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Abstract

We present a method to measure the von Neumann entanglement entropy of ground states of
quantum many-body systems which does not require access to the system wave function. The
technique is based on a direct thermodynamic study of lattice entanglement Hamiltonians—recently
proposed in the paper [Dalmonte et al 2018 Nat. Phys. 14 827] via field theoretical insights—and can
be performed by quantum Monte Carlo methods. We benchmark our technique on critical quantum
spin chains, and apply it to several two-dimensional quantum magnets, where we are able to
unambiguously determine the onset of area law in the entanglement entropy, the number of
Goldstone bosons, and to check a recent conjecture on geometric entanglement contribution at
critical points described by strongly coupled field theories. The protocol can also be adapted to
measure entanglement in experiments via quantum quenches.

1. Introduction

Opver the last twenty years, entanglement has emerged as a paramount tool to characterize quantum wave
functions [1-4]. A striking example is ground states |¥) of many-body systems where, given a spatial bipartition
dividing the system into regions A and B, the entanglement between A and B is measured by the von Neumann
entropy (VNE):

Sa = —tpyInp,,  py = tep|¥) (P e))

The VNE remarkably provides a systematic way to connect wave function properties to operational definitions
of entanglement, and is of pivotal importance to both quantum information purposes and as a diagnostic tool in
quantum many-body theory. Examples of its relevance include the existence of area laws bounding
entanglement in ground state of local Hamiltonians [3], the sharp characterization of conformal field theories
(CFTs) in one-dimension (1D) [5-7], topological order [8, 9] and spontaneous symmetry breaking [ 10], and its
importance in understanding the complexity of classical simulations [ 11]. Despite its pivotal importance, the
current understanding of entanglement measures in many-body systems is essentially limited to non-interacting
theories or to lower bounds provided by Renyi entropies, due to the lack of methods to calculate the VNE in any
dimension D > 1. This represents a key obstacle in determining both the capabilities of many-body systems in
terms of quantum information processing (e.g. how much entanglement can be distilled from a given partition),
and the generic relation between universal field theoretical descriptions and entanglement.

In this work, we describe an approach to compute the von Neumann entanglement entropy of ground states
without relying on probing wave functions, that (i) is applicable in any dimension, and to a broad class of physical
phenomena, including quantum critical and topological matter; and (ii) it is amenable to simulations based on
Quantum Monte Carlo, and thus scalable to systems sizes order of magnitudes larger than attainable with other
methods. The backbone of the technique is the formulation of the entanglement measurement problem in terms

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. Entanglement Hamiltonians from field theory to lattice models. Panel (a): schematics of the Bisognano—Wichmann theorem in
two dimensions [12, 13]. A plane is divided into two half-planes at x = 0. The reduced density matrix obtained from the vacuum of
the field theory upon tracing the x < 0 region can be interpreted as a thermal equilibrium state with inverse temperature 3 increasing
as a function of the distance from the boundary. Hot region (red) are typically more entangled then the cold (blue) ones. Panel (b):
adaption to cylinder geometries. In analogy with the infinite plane case, the inverse entanglement temperature is constant at fixed x
(path v,), while it increases at fixed y (path ). This picture can immediately be adapted to lattices [panel b1)] [15, 16]: as depicted in
b2), the couplings of the corresponding lattice entanglement Hamiltonian are constant along y (T',), while they increase along x (I",).

of the thermodynamic properties of the entanglement (modular) Hamiltonian (EH) H; = —In Py [12—-14],
whose structure is given by the lattice version of the Bisognano—Wichmann (BW) theorem, see the schematic
explanation in figure 1. Concerning low-lying entanglement spectra and correlation functions, the applicability
of the BW theorem on the lattice has been verified in recent works [15, 16]. Here, we take a considerable step
forward, and show that it can also be applied to do accurate entanglement-based measurements of universal
quantities, such as the number of Nambu—Goldstone modes [10] and central charges [5, 6], at the percent level,
even for modest system sizes. Most remarkably, it allows the calculation of the entanglement of many-body
systems in a scalable manner (well beyond what can be done with alternative numerical methods), thanks to its
thermodynamic analogy: this allows us to verify the onset of area law in two-dimensional quantum magnets, up
to system sizes including O(10%) spins. Such scalability is a key point when interested in universal quantities, as
those are captured by subleading corrections to the entropy in dimensions D > 1. We remark here that, in
general, entanglement measures are unrelated to the low-lying entanglement spectrum, and do instead critically
depend on the distribution of all eigenvalues, a much more delicate quantity to deal with that was never
addressed in the context of lattice adaption of the BW theorem. In terms of techniques, our work complements
the already successful QMC toolbox to lower-bound many-body entanglement via Renyi entropies [4, 17-21].
After benchmarking our method on 1D examples (an extension of those results is shown in [22]) we carry
out QMC simulations on a series of 2D lattice models. For the 2D Heisenberg and XY models, we provide direct
evidence that (i) the VNE is constrained by the area law (in agreement with lower bounds based on Renyi
entropies), and (ii) the number of Goldstone modes can be determined with percent accuracy solely from
entanglement properties. For the bilayer Heisenberg model, we study the geometric contribution to the
entanglement entropy at its strongly coupled critical point, and verify a recent conjecture on O(N) models [23].

