature 
phase diagrams of the SMS and CAS models.

3.  Phase diagrams

Recently, we have studied the ground state properties of the 
SMS and the CAS models, using different methods like mean 
field approximation, cluster mean field theory and linear spin 
wave approach, and shown that various solids, supersolids, 
and Mott insulator emerge in their ground state phase dia-
grams [45, 46]. Below, first we will briefly review the zero 
temperature properties of these phases and then obtain the 
temperature phase diagrams of the SMS and the CAS models.

3.1.  SMS model

In the left panel of figure 2, we have plotted the ground state 
J–h phase diagram of the SMS model for the frustration 
value V2/V1 = 0.6 [45]. Various ground state phases of this 
model is defined in the table 1. For small values of J/V1 (i.e. 

very small hopping energies), by increasing magnetic field h 
various checkerboard solid orders such as CS(3/6), bCS(4/6) 
and aCS(5/6) with different fillings appear in the ground state 
phase diagram. In bosonic language, the fractional numbers 
3/6, 4/6, and 5/6 refer to the average number of bosons on 
each unit cell [45]. For small magnetic fields, the translational 
symmetry of both subsystems with spin τ  and σ break spon-
taneously, and the CS(3/6) solid appears in the phase diagram. 
In this phase the spins τ  as well as the spins σ are antiparallel 
and the average number of bosons on each unit cell is 3/6. By 
increasing of the magnetic field, the spins σ align parallel to 
the magnetic field and the translational symmetry of the sub-
system with spin σ is restored, where a phase transition to the 
bCS(4/6) phase occurs. By more increasing of the magnetic 
field, the bCS(4/6) changes to the aCS(5/6) solid. In this phase 
the spins-τ  flip to the magnetic field direction and the trans-
lational symmetry of the subsystem with spin τ  is restored, 
while the translational symmetry is broken in the subsystem 
with spin σ. Finally, at strong magnetic fields both the trans-
lational and the U(1) symmetries are restored and the system 
enters to the Mott insulating Full phase, where all spins align 
parallel to the magnetic field. An enhancement of the hop-
ping energy J/V1, adds a superfluid component to these solid 
orders, and different supersolid phases such as CSS, aCSS and 
bCSS emerge around the solid phases, where both the transla-
tional and U(1) symmetries are broken. Further increasing of 
hopping energy, restores the translational symmetry and the 
system enters to the superfluid phase (SF). In the ground state 

phase diagram of the SMS model for V2
V1

< 0.5 (not shown), a 
MI(4/6) Mott insulating phase takes place rather than CS(3/6) 
and bCS(4/6) solids at small and moderate magnetic fields. In 
this phase both the translational and the U(1) symmetries are 
preserved, and spins-τ  (σ) are parallel (anti-parallel) to the 
magnetic field direction.

In order to see the effects of thermal fluctuations on the 
ground state phases of the SMS model, utilizing cluster mean 
field theory we have obtained the J–h phase diagram of the 
SMS model at temperature T/V1 = 0.1. In general, thermal 
fluctuations melt plateaus on longitudinal magnetization 

Figure 2.  J–h phase diagrams of the SMS model for V2
V1

= 0.6. Left: at zero temperature, and right: at T/V1 = 0.1. The density of colors 
shows amount of the off-diagonal order parameter: Mv = ((Mx

T)
2 + (My

T)
2)1/2 where Mx(y)

T  is the total magnetization in x(y) direction. The 
red (black) dotted lines show first-order (second-order) phase transitions. The different orders are defined in the table 1.
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curve versus magnetic field and reduce amount of diagonal 
and off-diagonal order parameters. Therefore, in the presence 
of temperature aside from the ground state phases, several 
thermal solids like CS, bCS and aCS also appear respectively 
around CS(3/6), bCS(4/6) and aCS(5/6) phases, as shown in 
the right panel of figure 2. In these thermal solids, in contrast 
with the ground state solid phases, longitudinal magnetiza-
tion varies by magnetic field; whereas the corresponding solid 
orders persist. In the CS(3/6) the translational symmetry in 
both subsystems breaks, and the magnetization varies with 
magnetic field. In the bCS (aCS) thermal solid phase spins 
in the subsystem with spin τ  (σ) are anti-parallel, while the 
longitudinal magnetization varies with h. Actually, since the 
entropy increases at all the transition points, melting begins 
from the phase borders and these thermal solids appear around 
the ground state solid phases. Plateaus’ melting soften the 
transitions and we expect the transition between solid phases 
to be mediated by thermal solid orders. However this is not 
the case for the bCS(4/6)–aCS(5/6) transition. This transition 
remains first order even though the plateaus melt completely 
and the aCS solid order is washed out, see figure 3. Moreover, 
in a region below the Full phase, the SMS model experiences 
thermal insulator (TI) phase. This phase is a weak Mott insu-
lator in the sense that it preserves both the translational and the 
U(1) symmetries of the original Hamiltonian, but is different 
form the ground state Mott insulator since the magnetization 
increases gradually with h in the TI phase. Furthermore, by 
increasing temperature the regions with the superfluid and 
supersolid orders become smaller and finally disappear at 

