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Abstract
Experiments inwhich ultra-cold neutral atoms and charged ions are overlapped, constitute a newfield
in atomic andmolecular physics, with applications ranging from studying out-of-equilibrium
dynamics to simulating quantummany-body systems. The holy grail of ion-neutral systems is
reaching the quantum low-energy scattering regime, known as the s-wave scattering.However, in
most atom–ion systems, there is a fundamental limit that prohibits reaching this regime. This limit
arises from the time-dependent trapping potential of the ion, the Paul trap, which sets a lower collision
energy limit which is higher than the s-wave energy. In this work, we studied both theoretically and
experimentally, theway the Paul trap parameters affect the energy distribution of an ion that is
immersed in a bath of ultra-cold atoms.Heating rates and energy distributions of the ion are calculated
for various trap parameters by amolecular dynamics (MD) simulation that takes into account the
attractive atom–ion potential. The deviation of the energy distribution from a thermal one is
discussed. Using theMD simulation, the heating dynamics for different atom–ion combinations is
also investigated. In addition, we performedmeasurements of the heating rates of a ground-state
cooled 88Sr+ ion that is immersed in an ultra-cold cloud of 87Rb atoms, over awide range of trap
parameters, and compare our results to theMD simulation. Both the simulation and the experiment
reveal no significant change in the heating for different parameters of the trap.However, in the
experiment a slightly higher global heating is observed, relative to the simulation.

1. Introduction

Co-trapping ultra-cold atoms and cold ions offers newpossibilities for exploring low-temperature collisions,
that include phenomena such as s-wave scattering, Feshbach resonances [1], shape-resonances [2] and the
creation ofmolecular ions [3]. In addition, it is also a promising platform for performing quantum
computations [4], quantum simulations [5] and for studying out-of-equilibriumdynamics [6]. In the last decade
these hybrid systemswere realized in several experiments, for reviews see [7–10]. The interaction of trapped-
ionswith ultra-cold thermal clouds [11] and quantumdegenerate gases of neutral atoms [12]was studied.
Nonetheless,most of the experiments were limited to atom–ion interaction energywhich is greater than the
energy scale of the quantumphenomenamentioned above. Only recently, collisions at this energy scalewere
observed in a systemwith a heavy ion and light atoms [13].

The interaction energy limitation arises from the time-dependent potential of the ion Paul trap [14]. The
interruption of themotion, by a collision, in this time-dependent potential can lead to injection of energy into
the system. As a result, the system exhibits non-equilibriumdynamics. Already in 1968, it was observed byMajor
andDehmelt [15] that collisions of ionswith heavy atoms in a Paul trap lead to exponential heating of the ion
and subsequently to its loss. Forty years later, DeVoe [16] demonstrated numerically that a single collision
cannot cause this enormous heating effect, but it is rather caused by a sequence of collisionswhich occur at a
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certain phase of the oscillating trapping potential. He also showed that these consecutive collisions lead to a
power-law energy distributionwhich is not thermal, as onewould expect from a thermalization process. The
Tsallis distribution [17], originally proposed as a generalization of the Boltzmann–Gibbs statisticalmechanics to
non-extensive systems, was proposed to describe this energy distribution [16]. In addition to a characteristic
temperature parameter, this distribution also has a parameter describing its power-law tail. Only recently it was
shown, by the formalismof super-statistics, that this distribution indeed arises in the limit ofmultiple collisions
[18]. The power-law tail of the distribution depends on the atom–ionmass ratio aswell as the specific Paul trap
parameters [19–24].

The ion’s energy distribution has a characteristic energy scale which can have various sources. If the atoms,
collidingwith the ion, are at a high temperature, their temperature will determine this energy scale. However, if
the colliding atoms are at zero temperature, the energy of the ion can be lost in a single collision if the collision
occurs at the center of the trap, ideally leading to a zero energy steady-state for the ion aswell. However, it was
shown [12, 19, 25] that themean energy of the ion is typicallymuch higher than that of the atoms bymore than
an order ofmagnitude. This additional energy scale arises from the fact that static stray electric fields canmove
the ion equilibriumposition such that it will experience non-vanishing rffields. This effect is called excess
micromotion (EMM). EMMcan be compensated by applying an external static electric field thatmoves the ion
to the null point of the rf field [26]. It was Cetina et al, in their seminal paper [27], which realized that even
without EMMand for an ion in the ground state, a single collisionwith an atomat zero temperature can still
increase significantly the ion’s energy. This effect occurs due to the attractive polarization potential between the
ion and the atoms that causes the first collision to happen far from the equilibriumposition of the ion, and hence
at a regionwith non-vanishing time-dependent electric fields. This heating effect was observed experimentally
byMeir et al [28]. There, heatingwas observed evenwhen the EMMwas sufficiently compensated and a cloud of
ultra-cold atomswas overlappedwith an ion in its ground state. In addition to the heating, a deviation from a
thermal distributionwas observed.

