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1.  Introduction

Frustrated spin systems have, for several decades, drawn sig-
nificant attention in the search for exotic ground states. The 
causes of frustration are several [1–4], with special emphasis 
given to lattices on which the classical Néel ground states 
of the nearest neighbour (n.n) Heisenberg antiferromagnet 
cannot be stabilised due to an intrinsic frustration. The 
kagome and triangular lattices in 2D and the pyrochlore 
lattice in 3D are classic examples of such systems. A large 
number of theoretical as well as experimental studies have 
sought novel ground states such as spin liquids and spin ice 
[5–7], as well as states possessing topological order and 

fractionalized excitations [8]. In spite of extensive studies 
on the S  =  1/2 Heisenberg kagome antiferromagnet (HKA), 
the nature of the ground state and the existence of a spectral 
gap remain inconclusive. Some studies support the existence 
of a gap and short-ranged resonating valence bond (RVB) 
order [9–14], while others suggest a gapless spectrum and 
algebraic order [15–21]. Another interesting aspect of geo-
metrically frustrated spin systems is that they can possess 
nontrivial plateaux at zero and fractional magnetisation (see, 
e.g. [22–32] for triangular and kagome lattices). The exis-
tence of such plateaux indicates a finite gap in the energy 
spectrum and the possibility of ground states with non-trivial 
topological features analogous to the quantum Hall effects 
[33–36]. In fact, the ground state wavefunction for the pla-
teau at fractional magnetization m  =  7/9 is known exactly 
[22, 25, 37].
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There exist very few methods that, relying solely on the 
symmetries of the Hamiltonian, can offer qualitative insight 
on the nature of the ground state and the low-energy excitation 
spectrum. One of these is the Lieb–Schultz–Mattis (LSM) 
theorem [38]. Originally formulated for the spin-1/2  n.n. 
Heisenberg antiferromagnet chain, it was extended to higher 
dimensions for geometrically non-frustrated systems more 
recently [39–41]. The theorem relates the existence (or lack) 
of a spectral gap to the sensitivity of the ground state to adi-
abatic changes in boundary conditions implemented by a twist 
operator. A degeneracy of the ground state can also be gauged 
from the non-commutativity between the lattice translation and 
twist operators. Recent works have been devoted to extending 
the applicability of the LSM theorem to systems with a 
variety of interactions (e.g. extended, anisotropic, bond-alter-
nating, Dzyaloshinskii-Moriya and even frustrating) [42–44].  
This is in broad agreement with some numerical studies of 
(quasi-)one dimensional systems (e.g. chains and ladders) 
[45–47]. These works indicate that the minimum require-
ments for the LSM theorem are spin Hamiltonians possessing 
U(1) spin symmetry, translation invariance in real space and 
short-ranged interactions. Importantly, without assuming 
either a bipartite lattice or a unique ground state [42], extends 
the LSM theorem to frustrated spin systems in quasi-one 
dimension where ground states may be degenerate. Further, 
Oshikawa et al [33] extended the LSM-theorem to the case 
of finite magnetization (the Oshikawa–Yamanaka–Affleck 
(OYA) criterion), using which one can predict possible mag-
netization plateaux for finite external magnetic field. It is 
important to note that the OYA-criterion has been extended to 
quantum antiferromagnetic systems in abitrary spatial dimen-
sions by Tanaka et al [48, 49] with the help of effective field 
theory and renormalisation group (RG) analyses. Further, the 
OYA-criterion has been successful in predicting plateaux for 
the S  =  1/2 HKA [29, 50, 51]. Very recently, two of us have 
predicted possible magnetization plateau states in S  =  1/2 
pyrochlore lattice by using a similar formalism to that pre-
sented here [52]. In a RG analysis of the S  =  1/2 HKA on 
the kagome lattice [53], we have also shown that the twist 
operator we present here is responsible for the formation of 
the spectral gap that protects the 1/3 magnetization plateau 
ground state. This provides important evidence for the origin 
of the spectral gap assume in the twist operator based analysis.