J/V1 around T/V1. For V2
V1

< 0.5, the TI phase also appears 
around the MI(4/6) phase (not shown).

In order to obtain the transition temperatures for different 
phases, we have plotted in figure 3 the T–h phase diagram of 

the SMS model for V2
V1

= 0.6, and J
V1

= 0.165. In the presence 
of thermal fluctuations in the solid phases, plateaus’ width on 
the longitudinal magnetization curve versus magnetic field 
decreases gradually and disappears eventually at a transition 

temperature which depends on the strength of frustration, the 
hopping energy (J/V1) and the magnetic field (h/V1).

At zero temperature, in the superfluid phase each particle 
is spread out over the entire lattice, with long range phase 
coherence. At finite temperatures, the superfluid order at the 
small hopping energy is suppressed and the system undergoes 
a transition to the TI phase where the U(1) symmetry is pre-
served and the filling factor is not conserved. The superfluid 
order at larger hopping energy maintains up to larger temper

ature. For example, when J/V1 = 0.165, the superfluid phase 

persists up to T
V1

= 0.18, while for J/V1 = 0.22 the transition 

temperature is T
V1

= 0.33. There are some narrow regions 
at the lower border of the SF phase which transform to the 
aCSS supersolid phase. In this phase thermal fluctuations try 
to destroy both the diagonal and the off-diagonal long range 
orders. Competing solid and superfluid orders affects trans
ition temperature for the supersolid order. Generally, in com-
parison with the solid orders the superfluidity order is more 
fragile, and by increasing temperature the superfluidity order 
destroys at a critical temperature where the supersolid trans-
forms to a thermal solid. Therefore, CSS and bCSS phase 

phases persist up to T
V1

= 0.12 when J
V1

= 0.165, while for 
J

V1
= 0.22 the transition temperature is T

V1
= 0.25. Also aCSS 

phases is present up to temperature T
V1

= 0.18 for J
V1

= 0.165, 
while this phases transforms to aCS phase at larger temper

ature T
V1

= 0.44 for the J
V1

= 0.22. Stability of the supersolid 
phase up to a temperature comparable with the interaction 
energy V1, makes the SMS system a playground for exper
imental realization of the different supersolid phases in  
mixed-spin systems.

3.2.  CAS model

The ground state phase diagram of the CAS model for the 

frustration V2
V1

= 0.6 is plotted in the left panel of figure  4. 

Table 1.  Definitions of various ground state phases of the SMS 
model. Because of the NNN interactions we divide the subsystem 
with spin σ = 1/2 (τ = 1) into two sublattices A and C (B and 
D) [45]. According to the relations between the longitudinal 
magnetizations of these sublattices, different phases appear in 
the ground state and temperature phase diagrams of the SMS 
model. The longitudinal magnetizations mz

A(C) = 〈σz
A(C)〉 and 

Mz
B(D) = 〈τ z

B(D)〉 are obtained using cluster mean field theory.

Phases Sublattices magnetizations Mv

SF mz
A = mz

C , Mz
B = Mz

D �= 0
Full mz

A = mz
C = 1/2, Mz

B = Mz
D = 1 0

MI(4/6) mz
A = mz

C , Mz
B = Mz

D 0
CS(3/6) mz

A = −mz
C, Mz

B = −Mz
D 0

bCS(4/6) mz
A = mz

C , Mz
B = −Mz

D 0
aCS(5/6) mz

A = −mz
C, Mz

B = Mz
D 0

CSS mz
A �= mz

C , Mz
B �= Mz

D �= 0
bCSS mz

A = mz
C , Mz

B �= Mz
D �= 0

aCSS mz
A �= mz

C , Mz
B = Mz

D �= 0

CS

bCS

aCS

bCS(4/6)

CSS
CS(3/6)

Full

aCS(5/6)

TI

bCSS

SF
aCSS

Figure 3.  T–h phase diagram of the SMS model for V2
V1

= 0.6 at 
J

V1
= 0.165 line, where all phases exist on the ground state phase 

diagram. The red (black) dotted lines show first-order (second-
order) phase transitions.
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Various ground state phases of this model is defined in the 
table 2.