In this paperwe study how the energy distribution and dynamics of an ion, immersed in a bath of ultra-cold
atoms, inside a linear Paul trap, and beyond thefirst collision, depends on different trapping parameters. The
heating rates and energy distribution of the ion are calculated by amolecular dynamics (MD) simulation that
takes into account the back-action of the polarization of the atomon the ion. This simulation is performed over a
wide range of trap parameters aswell as for different atom and ion species. In addition, we experimentally
measured the heating rates of the ion for different trap parameters and compared ourmeasurements to the
results of theMD simulation.

This paper is organized as follows. TheMD simulation and its underlying assumptions are described in
section 2.1. The numerical results of the ion distribution dynamics and its dependence on trap parameters and
atom–ion combination are given in section 2.2. In section 3.1we briefly review the experimental system. The
measurements of the heating rates during the first few collisions are presented in section 3.2.

2.MDsimulation

2.1.Model
Without atoms, the ion’smotion depends only on the static and dynamic confining potentials as described by
theMathieu equation [29]
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where ui is the position of the ion in the ith direction (i=x, y, x), ai (qi) is the dc (rf) trap parameter andΩ is the
rf drive frequency. In a linear Paul trap, these trap parameters are defined by [29]
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wheremion is the ionmass, e is electron charge,VDC andVRF are the dc and rf voltages on the corresponding
electrodes andR0 andZ0 are constants arising from the geometry of the dc and rf electrodes, respectively.

In the regime of ∣ ∣ a q, 1i i
2 , the solution to the ion trajectory can bewritten as
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2 are the secular frequencies andAi andfi are the harmonic oscillator amplitude and

phase in the ith direction, respectively.
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In the presence of an atom, there is a long-range attractive potential which depends on the relative atom–ion
distance,

( ) ( )= -V r
C

r2
, 34

4

withC4 the atompolarizability and r the relative atom–ion distance. At short distances of few nm, there are
electronic exchange interactions which cause a strong repulsion between the particles [3]. In principle, the
differential cross section depends on the collision energy and the short-range potential. However, in the
discussed situation, since the collision energies are relatively high, the differential cross section is angle
independent [19]. Hence, in this work, wemodel the potential as an infinite barrier at a distance of 5nm, and
follows equation (3) otherwise. Since collisions are elastic, when reaching the infinite barrier, the atom and the
ion leave in a randomdirectionwhile conserving the total energy andmomentum.

The atom–ion polarization potential is long range.Hence, in order to calculate the ion position, one should
integrate the equations ofmotion (EOM) of the ion and all the atoms, which is a formidable taskwhen there are
many degrees of freedom.However, we can reduce the number of calculations by using the fact that the atomic
gas is relatively dilute, and hence the inter-particle distance is large. For example, for a gas with density of
1011 1

cm3 there is approximately one atom in a sphere with a radius of∼1 μm. For that, we can define an

‘interaction sphere’with radiusRint=1.2 μmaround the equilibriumposition of the ion and the position and
velocity of both ion and atom are calculated by solving the EOM
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wherematom is the atommass.
Multiple collisions are simulated by introducing atoms one after another into the interaction sphere. For

each atom,we solve the EOM (4) using fourth-order Runge–Kuttamethod until it exits from the interaction
sphere. Then, the position of the ion is evaluated by equation (2) until the next atom enters the interaction
sphere.

