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1.  Introduction

In the three decades since the advent of the first gallium 
arsenide heterostructures with transport signals carrying the 
signatures of individual electrons, [1–4] the enthusiasm for 
quantum dots (QD), as these nanoscale devices are nowadays 
labeled, has continuously increased with experimental real-
izations now including silicon [5, 6] and carbon nanotubes 

[7]. Such tunable ‘artificial atoms’ provide an ideal platform 
to test quantum theory in parameter ranges inaccessible in 
conventional systems. The studied phenomena range from 
Coulomb blocking and the quantum Hall effect [8] over Kondo 
physics, [5, 9] thermoelelectricity [10–14] to non-Fermi liquid 
behavior, quantum phase transitions and quantum criticality 
[15–17] Beyond the obvious fundamental interest, the trans-
port properties of QDs are put to use in a host of applications, 
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Abstract
The non-equilibrium electronic transport through a nanoscale device composed of a single 
quantum dot between two metallic contacts is studied theoretically within the framework 
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dot are treated with a Green’s function decoupling scheme which, although similar to the 
Hubbard-I approximation, captures some of the dynamics beyond. The scheme is exact in the 
so-called atomic limit, defined by vanishing tunneling between contacts and dot, and in the 
non-interacting limit, where the on-dot Coulomb repulsion is zero. Explicit analytic solutions, 
valid for arbitrary magnetic fields, are obtained for two important setups: (i) the stationary 
regime, with constant voltage bias between the leads, and (ii) the time-dependent regime for 
metallic leads with constant density of states of infinite width. In these regimes, the current 
through the dot is evaluated numerically for various parameter sets and its main features 
interpreted in terms of the underlying physical processes. The results are compared to the 
non-crossing approximation (NCA) and diagrammatic non-equilibrium quantum Monte-Carlo 
(QMC) where available.
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including field-effect transistors, [18] photovoltaics [19] and 
visualization tools for molecular processes in neuroscience 
[20].

In the present paper, we investigate the electronic transport 
through a single-orbital QD addressed by two metallic tun-
neling contacts. Electrons on the otherwise isolated dot expe-
rience a strong Coulomb repulsion and, possibly, an applied 
magnetic field which lifts the spin degeneracy of the orbital 
via the Zeeman effect. The contacts or leads, by contrast, are 
modeled as perfect uncorrelated metals not exposed to the 
magnetic field. The appropriate Hamiltonian for this setup 
is, of course, the widely studied impurity model introduced 
by Anderson [21] over 50 years ago to explore the seemingly 
unrelated topic of localized magnetic moments in transition 
metals.

Contrary to the systems Anderson aimed to describe with 
his model, our QD is not in thermal equilibrium but subject to 
a voltage bias applied between the leads. The transport through 
the dot has thus to be described by a suitable non-equilibrium 
formalism, and we opt for Keldysh’s version [22–24]. Our 
theoretical analysis follows the excellent article of Jauho et al 
[25] but, contrary to the latter, accounts for magnetic fields 
and the on-dot Coulomb repulsion.

The Coulomb repulsion introduces strong electron correla-
tions for which exact solutions are unavailable and approx
imations inevitable. Among the recent theoretical approaches, 
we would like to mention Smirnov and Grifoni’s [26] Keldysh 
effective field theory with which they investigated the erosion 
of the Kondo resonance through an applied magnetic field; 
the so-called i-DFT employed by Stefanucci and Kurth [27] 
to explore the crossover from the Kondo to the Coulomb 
blockade regime; and non-equilibrium Green’s functions 
decoupling schemes like Croy and Saalmann’s auxiliary-
mode expansion [28], or the slave-boson based SOQRE by 
Dong et al [29].

In parallel, a large variety of numerical approaches have 
been developed, ranging from numerical renormalization 
group (NRG), over density matrix renormalization group 
(DMRG) to quantum Monte Carlo (QMC). These algorithms 
all give excellent to virtually exact results for equilibrium 
situations, but run each into their own kind of technical prob-
lems—e.g. mixing of high- and low-energy states in RG-based 
methods, ‘dynamical’ in addition to the intrinsic fermionic 
sign problem in QMC—when addressing the dynamics of an 
out-of-equilibrium system on long time scales, entailing insta-
bilities and an exponential growth of the computational cost 
(for a discussion, see [30] and references therein). Recently, 
Cohen et  al’s [30] ‘inchworm’ implementation of diagram-
matic QMC seems to have eased this problem for evolution 
times which are not excessively long, and we will test our 
method against their results.

One of the main drawbacks of purely numerical methods 
lies in the fact that they give little to no hints to underlying 
physical processes which might be chiefly responsible for 
the observed features. Also, the literature advocating for 
such methods tends to focus on technical aspects like conv
ergence of the numerical scheme at hand, while keeping 

the experimental layout to a minimum, e.g. pure relaxation 
after an infinite pulse or switch off [30, 31]. In our opinion, 
it remains somewhat unclear to what extent such methods are 
capable of treating more challenging experimental setups.

In this paper, we focus on non-equilibrium transport in 
presence of a magnetic field and temperature. In this regime, 
no Kondo physics occurs since the collective screening of the 
spin on the dot by the contact electrons is known to survive 
only temperatures, bias voltages and magnetic fields of the 
order of the Kondo scale [7]. An estimate of the latter is given 
by Haldane’s expression [32, 33],

EK �
√
ΓU exp

[
−π|ε0||ε0 + U|

2ΓU

]
,� (1)

where ε0 is the dot level measured relative to the zero-bias 
Fermi level of the leads. Its evaluation shows that the Kondo 
energy is several orders of magnitude below the temperature 
and voltage biases we intend to apply, even in absence of a 
magnetic field.

For the parameter ranges we intend to study, spin fluc-
tuations on the dot are thus suppressed, while charge fluc-
tuations remain important: with the right lead alone, the dot 
would be driven to an equilibrium configuration in the empty 
orbital regime; however, the voltage bias applied to the left 
lead ensures that either ε0 or ε0 + U  can be addressed such 
that the dot passes through the mixed valence regime [33]. We 
therefore choose to implement a Green’s function decoupling 
scheme inspired by the so-called Hubbard-I approximation 
[34, 35] but slightly superior in the rendition of the dynamics. 
This scheme has already been used by some of the authors 
[36] in absence of magnetic fields, where it was found to per-
form comparably to the non-crossing approximation (NCA) 
[37, 38].

Our extended Hubbard-I decoupling scheme has the fol-
lowing virtues: (i) it is valid for any value of the magnetic 
field; (ii) it becomes exact in the limits of vanishing Coulomb 
repulsion and of vanishing lead-dot tunneling; (iii) for the 
important cases of a stationary voltage bias or with a time-
dependent bias but a constant and infinitely wide contact den-
sity of states, our method leads to an explicit closed expression 
for the electric current through the dot, and no iteration pro-
cedure is needed; (iv) all Green’s function contributions can 
be represented pictorially, thus suggesting interpretations of 
the observed spectral features in terms of physical processes; 
(v) it correctly renders the asymmetry in spectral weight of 
the two Hubbard bands; [39, 40] (vi) the method produces a 
perfectly stable long-time dynamics which many numerical 
methods have great difficulties to capture correctly; [30] and 
(vii) it is fairly easy to implement, computationally econom-
ical and may be adapted to a large variety of experimentally 
interesting setups.

