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Abstract

We analyse the spatial inhomogeneities (‘spatial clustering’) in the distribution of particles accelerated
by a force that changes randomly in space and time. To quantify spatial clustering, the phase-space
dynamics of the particles must be projected to configuration space. Folds of a smooth phase-space
manifold give rise to catastrophes (‘caustics’) in this projection. When the inertial particle dynamics is
damped by friction, however, the phase-space manifold converges towards a fractal attractor. Itis
believed that caustics increase spatial clustering also in this case, but a quantitative theory is missing.
We solve this problem by determining how projection affects the distribution of finite-time Lyapunov
exponents (FTLEs). Applying our method in one spatial dimension we find that caustics arising from
the projection of a dynamical fractal attractor (‘fractal catastrophes’) make a distinct and universal
contribution to the distribution of spatial FTLEs. Our results explain a projection formula for the
spatial fractal correlation dimension, and how a fluctuation relation for the distribution of FTLEs for
white-in-time Gaussian force fields breaks upon projection. We explore the implications of our results
for heavy particles in turbulence, and for wave propagation in random media.

1. Introduction

There are many situations where ensembles of particles are subject to external forces that appear to fluctuate
randomly in space and time. Examples are particles in turbulence, such as water droplets in turbulent clouds [1],
dust in the turbulent gas of protoplanetary disks [2, 3], or small particles floating on the free surface of a fluid in
motion [4]. When the particle momenta are damped by friction, the phase-space dynamics is dissipative, leading
to spatial clustering in the form of fractal patterns in the particle distribution in configuration space [5-7].
Spatial clustering has been observed in experiments [8—15] and in numerical simulations of particles in
turbulence [15-26]. The phenomenon is of key significance because it brings particles close together and thus
affects the rate of collisions between particles [27, 28], their evaporation or condensation [29], or chemical
reactions [30].

The fractal nature of spatial clustering is quantified by fractal dimensions [7, 31-36] that describe how the
fractal patterns fill out configuration space. These dimensions, in turn, are determined by the large-deviation
statistics [37-39] of finite-time Lyapunov exponents (FTLEs) [35, 36, 40], measuring the evolution of
infinitesimal volumes spanned by nearby particle trajectories. The distribution of the FTLEs determines the
long-time statistical properties of the dynamically evolving fractal attractor to which the particles converge.

In the overdamped limit, particle momenta are negligible, so that the phase-space dynamics contracts to
configuration space. In this case, the statistical properties of spatial FTLEs are well understood [34, 41-43].
Inertial particle dynamics, however, occurs in phase space, and the statistical properties of the phase-space
attractor are determined by the phase-space FTLEs. To describe spatial clustering, phase-space volumes must be
projected to configuration space. Since it is not understood how this projection affects the distribution of FTLEs,
there is no first-principles theory of spatial clustering. The source of the difficulties is well known [7, 44—48] and
we illustrate it in figure 1. When the inertial phase-space dynamics generates folds (figure 1(a)), the spatial
projection becomes many-to-one, causing infinitesimal neighbourhoods of particles to project to single points
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Figure 1. Fractal clustering in phase-space and configuration-space (schematic). (a) Fractal attractor in phase-space (position x,
momentum p) at given time ¢, for the one-dimensional statistical model for heavy particles in turbulence reviewed in [7]. (b) Increased
spatial particle density o, (x) in the vicinity of caustic folds, dotted lines. (c) The magnification illustrates fractal clustering.

in configuration space. These singular points are cusp or fold catastrophes, also called ‘caustics’ [46, 47], due to
their similarities with the random focusing of light in geometrical optics [49, 50]. For smooth phase-space
manifolds, catastrophes are known to lead to finite-time singularities in the spatial particle density g/(x)

(figure 1(b)), suggesting that caustics may increase spatial clustering [46]. These consideration are, however, too
imprecise to quantify spatial clustering. More importantly, these arguments rest on the notion of a smooth
manifold, and it is unclear to which extent they apply to fractal phase-space attractors (figure 1(c)). In other
words, it is not understood how caustic folds affect the spatial fractal dimensions, although it is generally
assumed that they do. Computing the effect of caustics in the long-time limit is challenging because they give rise
to non-perturbative effects [51], and are therefore thought to cause perturbation expansions for spatial fractal
dimensions [6, 7, 51-55] to fail.

Here we show how to describe the effect of caustics on spatial clustering from first principles by projecting the
phase-space FTLEs to configuration space. We demonstrate our method by deriving the spatial FTLE distribution
for inertial particles accelerated by a spatially smooth but random force field in one spatial dimension. Our main
result is that caustics give rise to a distinct and universal contribution to the spatial FTLE distribution, independent
of the details of the force field. This caustic contribution results in an exponentially increased probability of
observing dense clusters of particles. Furthermore, we demonstrate how caustics affect the distribution of spatial
separations, and we show that it explains a projection formula for the spatial fractal correlation dimension. We
illustrate the implications of these conceptual insights for white-in-time Gaussian force fields. In this case, there isa
fluctuation relation [56—63] that reflects the symmetry of the problem in phase space. We show how this symmetry
is broken by the projection, due to additional spatial clustering caused by caustic catastrophes.

Our results are not confined to dissipative systems, but apply in a limiting case to random dynamical systems
without dissipation, such as branched electron flows over a spatially disordered potential [64—66], as well as the
focusing of light [49, 50] and acoustic waves [67—69] in random media. In this case fractal clustering is absent,
but there are nevertheless substantial spatial inhomogeneities in wave amplitude (and ray location)—entirely
caused by caustics. Our theory predicts the form of the distribution of local stretching factors that determines the
spatial patterns formed by the waves [65]. Finally, our results are of interest also in chaos theory, where the
distribution of spatial FTLEs is used in the description of deterministic chaotic systems [35, 36, 70] and in the
semiclassical analysis of classically chaotic quantum systems [70, 71].

The remainder of this paper is organised as follows. Section 2 describes the problem, its background, and
outlines the methods we use to solve the problem. In section 3 we explain how to project the FTLEs from phase
space to configuration space. The dynamics of phase-space FTLEs in one spatial dimension is derived in
section 4. In section 5 we obtain the main results of the paper by applying the projection of the phase-space
FTLEs to configuration space in one spatial dimension. In section 6 we discuss the consequences of our results
for fractal clustering in configuration space and in phase-space. We illustrate the consequences in section 7, by
deriving explicit results for the special case of white-in-time Gaussian force fields. In section 8 we discuss the
physical implications of our results, for particles in turbulence, for the ray dynamics of waves in disordered
systems, and for deterministic chaotic systems. Our conclusions are summarised in section 9.

2. Problem formulation and background

2.1. Phase-space FTLEs
Consider the dynamics of the position x; and momentum p, of a particle of mass 11 in a random force field f, (x)
in d spatial dimensions,
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Here yis a damping coefficient. Equation (1) is a widely used model for the dynamics of small, heavy particles in
turbulence [7]. In this case the damping is due to viscous friction, and the random force field f, (x) represents the
turbulent fluid-velocity field u, (x).