The atoms enter the interaction sphere with a rateΓatoms=nσatoms vth where n is the atomic density,

s p= Ratoms int
2 (the cross section of a rigid sphere) and =

p
v k T

mth
8 B a

atom
is the thermal velocity of atoms at

temperatureTa. The interaction sphere radiusmust be larger than the amplitude of the ionmotion. The initial
value ofRint is taken to be 1.2 μm. For a typical secular frequency ofωi/2π∼1MHz, this radius corresponds to
an ionwith energy of∼300 mK. If the ion has a comparable amplitude toRint after a collision, the interaction
sphere radius is increased and remains at the same size until the end of the calculation for that realization.

Since the atoms density is approximately uniformover the ion’s trajectory, we sample the entry point of the
atoms uniformly on the sphere. The velocity vector is sampled assuming the atom enters from the south pole,

ˆ-z , and then is rotated to the chosen position. The velocity distribution of the atoms is thermal, but the velocity
component in the radial directionmust be positive, directed only into the sphere. Therefore, the velocity
amplitude distribution is not the regularMaxwell–Boltzmann distribution. In order to reproduce the correct
velocity distribution of the atoms, the amplitude of the velocity, v, and the azimuth angle,j, and the polar angle
(measured relative to ˆ+z), θ, are sampled from the following distributions
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The amount of calculations that are needed can be reduced further by taking into account the characteristic

length scale at which the polarization force becomes larger than the ion trap force, ( )=
w

R C

m0
4

2
ion

1
6 [27]. If the

minimal distance between the ion and the atomneglecting the polarization potential ismuch larger thanR0,
there is no close contact and the change to the ion’s energy is negligible. Therefore, a full calculation is performed
only for atoms that would approach the ion sufficiently close without taking the polarization potential into
account. In addition, the full calculation of the EOM is stopped once the atommoved away from the ion by at
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leastR0. For the
88Sr+−87Rb systemwith typical values of q∼0.1 andωi/2π∼1MHz this characteristic

length-scale isR0≈64 nm.
When performing the full integration of the EOM (4) and the atom–ion distance is less than a critical

distance of 5 nm, elastic hard-sphere collision is assumed and the atomand ion separate at some randomangle.
Depending on the rf phase, a temporary bound state can be created as the atommay not have enough energy to
escape from the polarization potential. In this case, it collides severalmore times until it gains enough
energy [27].

This process is repeated until the elapsed time from the first collision reaches the total interaction time. In
order to get the ion energy distribution,many realizationswith random initial conditions of the ion are
calculated.

2.2. Results
2.2.1. Langevin rate for a trapped particle
The cross section for an atomwhich collides with an ionwas calculated in 1905 by Langevin [30]

s p=
C

E

2
,L

4

col

where Ecol is the collision energy in the center-of-mass frame. The collision rate is given byΓ=nσLv and v is the
relative atom–ion velocity. TheMD simulation does not assume the Langevin collision rate a priori, and hence it
can be calculated. The ratio between the rate of atoms that enter the interaction sphere and the Langevin collision
rate is given theoretically by
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Numerically, this ratio should be equal to the ratio between the number of hard-sphere collision to the total
number of events. In order to check if the collisions rate is changed for a trapped particle, we simulate collisions
inside afictitious 3D time-independent harmonic trap for the ion (without rf fields). As can be seen infigure 1,
the resulting collision rate is lower than the theoretical value (red line). In theweak trap limit, the rate almost
converges to the ratio in equation (5) since the particle is nearly free. In the strong trap limit, the particle can be
regarded as a particle with an infinitemass and then the rate is given again by equation (5) onlywithμ=ma,
shownby the yellow line.

2.2.2. Energy distribution after a single collision
Weknow that the energy distribution of the ion aftermany collisions is not a thermal distribution.However,
already after one collision, we see that the energy distribution deviates from thermal distribution. Infigure 2, the
energy distributions of the 88Sr+ ion before and after a single collisionwith a 87Rb atom in a Paul trap are shown
(red and yellow lines respectively). The initial energy in eachmotionalmode of the ion is sampled froma thermal
distribution of a harmonic oscillator with temperature of 50 μK and the atomic cloud temperature is 6 μK. The
Paul trap frequency isΩ/2π=26.5 MHz and the secular frequencies are ¯ ( )w p =2 0.821, 1.29, 0.583 MHz in
the two radial directions and the axial direction, respectively. The corresponding trap parameters are
¯ ( )= -q 0.123, 0.123, 0 and ¯ ( )= - ´ -a 3.7, 1.8, 1.9 10 3.

