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Abstract
We report on the dynamics of a Bose–Einstein condensate in one and two dimensions driven by the
time-dependent harmonic trapping potential.Without the inter-particle interaction, the condensate
exhibits the coherent behavior with the time-oscillating density distribution.When the inter-particle
interaction is taken into consideration, the phase fluctuations, themulti-peak structure of the density
distribution, and the coherence revival phenomenon, apart from thewell-studied density oscillation
behavior, can be observed in the condensate. Furthermore, it is demonstrated that due to the
dimensional restriction these effects aremore stable in the two and three-dimensional system, if
compared to the one-dimensional case.

1. Introduction

Phase coherence is a novel property of a Bose–Einstein condensate (BEC), which is important formetrology and
quantum information applications [1–4]. However, the phase coherence property of BECs can be perturbed, or
ultimately destroyed by phase fluctuations arising from various sources [5–20]. For instance, the thermal
fluctuation [9–11], change of the trapping potential [18, 19], variance of the inter-particle interaction [6, 13]
have been reported to suppress the phase coherence of BEC. By releasing from the trapping potential, the phase
fluctuations can be transformed into density fluctuations, represented typically by amulti-peak distribution
structure, which can be in turn used for the description of the phasefluctuations [16, 17].

On the other hand, the time-dependent harmonic trapped BECs exhibit an intrinsic conformal symmetry
[21–23], where thewidths of the condensate wave packet for different times can be linked to each other by the
time-dependent scale parameters. Hence, with the aid of scale parameters, the condensates experiencing the
time-dependent harmonic potentials can be transformed into time-independent forms of which the spatial
variation of density widths can be inferred from the scale parameters [23–38]. Themonopole, dipole and
quadrupole collective dynamics of the condensate, the self-similar collapsing dynamics, and the expanding
dynamics after switching off the trapping potential can all bewell described by the scalingmethod
[24, 31, 36, 38]. Kuznetsov et al [33] andZakharov et al [36] have also demonstrated that the scalingmethod in
the hydrodynamic limit can be used for describing the angular oscillations of differently shaped BECs and the
oscillations at the edges of the expanding condensate. However, when the trapping potential varies fast or
changes suddenly, the condensate cannot evolve adiabatically; large phasefluctuationsmay occur in the
condensate, which could give rise to amulti-peak structure of the density distribution of the condensates, and
ultimately would lead to the deterioration of the coherence of BEC [18, 31]. Such dynamic effects are clearly
beyond capabilities of the scalingmethod. The origin of phase fluctuations in the time-dependent trapped BECs
has not been fully understood and their effect on the phase coherence of the condensates needs to be investigated
in detail.

In this paper, the phase fluctuations induced in a BECby the time-dependent harmonic trapping potential
are investigated. By using the algebraic dynamic approach and the scalingmethod in the ideal Bose gas limit with
no inter-particle interaction, a comprehensive descrition of the condensate density variationwith time is
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provided and subsequently confirmed by numeric simulations. In the ideal Bose gas limit, the phase fluctuations
are absent, and so the condensate remains coherent all the time, even the trapping potential changes very fast
with time. If the inter-particle interaction is taken into account, the scalingmethod can provide a consistent
description of the overall variation of the condensate driven by slowly (harmonically) changing potentials.
However, additionalmulti-peak structure appears in the systemdue to the phasefluctuations induced by the fast
time-increasing potential. In addition, the formation of such complex structure is found to be accompanied by
the coherence revival phenomena.

2. Theoretical analysis

Let us focus on the dynamic evolution of a two-dimensional (2D) condensate driven by a time-dependent
(anisotropic) harmonic potential ( ) w= åV m rr 2u u u

2 2 with u=x, y. The corresponding dynamics of the
system is described by theGross–Pitaevskii equation (GPE)
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where ( )
y r t, is the normalizedwavefunction satisfying †ò y y =rd 1. For convenience, we take natural units of

length and energy as w= a m0 0 andEω=ÿω0 respectively, withω0=ωx(0)=ωy(0) being the initial
isotropic harmonic frequency. TheGPE then can bewritten in the dimensionless form
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0 . In the following, the tilde is
omittedwithout losing the physical properties.