In what follows we use the dimensionless units t’ = ¢, Ify/m€), x' = x/¢, p = p/1 |mcf,,and

f' = f/fy> where £and f; are the correlation length and standard deviation of the force f. We drop the primes
for notational convenience, and write:

%xt = Pt’ %Pz = _CP[ +f;(xt) (2)

Here ¢ = v,/m¢ /f, isa dimensionless damping coefficient. To describe fractal clustering in phase space, we analyse
the dynamics of a small neighbourhood of phase-space trajectories around a reference trajectory (x;, p,). The phase-
space separation between (x;, p,) and a neighbouring trajectory (x/, pt/) isdenoted by R, = (6x;, op,) = (x," —

x1 p," — p,). We consider separations at large times f, yet small enough so that the separations are always much
smaller than the correlation length of the forcing, |0x,| < 1. Then we can linearise the force field around x; to obtain

Lox, = Op,, -0, = —(Op, + Fulx)bx, 3)

where [F is the random force-gradient matrix with elements F;; = 0f;. The phase-space dynamics in the vicinity
ofatrajectory (x;, p,) becomes

d 0 Lyxa
—R, = Wi(x)R;, Wi(x,) = R 4
dr t t( t) t l‘( t) (E(xt) _é— ]Idxd) ( )
where [ ;. 4isthed X dunit matrix. The solution of equation (4) is expressed in terms of the Green function J;
by

t
R, = I Ri—o with J, = Zexp f A" Wir(xy). )
0

Here Jexp denotes the time-ordered exponential evaluated along (x;, p,). Writing J, = V; R,, we decompose

J; into arotation R, and a stretch tensor V; with positive and real eigenvalues (e”(r”t ye .,e"gwt). The exponents

(oV,...,02D) are the phase-space FTLEs we intend to calculate. They can be computed as follows. One defines
the left Cauchy-Green tensor B, = J,J] = V2 with eigenvalues (¢2°'%,...,e2"""). Analysing B, instead of V; is
convenient since B, obeys a closed equation, B, = IB%tW,T + W.B,, while V; does not. As shown in [41] this
allows to derive evolution equations for the FTLEs and for the orthogonal matrix O, that diagonalises IB;. The
elements of O, can be written as Q;; = [e];, where e is the eigenvectors of B, corresponding to o'”. For long
enough times, and given a non-degenerate spectrum of Lyapunov exponents, the dynamics of the eigenvectors
e\? decouples from that of the FTLEs, leading to a closed set of stochastic equations for e [41]:

2d
L S | -
L6 =Wed — (e Wie)e® — S [e? - (W, + W)elel. ©)
j<i

The phase-space FTLEs are obtained as integrals over e.” - W,e":
o) = % j; ar el Wel. )

Itis convenient to arrange the FTLEs in non-increasing order [42]:
ol > o@> .. 20?‘”. (8a)

Since the trace of W} is constant, tr W, = —(d, the phase-space FTLEs obey the sum rule

2d
S oW = —(d. (8b)
i=1
For ergodic dynamics, the FTLEs have definite limits,
lim ¢ = \;, 9)
t—00

the Lyapunov exponents [72]. In the limit t — oo, their cumulative sums, >_7_; A;, describe the expansion or
contraction rates of n-dimensional phase-space volumes spanned by 7 + 1 nearby particles. The distributions
of Y1, 0¥, by contrast, describe transient fluctuations of the magnitudes of phase-space (sub-)volumes.
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2.2. Large-deviation principle
Atlarge but finite times ¢, the phase-space FTLEs obey a large-deviation principle [37, 39]. Their joint density has
the large-deviation form [41-43]

2d
P(O'(tl) = S],...,O’(tZd) = Szd) X 1512 Y (S[ZS] + (:d]e_ﬂ(s), (10)
=1

with rate function I (s),and s = (sy,...,54—1)- The indicator function 1, ensures the ordering of FTLEs,
equation (8a), while the Dirac delta function 6(x) enforces the constraint, equation (80). Instead of calculating
I (s) directly, it is often easier to compute the scaled cumulant-generating function (SCGF) [37, 39, 73, 74]

2d-1
Ak) = tlim %log <exp [t > kiggi):| > ) (11)
oo i=1

where k = (ky,...,kpq_1). If A(k) exists and provided that it is differentiable with respect to k, then I (s) is given
by the Legendre transform [37, 75],

I(s) = sup {k-s— A(k)}. (12)
keR¥-1

In section 4 we derive stochastic differential equations that allow, in principle, to compute the large-deviation
statistics of phase-space FTLEs for a one-dimensional random force field f, (x). In section 7 we show how to
solve these equations explicitly, for white-in-time Gaussian force fields.

2.3. Catastrophes
Catastrophe theory [76—78] is a branch in mathematics that concerns the description and classification of
singularities in dynamical systems. The theory explains, for instance, the sensitive parameter dependence of
steady-state solutions of differential equations. Within the theory, singularities arising from folds of a manifold
of steady-state solutions over parameter space are categorised into so-called normal forms [78]. An important
property of a catastrophe is its codimension, given by the dimension of the space under consideration, minus the
dimensionality of the singularity. Catastrophes of codimension one are called cuspoids (including fold and cusp
catastrophes). Although cuspoid catastrophes are the most common ones, catastrophes of higher codimension
play an important role in optics [49, 50]. In optics, catastrophes lead to caustics, singularities in the light intensity
due to partial focusing. Caustics arise from the projection of folds of a smooth phase-space manifold onto
configuration space.

Figure 1 illustrates that similar folds, albeit of a fractal attractor, are created by the phase-space dynamics (2).
In section 3 we show how these fractal catastrophes arise from the spatial projection to configuration space. In
section 5 we demonstrate how they affect the distribution of spatial FTLEs.

2.4. Fractal attractors

When the dynamics is dissipative (¢ > 0), the steady-state phase-space attractor is fractal. This means that the
cumulative probability distribution of phase-space separations R, = |R;| = /|6x;|* + |6p,|* exhibits a power
law

PR, <1)~rP2forr <« 1. (13)

The exponent D, defines the phase-space correlation dimension. As can be seen from equation (13), the phase-
space correlation dimension measures the probability of finding two particles within a distance r in phase-space.
For ahomogeneous distribution of particles, this probability scales as ~*“. For fractal particle distributions, on
the other hand, the probability scales as ~rP2with D, < 2d.

The correlation dimension is not the only quantity that measures the fractal properties of particle
distributions. Often the Kaplan—Yorke dimension Dgy [79] is used to characterise the fractal nature of attractors,
because Dy is defined in terms of the Lyapunov exponents \;. The Kaplan—Yorke dimension Dy is thus
insensitive to the transient fluctuations determined by ¢'". For generic non-linear dynamics, Dxy equals the
information dimension D, but counterexamples can be constructed [80].

For the phase-space dynamics (1) that generate the dynamical fractal attractor illustrated in figure 1, the
distribution of phase-space FTLEs determines not only D, and D, but the whole spectrum of fractal phase-space
dimensions D, [34-36] for any value of q. For the analysis of D, one considers the moments of the probability
M, contained in a small phase-space ball of radius raround (x;, p,). The r-scaling of the nth moment of . %,
measures the probability of finding n + 1 particles within a distance r, thus generalising equation (13). The
r-scaling of (.4} is given by the exponent §,,[34, 81],

4
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(M) ~ 14 for r < 1. (14)

Note in particular that (.#,) = P(R; < r),sothat{, = D,. More generally, the singularity exponents &, are, by
definition, related to the fractal dimensions D, by §, = nD, ;. If trajectories do not cross, the local phase-space
mass is conserved. In this case the singularity exponents can be computed from the rate function of FT'LEs
[34-36]. We show in sections 6 and 7 how to obtain the fractal phase-space dimensions D, in this way.

The cumulative probability distribution of spatial separations |0x,| has the form

P(6x] < 1) o rD2 for r < 1, (15)

where D, is the spatial correlation dimension [7]’. The spatial correlation dimension D, measures the
probability of finding two particles within a spatial distance r. This dimension therefore plays an important role
for particle interactions that require spatial proximity.

More generally, spatial clustering is characterised by the spatial fractal dimensions ﬁq which describe how
the particles fill out configuration space. There is no general formula that connects a spatial fractal dimension 15q
to its phase-space counterpart D,. However, it was conjectured on the basis of numerical investigations of spatial
clustering [7, 53, 81] that the correlation dimension obeys a projection formula of the form

Dz = min{Dz, d} (16)

For typical projections of generic attractors this relation can be proven to hold for ﬁq for 0 < g < 2[82-84]. For
q > 2 one can show that ﬁq < min{D,, d}[84]. Butanimportant point is that the dynamics (2) is not isotropic
in 2d-dimensional phase space. Therefore, it is not at all clear whether the projection from phase-space to
configuration space is typical, or not. Using our results for the distribution of the spatial FTLE for one spatial
dimension, we show in section 6 that the spatial correlation dimension D, obeys the projection formula (16).
More importantly, our theory explains that D, saturates at unity (for d = 1) because of caustics. However, this
does not necessarily mean that caustics give rise to a spatially uniform distribution of particles, because, possibly,
ﬁq < 1forg > 2.