We observe substantial heating after a single collision. A characteristic energy scale for the ion energy gain
was derived theoretically in [27]

Figure 1. Langevin rate for atom–ion collisions in a 3D spherical symmetric harmonic trap, normalized to the collision rate of free
particles. Each point is an average on 104 repetitions. The ion starts at rest and the atoms have a thermal energy distributionwith
Ta=6 μK. Red line is the theoretical Langevin rate for two free particles. Yellow line is the limit of an ionwith an infinitemass
(μ=ma).
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most probable energy of the simulation.
In order to quantify the energy distribution by small number of parameters, wefit to aTsallis distribution [17]
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where E is the ion energy,T gives the energy scale (equivalent to temperature) and n describes the power-law tail.
This distribution converges in the limit of  ¥n to aMaxwell–Boltzmann distribution of a gas in a harmonic
trap. In order to compare to a thermal distribution using a single parameter, we define =

-
T T n

nion 2
. This

parameter also converges for  ¥n to the temperature of a thermal distribution.
Fitting the distribution after a single collision to the Tsallis function usingmaximum likelihood estimation

(MLE) givesT=129 μKand n=7.8, comparing toT=44 μK and n=19 before the collision (equivalent to a
thermal distribution). The simulated energy distribution after a single collision in a harmonic trapwith the same
secular frequencies, is shownby the green line, for comparison. As seen, here the collision does not give a heating
effect but cooling, withT=36 μK and n=16. This indicates that both the heating and the deviation from a
thermal distribution are due to the presence of the rffields, and occur even after a single collision.

2.2.3. Energy distribution time dependence
To study the heating process dynamics, we sample the energy distribution of the ion at different times. The
system is initializedwith the same initial conditions as described in the previous section. The time evolution of
the ion energy distribution is shown infigure 3.Not only themost probable energy is increasing, but also the
high-energies part of the distribution develops a power-law tail. In addition, as can be also seen in thefigure
inset, the energy distribution evolution converges to a steady state after∼10 ms, corresponding roughly to 20
collisions. The values shown in the inset are found byfitting our numerical results to the Tsallis distribution
usingMLE. Although, aswewill show in the following, the Tsallis distribution is only a rough approximation to
the ion’s energy distribution at steady-state.

While the Tsallis distribution is an exact limit to the energy distribution of the ion under EMM [24], in the
case of an energy distribution generated by a simulation that includes the polarization potential interaction, the
Tsallis distribution does not faithfully describe the distribution. To see this, infigure 4, we compare our steady-
state result to the steady-state distribution obtained by a simulationwith only hard-sphere potential and EMM,

Figure 2.Energy distribution of 88Sr+ ion after a single collisionwith 87Rb atom as calculated by theMD simulation. The initial energy
in eachmotionalmode of the ion is sampled from a thermal distribution of a harmonic oscillator with temperature of 50 μK.The
temperature of the atomic cloud is 6 μK.The red line is the energy distribution before a collision. The yellow line is the energy
distribution after exactly one collision in a Paul trap. The green line is the energy distribution after one collision in a fictitious 3D time-
independent harmonic trap (without rf fields)with the same secular frequencies as the Paul trap. Dashed lines arefits to a Tsallis
distribution. Vertical line is W0

3D=472 μK (equation (6)) taking q=0.123 andω as the average secular frequency.
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shownby the solid green line, similar to the one detailed in [19], which is perfectly described by a Tsallis
distribution (dashed black line). However, in the case of a polarization potential simulation (solid blue line) the
Tsallis function describes the high energy tail reasonably well, but fails to describe themost probable energy and
the low-energy part (dashed purple line). Nonetheless, it describes the distributionmuch better than a thermal
distribution (dashed red line) and therefore was used in this work to compare energy distributions in different
trap parameters.