For small values of J/V1, the translational symmetry of 
both subsystems breaks for weak and strong magnetic fields 
and stripe solids ST(3/6) and ST(5/6) with different filling 
factors appear in the ground state phase diagram. At mod-
erate magnetic fields, the translational symmetries of both 
subsystems are however restored in the MI(4/6) Mott insu-
lating phase, where the spins 1 (spins 1/2) align parallel (anti-
parallel) to the magnetic field. Strong enough magnetic fields 
(h/V1 � 5.5) align all spins and the system enters to the Mott 
insulating Full phase. An enhancement of the hopping energy 
breaks the U(1) symmetry, and adds the superfluid component 
to the stripe solids and Mott insulating phases. Therefore 
stripe supersolid (STS) and superfluid (SF) appear around 
the stripe solids and Mott insulator, respectively. While stripe 
solids to STS and SF transitions, and MI(4/6)-SF phase trans
itions are of second order, MI(4/6)-STS transition is of first 
order for all parameters ranges. This transition remains first 
order even when these phases vanishes at finite temperature. 
Therefore TI-STS and TI-ST transitions are first order in all 
ranges of T (see figure 5).

For V2
V1

< 0.5, the translational symmetry breaks in the 
presence of a moderate magnetic field and the ST(4/6) solid 
emerges instead of the MI(4/6) Mott insulator (not shown).

In the presence of thermal fluctuations, similar to the SMS 
model, magnetization plateaus melt and a thermal stripe solid 
(ST) appears around the ST(3/6) and ST(5/6) phases, as shown 
in the right panel of figure 4. In this phase the magnetization 
varies with the magnetic field, and the translational symmetry 
of both subsystems breaks.

Also melting process results in the emergence of a thermal 
insulator around the MI(4/6) and Full phases, where both the 
U(1) symmetry and the translational symmetry of the CAS 
lattice are preserved, however the magnetization varies with 
h. Moreover thermal fluctuations destroy the superfluid order 
and causes the STS and SF phases to be disappeared for J/V1 
around T/V1.

We have also plotted in figure 5, the T–h phase diagram of 

the CAS model for V2
V1

= 0.6 and J
V1

= 0.24 to find the trans
ition temperature for different phases. Thermal fluctuations 
melt ST(3/6) and ST(4/6) solids, and the MI(4/6) Mott insu-
lator and transform them respectively to the thermal solid and 
thermal insulator. By further increasing of temperature the 

Figure 4.  Left: ground state J–h phase diagram of the CAS model for V2
V1

= 0.6. Right: J–h phase diagram of the CAS model for V2
V1

= 0.6 
at temperature T/V1 = 0.1. The same as the SMS model, the density of colors shows amount of off diagonal order parameter, and the red 
(black) dotted lines show first-order (second-order) phase transitions. The different orders are defined in the table 2.

Table 2.  Definitions of various ground state phases of the CAS 
model. Because of the NNN interactions we divide the subsystem 
with spin σ = 1/2 (τ = 1) into two sublattices A and B (C and 
D) [46]. The longitudinal magnetizations mz

A(B) = 〈σz
A(B)〉 and 

Mz
C(D) = 〈τ z

C(D)〉, and also the total transverse magnetization Mv are 
obtained using cluster mean field theory.

Phases Sublattices magnetizations Mv

SF mz
A = mz

B, Mz
C = Mz

D �= 0
Full mz

A = mz
B = 1/2, Mz

C = Mz
D = 1 0

MI(4/6) mz
A = mz

B, Mz
C = Mz

D 0
ST(3/6) mz

A �= mz
B, Mz

C �= Mz
D 0

ST(5/6) mz
A �= mz

B, Mz
C �= Mz

D 0
STS mz

A �= mz
B, Mz

C �= Mz
D �= 0

MI(4/6)

TI

STS

ST

ST(5/6)

Full

SF

ST

STSSF

ST(3/6)