As presented in section  2, the main goal of the present 
work is to define the twist operator (also called a large gauge 
transformation operator [40, 54]) for geometrically frustrated 
2D lattices (e.g. kagome and triangular). The subtlety in the 
form of the twist operator in such lattices lies in identifying 
the non-trivial unit cell and the associated basis vectors. 
Then, from the usual non-commutativity between twist and 
translation operators, we obtain the possibility of gapped, 
doubly-degenerate ground states with interpolating fractional 
excitations for the HKA at zero field in section  3. Further, 
in sections 3 and 4, we demonstrate the existence of several 
plateaux at finite magnetisation from an OYA-like criterion on 
the kagome and triangular lattices. These compare favourably 
with results obtained from various numerical methods [29]. 

The non-saturation plateaux obtained at non-zero field from 
such spectral flow arguments correspond to quantum liquid 
ground states in which the unit cells comprise of short-ranged 
RVBs along with a fixed number of spinon excitations [35, 55].  
This should be contrasted with proposals of quantum solid 
valence bond solid (VBS) ground states [56] and SU(2) sym-
metry broken classical ground states [57] for geometrically 
frustrated 2D spin systems. We conclude in section  5, pre-
senting some open directions. For the sake of completeness, 
we present the details of the calculations for the energy cost 
related to the twist operation and the LSM-like theorem for 
the kagome lattice in appendices A and B.

2. Twist operator for the kagome lattice

The kagome system has two basis vectors â1 and â2 with 
which the complete lattice can be spanned (figure 1). The 
Hamiltonian for S = 1

2  n.n HKA in a field h is [58]

H = J
∑
〈�r�r′〉

�S�r · �S�r′ − h
∑
�r

Ŝz
�r,� (1)

where the spin exchange J  >  0 and sum is over n.n sites. Here 
�r ∈ (�R, j), with �R = n1â1 + n2â2 (n1, n2 are integer) the lat-
tice vector for a three sub-lattice unit cell (up triangles) and 
j ∈ (a, b, c) are the three sub-lattices. For N1 and N2 being 
the number of each sub-lattice along the â1 and â2 directions 
respectively, the total number of sites in the lattice is 3N1N2. 
Below, we will consider periodic boundary conditions (PBC) 
along â1 direction. Now, for δ being the distance between n.n 
sites, Lâ1 = 2δN1 and Lâ2 = 2δN2 are the lengths along the 
â1 and â2 directions respectively. Hereafter, we will consider 
δ = 1.

Figure 1.  Schamatic diagram of kagome lattice with the basis 
vectors â1 = x̂, â2 = 1

2 x̂ +
√

3
2 ŷ, so the distance between nearest 

neighbour sites is half. Every triangular unit cell has three 
different sublattice labelled by a, b and c ( blue, green and black 
respectively). The dashed lines show the non-zero projection of 
sites in the â2 direction along â1.
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In the LSM theorem [38], a twist (i.e. a change in boundary 
conditions) is equivalent to insertion of an Aharanov–Bohm 
(AB) flux [40, 54] that generates a vector potential along 
the periodic direction. This is analogous to Laughlin’s flux 
insertion for the quantum Hall effect [59]. By this argument, 
one can extend the LSM theorem to higher dimensions [41], 
with twisting equivalent to a large gauge transformation of 
the Hamiltonian. We expect an invariance of the spectrum 
under a large gauge transformation equivalent to the adiabatic 
insertion of a full flux quanta (2π, in units h  =  c  =  e  =  1). 
The twisted wavefunction, however, reveals the effect of the 
flux. Thus, we compute a shift in the crystal momentum by 
applying a gauge transformation that reverses precisely the 
shift in the eigenspectrum due to the flux [54]. This shift is 
revealed by a non-commutativity between the translation and 
twist operators.

In applying the LSM theorem on geometrically frustrated 
lattices, one has to be careful in defining a suitable large gauge 
transformation. On such lattices, the basis vectors are usually 
not orthogonal to one another (see figure  1 for the kagome 
lattice). Therefore, spins at different sites along a basis vector 
(other than that along which the twist is applied) differ in the 
phase induced by the equivalent AB flux. We place the system 
shown in figure 1 on a cylinder, with PBC along x̂ ≡ â1. Now 
if we apply an AB-flux along the axis of the cylinder, a time-
varying vector potential will be induced along â1 direction. 
For a uniform gauge A(x) = 2π/Lâ1 and A(y) = 0, there 
will be no change in the phase of spins on sites with the 
same y -coordinate. Given that â2 does not coincide with ŷ, 
the phase acquired by the spins varies along â2. Below, we 
account for this subtlety in constructing twist operators for the 
kagome and triangular lattices.

