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Abstract
Weanalyse the spatial inhomogeneities (‘spatial clustering’) in the distribution of particles accelerated
by a force that changes randomly in space and time. To quantify spatial clustering, the phase-space
dynamics of the particlesmust be projected to configuration space. Folds of a smooth phase-space
manifold give rise to catastrophes (‘caustics’) in this projection.When the inertial particle dynamics is
damped by friction, however, the phase-spacemanifold converges towards a fractal attractor. It is
believed that caustics increase spatial clustering also in this case, but a quantitative theory ismissing.
We solve this problemby determining howprojection affects the distribution offinite-time Lyapunov
exponents (FTLEs). Applying ourmethod in one spatial dimensionwe find that caustics arising from
the projection of a dynamical fractal attractor (‘fractal catastrophes’)make a distinct and universal
contribution to the distribution of spatial FTLEs. Our results explain a projection formula for the
spatial fractal correlation dimension, and how afluctuation relation for the distribution of FTLEs for
white-in-timeGaussian force fields breaks upon projection.We explore the implications of our results
for heavy particles in turbulence, and forwave propagation in randommedia.

1. Introduction

There aremany situations where ensembles of particles are subject to external forces that appear tofluctuate
randomly in space and time. Examples are particles in turbulence, such aswater droplets in turbulent clouds [1],
dust in the turbulent gas of protoplanetary disks [2, 3], or small particles floating on the free surface of afluid in
motion [4].When the particlemomenta are damped by friction, the phase-space dynamics is dissipative, leading
to spatial clustering in the formof fractal patterns in the particle distribution in configuration space [5–7].
Spatial clustering has been observed in experiments [8–15] and in numerical simulations of particles in
turbulence [15–26]. The phenomenon is of key significance because it brings particles close together and thus
affects the rate of collisions between particles [27, 28], their evaporation or condensation [29], or chemical
reactions [30].

The fractal nature of spatial clustering is quantified by fractal dimensions [7, 31–36] that describe how the
fractal patternsfill out configuration space. These dimensions, in turn, are determined by the large-deviation
statistics [37–39] offinite-time Lyapunov exponents (FTLEs) [35, 36, 40], measuring the evolution of
infinitesimal volumes spanned by nearby particle trajectories. The distribution of the FTLEs determines the
long-time statistical properties of the dynamically evolving fractal attractor towhich the particles converge.

In the overdamped limit, particlemomenta are negligible, so that the phase-space dynamics contracts to
configuration space. In this case, the statistical properties of spatial FTLEs are well understood [34, 41–43].
Inertial particle dynamics, however, occurs in phase space, and the statistical properties of the phase-space
attractor are determined by the phase-space FTLEs. To describe spatial clustering, phase-space volumesmust be
projected to configuration space. Since it is not understood how this projection affects the distribution of FTLEs,
there is nofirst-principles theory of spatial clustering. The source of the difficulties is well known [7, 44–48] and
we illustrate it infigure 1.When the inertial phase-space dynamics generates folds(figure 1(a)), the spatial
projection becomesmany-to-one, causing infinitesimal neighbourhoods of particles to project to single points

OPEN ACCESS

RECEIVED

29May 2019

REVISED

3December 2019

ACCEPTED FOR PUBLICATION

11December 2019

PUBLISHED

21 January 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd on behalf of the Institute of Physics andDeutsche PhysikalischeGesellschaft

https://doi.org/10.1088/1367-2630/ab60f7
https://orcid.org/0000-0003-3374-2054
https://orcid.org/0000-0003-3374-2054
mailto:jan.meibohm@physics.gu.se
mailto:bernhard.mehlig@physics.gu.se
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab60f7&domain=pdf&date_stamp=2020-01-21
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab60f7&domain=pdf&date_stamp=2020-01-21
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


in configuration space. These singular points are cusp or fold catastrophes, also called ‘caustics’ [46, 47], due to
their similarities with the random focusing of light in geometrical optics [49, 50]. For smooth phase-space
manifolds, catastrophes are known to lead tofinite-time singularities in the spatial particle density ñt(x)
(figure 1(b)), suggesting that causticsmay increase spatial clustering [46]. These consideration are, however, too
imprecise to quantify spatial clustering.More importantly, these arguments rest on the notion of a smooth
manifold, and it is unclear towhich extent they apply to fractal phase-space attractors(figure 1(c)). In other
words, it is not understood how caustic folds affect the spatial fractal dimensions, although it is generally
assumed that they do. Computing the effect of caustics in the long-time limit is challenging because they give rise
to non-perturbative effects [51], and are therefore thought to cause perturbation expansions for spatial fractal
dimensions [6, 7, 51–55] to fail.

Herewe showhow todescribe the effect of caustics on spatial clustering fromfirst principles byprojecting the
phase-space FTLEs to configuration space.Wedemonstrate ourmethodbyderiving the spatial FTLEdistribution
for inertial particles accelerated by a spatially smoothbut random forcefield inone spatial dimension.Ourmain
result is that caustics give rise to a distinct anduniversal contribution to the spatial FTLEdistribution, independent
of the details of the forcefield. This caustic contribution results in an exponentially increasedprobability of
observing dense clusters of particles. Furthermore,wedemonstrate howcaustics affect thedistribution of spatial
separations, andwe show that it explains a projection formula for the spatial fractal correlation dimension.We
illustrate the implications of these conceptual insights forwhite-in-timeGaussian forcefields. In this case, there is a
fluctuation relation [56–63] that reflects the symmetry of theproblem inphase space.We showhow this symmetry
is broken by the projection, due to additional spatial clustering caused by caustic catastrophes.

Our results are not confined to dissipative systems, but apply in a limiting case to randomdynamical systems
without dissipation, such as branched electron flows over a spatially disordered potential [64–66], as well as the
focusing of light [49, 50] and acoustic waves [67–69] in randommedia. In this case fractal clustering is absent,
but there are nevertheless substantial spatial inhomogeneities inwave amplitude (and ray location)—entirely
caused by caustics. Our theory predicts the formof the distribution of local stretching factors that determines the
spatial patterns formed by thewaves [65]. Finally, our results are of interest also in chaos theory, where the
distribution of spatial FTLEs is used in the description of deterministic chaotic systems [35, 36, 70] and in the
semiclassical analysis of classically chaotic quantum systems [70, 71].

The remainder of this paper is organised as follows. Section 2 describes the problem, its background, and
outlines themethodswe use to solve the problem. In section 3we explain how to project the FTLEs fromphase
space to configuration space. The dynamics of phase-space FTLEs in one spatial dimension is derived in
section 4. In section 5we obtain themain results of the paper by applying the projection of the phase-space
FTLEs to configuration space in one spatial dimension. In section 6we discuss the consequences of our results
for fractal clustering in configuration space and in phase-space.We illustrate the consequences in section 7, by
deriving explicit results for the special case of white-in-timeGaussian forcefields. In section 8we discuss the
physical implications of our results, for particles in turbulence, for the ray dynamics of waves in disordered
systems, and for deterministic chaotic systems. Our conclusions are summarised in section 9.

2. Problem formulation and background

2.1. Phase-space FTLEs
Consider the dynamics of the position xt andmomentum pt of a particle ofmassm in a random force field ( )f xt
in d spatial dimensions,

Figure 1. Fractal clustering in phase-space and configuration-space (schematic). (a) Fractal attractor in phase-space (position x,
momentum p) at given time t, for the one-dimensional statisticalmodel for heavy particles in turbulence reviewed in [7]. (b) Increased
spatial particle density ( ) xt in the vicinity of caustic folds, dotted lines. (c)Themagnification illustrates fractal clustering.
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Here γ is a damping coefficient. Equation (1) is a widely usedmodel for the dynamics of small, heavy particles in
turbulence [7]. In this case the damping is due to viscous friction, and the random force field ( )f xt represents the
turbulent fluid-velocity field ( )u xt .