2. Thermodynamics of entanglement Hamiltonians

The relation between entanglement and thermodynamic quantities has been widely exploited in the quantum
mechanics and field theory literature: an epitome in this context is the Unruh effect [24], that describes how the
vacuum appears as an equilibrium finite temperature state from the point of view of an accelerating observer. In
the context of axiomatic field theory, this relation is conveniently expressed by the BW theorem [12-14]. Fora
Lorentz invariant theory with Hamiltonian density H (X), ¥ = (x1 ,..., Xp), in D spatial dimensions, the
entanglement Hamiltonian of a half-plane bipartition A defined by x; > Oreads:

Ay =2r f _ ERHE®] + ¢, @)

where ¢’ is a constant that ensures Tty p, = 1. The BW theorem has been extended to different geometrical
partitions in the presence of conformal invariance [25-27].

These results can be cast on a discrete space-time lattice [15, 16] as follows. For the sake of simplicity, let us
focus on 1D systems with nearest-neighbor interaction, k,, ,, 1, and on-site terms, I,,; the 2D case is discussed
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latter. Up to ¢/, the lattice BW—EH ansatz of a subsystem of length L is

L-1 L

Hpy = ﬁEH[Z DM hyper + D> T(n—1/2) ln:|) (3)
n=1 n=1

where 7 is the indices of sites within the subsystem A. The coefficients I depend on the geometry of the partition

[12, 16,25, 26]: (i) for a half-infinite partition under open boundary conditions (OBC)

I'(n) =n, (4)
see figure 1(b2); (ii) for subsystem embedded in an infinite system [25]

T(n) = @ 5)

which corresponds to periodic boundary condition (infinite PBC); and for finite systems (iii) with both PBC,
I'(n) = % sin (%), and (iv) OBC, I'(x) = % sin (%) Itis straightforward to generalize the BW—EH ansatz for a
N-dimensional lattice model [16]: in figure 1(b), we schematically illustrate it for the cylinder geometries
discussed below.

The overall energy scale of equation (3) is related to the ‘speed of light’, v, in the corresponding low-energy
field theory, Ogy = 277 and plays the role of an effective inverse temperature. The lattice density matrix
corresponding to the subsystem A and its thermal entropy read:

e PenHen
Ppw = —> Spw = —Trpgy In pgyy» (6)
Zn
where the normalization factor is interpreted as a partition function Zgy; = Tre PeHn © In the present
framework of thermodynamic studies of EH, one needs to understand the predictive power of the BW theorem
in relation to entropies, and to identify a proper theoretical framework to compute the VNE from
thermodynamics.

The predictive power of the BW theorem on the lattice has been broadly verified regarding the low-lying
entanglement spectrum and correlation functions [15, 16, 28—37]. While these results represent a promising first
step, they are not informative on the capability of the BW—EH to capture entanglement measures, since: (1) they
are limited to some observables and do not shed light on the exact structure of the EH (which has been discussed
only for free theories and for some gapped phases under specific conditions), and (2) they cannot be extended (in
ascalable way) to calculate the full entanglement spectrum for interacting theories, and they are in fact limited to
only few dozens eigenvalues for symmetry sector. Our approach, however, is based on the relation between the
VNE and the thermodynamic entropy of the EH (equation (6)), which can be computed in a scalable way by
quantum Monte Carlo methodsin D > 1, as we describe in the section 3. Below, we report several systematic
checks on the validity of our approach, via exact benchmarking to one-dimensional spin systems—for
additional checks, see [22], and demonstrate that it allows to make numerical predictions on entanglement
properties in two-dimensions that are not accessible by any other method.