Given that [Sα
�r , Sβ

�r′ ] = 0 for �r �= �r′, where α,β ∈ {x, y, z}, 
we can define separate twist operators for the three sub-lat-
tices (Ôa, Ôb and Ôc) and combine them for the complete twist 
operator Ô = ÔaÔbÔc . Then, for a flux quantum along ŷ, the 
phase difference between spins belonging to the nearest sites 
of the same sub-lattice and with fixed n2 (n1) coordinate is 
given by 2π/N1 (π/N1); see dashed lines in figure 1. Therefore, 
with the site marked as a in figure 1 chosen as the reference 
site, the twist operator for sub-lattice a (Ôa) is given by

Ôa = exp
[
i
2π
N1

∑
�R

(n1 +
n2

2
)Ŝz

�R,a

]
.� (2)

In a given unit cell, the phases acquired by b and c sub-lattices 
differ by 14 (2π/N1) and 12 (2π/N1) respectively with respect to 
the a sub-lattice. Thus, the twist operator for sub-lattice b is 
given by

Ôb = exp
[
i
2π
N1

∑
�R

(n1 +
n2

2
+

1
4
)Ŝz

�R,b

]
,� (3)

while Ôc is identical in form, with only the term proportional 
to 1/4 in the exponent replaced by one proportional to 1/2. 
Combining the three, we obtain the complete twist operator 
for kagome lattice

Ô = exp
[
i
2π
N1

(∑
�r

(n1 +
n2

2
)Ŝz

�r +
∑
�R

(
1
4

Ŝz
�R,b

+
1
2

Ŝz
�R,c

)
)]

.

� (4)
This form of the twist operator differs from that obtained for 
non-frustrated lattices [40, 54] in two ways. The term propor-
tional to n2 appears due to the non-orthogonality of the basis 

vectors, while the terms proportional to Ŝz
�R,b

 and Ŝz
�R,c

 arise due 

to the different phase twists acquired by the sub-lattices of the 
kagome system. We will use this twist operator to obtain the 
nature of the ground state and low-energy spectrum for the 
HKA. In appendix A, we show that the excitation gap between 
the ground state and the twisted state vanishes in the thermo-
dynamic limit for a vanishing spin stiffness [41, 60].

3.  LSM-like theorem and OYA-like criterion for the 
kagome lattice

We denote the unit translation operator along â1 direction 
as T̂â1, such that T̂â1 Ŝz

n1,n2,jT̂
†
â1
= Ŝz

n1+1,n2,j . For PBC along â1 
direction, we obtain the identity (see appendix B for a detailed 
calculation)

T̂â1 ÔT̂†
â1
= Ô exp

[
− i

2π
N1

(Ŝz
Tot − N1N2Ŝz

�)
]
,� (5)

N2Ŝz
� is the z-component of the vector sum of all spins within 

the N2 unit cells where the total magnetization is given by 
Ŝz

Tot =
∑

�r Ŝz
�r . We obtain the factor N2Ŝz

� as the z-comp
onent of the vector sum of all spins within the N2 unit cells 
lying on a line along â2 (the boundary line [54]) by assuming 
translation invariance along that direction. For the kagome 
lattice, S� = 1/2, 3/2 such that the eigenvalues of Ŝz

� are 
±1/2,±3/2. As mentioned earlier, the applicability of the 
LSM theorem demands a U(1) invariance of the ground state, 
i.e. it is labelled by the eigenvalue of Ŝz

Tot . For the case of 
h  =  0, the total number of sites in the lattice (N1 × N2) has 
to be even in order to guarantee the time reversal invariance 
of the ground state, i.e. Ŝz

Tot|ψ0〉 = 0. Then, at zero field, the 
matrix element arising from equation (5) becomes

〈ψ0|T̂â1 ÔT̂†
â1
|ψ0〉 = 〈ψ0|Ô exp

[
− iN2 (mod π)

]
|ψ0〉.� (6)

For the case of N2 ∈ odd and a many-body gap in the excita-
tion spectrum, we find that the S  =  1/2 HKA can have from 
a two-fold degenerate ground state. We discuss the zero-field 
results in more details in appendix C.