Inwhat followswe use the dimensionless units ℓ( )¢ =t t f m0 , ℓ¢ =x x , ℓ¢ =p p m f0 , and

¢ =f f f0, whereℓand f0 are the correlation length and standard deviation of the force f .We drop the primes
for notational convenience, andwrite:

( ) ( )z= = - +x p p p f x, . 2
t t t t t t t t

d

d

d

d

Here ℓz g= m f0 is a dimensionless damping coefficient. Todescribe fractal clustering inphase space,we analyse
thedynamics of a small neighbourhoodof phase-space trajectories arounda reference trajectory ( )x p,t t . Thephase-
space separationbetween ( )x p,t t and aneighbouring trajectory ( )¢ ¢x p,t t is denotedby ( ) (d d= º ¢ -R x p x,t t t t

)¢ -x p p,t t t .We consider separations at large times t, yet small enough so that the separations are alwaysmuch
smaller than the correlation lengthof the forcing, ∣ ∣ dx 1t . Thenwe can linearise the forcefield around xt to obtain

( ) ( )d d d zd d= = - + x p p p x x, , 3
t t t t t t t t t

d

d

d

d

where t is the random force-gradientmatrix with elements Fij=∂jfi. The phase-space dynamics in the vicinity
of a trajectory ( )x p,t t becomes
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where ´d d is the d×d unitmatrix. The solution of equation (4) is expressed in terms of theGreen function t

by

T ( ) ( )ò= = ¢= ¢ ¢  R R xtwith exp d . 5t t t t

t

t t0
0

HereTexp denotes the time-ordered exponential evaluated along ( )x p,t t .Writing =  t t t , we decompose

t into a rotation t and a stretch tensor t with positive and real eigenvalues ( )( ) ( )
¼s se , ,et tt t

d1 2
. The exponents

( )( ) ( )s s¼, ,t t
d1 2 are the phase-space FTLEswe intend to calculate. They can be computed as follows. One defines

the left Cauchy-Green tensor Tº =   t t t t
2 with eigenvalues ( )( ) ( )

¼s se , ,et t2 2t t
d1 2

. Analysing t instead of t is
convenient since t obeys a closed equation,

T = +   t t t t t , while t does not. As shown in [41] this
allows to derive evolution equations for the FTLEs and for the orthogonalmatrixt that diagonalises t . The
elements oft can bewritten as [ ]( )= eij t

i
j, where

( )et
i is the eigenvectors of t corresponding to

( )st
i . For long

enough times, and given a non-degenerate spectrumof Lyapunov exponents, the dynamics of the eigenvectors
( )et
i decouples from that of the FTLEs, leading to a closed set of stochastic equations for ( )et

i [41]:
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The phase-space FTLEs are obtained as integrals over ·( ) ( )e et
i

t t
i :
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It is convenient to arrange the FTLEs in non-increasing order [42]:

( )( ) ( ) ( )s s s   a. 8t t t
d1 2 2

Since the trace oft is constant, z= - dtr t , the phase-space FTLEs obey the sum rule
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d

t
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For ergodic dynamics, the FTLEs have definite limits,

( )( )s l=
¥
lim , 9

t
t
i

i

the Lyapunov exponents [72]. In the limit  ¥t , their cumulative sums, lå =i
n

i1 , describe the expansion or
contraction rates of n-dimensional phase-space volumes spanned by n+1 nearby particles. The distributions
of ( )så =i

n
t
i

1 , by contrast, describe transient fluctuations of themagnitudes of phase-space (sub-)volumes.
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2.2. Large-deviation principle
At large butfinite times t, the phase-space FTLEs obey a large-deviation principle [37, 39]. Their joint density has
the large-deviation form [41–43]

⎛
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⎟⎟( ) ( )( ) ( ) ( )ås s d z= ¼ = µ +¼

=

-
 P s s s d, , 1 e , 10s

t t
d

d s s
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d

j
tI1

1
2

2
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2

d1 2

with rate function ( )sI , and ( )= ¼ -s s s, , d1 2 1 . The indicator function 1x ensures the ordering of FTLEs,
equation (8a), while theDirac delta function δ(x) enforces the constraint, equation (8b). Instead of calculating

( )sI directly, it is often easier to compute the scaled cumulant-generating function (SCGF) [37, 39, 73, 74]

⎡
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where ( )= ¼ -k k k, , d1 2 1 . If ( )L k exists and provided that it is differentiable with respect to k , then ( )sI is given
by the Legendre transform [37, 75],

( ) { · ( )} ( )= - L
Î -

s k s kI sup . 12
k d2 1

In section 4we derive stochastic differential equations that allow, in principle, to compute the large-deviation
statistics of phase-space FTLEs for a one-dimensional random force field ( )f xt . In section 7we showhow to
solve these equations explicitly, for white-in-timeGaussian force fields.

2.3. Catastrophes
Catastrophe theory [76–78] is a branch inmathematics that concerns the description and classification of
singularities in dynamical systems. The theory explains, for instance, the sensitive parameter dependence of
steady-state solutions of differential equations.Within the theory, singularities arising from folds of amanifold
of steady-state solutions over parameter space are categorised into so-called normal forms [78]. An important
property of a catastrophe is its codimension, given by the dimension of the space under consideration,minus the
dimensionality of the singularity. Catastrophes of codimension one are called cuspoids (including fold and cusp
catastrophes). Although cuspoid catastrophes are themost commonones, catastrophes of higher codimension
play an important role in optics [49, 50]. In optics, catastrophes lead to caustics, singularities in the light intensity
due to partial focusing. Caustics arise from the projection of folds of a smooth phase-spacemanifold onto
configuration space.

Figure 1 illustrates that similar folds, albeit of a fractal attractor, are created by the phase-space dynamics (2).
In section 3we showhow these fractal catastrophes arise from the spatial projection to configuration space. In
section 5we demonstrate how they affect the distribution of spatial FTLEs.

2.4. Fractal attractors
When the dynamics is dissipative (ζ> 0), the steady-state phase-space attractor is fractal. Thismeans that the

cumulative probability distribution of phase-space separations ∣ ∣ ∣ ∣ ∣ ∣d d= = +R x pRt t t t
2 2 exhibits a power

law

( ) ( )~P R r r rfor 1. 13t
D2

The exponentD2 defines the phase-space correlation dimension. As can be seen from equation (13), the phase-
space correlation dimensionmeasures the probability offinding two particles within a distance r in phase-space.
For a homogeneous distribution of particles, this probability scales as∼r2d. For fractal particle distributions, on
the other hand, the probability scales as~r D2 withD2<2d.

The correlation dimension is not the only quantity thatmeasures the fractal properties of particle
distributions. Often theKaplan–Yorke dimensionDKY [79] is used to characterise the fractal nature of attractors,
becauseDKY is defined in terms of the Lyapunov exponentsλi. TheKaplan–Yorke dimensionDKY is thus
insensitive to the transient fluctuations determined by ( )st

i . For generic non-linear dynamics,DKY equals the
information dimensionD1, but counterexamples can be constructed [80].

For the phase-space dynamics (1) that generate the dynamical fractal attractor illustrated infigure 1, the
distribution of phase-space FTLEs determines not onlyD1 andD2 but thewhole spectrumof fractal phase-space
dimensionsDq [34–36] for any value of q. For the analysis ofDq, one considers themoments of the probability
Mr contained in a small phase-space ball of radius r around ( )x p,t t . The r-scaling of the nthmoment ofMr

measures the probability offinding n+1 particles within a distance r, thus generalising equation (13). The
r-scaling of Má ñr

n is given by the exponent ξn [34, 81],
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M ( )á ñ ~ xr rfor 1. 14r
n

n

Note in particular that M ( )á ñ = P R rr t , so that ξ1=D2.More generally, the singularity exponents ξn are, by
definition, related to the fractal dimensionsDq by x = +nDn n 1. If trajectories do not cross, the local phase-space
mass is conserved. In this case the singularity exponents can be computed from the rate function of FTLEs
[34–36].We show in sections 6 and 7 how to obtain the fractal phase-space dimensionsDq in this way.

The cumulative probability distribution of spatial separations ∣ ∣dxt has the form

(∣ ∣ ) ( )ˆ d µP x r r rfor 1, 15t
D2

where D̂2 is the spatial correlation dimension [7]3. The spatial correlation dimension D̂2 measures the
probability offinding two particles within a spatial distance r. This dimension therefore plays an important role
for particle interactions that require spatial proximity.

More generally, spatial clustering is characterised by the spatial fractal dimensions D̂q which describe how

the particles fill out configuration space. There is no general formula that connects a spatial fractal dimension D̂q

to its phase-space counterpartDq. However, it was conjectured on the basis of numerical investigations of spatial
clustering [7, 53, 81] that the correlation dimension obeys a projection formula of the form

ˆ { } ( )=D D dmin , . 162 2

For typical projections of generic attractors this relation can be proven to hold for D̂q for  q0 2 [82–84]. For
q>2 one can show that ˆ { }D D dmin ,q q [84]. But an important point is that the dynamics (2) is not isotropic
in 2d-dimensional phase space. Therefore, it is not at all clear whether the projection fromphase-space to
configuration space is typical, or not. Using our results for the distribution of the spatial FTLE for one spatial
dimension, we show in section 6 that the spatial correlation dimension D̂2 obeys the projection formula (16).
More importantly, our theory explains that D̂2 saturates at unity (for d= 1) because of caustics. However, this
does not necessarilymean that caustics give rise to a spatially uniform distribution of particles, because, possibly,
ˆ <D 1q for q>2.