3. Projection to configuration space

In this section we explain how to project the distribution of phase-space FTLEs to configuration space, taking into
account the effect of catastrophes. As mentioned above, the phase-space FTLEs describe how (sub-)volumes evolve
in phase space. To understand how they project to configuration space, consider a small #n-dimensional (n < d)
phase-space volume around a phase-space trajectory (x;, p,). Assume that the initial volume lies entirely within
configuration space, so that for any vector m, in that volume we have m,—o = Y2"_, m; é\), where e),...,e" isthe

Cartesian basis in configuration space. At long times the volume aligns with the 1 eigenvectors e,",...,e " of B, that

correspond to the largest FTLEs, ot,...,0\". Asa consequence, the spatial projection #t, of m, evolves as
n
= é(i)MiE-”)et(]) - m,—y with M,-(]-") = et (). (), (17)
ij=1
Then x nmatrix M determines the time evolution of the spatial projection #, of the arbitrary phase-space
vector m;. The absolute value of the determinant | det M| of M; gives the volume of the parallelepiped spanned
by n such vectors, and thus determines how n-dimensional spatial volumes expand and contract. Calculating
| det M| from the equation for M, in (17) we observe the factorisation

t 3 (7§'.)
|detM®| = e 5 " |det O™, (18)

into a phase-space volume factor, exp [t>7_ ,0%"], and a spatial volume factor, | det 0" |.Here O\ isthen x n
sub-matrix of Q, corresponding to e/",...,e™. Since 0 < | det O | < 1, we can write | det O{"| = cos o™
and assign periodic boundary conditions to the angle o™ in [—7/2, 7/2). Equation (18) allows us to express the
spatial FTLEs in terms of the phase-space FTLEs as

LS 1 detM™ "G 1 cos o™
S 6= ~log 7(;) =Y 0o+ ~log 7(‘") . (19)
= t det M}, P t cos i,
Using equation (7) we obtain
n . 1 rt n . ) 1 rt
> 5 = — f de’ > e . Wel — = f do”tan (", (20a)
i=1 £ o i=1 £ o

? Inwhat follows, we denote all spatially projected quantities by a hat.
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Figure 2. Evolution of a small, two-dimensional phase-space volume, grey area, around a reference trajectory (x,, p,), dashed—dotted

) . () . s 5
line. The two perpendicular axes are stretched or contracted by ~e'1”, and rotated by c,. The dashed line shows the projection ~e"
of the stretching direction to configuration space. The curved arrow indicates the direction of the steady-state flux.

4

ga = —[tan "I Tr(5 O[O, (206)

Here Tr(...) denotes the trace of the matrix. Equations (20) describe how folds of the phase-space manifold
(catastrophes) affect the spatial FTLEs. A catastrophe of spatial codimensiond — n + 1 or larger occurs in the
spatial subspace spanned by é%),...,6™ when cos a{” — 0. We denote by J*" the rate at which cos ol — 0, i.e.
aﬁ”) transitions from —/2 to 7 /2. Most importantly, ] = J*9 is the rate of formation of catastrophes of
codimension one or larger, often called simply ‘rate of caustic formation’ [45, 47]. Note that the second integral

in equation (20a) diverges as ol — —m /2. The time derivative %aﬁ”), however, remains finite because the

factor [tan /]! in equation (20b) cancels the divergence of [O{]~! o [cos al™]~! .
In the next sections we formulate the equations of motion (20) explicitly for d = n = 1. In this case caustics
occur at isolated points in configuration space (see figure 1).

4. FTLEs in two-dimensional phase space

We now apply the methods outlined in the section 2 in one spatial dimension. For d = 1, B, has two
eigenvectors e " and e* which can be parametrised by a single angle o:

COoS (v — g
d”z( } é”z(sm%} @1

sin oy COS Oy

The constraint (80) implies that there is only one independent phase-space FTLE, which we take to be ot In
order to derive the dynamics for o, and o'l we start with equations (6) and (7):

G0 = eV We and fel = We" — (V- Wee")e/". (22)

We use the parametrisation (21) together with equations (6) and (7) to obtain equations of motion for c; and agl):
d

4 = —sina;(siney + ¢ cos ay) + F, cos? oy, (23a)
o) 1 t 1 t
o) =— f dt/tanay + — f doy tan oy (23b)
t Jo t Jo
As explained in the previous section, caustics occur as o transitions from —/2 to /2. From equation (23a) we
see that doy|o,= /2 = —dt, which implies that the transition from —/2 to 7/2 is deterministic with angular
velocity —1. At the point o, = —m/2, both integrands in equation (230) diverge. However, because
doy|n,= /2 = —dt the divergencies in equation (23b) cancel, so that the phase-space FTLE 051) remains finite

for all times. Equations (23) admit the following interpretation, illustrated in figure 2: an initial two-dimensional
phase-space disc is deformed by ¢! along e(" and by ! along e?). The initial disc is thus squeezed into an
ellipse with decreased phase-space volume ¥; = ¥;_¢e~ ¢, due to the dissipative nature of the dynamics. At the
same time, the eigensystem of B, rotates by the angle «.

Without imposing strong restrictions on the force gradient F;, we can derive important properties of the
probability distribution for «,. If F, is statistically stationary, o, reaches a non-equilibrium steady state with
density Py (v, = a). As o regularly passes —m/2, Py (o, = a) has a finite flux of magnitude J, the rate of caustic
formation. The fact that doy|y, =/, = —dt then implies

6
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Ri(ay = —7/2) = By(oyy = w/2) = ]. (24)

In other words, in the presence of caustics, the probability density of «; at the boundaries of the interval
[—7/2,7/2)is finite, and given by the rate of caustic formation.

The system (23) is more conveniently written in terms of the variable Z, = tan oy, = 6p, /6x, [44, 45], which
measures the local particle-velocity gradient along the reference trajectory. We obtain

C(li_tZt =—(Z - Z'+F, (25a)
1 rf 1 rt Zy

o= [ar zy+ ~ [dze . (25b)
t Jo t Jo Zi+1

In terms of the coordinate Z,, a caustic corresponds to Z, — —oo and the immediate re-appearance at

Z; = +00[7]. The stochastic dynamics (25) determines the distribution of the phase-space FTLE ot", of the
form (10) with rate function I(s). In one spatial dimension (d = 1) the large-deviation form of the probability
distribution (10) discussed in section 2.2 reads:

PV =5s,0P =5)oc 8@+ + OO — s)e 10, (26)
Integrating over s” we obtain the marginal distribution of o{":

P(otV = 5) 9(5 + %)e‘”(s). (27)
The convex rate function I(s) attains its minimum at \,, where I(\;) = 0so that \; = lim,_, o, o'" is the maximal
Lyapunov exponent, equation (9).

In section 7 we show how to compute I(s) explicitly for white-in-time force fields, using the method of tilted
generators [39, 73, 74].

5. Distribution of the spatial FTLE

We outlined in section 3 how to calculate the spatial FTLE &, by projection. In one spatial dimension this
projection is illustrated as the dashed line in figure 2. From equation (205) we obtain the equation of motion for
the projected spatial FTLE 6;:

1 t 1 t
5 = — f dt'tan ay = — f dt'Z,. (28)
t Jo t Jo

Itis easy to see by comparing equations (28) and (23b) that the cancellation of the divergencies of the integrals
for o) does not take place for ;. Instead, the spatial FTLE runs into a logarithmic divergence &; ~ log(|t — t|)
in the vicinity of a caustic at time ¢...

In the remainder of this section we present the two main results of this paper, the spatial rate function 1 (s)
and the spatial SCGF A(k). These quantities describe the transient fluctuations of the spatial FTLE ;.