2.2.4. Trap parameters dependence
Wenow turn to investigate the dependence of the energy distribution on the Paul trap parameters, ai and qi.
These parameters are known to have an effect on the energy gain of the first collision [27] and the steady-state
power-law [19] in presence of EMM.Herewewant to investigate their effect on the steady-state distribution in
the absence of EMM. For a linear symmetric Paul trap, the trap parameters are

Figure 3. 88Sr+ ion energy distribution after different interaction timeswith 87Rb atoms. The steady-state parameters wefind are
( )=T 1.41 1ion mK, ( )=n 3.77 4 . The initial energy distribution is thermal with temperature of 0.5 mKdivided equally between all

motionalmodes. The Paul trap parameters are identical to the parameters infigure 1. The atomic density n=1.2×1012 cm−3 gives

rise to a (numerical)Langevin rate of 2.25 coll

ms
. Each distributionwas constructed from5×104 repetitions. (inset)Time evolution of

the Tsallis parameters, as calculated by amaximum likelihood fit to the distribution at each interaction time. Confidence bounds are
smaller than thewidth of the lines.

Figure 4. Ion energy distribution at steady state for hard-sphere potential (green) and~-
r

1
4 potential (blue) for the same experimental

parameters as infigure 3. The distributionwas calculated for 5×106 repetitions. Tsallis distributionwas fitted usingMLE (dashed
lines) to all energies after entering steady-state. In the hard-sphere potential simulation, residual EMMequivalent to 50 μKwas added,
in the absence of the atom–ion polarization potential.
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The average andmode energy gain in thefirst collision, whichwefind in the simulation, are shown in
figure 5. As seen, the energy gain in the first collision depends strongly on the rf voltage, through the parameter q,
but shows almost no dependence on the dc confinement, characterized by the parameter a. This indicates that
stronger rf fields can transfermore energy to the ion during the collision, whereas the amplitude of harmonic
pseudo-potential has less dominant impact on the heating. In addition, for a thermal distribution, there is a
constant ratio between themean of the distribution to itsmode, á ñ =E E3

2 mode. However, here we can see that

this is not satisfied, which is an indication of the non-thermal behavior of the system.
The quantityW0 (equation (6)) is indicted in a purple line infigure 5. This formula agrees with our

simulation for low q values, but deviates fromour observations for q larger than∼0.3. Thismight be due to the
fact that this energy scale was derived in the absence of dc potentials.

Infigure 6 the dependence of the steady-state distribution as function of the same trap parameters is shown.
The distribution is described here by the Tsallis distribution parameters,T and n, that are extracted from aMLE
fit to the simulation results. As before, the rf voltage has a greater influence on the distribution than the dc
voltage. Tighter rf confinement leads to higher temperature and lower n. Lower nmeans heavier power-law tail
and a stronger deviation from a thermal distribution. Similarly to the effect on thefirst collision, the dependence

Figure 5.Mean energy gain (red diamonds) andmost probable energy (Emode,filled blue circles) in thefirst collision for (a) different q
values and constant a=−0.001, and for (b) different a values and constant q=0.1. Simulationwas performed assuming no EMM.

Purple solid line is the characteristic energy scale,W0, from [27]. Empty blue circles are E3

2 mode, indicating the deviation from a

thermal distribution (inwhich á ñ =E E3

2 mode).

Figure 6. Steady-state Tsallis distribution parameters for Sr+−Rb system for different trap parameters of the Paul trap. (left)different
rf confinements with constant dc (a=0.001). (right) different dc confinements with constant rf ( )=q 0.1 . All values were calculated
by preformingMLE to Tsallis distribution.
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on the dc parameter is weaker. On the limit of weak rf voltage the distribution is also tending to be hotter with
heavier power-law tail. This can be attributed to the lower spring constant in the radial directions that leads to
increased heating.

2.2.5. Atom–ion combinations
So farwe have shown the results of the simulation of our ownmixture of 88Sr+–87Rb.Different atom–ion
combinations are expected to have different heating rates and steady-state distributions [21]. It was shown [27]
that choosing lighter atoms and a heavy ion reduces the effect of pulling the ion from the rf null during the
collision.We therefore performed the numerical simulation for several atom–ion systems: 174Yb+–7Li,
40Ca+–7Li, 174Yb+–87Rb, 138Ba+–87Rb and 88Sr+–87Rb. All other parameters, the dc and rf confinement and trap
rf frequency, were kept constant. Infigure 7, we can see that choosing a lower atom–ionmass ratio indeed
improves the energy distribution in twoways: the characteristic temperature,T, is lower, and the power-law
exponent, n, is larger, leading to lower probabilities for high energy events. The lower temperature in systems
with 7Li atoms is also due to the reduced polarization of the 7Li relative to the 87Rb [31]. The difference in the
polarizability and the reducedmass in the center-of-mass frame increase the s-wave energy threshold. As can be
seen in table 1, for systemswith 87Rb atoms the s-wave energy threshold is roughly four orfive orders of
magnitudes lower than the steady-state temperature whereas systemswith 7Li the threshold is comparable with
the obtainable steady-state energies [13, 32].