3. Measuring entanglement entropy in numerical simulations

Before discussing the concrete validation examples, we illustrate how to measure VNE in numerical simulations
which do not have access to the system wave function. The strategy relies on any numerical method that is able to
compute the thermodynamic entropy of the BW—EH at the entanglement temperature, Ogy. This can be
achieved using QMC algorithms based on Wang-Landau (WL) sampling [38]. Below, we illustrate this by
applying the quantum version of the WL method performed in the stochastic series expansion (SSE) QMC
framework [39, 40]. Compared with the conventional quantum Monte Carlo (QMC) simulations, that is
performed at a fixed temperature, the WL method features two main advantages for the study of the
thermodynamic properties of the EH: (i) it allows to directly compute the thermal entropy at the ‘entanglement
temperature’ Jgy, and (ii) the thermodynamic properties of the EH are obtained for a broad range of
temperature with a single run of the simulation.

The WL method was originally proposed for classical systems in [38]. The key idea of the method is to
calculate the density of states, p(E) by considering a non-Markovian sampling. For a quantum Hamiltonian,
such as the BW-EH, however, one must map the system to a classical one. This is done, for instance, using the
SSE framework, which considers the following form for the partition function

®we note that, while in principle the entropy is nothing but the expectation value of the EH, the normalization factor Zgy;, which is not
universal, makes this approach hardly applicable.
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0 n 00
Z=tre MM =">%" ﬁ—tr(—H)” = > Bg(n), ?)
n=0 n! n=0
where the nth order series coefficient g(n) plays the role of the density of states in the classical algorithm. We use
both local and loop updates (directed loop updates) in the WL-SSE sampling. The use of loop updates is
particularly important to avoid problems with the slowing down of the configuration selection processin a
inhomogeneous Hamiltonian such as the BW—EH [15] and at critical points [47]. We refer to [39, 40] for the
general details of the computation of g(#), and in the appendix we discuss the technical aspects of the simulation
thatare relevant to reproduce our results.

In the WL-SSE algorithm, the sampling of the SSE configurations with different n is performed with a
probability function that is proportional to the inverse of the ‘density of states’, 1/g(1). The WL sampling
generates a histogram for the distribution of  that s flat, i.e. H(n) ~ const; the histogram H(#) is obtained
counting the number of times a configuration with 7 is observed. The key point of the algorithm is that g(#) can
be computed by iteratively flattening H(n). More specifically, one start with the guess g(n) = 1. Further, each
time the configuration n is accepted g(n) is multiplied by a factor f, i.e. g(n) — go1a(n)f. This process is repeated
until H(n) is flat. In practice, we consider as a condition for the flatness of H(1) a maximum deviation of 20%
from the mean value. Once H(n) is flat, it is reset to zero, and fis decreased by In(f) — In(f,14)/2 [41]. This
process is repeated until convergence is achieved. Here we use the convergence condition proposed in [41, 42].

In addition to the aforementioned algorithm, we consider the optimized-broad-histogram algorithm
proposed in [40] for the 2D Heisenberg model, see figure 3(a). These results were obtained with the ALPS code
[43]”. In this case, we confirm that the two methods give the same results (within error bars). One point that is
worth to emphasize is that the method is straightforward to implement on a working WL code (only requires to
implement an inhomogeneous version of the system Hamiltonian, as equation (3)) (see footnote 6).

4, Results

4.1. One-dimensional critical systems
We now benchmark our strategy for one-dimensional critical systems, where the calculation of the VNE is
amenable to both exact and tensor network simulations. In this case, the VNE of a subsystem of size L diverges
logarithmically, S(L) o cln L, where cis the central charge of the underlying CFT.