Figure 5.  T–h phase diagram of the CAS model for V2
V1

= 0.6 at 
the line J

V1
= 0.24, where all phases exist in the ground state phase 

diagram. The red (black) dotted lines show first-order (second-
order) phase transitions.
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ST phase also transform to the TI phase where both transla-
tional symmetries restore but magnetization does not vanish. 
Moreover thermal fluctuations suppress superfluid component 
and cause the SF-TI transition. However, there are a narrow 
region at larger magnetic fields in which increasing temper
ature breaks translational symmetry instead, and SF-ST 
transition occurs. Further increasing temperature returns 
translational symmetry at ST-TI transition. Increasing temper
ature in all ranges of supersolid phase restores the U(1) sym-
metry by STS-ST transition. As this figure  shows, at finite 
temperature, the STS-MI(4/6) transition remains first order, 
even when these orders wash out completely the ST-TI trans
ition remains first order.

Similar to SMS model the transition temperature for the 
solid phases is larger far from the borders. The SF-TI crit-
ical temperature strongly depends on the values of hopping 
energy, so that by increasing the hopping energy the SF-TI 

critical temperature increases. For J
V1

= 0.21 this temperature 
is T

V1
= 0.25 and for J

V1
= 0.24 it is T

V1
= 0.28. Since the super-

fluid order is more fragile than solid order, the supersolid trans
ition temperature is controlled by hopping energy. STS phase 
which is formed at lower magnetic field transforms to ST solid 

phase at temperature T
V1

= 0.14 in J
V1

= 0.21, while this trans
ition happens at T

V1
= 0.27 in larger hopping energy J

V1
= 0.24. 

Also the STS phase which is formed at larger magnetic field 

persist up to temperature T
V1

= 0.25 for J
V1

= 0.21, while this 
phase is present up to temperature T

V1
= 0.3 at J

V1
= 0.24.

4. Thermodynamic functions and magnetocaloric 
effect

In this section we investigate the behavior of various thermo-
dynamic functions as well as the magnetocaloric effect in the 
mixed-spin-(1,1/2) model with the SMS and CAS arrange-
ments. Using CMFT (see the appendix), we have obtained 
the magnetization, entropy, specific heat and also investigated 
the behavior of the magnetocaloric effect. Magnetic suscepti-
bility and specific heat respectively demonstrate the amount 
of thermal fluctuations in the magnetization and internal 
energy, while magnetocaloric effect contains both of these 
fluctuations.

4.1.  Isothermal variations of thermodynamic functions

In this subsection, we investigate the isothermal variations 
of mentioned thermodynamic functions in different solids, 
supersolids, Mott insulators and superfluid phases.

4.1.1.  Magnetization.  The longitudinal magnetization is 
obtained from the following relation:

m(T , h) =
1
2
(〈σz〉+ 〈τ z〉),� (4)

where 〈. . .〉 denotes the ensemble average, computing from 
equation  (A.5). The magnetization versus magnetic field is 
plotted in figure  6 for different temperatures. The vertical 
lines in these figures show the ground state phase borders.

In the absence of temperature, for both the SMS and 
CAS models, the longitudinal magnetization increases by 
increasing the magnetic field, passes through three nontrivial 
mid-plateaus m  =  0, m  =  0.25 and m  =  0.5, and finally 
saturate at large saturation field (roughly around h/V1 = 6), 
as shown in figure  6. These mid-plateau states correspond 
to the mentioned solid or Mott insulator phases in the fig-
ures 2 and 4, where longitudinal susceptibility is zero. Due to 
stronger quantum fluctuations at finite temperature, the mag-
netization curve softens around these phases’ borders, where 
thermal solid and thermal insulator appear and susceptibility 
increases. Mid-plateaus’ widths depend on temperature, they 
become smaller by increasing temperature and vanish at a 
critical temperature, as seen in figures 3 and 5.

At low temperatures, any break in the plots of the mag-
netization and susceptibility versus h/V1, indicates the second 
order phase transition. However, at the first order transition 
points, the magnetization shows a jump at the critical field and 
the susceptibility diverges. The bCS(4/6)–aCS(5/6) transition 
in the SMS model and the STS-MI(4/6) transition in the CAS 
model are of first order, while all other transitions are of second 
order. Thermal fluctuations soften the transitions, by emerging 
thermal solids and thermal insulator phases around the ground 
state solids and Mott insulators, however for the bCS(4/6)–a
CS(5/6) transition at h/V1 � 3.6 in the SMS model and the 
STS-MI(4/6) transition at h/V1 � 1.1 in the CAS model, 
thermal fluctuations are not able to destroy the discontinuity 
in the magnetization and these transitions remain first order 