We will now focus on the properties at non-zero magnetic 
field. Defining magnetization per site as m = Sz

Tot/3N1N2, 
equation (5) becomes

T̂â1 ÔT̂†
â1
= Ô exp

[
− i2π(3N2)(m −

Ŝz
�

3
)
]
.� (7)

The appearance of magnetisation plateaux can be understood 
by noting that we can write the odd integer N2 as the product of 
two odd numbers, N2  =  (2p   +  1)(2q  +  1) where ( p, q) can be 
zero or any positive integer. Then, denote 3N2 = Qm(2q + 1), 
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where Qm  =  3(2p   +  1) corresponds to the size of a magnetic 
unit cell. The fundamental unit cell of the kagome lattice (see 
figure 1) has p   =  0 and Qm  =  3 spins, whereas the simplest 
enlarged unit cell has p   =  1 and Qm  =  9 spins. We can then 
derive the OYA-like criterion from equation (7) in terms of the 
fractional magnetisation, m/ms (where ms  =  1/2 is the satur
ation magnetisation per site), by requiring that the argument 
of the exponential is an integer n (upto a factor of 2π(2q + 1)). 
This is in analogy with the integer quantum Hall effect [33]. 
Thus, we obtain

Qm

2
(

m
ms

− 1
3
) = n or

Qm

2
(

m
ms

− 1) = n,� (8)

for Sz
� = 1/2 and for Sz

� = 3/2 respectively.

The table 1 indicates the positions of various plateaux at 
fractional magnetisation in the HKA. The location of the pla-
teaux agree with results obtained from numerical and exper
imental works [29, 30, 51]. Motivated by [33], equation (8) 
reveals an analogy between the magnetisation plateaux for 
Sz
� = 3/2 and quantum Hall ground states. For instance, the 

plateau m/ms  =  1/3 state arising from a fundamental unit cell 
(Qm  =  3) is analogous to the integer quantum Hall (IQH) state 
with filling factor ν = 1. This argument extends to a unit cell 
enlargement of Qm  =  3(2p   +  1), e.g. the four plateaux arising 
from the three-fold enlargement (Qm  =  9) are in analogy with 
fractional quantum Hall (FQH) states with ν = |n|/Qm [36]. 
Further, these ground states contain a fixed number of spinon 
excitations and RVB singlets [61]: the fractional magnet
isation m/ms, the quantity (Qmm/ms) and |n| correspond to the 
spinon density, spinon number and number of singlets within 
the magnetic unit cell respectively.

We now turn to the plateaux obtained for S� = 1/2 = Sz
�. 

The wavefunctions of an isolated triangle of three spin-1/2s (a 
fundamental unit cell) in the S� = 1/2 = Sz

� sector involve 
linear combinations of states composed of direct products of 
a given spin-1/2 and the singlet and triplet states of the other 
two spin-1/2s (see, e.g. equation (16) of [62]). Then, the 1/3 
plateau in Qm  =  3 can be seen to arise from wavefunctions 
composed entirely of linear combinations of direct products of 
single spin-1/2 and triplet states of the other two spins (i.e. a 
singlet bond count for the fundamental unit cell being |n| = 0). 
For the three-fold enlarged unit cell of Qm  =  9, the 1/9 and 
5/9 plateau states possess a wavefunction in which one of the 
three triangles involves a singlet (|n| = 1). Similarly, the 1/3 
state has a wavefunction with no singlets in any of the three 
triangles, while the 7/9 state has singlets in any two triangles.

4.  Magnetisation plateaux for the triangular lattice

We now extend our analysis to the triangular lattice. Although 
the triangular lattice possesses geometrical frustration, it has 
a simple unit cell with an invariance of the Hamiltonian due 
to translation by one lattice site. Further, it has two basis vec-
tors identical to the kagome lattice, but with half the length. 
Thereby, the twist operator for triangular lattice has the form

Ô = exp
[
i
2π
N1

∑
�R

(n1 +
n2

2
)Ŝz

�R

]
,� (9)

with a notation identical to that used for the kagome lattice. 
Similarly, the OYA-like criterion for the triangular lattice is 
found to be

Qm

2
( m

ms
− 1

)
= n.� (10)

This criterion offers a 1/3-plateau as the simplest possibility 
via the enlargement of the magnetic unit cell, i.e. with Qm  =  3 
and n  =  −1, and is analogous to the FQH state with ν = 1/3. 
This is consistent with predictions from numerical and exper
imental works [27, 31, 32, 63, 64].