5.1. Spatial rate function I (s)

We see from equation (28) that the spatial projection leads to finite-time divergencies of the spatial FTLE ;. In

section 4 we have demonstrated that the phase-space FTLEs obey a large-deviation principle with rate function
I(s), equation (26). The question is how the finite-time divergencies of &; affect the large-deviation principle. In
appendix A we show that the distribution of &; has indeed a large-deviation form

PG =s) oc e 10, (29)
but with an altered, spatial rate function I (s). The spatial rate function I (s) is given by

f(s) = { I(s),A s > max{s*, —(/2}, 30)

—s — I, otherwise,
which depends on two constants, s* and . Both these constants depend on the properties of the phase-space
rate function I(s). Namely s* is given by the position of the infimum of I(s) + s,

* = argmin, _p {I(s)) + 5}, (31)

S

while f, depends on I(s) and the location of s* relative to —(/2:

. { A(-1), st > —(/2,

fo= (/2 —I(—(/2), otherwise. (32)
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—¢/2 s ) st =¢/2 )\
s s

Figure 3. Schematic plot of the phase-space rate function I(s) (dashed line) and the projected configuration-space rate function f (s)
(solid line) for different values of s*. The dotted line shows the location of s*. The minimum of [ (s) is at the spatial Lyapunov
exponent X. The dashed—dotted line shows the function A — s, which s greater than f(s)for s < A (see the discussion in section 8).
(a) Case s* > —(/2.(b) Case s¥ < —(/2 where I (s) is not differentiable at s = —(/2.

Equation (30) shows that the spatial rate function I (s) is a continuous and convex function of s which coincides
with the phase-space rate function I(s) for s > max{s*, —(/2}, and is linear otherwise. However, if s* < —(/2
then I (s) is not differentiable ats = —(/2. Figure 3 shows the form of I(s) schematically for these two cases.
The linear part in the spatial rate function I (s) implies that the probability of large, negative values of &; is
exponentially enhanced, by a factor of ~exp (¢ [I(s) — I (s)]). The shape of the linear part does not depend upon
the details of F,and is thus a universal contribution due to caustic catastrophes. Put differently, caustics created
by fold catastrophes of the phase-space attractor cause additional spatial clustering, with universal properties.

5.2. Spatial SCGF A (k)
As the second main result of the paper, we derive the spatial SCGF A (k). Using equation (28) and

Z, = % log|6x,|, A(k) can be expressed in terms of the spatial separation |6x,| according to
t k
Atk) = lim llog<ekﬁ‘“ Zf’> — lim L log <‘ Oxi > (33)
t—oo t t—oo t Oxi—g

This expression shows that Ak)is equal to the generalised Lyapunov exponent [85] in one spatial dimension.
Since the spatial separations |dx,| contract to zero in finite time, the ensemble average in equation (33) contains
singularities that affect A(k) for negative k. In the next section we show that P (|6x; /6x;—o| = 0) > 0 for large
enough t. This means that (|6x; /&x,—ol*) = j:o dr r*P(|6x; /6x,—¢| = 1) = o0, for k < — 1, which implies

A(k) = oo for k < —1.Toobtain A(k) fork > —1 we perform a Legendre transform of I (s):

Ak) = sup{sk — I(s)}. (34)
seR

This calculation is carried out in appendix B. We find that the spatial SCGF A(k) reads

Ak), k> k¥,
Ay =9 —kC/2 — I(=(/2), k* >k > —1, (35)
00, otherwise.

The constant k* is given by

— * —

I'([—¢/2]"), otherwise.

Here I'([—(/2]") is the right derivative of I(s) at s = —(/2, which enters equation (36) because I(s) is not
continuously differentiable ats = —(/2 for s* < —(/2.

Equation (35) shows that A(k) coincides with the phase-space SCGF A(k) for k > k*, hasalinear partin the
interval k € (—1, k*],and diverges for k < —1. Note that the linear part vanishes when s* > —(/2.In figure 4
the spatial SCGF is shown schematically for the two cases s* > —(/2and s* < —(/2.

The divergence of A(k) is the universal analogue of the linear part in the spatial rate function I(s).Inview of
equation (33) the divergence of /A\(k) for k < —1describes a divergence of the negative moments of spatial
separations. This divergence is due to a finite value of the probability density of |0x, / 6x;—¢| at zero spatial
separation P (|6x; /0x;—¢| = 0) > 0, which we derive in the next section. In other words, the caustic
catastrophes allow the particle positions in a neighbourhood to coincide with finite probability.
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Figure 4. Schematic plot of the phase-space SCGF A(k) (dashed line) and its spatially projected counterpart f\(k) (solid line) for two
different values of s*. (a) Case s* > —(/2.(b) Case s* < —(/2 where A(k)islinear for k € (—1, k*].

6. Relation between phase-space and spatial clustering

Let us analyse the consequences of equations (30) and (35) for the relation between phase-space and spatial
clustering. Recall that the large-deviation statistics of the phase-space FTLEs allows to compute the singularity
exponents ,,, and thus the fractal phase-space dimensions D,. Adapting the formalism described in [34] to our
model, we find that, for a positive maximum Lyapunov exponent A; > 0, the exponents &, are given by

sup {(&, — 2m)s — I()} = —C(§, — m, if &, > , (37a)
s=2—(/2
sup {—&,s —I(s)} =0, otherwise. (37b)
s=—(/2

This result determines the phase-space singularity spectrum &, in terms of the phase-space rate function I(s).
Equations (37) show how the long-time distribution of phase-space FTLEs determines the fractal properties of
the phase-space attractor, as discussed in section 2.4.

For spatial clustering, no formulas as general as equations (37) have been derived, because caustics cause
trajectories to cross in configuration space. Therefore, the masses of infinitesimal phase-space volumes are in
general not conserved. With the help of equation (13) one can, however, obtain an analogous formula at least for
D, = &,.Itreads[55, 86]"

sup{—D,s — I(s)} = 0. (38)
seR

Comparing with the corresponding condition for the phase-space correlation dimension, equation (37) and the
projection relation (30) between I(s) and I (s) we deduce that

D, = min{D,, 1}. (39)
This proves that the projection formula (16) holds for g = 2. We can also conclude that the saturation of D, at
unity is caused by the linear part of the projected rate function, I (s) = —s — I, for s < s*. This means that the
saturation of D, is a direct consequence of the formation of caustics.
The behaviour of D, described by equation (39) can be explained by comparing the scalings of P(R, < r)
and P (|6x,| < r)for r < 1atlarge but finite times. In the infinite-time limit, we must then recover

equations (13) and (15), thereby confirming the relation (39) between D, and D,. Wesstart by considering
PR, < r)forr > e “/?and D, < 1. We write

P(R, < 1) x exp [—t inf I(s)]. (40)
—(/2<s<t ogr
Since \; > 0, typical separations grow exponentially. In an infinite system the probability of observing any fixed
value of r must tend to zero in the infinite-time limit. In order to find the scaling form of the separation
distribution that defines the correlation dimension, we therefore demand %P (R; < t'logr) = 0. Thisyields
the condition sup C/2<s<N {I'(t '1ogry)s — I(s)} = 0inasmall range of separations around a small value r.
Comparing with equations (37) for D, < 1 reveals that I’(t ! log ry) = —D,. Using this condition we obtain the
cumulative separation distribution by expanding equation (40) around r,. For | log(r /)| < t, we find
P(R, < 1) ~ r~ 1M ogn) — +Ds for the cumulative distribution of phase-space separations. This shows how the
scaling (13) of the cumulative distribution of phase-space separations emerges from our result for the
distribution of phase-space FTLEs.

* Ekdahl explored this equation using numerical simulations of a one-dimensional model [40].
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Figure 5. Steady-state probability density Py, (o; = a) with white-in-time force gradients for ¢ = 0.5, 1, 2 shown as the solid, dashed—
dotted and dotted line, respectively.

Now consider the cumulative distribution of spatial separations P (|0x;| < r). From equation (30) we find
that for r > exp(t max{s*, —(/2}), P(|6x;] < r) = P(R, < r). Differences between the distributions only
arise for r < exp(t max{s*, —(/2}), because this is the regime of the linear part of the spatial rate function
I(s). We have in this case P (|6x,] < ) ~ exp[—t infocpt1og,{ —5 — I = relt, Asfor the phase-space
separations, the power-law in P (|éx,| < r), equation (15), builds up in a range of separations around a small
value , given by sup, < (I'1 log7y)s — I(s)} =o0. Comparing this with equation (39) we conclude that
I'(t7!logfy) = —D,for fy > exp(t max{s*, —(/2})and I'(t~!log#) = —1 otherwise. When D, transitions
from D, < 1toD, > 1, fy moves into the caustic regime with linear r-scaling, so that D, = 1forD, > 1.Hence
we recover equation (15) in the long-time limit. For a finite system with boundaries, the cumulative distribution
of spatial separations must contain both scalings at small separations, P (|6x;| < r) ~ G P2 + C,r, with time-
independent constants C; and C, [87]. The small-r scaling of P (|6x,| < r) is therefore determined by which of
the two powers is dominant. This is consistent with equation (39).