We consider the BW—EH for the one-dimensional Heisenberg model (HM)

L—1
Hyeis = Z F(”)SnSnJrla (8)
n=1
and the quantum Ising model (QIM)
L1 L
Hom = —> , TmS;Si, —g>, I'(n—1/2)S;, 9)
n=1 n=1

atits quantum critical point g = 1. In figure 2, we plot the BW VNE under both PBCs and OBCs. Throughout
this work, we employ dimensionless energy units for the sake of convenience. For the two models, the exact
value of the entropy (empty circles) is evaluated using density-matrix-renormalization-group [44] (HM) and
exact diagonalization methods (QIM) for a biparition of size L embedded in systems of size 2L. The calculations
of the BW—EH thermal entropy are carried out with QMC with both local and SSE directed-loop updates

[45, 46] for the HM, and exact diagonalization for the QIM. In addition to the finite-size EH (red triangles), for
the sake of comparison, we also compute the entropy obtained utilizing the EH of a finite partition in an infinite
system (black circles) [16]: the two are separated only by a constant shift that depends solely on the central
charge.

For the PBC case the VNE increases logarithmically as expected: the corresponding central charge
considering systems up to L = 80 (100) is in within 1% (0.05%) level with the exact results for the HM (QIM)—
see figures 2(b1) and (c1). For the OBC case, we observe an alternating term of the BW—EH entropy for the HM,
but not for the QIM, see figures 2(b2) and (c2). These results is in agreement with the exact VNE. As discussed in
[47,48], those oscillations are universal and due to the antiferromagnetic nature of the interactions, not
appearing in the QIM [49] (in the latter, the effective Fermi momentum is either 0 or 7). From the CFT
perspective, the oscillations can be viewed as lattice corrections of scaling dimension A;: their decay asa
function of the bipartition size is a power law whose exponent is related to A, [48, 50].

The fact that the BW-EH faithfully reproduces not only the leading, but also the dominant subleading
correction testifies its predictive power on generic universal quantities captured by the VNE (a CFT-specific

“A working code that generates the necessary input files to run with ALPS Wang—Landau (qwl) [43] can be found in https://github.com/
tiagomendessantos/BW-entanglement-Hamiltonian
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Figure 2. BW-EH entropy of one-dimensional critical systems. Panel (a): partitions of the one-dimensional systems that we consider:
(al) partition of length L embedded in an infinite system (infinite PBC); (a2) half-partition of a ring (finite PBC), (a3) half-partition of
an open system (finite OBC). The BW couplings of these systems are given by the CFT generalization of the BW theorem (see text). In
panels (b) and (c) are shown results for the HM and QIM, respectively, with PBC and OBC. The central charge obtained from the PBC
VNE is in agreement with exact results (c = 1and ¢ = 0.5). Error bars are smaller than the size of the symbols. For comparison, it is
also shown as an inset in panel (c1) the VNE obtained with the 10 lowest eigenvalues of the BW-EH (green curve).

analysis is reported elsewhere [22]). While, for instance, non-universal contributions such as additive constants
in 1D shall not be immediately reproduced due to the field theoretical origin of the relation we employ, in all
examples where a comparison to exact results is possible (essentially, 1D systems), we observe that even non-
universal contributions are accurately captured: for instance, A S(L) goes to zero in the limit L — oo both in the
OBC and PBC cases. We attribute this to the fact that the BW—EH is actually able to reproduce a ‘partition
function’ whose corresponding Hamiltonian has the correct density of states, and whose generic correlation
functions are correct [16]. In case only the first element was true, and, for instance, the overall scaling correction
was wrong, one would have generically expected incorrect correlation functions. From a methodological
viewpoint, this implies that our method may be used to check convergence of tensor network states in conformal
phases, especially for large values of the central charge.

4.2. Two-dimensional quantum magnets
The VNE also describes universal properties of two-dimensional systems. For instance, the VNE of 2D ground
states that break a continuous symmetry scales as S(L) = AL + Bln(L) + D, where Lis the linear size of the
boundary. The A is the non-universal area law term [3], while, for a smooth boundary, the prefactor of the
logarithmic term is a universal quantity related to the number of Nambu—Goldstone modes 1, B = 1,,/2, of the
associated spontaneously-symmetry-broken (SSB) phase [10, 17]. As examples of SSB, we consider the 2D XY
model and the Heisenberg model. In both cases, we perform QMC simulations of the EH and extract the
corresponding VNE as a function of the subsystem linear size, L. The entropy is evaluated at gy = 27/v, with
Vizeis = 1.658] [51]and vxy = 1.134][52], using the WL-SSE algorithm.