5.  Conclusions and outlook

In conclusion, we have derived the twist operator for the 
kagome and triangular lattices. Although the form of the twist 
operator is different from that for non-frustrated lattices, the 
non-commutativity between twist and translation operator 
is similar in the sense that it depends only on boundary unit 
cells. We have shown that the contribution from boundary 
spins leads to several possibilities for magnetization pla-
teaux in frustrated systems. The plateaux are observed to be 
analogous to the integer and fractional quantum Hall states, 
offering insight into quantum liquid ground states with fixed 
numbers of singlets and spinons in the unit cell. While we 
have focussed on the case of N2 being an odd integer in this 
work, some results can also be obtained for the case of N2 
being an even integer. For instance, for Qm  =  6, we obtain 
magnetisation plateaux at m/ms  =  0,1/3 and 2/3. Similar argu-
ments can also be applied for plateau states appearing from 
larger magnetic unit cells, i.e. Qm = 15, . . . etc, as long as they 
are protected by a spectral gap. While we have demonstrated 
the microscopic mechanism that leads to the spectral gap for 
the m/ms  =  1/3 plateau from a renormalisation group (RG) 
analysis in [53], it is important to note that we must rely on 
similar studies, numerical simulations and experiments for a 
verification of the plateaus predicted here.

There are several interesting directions that are opened by 
our work. The first involves an investigation of whether the 
ground state wavefunctions we have obtained for some of the 
non-trivial magnetisation plateaux correspond to novel topolog-
ical field theories. For instance, we have recently shown from a 
renormalisation group analysis that an effective Hamiltonian can 
be obtained for a quantum spin liquid phase of the Heisenberg 
quantum antifferomagnet corresponding to the m/ms  =  1/3 

Table 1.  Plateaux in the fractional magnetization (m/ms) and the 
corresponding (n, Sz

�, Qm) values in equation (8). The symbols are 
defined in the text.

Qm m/ms Sz
� = 1/2 Sz

� = 3/2

3 1/3 n  =  0 n  =  −1
9 1/9 n  =  −1 n  =  −4

1/3 n  =  0 n  =  −3
5/9 n  =  1 n  =  −2
7/9 n  =  2 n  =  −1

J. Phys.: Condens. Matter 32 (2020) 165805
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plateau in the kagome lattice [53]. This effective Hamiltonian 
was reached by the condensation of SU(2) symmetric quantum 
fluctuations, suggesting that the problem can likely be studied 
in terms of a a SU(2) non-Abelian lattice gauge theory on the 
kagome lattice associated with such quantum fluctuations [65]. 
A continuum version of such a gauge theory is obtained from 
a fermionic non-linear sigma model of massive Dirac fermions 
in (2 + 1) dimensions coupled to a SU(2) order parameter [66], 
and found to lead to a quantum disordered ground state pro-
tected by a dynamically generated mass gap. Further, the theory 
is topolgical in nature, possessing a topological Hopf term in 
the effective action. It appears relevant, therefore, to investi-
gate whether any the ground state wavefunction obtained by us 
for the plateau at m/ms  =  1/3 in this work could be that for the 
quantum spin liquid ground state of [53].

In a recent work [52], the formalism developed here has 
been extended to the search for magnetization plateaus in 
other frustrated lattices, e.g. the pyrochlore in 3D. Any results 
obtained from a twist-operator based approach can likely 
provide considerable assistance in the experimental search 
for quantum spin liquids currently being sought in magnetic 
materials with frustrated geometries. Finally, we hope that 
this work will also motivate the search for plateaus that corre-
spond to fractional values of the parameter n, in analogy with 
the fractional quantum Hall effect.
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Appendix A.  Energy cost of the twisted state

Here we present the calculation for energy different between 
the ground state (|ψ0〉) and the twisted state (|ψ1〉) generated 
due the application of twist operator on the ground state i.e. 
|ψ1〉 = Ô|ψ0〉

〈ψ1|H|ψ1〉 = 〈ψ0|Ô−1HÔ|ψ0〉,� (A.1)

where the twist operator is defined by

Ô = exp
[
i
2π
N1

(∑
�r

(n1 +
n2

2
)Ŝz

�r

+
∑
�R

(
1
4

Ŝz
�R,b

+
1
2

Ŝz
�R,c

)
)]

.
� (A.2)