3. Projection to configuration space

In this sectionweexplainhow toproject the distributionof phase-space FTLEs to configuration space, taking into
account the effect of catastrophes.Asmentioned above, the phase-space FTLEs describe how (sub-)volumes evolve
in phase space. Tounderstandhow they project to configuration space, consider a smalln-dimensional ( n d)
phase-space volumearound aphase-space trajectory ( )x p,t t . Assume that the initial volume lies entirelywithin
configuration space, so that for any vector mt in that volumewehave ˆ( )= å= =m emt j

n
j

j
0 1 , where ˆ ˆ( ) ( )¼e e, , n1 is the

Cartesian basis in configuration space.At long times the volumealignswith then eigenvectors ( ) ( )¼e e, ,t t
n1 of t that

correspond to the largest FTLEs, ( ) ( )s s¼, ,t t
n1 . As a consequence, the spatial projection m̂t of mt evolves as

ˆ ˆ · ˆ · ( )( ) ( ) ( ) ( ) ( ) ( )( )
å= = s

=
=m e e m e eM Mwith e . 17t
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t
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j

The n×nmatrix ( )t
n determines the time evolution of the spatial projection m̂t of the arbitrary phase-space

vector mt . The absolute value of the determinant ∣ ∣det t oft gives the volume of the parallelepiped spanned
by n such vectors, and thus determines how n-dimensional spatial volumes expand and contract. Calculating
∣ ∣det t from the equation fort in (17)we observe the factorisation

∣ ∣ ∣ ∣ ( )( ) ( )
( )

=
å s
= det e det , 18t

n t

t
n

i

n

t
i

1

into a phase-space volume factor, [ ]( )så =texp i
n

t
i

1 , and a spatial volume factor, ∣ ∣( )det t
n . Here ( )t

n is the n× n
sub-matrix oft corresponding to

( ) ( )¼e e, ,t t
n1 . Since ∣ ∣( )  0 det 1t

n , we canwrite ∣ ∣( ) ( )a=det cost
n

t
n

and assign periodic boundary conditions to the angle ( )at
n in [−π/2,π/2). Equation (18) allows us to express the

spatial FTLEs in terms of the phase-space FTLEs as
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Using equation (7)we obtain
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3
Inwhat follows, we denote all spatially projected quantities by a hat.
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[ ] ( [ ] ) ( )( ) ( ) ( ) ( )a a= - - -  btan Tr . 20
t t

n
t
n

t t
n

t
nd

d
1 d

d
1

Here ( )¼Tr denotes the trace of thematrix. Equations (20) describe how folds of the phase-spacemanifold
(catastrophes) affect the spatial FTLEs. A catastrophe of spatial codimension d−n+1 or larger occurs in the
spatial subspace spanned by ˆ ˆ( ) ( )¼e e, , n1 when ( )a cos 0t

n .We denote by J( n) the rate at which ( )a cos 0t
n , i.e.

( )at
n transitions from−π/2 to /p 2.Most importantly, J≡J( d) is the rate of formation of catastrophes of

codimension one or larger, often called simply ‘rate of caustic formation’ [45, 47]. Note that the second integral
in equation (20a) diverges as ( )a p - 2t

n . The time derivative ( )a
t t

nd

d
, however, remainsfinite because the

factor [ ]( )a -tan t
n 1 in equation (20b) cancels the divergence of [ ] [ ]( ) ( )aµ- - cost

n
t
n1 1 .

In the next sections we formulate the equations ofmotion (20) explicitly for d=n=1. In this case caustics
occur at isolated points in configuration space (see figure 1).

4. FTLEs in two-dimensional phase space

Wenow apply themethods outlined in the section 2 in one spatial dimension. For d=1, t has two
eigenvectors ( )et

1 and ( )et
2 which can be parametrised by a single angleαt:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )( ) ( )a

a
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a= = -e e
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. 21t
t

t
t

t

t

1 2

The constraint (8b) implies that there is only one independent phase-space FTLE, whichwe take to be ( )st
1 . In

order to derive the dynamics forαt and
( )st
1 , we start with equations (6) and (7):

( ) · ( · ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s = = -  e e e e e e et and . 22
t t t t t t t t t t t t t

d

d
1 1 1 d

d
1 1 1 1 1

Weuse theparametrisation (21) togetherwith equations (6) and (7) to obtain equations ofmotion forαt and
( )st
1 :

( ) ( )a a a z a a= - + + F asin sin cos cos , 23
t t t t t t t

d

d
2

( )( ) ò òs a a a= ¢ +¢ ¢ ¢
t

t
t

b
1

d tan
1

d tan . 23t

t

t

t

t t
1

0 0

As explained in the previous section, caustics occur asαt transitions from−π/2 toπ/2. From equation (23a)we
see that ∣a = -a p=- td dt 2t , which implies that the transition from−π/2 toπ/2 is deterministic with angular
velocity−1. At the pointαt=−π/2, both integrands in equation (23b) diverge.However, because

∣a = -a p=- td dt 2t the divergencies in equation (23b) cancel, so that the phase-space FTLE ( )st
1 remains finite

for all times. Equations (23) admit the following interpretation, illustrated infigure 2: an initial two-dimensional
phase-space disc is deformed by

( )set t
1
along ( )et

1 and by
( )set t
2
along ( )et

2 . The initial disc is thus squeezed into an
ellipse with decreased phase-space volumeV V= z

=
-et t

t
0 , due to the dissipative nature of the dynamics. At the

same time, the eigensystemof t rotates by the angle at .
Without imposing strong restrictions on the force gradient Ft, we can derive important properties of the

probability distribution forαt. If Ft is statistically stationary,αt reaches a non-equilibrium steady state with
density Pst(αt=a). Asαt regularly passes−π/2,Pst(αt=a) has afinite flux ofmagnitude J, the rate of caustic
formation. The fact that ∣a = -a p=- td dt 2t then implies

Figure 2.Evolution of a small, two-dimensional phase-space volume, grey area, around a reference trajectory (xt, pt), dashed–dotted
line. The two perpendicular axes are stretched or contracted by

( )
~ set t

i
, and rotated byαt. The dashed line shows the projection ˆ~ set t

of the stretching direction to configuration space. The curved arrow indicates the direction of the steady-state flux.
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( ) ( ) ( )/ /a p a p= - = = =P P J2 2 . 24t tst st

In otherwords, in the presence of caustics, the probability density ofαt at the boundaries of the interval
[−π/2,π/2) isfinite, and given by the rate of caustic formation.

The system (23) ismore conveniently written in terms of the variable a d d= =Z p xtant t t t [44, 45], which
measures the local particle-velocity gradient along the reference trajectory.We obtain

( )z= - - +Z Z Z F a, 25
t t t t t

d

d
2

( )( ) ò òs = ¢ +
+

¢ ¢
¢

¢t
t Z

t
Z

Z

Z
b

1
d

1
d

1
. 25t

t

t

t

t
t

t

1

0 0
2

In terms of the coordinateZt, a caustic corresponds to  -¥Zt and the immediate re-appearance at
= +¥Zt [7]. The stochastic dynamics (25) determines the distribution of the phase-space FTLE ( )st

1 , of the
form (10)with rate function I(s). In one spatial dimension (d=1) the large-deviation formof the probability
distribution (10) discussed in section 2.2 reads:

( ) ( ) ( ) ( )( ) ( ) ( )s s d z q= = ¢ µ + ¢ + - ¢ -P s s s s s s, e . 26t t
tI s1 2

Integrating over ¢s we obtain themarginal distribution of ( )st
1 :

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )( ) ( )s q

z
= µ + -P s s

2
e . 27t

tI s1

The convex rate function I(s) attains itsminimumatλ1, where I(λ1)=0 so that ( )l s= ¥limt t1
1 is themaximal

Lyapunov exponent, equation (9).
In section 7we showhow to compute I(s) explicitly for white-in-time force fields, using themethod of tilted

generators [39, 73, 74].

5.Distribution of the spatial FTLE

Weoutlined in section 3 how to calculate the spatial FTLE ŝt by projection. In one spatial dimension this
projection is illustrated as the dashed line infigure 2. From equation (20b)we obtain the equation ofmotion for
the projected spatial FTLE ŝt :

ˆ ( )ò òs a= ¢ = ¢¢ ¢
t

t
t

t Z
1

d tan
1

d . 28t

t

t

t

t
0 0

It is easy to see by comparing equations (28) and (23b) that the cancellation of the divergencies of the integrals
for ( )st

1 does not take place for ŝt . Instead, the spatial FTLE runs into a logarithmic divergence ˆ (∣ ∣)s ~ -t tlogt c

in the vicinity of a caustic at time tc.
In the remainder of this sectionwe present the twomain results of this paper, the spatial rate function ˆ ( )I s

and the spatial SCGF ˆ ( )L k . These quantities describe the transient fluctuations of the spatial FTLE ŝt .

5.1. Spatial rate function ( )I s^

We see from equation (28) that the spatial projection leads tofinite-time divergencies of the spatial FTLE ŝt . In
section 4we have demonstrated that the phase-space FTLEs obey a large-deviation principle with rate function
I (s), equation (26). The question is how the finite-time divergencies of ŝt affect the large-deviation principle. In
appendix Awe show that the distribution of ŝt has indeed a large-deviation form

( ˆ ) ( )ˆ( )s = µ -P s e , 29t
tI s

butwith an altered, spatial rate function ˆ ( )I s . The spatial rate function ˆ ( )I s is given by

⎧⎨⎩
ˆ ( )

( ) { }
ˆ ( )

z
=

-

- -


I s

I s s s

s I

, max , 2 ,

, otherwise,
30

0

*

which depends on two constants, s* and Î0. Both these constants depend on the properties of the phase-space
rate function I(s). Namely s* is given by the position of the infimumof I(s)+s,

{ ( ) } ( )= ¢ + ¢¢Îs I s sargmin , 31s*

while Î0 depends on I(s) and the location of s* relative to−ζ/2:

⎧⎨⎩
( )

( )
( )

/

/ /

z
z z

=
L - -
- -

* 
I

s

I

1 , 2,

2 2 , otherwise.
320̂
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Equation (30) shows that the spatial rate function ˆ ( )I s is a continuous and convex function of swhich coincides
with the phase-space rate function I(s) for { }z-s smax , 2* , and is linear otherwise. However, if z< -s 2*
then ˆ ( )I s is not differentiable at s=−ζ/2. Figure 3 shows the formof ˆ ( )I s schematically for these two cases.