In this article, we focus on the interplay between Coulomb-
induced correlations and magnetic fields, and therefore 
deliberately neglect phonons, keeping in mind that their 
contribution to the spectra would have to be incorporated 
before comparing to the experiment. Typical electron-phonon 
signatures are side bands and broadened resonances in the 
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transport spectra, albeit without affecting the overall tunneling 
properties between leads and dot [25, 41].

The paper is outlined as follows: section 2 contains a sche-
matic sketch of the experimental setup and its description in 
terms of Anderson’s impurity model; in section 3, we estab-
lish the exact equation-of-motion hierarchy for the impurity 
Green’s function and decouple it by means of the aforemen-
tioned extended Hubbard-I approximation; in sections 4 and 
5, the decoupled Green’s function equations  are explicitly 
solved for the current through the dot in the cases of, respec-
tively, a stationary voltage and magnetic bias, and rectangular 
pulsed biases applied to a dot with wide-band contacts; sec-
tion 6 contains the numerical results along with benchmarks 
against state-of-the-art numerical methods and their interpre-
tation in physical terms, and section 7 the conclusions. Details 
of the numerical method are deferred to appendix.

2.  Model Hamiltonian

In the present paper, we study a central quantum dot coupled 
to two metallic leads as schematically illustrated in figure 1. 
The Hamiltonian of the electronic system is the sum of three 
contributions,

H = Hleads + Htun + Hdot,� (2)

the first of which describes the two metallic leads,

Hleads =
∑
kασ

εkα(t) c+kασckασ ,� (3)

where εkα(t) represents the time-dependent energy levels in 
the left (α = L) and right (α = R) lead. c+kασ and ckασ are 
second-quantized creation and annihilation operators for elec-
trons of spin σ ∈ {↑, ↓} ≡ {+,−} with respect to a quantiza-
tion direction given by the magnetic field in the dot region. 
Note that both, Coulomb repulsion and magnetic field, are 
absent on the leads.

The second contribution,

Htun =
∑
kασ

[
Vkα(t) c+kασdσ + V∗

kα(t) d+
σ ckασ

]
,� (4)

describes the tunneling between the leads and the dot, with d±
σ  

electronic creation and annihilation operators on the dot. The 
last contribution describes the central dot,

Hdot = ε0(t)
∑
σ

nσ + µBB(t) [n↑ − n↓] + U n↑n↓ ,� (5)

where nσ = d+
σ dσ are electron number operators. The first 

two terms represent a single time-dependent energy level 
ε0(t), split by a Zeeman term, with B(t) an also time-dependent 
magnetic field and µ = µB [n↑ − n↓] the magnetic moment 
residing on the dot. µB is the Bohr magneton including the 
Landé factor. The last term describes the Coulomb repul-
sion U(> 0) between electrons on the dot. We are interested 
in cases where the Coulomb repulsion is comparable or even 
exceeds ε0—a parameter range clearly beyond the scope of 
perturbation theory.

Time dependence enters in three independent ways: (i) via 
the energy level ε0(t) of the quantum dot and/or the magn
etic field B(t); (ii) by a time-dependent overall shift of all 
energy levels in each lead, εkα(t) = ε0

k +∆α(t); and (iii) 
via time-dependent tunneling matrix elements which are 
assumed to be the product of a global time-dependent function 
times the matrix elements of the time-independent case, i.e. 
Vkα(t) = uα(t)V0

kα. Moreover, as in [25], we assume that the 
tunneling matrix elements depend on k only through the ener-
gies εk, i.e. V0

kα = V(ε0
kα). This assumption allows for further 

simplifications.
Experimentally, the described behavior can be imple-

mented by applying time-dependent bias and gate voltages, 
and by exposing the dot to a time-dependent magnetic field.

3.  Electronic transport through the quantum dot

This section is devoted to the description of the time-dependent 
electronic transport through the dot based on Keldysh’s for-
malism [22] and the corresponding non-equilibrium Green’s 
functions.

In the following, we use notations and general results from 
the aforementioned article by Jauho et  al [25] describing the 
transport through a QD without Coulomb interaction. The cur
rent flowing from the left lead to the dot is related to the decrease 
rate of electrons on the left lead [25]

JL(t) = −e
〈

d
dt

NL(t)
〉

= i
e
�
〈 [NL, H] 〉 ,� (6)

where NL =
∑

k c+kLckL is the total number of electrons on the 
left lead. Note that the averaging encompasses quantum and 
thermal expectation values. In the second step of the above 
equation, the equation of motion for Heisenberg operators

i�
∂A(t)
∂t

= [A(t), H(t)]� (7)

was used. In [25] it was shown that the averages in equa-
tion (6) can be expressed through the non-equilibrium Green’s 
functions on the dot, viz.

JL(t) = −2
e
�

∫ t

−∞
dt1

∫
dε
2π

Im
∑
σ

{
e−iε(t1−t)

×ΓL(ε, t1, t)
[
G<

σσ(t, t1) + fL(ε)Gr
σσ(t, t1)

] }
,

�

(8)

B
L

VkL VkR

µR

ε0+U

ε0

left lead QD right lead

µ

Figure 1.  Quantum dot (QD) with a single energy level ε0, coupled 
to two metallic leads. Coulomb repulsion U and magnetic field B 
are restricted to the dot. Time dependence resides in the dot level ε0, 
in the lead levels εkα, and in the tunneling matrix elements Vkα.
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where fL(ε) is the Fermi distribution and ΓL(ε, t1, t) the barrier 
width of the left lead,

Γα(ε, t1, t) = 2πρ(ε)uα(t)uα(t1)Vα(εα(t))V∗
α(εα(t1))

× exp

[
i
∫ t

t1
dt2∆α(t2)

]
,

�
(9)

for α ∈ {L, R}. ∆α(t) is the time-dependent shift of the lead 
levels, and ρ(ε) the density of states per spin in one lead. The 
latter is assumed to be the same for both leads α = L, R.

Finally, equation (8) also makes use of the lesser correla-
tion function and the retarded Green’s function on the dot, 
defined respectively by

G<
σσ(t, t′) = +

i
�
〈

d+
σ (t

′) dσ(t)
〉

� (10)

and

� (11)
where the curly brackets stand for anti-commutators, as 
appropriate for fermionic Green’s functions. In the pictorial 
representation of the last line, the box symbolizes the leads 
and the horizontal line the dot level which is occupied by one 
σ-electron shown as a full blue circle. In the following, we 
adopt units such that � = kB = 1.

3.1.  Decoupling scheme for the retarded Green’s function

Here, we apply the equation-of-motion technique to the 
retarded one-electron dot Green’s function defined in equa-
tion (11). This method yields a closed system of equations and 
hence the exact Green’s function for a QD without interactions. 
However, in presence of a non-zero Coulomb term on the dot, 
Un↑n↓, the equation-of-motion technique generates an end-
less hierarchy of Green’s functions. It is therefore necessary 
to artificially truncate this hierarchy in order to obtain a closed 
system of equations. Here, we opt for a decoupling scheme 
similar to the Hubbard-I approximation: in the first step of 
our approximation, only σ-electrons (or holes) are allowed to 
tunnel, while Vkα = 0 for the opposite spin species, σ̄; there-
after, the symmetry between both electron species is restored 
by switching the roles of σ and σ̄. Our approximations is thus 
exact for U  =  0 and in the limit without tunneling, Vkα = 0, 
also known as the atomic limit.