3. Experiment

3.1.Methods
A full review of our experimental system is given elsewhere [33]. Briefly, our system consists of two connected
vacuumchambers. In the upper chamber the atoms are collected and cooled tomK temperature by amagneto-

Figure 7.Time evolution of themost probable energy (a) and steady-state Tsallis parameters:T (b) and n (c) for different atom–ion
choices. The parameters a, q andΩ are identical in all realizations. The initial ion temperature is 1 μK. The energy distributionwas
fitted to Tsallis distribution usingMLE.

Table 1.Comparison of steady-state energy for various atom–ion species.
For every combination, =

-
T T n

nion 2
from a fit to the steady-state

distribution of the simulation, Ecol is the collision energy in the center-of-
mass frame and Es is the s-wave energy limit for comparison.

Ion-atom ( )m amu ( )mT Kion ( )mE Kcol Es(μK)

174Yb+−7Li 6.7 38 1.5 6.4
40Ca+−7Li 6 78 11.6 8.18
174Yb+–87Rb 58 680 227 0.0443
138Ba+−87Rb 53.4 740 286 0.052
88Sr+−87Rb 43.7 1200 596 0.0778
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optical-trap and then evaporativly cooled in aCO2 quasi-static dipole trap toμK temperature. Subsequently,
atoms are loaded into a 1D lattice created by two counter-propagating YAG laser beams. The lattice transfers the
atoms to the lower chamber where the ion is trapped. In the lower chamber, the atoms are transferred into a
crossed-dipole trap. The position of the crossed-dipole trap is controlled by a PZT-controlledmirror. After the
ion is spin-polarized and ground-state cooled, the crossed dipole trap ismoved so that the atomic cloud overlaps
the ion. After a given interaction time the atoms are released from the trap and following a short time-of-flight
(TOF) are imaged. From the TOF images, the density and the temperature of the atoms are extracted.

The ion is trapped in a segmented linear Paul trapwith controlled static (dc) and dynamic (rf) potentials. The
ion is initiallyDoppler cooled, and then ground-state cooled using resolved side-band cooling on the quadruple
transition 4d2D5/2−5s2S1/2.

In order to reduce the heating due to EMM, it is compensated by applying external electric fields and
minimizing the coupling to the EMMresolved side-bands of the quadruple transition [33]. This process was
performed before each experiment and periodically every∼40min. during the experiment.

3.2. Results
Due to experimental limitations, we cannot test the full a–q spacewhichwas simulated. First, we are limitedwith
themaximal values of a2×10−3 and q0.15 due to possible voltage breakdownbetween adjacent
electrodes. On the other hand, in order to perform a ground-state cooling and a carrier thermometry, the ion
should be in the Lamb–Dicke regime. This sets lower bounds on the secular frequencies, and hence also on the
trap parameters. In our case, a lower limit of∼100 kHz for the secular frequencies, implies q0.045 and
a10−4. Second, due to a singleDoppler-cooling beamused in the experiment, we need to break the radial
symmetry in our trap.We do so by applying an additional dc voltage which creates a frequency difference of
∼100 kHz between the two radialmodes.

The observed temperatures for different interaction times in different trap parameters are shown in
figure 8(a). At each interaction time, a Tsallis temperature was extracted from theRabi nutation data byMLE
assuming a constant power-law (see appendix A). As seen, in all experiments the heating rate is roughly the same
within the experimental error, and on the order of m- -100 200 K ms 1. The numerical simulationwith the exact
experimental parameters predictsminor differences between different parameters, but all within the confidence
bound (see figure 8). However, the heating rate in the simulation ismuch lower and around m -50 K ms 1.