The linear part in the spatial rate function ˆ ( )I s implies that the probability of large, negative values of ŝt is
exponentially enhanced, by a factor of ( [ ( ) ˆ ( )])~ -t I s I sexp . The shape of the linear part does not depend upon
the details of Ft and is thus a universal contribution due to caustic catastrophes. Put differently, caustics created
by fold catastrophes of the phase-space attractor cause additional spatial clustering, with universal properties.

5.2. Spatial SCGF ( )L k^

As the secondmain result of the paper, we derive the spatial SCGF ˆ ( )L k . Using equation (28) and
∣ ∣d=Z xlogt t t

d

d
, ˆ ( )L k can be expressed in terms of the spatial separation ∣ ∣dxt according to

ˆ ( ) ( )ò d
d

L = =
¥

¢

¥ =

¢k
t t

x

x
lim

1
log e lim

1
log . 33

t

k t Z

t

t

t

k
d

0

t

t
0

This expression shows that ˆ ( )L k is equal to the generalised Lyapunov exponent [85] in one spatial dimension.
Since the spatial separations ∣ ∣dxt contract to zero infinite time, the ensemble average in equation (33) contains
singularities that affect ˆ ( )L k for negative k. In the next sectionwe show that (∣ ∣ )d d = >=P x x 0 0t t 0 for large
enough t. Thismeans that ∣ ∣ (∣ ∣ )/ /òd d d dá ñ = = = ¥=

¥
=x x r r P x x rdt t

k k
t t0 0 0 , for -k 1, which implies

ˆ ( )L = ¥k for -k 1. To obtain ˆ ( )L k for k>−1we perform a Legendre transformof ˆ ( )I s :

ˆ ( ) { ˆ( )} ( )L = -
Î

k sk I ssup . 34
s

This calculation is carried out in appendix B.We find that the spatial SCGF ˆ ( )L k reads

⎧
⎨⎪
⎩⎪

ˆ ( )
( )

( ) ( )z zL =
L >

- - - > -
¥

k
k k k

k I k k

, ,

2 2 , 1,

, otherwise.

35
*

*

The constant k* is given by

⎧⎨⎩ ([ ] )
( )z

z
=

- -
¢ - +


k

s

I

1, 2,

2 , otherwise.
36*

*

Here ([ ] )z¢ - +I 2 is the right derivative of I(s) at s=−ζ/2, which enters equation (36) because I(s) is not
continuously differentiable at s=−ζ/2 for z< -s 2* .

Equation (35) shows that ˆ ( )L k coincides with the phase-space SCGFΛ(k) for >k k*, has a linear part in the
interval ( ]Î -k k1, * , and diverges for -k 1. Note that the linear part vanishes when z-s 2* . Infigure 4
the spatial SCGF is shown schematically for the two cases z-s 2* and z< -s 2* .

The divergence of ˆ ( )L k is the universal analogue of the linear part in the spatial rate function ˆ ( )I s . In view of

equation (33) the divergence of ˆ ( )L k for -k 1describes a divergence of the negativemoments of spatial
separations. This divergence is due to afinite value of the probability density of ∣ ∣d d =x xt t 0 at zero spatial
separation (∣ ∣ )d d = >=P x x 0 0t t 0 , whichwe derive in the next section. In otherwords, the caustic
catastrophes allow the particle positions in a neighbourhood to coincide withfinite probability.

Figure 3. Schematic plot of the phase-space rate function I(s) (dashed line) and the projected configuration-space rate function ˆ ( )I s
(solid line) for different values of s*. The dotted line shows the location of s*. Theminimumof ˆ ( )I s is at the spatial Lyapunov
exponent l̂. The dashed–dotted line shows the function l̂ - s , which is greater than ˆ ( )I s for l̂<s (see the discussion in section 8).
(a)Case z-s 2* . (b)Case z< -s 2* where ˆ ( )I s is not differentiable at s=−ζ/2.
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6. Relation between phase-space and spatial clustering

Let us analyse the consequences of equations (30) and (35) for the relation between phase-space and spatial
clustering. Recall that the large-deviation statistics of the phase-space FTLEs allows to compute the singularity
exponents ξn, and thus the fractal phase-space dimensionsDq. Adapting the formalismdescribed in [34] to our
model, wefind that, for a positivemaximumLyapunov exponentλ1>0, the exponents ξn are given by

{( ) ( )} ( ) ( )x z x x- - = - - >
z-

n s I s n n asup 2 , if , 37
s

n n n
2

{ ( )} ( )x- - =
z-

s I s bsup 0, otherwise. 37
s

n
2

This result determines the phase-space singularity spectrum ξn in terms of the phase-space rate function I(s).
Equations (37) showhow the long-time distribution of phase-space FTLEs determines the fractal properties of
the phase-space attractor, as discussed in section 2.4.

For spatial clustering, no formulas as general as equations (37) have been derived, because caustics cause
trajectories to cross in configuration space. Therefore, themasses of infinitesimal phase-space volumes are in
general not conserved.With the help of equation (13) one can, however, obtain an analogous formula at least for
D2=ξ1. It reads [55, 86]

4

{ ˆ ˆ( )} ( )- - =
Î

D s I ssup 0. 38
s

2

Comparingwith the corresponding condition for the phase-space correlation dimension, equation (37) and the
projection relation (30) between I(s) and ˆ ( )I s wededuce that

ˆ { } ( )=D Dmin , 1 . 392 2

This proves that the projection formula (16) holds for q=2.We can also conclude that the saturation of D̂2 at
unity is caused by the linear part of the projected rate function, ˆ ( ) ˆ= - -I s s I0 for <s s*. Thismeans that the
saturation of D̂2 is a direct consequence of the formation of caustics.

The behaviour of D̂2 described by equation (39) can be explained by comparing the scalings of ( )P R rt

and (∣ ∣ )d P x rt for r 1at large butfinite times. In the infinite-time limit, wemust then recover
equations (13) and (15), thereby confirming the relation (39) betweenD2 and D̂2.We start by considering

( )P R rt for z-r e t 2 andD2<1.Wewrite

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )µ -

z- -


 
P R r t I sexp inf . 40t

s t r2 log1

Sinceλ1>0, typical separations grow exponentially. In an infinite system the probability of observing anyfixed
value of rmust tend to zero in the infinite-time limit. In order tofind the scaling formof the separation
distribution that defines the correlation dimension, we therefore demand ( ) =-P R t rlog 0

t t
d

d
1 . This yields

the condition { ( ) ( )}¢ - =z l- <
-

 I t r s I ssup log 0s2
1

01
in a small range of separations around a small value r0.

Comparingwith equations (37) forD2< 1 reveals that ( )¢ = --I t r Dlog1
0 2. Using this conditionwe obtain the

cumulative separation distribution by expanding equation (40) around r0. For ∣ ( )∣ r r tlog 0 , wefind
( ) ( )~ =- ¢ -P R r r rt

I t r Dlog1
0 2 for the cumulative distribution of phase-space separations. This shows how the

scaling (13) of the cumulative distribution of phase-space separations emerges fromour result for the
distribution of phase-space FTLEs.

Figure 4. Schematic plot of the phase-space SCGFΛ(k) (dashed line) and its spatially projected counterpart ˆ ( )L k (solid line) for two
different values of s*. (a)Case z-s 2* . (b)Case z< -s 2* where ˆ ( )L k is linear for ( ]Î -k k1, * .

4
Ekdahl explored this equation using numerical simulations of a one-dimensionalmodel [40].
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Now consider the cumulative distribution of spatial separations (∣ ∣ )d P x rt . From equation (30)we find
that for ( { })z-r t sexp max , 2* , (∣ ∣ ) ( )d = P x r P R rt t . Differences between the distributions only
arise for ( { })z< -r t sexp max , 2* , because this is the regime of the linear part of the spatial rate function
ˆ ( )I s .We have in this case (∣ ∣ ) [ { ˆ }] ˆd ~ - - - =- P x r t s I rexp inf et s t r

I t
log 01 0 . As for the phase-space

separations, the power-law in (∣ ∣ )d P x rt , equation (15), builds up in a range of separations around a small
value r̂0, given by {ˆ ( ˆ ) ˆ ( )}ˆ ¢ - =l

-
 I t r s I ssup log 0s

1
0 . Comparing this with equation (39)we conclude that

( ˆ )¢ = --I t r Dlog1
0 2 for ˆ ( { })z-r t sexp max , 20 * and ( ˆ )¢ = --I t rlog 11

0 otherwise.WhenD2 transitions

fromD2<1 toD2>1, r̂0 moves into the caustic regimewith linear r-scaling, so that ˆ =D 12 forD2>1.Hence
we recover equation (15) in the long-time limit. For afinite systemwith boundaries, the cumulative distribution
of spatial separationsmust contain both scalings at small separations, (∣ ∣ )d » +P x r C r C rt

D
1 22 , with time-

independent constantsC1 andC2 [87]. The small-r scaling of (∣ ∣ )d P x rt is therefore determined bywhich of
the two powers is dominant. This is consistent with equation (39).

