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Abstract

This paper analyses the thermoelectric power of two- and three-terminal quantum dot devices under
large thermal AT and voltage V biases, and their performance as thermoelectric heat engines. The
focusis on the interaction between electrons, far-from-equilibrium conditions, and strongly
nonlinear transport, which all are important factors affecting the usefulness of the devices. To properly
characterise the thermoelectric properties under such conditions, two different Seebeck coefficients
are introduced, generalizing the linear response expression. In agreement with previous work, we find
that the efficiency of the three-terminal thermoelectric heat engine, as measured by the delivered
power, is optimal far from equilibrium. Moreover, strong Coulomb interactions between electrons on
the quantum dot are found to diminish the efficiency at maximum power, and the maximal value of
the delivered power, both in the Kondo regime and beyond.

1. Introduction

Thermoelectricity, the invention of the 19th century, is still at the forefront of research due to its importance for
space exploration and automotive industry [1], and many more branches of modern technology both at large [2]
and small [3] scales. Attempts to find high performance thermoelectric bulk materials [4], including those with
topologically non-trivial [5] band structure, have seen limited progress. In the last few decades, a lot of attention
has been put forward towards nano-devices [6] and molecular systems [7, 8], utilizing quantum effects to boost
their thermoelectric performance towards the thermodynamic limit [9].

When a temperature gradient V T (or a temperature difference AT) is established across a bulk material, a
voltage V'is generated. The response of an isotropic system is characterised by the Seebeck coefficient

%
AT I=0,AT—0

defined under the condition of zero charge current. The same formal definition can be used for a nano-structure
with two external electrodes [10] (see figure 1(a)). However, equation (1) has to be generalized for geometries
with several electrodes—as, e.g. the one shown in figure 1(b)—where a whole matrix of Seebeck coefficients

[11, 12] has to be introduced.

In bulk systems the linear approximation is generally a valid simplification. Under such a condition the
thermoelectric figure of merit, ZT = GS*T /k, where Gis the conductance, and x the thermal conductance, is
viewed as the most important factor deciding on the usefulness of the material as heat to electricity converter:
namely, the efficiencyis givenby n = n-(VZT + 1 — 1)/(\/ZT + 1 + 1), wheren¢is the Carnot value. In
nanostructures containing quantum dots, however, we are virtually always dealing with a nonlinear situation, as
mentioned earlier [13—15], and carefully discussed recently [6]. The small ratio of the sample length to the
thermalization length in nanostructures is responsible for their very different behaviour compared to bulk
systems. This has a profound effect on the analysis of small heat engines, and implies that the thermoelectric
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Figure 1. Two examples of devices with quantum dots. In panel (a) we show a two-terminal quantum dot device with the left electrode
at higher temperature (red). Panel (b) shows a simple nano-engine with one hot (red) and two cold electrodes (blue) and two quantum
dots (grey). In the latter case the filtering properties of quantum dots are important for the performance of the device.

figure of merit ZT is not a useful parameter anymore to judge the efficiency. In particular, a nano-system with a
large ZT'[16] may in fact feature a small efficiency [17, 18].

From a basic point of view, the Seebeck coefficient provides additional and novel information about the
studied system compared to that obtained from the electrical conductivity: the latter ‘measures’, in the simplest
case, the density of states at the Fermi level, N(Ey), and the former its slope, N'(Er). The thermopower can also be
related to the entropy flowing between different parts of the system. In fact, the entropy of nano-systems has
been recently measured [19] by means of thermoelectric transport. A strong increase of S in nano-devices and
nano-structured materials has been observed [20], in agreement with the earlier proposal [21]. Recent studies
[22] have shown that doping or nano-structuring bulk thermoelectric materials may lead to the required
modifications of the energy spectrum close to Er, but also to alocalization of states which deteriorates the
system’s performance.

Furthermore, it has been proposed [ 14, 23] that nonlinear working conditions can favourably affect the
performance of heat engines. Recent studies in this direction include [24—29] and have been reviewed
recently [30].