In conclusion, caustics affect the behaviour of the distribution of spatial separations r at small values of r,
namely that the cumulative distribution depends linearly upon r, P (|0x;| < r) ~ r atsmall separations r. This
means that the distribution of separations, P (|6x,| = r), approaches a constant at small separations. For
D, < 1,by contrast, this ‘caustic regime’ is well separated from a self-similar regime with power-law exponent
D,, sothat D, = D,. For larger values of D,, the self-similar regime lies within the caustic regime. As a
consequence the D, must equal unity. This shows how equation (39) follows from our results for the
distributions of phase-space and spatial FTLEs.

7. Explicit results for white-in-time Gaussian force fields

When f,(x) has Gaussian statistics with zero mean and vanishing correlation time, the gradient F, is a Gaussian
white noise with zero mean and correlation (F, F/) = 226 (t — '), where Z is a diffusion constant. In this case,
the model depends solely on the dimensionless parameter €2 = (=3 and the dynamics of Z, decouples from
that of (x,, p) [7]. This makes it possible to compute the steady-state probability distribution of cv;, Pg(cv; = a),
the phase-space SCGF A(k) and the phase-space rate function I(s) of the phase-space FTLE o' in explicit form.
The explicit results derived in this section allow us to study in more detail the impact of the spatial projection
upon ] (s), and to evaluate the singularity spectrum &, in equation (37).

7.1. Steady-state distribution of «;
Solving the Fokker—Planck equation corresponding to equation (234) (interpreted in the Stratonovich sense) we
obtain the steady-state density B (c;; = a) [45, 88, 89]

2 na [U(tana’)—U (tana)] / (£2¢3)
US f da’ & (41)

Bi(ay = a) = - 2 »

g2Jd_ny2 (cosacosa’)

where U(x) = (x°/2 + x°/3. The rate J of caustic formation is obtained from the normalisation of the
probability density in equation (41) [7, 88]. Figure 5 shows P (c; = a) as a function of a for different values of .
For small €, o, stays close to zero most of the time, but is more and more likely to approach —m/2 as € increases.
It follows from equation (41) that By (o, = —7/2) = B (ay = 7/2) = ], consistent with equation (24).
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Figure 6. Results for white-in-time force gradients with e = 2, 4, 8 shown as the solid, dashed—dotted and dashed line, respectively.
(a) SCGF A(k) obtained from shooting. The dots show solutions of the implicit equations for even integers k (see main text). The light

grey line shows A(k) = 0. (b) Rate function I(s) obtained from the Legendre transform of A(k). The dotted lines show the linear part of
the corresponding spatial rate function I (s), startingats = —(¢/2 (light grey line) and extending to s — —o0.

7.2. Explicit calculation of SCGF
Since F, is white in time, A(k) can be calculated as the leading eigenvalue of a differential operator, the tilted
generator %%, associated with the large-deviation statistics [39, 73, 74] of Ugl). For our case this operator is
given by

Le=@+ D)L+ D f ke, L= (—Cz— zz): + e &

where & is the generator of the Markov process (25a).

We assume the leading eigenvalue of %} and its adjoint .¥ Z to be unique and real (we can show this explicitly
for even integer k, see appendix C). In this case, and under certain conditions [73] on the right and left
eigenfunctions, ryand Iy, the leading eigenvalue of % and %] is given by the phase-space SCGF A(k), and we

have
Siri(2) = ARr(2), ZLilk(2) = AR I(2). (43)

Since the dynamics for o, smoothly transitions from —m/2 to /2, the corresponding transition for Z;, = tan oy
from Z, — —ooto Z; = oo should also be smooth, so we demand that all eigenfunctions r; and I, are
symmetric for large |z|.

To find the explicit form of A(k) we solve equations (43) numerically by a shooting method—similar to that
described in [48, 87]—for general k. Figure 6(a) shows the resulting A (k). As expected, the SCGF is convex
[38, 39], yet not a simple parabola as obtained from perturbation theory [41, 42]. For even integers k, A(k) obeys
implicit polynomial equations, which we obtain using a method described in appendix C. Although the method
works in principle also for odd integers k, the eigenfunctions r and [, do not obey the required boundary
conditions in this case. The corresponding exact results for A(k) are shown as the black dots in figure 6(a). We
observe perfect agreement with the results obtained from the shooting method. Figure 6(b) shows the rate
function I(s) corresponding to A(k) obtained by Legendre transform.

7.3. Fluctuation relation and spatial rate function
With help of (43), we can formulate a fluctuation relation [60] for A(k), and carry it over to I(s) using the
Legendre transform (details in appendix D):

Atk — 1) — A(—k — 1) = —(k, (44a)
I(s —(/2) — I(—s — (/2) = —2s. (44b)

This relation follows from the time-reversal symmetry of equation (25a), and it requires that F; is white in time
(see appendix E). Fluctuation relations [ 56—62] are valuable for characterising fluctuations in non-equilibrium
statistical mechanics, because they are some of the few exact and general results that also hold far away from
equilibrium. Most of the known relations hold for Markov systems, with few exceptions. The fluctuation
relations (44) describe a symmetry between the probabilities of stretching along the e(V-direction (7! >0, 0\ <
—(), and stretching along the et(z)-direction (051) < =, ng) > 0). At the inflection point of relation (44b) at
s = —(/2[90], the contraction of the phase-space neighbourhood is isotropic, o'V = ¢» = —(/2.
Equation (44) has interesting consequences for the white-noise limit of our model, which we discuss in the
following.

First, equation (44b) allows us to merge the two equations for §; = D,, equation (37) for n = 1, into one. We
find [54, 55,91]

11



10P Publishing

NewJ. Phys. 22(2020) 013033 J Meibohm et al

15[ (a) ] 1B (b) ]
U§» 1h '/:: ......................... - Q@ [ ~~~\~~ ~~~‘~~~~
05} " 1 05) T
0 ’.’# ! ! ! 0 | ‘ |
o 05 1 15 2 1 15 2 25 3
n q

Figure 7. Results of white-in-time force gradients for e = 2,4, 8 shown as the solid, dashed—dotted and dashed line, respectively.

(a) Singularity spectrum ¢, calculated from equation (37). The dotted line shows &,, = 2n (the singularity spectrum for ahomogeneous
distribution of particles). (b) Fractal dimensions D, as a function of . The dots show the values of D, and D, obtained by other means.
The dotted lines show the asymptotic behaviour around g = 1 (see equation (46)).

sup{—D;,s — I(s)} = A(—D,) = 0. (45)
seR

Second, equation (44b) allows to determine s* in equation (30) and thus the spatial rate function I (s) for the
white-noise case. Differentiating equation (44b) with respect to s and evaluating at s = 0, we obtain

I'(—(/2) = —1.Equation (31) thus gives s* = —(/2, so that we find from equation (32), [, = A(—1).
Consulting equation (30) we conclude that the spatial rate function I (s) in equation (30) is linear fors < —(/2.
The linear part of the rate function I (s) is shown as the dotted line in figure 6(b). From equation (36) we obtain
k* = —1so that there is no linear part in A(k) for white-in-time force gradients. This means that A(k) = A(k)
fork > —land A(k) = cofork < —1.

The linear part of I (s) and the divergence of Ak) imply that [ (s) and A(k) do not obey the fluctuation
relations (44). This means that the projection to configuration space destroys the phase-space symmetry
described in (44). The reason is that caustics cause additional clustering, leading to a higher probability of
observing particles at small separations, as explained in the previous section. A mathematical interpretation of
the broken fluctuation relation is that the spatially projected system loses its Markov property, because the
momentum is a hidden variable in the projected space. In a different context, stochastic thermodynamics, a
number of studies considered how hidden variables affect the fluctuation relation for the entropy production
[63,92-95]. In this case, however, the nature of the symmetry breaking is different. In particular, there is no
linear part in the corresponding rate functions.