Figure 6.  Longitudinal magnetization versus magnetic field h/V1, at V2
V1

= 0.6, for different temperatures T/V1. Black: 0.05, green: 0.1, 
magenta: 0.15, blue: 0.2 and red: 0.3. Left: for SMS model at J/V1 = 0.165, and right: for CAS model at J/V1 = 0.24.
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(see figure 6). These jumps in the magnetization plot survive 
even though the plateaus around the discontinuity melt com-
pletely at higher temperatures. This means that the bCS-aCS 
and the bCS-TI transitions in the SMS model, and the STS-TI 
and ST-TI transitions in the CAS model are always first order 
(see also figures 3 and 5).

4.1.2.  Entropy and specific heat.  The entropy (S) and the 
specific heat (CV ) of the SMS and CAS models, are obtained 
from the following relations:

S(T , h) = kB lnZ(T , h) +
1
T
〈H(h)〉,

CV(T , h) =
1

kBT2 (〈(H(h))2〉 − 〈H(h)〉2),
� (5)

where averages are computed from equation  (A.5) and kB is 
the Boltzmann constant. We have plotted in the top panel of 
figure 7, the entropy of the SMS and CAS models versus h/V1 
for different temperatures. At zero temperature the ensemble 
averages in equation (5), reduce to the expectation values on 
the ground state of the systems, and we obtain zero entropy for 
both models. By increasing temperature, higher energy eigen-
states get occupied and the entropy increases. At finite temper
atures, the entropy strongly depends on the magnetic field. It 
shows a peak or changes behavior at critical fields, shows a 
jump at first order transition points and is minimum in a plateau 
state. For example for the SMS model, at T/V1 = 0.2, where 
CSS and bCSS supersolids transform respectively to the CS 
and bCS solids, the entropy increases gradually by increasing 
h, passes through a maximum at the CS-bCS critical field and 
becomes minimum in the bCS(4/6) plateau state. By more 
increasing of the magnetic field, the entropy increases and 

suddenly jumps up to a larger value at the first order bCS-aCS 
transition point. Also at low T, for example at T/V1 = 0.1, for 
both models the entropy approximatly increases linearly with 
h in the superfluid phases at larger magnetic fields. Also this is 
the case for the STS phase in the CAS model.

In order to see the effects of thermal fluctuations on the 
internal energy of the SMS and CAS models we also inves-
tigate the behavior of the specific heat. In the bottom panels 
of figure 7, we have plotted the specific heat CV  versus h/V1 
for different temperatures. At zero temperature, both sys-
tems are in their ground state and the specific heat is zero 
at all magnetic fields. At a finite temperature, similar to the 
entropy, the specific heat strongly depends on the magnetic 
field. It is constant deeply in the solid and Mott insulating 
phases, and increases around the thermal solid and thermal 
insulator phases. However at high temperatures, for example 
at T/V1 � 0.3, the specific heat shows a peak in the thermal 
solids and thermal insulator. At low temperatures, CV  could be 
approximated by a linear function of h in the superfluid and 
supersolid phases, except for the CSS phase in the SMS model 
which develops a peak and also for the SF phase at smaller 
magnetic field in the CAS model.

4.1.3.  Magnetocaloric effect.  MCE is measured by Grunei-
sen parameter ΓMCE, defined as:

ΓMCE =

(
∂T
∂h

)

S
,� (6)

where h, T and S are the magnetic field, temperature and 
entropy of the system, respectively. Using cyclic relations 
between these parameters, ΓMCE is given in terms of the spe-
cific heat and the magnetization of the systems as:

Figure 7.  Entropy and specific heat versus magnetic field h/V1, at V2
V1

= 0.6, for different values of temperature T/V1. Black: 0.05, green: 
0.1, magenta: 0.15, blue: 0.2 and red: 0.3. Left: for SMS model at J/V1 = 0.165, and right: for CAS model at J/V1 = 0.24.
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ΓMCE = −
(∂S
∂h )T

( ∂S
∂T )h

= − T
CV

(
∂m
∂T

)

h
.� (7)

In order to obtain ΓMCE numerically, it is helpful to simplify 
the above equation as:

ΓMCE = −T
〈HSz〉 − 〈H〉〈Sz〉
〈H2〉 − 〈H〉2 .� (8)

This relation indicates that fluctuations in both the magnetiza-
tion and the internal energy play essential role on the behavior 
of ΓMCE. We have plotted in figure  8, the parameter ΓMCE 
versus magnetic field for different temperatures.