In addition to the dot Green’s function, introduced in equa-
tion (11), our scheme makes use of three higher Green’s func-
tions, the first describing the σ-electron after tunneling to the 
leads, the second and third a σ̄-fluctuation on the dot plus, 
respectively, a σ-electron on the dot or on the leads:

� (12)

�
(13)

� (14)

Again, in the graphs, both leads are depicted as a single box, 
the dot by the horizontal line, electrons and holes by full and 
empty circles, and spin σ and σ̄ by the colors blue and red, 
appearing as black and gray without color, respectively. In the 
following, all equations of motion are taken from the l.h.s., i.e. 
with respect to time t. Thus the r.h.s. of the Green’s functions, 
containing operators at time t′, never changes and we omit it 
from the pictograms.

We start from the equation of motion for the dot Green’s 
function (11),

[
i
∂

∂t
− ε0(t)− µBBσ

]
Gr

σσ(t, t′) = δ(t − t′)

+
∑
kα

V∗
kα(t)G

r
kασσ(t, t′) + U Gr

σσ,U(t, t′) ,
� (15a)

or, pictorially,

� (15b)

Applying the same procedure to the first of the higher Green’s 
functions, Gr

kασσ(t, t′), brings us back to the original dot 
Green’s function:

[
i
∂

∂t
− εkα(t)

]
Gr

kασσ(t, t′) = Vkα(t)Gr
σσ(t, t′)� (16a)

� (16b)

The dynamics of the second higher Green function, 
Gr

σσ,U(t, t′), is more complicated since electrons and holes of 
both spin species may tunnel to the dot, i.e.
[

i
∂

∂t
− ε0(t)− U − µBBσ

]
Gr

σσ,U(t, t′)

= δ(t − t′) nσ̄(t) +
∑
kα

V∗
kα(t)G

r
kασσ,U(t, t′)

− iθ(t − t′)
∑
kα

Vkα(t)
〈 {

c+kασ̄(t)dσ(t)dσ̄(t), d+
σ (t

′)
} 〉

− iθ(t − t′)
∑
kα

V∗
kα(t)

〈 {
ckασ̄(t)dσ(t)d+

σ̄ (t), d+
σ (t

′)
} 〉

,

� (17a)
with nσ̄(t) ≡ 〈 nσ̄(t) 〉 from now onward. Pictorially, this 
translates to

� (17b)

In order to obtain a closed system of equations, the last 
two Green functions introduced in the latter equation  will 
be neglected. Physically, this approximation can be moti-
vated as follows: (i) for the large U we are interested in, the 
system will tend to avoid double occupancies on the dot, 
and therefore suppress probability amplitudes containing 
dσdσ̄ as present in the second Green’s functions on the r.h.s. 
of (17); and (ii) a sufficiently large magnetic field fixes a 
preferred spin direction and therefore suppresses spin-flip 
contributions involving dσd+

σ̄  which makes the last Green’s 
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function on the r.h.s. of (17) negligible. Therefore, we will 
retain only the dominant first Green’s function in (17), 
Gr

kασσ,U(t, t′) = −iθ(t − t′)
〈 {

ckασ(t)d+
σ̄ (t)dσ̄(t), d+

σ (t
′)
} 〉

, 
which describes an ordinary σ-electron dynamics, albeit in 
presence of a σ̄-fluctuation on the dot.

In the conventional Hubbard-I decoupling, [35] one  
would now factorize 

〈 {
ckασ(t)d+

σ̄ (t)dσ̄(t), d+
σ (t

′)
} 〉

 
� nσ̄(t) 〈 {ckασ(t), d+

σ (t
′)} 〉. In this paper, however, we opt 

for a more accurate decoupling scheme that—although similar 
to Hubbard-I—accounts for some of the dynamics neglected 
by the latter. We establish one more equation of motion:
[

i
∂

∂t
− εkα(t)

]
Gr

kασσ,U(t, t′) = Vkα(t)Gr
σσ,U

+ iθ(t − t′)
∑
k′α′

Vk′α′(t)
〈{

ckασ(t)c+k′α′σ̄(t)dσ̄(t), d+
σ (t

′)
}〉

− iθ(t − t′)
∑
k′α′

V∗
k′α′(t)

〈{
ckασ(t)d+

σ̄ (t)ck′α′σ̄(t), d+
σ (t

′)
}〉

� (18a)

or

� (18b)

In the same spirit as before and similar to what was used by 
Anderson, [21] we retain only the dynamics of the (blue) 
σ-electron, which amounts to neglecting the second and the 
third contribution on the r.h.s.. With these approximations the 
system of differential equations (15)–(18) is now closed.

We introduce the zero tunneling or, equivalently, atomic 
limit Green’s functions for the dot and each lead,

g r
0(U),B(t, t′) = −iθ(t − t′) exp

[
−i

∫ t

t′
dt1ε0(U)(t1)− i

∫ t

t′
dt1µBBσ

]

� (19)

g r
kα(t, t′) = −iθ(t − t′) exp

[
−i

∫ t

t′
dt1εkα(t1)

]
,� (20)

where henceforth the shorthand εU ≡ ε0 + U  will be used for 
the excitation energy to and from the doubly-occupied dot. 
The equations  of motions can now be converted to the fol-
lowing closed system of integral equations:

Gr
σσ(t, t′) = g r

0,B(t, t′)

+

∫ t

t′
dt1 g r

0,B(t, t1)

[∑
kα

V∗
kα(t1)G

r
kασσ(t1, t′) + U Gr

σσ,U(t1, t′)

]

� (21)

Gr
kασσ(t, t′) =

∫ t

t′
dt1 g r

kα(t, t1)Vkα(t1)Gr
σσ(t1, t′)� (22)

Gr
σσ,U(t, t′) = g r

U,B(t, t′) nσ̄(t′)

+

∫ t

t′
dt1g r

U,B(t, t1)
∑
kα

V∗
kα(t1)Gr

kασσ,U(t1, t′)

�

(23)

Gr
kασσ,U(t, t′) =

∫ t

t′
dt1 g r

kα(t, t1)Vkα(t1)Gr
σσ,U(t1, t′).� (24)

The Dyson equations  (21)–(24) are the main result of this 
section  which we will refine only with some minor simpli-
fications. First, there are no correlations on the leads and the 
corresponding degrees of freedom may be integrated out. 
Substituting, respectively, (22) in (21), and (24) in (23), yields

Gr
σσ(t, t′) = g r

0,B(t, t′)

+

∫
dt1 dt2 g r

0,B(t, t1) Σr(t1, t2)Gr
σσ(t2, t′)

+ U
∫

dt1 g r
0,B(t, t1)Gr

σσ,U(t1, t′) ,

�

(25)

Gr
σσ,U(t, t′) = gr

U,B(t, t′) nσ̄(t′)

+

∫
dt1 dt2 g r

U,B(t, t1) Σr(t1, t2)Gr
σσ,U(t2, t′) ,

�
(26)

where Σr(t, t1) is the retarded tunneling or hybridization 
self-energy:

Σr(t, t′) =
∑
kα

V∗
kα(t) gr

kα(t, t′)Vkα(t′)

= −i θ(t − t′)
∑
α

∫
dε
2π

e−i ε(t−t′) Γα(ε, t, t′) .
�

(27)

Second, we decouple the integral equations  (25) and 
(26): to this end, we operate with the inverse atomic 

g−1
0(U),B = [i ∂

∂t − ε0(U)(t)− µBBσ] from the left and, noticing 
that g−1

U,B = g−1
0,B − U , obtain

g−1
0,B Gr

σσ(t, t′) = δ(t − t′)

+

∫
dt1 Σr(t, t1)Gr

σσ(t1, t′) + U Gr
σσ,U(t, t′)

�
(28)

and

g−1
0,B Gr

σσ,U(t, t′) = δ(t − t′) nσ̄(t)

+

∫
dt1 Σr(t, t1)Gr

σσ,U(t1, t′) + U Gr
σσ,U(t, t′) .