In order to illustrate how to cast the BW—EH on two-dimensional lattices [16], we consider the 2D
Heisenberg model in a square lattice L, X L,. Inthis case, the BW-EH is

Hpw = Y T(ix)SG.i)Si,+5.)

7,6=+1
+ > TGe—1/ 2)§(ix,iy)§(ix,iy+6)> (10)
7,6==+1

where the lattice spacing has been set to 1 without loss of generality. The simulation of the subsystem BW—EH is
performed considering periodic boundary condition in the y direction, and open boundary condition in the x
direction, see figure 3(a). The function I'(x) is given by the BW theorem (equation (4)) which represents the EH
of a half-bipartition; we call this subsystem-geometry of cylinder. We also consider the CFT expression
(equation (5)), which corresponds to the generalization of the BW to a subsystem that is embedded in a infinite
system; we call this subsystem-geometry of toroid.

We remind the reader that, as discussed in [16], for finite values of L,, formula equation (5) is in principle
only applicable to conformal field theories. Let us illustrate here a simple, non-rigorous argument that partly
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Figure 3. BW—EH entropy of two-dimensional systems. In panel (a) we present the sketch of the two-dimensional system considered in
this work. The BW—EH is defined in the half-bipartition A. Panel (b) shows results for the HM and XY model. The x-axis of (b1)
represents the linear size of the boundary, L, = L, and the subsystem aspect ratio for the HM (torus) isa.r. = L,/L, = 1, while for the
XY (torus) and the HM (cylinder), a.r. = 2. In panel (b2), we remove the area law terms of S, and plot the subleading term of Sas
function of In L. The number of Goldstone modes, 1, = 2b, extracted with a linear fit, is in agreement with expected results.
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justifies the applicability of this approach to generic (i.e. non conformal) 2D models. Typically, the low energy
theory will be made of gapless and gapped sectors. The description of the former will be scale invariant and
relativistic invariant: while this does not guarantee emergent conformal invariance, exceptions are rare. The
gapped part of the theory will (at most) contribute to the entanglement properties only in the very vicinity of the
edge of the partition, where it would actually behave like a gapless theory. Far from the boundary, the reduced
density matrix with respect to these degrees of freedom will be an identity operator (up to degeneracies). This
indicates that the CFT formulas used above shall be applicable also to more general cases where some low-energy
degrees of freedom are actually gapped. In the context of the 2D HM, the role of gapless degrees of freedom is
played by the CP (1) model describing the emergent Nambu—Goldstone modes, and the gapped part of the
theory is described by the massive Goldstone mode.

In figure 3(b1), we show the scaling of the BW VNE for both cylinder and torus geometries. The scaling is
clearly linear. In the case of the HM on a torus, we extracted the coefficient A by fitting these results to S
(L) = AL + BIn(L) + D, and obtain A = 0.372(6) , which is in agreement with a prediction based on spin-
wave approximation [53] (discrepancy <3%). In figure 3(b2), we extract the subleading logarithmic correction

by considering the entropy difference 2S(L) — S(2L) =~ %

in toroidal geometries of circumference 2L. The
number of Nambu—Goldstone modes obtained from the prefactor of this term is in perfect agreement with field
theoretical expectations [10, 19, 53, 54], with accuracy at the percent level or lower. The fact that the VNE returns
avalue which is considerably closer to the field theoretical prediction when compared to the one extracted from
Renyi entropies [17, 19] may signal the fact that the latter are more affected by irrelevant operators, as observed

in 1D [47, 48, 50], or may be due to the smoother continuity properties of the VNE.
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Figure 4. BW-EH entropy of two-dimensional bilayer model. The graph shows the results for the bilayer HM entropy at the QCP,
g = 2.522,and differenta.r. = L,/L,, where L, = L.The results are well described by a linear fit, and the y-interceptis v ~ 0, see the
inset.