In the solid and the Mott insulating phases, ΓMCE changes 
sign and becomes negative at larger h. This behavior which is 
a characteristic of ordered phases [49, 56], could be obtained 
from the magnetization. According to equation  (7), ΓMCE is 

proportional to (∂m
∂T )h. In the presence of thermal fluctuations, 

the magnetization changes inside the solid and Mott insulator 
phases, it decreases (increases) by temperature at smaller 

(larger) h. This causes the function (∂m
∂T )h to be negative 

(positive) around the solids and Mott insulators. Therefore 
ΓMCE changes sign in the thermal solid and thermal insulator 
phases. Moreover, at low T, MCE increases almost linearly 
in the superfluid and supersolid phases, except for the aCSS 
in the SMS model and the SF phase in the CAS model. MCE 

always is positive inside SF and TI phases, which means that 
in these phases magnetic field always heats up the system.

At low temperatures, MCE increases or changes behavior 
at the second order transition points, while it has a discon-
tinuity at the first order transition points. At low temper
atures, the maximum cooling rate occurs in the vicinity of 
the solid-supersolid, solid-superfluid and MI(4/6)-superfluid 
quantum critical points, where there are a large accumulation 
of the entropy, see top panel of figure 7. This increasing was 
expected from the relation between the Gruneisen parameter 
and entropy in equation (7). However, at higher temperatures 
the maximum cooling rate happens inside the thermal solid 
and thermal insulator phases.

We have also plotted in figure  9, the density plot of the 
entropy in the h–T  phase diagram. This diagram would be 
useful for experimentalist. Actually, at low temperatures, crit-
ical points correspond to the minimums of the isentropes in 
the h–T  diagram [56]. Hence MCE anomalies may be useful 
to map out the h–T  phase diagrams which are not accessible 
otherwise [49, 56].

It is seen that entropy is constant in the solid and MI(4/6) 
phases and increases in the thermal solid and thermal insu-
lating phases around them. Therefore isentropes develop a 
peak in these ranges of the T–h phase diagram which confirms 
the sign changes of the MCE around the solid and MI(4/6) 
phases. Moreover, the linear behavior of the isentropes in 

Figure 8.  MCE versus magnetic field h/V1, at V2
V1

= 0.6, for different values of temperature T/V1. Black: 0.05, green: 0.1, magenta: 0.15, 
blue: 0.2 and red: 0.3. Left: for SMS model at J/V1 = 0.165, and right: for CAS model at J/V1 = 0.24.

Figure 9.  Isentrope density plots at V2
V1

= 0.6. Left: for SMS model at J/V1 = 0.165, and right: for CAS model at J/V1 = 0.24.
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some ranges of the superfluid and supersolid phases confirms 
the linear behavior of the MCE in these phases.

In figure  9, the first order transitions specify by non-
continues changes of the isentropes and the second order 
transitions specify by changes in the behaviors of the isen-
tropes around the transition points. At low temperatures, the 
minimums of the isentropes are around the solid-supersolid, 
solid-superfluid and MI(4/6)-superfluid critical fields, which 
confirms a large cooling rate at these points. Moreover at low 
temperature, the large positive values of ΓMCE could be seen 
in the tricritical points around the superfluid and thermal solid 
or thermal insulator phases, where isentropes feel breaks. 
However at larger T these points are placed inside the thermal 
solid and thermal insulator phases.

4.2. Temperature variations of the thermodynamic functions 
and magnetocaloric effect

We have also plotted in figures 10 and 11, the thermodynamic 
functions versus temperature for different values of magnetic 
field. In CS(3/6), bCS(4/6) and aCS(5/6) (in SMS model), and 
ST(3/6) and ST(5/6) (in CAS model) solid phases, where the 
magnetization shows plateaus, the system is gapped and both 
the entropy and the specific heat are zero, however the MCE is 
finite. ΓMCE is positive in bCS(4/6) solid, while it is negative 

in all other ones. By increasing temperature and melting the 
magnetization plateaus, respectively thermal solid phases 
CS, bCS, aCS, and ST thermal solids emerge, where magne-
tization increases by temperature. In all these thermal solid 
phases, the entropy increases by temperature and the specific 
heat possesses a peak. MCE has sign changes with T in CS 
and aCS solids, however it is positive in bCS solid. In the ST 
solid phase the MCE depends on the magnetic field, it is nega-
tive at small magnetic fields, while positive at larger fields.