We note that the authors of [96] computed A(k) from the leading eigenvalue of an operator .,?k similar to
Z, but associated with the spatial FTLE &;, with equation of motion (28). Our expression for the tilted generator
% in phase space shows that % and % have the same leading eigenvalue. This appears to imply that
Ak) = /A\(k) for all k, at variance with equation (35). The reason why A(k) obtained from the % does not
reproduce equation (35) may be that the probabilistic representations of the eigenfunctions of % areill-defined
due to the finite-time divergence of 4. Therefore, the normalisability requirements for the eigenfunctions of %
givenin e.g. [73] are violated.

7.4. Fractal phase-space dimensions

Using equation (37) we can now compute the phase-space singularity spectrum &, from our results for A(k) and
I(s) that we obtained from the tilted generator (42) in the previous section. Figure 7(a) shows &, for 0 < n < 2.
We observe that £, increases as a function of n and levels off to £, = £ forn > n... The behaviour of §, close
to 114 depends on the value of €. For small € (but larger than e ~ 1.33,sothat A; > 0, see [45]) thereisakink at
Nerir. In this case, we have ngy = £ = §. Atlarger values of €, on the other hand, &, is smooth around r1,;, and
ferieand € are functions of A( — 1): gy = 1 — %A(— Dandé =1 — %A(f 1). These two different
behaviours occur below and above a critical value, €; &~ 4.548, for which A(—1)].—., = 0.

For a homogeneous distribution of particles one has (.#}'),om ~ r*". The corresponding singularity
exponent, 21, is shown as the dotted line in figure 7(a). As can be seen in the figure, &, < 2, forn > 0. Hence,
(M) om < (A7) for r < 1. This shows that fractal clustering increases the probability of finding particles
close together. Furthermore, the singularity exponent £, is a non-linear function of n, which implies anomalous
scaling of the phase-space mass moments (/") in n. Since Gaussian-distributed mass moments scale as ~r%"/2,
with exponent linear in 1 (similarly to (.4 )pom ~ r*"), we conclude that the mass distribution has non-
Gaussian tails, even though the driving force is Gaussian. The non-Gaussian behaviour of the mass distribution
is a consequence of violent and intermittent fluctuations in the phase-space density of particles [34, 81].
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Figure 7(b) shows the phase-space fractal dimension for D, for I < g < 3, obtained from the singularity
exponentby D, = &, _ 1/(q — 1). Theblack dots show the Kaplan—Yorke dimension [79] Dy, = 1 +
A1/(A\1 + Qand D, [7]. For fractal distributions with a single scale (mono-fractals) the fractal dimension is
independent of g, which is clearly not the case here. Instead the phase-space attractor (figure 1(a)) is multi-
fractal, in accordance with the numerical observations in [81]. Expanding equation (37) around n = O we
obtain the asymptotic behaviour of D, around g = 1. We find to firstordering — 1

A A0

D~ 1+ -
A+C 20+ M)

(g—1. (46)

To leading order, D, calculated from equation (37) recovers the Kaplan—Yorke dimension, so that D; = Dy
[34]. This is the generic case [80], as mentioned in section 2.4. The linear order in g — 1 is determined not only
by A’(0) = ), butalso by the second derivative A’”’(0). Similarly, terms of order m > 2 in(q — 1) canbe shown
to contain derivatives of A(k) atk = 0 of order up tom + 1. This shows that the non-Gaussian fluctuations of
the phase-space FTLE o' governed by the higher cumulants play a significant role in determining D,forq = 1.
In the direct vicinity of g = 1, on the other hand, non-Gaussian fluctuations are insignificant, and D, is well
described by equation (46). In [88] it was shown that the cumulant of order 1 can be obtained analytically, up to
multidimensional integration. We use this method to calculate A’”’(0). Furthermore, \; = A’(0) is known in
closed form [7]. We thus obtain from equation (46) the asymptotics of D,around g = 1. The result is shown as
the dotted line in figure 7(b). We observe good agreement around g = 1 between the results of the two different
methods.

In conclusion, the analysis of the phase-space fractal dimensions shows that the phase-space fractal attractor
in figure 1 has an intricate structure, even for white-in-time Gaussian random force fields. The fractal
dimensions D, are sensitive to non-Gaussian fluctuations of the phase-space FTLE o'V everywhere, except
aroundg = 1.

8. Discussion

In this section, we discuss the implications of our findings for a range of physical systems, starting with heavy
particles in turbulence.

8.1. Heavy particles in turbulence

Equation (2) is a model for small heavy particles in turbulence subject to viscous friction. For small particles
Stokes’ law determines the viscous damping parameter +y. The force field f; (x) represents the incompressible
turbulent fluid-velocity field u, (x). Its correlation length # is related to the Kolmogorov length [7]. This model
hasbeen used to study spatial clustering and caustic formation for particles in turbulence, and their
consequences for collisions in turbulent aerosols [6, 44—48, 51-54, 81, 87, 97]. Spatial clustering affects the rate
of particle collisions through the radial distribution function g(r) evaluated at the contact distance (equal to 2a
for two particles of radius a) [98].

In d spatial dimensions the radial distribution function reads g (r) = P (R, = r)/r?=1[81,87,97], where
R, = |6x|is the spatial separation between the centres of mass of the two particles. In one spatial dimension, g(r)
is identical to the distribution of separations P (|0x,| = r) discussed in section 6. Our analysis of the one
dimensional case shows that in an expanding system out of equilibrium, the radial distribution function is
constant, for small enough spatial separations and finite times. Therefore we expect a competition between the
two different scalings in the radial distribution function, that may affect the collision rate. For small times, so
that 2a < e /2, the plateauin P(R, = r) gives g(2a) ~ constin one dimension, while for larger
times g (2a) ~ (2a)ﬁ2*d.

For heavy particles in turbulence, there may be sub-regions of high particle concentration that temporarily
expand into particle void regions, without being affected by the boundaries of the system. These are in a transient
(non-steady) state, where caustics contribute to collision rates between particles not only through the rate of
caustic formation J and an increased collision velocity [87, 97], but possibly also through finite-time
contributions to the radial distribution function g(r).

8.2. Wave propagation in disordered media

Now we explore the connection between our results for the dissipative problem (2) and wave propagation in
random media. Random focusing and spatial patterns of optical [49, 50], acoustic [67-69], and quantum-
mechanical [64—66] waves in disordered media can be understood in terms of their ray dynamics, governed by
the dissipation-free limit, { — 0, of equation (2). In this limit, phase-space volumes are conserved in time so that
there is no fractal clustering. Fundamental quantities used to describe the wave patterns are the rate of caustic
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formation [65, 66], and the distribution of local stretching factors [65], simply [6x; /8x;—o| in one spatial
dimension. The dissipation-free limit of equation (2) also arises in the analysis of Anderson localisation in one-
dimensional disordered quantum systems [88, 99, 100], where the spatial FTLE describes fluctuations and decay
of wave-function amplitudes [7].

Equation (30) shows that the linear part in the spatial rate function I (s) appears for s < 0. Our discussion of
the distribution of spatial separations in section 6 then implies a linear scaling in the cumulative distribution of
the stretching factor P (|6x, /&x,—o| < r) ~ re'h, forr < 1. Hence, the probability density of spatial stretching
factors P(|0x; /Oxi—o| = 1) = %P (I6x; / 6x,—¢| < r)isfinite and constant for stretching factors smaller
than one.

It has been argued that the distribution of stretching factors in the dissipation-free limit is approximately
log-normal [65], meaning that log |6x; / 6x;—| is normally distributed. This is motivated by expanding I(s)
around its minimum, [ (s) ~ I”’(\)(s — A\)?/2, hence neglecting non-Gaussian fluctuations. As we have
shown, this approximation fails to describe the statistics of stretching factors |0x, /6x,—o| smaller than or equal to
unity.

Furthermore, the spatial SCGF that describes the moments of the stretching factor, fX(k) =
lim,_, o % log(|6x; / 6x,—0|*), is sometimes assumed to be equal to the phase-space SCGF, A(k) = A(k),forall k

[88]. Our result for the spatial SCGF, equation (35), shows that A(k) diverges for k < — 1 alsowhen ¢ = 0. While the
assumption that f\(k) = A(k) does take into account the non-Gaussian fluctuations of the phase-space FTLEs, it
does not consider the non-Gaussian fluctuations induced by the caustics. Therefore, the assumption fails to describe
the long-term behaviour of the negative moments of the stretching factor.