2.1. Absence of inter-particle interaction
Considering an ideal Bose gas without any inter-particle interactions (i.e.β=0), the dynamics of the
condensate along the x- and y- directions are completely decoupled from each other. The totalHamiltonian can
bewritten as ( ) = åH t Hu u, where
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being the operators of the SU(1, 1) algebra,
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. By performing the gauge transformation
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0 . The instantaneous gauged ground state of H̄ is easily derived as
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where ( ) ( )òq t t= -t f du
t

u0
/2. Correspondingly, the exact solution of the originHamiltonianH(t)with the

time-dependent potential can be found,
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with ( ) ( ( ) )c =t v texp 2u u
0 . From the equation (6), one can see that under the influence of the time-dependent

harmonic potential, thewavefunction of the ideal Bose gas includes a dynamic phase ( )å -v r 2u u u
2 . The spatial

distribution of density becomes time-dependent aswell, and its width ismodulated byχu(t).
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Taking into account gauge conditions in equation (4), the equation ofmotion ofχu(t) can bewritten as,

̈ ( ) ( )c
c

c= - A t
1

, 7u
u

u u3

which determines the time evolution of the density distribution.Note that the dynamic parameter -vu depends
onχu(t) through the relationship c c=-vu u u. Therefore, the density and phase dynamics are not independent
but bound to each other evenwithout any inter-particle interactions.

2.2. Presence of inter-particle interaction
If the inter-particle interaction is taken under consideration, the systembecomes highly nonlinear, and the
above algebraic dynamic approach is no longer applicable. However, if the BEC is in the hydrodynamic limit, the
systempreserves the intrinsic conformal symmetry [21, 22, 32]. Using the scaling approach and introducing the
scaling parameter bμ(t) gives the solution of the condensate in the following form [24–26]

( ) ( ( )) [ ( )] ( )y x t f= - t d t tr, exp i , 8u
1 2

0

where du=ru/bu(t), the dimensionless volume ( ) ( )=  t b tu u and ( ) ( )òt = ¢ ¢t t td
t

. The phase is given

by ( ) [ ( ) ( )]f = åt r b t b tr, 2u u u u
2 , which is very similar to the dynamic phase in equation (6). In otherwords,

the scaling parameter bu plays the same role asχu(t) in the ideal Bose gas limit. Furthermore, here, bu is
determined by the self-consistent equation

̈ ( ) ( ( )) ( )+ = b A t b b t1 , 9u u u u

which takes similar formof the equations ofmotion ofχu(t) (equation (7)). It is clear that the induced time
modulations of the density (described by bu) and the phase (determined by ( )b b tu u ) are ultimately coupled to
each other in the condensate withfinite inter-particle interactions.

Given the initial conditions ( ) ( )= =b b t0 1, 0u u , we get the dynamic equation of ξ0 [25]
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In the Thomas–Fermi limit, an universal scaling solution reads
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whereμ is the chemical potential. The dynamics of BECs is then described by the equations (8), (9), and (11).

3.Numerical simulations

According to the above theoretical analysis, when the system is driven by the time-dependent harmonic trapping
potential, the condensate wavefunction includes an extra dynamic phase, nomatter if there is the inter-particle
interaction or not. Such a dynamic phase quadratically depends on the position ru andmay lead to decoherence
effects.Moreover, because b bu u ( c cu u) varies with time, it could also exert further influence on the
decoherence process. These combined spatiotemporal oscillations of the dynamic phasemay produce
significant phase fluctuations in the dynamic evolution process [19]. However, both the algebraic dynamic
approach and the scalingmethod can only give a consistent description for the overall density profile of the
condensate, the detailed structure and internal fluctuation evaluation are beyond their capabilities and the use of
quantitative numericmethods is required.