The aim of the present work is to study the thermoelectric transport of quantum dot based nano-devices by
means of the non-equilibrium Green function approach, taking Coulomb interactions and nonlinear effects
into account. In the nonlinear regime, more general definitions of the Seebeck coefficient than that given in
equation (1) are needed; these are especially important when an externally applied voltage Vis present while the
system is thermally biased. In the presence of interaction and at low temperature, the Kondo effect is expected to
dominate the transport properties [31-36]. The present investigation, which significantly extends our previous
studies of non-equilibrium screening effects [37] in three-terminal two-quantum-dot heat engines [28, 38], is
important for a better understanding of the interaction effects in far-from-equilibrium situations and in the
Kondo regime.

As the theoretical treatment of an interacting quantum dot out-of-equilibrium is of importance in itself, we
present in some detail the semi-analytical technique proposed by Lavagna [39]. Itis based on the equation of
motion method (EOM) [40] for the non-equilibrium (or Keldysh) Green functions [41], with important
additions introduced by her which allow to properly describe the Kondo effect in the linear and the nonlinear
regime, i.e. under large voltage and temperature differences between the electrodes, as well as for the particle-
hole symmetric model. We shall discuss this in more detail at the end of the next section.
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The use of the equation of motion (EOM) technique for studying the single-impurity Anderson model has a
long history [42—44], mainly in the context of impurities in metals. Some of the attempts at generalizing the
original EOM and the decoupling procedures have been summarized in [45].

The organization of the paper is as follows. In section 2 we present the model and our approach of calculating
the charge and heat currents by means of the Keldysh non-equilibrium Green function (GF) technique. We also
derive the exact—in the wide-band-limit—formula for the lesser GF. The resulting spectral function of the
quantum dot is discussed in section 3 at low temperatures and for various conditions including particle-hole
symmetry and non-equilibrium. Two relevant definitions of the Seebeck coefficients, valid in the nonlinear
regime, are proposed and evaluated in section 4. The Coulomb interaction between electrons in the three-
terminal quantum dot heat engine is found to diminish the performance of the device in question, as discussed
in section 5. The Kondo effect shows up as a two-leaf structure of the performance diagram on the efficiency-
power plane. Summary and conclusions are given in section 6.

2. Modelling the device and calculating currents

Here we discuss the simple geometry where the system consists of a quantum dot(s) tunnel-coupled to two
(three) normal electrodes as shown in figure 1. The Hamiltonian of the system is written as

H= 3 e + Y otty + Uniny + > (Viko 61, do + Vikodi crio)s 2
MNk,o o ko

where ny,, = c;kg vk and 1, = d d, denote particle number operators for the leads and the dot, respectively.
The operators c;kg (d]) create electrons in respective states \ko (o) in theleads A\ = L, R, H (on the dot). The
wave vector k denotes the Bloch state in the electrodes, the spinis 0 = £1 (7, | ), and ¢, is the generally spin-
dependent dot electron energy level. For the concrete results presented in the next sections we will take ¢, to be
spin-independent, &; = ¢| = ¢,4. The quantity V), describes the tunneling of electrons from the dot to the
electrode )\, and the Hubbard parameter U the repulsion between two electrons on the dot.

Calculations of the charge and heat currents flowing out of a given lead are standard [41]. Evaluating the
required commutators one arrives at the expressions

n==f S RBIGHE) + ABIGE - GHEN, (3)
o d 2w
n== S RAEBE — u) (G5B + £ BIGLE) — GBI, “)
e d2m

The parameters F[}(E) = 27> Vakol*6 (E — &) describe the coupling between the dot and the respective
electrodes. The Green functions G:(E) = ((d,|d})); withi = r,a, < determine the spectral properties of the
quantum dot as well as the transport properties of the whole system. Having in mind non-equilibrium transport
induced by a voltage bias and/or a temperature difference, we keep the dependence of the Fermi distribution
functions f,(E) on the electrode A via its chemical potential v and its temperature T'y.

The important issue is the calculation of the lesser GF entering the above equations. In the literature various
approximate schemes are used. Here, we show that in the steady state and in the wide-band approximation (i.e.
for energy independent couplings: "% (E) = I"L'®), one can derive [39] the exact expressions for the lesser GF in
terms of the retarded and advanced functions and thus closed formulas for the currents. First, from
(ny) = (¢! (t)¢c,(t)) and the definition of the lesser GF, one has [41]

. (dE

(o) = —i | —=G;(E). 5)
27
The derivation then makes use of the fact that in the steady state
d(n,) < dn, > < i >
0 = = _— = —( — o> H . 6
dt de 72 e H] ©