In conclusion, caustics affect the behaviour of the distribution of spatial separations r at small values of r,
namely that the cumulative distribution depends linearly upon r, (∣ ∣ )d ~P x r rt at small separations r. This
means that the distribution of separations, (∣ ∣ )d =P x rt , approaches a constant at small separations. For
ˆ <D 12 , by contrast, this ‘caustic regime’ is well separated from a self-similar regimewith power-law exponent
D2, so that ˆ =D D2 2. For larger values ofD2, the self-similar regime lies within the caustic regime. As a
consequence the D̂2 must equal unity. This shows how equation (39) follows fromour results for the
distributions of phase-space and spatial FTLEs.

7. Explicit results forwhite-in-timeGaussian forcefields

When ft(x) hasGaussian statistics with zeromean and vanishing correlation time, the gradient Ft is aGaussian
white noise with zeromean and correlation D ( )dá ñ = - ¢¢F F t t2t t , whereD is a diffusion constant. In this case,
themodel depends solely on the dimensionless parameter De z= -2 3 and the dynamics ofZt decouples from
that of (xt, pt) [7]. Thismakes it possible to compute the steady-state probability distribution ofαt, Pst(αt=a),
the phase-space SCGFΛ(k) and the phase-space rate function I(s) of the phase-space FTLE ( )st

1 in explicit form.
The explicit results derived in this section allow us to study inmore detail the impact of the spatial projection
upon ˆ ( )I s , and to evaluate the singularity spectrum ξn in equation (37).

7.1. Steady-state distribution of at

Solving the Fokker–Planck equation corresponding to equation (23a) (interpreted in the Stratonovich sense)we
obtain the steady-state density ( )a =P atst [45, 88, 89]

( )
( )

( )
[ ( ) ( )] ( )

òa
z
e

= = ¢
¢p

e z

-

¢ -
P a

J
a

a a
d

e

cos cos
, 41t

a U a U a

st

2

2 2

tan tan

2

2 3

whereU(x)=ζ x2/2+x3/3. The rate J of caustic formation is obtained from the normalisation of the
probability density in equation (41) [7, 88]. Figure 5 shows ( )a =P atst as a function of a for different values of ε.
For small ε,αt stays close to zeromost of the time, but ismore andmore likely to approach−π/2 as ε increases.
It follows from equation (41) that ( ) ( )/ /a p a p= - = = =P P J2 2t tst st , consistent with equation (24).

Figure 5. Steady-state probability density Pst (αt=a)withwhite-in-time force gradients for ε=0.5, 1, 2 shown as the solid, dashed–
dotted and dotted line, respectively.

10

New J. Phys. 22 (2020) 013033 JMeibohm et al



7.2. Explicit calculation of SCGF
Since Ft is white in time,Λ(k) can be calculated as the leading eigenvalue of a differential operator, the tilted
generatorLk, associatedwith the large-deviation statistics [39, 73, 74] of ( )st

1 . For our case this operator is
given by

L L L( ) ( ) ( ) ( )z e z= + + + = - - +-z z kz z z1 1 , , 42k
k k

z z
2 2 2 2 2 d

d
2 3 d

d

2

2

whereL is the generator of theMarkov process (25a).
We assume the leading eigenvalue ofLk and its adjointL†

k to be unique and real (we can show this explicitly
for even integer k, see appendix C). In this case, and under certain conditions [73] on the right and left
eigenfunctions, rk and lk, the leading eigenvalue ofLk andL†

k is given by the phase-space SCGFΛ(k), andwe
have

L L( ) ( ) ( ) ( ) ( ) ( ) ( )†= L = Lr z k r z l z k l z, . 43k k k k k k

Since the dynamics forαt smoothly transitions from−π/2 toπ/2, the corresponding transition for a=Z tant t

from  -¥Zt to = ¥Zt should also be smooth, sowe demand that all eigenfunctions rk and lk are
symmetric for large ∣ ∣z .

Tofind the explicit formofΛ(k)we solve equations (43)numerically by a shootingmethod—similar to that
described in [48, 87]—for general k. Figure 6(a) shows the resultingΛ(k). As expected, the SCGF is convex
[38, 39], yet not a simple parabola as obtained fromperturbation theory [41, 42]. For even integers k,Λ(k) obeys
implicit polynomial equations, whichwe obtain using amethod described in appendix C. Although themethod
works in principle also for odd integers k, the eigenfunctions rk and lk do not obey the required boundary
conditions in this case. The corresponding exact results forΛ(k) are shown as the black dots infigure 6(a).We
observe perfect agreement with the results obtained from the shootingmethod. Figure 6(b) shows the rate
function I(s) corresponding toΛ(k) obtained by Legendre transform.

7.3. Fluctuation relation and spatial rate function
With help of (43), we can formulate a fluctuation relation [60] forΛ(k), and carry it over to I(s)using the
Legendre transform(details in appendixD):

( ) ( ) ( )zL - - L - - = -k k k a1 1 , 44

( ) ( ) ( )z z- - - - = -I s I s s b2 2 2 . 44

This relation follows from the time-reversal symmetry of equation (25a), and it requires that Ft is white in time
(see appendix E). Fluctuation relations [56–62] are valuable for characterising fluctuations in non-equilibrium
statisticalmechanics, because they are some of the few exact and general results that also hold far away from
equilibrium.Most of the known relations hold forMarkov systems, with few exceptions. The fluctuation
relations (44) describe a symmetry between the probabilities of stretching along the ( )et

1 -direction ( ( )st
1 >0, ( )st

2 <
−ζ), and stretching along the ( )et

2 -direction ( ( )s z< -t
1 , ( )s > 0t

2 ). At the inflection point of relation (44b) at
/z= -s 2 [90], the contraction of the phase-space neighbourhood is isotropic, ( ) ( ) /s s z= = - 2t t

1 2 .
Equation (44) has interesting consequences for thewhite-noise limit of ourmodel, whichwe discuss in the
following.

First, equation (44b) allows us tomerge the two equations for ξ1=D2, equation (37) for n=1, into one.We
find [54, 55, 91]

Figure 6.Results forwhite-in-time force gradients with ε=2, 4, 8 shown as the solid, dashed–dotted and dashed line, respectively.
(a) SCGFΛ(k) obtained from shooting. The dots show solutions of the implicit equations for even integers k (seemain text). The light
grey line showsΛ(k)=0. (b)Rate function I(s) obtained from the Legendre transformofΛ(k). The dotted lines show the linear part of
the corresponding spatial rate function ˆ ( )I s , starting at s=−ζ/2 (light grey line) and extending to  -¥s .
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{ ( )} ( ) ( )- - = L - =
Î

D s I s Dsup 0. 45
s

2 2

Second, equation (44b) allows to determine s* in equation (30) and thus the spatial rate function ˆ ( )I s for the
white-noise case. Differentiating equation (44b)with respect to s and evaluating at s= 0, we obtain

( )z¢ - = -I 2 1. Equation (31) thus gives z= -s 2* , so that wefind from equation (32), ˆ ( )= L -I 10 .
Consulting equation (30)we conclude that the spatial rate function ˆ ( )I s in equation (30) is linear for s<−ζ/2.
The linear part of the rate function ˆ ( )I s is shown as the dotted line infigure 6(b). From equation (36)we obtain

= -k 1* so that there is no linear part in ˆ ( )L k for white-in-time force gradients. Thismeans that ˆ ( ) ( )L = Lk k
for k>−1 and ˆ ( )L = ¥k for -k 1.

The linear part of ˆ ( )I s and the divergence of ˆ ( )L k imply that ˆ ( )I s and ˆ ( )L k do not obey thefluctuation
relations (44). Thismeans that the projection to configuration space destroys the phase-space symmetry
described in (44). The reason is that caustics cause additional clustering, leading to a higher probability of
observing particles at small separations, as explained in the previous section. Amathematical interpretation of
the broken fluctuation relation is that the spatially projected system loses itsMarkov property, because the
momentum is a hidden variable in the projected space. In a different context, stochastic thermodynamics, a
number of studies considered howhidden variables affect the fluctuation relation for the entropy production
[63, 92–95]. In this case, however, the nature of the symmetry breaking is different. In particular, there is no
linear part in the corresponding rate functions.

We note that the authors of [96] computed ˆ ( )L k from the leading eigenvalue of an operatorLk
^ similar to

Lk, but associatedwith the spatial FTLE ŝt , with equation ofmotion (28). Our expression for the tilted generator
Lk in phase space shows thatLk andLk

^ have the same leading eigenvalue. This appears to imply that

( ) ˆ ( )L = Lk k for all k, at variancewith equation (35). The reasonwhy ˆ ( )L k obtained from theLk
^ does not

reproduce equation (35)may be that the probabilistic representations of the eigenfunctions ofLk
^ are ill-defined

due to thefinite-time divergence of ŝt . Therefore, the normalisability requirements for the eigenfunctions ofLk
^

given in e.g.[73] are violated.