�
(29)

Subtracting (29) from (28) yields two independent Dyson 
equations, namely (26) and

Gr
σσ,0(t, t′) = gr

0,B(t, t′) [1 − nσ̄(t′)]

+

∫
dt1 dt2 g r

0,B(t, t1) Σr(t1, t2)Gr
σσ,0(t2, t′) ,

�
(30)

where Gσσ,0  is a new auxiliary Green’s function defined as

Gr
σσ,0(t, t′) = Gr

σσ(t, t′)− Gr
σσ,U(t, t′) .� (31)

And, third and finally, the shorthand notation,

G̃r
σσ,0(t, t′) =

Gr
σσ,0(t, t′)

1 − nσ̄(t′)
� (32a)

and

G̃r
σσ,U(t, t′) =

Gr
σσ,U(t, t′)
nσ̄(t′)

,� (32b)

rids the zero-tunneling Green’s functions in equations  (26) 
and (30) of the prefactors nσ̄ and (1 − nσ̄).
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We thus end up with

G̃r
σσ,0(t, t′) = gr

0,B(t, t′)

+

∫
dt1 dt2 g r

0,B(t, t1) Σr(t1, t2) G̃r
σσ,0(t2, t′)

�
(33a)

and

G̃r
σσ,U(t, t′) = gr

U,B(t, t′)

+

∫
dt1 dt2 g r

U,B(t, t1) Σr(t1, t2) G̃r
σσ,U(t2, t′) ,

�
(33b)

which—up to the time-dependent Zeeman shift µBB(t)σ, 
present in both atomic gr

0,B and gr
U,B, and the ‘Coulomb shift’ 

ε0(t) → εU ≡ ε0(t) + U affecting only the latter—agree with 
the Dyson equation  for a QD without Coulomb interaction 
[25].

3.2.  Analytic continuation and ‘lesser’ correlation function

The generalization of our Dyson equations to a non-equilibrium 
setup is readily obtained by using Langreth’s theorem [42, 
43]. This produces the usual Keldysh equation for the lesser 
correlation function,

G< = [1 + GrΣr] G<
0 [1 +ΣaGa] + GrΣ<Ga

= GrΣ<Ga ,
� (34)

where time convolutions are implicit. In the first line, the 
first term on the r.h.s. vanishes [44]: in the Dyson equa-
tion for the retarded Green’s function, Gr = [1 + GrΣr] Gr

0, 
the term in brackets equals Gr [G0]

−1, where the inverse 
free Green functions can be viewed as operator yielding 
δ(τ − τ ′) when applied to the contour-ordered free Green’s 
function G0. For τ  in the upper and τ ′ in the lower branch 
of the Keldysh contour we have G0 = G<

0 , and thus 
[G0]

−1 G<
0 = 0.

For our purposes, the Keldysh equation (34) becomes

G̃<
σσ,0(U)(t, t′)

=

∫
dt1 dt2 G̃r

σσ, 0(U)(t, t1) Σ<(t1, t2) G̃a
σσ,0(U)(t2, t′) ,

�
(35)

where Σ<(t, t′) is the lesser self-energy

Σ<(t, t′) =
∑
k α

V∗
kα(t) g<kα(t, t′)Vkα(t′)

= i
∑
α

∫
dω
2π

e−iω(t−t′) fα(ω) Γα(ω, t, t′) .
�

(36)

As usual, the advanced Green’s function follows by complex 
conjugation,

G̃a
σσ,0(U)(t, t′) =

[
G̃r

σσ,0(U)(t
′, t)

]∗
.� (37)

Of course, the original dot Green’s function can be recov-
ered via

Gx
σσ(t, t′) = G̃x

σσ,0(t, t′) [1 − nσ̄(t′)] + G̃x
σσ,U(t, t′) nσ̄(t′) ,

� (38)

where x may represent r, a,<, or  >. Finally, the 
time-dependent occupation numbers nσ(t) are obtained self-
consistently via

nσ(t) = Im G<
σσ(t, t) .� (39)

4.  Stationary current

In this section, we apply the above results to the special case 
of a time-independent current through the QD. The more gen-
eral case of a time-dependent current will be considered in the 
next section.

A stationary current arises when a constant voltage drop 
is applied to the leads, and when gate voltage and magnetic 
field are also time independent. Without explicit time depend

ence, i.e. with ∂∂t Vkα(t) = ∂
∂tεkα(t) = ∂

∂t∆α(t) = ∂
∂t B(t) = 0, 

all Green’s function depend only on the time difference t − t′, 
and the Dyson equations  (33) can be solved analytically by 
Fourier transform, t − t′ → ω.

The retarded (advanced) lead Green’s function is given by

gr(a)
kα (ω) =

1
ω ± εkα ± i0+

� (40)

where the ±i0+ translates the boundary conditions to the 
Fourier domain. The retarded, advanced and lesser tunneling 
self-energy, introduced in equation (27), thus become

Σr(a)(ω) =
∑
kα

|Vkα|2gr(a)
kα (ω)

=
[
ΛL(ω) + ΛR(ω]

)
∓ i

2
[
ΓL(ω) + ΓR(ω)

]

= Λ(ω) ∓ i
2
Γ(ω)

�

(41a)

and

Σ<(ω) =
∑
kα

|Vkα|2g<kα(ω)

= i
[
ΓL(ω) fL(ω) + ΓR(ω) fR(ω)

]
.

�
(41b)

The Dyson equations (33) for the auxiliary functions are now 
algebraic,

G̃r(a)
σσ,0(U)(ω) =gr(a)

0(U),B(ω)

+ gr(a)
0(U),B(ω) Σ

r(a)(ω) G̃r(a)
σσ,0(U)(ω) ,

�
(42)

and thus readily solved,

G̃r(a)
σσ,0(U)(ω) =

1
ω − ε0(U) − µBBσ − Λ(ω)± i

2Γ(ω)
.� (43)

Equation (38) brings us back to the original dot Green’s 
function,

Gr(a)
σσ (ω) =

1 − nσ̄

ω − ε0 − µBBσ − Λ(ω)± i
2Γ(ω)

+
nσ̄

ω − εU − µBBσ − Λ(ω)± i
2Γ(ω)

.
� (44)
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The corresponding spectral function

Aσ(ω) = i [Gr
σσ(ω)− Ga

σσ(ω)]� (45)

=Γ(ω)

[
1 − nσ̄

[ω − ε0 − µBBσ − Λ(ω)]
2
+
[ 1

2Γ(ω)
]2

+
nσ̄

[ω − εU − µBBσ − Λ(ω)]
2
+

[ 1
2Γ(ω)

]2

]�

(46)

enables us to write the lesser function as

G<
σσ(ω) = iAσ(ω)

[
ΓL(ω) fL(ω) + ΓR(ω) fR(ω)

]
Γ(ω)

,� (47)

and equation (39) for the occupation numbers as

nσ =

∫
dω
2π

Aσ(ω)

[
ΓL(ω) fL(ω) + ΓR(ω) fR(ω)

]
Γ(ω)

.� (48)

In the stationary case, the self-consistent solution of the latter 
equation may be obtained analytically and reads

nσ =
n0
σ − n0

σ̄(n
0
σ − nU

σ )

1 − (n0
σ − nU

σ )(n
0
σ̄ − nU

σ̄ )
,� (49)

where

n0(U)
σ =

∫
dω
2π

ΓL(ω) fL(ω) + ΓR(ω) fR(ω)[
ω − ε0(U) − µBBσ − Λ(ω)

]2
+

[ 1
2Γ(ω)

]2 .