Working out the commutator in (6), using (5) and the Langreth theorem [46], it is straightforward to derive the
following ‘self-consistency’ condition [39]:

. dETEf(B) + T2 f(B)
<”">:1fﬁ Tt

[G,(E) — GZ(E)]. @)

Let us underline again that the expression (7) is exact under the proviso that the couplings to the leads are energy
independent, T')(E) = I} = const. Ifthis condition is violated, as it might be the case in graphene [47-49],
hybrid systems with one (or both) of the electrodes being a superconductor, e.g. d-wave [50], other approaches
are needed. For models with energy dependent couplings one still has to rely on approximate relations between
the lesser self-energy 35(E) and the retarded one, >/ (E), making use of Ng’s approximation [51],
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generalisation of the fluctuation-dissipation theorem [24], or using the equation of motion for the lesser GF [52]
and suitable decoupling. For recent attempts to include the energy-dependent couplings, see the paper [53].

Within the above (exact in the steady state and for constant I'’s) formulation, the charge current across the
two-terminal system can be written in terms of the retarded GF only:

2e = rdE ,
=72k S5 1h® — f@nmG®, 8)

where I}, = TLI'R /('L 4+ T'®). We stress that the above formula is an exact representation of the current in
terms of the retarded GF of the interacting Hamiltonian, which has to be calculated either numerically or
analytically. Here we adopt the latter approach, though obviously calculating the GF analytically requires some
approximations; see the supplementary material’ for details. In brief, the decouplings we are using ensure that
the GFs are formally exact up to second order in the couplings. Additionally, we correct the result by
phenomenologically introducing the lifetimes [39] of various states, which is important to capture the Kondo
effect. It turns out that the proposed scheme properly describes the Kondo resonance in the density of states even
in the particle-hole symmetric model. The expression (8) is analogous to the well-known Meir-Wingreen
formula [54]. One finds I = I} = —Ig for the charge current,and Q = J; + Ji for the total heat current leaving
the leads. For later use we define the power, P = (ug — pr)I/e, and the voltage bias, V = (ur — pr)/e, across
the system.

Our general formulas for the charge and heat currents (4) are readily applied, e.g. to the three-terminal
system shown in figure 1(b). In such a device, the heat is flowing from the hot to the two cold electrodes. We
assume that no charge current flows out of or into the hot electrode. The charge flow is controlled by the gate bias
of the quantum dots, which hence act as energy filters. The total heat current in the system is

J=Ju+J + )k 9

Introducing a ‘load’ between the two cold electrodes, in the figure (1) shown as an external voltage V, one finds
the system’s energy harvesting efficiency as

_Iv
Ju

To calculate currents we ‘only’ require the retarded Green function. There exist a few numerically exact
approaches: e.g. among the many techniques applied to study the single-impurity Anderson model the quantum
Monte Carlo [55] and the numerical renormalization group [56] methods should be mentioned. However, in
this work we will use the analytic EOM technique, which has proven to be quantitatively correct [39, 57], and
valid far from equilibrium. In addition, in our opinion this approach is physically more transparent than purely
numerical methods, as discussed below.

After a couple of manipulations, the on-dot GF is obtained as follows:

1+ Id(E)[<”6> + biz — basl
E—¢, — Yoo + LB + 3 — (b5 — bys) S0l

n (10)

({dold]))e =

an

where

U

14(E) = :
E—e,—U—3%¢ — ZP - 5@

12)

Details of the derivation and the definitions of the parameters are given in the Supplementary Material (See
footnote 3). The above expression for the GF, equation (11), agrees with that obtained earlier by Lavagna [39].

It should be remembered that previous attempts to calculate the on-dot GF by means of the EOM technique
encountered a serious problem. Namely, it was not possible to describe the Kondo resonance for the particle-
hole symmetric system. Lavagna and co-workers [39, 57], however, have shown that for the correct description
of the Kondo effect it is necessary to supplement the equations for the dot GF by two ingredients. First, one
should introduce the finite lifetimes of singly and doubly occupied states on the dot. Second, it is important to
include the many-body renormalization of the dot energy level ¢ ;. Thus, first, one replaces the E + i0 terms in
the definitions of various Green and correlation functions by E + i%,, where the inverse lifetimes 4, of the
excited states « = |o), |1,]) are due to higher order processes. They can be calculated up to the desired order via
the generalized Fermi rule as