7.4. Fractal phase-space dimensions
Using equation (37)we can now compute the phase-space singularity spectrum ξn fromour results forΛ(k) and
I(s) that we obtained from the tilted generator (42) in the previous section. Figure 7(a) shows ξn for  n0 2.
We observe that ξn increases as a function of n and levels off to x x= ¥n for n>ncrit. The behaviour of ξn close
to ncrit depends on the value of ε. For small ε (but larger than ε≈1.33, so thatλ1>0, see [45]) there is a kink at
ncrit. In this case, we have x x= =¥ncrit 1. At larger values of ε, on the other hand, ξn is smooth around ncrit, and

ncrit and x¥ are functions ofΛ(−1): ( )= - L -
z

n 1 1crit
2 and ( )x = - L -

z¥ 1 14 . These two different

behaviours occur below and above a critical value, εcrit≈4.548, for which ( )∣L - =e e=1 0
crit

.
For a homogeneous distribution of particles one has Má ñ ~ rr

n n
hom

2 . The corresponding singularity
exponent, 2n, is shown as the dotted line infigure 7(a). As can be seen in the figure, ξn<2n, for n>0.Hence,
M Má ñ á ñr

n
r
n

hom for r 1. This shows that fractal clustering increases the probability offinding particles
close together. Furthermore, the singularity exponent ξn is a non-linear function of n, which implies anomalous
scaling of the phase-spacemassmoments Má ñr

n in n. SinceGaussian-distributedmassmoments scale as~ xr n 22 ,
with exponent linear in n (similarly to Má ñ ~ rr

n n
hom

2 ), we conclude that themass distribution has non-
Gaussian tails, even though the driving force is Gaussian. The non-Gaussian behaviour of themass distribution
is a consequence of violent and intermittent fluctuations in the phase-space density of particles [34, 81].

Figure 7.Results of white-in-time force gradients for ε=2, 4, 8 shown as the solid, dashed–dotted and dashed line, respectively.
(a) Singularity spectrum ξn calculated fromequation (37). The dotted line shows ξn=2n (the singularity spectrum for a homogeneous
distribution of particles). (b) Fractal dimensionsDq as a function of q. The dots show the values ofD1 andD2 obtained by othermeans.
The dotted lines show the asymptotic behaviour around q=1 (see equation (46)).
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Figure 7(b) shows the phase-space fractal dimension forDq for  q1 3, obtained from the singularity
exponent byDq=ξq−1/(q−1). The black dots show theKaplan–Yorke dimension [79]DKL=1+
λ1/(λ1+ζ) andD2 [7]. For fractal distributionswith a single scale (mono-fractals) the fractal dimension is
independent of q, which is clearly not the case here. Instead the phase-space attractor(figure 1(a)) ismulti-
fractal, in accordancewith the numerical observations in[81]. Expanding equation (37) around n=0we
obtain the asymptotic behaviour ofDq around q=1.Wefind tofirst order in q−1

( )
( )

( ) ( )l
l z

z
z l

~ +
+

-
L¢¢
+

-D q1
0

2
1 . 46q

1

1

2

1
3

To leading order,D1 calculated from equation (37) recovers theKaplan–Yorke dimension, so thatD1=DKL

[34]. This is the generic case [80], asmentioned in section 2.4. The linear order in q−1 is determined not only
by ( ) lL¢ =0 1, but also by the second derivative ( )L¢¢ 0 . Similarly, terms of order m 2 in (q−1) can be shown
to contain derivatives ofΛ(k) at k=0 of order up tom+1. This shows that the non-Gaussian fluctuations of
the phase-space FTLE ( )st

1 governed by the higher cumulants play a significant role in determiningDq for q≠1.
In the direct vicinity of q=1, on the other hand, non-Gaussian fluctuations are insignificant, andDq is well
described by equation (46). In [88] it was shown that the cumulant of orderm can be obtained analytically, up to
multidimensional integration.We use thismethod to calculate ( )L¢¢ 0 . Furthermore, ( )l = L¢ 01 is known in
closed form [7].We thus obtain from equation (46) the asymptotics ofDq around q=1. The result is shown as
the dotted line infigure 7(b).We observe good agreement around q=1 between the results of the two different
methods.

In conclusion, the analysis of the phase-space fractal dimensions shows that the phase-space fractal attractor
infigure 1 has an intricate structure, even forwhite-in-timeGaussian random force fields. The fractal
dimensionsDq are sensitive to non-Gaussianfluctuations of the phase-space FTLE

( )st
1 everywhere, except

around q=1.

8.Discussion

In this section, we discuss the implications of ourfindings for a range of physical systems, starting with heavy
particles in turbulence.

8.1.Heavy particles in turbulence
Equation (2) is amodel for small heavy particles in turbulence subject to viscous friction. For small particles
Stokes’ law determines the viscous damping parameter γ. The force field ( )f xt represents the incompressible
turbulent fluid-velocity field ( )u xt . Its correlation lengthℓ is related to theKolmogorov length [7]. Thismodel
has been used to study spatial clustering and caustic formation for particles in turbulence, and their
consequences for collisions in turbulent aerosols [6, 44–48, 51–54, 81, 87, 97]. Spatial clustering affects the rate
of particle collisions through the radial distribution function g(r) evaluated at the contact distance (equal to 2a
for two particles of radius a) [98].

In d spatial dimensions the radial distribution function reads ( ) ( ˆ )= = -g r P R r rt
d 1 [81, 87, 97], where

ˆ ∣ ∣d= xRt t is the spatial separation between the centres ofmass of the two particles. In one spatial dimension, g(r)
is identical to the distribution of separations (∣ ∣ )d =P x rt discussed in section 6. Our analysis of the one
dimensional case shows that in an expanding systemout of equilibrium, the radial distribution function is
constant, for small enough spatial separations and finite times. Thereforewe expect a competition between the
two different scalings in the radial distribution function, thatmay affect the collision rate. For small times, so
that < z-a2 e t 2, the plateau in ( ˆ )=P R rt gives g(2a)∼const in one dimension, while for larger

times ( ) ( ) ˆ~ -g a a2 2 D d2 .
For heavy particles in turbulence, theremay be sub-regions of high particle concentration that temporarily

expand into particle void regions, without being affected by the boundaries of the system. These are in a transient
(non-steady) state, where caustics contribute to collision rates between particles not only through the rate of
caustic formation J and an increased collision velocity [87, 97], but possibly also through finite-time
contributions to the radial distribution function g(r).

8.2.Wave propagation in disorderedmedia
Nowwe explore the connection between our results for the dissipative problem (2) andwave propagation in
randommedia. Random focusing and spatial patterns of optical [49, 50], acoustic [67–69], and quantum-
mechanical [64–66]waves in disorderedmedia can be understood in terms of their ray dynamics, governed by
the dissipation-free limit, ζ→ 0, of equation (2). In this limit, phase-space volumes are conserved in time so that
there is no fractal clustering. Fundamental quantities used to describe thewave patterns are the rate of caustic
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formation [65, 66], and the distribution of local stretching factors [65], simply ∣ ∣d d =x xt t 0 in one spatial
dimension. The dissipation-free limit of equation (2) also arises in the analysis of Anderson localisation in one-
dimensional disordered quantum systems [88, 99, 100], where the spatial FTLE describes fluctuations and decay
of wave-function amplitudes [7].

Equation (30) shows that the linear part in the spatial rate function ˆ ( )I s appears for s<0.Our discussion of
the distribution of spatial separations in section 6 then implies a linear scaling in the cumulative distribution of
the stretching factor (∣ ∣ ) ˆ

/d d ~= P x x r ret t
tI

0
0, for r<1.Hence, the probability density of spatial stretching

factors (∣ ∣ ) (∣ ∣ )/ /d d d d= == = P x x r P x x rt t r t t0
d

d 0 isfinite and constant for stretching factors smaller

than one.
It has been argued that the distribution of stretching factors in the dissipation-free limit is approximately

log-normal [65], meaning that ∣ ∣/d d =x xlog t t 0 is normally distributed. This ismotivated by expanding ˆ ( )I s
around itsminimum, ˆ ( ) ˆ ( ˆ )( ˆ ) /l l~ ¢¢ -I s I s 22 , hence neglecting non-Gaussian fluctuations. Aswe have
shown, this approximation fails to describe the statistics of stretching factors ∣ ∣d d =x xt t 0 smaller than or equal to
unity.

Furthermore, the spatial SCGF that describes themoments of the stretching factor, ˆ ( )L =k
∣ ∣/d dá ñ¥ =x xlim logt t t t

k1
0 , is sometimes assumed tobe equal to thephase-space SCGF, ˆ ( ) ( )L = Lk k , for all k

[88].Our result for the spatial SCGF, equation (35), shows that ˆ ( )L k diverges for -k 1 alsowhen ζ=0.While the

assumption that ˆ ( ) ( )L = Lk k does take into account thenon-Gaussianfluctuations of thephase-space FTLEs, it
doesnot consider thenon-Gaussianfluctuations inducedby the caustics. Therefore, the assumption fails to describe
the long-termbehaviour of thenegativemoments of the stretching factor.