The coherent property of the condensate is directly linked to the long range off-diagonal order of BEC [42],
which can be inferred from the spatial correlation function [7, 8, 20, 43–45]

( ) [ ( ) ( ) ( ) ( )] ( )y y y y= + r r r0 0 2. 12* *

Clearly, the phase decoherencewill result in random spatial fluctuations of ( ) r . For the (coherent) ideal Bose
gas, described by equation (6), the correlation function reads,

( ) ( ) ( ) ( )
pc

c= - - r x v x
1

exp 2 cos 2 13
x

x x
2 2 2

which is determined by the spatial distribution of density and the extra dynamic phase through the parameters
χx and

-vx , respectively. On the other hand, in the strong inter-particle interaction limit, with the scaling solution
equation (11), the correlation function is given by

3

New J. Phys. 22 (2020) 013046 DMa et al



⎛
⎝⎜

⎞
⎠⎟( )

( )
( ) ( )åb

m m f= -


r
r

b t

1 1

2
cos 14

u

u

u
2

2

2

which is given by the chemical potential and the dynamic phasef. In addition, in the following, wewill trace the
dynamic evolution of the amplitude and the phase through twowell-defined functions ( ) ( )=rf t b t1

u u and

( ) ( ) ( ( ))=ff t b t b t2
u u u , respectively.

3.1.One-dimensional (1D)BEC
For better understanding of the dynamic phenomenon in BECs, the 1D condensate was investigated firstly. To
induce phase fluctuations in 1D system, the trapping potential parameter Ax(t) is set to increase with time,

( )l= +A t1x
2, whereλ is the tunable speed parameter.

The time evolution of BECs is obtained by introducing Ax(t) into equations (4), (7), and (9). For comparison,
a better quantitative description of BECdynamics is provided by numerically solving theGPE via thewell-
developedGPELab [40, 41]:firstly, the ground state of the system is obtainedwith the imaginary timemethod
[41], thenwith the time-splitting scheme[40], the dynamic evolution of the systemdriven by the time-
dependent trapping potential is determined. Numerically, the expected value (sx

2) of x2 is used to characterize
the density dynamics, òs y y= x xdx

2 2* .
The variation of density distributionwith time is shown infigure 1(a) and the parameters used in the

simulationwere set as follows:β=0,λ=10. For better quantitative comparison, bymultiplying the parameter
bx andχxwith the initial condensate sizeσx(0), the condensate size predicted by the scalingmethod and the
algebraic dynamic approach can be obtained: ( ) ( )s s s c s= =cb 0 , 0x

b
x x x x x . Figure 1(b) shows the numeric

condensate sizeσx togetherwith the analytical result sx
b and sc

x . As demonstrated in figure 1, in the case of BEC
without inter-particle interaction (β=0), the exact solution sc

x oscillates with the amplitude reducing and the
frequency increasing gradually. Furthermore, both the condensate sizeσx (fromnumeric simulation) and the
scaling result sx

b give correct predictions of the oscillation behavior, confirming, thus, the validity of theGPELab
and the scalingmethod.On the other hand, one can see thatwhile the oscillation behavior of sc

x is perfectly
synchronizedwithσx, the scale parameters sx

b shows a little phasemismatch and amplitude decrease comparing
withσx, due to the difference in equations ofmotion used. Figures 2(a) and (b) demonstrate the dynamic
evolution of space- and phase- timemodulating functions r ff f,

x x
, as obtained from the scalingmethod, and

1/χx,
-vx in algebraic dynamic approach, respectively. From the figures, it is obvious that both the scaling

method and the algebraic dynamic approach give similar results; the space- and phase- timemodulating
functions are fully synchronizedwith ff

x
( -v0 ), which changes abruptly at the peak of

rf
x
( c1 x). As can be seen in

figure 1(a), evenwith such an abrupt phase variation, the condensate only oscillates with time and no signature
of the phase decoherence is observed. This behavior can be explained by the sound velocity in BEC,which is

Figure 1.The dynamic evolution of the 1D time-dependent harmonic potential trappedBECwithβ=0 andλ=10. (a)The
variation of the density distributionwith time. (b)The condensate sizeσx obtained from the numerical simulation and itsmatching
with the scaling result sx

b and the exact solution sc
x .