� (50)
Finally, the explicit time dependence of the current in equa-

tion  (8) vanishes since we may integrate over t1 (see [25]), 
yielding

JL(R) =− e
�

∫
dε
2π

∑
σ

ΓL(R)(ε)

×
{

G<
σσ(ε) + fL(R)(ε) [Gr

σσ(ε)− Ga
σσ(ε)]

}

=− e
�

∫
dε
2π

∑
σ

ΓL(ε) ΓR(ε)

Γ(ε)

×
[

fR(L)(ε)− fL(R)(ε)
]

Aσ(ε) .
� (51)

Note that the results of this section are exact in the non-
interacting limit (where U → 0), as well as in the atomic limit 
(where Vkα → 0) for any value of the magnetic field B.

5. Time-dependent current

In this section, we analyze the time-dependent current through 
the QD. For metallic contacts, it is generally safe to assume 
that the details of the band structure are of little importance, 
and that both leads may be represented by a constant and infi-
nitely wide density of states, i.e. ρ(ε) = const—an approx
imation commonly referred to as ‘wide-band limit5’ Further 
simplifications arise if we assume the tunneling between 

the dot and the leads to be the same for all lead states, i.e. 
Vkα(t) = uα(t)Vα, with the time dependence residing solely 
in a overall function, uα(t), characteristic of each lead.

With these approximations, the barrier functions (9) 
become independent of ε,

Γα(t1, t) = 2πρ uα(t)uα(t1)|Vα|2 exp
[

i
∫ t

t1
dt2∆α(t2)

]
.

� (52)
Via the Fourier transform in (27), this produces an instanta-
neous tunneling self-energy,

Σr(t, t′) = − i
2
Γ(t)δ(t − t′) ,� (53)

where Γ(t) =
∑

α Γα(t, t) = 2πρ
∑

α u2
α(t)|Vα|2 . Moreover, 

we define Γα = 2πρ |Vα|2, and write Γ(t) =
∑

α Γαu2
α(t) 

henceforth.
The δ-function in Σr  enables us to do one of the two time 

integrations in the Dyson equations  (33) for the auxiliary 
Green’s functions,

G̃r
σσ,0(U)(t, t′) = gr

0(U), B(t, t′)

− i
2

∫
dt1 g r

0(U), B(t, t1) Γ(t1) G̃r
σσ,0(U)(t1, t′) .

� (54)

The solution of the latter equation are just the atomic Green’s 
functions broadened by the finite tunneling life-time,

G̃r
σσ,0(U)(t, t′) = gr

0(U), B(t, t′) exp
[
−1

2

∫ t

t′
Γ(t1)dt1

]
,� (55)

from which the original dot Green’s function are recovered 
via equation (38),

Gr
σσ(t, t′) =

[
gr

0,B(t, t′) [1 − nσ̄(t′)] + gr
U,B(t, t′)nσ̄(t′)

]

× exp

[
−1

2

∫ t

t′
Γ(t1)dt1

]
.

� (56)

Again, the dot occupation is obtained from the imaginary 
part of the lesser Green’s function at equal times [see equa-
tion (39)], yielding

nσ(t) =
∑
α

Γα

∫
dω
2π

fα(ω)

×
[
[1 − nσ̄(t)]

∣∣A0
α,σ(ω, t)

∣∣2 + nσ̄(t)
∣∣AU

α,σ(ω, t)
∣∣2]

� (57)

where

A0(U)
α,σ (ω, t) =

∫ t

−∞
dt1 uα(t1) G̃r

σσ,0(U)(t, t1)

× exp

[
iω(t − t1) + i

∫ t

t1
dt2 ∆α(t2)

]� (58)

denote the corresponding spectral functions.
Equation (57) defines a system of linear equations for nσ 

and nσ̄ which, introducing the shorthand

n0(U)
σ (t) =

∑
α

Γα

∫
dω
2π

fα(ω)
∣∣∣A0(U)

α,σ (ω, t)
∣∣∣
2

,� (59)
5 In the opposite case of extremely narrow contact bands, the continua in 
the conductance are expected to be accompanied by additional peaks and 
side-bands [45–47].
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may be written as

nσ(t) = [1 − nσ̄(t)] n0
σ(t) + nσ̄(t) nU

σ (t) .� (60)

Its solution is the same as in the stationary case, equation (49), 
albeit now with time-dependent n0

σ and nU
σ .

With the notation

B0
α,σ(ω, t) =

∫ t

−∞
dt1 [1 − nσ̄(t1)] uα(t1) G̃r

σσ,0(t, t1)

exp

[
iω(t − t1) + i

∫ t

t1
dt2∆α(t2)

]
,

�

(61a)

BU
α,σ(ω, t) =

∫ t

−∞
dt1 nσ̄(t1) uα(t1) G̃r

σσ,U(t, t1)

exp

[
iω(t − t1) + i

∫ t

t1
dt2∆α(t2)

]
.

�

(61b)

the current from the leads to the dot, given by equation (8), 
can be expressed in the wide-band limit as

Jα(t) =− e
�
Γαu2

α(t)
∑
σ

[
nσ(t)

+

∫
dω
π

fα(ω) Im
[
B0
α,σ(ω, t) + BU

α,σ(ω, t)
]]

.
�

(62)

The contribution proportional to the dot occupation in the first 
line describes the current from the dot to the lead and stems 
from the lesser Green’s function (for which both integrations 
in (8) can be evaluated due to the energy independence of the 
barrier functions). The second line in (62) is produced by the 
retarded Green’s function in (8) and represents the current in 
the inverse direction: the term involving B0

α,σ represents tun-
neling from the lead α to an empty dot, and the term with BU

α,σ 
to an already σ̄-occupied dot.

6.  Numerical results

In the previous two sections, we derived expressions for 
the current Jα from the leads to the dot for the stationary 
case, equation  (51), and for the wide-band limit of the 
time-dependent regime, equation (62). In both cases, the dot 
occupation number is given by the analytical expression (49), 
such that the aforementioned equations  for Jα depend ulti-
mately only on integrals over known functions and no itera-
tion procedure to self-consistency is needed. Details of the 
numerical method may be found in appendix.

Here, we calculate the current Jα numerically for the case 
of leads characterized by a constant and infinitely wide density 
of states, and where each lead state offers the same tunneling 
probability to the dot. In this case, equation (53) produces a 
tunneling self-energy Σr(t, t′) = − i

2

∑
α Γαδ(t − t′) with 

constant Γα which, after Fourier transformation, yields

Λα(ω) ≡ 0 and Γα(ω) ≡ Γα .� (63)

Henceforth, we will use the combined tunneling to both leads, 
Γ =

∑
α Γα, as our energy unit.