8.3.Deterministic chaos
Related questions are of importance in classical systems that exhibit deterministic chaoswith a positivemaximal
Lyapunov exponent. In such systems, althoughλ1>0, trajectoriesmay nevertheless stay close together in
configuration space for some time, when the local stretching factors are small [101]. In [70] the probability of
zero spatial stretching, i.e. ŝ = 0t or ∣ ∣d d ==x x 1t t 0 was computed for the standardmap and for a randomly
kicked-rotor system. The probabilities of observing ŝ = 0t or ∣ ∣d d ==x x 1t t 0 are determined by the behaviour
of ˆ ( )I s at s=0. Using differentmethods, the authors of [70] found that taking into account phase-space folds
leads to

ˆ ( ) ˆ ˆ ( ) ( )l< ¢ -I I0 , and 0 1. 47

These results for ŝ = 0t can be explained and extended using equation (30). To obtain the first inequality in
equation (47), consider the function l̂- +s . Using ˆ ( ˆ ) ˆ ( ˆ )l l= ¢ =I I 0, wefirst find that ( ) l- +I s s^ ^ for

l̂s and ∣ ˆ∣ l-s 1. Because ( )¢ -I s 1, we conclude that ( ) l- +I s s^ ^ for l̂s , where equality only
holds for l̂=s (see dashed–dotted lines figure 3). The second inequality in equation (47) is a straightforward
consequence of themore general relation ˆ ( )¢ -I s 1, which holds for all s. Hence, we extend equation (47) to

ˆ ( ) ˆ ˆ ˆ ( ) ( )l l< - < ¢ -I s s s I s s, for and 1, for all . 48

The inequalities in equation (47) then follow by setting s=0. In conclusion, our results for the spatial FTLE
appear to apply also to deterministic, chaotic dynamics. This is perhaps not unexpected, as statistical
descriptions are suitable for chaotic systems that are sufficientlymixing [80].We conclude that the rate function
ˆ ( )I s for theHamiltonian systems analysed in [70]has a linear part starting at s=0 and extending to  -¥s .

9. Conclusions

In this paper we quantified the effects of fractal catastrophes (caustics that arise in the projection of a dynamical
fractal attractor) upon spatial clustering of inertial particles in a random force field. For one spatial dimension,
we showed that these caustics lead to an exponential increase of the probability to observe large negative spatial
FTLE, resulting in a universal law of spatial clustering.

We demonstrated that caustics give rise to a universal negative tail in the rate function for the distribution of
the spatial FTLE distribution (the rate function is essentially the logarithmof this distribution). This universal
linear part of the rate function implies that themoments of spatial separations below a critical order diverge in
finite time, and that the spatial correlation dimension D̂2 obeys the projection formula ˆ { }=D Dmin , 12 2 . Our
theory shows how the distribution of spatial separations evolves as a function of time, and how it approaches its
steady state. Folds of the phase-spacemanifold and fractal clustering affect this distribution in two distinct ways:
caustics cause the distribution of spatial separations to become constant at small separations, and fractal
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clustering gives rise to a self-similar regime.When the spatial correlation dimension is smaller than the spatial
dimension then these two regimes are well separated. Otherwise the regimes overlap.

Forwhite-in-timeGaussian forcefields we calculated the distribution of phase-space FTLEs explicitly. This
distribution exhibits afluctuation relation, associating the probabilities of phase-space regionswith large
positive and large negative FTLE.Our exact results imply that this balance is destroyed in the distribution of the
spatial FTLE, a consequence of increased clustering due to caustics.

We showed that our results have implications for different problems in statistical physics and chaos theory,
where they allow to explain and extend existing results and put into question some of the approximations.

We obtained all results that characterise spatial quantities from the spatial rate function ˆ ( )I s , which acquires
a universal linear part under spatial projection. Therefore, the expressions for the spatial rate function ˆ ( )I s and

of its Legendre transform ˆ ( )L k are themain results of this paper.
An open question is how the conceptual insights obtained in one dimension carry over to systems in

higher dimensions. A complete analysis, as provided for d=1 in this paper, is challenging because it
involves amuchmore complex dynamics. However, our results should extend to the growth rate V-t log t

1 ^ of

an infinitesimal d-dimensional spatial volumeVt̂ quantifying the long-time probability of observing local
particle-rich regions in configuration space.We speculate that the rate function of this growth rate has a
universal linear negative tail, resulting in an exponentially increased probability of particle clusters similar to
the one-dimensional case.

Important insights into how catastrophes shape the divergence of ˆ ( )L k for -k 1could be obtained by

studying the effect of afinite cutoff upon ˆ ( )L k . Berry [49] considered the effect of a cutoff given by the
wavelength of light upon the patterns of light intensity focused by a randommedium. The cutoff removes the
divergencies forfinite values of thewavelength. Berry calculated how the intensitymoments diverge as the
wavelength tends to zero, and computed the critical exponents νn associatedwith the nth intensitymoment. He
showed that as n increases, the critical exponents are dominated by contributions from catastrophes of
increasing codimensions. In ourmodel the physical origin of a cutoff is different, for example due to afinite
number of particles.We expect that such a cutoff regularises the divergence of ˆ ( )L k for -k 1, and that it
should be possible to calculate the corresponding critical exponents. They could give further insights into the
divergencies caused by caustics in dissipative systems of the kind discussed here, andwill yield a better
understaning of the effect of fractal catastrophes on spatial clustering.
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AppendixA.Derivation of ( )I s^

Wenowderive a large deviation principle for ŝt with rate function ˆ ( )I s withoutmaking explicit use of the
equation ofmotion (28). This allows us to circumvent the difficulties associatedwith the finite-time divergences
of ŝt . The large-deviation formof the cumulative distribution of the spatial FTLE ŝt reads

⎡
⎣⎢

⎤
⎦⎥( ˆ ) ˆ ( ) ( )s µ - ¢

¢



P s t I sexp inf , A.1t

s s

with the spatial rate function ˆ ( )I s yet to be determined. Tofind ˆ ( )I s , wefirst write for ( ˆ )s P st :

⎛
⎝⎜

⎞
⎠⎟( ˆ ) ( ) ( [ ( )]) ( )ˆ ( )( )

s
a
a

a s= = = -s s

=
   P s P P P t se e

cos

cos
e e cos exp . A.2t

t ts t

t

t ts
t t

0

1t t
1

Herewe used that ∣ ∣ ˆ( )
/d d a= =s s

=x x cos e et t t
t t

0 t t
1

, and that a ==cos 1t 0 . Now, as discussed in section 4,αt

passes−π/2with rate J. The large-deviation principle (27), on the other hand, implies that ( )st
1 stabilises in the

vicinity of themaximal phase-space Lyapunov exponentλ1. Therefore, the joint distribution ofαt and
( )st
1

factorises. As a consequence, the cumulative distribution function of acos t conditioned on
( )st
1 simplifies to
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( [ ( )]∣ ) ( [ ( )]) ( )( )a s a- ¢ = ¢ » - ¢ P t s s s P t s scos exp cos exp . A.3t t t
1

st

Wenow condition equation (A.2) on ( )s = ¢st
1 and use equation (A.3) to simplify the expression:

( ˆ ) ( ˆ ∣ ) ( )

( [ ( )]∣ ) ( )

( [ ( )]) ( )

( ) ( )

( ) ( )

( )

ò
ò
ò

s s s s

a s s

a

= ¢ = ¢ = ¢

= ¢ - ¢ = ¢ = ¢

µ ¢ - ¢

-¥

¥

-¥

¥

-

¥
- ¢

z

 





P s s P s s P s

s P t s s s P s

s P t s s

d

d cos exp

d cos exp e . A.4

t t t t

t t t

t
tI s

1 1

1 1

st
2

In the second stepwe used equation (A.3), and in the last stepwe inserted the large-deviation formof
( )( )s = ¢P st

1 , equation (27).We now split the integral in equation (A.4) into two parts: ¢ <s s and ¢ >s s, so that
for large times, [ ( )] - ¢t s sexp 1and [ ( )] - ¢t s sexp 1, respectively. For [ ( )] - ¢t s sexp 1we have,
trivially, ( [ ( )])a - ¢ =P t s scos exp 1tst . For [ ( )] - ¢t s sexp 1, i.e. ¢ >s s, wefind using equation (24),

( [ ( )]) [ ( )]a - ¢ ~ - ¢P t s s J t s scos exp 2 exptst . Putting these results togetherwe obtain

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( ˆ ) [ ( )] ( ) ( [ ( ) ])

( ) { ( ) } ( )

ò òs µ ¢ - ¢ + ¢ - ¢ + ¢

µ - ¢ + - - + ¢ + ¢

z-

¥

¢ ¢+ +



 

P s s tI s J ts s t I s s

t I s J t s I s s

d exp 2 exp d exp

exp inf 2 exp inf , A.5

t

s

s

s s s s

2

wherewe defined { }z= -+s smax , 2 . Althoughwe are interested only in the exponential growth rate of
( ˆ )s P st , we kept the prefactor 2J in equation (A.5) to show that the second term vanishes when J=0. For