4

New J. Phys. 22 (2020) 013046 DMa et al



directly linked to the inter-particle interaction b=c n [42] (n is the particle density), and sets up the upper
limitation for the speed of information exchange in the condensate. In the absence of the inter-particle
interaction, the sound velocity in condensate is zero.Hence, the dynamics in different locations is uncorrelated
and controlled only by the external time-dependent potential, as results from the correlation function
equation (13). Thewavefunction of the system iswell described by the solution of equation (6) in the algebraic
dynamic approach, which is exact and coherent all the time. Thus, the system changes adiabatically under the
drive of trapping potential, the coherent property of the condensate is preserved and the changes in the
condensate phase do not cause anyfluctuations in the density distribution.

When the strength of the inter-particle interaction is non-zero, the condensate size is againmodulated by
parameter bx (equation (9)) and the time variations in the space- and phase-modulating functions r ff f,

x x
are

also same as in the non-interacting case (see figure 2(a)). But the presence of the inter-particle interactionmakes
the condensate dynamics in different positions correlated and the abrupt phase variation can lead to changes in
the density distribution.

For the inter-particle interaction strength β=100, variations in the density distribution and condensate
widthwith time are shown infigures 3(a) and (b), respectively. Fromfigure 3(b), one can see that the variations
of condensate sizeσx and the scaling result sx

b are synchronized in the early stage. But starting around t=3,
there is a great discrepancy betweenσx and sx

b and the amplitude variation ofσx ismuch smaller than sx
b , which

indicates that the system radically changes from the hydrodynamic limit and goes beyond the scalingmethod
description.

Figure 4 shows the condensate density distributions (black line) and the corresponding spatial correlation
(red line) ( ) x at different times t=0.0, 1.63, 1.70, 1.97, 2.03, 5.50. As can be seen in the figures, the spatial
correlation profiles not only overlapwith the density distribution lines, but also contain the additional phase
distribution information, fromwhich the phasefluctuations can be determined. In contrast to the non-
interacting particle case, where the phase variation does not affect the condensate density distribution, the inter-
particle interaction leads to the phase dispersion across the condensate, whichwould give rise to the additional
phasefluctuations and interference effects in the system. Because the dynamic phase quadratically depends on x,
it will increase faster further away from the center of the condensate. Therefore, under the influence of the
phase-timemodulating function ff

x
, in the contraction process, thewide phase variations at the edges of the

condensate quickly disperse inwardly andmulti-phasemodes accumulate in the condensate. Due to these
process, the phase of the condensate will be disturbed by themulti-peak structure arising at the edges of the
condensate and subsequentlymoving towards the center of the condensate. Fromfigure 4, it is obvious that the
distinct phasefluctuations arise in the condensate at t=1.63, 1.97. On the other hand, in the expanding process,
the phase variationsmove outwards and the correlation function follows the proposedmodel and varies
smoothly; no observable phase fluctuations emerge (t=1.7 and 2.03 ). In addition, the phase-timemodulating

Figure 2.The space- and phase- timemodulating function from (a) the scalingmethod r Ff f,x x and (b) the algebraic dynamic
approach c-v , 1x x . (The parameters are set to beβ=0 andλ=10.)
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Figure 3. (a)Multi-peak structure of the density distribution of the 1DBose–Einstein condensate for the interaction strength
β=100. (b)The condensate sizeσx, which forβ=100 deviates from the scaling result sx

b in long time.

Figure 4.The condensate density distribution (black line) and the corresponding spatial correlation function (red line) at different
times t=0.0, 1.63, 1.70, 1.97, 2.03, 5.50with parameterβ=100, andλ=10.