In the first part of this section, we will examine the current 
through the dot in the stationary regime, where the system is 
exposed to a constant bias voltage, eV = µL − µR, and a con-
stant magnetic field (expressed in terms of its energy equiva-
lent EB = µBB). Thereafter, time dependence will be studied 
by applying simultaneous voltage and magnetic pulses to 
formerly unperturbed systems. All calculations will be per-
formed for symmetric barriers, ΓL = ΓR = 1

2Γ, and at temper
ature T = 0.1Γ. The system will be driven out of equilibrium 
by applying a voltage to the left lead, and by modifying the 
dot energy level and magnetic field. The right lead, by con-
trast, will remain at µR = 0 and ∆R(t) = 0 at all times, thus 
serving as ground.

Let us first study the stationary regime by applying a con-
stant bias to a QD characterized by ε0 = 5Γ and U = 10Γ. For 
these parameters, Haldane’s expression for the Kondo scale 
(1) evaluates to EK � 2.4 · 10−5 Γ which is well below our 

Figure 2.  Stationary current through the dot (upper panel) and 
corresponding differential conductance (lower panel) as a function 
of bias voltage. Parameters are µL = eV , µR = 0Γ, ε0 = 5Γ, 
U = 10Γ. Solid (red), dashed (blue) and dot-dashed (green) lines 
represent magnetic fields B = 0, 1 and 4Γ/µB, respectively.
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choice of temperature, T = 0.1Γ. Therefore, even in absence 
of a magnetic field, our setup is well outside the Kondo 
regime. Figure  2 shows the symmetrized currents through 
the dot, J = 1

2 (JL − JR), and the corresponding differential 
conductances, Gdiff = dJ/dV , as functions of the bias voltage 
µL = eV  for different values of the magnetic field, and figure 3 
shows the corresponding NCA results. It can be seen that both 
methods produce very similar results predicting, as expected, a 
current rising stepwise with increasing voltage. Moreover, the 
step positions and heights of both methods agree. Although the 
NCA is capable of tackling the Kondo regime, its differential 
conductances exhibit no sharp resonances, thus corroborating 
our previous analysis that Kondo physics is unimportant in the 
parameter range under investigation.

Without a magnetic field (solid red lines), the first step arises 
when eV  reaches ε0 and the thus far empty dot level becomes 
energetically available for tunneling processes from the left 
lead. Such processes occur, of course, with equal probability 

for both spin species, and represent therefore two conduction 
channels. For eV > ε0, these channels remain open, resulting 
in a dot which alternates between the empty and singly occu-
pied configuration. For eV > ε0 + U , the Coulomb repulsion 
on the dot can be overcome, and a second electron may be 
hosted by an already singly occupied dot. But the latter pro-
cess represents only one additional conduction channel since 
the other is blocked by the Pauli principle. Therefore, the 
second step of the solid red current curve in the upper panel 
of figure 2, at ε0 + U = 15Γ, is only half the height of the 
first, at ε0 = 5Γ. In the differential conductance or density 
of states, shown in the lower panel, this gives rise to a lower 
Hubbard band at ε0 with twice the spectral weight of the upper 
Hubbard band at ε0 + U . At sufficiently low temperature, the 
width of both Hubbard bands is essentially governed by the 
tunneling matrix elements and thus given by Γ.

The NCA results shown in figure 3 confirm this spectral 
weight asymmetry. Such asymmetries have also been observed 
under equilibrium conditions in related models with strong 
electron correlations [39, 40] where the weight transfer occurs 
as a function of the Fermi energy. A detailed comparison of 
the NCA differential conductances to extended Hubbard I, 
represented by gray lines in figure 3, shows that both methods 
essentially agree on the shape of the lower Hubbard bands, 
while the NCA produces generally softer upper Hubbard 
bands. These findings persist for non-vanishing magnetic 
fields and might be due to the fact that the NCA encompasses 
some of the spin dynamics neglected in the extended Hubbard 
I approximation. However, the benchmark of both methods 
against QMC (further on in this section) seems to indicate 
conversely that the rendering of the dynamics in our method 
is somewhat superior to the NCA.

For non-vanishing magnetic fields, the situation remains 
similar, although the energetically favored ↓-spin level will 
be accessible before its ↑-spin counterpart. Therefore, each of 
the aforementioned current steps is split into two sub-steps, 
occurring at ±EB relative to the position without magnetic 
field. This Zeeman splitting is most obvious in the differential 
conductance for EB = 1Γ represented by the dashed blue line 
in the lower panel of figure 2. For EB = 4Γ, shown as dot-
dashed green lines, the splitting is much larger : the Zeeman 
components of the lower Hubbard band occur at ε0 − EB = 1Γ 
and ε0 + EB = 9Γ, and those of the upper Hubbard band at 
ε0 + U − EB = 11Γ and ε0 + U + EB = 19Γ.

Note that for both of our magnetic field values, EB  =  1 and 
4Γ, the splitting between the closest levels is only 2Γ and 
thus too small to produce neat current sub-steps in the upper 
panel of figure 2. The differential conductance in the lower 
panel, by contrast, resolves all features clearly.

We now turn to the time-dependent regime. At first, we 
will benchmark our method against recent diagrammatic 
QMC results obtained with the so-called inchworm algorithm 
developed by G. Cohen et  al [30] with which they investi-
gated the time evolution of the population difference on the 
dot, ∆P = n↑ − n↓, after a coupling quench with U = 8Γ. 
Here, we set up analogous initial conditions: we start from 
a fully polarized state, obtained with a large magnetic field, 
B = 90Γ/µB, which is switched off at t  =  0. As shown in 

Figure 3.  NCA stationary current and differential conductance 
calculated for the same parameters as in figure 2. For comparison, 
our extended Hubbard I results from figure 2 are shown as faint 
gray lines in the lower panel.
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figure 4, our method (continuous black line) reproduces the 
overall shape and time-dependence of the relaxation to a non-
magnetic state predicted by Cohen’s inchworm QMC. Even 
if some quantitative differences subsist at intermediate time 
scales, it becomes obvious that our method—in contrast to 
most other purely numerical methods discussed by Cohen et al 
[30]—is perfectly stable and produces meaningful results in 
the long time limit. Acknowledging the fact that the nth order 
of the inchworm QMC algorithm corresponds approximately 
to an n  −  1-crossing approximation, [30] it can be seen from 
the figure that the extended Hubbard I approximation outper-
forms the first order inchworm (which would correspond to 
NCA) for longer times, and captures some of the dynamics 
encompassed only by higher orders of the inchworm scheme.

We now investigate an experimentally more interesting 
time-dependent setup where an unperturbed system, given by 
µL = µR = ε0 = 0Γ, is driven out of equilibrium by a simul-
taneous voltage and magnetic pulse. The pulse is of rectan-
gular shape, i.e. ∆L(t) = 10Γ and ∆(t) = 5Γ are added to 
the energy levels of, respectively, the left lead and the dot, 
while the right lead remains grounded, µR = ∆R(t) = 0Γ. 
Also, for the duration of the voltage pulse, a magnetic field is 
switched on. The parameters are such that, during the pulse, 
the system is exposed to the same physical conditions as for 
bias eV = 10Γ in the stationary regime studied above.

As illustrated in figure 5, the current starts with the onset 
of the pulse at t  =  0. J(t) would then eventually recover 
the corresponding stationary value in a damped oscillation 
governed by exp(−Γt). The damping timescale is given by 
the inverse tunneling Γ−1, which is the same for all magn
etic fields, but the details of the oscillations and the value 
of the stationary current depend on the field. From figure 5, 
we find roughly Jstat � 0.3 eΓ/�  for EB  =  0 and 1Γ, and 
slightly less for EB = 4Γ, in agreement with the values for 

J(eV = 10Γ) from figure 2. In our setup, however, the pulse 
is switched off before the stationary state is fully reached, at 
tpulse = 3 �/Γ. Thereafter, the system oscillates back to its 
original equilibrium.