The meaning of various symbols is as defined in the main text. 
Using the following operator identities [38]

Ô−1Sx
�R,aÔ = Sx

�R,a cosA + Sy
�R,a

sinA,

Ô−1Sy
�R,a

Ô = −Sx
�R,a sinA + Sy

�R,a
cosA,

Ô−1Sz
�R,a

Ô = Sz
�R,a

,

�

(A.3)

Ô−1Sx
�R,bÔ = Sx

�R,b cosB + Sy
�R,b

sinB,

Ô−1Sy
�R,b

Ô = −Sx
�R,b sinB + Sy

�R,b
cosB,

Ô−1Sz
�R,b

Ô = Sz
�R,b

,

�

(A.4)

Ô−1Sx
�R,cÔ = Sx

�R,c cosC + Sy
�R,c

sinC,

Ô−1Sy
�R,c

Ô = −Sx
�R,c sinC + Sy

�R,c
cosC,

Ô−1Sz
�R,c

Ô = Sz
�R,c

,

�

(A.5)

where a, b, c are the three sublattices of the Kagome lattice, 
we find the angles

A =
2π
N1

(n1 +
n2

2
), B =

2π
N1

(n1 +
n2

2
+

1
4
)

and C =
2π
N1

(n1 +
n2

2
+

1
2
).

�

(A.6)

Thus, we have

〈ψ1|H|ψ1〉 = 〈ψ0|H|ψ0〉+ 〈ψ0|[(cos
2π
4N1

− 1)J
∑
�R

(Sx
�R,aSx

�R,b + Sy
�R,a

Sy
�R,b

)

+ (cos
2π
2N1

− 1)J
∑
�R

(Sx
�R,aSx

�R,c + Sy
�R,a

Sy
�R,c

)

+ (cos
2π
4N1

− 1)J
∑
�R

(Sx
�R,bSx

�R,c + Sy
�R,b

Sy
�R,c

)]|ψ0〉

�

(A.7)

= 〈ψ0|H|ψ0〉+
N1N2

2
αJ

[
2(1 − cos(

2π
4N1

)) + (1 − cos(
2π
2N1

))

]

� 〈ψ0|H|ψ0〉+
N2

N1

3π2

8
αJ +O(N−3

1 ),

�

(A.8)

where J denotes the spin exchange constant and the lat-
tice constant (denoted by δ in the main manuscript) has 
been set to unity. In the fourth line, we have defined 

N1N2
α
2 = 〈ψ0|

∑
�R(S

x
�R,i

Sx
�R,j

+ Sy
�R,i

Sy
�R,j
)|ψ0〉, (i, j) ∈ (a, b, c), 

i �= j, as the ground state is a singlet of total spin, possessing 
rotational as well as translational invariances; it is thus 
expected to have a spin stiffness of equal expectation value in 
all spatial directions.

Further, we have expanded the cosine functions in the last 
line to leading order in (1/N1). The factor 0 � α � 1 denotes 
the renormalisation of the spin stiffness (ρ = 3π2αJ/8N2

1 ), 
and is expected to vanish (α → 0) in a symmetry-preserved 
spin liquid [41, 60]. In this regard, we have also demonstrated 
recently from a RG analysis [53] that the twist operator pre-
sented here is responsible for the formation of the spectral gap 
that protects the 1/3 magnetization plateau ground state of the 
S  =  1/2 HKA on the kagome lattice. For instance, in a gapped 
spin liquid displaying topological order, one finds [41, 55]

α(Lâ1) ∼ e−Lâ1/ξ,� (A.9)

where Lâ1 = 2δN1 is the length along the twist direction (â1), 
δ is the lattice constant and ξ denotes the correlation length. 
Thus, for isotropic (N2/N1) ∼ O(1)) spin liquid states in two 
spatial dimensions, the vanishing of the spin stiffness ρ  (due 

J. Phys.: Condens. Matter 32 (2020) 165805



S Pal et al

6

to the vanishing of α) leads to 〈ψ1|H|ψ1〉 → 〈ψ0|H|ψ0〉. This 
ensures that the LSM theorem (based on the twist operator 
Ô) is applicable for the study of spin liquid ground states 
in Heisenberg quantum antifferomagnets defined on geo-
metrically frustrated lattices in two spatial dimensions. It 
is important to note that for zero-external magnetic field as 
the ground state |ψ0〉 is a singlet of total spin, and therefore 
rotationally invariant, the expectation value of current-like 

terms (i.e. Sx
�R,a

Sy
�R,b

− Sy
�R,a

Sx
�R,b

 etc) vanishes [67]. Such terms 

are also expected to have vanishing expectation values for 
the U(1)-symmetric plateau ground states at finite external 
field, as they are eigenstates of the total Sz protected by a gap. 
Indeed, it can be shown from effective field theory and renor-
malisation group (RG) methods [48] that, in the presence of 
magnetic field, the gap responsible for the plateau is robust 
against such current-like terms.