6
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function ff
x
changes fromnegative value in the contraction process to positive value in the expanding process.

At zero point, the coherence property of the system can revive [19], and so the phase coherence of the condensate
reemerges in the expanding process. However, in the long-time simulation (figure 4, t=5.50), a chaoticmotion
may occur in the systemdue to the accumulation of the phase and density fluctuations.

When the trapping frequency changes harmonically in time, instead of increasing the trapping potential
frequency linearly, the condensate oscillates with time following the variations in frequency. Infigure 5, the
trapping frequency of 1D condensate was changed harmonically with ( ( )= +A t1 sin 10x

2 . It is shown that the
condensate remains coherent at all the investigated times, the variation of the condensate size can bewell
described by the scalingmethod, and there is no signature of the density or phase fluctuations. For 2D and 3D
cases, the obtained results are similar to these of the 1D case: no phasefluctuations andmulti-peak structure are
observed and the time evolution of condensate is consistent with the scalingmethod if the trapping potential
changes harmonically in time.

3.2. 2DBEC
Due to the restriction of the 1D system, the phasefluctuation signature and the phase revival behavior cannot
sustain for long time. In order to stabilize these effects, a less restricted system, i.e. a 2D time-dependent
harmonic potential trapped BEC is considered. To induce phasefluctuations in this system, we increase the
frequency of harmonic trap in the x direction and keep the y direction unchanged, this leads to ( )l= +A t1x

2,
Ay=1.

In the absence of the inter-particle interaction, the systemdynamics along different directions are
decoupled. Since the frequency of the harmonic trapping potential only changes along x axis, the condensate
dynamics is restricted in the x direction, whichmakes the system an effective 1D system similar to the system
discussed in previous section. The condensate remains coherent all the timewith thewidth along the x direction
varyingwith time identically as in the 1D case (figure 1(b)), the space- and phase- timemodulating functions are
also synchronized, resembling the 1D case (figure 2).

In contrast to the ideal Bose gas limit, the presence of the inter-particle interaction as an origin of nonlinear-
type interactionswould lead to the coupling of dynamics along different directions, as demonstrated in
equation (9). Then, the time-dependent harmonic potential along the x direction not only drives particles to
move around in the x direction, but also exerts a non-trivial influence on the dynamics along the y direction. The
dynamic equation (9) become as follows:

̈ ( ) ( )
̈ ( ) ( )

l=- + +

=- +

b t b b b

b b b b

1 1 ,

1 . 15

x x x y

y y y x

2 2

2

Figure 5.The condensate dynamics under harmonically changing potential. (a)The condensate density distribution oscillates with
time. (b)The condensate sizes (σx) perfectlymatches with these obtained by the scalingmethod (sx

b ).
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By solving the coupled equations in equation (15), the corresponding variation of the scaling parameters bx,
by can be obtained. In our numerical calculations, the interaction strengthwas set toβ=100. As one can see in
figure 6(a), by including the inter-particle interaction, both the condensate sizeσx andσy oscillate with time.
Comparingwith the scaling results ( )s s= b 0x

b
x x and ( )s s= b 0y

b
y y , the variation in the condensate size is well

described by the scalingmethod. Along the x direction,σx and sx
b are synchronized, while in the y direction,σy is

smaller than the scalingmethod predicted value s y
b .

Figures 6(b) and (c) show the variation of space- and phase- timemodulating functions along the x and y
directions. From the figures, it is clear that both the functions along the x direction r ff f,

x x
are well synchronized

with their wave shapesmodulated by the couplingwith the y direction, while as those along the y direction
r ff f,
y y

are roughly synchronized, and in addition, the phasemodulating function ff
y
is accompaniedwith

fluctuations. Thus, the variation in BEC induced by the time-dependent potential in the x direction is
transferred to the y direction by the nonlinear interaction. On the other hand, the presence of the inter-particle
interactionmakes the condensate dynamics in different positions correlated. Taking into account all these
effects, the systemunder the fast varying trapping potential is expected to change non-adiabatically and the
abrupt phase variations in the x direction and the phasefluctuations in the y directionwould lead to considerable
changes in the density distribution and, thus, disrupt the coherence property of the system.