In the SF phase, the specific heat shows a peak, MCE is 
positive and increases with temperature. The superfluid comp
onent is vanishing by increasing temperature where TI phase 
emerges. In the supersolid phases CSS, bCSS and aCSS, and 
STS, the entropy increases by temperature and the specific 
heat shows a peak. The MCE is negative in the CSS phase, 
while it is positive in the bCSS and aCSS phases where magn
etic field is stronger. In the STS supersolid, the MCE is nega-
tive at small magnetic fields, whereas it is positive at larger 
ones. By increasing T and reduction of the superfluidity, in the 
bCSS, aCSS and STS supersolids, there is an small enhance-
ment in the longitudinal magnetization, but the magnetization 
decreases in the CSS supersolid with low h. According to the 
values of ΓMCE, in the SMS model the maximum cooling rate 
occurs at the CSS-CS transition points. In CAS model, a large 
positive value of the MCE is seen at the SF-TI border with 

Figure 10.  Different thermodynamic functions of SMS model versus temperature T/V1, for different values of h/V1, at V2
V1

= 0.6 and 
J

V1
= 0.22. Red: the longitudinal magnetization, blue: the transverse magnetization, green: the scaled entropy S/5, black: the scaled specific 

heat CV/5 and magenta: the scaled MCE ΓMCE/2. In order to plot all thermodynamic functions in a single frame, we rescaled S, CV  and 
ΓMCE.
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larger h, however there is a large cooling rate at the SF-TI 
transition point in the smaller magnetic field.

Finally, in the Mott insulating MI(4/6) and Full phases 
with the longitudinal magnetization plateaus, the entropy and 
specific heat are vanishing. The MCE is negative in MI(4/6), 
while it is positive in the Full phase. At larger T where these 
phases transform to the TI phase, the specific heat has a broad 
peak, magnetization decreases, entropy increases and MCE is 
positive.

In conclusion, the entropy increases with temperature in all 
phases of the both models. Also specific heat shows a narrow 
peak in the superfluid, supersolid and thermal solid phases, 
and develops a broad peak in the TI phase.

5.  Summary and conclusion

To summarize, in the present paper, employing CMFT, we 
have studied thermal phase diagram of the mixed-spin (1,1/2) 
model on the square lattice with two different arrangements. 
We have demonstrated that at a finite temperature, thermal 
fluctuations soften the transitions, and different thermal solid 
and thermal insulators phases emerge around the ground state 
phases. Our results show that the solid–solid and supersolid-
Mott insulator phase transitions maintain first order even at 
high temperatures where the ground state phases around these 

transition points are washed out completely. As the supersolid 
phase persists up to comparable temperature with the interac-
tion terms, this model would be a playground for finding dif-
ferent supersolid phases in experiment.

In the second part of the paper we have also studied iso-
thermal variations of different thermodynamic functions 
and magnetocaloric effect. Our results show that the MCE 
changes sign in the thermal solids and thermal insulator. At 
low temperatures, the maximum cooling rate is seen in the 
vicinity of the solid-supersolid, solid-superfluid and MI(4/6)-
superfluid critical points, whereas at higher temperatures it 
placed inside the thermal solids and thermal insulator. At low 
temperatures, the large positive values of ΓMCE was seen in 
the tricritical points between superfluid and thermal solid or 
TI phases, however they placed inside the thermal solid and 
TI phases at higher temperature. This work is the first study 
on the MCE in supersolid phases, and a large cooling rate 
around this phase in addition to the multi-peak structure of 
the specific heat could be a signature of these phases, which 
is useful for experimental detection of such phases. We have 
also investigated temperature variations of the thermodynamic 
functions and magnetocaloric effects inside different phases. 
In both systems the entropy increases by increasing temper
ature, while depending on the strength of magnetic field, the 
specific heat has a single-, double- and triple-peak structure. 
It increases by increasing temperature, shows a narrow peak 

Figure 11.  Different thermodynamic functions of CAS model versus temperature T/V1, for different values of h/V1, at V2
V1

= 0.6 and 
J

V1
= 0.24. Red: the longitudinal magnetization, blue: the transverse magnetization, green: the scaled entropy S/5, black: the scaled specific 

heat CV/5 and magenta: the scaled MCE ΓMCE/2.
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in the supersolid and superfluid phases, and a broaden beak 
in the thermal solids and thermal insulator, and eventually 
decreases toward zero at higher temperatures.
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Appendix A