Figure 6 shows the overall (three upper curves) and spin-
resolved (lower curves) dot occupancies for EB  =  0,1 and 4Γ. 
Clearly, in absence of the pulse and for ε0 = 0, three configu-
rations are degenerate: the empty, the ↑- and the ↓-occupied 
dot occur with equal probability, thus explaining an equilib-
rium occupancy of 2/3. We may convince ourselves that in 
absence of a magnetic field, this equilibrium state is still a 
valid solution after the onset of the voltage pulse, and as a 
result, the corresponding red curves remain on their equilib-
rium values.

For moderate magnetic fields, e.g. EB = 1Γ shown as blue 
curves in figure 6, the pulse drives the system temporarily out 
of equilibrium. The spin-resolved occupancies then recover 
their equilibrium value in a damped oscillation with the 
overall occupancy remaining constant due to the phase shift 
of π between ↑ and ↓-occupancies.

For EB = 4Γ shown as yellow and green curves in the 
figure, the deviation is much stronger and, more importantly, 
the asymptotically emerging perturbed equilibrium is dif-
ferent from the unperturbed state: at the imposed eV = 10Γ, 
the ↓-spin Zeeman component of the upper Hubbard band is 
found at E = 11Γ (see figure 2) and thus becomes partially 
available for transport. Therefore, the spin-resolved occupan-
cies deviate considerably from their unperturbed values, even 
if the net effect in the total occupancy is rather small.

We now turn to the oscillatory behavior of the currents. It 
is already obvious from the current curves in figure 5 that the 
period of the damped oscillations is affected by the magnetic 
field. Fourier transformation is, of course, a much better tool 

Figure 4.  Relaxation from the fully polarized to a non-magnetic 
state in the mixed valence regime, for parameters ε0 = −0.5Γ 
and U = 8Γ. Extended Hubbard I (solid black line) compared 
to different orders of diagrammatic ‘inchworm’ QMC (solid red, 
dashed light blue and dotted dark blue lines). Inchworm data from 
figure 3 of [30].

Figure 5.  Time dependence of the symmetrized current through 
a QD perturbed by simultaneous voltage and magnetic pulses 
between t  =  0 and tpulse = 3 �/Γ. Without pulse, the system 
is characterized by µL = µR = 0Γ, ε0 = 0Γ, and U = 10Γ. 
During the rectangular pulse, the left lead levels are increased by 
∆L = 10Γ, and the dot level by ∆ = 5Γ. Solid (red), dashed (blue) 
and dot-dashed (green) lines represent magnetic pulse values of 
B = 0, 1 and 4Γ/µB, respectively.
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to study this in detail: figure 7 shows the currents in the fre-
quency domain for the parameters that were used in figure 5, 
except for the pulse length which now is tpulse = 10 instead of 
3 �/Γ. The longer pulse was chosen for the oscillations to fade 
out completely, thus producing much nicer Fourier signals. As 
can be seen from figure 7, the Fourier transformed currents 
J(ω) map out the lower Hubbard band, at ε0 = 5Γ, including 
the Zeeman splitting for non-vanishing magnetic fields. The 
intensity of the peaks in J(ω), however, does not match the 
weights in the density of states—a fact which is of no surprise 
since Fourier transformation does not conserve areas under 

functions but rather integrals over squared functions as in 
Plancharel’s theorem.

Note that the upper Hubbard band is absent from the 
figure  since, as pointed out before, double occupancies 
involve an energy cost too high for a bias voltage of eV = 10Γ 
(except for EB = 4Γ where the lower Zeeman component of 
the upper Hubbard band, centered at E = 11Γ, can be par-
tially addressed).

Finally, we study a setup where, between t  =  0 and 
tpulse = 10 �/Γ, a rectangular voltage pulse of ∆L = 20Γ and 
a magnetic pulse of B = 1Γ/µB are applied to a QD formerly 
in an equilibrium characterized by µL = µR = ε0 = 0Γ. In 
this setup the doubly occupied dot level becomes energetically 
available, and all transport channels are open. Therefore, J(t) 
in the top panel of figure 8 saturates around 12 eΓ/� instead of 
the 1

3 eΓ/� observed in figure 5. When the pulse is on, tun-
neling from the left lead to an empty dot releases an energy of 
∆L − ε0 −∆− σµBB which amounts to 16Γ for ↑- and 18Γ 
for ↓-electrons, thus producing very prominent peaks in the 
Fourier transformed JL (represented by the dotted blue line in 
figure 8). Similarly, tunneling from the left lead to an already 
singly occupied dot releases ∆L − ε0 −∆− U − σµBB, but 
the Fourier transformed JL shows only a very weak distur-
bance around the expected values of 6 and 8Γ. This suggests 
that the current involving the now available doubly occupied 
dot configuration is mainly stationary and contributes only 
little to the dynamics. The analysis of the current between 
the dot and the right lead corroborates this interpretation: 
according to the spin species, the singly-occupied dot level 
is ε0 +∆+ σµBB −∆R = 4 or 2Γ higher in energy than 
the right lead and produces the clearly visible structure in the 
Fourier transformed JR (dashed green curve in figure 8). By 
contrast, almost no Fourier signal is found from the doubly 
occupied level around the expected 12 or 14Γ.

A supplementary calculation (not shown in the figure) for 
the same parameters but with U = 50Γ, further supports the 
idea of mainly stationary transport through the upper Hubbard 
band: for U = 50Γ, where the doubly occupied dot is unat-
tainable, the time dependence of J(t) is almost identical to 
the U = 10Γ case, but oscillates around 13 eΓ/� instead of the 
1
2 eΓ/�.

The low-frequency behavior of the currents Jα(ω) in 
figure 8 is dominated by strong peaks that result from the sat-
urating currents. Assuming a smooth 1 − exp(−Γt)-like rise 
underlying the current oscillations in the top panel produces 
a Fourier transform of Lorentzian shape peaked at ω = 0 as 
observed in the low-frequency sector of the bottom panel.

Thus far, we focused on the contributions to the time-
dependent current in equation  (62) involving B0(U)

α,σ  which 
describe the current to the dot and are very sensitive to energy 
differences. There are, however, also terms acknowledging 
the current flow away from the dot. These are directly pro-
portional to the dot occupancy n(t). Especially for the right 
lead, the latter contributions will play an important role and 
are most likely responsible for the rest of features of JR(ω) 
in figure 8.

Figure 6.  Time dependence of the overall (upper curves) and 
spin-resolved (lower curves) dot occupancy for a QD governed by 
the same parameters as in figure 5, i.e. exposed to simultaneous 
rectangular voltage and magnetic pulses between t  =  0 and 
tpulse = 3 �/Γ. Solid (red), dashed/dotted (blue) and dot-dashed 
(green) lines represent magnetic pulse values of B = 0, 1 and 
4Γ/µB, respectively.