4.3. Strongly coupled quantum criticality
As asecond example of 2D system, we consider the BW—EH for the bilayer Heisenberg model [55, 56]

Hyi.= > > T)Sa,i)iS6+6i)0

1=1,2 7,6=+1
+ > >0 Tl — 1/2)SGi S0, +6)
1=1,2 7,6=+1
+ 8> Tlix = 1/2)87,57 (11
i

where i = (i, i) labels the sites within the planes (square lattice), and / are the label of the planes. This model
describes a quantum phase transition induced by the inter-coupling g that belongs to the O(3) universality class.
We compute the BW-EH entropy at the QCP, g, = 2.522, considering Ogy = 27/v, withv = 1.9001(2) [51].
The function I'(i,)) is given by the BW theorem (equation (4)), which represents the EH of a half-bipartition with
a cylinder geometry; see figure 3(a). For this universal class and geometry, it has been argued that there is a
universal constant correction to the entanglement entropy that depends solely on the aspect ratio [23, 57]: for a
cylinder geometry with PBC in the y direction, this constant has been conjectured to vanish, in sharp contrast to
anti-PBC. Verifying this conjecture requires accurate values of the entropy at large system sizes of several
hundred sites.

Our results up to partition of size L = 18 are depicted in figure 4. Within error bars, our results show that S
(L) is independent of the aspect ratio of the subsystem, see figure 4, have no detectable logarithmic subleading
term (the S(L) = AL + Bln(L) + D fitting, gives B = —0.05(8)), and the y-intercept of S(L) is D = 0.010(7).
These results confirm that the scaling of the VNE is given by a pure area law behavior as predicted by the large N
calculations for O(N) critical models [23, 57]

5. Stability of BW-EH entropy

We now discuss the stability of the approach to measure the BW—EH utilizing QM C simulations. The most
critical step are uncertainty due to errors in determining . Since the density of states of the EH has
qualitatively distinct properties from conventional density of states, it is of key importance to understand the
sensitivity of the approach proposed here to such errors.

In figures 5(al, bl), we show the value of the extracted entropy obtained via Wang—Landau sampling as a
function of 3, for both 1D and 2D HM. The insets magnify the region in the vicinity of the exact value of Fgy;,
signaled by a dashed vertical line: in this regime, the entropy is linearly sensitive to . This implies that the
accuracy in estimating S is ultimately limited by the accuracy on the sound velocity: this strengthen the
applicability of our method to QMC simulations, where v can be measured very accurately via a variety of
techniques [51, 58].

5.1. Stability with respect to inhomogeneous couplings
The second class of imperfections we discuss is the presence of inhomogeneities in the BW—EH couplings. This is
motivated by potential experimental realizations of the EH: indeed, the generic approach described above can be
extended to formulate protocols to measure the von Neumann entropy in experiments (complementing
previous approaches based on Renyi entropies [59-65] and entanglement spectra [15, 66]) as follows.

The key ingredient here is to obtain the density of states of the EH, whose microscopic implementation has
been discussed in [15]. Such density of states can be obtained via quantum quenches, adapting to experiments

7
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Figure 5. Stability to pertubations. Panels (al) and (b1) show the 5-dependence of the BW—EH entropy for the 1D (infinitePBC) and
2D (torus) HM, respectively; the insets magnify the regions close to the numerical exact value of Sy (dashed vertical line). Panels (a2)
and (b2) show the BW—EH entropy as a function of the disorder magnitude ¢ for the (a2) ID HM with L = 16 (infinite PBC) and (b2)
2D HM (torus) with L = 8 (see text). The circles (black points) are the value of S for a single realization of disorder, while the triangles
(red points) are the averaged S (N, = [100-200] realizations of disorder are used). The horizontal dashed line represents the value of S
in the clean case.

the approach presented in [67, 68]: the main idea is that, starting initially from the ground state, one can recover
the eigenvalue density of a given operator (in our case, the BW—EH) by suddenly switching on a coherent
dynamics given by the operator itself. This technique is a quantum quench analog of spectral decomposition,
and is thus fully general and applicable to the EH.

The main challenges to be overcome in this direction are three: errors in the initial state preparation, finite
quench time due to decoherence, and proper realization of the microscopic dynamics. Regarding the first two
elements, the analysis of the EH case goes along the same lines of conventional Hamiltonians [67, 68]. We thus
focus here on the last element, which is unique to the present case due to the spatially modulated couplings. We
thus address the effects of random perturbations in the EH couplings I'(n1), which accounts for possible
imperfect experimental realizations of the EH. Such random perturbations are one of the possible cases
discussedin [15].

We consider disordered couplings, I'(n) — T'(n)(1 + 6,)°, where §,, = [, 6], in the BW—EH of the HM
(in 1D and 2D). Specifically, we are interested in understanding how the BW VNE is affected by a small amount
of disorder.