In this appendix we explain the details of the cluster mean 
field theory. In this method clusters of different sizes are con-
sidered on a sublattice background, so that interactions within 
clusters are included exactly and interactions with outsides are 
considered as effective fields [45, 46]. Therefore one can par-
tially take into account fluctuations around classical ground 
state as well as the effects of correlations of particles. In this 
respect the Hamiltonian of the system would be written as 
below:

HCMFT = HC +
∑
i∈C

(�heff
i · �σi +�geff

i · �τi),� (A.1)

where the interactions within cluster C are given by HC, that 
contains the Hamiltonian in equations (2) and (3) with i, j ∈ C. 
While the interactions of spins inside the cluster with the rest 
of the system are included via the effective fields �heff

i  and �geff
i  

for the subsystems with spins σ and τ  respectively. The effec-
tive fields for the SMS model are:

�heff
i =

∑
〈i,j〉,j∈C̄

[−2J(Mx
j x̂ + My

j ŷ) + V1Mz
j ẑ]

+ V2

∑
〈〈i,j〉〉,j∈C̄

mz
j ẑ,

�geff
i =

∑
〈i,j〉,j∈C̄

[−2J(mx
j x̂ + my

j ŷ) + V1mz
j ẑ]

+ V2

∑
〈〈i,j〉〉,j∈C̄

Mz
j ẑ.

�

(A.2)

The effective fields for the CAS model are:

�heff
i =

∑
〈i,j〉,j∈C̄

[−2J(mx
j + Mx

j )x̂ − 2J(my
j + My

j )ŷ

+
V1

2
(mz

j + Mz
j )ẑ] + V2

∑
〈〈i,j〉〉,j∈C̄

Mz
j ẑ,

�geff
i =

∑
〈i,j〉,j∈C̄

[−2J(mx
j + Mx

j )x̂ − 2J(my
j + My

j )ŷ

+
V1

2
(mz

j + Mz
j )ẑ] + V2

∑
〈〈i,j〉〉,j∈C̄

mz
j ẑ.

�

(A.3)

In these equations  C̄ is the part of the system outside the 
cluster. Also the magnetizations �mj = 〈�σj〉 and �Mj = 〈�τj〉 are 
the expectation values within the CMFT which act as the 
mean fields on the spins σ and τ . The order parameters mx,y,z

j  

and Mx,y,z
j  are calculated self-consistently as the expectation 

value of the spins inside the cluster.
At the zero temperature these expectation values are cal-

culated on the ground state of the system, and self-consistent 
solutions should be done until the minimal ground state of the 
system would be achieved. However at the finite temperatures 
T all the ground state and excited states of the system are con-
tributed in the solution and thermodynamic averages of the 
order parameters are calculated as:

mx,y,z
j (T , h) = 〈σx,y,z〉 = 1

Z
Tr(σe−HCMFT/KBT),

Mx,y,z
j (T , h) = 〈τ x,y,z〉 = 1

Z
Tr(τe−HCMFT/KBT),

Z = Tr(e−HCMFT/KBT),

�

(A.4)

where KB is the Boltzmann constant. HCMFT  and Z  respec-
tively are corresponding CMFT Hamiltonian in equa-
tion (A.1) and partition function of the system. At the finite T, 
the free energy of the system i.e. F = 1

N kBT lnZ , should be 
minimized, which F is the free energy of the system. Finally 
the set of the CMFT energies that minimizes the free energy 
of the system, should be used for calculating any averages as 
the following equation:

〈A〉 = 1
Z

Tr(Ae−HCMFT/KBT),� (A.5)

where A is the corresponding function.

Appendix B

In this appendix we explain how to obtain equation (8) from 
equation (7). We have:

∂m
∂T

=
∂

∂T
〈Sz〉 = ∂

∂T
[

1
Z

Tr(Sze−H/KBT)]

=
Tr(Sz ∂e−H/KBT/∂T)Z − ∂Z/∂T Tr(Sze−H/KBT)

Z2

=
1

kBT2 [
Tr(SzHe−H/KBT)

Z
− Tr(He−H/KBT)Tr(Sze−H/KBT)

Z2 ]

=
〈HSz〉 − 〈H〉〈Sz〉

kBT2 .

� (B.1)
Using above relations and inserting specific heat from equa-
tion (5), simply equation (8) would be concluded.
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