This discrepancy can be explained by several reasons. First, it can arise from a systematic error in estimating
the number of atoms through absorption imaging. Another systematic error can arise from the fact that the
numerical simulation did not take into account the remaining EMMafter compensation. This systematicmay
vary between different experiments (see table 2 in the supplementalmaterial for estimations). Adding the
residual EMMto the simulation changes significantly the heating rates, as can be seen infigure 9 for one of the
experiments. The observed results can be explained by an additional uncompensated EMMof∼500 μK.
However, this heating cannot be explained by the effect of uncompensated EMMalone, without the polarization
potential, whichwould givemuch lower temperatures (dashed line infigure 9). The effect of heating due to the
residual EMM is added to the dominant heating caused by the polarization potential pulling. Althoughwe

Figure 8.Measured heating rates for different trap parameters. (a)Temperatures for differentmean number of collisions for different
trap parameters asmeasured in the experiment. Each temperaturewas extracted from theRabiflop data by fitting to a Tsallis
distributionwith n=4. (b)The heating rates as given by themolecular dynamics simulation. At each time the expected Rabiflopwas
calculated from the numerical distribution and thenfitted to a Tsallis (n=4) distribution. Error bars of 1σ are calculated from the
likelihood function as described in appendix B.
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cannot bound EMM in the systembelow∼1 mK (equivalent to∼2.5 Vm−1 residual electric field) fromour
compensation calibrations, our actual EMM is probably atmost few 100ʼs μK, since otherwise the observed
temperatures would be an order ofmagnitude higher.

4.Discussion

Previous studies have showndifferent heatingmechanisms in ultra-cold atom–ion collisions. After eliminating
thosemechanisms, the inherent heating effect of ion pulling from the zero rf point was shown to have a
dominant heating effect on the first collision.Herewe studied how this process depends on the different choices
of Paul trap parameters, and how it affects the ion energy distribution after few tomany collisions.We have used
a numerical simulation to gain and compare the energy distribution in steady state and for different atom–ion
species, a task that can be experimentally hard to perform.Wehave shown that the heating effect is weakly
dependant on the trap parameters, and for experimental purposes is practically independent.We have also
shown that the ion’s energy distribution clearly deviates from a thermal one. The distribution features a power-
law tail, tough it is not described adequately by the previously proposed Tsallis distribution. The experimental
measurement suggests that the heating due to residual EMMadds up to the heating due to the polarization
potential. In order to considerably decrease this heating effect, apart fromworkingwith light atoms and heavy
ion, a trappingmethodwithout oscillating field for the ion is required, for example, optical trapping of the
ion [34].

Table 2.EMMenergy estimation and residual electric
field amplitude in the radial directions for each
experiment. The energy and electricfieldwere
estimated by comparing the shelving probability on
the EMM-sideband transition relatively to the carrier
transition. The EMMthat enters from the stability of
the electrodes is negligible in all experiments.

Experiment name ( )mT KEMM E ( )-V m 1

RF 18 (#1) 860±250 2.8

RF 18 (#2) 700±80 2.5

RF 16 1300±270 2.7

RF 21 330±50 2.5

DC390 V 850±160 2.8

DC600 V 1600±230 1.4

Figure 9.Heating rates from simulations with different residual EMM. Solid lines: simulation that consider polarization potential and
various amount of EMM.Dashed line: simulationwith hard-sphere potential and 500 μKEMM.Circles refer to the red experiment in
figure 8 (lowest rf experiment). For the simulation data, error bars are 1σ fromMLEwithTsallis energy distributionwhere n=4.
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AppendixA. Carrier thermometry

After the interactionwith the atoms, the temperature distribution is extracted from electron shelving on the
quadruple transition. For a carrier transition on the quadruple transition, the shelving probability of the excited
state (‘dark state’) for the nth level of the harmonic oscillator is given by [29]