8.3. Deterministic chaos

Related questions are of importance in classical systems that exhibit deterministic chaos with a positive maximal
Lyapunov exponent. In such systems, although A; > 0, trajectories may nevertheless stay close together in
configuration space for some time, when the local stretching factors are small [101]. In [70] the probability of
zero spatial stretching, i.e. ; = 0 or [0x; /6x,—¢| = 1 was computed for the standard map and for a randomly
kicked-rotor system. The probabilities of observing &; = 0 or |6x, /0x,;—¢| = 1 are determined by the behaviour
of [ (s)ats = 0. Using different methods, the authors of [70] found that taking into account phase-space folds
leads to

10)< X, and I'(0) > —1. (47)

These results for , = 0 can be explained and extended using equation (30). To obtain the first inequality in
equation (47), consider the function —s + A Using TQ) =1"(\) = 0, wefirstfindthat I (s) < —s + A for

s < Aand |s — §\| < 1.Because I'(s) > —1,weconclude that I (s) < —s + Afors < X, where equality only
holds for s = \ (see dashed—dotted lines figure 3). The second inequality in equation (47) is a straightforward
consequence of the more general relation I’(s) > —1, which holds for all s. Hence, we extend equation (47) to

~ ~

fs) < X—s, fors< XAand I'(s) > —1, foralls. (48)

The inequalities in equation (47) then follow by setting s = 0. In conclusion, our results for the spatial FTLE
appear to apply also to deterministic, chaotic dynamics. This is perhaps not unexpected, as statistical
descriptions are suitable for chaotic systems that are sufficiently mixing [80]. We conclude that the rate function
I (s) for the Hamiltonian systems analysed in [70] has a linear part startingat s = 0 and extendingto s — —o0.

9. Conclusions

In this paper we quantified the effects of fractal catastrophes (caustics that arise in the projection of a dynamical
fractal attractor) upon spatial clustering of inertial particles in a random force field. For one spatial dimension,
we showed that these caustics lead to an exponential increase of the probability to observe large negative spatial
FTLE, resulting in a universal law of spatial clustering.

We demonstrated that caustics give rise to a universal negative tail in the rate function for the distribution of
the spatial FTLE distribution (the rate function is essentially the logarithm of this distribution). This universal
linear part of the rate function implies that the moments of spatial separations below a critical order diverge in
finite time, and that the spatial correlation dimension D, obeys the projection formula D, = min{D,, 1}. Our
theory shows how the distribution of spatial separations evolves as a function of time, and how it approaches its
steady state. Folds of the phase-space manifold and fractal clustering affect this distribution in two distinct ways:
caustics cause the distribution of spatial separations to become constant at small separations, and fractal
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clustering gives rise to a self-similar regime. When the spatial correlation dimension is smaller than the spatial
dimension then these two regimes are well separated. Otherwise the regimes overlap.

For white-in-time Gaussian force fields we calculated the distribution of phase-space FTLEs explicitly. This
distribution exhibits a fluctuation relation, associating the probabilities of phase-space regions with large
positive and large negative FTLE. Our exact results imply that this balance is destroyed in the distribution of the
spatial FTLE, a consequence of increased clustering due to caustics.

We showed that our results have implications for different problems in statistical physics and chaos theory,
where they allow to explain and extend existing results and put into question some of the approximations.

We obtained all results that characterise spatial quantities from the spatial rate function I (s), which acquires
a universal linear part under spatial projection. Therefore, the expressions for the spatial rate function I (s) and
of its Legendre transform A(k) are the main results of this paper.

An open question is how the conceptual insights obtained in one dimension carry over to systems in
higher dimensions. A complete analysis, as provided for d = 1 in this paper, is challenging because it
involves a much more complex dynamics. However, our results should extend to the growth rate t~‘log?’; of
an infinitesimal d-dimensional spatial volume 7, quantifying the long-time probability of observinglocal
particle-rich regions in configuration space. We speculate that the rate function of this growth rate has a
universal linear negative tail, resulting in an exponentially increased probability of particle clusters similar to
the one-dimensional case.

Important insights into how catastrophes shape the divergence of Ak) for k < —1could be obtained by
studying the effect of a finite cutoff upon Ak). Berry [49] considered the effect of a cutoff given by the
wavelength of light upon the patterns of light intensity focused by a random medium. The cutoff removes the
divergencies for finite values of the wavelength. Berry calculated how the intensity moments diverge as the
wavelength tends to zero, and computed the critical exponents v, associated with the nth intensity moment. He
showed that as n increases, the critical exponents are dominated by contributions from catastrophes of
increasing codimensions. In our model the physical origin of a cutoff is different, for example due to a finite
number of particles. We expect that such a cutoff regularises the divergence of A(k) for k < —1,and thatit
should be possible to calculate the corresponding critical exponents. They could give further insights into the
divergencies caused by caustics in dissipative systems of the kind discussed here, and will yield a better
understaning of the effect of fractal catastrophes on spatial clustering.
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Appendix A. Derivation of I (s)
We now derive a large deviation principle for &, with rate function I (s) without making explicit use of the

equation of motion (28). This allows us to circumvent the difficulties associated with the finite-time divergences
of &;. The large-deviation form of the cumulative distribution of the spatial FTLE &; reads

P(6; < 5) x exp[—tinff(s’)], (A.1)

§'<s

with the spatial rate function I (s) yet to be determined. To find I (s), we first write for P(8; < s):

N 5 cos
P, <s)y=Pe“" ey =P ST el Lot = P(cos oy < exp[t(s — aD)]). (A.2)
COS Qg
Here we used that |6x; /6x,—o| = cos et = et and that cos a,_o = 1. Now, as discussed in section 4, oy

passes —/2 with rate J. The large-deviation principle (27), on the other hand, implies that 0" stabilises in the
vicinity of the maximal phase-space Lyapunov exponent \;. Therefore, the joint distribution of o, and o

factorises. As a consequence, the cumulative distribution function of cos o; conditioned on ¢ simplifies to
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P(cosay < explt(s — sN]| oV = ') = By(cos oy < exp[t(s — s")]). (A.3)
We now condition equation (A.2) on oV = " and use equation (A.3) to simplify the expression:
Pei<= [ dP@ < sl = )P = )
o
= foc ds'P(cos a; < exp[t(s — s)]| oV = s)P(otV) = &)
—o0
o foj ds’Py(cos a; < exp[t(s — s")])e 1, (A.4)
3

In the second step we used equation (A.3), and in the last step we inserted the large-deviation form of

P(c'V = §/), equation (27). We now split the integral in equation (A.4) into two parts: s/ < sand s’ > s, so that
for large times, exp[t (s — s’)] > land exp[t(s — s')] < 1, respectively. For exp[t(s — s')] > 1we have,
trivially, P (cos oy < exp[t(s — s')]) = L. Forexp[t(s — s')] < Lie.s’ > s, wefind using equation (24),
BPi(cosay < explt(s — s")]) ~ 2] exp[t(s — s’)]. Putting these results together we obtain

P(6; < 5) x f_l/z ds"exp[—tI(s")] + 2J exp(ts)fOO ds"exp(—t[I(s") + s'])

x exp[—t jnf I(s’)] + 2] exp[—t(—s + i>f {I(s + 5’})], (A.5)

s'<sp s'>sy

where we defined s, = max{s, —(/2}. Although we are interested only in the exponential growth rate of
P(6; < s), wekept the prefactor 2] in equation (A.5) to show that the second term vanishes when J = 0. For
J > 0therelative size of the two exponents determines which of the two terms in equation (A.5) is the leading
one. This, in turn, is determined by the location s* of the infimum of I(s) + s,

s* = argmin, _p {I1(s) + s'}. (A.6)
Assuming that I(s) is differentiable and convex, s* is determined uniquely by the implicit equation
I'(s*) = —1. (A7)
Nowif s, > s* then infy > {I(s') 4+ s’} = I(s;) + s;. It follows that the first term in equation (A.5) is the
leading one as t — oo. This implies that
P(5; < 5) x exp [—tjrg I(s’)]. (A.8)

If, on the other hand, s, < s*, then the second term is the leading one, so that
P(6; < s) o 2] exp[—t(—s — Ip)] = 2] exp [tinf{ —s' — o} ] (A.9)
s'<s

The value of the constant I, depends on the location of s* relative to —(/2:

_ * _
. { A(-1), s> —¢/2, A10)

Iy =
T2 - I(=¢/), st < —(/2

The SCGFatk = —1, A(—1), appears in equation (A.10) because by definition

A(=1) = supp{—s — I(s)} = —inficr{I(s) + s}. We conclude, for general s and using equation (A.1),
N I > 2 *’ - 2 >
I(s) = ® . § 2 max{s%, =¢/2) (A.11)

—s — I, otherwise.