In figure 5(a2, b2) we show that the mean value of the BW VNE is not appreciably affected by disorder up to
strength of the order of 10%. For larger values of 6, we observe a considerable dependence on the disorder
realization, as signaled by the visually large spreading of the values of S. Surprisingly, the mean value of the
entropy is not dramatically affected. This remarkable stability is in contrast to what is typically found when
studying the effects of disorder in the Hamiltonian couplings, which have a quantitatively larger effect on
entropies. A possible element in support of this unexpected resilience is the fact that the VNE is endowed with

8 . .. . . .
We remind that this imperfect EH corresponds to the GS of a clean system, and is not related to the entanglement properties of disordered
systems.
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particularly robust continuity properties with respect to changes in the entanglement spectrum (which is instead
expected to be directly affected by the random couplings).

6. Conclusions

We have presented a method to measure the ground state von Neumann entropy of a broad class of lattice
models via direct thermodynamic probe of the correspondent entanglement Hamiltonian. The method is
straightforward to implement in quantum Monte Carlo simulations, and is of immediate applicability to
experiments capable of measuring the density of states. It enables accurate predictions of universal quantities
solely based on entanglement, thanks in particular to its immediate scalability in numerical simulations. Future
perspectives include the application of the method to other entanglement related quantities, such as the
negativity, its extension to lattice gauge theories, and its integration with methods to determine the EH at finite
temperature [36, 69].
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Appendix. Quantum Wang-Landau sampling of the entanglement Hamiltonian

In this section we discuss some relevant technical aspects of the quantum Wang—Landau (WL) simulations used
to obtain the thermodynamic entropy of the BW—EH. The orders of the series expansion shown in equation (7)
that are relevant for a given B are sharply peaked around S|E(3)|; where |[E(8)| = C + (Hpw) is related to the
expectation value of Hpyy at inverse temperature 3

_ tr(Hgwe™ ‘BHBW)

H; = A.
(Hpw) Zom (A.D)

and the constant Cis defined to guarantee that the QMC weights are always positive (C > (Hgw)) [45]. Hence,
one can truncate the expansion atan order A (i.e.n = 0,1, ..., A ) without introducing systematic errors in the
simulation. The choice of A is performed using the same algorithm of the conventional SSE simulations, see
[45,46], which gives asaresult A(3) = B|E(5)|. The effect of introducing the cutoff A(5) is that the range of
temperature that can be accessed is restricted to 5 < A(B)/|E(3)]. In order to obtain the results of figures 4(a,
b1) of the main text, for instance, we simulate the BW—EH using A(3 0gp) as the cutoft. Instead, the computation
of the BW VNE at gy are obtained utilizing a cutoff A(afGgy). The results shown in figures 2 and 3 of the main
text are obtained with & = 1.3. We check that these results do not change upon increasing a.

The required numerical resources to compute the thermodynamic entropy of the BW—EH depend on the
cutoff, A, introduced in the SSE series expansion. We can estimate the system-size dependence of the required
numerical resources, by noting that the leading term of the size scaling of the SSE cutoffare A(Bgy) ~ L’ in 2D
and A(Bgpy) ~ L? in 1D; where L is the linear size of the systems considered here. In order to establish these
results we first note that the correlation functions that appear in the expression of ( Hgw) (see equation (10)) are
(§7 _>7+5> < O(1). Asumming that these correlations are equal to a constant <§; §7+3> ~ O(1), we can estimate
the size scaling of { Hp) in 2D by considering the identity

i (il] =L x (%) (A.2)

i,=1\i,=1

In addition we note that Sgi; ~ O(1), and using the aforementioned argument one have that C ~ L*. As the
prefactor associated to Cis larger then the one of { Hgy ), we conclude that A(Ggy) ~ L’. Remarkably, the cutoff
that one needs to introduce to compute the ground state properties of the original Hamiltonian H (the one from
which the BW-EH ansatz is built) also scales as A ~ L. In this case, however, the ground state energy scale as
E(B — 00) ~ L, while one needs to consider 3 ~ L in order to access ground state properties.

9
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Finally, it is important to mention that the results of the BW entropy are obtained by doing an average of N,
independent WL simulations, i.e.

1 N
S(B) = ~ > SiB). (A.3)

ri=1

The error bars are the standard deviation of the distribution {S;}, and for all the results presented, we consider at
least N, > 200.
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