Appendix B.  Details of the calculation for the LSM-
like theorem for kagome lattice

For PBC along â1 direction, we have

T̂â1 ÔaT̂†
â1
= exp[i

2π
N1

∑
n2

{(1 +
n2

2
)Ŝz

2,n2,a

+ (2 +
n2

2
)Ŝz

3,n2,a + ... + (N1 +
n2

2
)Ŝz

N1+1,n2,a}]

= Ôa exp[−i
2π
N1

(Ŝz
Tot)a] exp[i2π

∑
n2

Ŝz
1,n2,a].

� (B.1)
Similarly, we find

T̂â1 ÔbT̂†
â1
= Ôb exp[−i

2π
N1

(Ŝz
Tot)b] exp[i2π

∑
n2

Ŝz
1,n2,b],� (B.2)

and

T̂â1 ÔcT̂†
â1
= Ôc exp[−i

2π
N1

(Ŝz
Tot)c] exp[i2π

∑
n2

Ŝz
1,n2,c].� (B.3)

Then, bringing all these relations together, we find

T̂â1 ÔT̂†
â1
= T̂â1 ÔaT̂†

â1
T̂â1 ÔbT̂†

â1
T̂â1 ÔcT̂†

â1
(∵ T̂†

â1
T̂â1 = I)

= ÔaÔbÔc exp[−i
2π
N1

{(Ŝz
Tot)a

+ (Ŝz
Tot)b + (Ŝz

Tot)c}] exp[i2π
∑

n2

(Ŝz
1,n2,a + Ŝz

1,n2,b + Ŝz
1,n2,c)]

= Ô exp
[
− i

2π
N1

(Ŝz
Tot − N1N2Ŝz

�)
]
,

�

(B.4)

where the total magnetization is given by Ŝz
Tot =

∑
�r Ŝz

�r , and 
N2Ŝz

� is the z-component of the vector sum of all spins within 
the N2 unit cells lying on a line along â2.

Appendix C. The case of zero magnetic field

For N2 ∈ odd and the lowest excited state |ψ1〉 = Ô|ψ0〉, 
equation  (6) leads to 〈ψ0|ψ1〉 = 0, i.e. the ground state and 
the lowest lying excited state are orthogonal to one another. 

Therefore, employing the LSM argument used for the S  =  1/2 
Heisenberg chain as well as ladder systems [38, 55, 68], we 
find that the S  =  1/2 HKA can have one of two possible ground 
states. The first possibility is that, without the breaking of any 
symmetries, there exists a many-body gap separating the exci-
tation spectrum from a two-fold degenerate ground state. This 
is in agreement with the finding of a small zero-magnetization 
plateau from numerical investigations of the HKA in [29]. 
These two ground states are topologically separated from one 
another: the AB flux threading is equivalent to the insertion 
of a vison carrying a crystal momentum π into the hole of the 
cylinder [54]. This is the signature of a Z2 fractionalised insu-
lating phase [54, 69, 70]. The degeneracy in the ground state 
manifold appears in the thermodynamic limit, along with a spin 
stiffness that decays exponentially with system size [55, 60].  
This justifies the adiabatic insertion of the AB flux over times-
cales much longer than the inverse gap [40, 41, 54]. The other 
possibility is that, in the thermodynamic limit, the excitation 
spectrum generated by Ô collapses, causing the many body 
gap to vanish. Indeed, another recent work suggests a U(1) 
gapless spin liquid ground state in the HKA [71]. Thus, the 
LSM-like arguments presented above are, by construction, 
unable to resolve between these two possibilities. On the other 
hand, for N2 ∈ even, 〈ψ0|ψ1〉 �= 0 and the approach taken here 
does not yield any firm conclusions about the presence of a 
gap or ground state degeneracy.
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