Figure 7.  Fourier transform of the time-dependent current through 
the dot for the same parameters as in figure 5, except for the pulse 
length which here is tpulse = 10 �/Γ.
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7.  Conclusion

In the present paper, we studied the electronic transport 
through a single-orbital QD with a strong on-site Coulomb 
repulsion. The dot is addressed by two uncorrelated metallic 
leads and may be exposed to an applied magnetic field. Our 
investigation encompasses setups with constant voltage biases 
between the leads and a constant magnetic field on the dot, 
yielding stationary currents, and situations where the system 
is perturbed by pulsed voltage biases and magnetic fields, pro-
ducing time-dependent responses.

The electric transport was investigated via non-equilibrium 
Green’s functions in the Keldysh formalism. Our methods are 

similar to those put forward by Jauho et al [25] but, in contrast 
to the latter, encompass an applied magnetic field, and more 
importantly, correlations due to the on-site Coulomb U. In this 
case, no exact solutions are available. Here, we opted for an 
approximation put forward by some of the authors in a pre-
vious paper [36]: the underlying Green’s function decoupling 
scheme bears many similarities with the so-called Hubbard-I 
approximation, but captures some of the dynamics not encom-
passed by the latter. In the present paper, we adapt the method 
to situations where the dot is subject to a non-zero magnetic 
field. The presentation also includes a pictorial representa-
tion of the equations of motion which helps to understand the 
underlying physical processes.

Well suited for large U, our non-canonical or extended 
Hubbard-I scheme, is exact in the atomic limit, where the 
tunneling matrix elements between dot and leads vanish. 
Moreover, it is also exact in the limit of vanishing Coulomb U 
on the dot level for any magnetic field.

After integrating out the degrees of freedom of the leads, 
the decoupling scheme produces a closed system, equa-
tions (25) and (26), that has to be solved self-consistently. In 
the two situations studied in this paper, namely (i) the time-
independent setup with constant magnetic field and voltage 
bias, and (ii) the time-dependent setup with leads of constant 
and infinitely wide density of states, no iteration procedure is 
needed and an explicit solution in terms of integrals over ulti-
mately known functions can be stated: these are expressions 
(51) and (62), respectively, for case (i) and (ii).

The numerical evaluation of the latter yields, in the sta-
tionary setup, the expected stepwise rise of the current through 
the dot with the first step stemming from the transport through 
the previously unoccupied dot, and the second from tunneling 
through an already occupied level which, of course, involves 
overcoming the Coulomb U. More importantly, for an already 
occupied dot, the Pauli principle blocks one of the spin spe-
cies and thus the second step only contributes half as much to 
the conductance as the first. In presence of a magnetic field, 
the Zeeman effect splits each of the steps into two smaller 
sub-steps. These findings are supported by an independent 
NCA calculation.

In the time-dependent regime, we showed that our method 
reproduces in essence the dynamics of the population relaxa-
tion after a quench observed in recent inchworm QMC results 
[30]. We then turned to the more challenging time-dependent 
setup where the QD is driven out of equilibrium by simul-
taneous rectangular voltage and magnetic pulses. After the 
onset of the pulses, the current through the dot converges to a 
new equilibrium in a damped oscillation. The precise nature 
of these oscillations was examined by Fourier analysis. As 
expected, it revealed that the oscillations are governed by 
energy level differences, and thus implicitly by the magnetic 
field. More importantly, Fourier analysis allowed us to show 
which electronic configurations contribute to the dynamics 
and which leave mainly a stationary signature in the transport 
signal.

One major benefit of our method is to suggest an expla-
nation for the physical origin of each peak in the spectrum. 
For example, we found to our surprise that, for the parameters 

Figure 8.  Time-dependent current (upper panel) and its Fourier 
transform (lower panel) for a QD perturbed by simultaneous voltage 
and magnetic pulses between t  =  0 and tpulse = 10 �/Γ. Without 
pulse, the system is characterized by µL = µR = 0Γ, ε0 = 0Γ, 
and U = 10Γ. During the rectangular pulse, the left lead levels 
are increased by ∆L = 20Γ, the dot level by ∆ = 3Γ, and the 
magnetic field is B = 1Γ/µB. The solid (red) line represents the 
symmetrized current through the dot, the dashed (blue) and dot-
dashed (green) lines the currents between the dot and, respectively, 
the left and the right lead.
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chosen, the dynamics of the current is mainly governed by 
tunneling through the empty dot, while the transport involving 
a temporarily doubly occupied level contributes mostly to the 
stationary part of the conductance.
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Appendix.  Numerical procedure

The time-dependent current and dot occupancies are 

essentially determined by the functions A0(U)
L/R, σ(ω, t) and 

B0(U)
L/R, σ(ω, t), equations (58) and (61), which may be written as

A0(U)
α,σ (ω, t) =− i

∫ t

−∞
dt1 uα(t1)

× exp

[
i
∫ t

t1
dt2 F0(U)

α,σ (ω, t2)
]�

(A.1)

where the function

F0(U)
α,σ (ω, t2) = ω − ε0(U) −∆(t2)− µBBσ +∆α(t2) +

i
2
Γ(t2)

� (A.2)
contains all the dynamics of the ‘tunneling-broadened atomic’ 
G̃r

σσ,0(U) from equation  (55). Analogous expressions for 
B0
α,σ(ω, t) and BU

α,σ(ω, t) can be obtained via the replacements 
uα(t1) → uα(t1) [1 − nσ̄(t1)] and uα(t1) → uα(t1) nσ̄(t1), 
respectively.

Note that t enters (A.1) in two different ways: firstly, 
through the upper bound of the outer integral, and secondly 
since the exponential in the integrand depends explicitly on t. 
Therefore, evolving (A.1) from t to t + δt yields

A0(U)
α,σ (ω, t + δt)

= A0(U)
α,σ (ω, t) exp

[
i
∫ t+δt

t
dt2 F0(U)

α,σ (ω, t2)

]

− i
∫ t+δt

t
dt1 uα(t1) exp

[
i
∫ t+δt

t1
dt2 F0(U)

α,σ (ω, t2)

]
.

�

(A.3)

Before the onset of time dependence, chosen without loss 
of generality at t0  =  0, or in the stationary setup—cases both 
characterized by ∆(t) ≡ 0 on the dot, ∆α(t) ≡ 0 on the leads, 
and Γ(t) ≡ Γ—the integration may be performed analytically 
and yields

A0(U)
α, σ (ω, 0) =

uα

ω − ε0(U) − µBBσ + i
2Γ

,� (A.4a)

B0
α, σ(ω, 0) =

uα [1 − nσ̄(0)]
ω − ε0 − µBBσ + i

2Γ
, and� (A.4b)

BU
α, σ(ω, 0) =

uα nσ̄(0)
ω − ε0 − U − µBBσ + i

2Γ
.� (A.4c)

Equation (A.4a) suffice to determine the current and the dot 
occupancy in the stationary regime.

After the onset of time dependence, equation (A.3) will be 
used iteratively. For small enough time steps δt, both integrals 
may be evaluated approximately using the midpoint rule,

A0(U)
α,σ (ω, t + δt) = A0(U)

α,σ (ω, t) exp
[
iδt F0(U)

α,σ (ω, t1)
]

−iδt uα(t1) exp
[

iδt
2

F0(U)
α,σ (ω, t2)

]
+O(δt3) ,

�
(A.5)

where t1 = t + 1
2δt and t2 = t + 3

4δt are the midpoints for 

the outer and inner integrals in equation  (A.3). The corre

sponding expressions for B0(U)
α,σ  contain nσ̄(t1) which, if 

unknown, may be interpolated from the endpoints, i.e. 
nσ̄(t1) � 1

2 [nσ̄(t) + nσ̄(t + δt)].
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