J>0 the relative size of the two exponents determines which of the two terms in equation (A.5) is the leading
one. This, in turn, is determined by the location s* of the infimumof I(s)+s,

{ ( ) } ( )= ¢ + ¢¢Îs I s sargmin . A.6s*

Assuming that I(s) is differentiable and convex, s* is determined uniquely by the implicit equation

( ) ( )¢ = -I s 1. A.7*

Now if >+s s*, then { ( ) } ( )¢ + ¢ = +¢ + ++ I s s I s sinfs s . It follows that thefirst term in equation (A.5) is the
leading one as  ¥t . This implies that

⎡
⎣⎢

⎤
⎦⎥( ˆ ) ( ) ( )s µ - ¢

¢ +




P s t I sexp inf . A.8t
s s

If, on the other hand, + s s*, then the second term is the leading one, so that

⎡
⎣⎢

⎤
⎦⎥( ˆ ) [ ( ˆ )] { ˆ } ( )s µ - - - = - - ¢ -

¢



P s J t s I J t s I2 exp 2 exp inf . A.9t

s s
0 0

The value of the constant Î0 depends on the location of s* relative to−ζ/2:

⎧⎨⎩
ˆ ( )

( )
( )

z
z z z

=
L - -
- - < -


I

s

I s

1 , 2,

2 2 , 2.
A.100

*

*

The SCGF at k=−1,Λ(−1), appears in equation (A.10) because by definition
( ) { ( )} { ( ) }L - = - - = - +Î Î s I s I s s1 sup infs s .We conclude, for general s and using equation (A.1),

⎧⎨⎩
ˆ ( )

( ) { }
ˆ ( )

z
=

-

- -


I s

I s s s

s I

, max , 2 ,

, otherwise.
A.11

0

*

This is equation (30) in themain text.

Appendix B.Derivation of ( )L k^ by Legendre transform

Wecompute ˆ ( )L k from the Legendre transform (34).When ˆ ( )I s is differentiable in s, then ˆ ( )L k is uniquely
determined by inverting ˆ ( )= ¢k I s . This is the case for z-s 2* wherewefind using equations (30) and (34):

⎧⎨⎩
ˆ ( ) ( ) ( )L =

L > -
¥ -

k
k k

k

, 1

, 1.
B.1

The case z< -s 2* is slightlymore complicated. Since ˆ ( )I s is not continuously differentiable at s=−ζ/2, we
must consider the left and right limits of the derivative at this point. Approaching s=−ζ/2 from the left wefind
ˆ ([ ] )z¢ = --I 2 1, a direct consequence of the linear part. For the derivative approaching from the right we
obtain ˆ ([ ] ) ([ ] )z z¢ - = ¢ - > -+ +I I2 2 1andwe denote the value of the right derivative by k*. The gap
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between the left and the right derivative,- < k1 *, implies that the equation ˆ ( )= ¢k I s does not have a solution
for k-values in the interval ( )Î -k k1, * . Therefore, the value for swhichmaximises the right-hand side of
equation (34) stays equal to s=−ζ/2 over the interval ( )Î -k k1, * . Hence, wefind for ( )Î -k k1, * ,
ˆ ( ) ˆ ( )/ /z zL = - - -k k I2 2 , which is linear in k. In conclusion, wefind for z< -s 2* :

⎧
⎨⎪
⎩⎪

ˆ ( )
( )

( ) ( )z zL =
L

- - - > > -
¥ -




k

k k k

k I k k

k

,

2 2 , 1

, 1.

B.2
*

*

Putting equations (B.1) and (B.2) together in one equationwe obtain equations (35) and (36) in themain text.

AppendixC. Calculation ofΛ(k) for even integer k

Wefind exact expressions for the spectrumof the tilted generatorLk for even integer k and show thatΛ(k) is real
for even values of k. The tilted generator and its adjoint obey the eigenvalue equations (42), with the phase-space
SCGFΛ(k) as the leading eigenvalue.We apply to equations (42) the transformations

( ) ( ) ˜ ( ) ( )= + -r z z r z1 , C.1k
k

k
2 2

( ) ( ) ˜ ( ) ( )= +l z z l z1 , C.2k
k

k
2 2

and introduce the change of variables z→y=z+ζ/2. The functions ˜ ( )r yk and ˜ ( )l yk then obey the eigenvalue
equations

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠˜ ( ) ˜ ( ) ˜ ( ) ( ) ˜ ( ) ( )e z

z z
¢¢ - - ¢ + = L +r y y r y kyr y k

k
r y a

4 2
, C.3k k k k

2 3 2
2

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠˜ ( ) ˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )e z

z z
¢¢ + - ¢ + + = L +l y y l y k yl y k

k
l y b

4
2

2
. C.3k k k k

2 3 2
2

Now,we rescale y by y→ ζ y and follow amethod described in [88]. That is, wefirst write ˜ ( )r yk as a
polynomial in y

˜ ( ) ( )å=
=

r y a y , C.4k
n

N

n
n

0

wherewe choose aN=1. Substituting (C.4) into (C.3a), we obtain a recurrence relation for anwhich terminates
atN=k, for positive integer k. In order to satisfy the boundary conditions that rk(z)must to be symmetric for
large argument, we need to restrictN to positive even integer k. The recurrence relation (C.4) can bewritten as an
eigenvalue problem for the vector ( )= ¼ -a a aa , , , , 1k0 1 1 :

( ) ( )L = k a a, C.5

with the ( ) ( )+ ´ +k k1 1 -dimensionalmatrix  given by:

⎛

⎝
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6 0
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1

4
1

0 0 2
2 4

0 0 1
2

. C.6

2

2

2

Thematrix  is of theMetzler type, whichmeans that all its off-diagonal entries are non-negative. For this kind
ofmatrix one can prove that its largest eigenvalue (and thusΛ(k) for positive, even integer k), is strictly real [102].
Using thefluctuation relation equation (44a), we can extend this result to negative even integer k.We conclude
thatΛ(k) is real for all even integer k, as stated in themain text. The approach described here can be used towrite
Λ(k) as the dominant root of a polynomial of order +k 1 for allfinite and even values of k. For k=2 and k=4
we obtain after reversing the rescalingΛ(k)→Λ(k)/ζ:
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The largest solutions of equation (C.7) are real and yield implicit expressions forΛ(2) andΛ(4).

AppendixD.Derivation offluctuation relation (44)using the tilted generator

Wederive the fluctuation relations equation (44) from the eigenvalue equation (42).We start from the
transformed equation (C.3). The idea is to bring the first equation into the same form as the second one by a
suitable change of variables and then compare the corresponding largest eigenvaluesΛ(k). To this endwe
transform y→−y and k→−k−2 in equation (C.3b) to obtain
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Assuming non-degeneracy of the leading eigenvalue, we compare this equation to (C.3a) and obtain:
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Thefluctuation relation (equation (44a) in themain text) follows directly from the shift k→k−1:
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Thefluctuation relation for I(s), equation (44b) in themain text, is obtained from that ofΛ(k) by Legendre
transform:
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Appendix E. Connection betweenfluctuation relations (44) and time-reversal invariance

Wederived the fluctuation relations (44) from the eigenvalue problemof the tilted generatorL†
k in phase space.

More generally it can be shown thatfluctuation relations of the type (44) follow from the statistical invariance
under time reversal [60, 90]. Tomake the connectionwe use themethod described in [60] forMarkov processes
to show that thefluctuation relations (44) have their origin in the time-reversal invariance of the shifted process
Yt=Zt+ζ/2, which obeys the dynamics

( ) z
= - + +Y Y F

4
. E.1t t t

2
2

If the statistics of the force gradient Ft is invariant under time-reversal, the equation ofmotion (E.1) is invariant
under the transformation ( ) ( ) - - -t Y t Y, ,t t . Using the procedure described in [60]we identify the
observable associatedwith this symmetry as

W ( ) ( )ò j= ¢ + - Dz
¢t Z2 d , E.2t

t

t
0 2

where

( ) ( ) ( )j r z r zD = + - += =Z Zlog 2 log 2 . E.3t t t t0 0

Here ρt and ρt=0 are the initial and final densities ofZt. According to [60] this implies that the rate function WI t

corresponding to the observableW tt has the symmetry

W W( ) ( ) ( )- - = -I s I s s. E.4t t

Having identified the observable (E.2), and using the general result (E.4), we can now show thefluctuation
relation for ( )st

1 . To this end, we use equation (25b) in themain text to express ( )st
1 in terms ofWt as
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To obtain the second equality, we choose ( )r + zZt t 2
and ( )r + z

= =Zt t0 0 2
in equation (E.3) as follows:
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From equations (E.4) and (E.5)we then conclude that the rate function I(s) of ( )st
1 must obey:

W W( ) ( ) ( ) ( ) ( )z z= - - = - -I s I s I s I s2 2 , 2 2 , E.7t t

so that equation (E.4) implies the thefluctuation relation for I(s), equation (44b) in themain text. This shows
that the phase-space fluctuation relations (44) follow from statistical invariance of theMarkov dynamics under
time-reversal symmetry, as outlined in [60].
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