This is equation (30) in the main text.

Appendix B. Derivation of A (k) by Legendre transform

We compute /AX(k) from the Legendre transform (34). When I (s) is differentiable in s, then A(k) is uniquely
determined by inverting k = I'(s). This is the case for s* > —(/2 where we find using equations (30) and (34):

< AWK, k> —1
Ak _{ o, ke (B.1)

The case s* < —(/2 is slightly more complicated. Since I (s)isnot continuously differentiable ats = —(/2, we
must consider the left and right limits of the derivative at this point. Approaching s = —(/2 from the left we find
I'([¢/2]7) = —1,adirect consequence of the linear part. For the derivative approaching from the right we
obtain [/([—¢/2]") = I'([—¢/2]") > —1and we denote the value of the right derivative by k*. The gap
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between the left and the right derivative, —1 < k*, implies that the equation k = I’ (s) does not have a solution
for k-values in the interval k € (—1, k*). Therefore, the value for s which maximises the right-hand side of
equation (34) stays equal tos = —(/2 over the interval k € (—1, k*). Hence, we find for k € (—1, k*),

A(k) = —(k/2 — I (—¢/2), whichislinear in k. In conclusion, we find for s* < —(/2:

) A(k), k > k*
Ak) =9 —k(/2 — I(—C/2), K*>k>—1 (B.2)
00, k< —1.

Putting equations (B.1) and (B.2) together in one equation we obtain equations (35) and (36) in the main text.

Appendix C. Calculation of A (k) for even integer k

We find exact expressions for the spectrum of the tilted generator % for even integer k and show that A(k) is real
for even values of k. The tilted generator and its adjoint obey the eigenvalue equations (42), with the phase-space
SCGF A(k) as the leading eigenvalue. We apply to equations (42) the transformations

r(z) = (2% + 1) ¥R (2), (C.1)
L(z) = (2> + D2 (2), (C.2)

and introduce the change of variables z—y = z + (/2. The functions 7 (y) and [ (y) then obey the eigenvalue
equations

2
20" (y) — (yz - %)ﬁ’(y) + kyf(y) = (A(k) + Cz—k)?k(y), (C.30)
~ 2 ~ ~ ~
e2CL"(y) + (ﬁ - %)l/k()’) + (k + 2)yl(y) = (A(k) + Cz—k)lk(y)' (C.3b)

Now, we rescale y by y — ( y and follow a method described in [88]. That is, we first write 7 (y) asa
polynomial in y

N
() = any"s (C.4)
n=0

where we choose ay; = 1. Substituting (C.4) into (C.3a), we obtain a recurrence relation for a,, which terminates
at N = k, for positive integer k. In order to satisfy the boundary conditions that r(z) must to be symmetric for
large argument, we need to restrict N to positive even integer k. The recurrence relation (C.4) can be written as an
eigenvalue problem for the vector a = (ay, ay,...,ak—1, 1):

A(k)a = LLa, (C.5)
with the (k + 1) x (k + 1)-dimensional matrix IL given by:

_E l 262 0 e oeeroeen 0
2 4
k _E % 662 0 ev e
2 4
0 k-1 ". R
L — 0 R 0 (C.6)
— k(k—1e?
2 ( )
0 02 & K
2 4
0 e e e e e 0 1 _k
2

The matrix L is of the Metzler type, which means that all its off-diagonal entries are non-negative. For this kind
of matrix one can prove that its largest eigenvalue (and thus A(k) for positive, even integer k), is strictly real [102].
Using the fluctuation relation equation (44a), we can extend this result to negative even integer k. We conclude
that A(k) is real for all even integer k, as stated in the main text. The approach described here can be used to write
A(k) as the dominant root of a polynomial of order k + 1 for all finite and even values of k. Fork = 2and k = 4
we obtain after reversing the rescaling A(k) — A(k)/¢:
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CAQRP AR
2 2

_A@  5A@)* 35A(4)° 5
2402 12¢ T AW (

0= — CAQ) + 222, (C.7a)

2
7% - f_j) AW (14e? — 1) + 12223, (C.7b)

The largest solutions of equation (C.7) are real and yield implicit expressions for A(2) and A(4).

Appendix D. Derivation of fluctuation relation (44) using the tilted generator

We derive the fluctuation relations equation (44) from the eigenvalue equation (42). We start from the
transformed equation (C.3). The idea is to bring the first equation into the same form as the second one by a
suitable change of variables and then compare the corresponding largest eigenvalues A(k). To this end we
transform y— — yand k — —k —2inequation (C.3b) to obtain

~ 2 ~ ~ ~
ﬂw“%w—&—%ykww+wkww=@ewm—%—¢kww.mn

Assuming non-degeneracy of the leading eigenvalue, we compare this equation to (C.3a) and obtain:

Ak) + %k =A-k—-2) - Cz—k - C. (D.2)

The fluctuation relation (equation (444) in the main text) follows directly from the shift k—k — 1:
—1 —1
Ak-n e+t ack-n - Lo
Ak —1) — A(—k — 1) = —(k. (D.3)

The fluctuation relation for I(s), equation (44b) in the main text, is obtained from that of A(k) by Legendre
transform:

I(s = ¢/2) = sup {k(s — ¢/2) — A(k)},

keR
=sup{—(k + 1)(s — (/2) — A(—k — D},
keR
=sup{(k — D(—=s — ¢/2) + ¢k — 25 — A(k — 1) — Ck},
keR
=I1(—s—(/2) — 2s. (D.4)

Appendix E. Connection between fluctuation relations (44) and time-reversal invariance

We derived the fluctuation relations (44) from the eigenvalue problem of the tilted generator ¥ }( in phase space.
More generally it can be shown that fluctuation relations of the type (44) follow from the statistical invariance
under time reversal [60, 90]. To make the connection we use the method described in [60] for Markov processes
to show that the fluctuation relations (44) have their origin in the time-reversal invariance of the shifted process
Y, = Z, + (/2, which obeys the dynamics

2
Y, =-Y2+ % + F. (E.1)

If the statistics of the force gradient F, is invariant under time-reversal, the equation of motion (E.1) is invariant
under the transformation (¢, ¥;) — (—¢, —Y_,). Using the procedure described in [60] we identify the
observable associated with this symmetry as

' ¢
W; =2 f d'(Ze + &) — A, (E.2)
0 2
where

Ay = logp,(Z; + ¢/2) — log pr—o(Zi=o + ¢/2). (E.3)

Here p,and p,_ are the initial and final densities of Z,. According to [60] this implies that the rate function I,
corresponding to the observable #; /¢t has the symmetry

Ly (s) — Ly;(—s) = —s. (E-4)

Having identified the observable (E.2), and using the general result (E.4), we can now show the fluctuation

relation for o). To this end, we use equation (25b) in the main text to express o' in terms of % as
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t t
ol = lf dt'Z, + lf dt’% log\Z; + 1,
tJo tJo

g
To obtain the second equality, we choose p, (Z; + %) and p,_((Z;—o + %) in equation (E.3) as follows:
pZi+ 9 = —rT M et & - m (E.6)
From equations (E.4) and (E.5) we then conclude that the rate function I(s) of 0" must obey:
Ly, () = 1(s/2 = (/2), Iy;(=s) =1(=s/2 —(/2), (E.7)

so that equation (E.4) implies the the fluctuation relation for I(s), equation (44b) in the main text. This shows
that the phase-space fluctuation relations (44) follow from statistical invariance of the Markov dynamics under
time-reversal symmetry, as outlined in [60].
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