( ) ( )= WnP t t; sin ,n nD R R
2

,

where n is the harmonic oscillator level (in each of the 3modes), tR is the time of the 674 nmpulse and the
coupling strength Wn n, is defined as
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Here, ( )L xn is the Laguerre polynomial of order n,Ω0 is the Rabi frequency at the ground state and

h q= = p
l w

k x cosj j j m

2

2 j
are the Lamb–Dicke parameters for eachmode (λ—laser wavelength,m—ionmass

andωj the harmonic frequency of the jthmode).Ω0, θ andωj aremeasured independently.
Due to the ion’s energy distribution, the population is divided overmany harmonic oscillator levels. Then

the probability to be in the excited state is

( ) ( ) ( ) ( )å= WnP t P tsin , 8
n

n nD R R
2

,

where ( )nP is the energy distribution. However, in our case the probability is given as a function of the total
energy ( )P E . In the classical limit when ¯ n 1 the energy in the ithmodewith n phonons can be approximated
as ( ) w» E n ni i i i. The summation over the n’s is preformed by taking logarithmic spaced n’s for eachmode up
to some cutoff value, then the corresponding Rabi frequency is calculated by equation (7). The probability for
this term is taken from the predefined ( )P E probability (Thermal, Tsallis or numerical). Then, for any given
pulse time tR the shelving probability is expressed as an integral over the energy

( ( )) ( ) ( ( ) ) ( )ò= WP t P E P E E t E; sin d . 9D R
E

R
2

Qualitatively, a ‘cold’ ionwill give a high contrast sine-square function, since only few spectral components
are dominant, whereas ‘hot’ ionwill give dephasing sine-squarewith faster decay as the temperature is higher.

Appendix B.Maximum likelihood estimation

For the experiment, the temperature at a specific interaction time is extracted from the data usingMLE. For each
interaction timewith the atoms, a Rabi flop is taken atfive different pulse time ti. For each time, the experiment
is repeatedNi times and xi dark events were observed. The number of dark events has a binomial distribution
with probability ( ( ))P t P E;D i andNi number of trails. Therefore, the likelihood of a specific experiment result is

⎛
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i
D i

x
D i

N xi i i

Inorder to simplify the calculations, for the experimental data, the energy distribution for calculating theRabiflop
in equation (8) is assumed tobe aTsallis distributionwith a constant power-lawn=4.Hence, thefitting problem is
reduced tofindingof a single parameter, the temperatureT, whichmaximizes the log-likelihood function. Since the
likelihood functionhas aGaussian shape, confidence bounds,T±, of 1σ are found from the condition [35]

( ) ( )- = -L T L Tlog log
1

2
,max

whereTmax is themaximumof Llog . For theMD simulation, at each interaction time, a Rabiflopwas calculated
by equation (9), with the numerical energy distribution given by the simulation. TheMLE and the confidence
bounds are calculated in the samemethod as before.
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AppendixC. EMMestimation

The process of detecting and compensating EMM is described in detail in [33] andwill discussed here only
briefly. The EMMarises as a result of non-vanishing rffield in theminimumof the pseudo-potential, for
example, due to a uniformdcfield. For a static electric field Edc, the ionmotion has an additional termoscillating
in the rf frequency. Adding this term to equation (2) [26]
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In the resolved sideband spectroscopy, thismotion causes additional sidebands in the rf frequency. The relative
coupling between the carrier and the first EMMsideband is given by

· ( )W
W

»
k u

2
, 131

0

EMM

whereΩ0 (Ω1) is the carrier (sideband)Rabi frequency and k is the laser wave-vector.Minimization of the EMM
is done by applying an external electricfield andminimizing the Rabi frequency. The EMM ismainly in the
radial plane of the trap, and therefore theminimization is donewith two orthogonal laser beams and two
orthogonal electrodes giving constant electric field in the trap center. The EMM in the axial direction due to
static electric field is negligible by trap design.However, rffields can still persist in the axial direction and they are
compensated using a rffields injected along the axial directionwith a controllable phase, relative to the rf of the
trap. The EMM in terms of energy is given by
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where θi is the angle between the laser beam to the radial plane (measured independently).
Our residual EMMenergies after compensation for each experiment are summarized in table 2. The

confidence bounds are derived from the projection noise of the shelving probability after compensation. The
extracted energies are considerably large than expected. This can be attributed to different sources which are not
EMM. First, the pulse time is relatively long, in order to detect weak coupling to the sideband. But, in this
timescale the decoherence (for example, due tomagnetic field noise), can be dominant. For very low shelving
probability, decoherencewill increase the population in the excited state, and therefore it will look as EMM.
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