Figure 7 illustrates the numerically simulated condensate density distribution and the corresponding spatial
correlation functions at different times t=0, 1.78, 1.90, 0.91, 2.72, and 5.5. As can be seen from the figure, the
systemnot only shows the oscillations of the density distributionwith time, but also takes on themulti-peak
structure along both the x and y directions in the evolving process. Such behavior is similar to that in the 1D case.
Thus, the large phase variation induced by the time-dependent trapping potential causes the phasefluctuations
and the decoherence effect along the x direction, and concurrently through the nonlinear coupling, same

Figure 6. (a)The condensate density oscillation for the inter-particle interaction strengthβ=100. The oscillationmatcheswell with
the scale result in the x and y directions. (b)The space- and phase- timemodulating function r Ff f,x x respectively, in the x direction.

The functions arewell synchronized. (c)The space- and phase- timemodulating function r Ff f,x x along the y direction. The functions

are synchronized poorly. In addition, the Ff x function includes the phase fluctuations.
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behavior can also be transferred into the y direction. Furthermore, a revival of the coherence can be observed
along the x, y directions at the same time, confirming the phasefluctuations and the decoherence effect being
induced by the variation of the time-dependent trapping potential. In contrast to the 1D case, the 2DBECwith
the inter-particle interaction is less restricted. Hence, the influence exerted by the time-dependent potential,
which can be transferred to the other direction,makes the abovementioned phase fluctuations, the decoherence
effect and the coherence revival behaviormore stable and suitable for observation.However, in the longer time
simulation, the undesirable additional excitations and chaoticmotionmay occur in the system.

For experimentally feasible 3D case, we obtained similar results. Startingwith an initial 3D isotropic
harmonic trap, we changed the harmonic potential frequency along the zdirection by ( )l= +A t1z

2 with
λ=10 and kept the frequencies along the x and y directions unchanged. Because of less dimensional restriction,

Figure 7.The condensate density distribution and the corresponding spatial correlation function of the 2DBECs at different times
t=0, 1.78, 1.90, 0.91, 2.72 and 5.5 (β=100,λ=10).

9
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the 3D case is found to bemore stable, the related density and phase fluctuations, phase coherence revival
phenomena are similar to these of the 2D case but the phase coherence can bemaintained formuch longer time.
Furthermore, due to the isotropy in the xy plane, the density distribution in the xy plane is accompanied by a
formation of ring structures, similar toNewton rings in optics [33].

4. Conclusion

The dynamics of BECs under the time-dependent harmonic trapping potential was investigated. If there is no
inter-particle interaction, the condensate remains coherent all the timewith its density distribution oscillating in
time. Even in the case of the strongly time-varied dynamic phase, no change in the density distribution of BEC
was found. By employing both the algebraic dynamic approach and the scalingmethod, the oscillation behavior
of BECwas successfully described.When the inter-particle interaction exists in the system, the sound velocity of
the condensate becomes non-zero. The abrupt phase change produces considerable phase fluctuations in the
system,which perturb and destroy the coherence property of the condensate. The occurrence of these
fluctuationswas further linkedwith the existence of themulti-peak structure of the density distribution. Because
the dynamics phase induced by the time-dependent trapping potential can be zero at various time, the
condensate was also found to exhibit the coherence revival behavior. In the 1D time-dependent trapped BEC,
due to the lowdimensional restriction, variousmodes and fluctuations are easily induced and populatedwith
time, andmay lead the system into chaoticmotion very quickly. In the less-restricted 2D and 3DBECs, the
dynamic characteristics along different directions are coupled together by the nonlinear interaction,making the
systemmore stable and suitable for observation.
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