’70 = 27TZ|<T(E(Y)> |26(E0¢ - Ef)a (13)
1)

withT(E) = V + Vg (E)V + ---the scattering matrix, where V denotes the part of the Hamiltonian
describing the coupling between quantum dot and reservoirs. Second, one replaces €,;by &4, to be calculated self-

? Supplementary material, available online at stacks.iop.org/NJP/22/013045 /mmedia.
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Figure 2. Density of states (DOS) for the particle-hole symmetric interacting quantum dot withe; = —4, U = 8 (T ~ 0.061) (a),
andfore; = —4, U = 12(Tk = 0.026 3) (b), where the Kondo temperature, Tk, is calculated from the Haldane formula,
equation (17). In both panels the DOS is given for two values of the system temperature, T = 0.1 and 0.001, and for a number of
voltages Vapplied between left and right electrode. One observes the evolution of the Kondo peak with increasing bias. The black
(solid) curve in both parts of the figure refers to V.= 0and T = 0.001, and the other curves to increasing values of V. Energies are
given in units of I'y = I';, here and in the following figures and their captions. Also in most formulas we set kg = 1.

consistently from
Ba =4+ NG + T3 Co). (14)

The GF (11) has been shown to fulfil the unitarity limit, and to describe quantitatively correctly the Kondo effect
[39] even in particle-hole symmetric systems in and out-of equilibrium.

3. Kondo effect in equilibrium and far from equilibrium

For illustrative purposes and in order to introduce the framework, we discuss in this section the properties of an
interacting quantum dot between two normal electrodes, as illustrated in figure 1(a). We start the presentation of
the results by showing the density of states (DOS) of the quantum dot, which is calculated as usual as

N(E) = =Y, Im G,(E) /7 from the retarded Green function, in various regimes. From now on, we neglect the
spin dependence of the couplings, and slightly change the notation: T'f = I'f = I}, I'f = Tf = I};.In

addition, we measure all energies in units of I'y = I';. The particle-hole symmetric case is of special importance
asitis well known [39] that all previous attempts to use the EOM method failed in this case [58, 59]. The issue has
been discussed extensively in the literature [43—45]; a critical comparison between EOM-based and other
approximations has been presented very recently [60].

In figure 2 we present the DOS in the particle-hole symmetric situation withe; = —4I'gand U = 8I'. Both
lower and upper Hubbard bands centered in energy around ¢ ;and €; + Uare clearly visible. At the same time,
the Abrikosov—Suhl, sometimes also called Kondo resonance develops at the chemical potential.

The external bias shifts the chemical potentials of theleads 1 ;g = 1 &= eV/2 to new positions, and the
Kondo peak splits into two with each resonance pinned to the chemical potential of the lead. In particular,
figure 2 shows the evolution of the two peaks with temperature. At T = 0.001I'y, they are very sharp, while at
T = 0.1I'; they are reduced but still clearly visible. The changes of the Kondo resonance with bias and
temperature are crucial to understand the behaviour of the thermally induced current and the (nonlinear)
thermoelectric power as discussed in the next sections. At still higher temperatures (not shown) both Kondo
peaks vanish altogether, and only lower and upper Hubbard bands survive. The Kondo resonance is due to spin
flip processes on the dot while the Hubbard sub-bands are related to charge fluctuations. This explains the
relative robustness of Hubbard sub-bands with increasing temperature, and the fragility of the Kondo
correlations. However, voltage and temperature affect the Kondo resonance in a different way. While a voltage
eV > Tyleads to a splitting of the resonance in two sub-peaks with concomitant decrease of their maximum, the
finite temperature only lowers the height of the peak and broadens it. All these features are well reproduced by
the used decoupling scheme. Outside the particle-hole symmetric point, the voltage-split Kondo resonances are
not symmetric anymore. This is mainly due to the closer proximity of one of the resonances to the lower
Hubbard band. The individual resonances are pinned to the Fermi levels of the respective electrodes. This is well
visible in figure 2(b), and also in figure 3(a).

We now add a thermal bias to one of the electrodes, with focus on the question of how the density of states
evolves with temperature difference. We start with the split Kondo resonance as shown in figure 3(a). The
temperature of the right lead is kept constant, at Tr = T, while we gradually increase the temperature of the left
electrode, T; = T + AT. Panel (a) of figure 3 shows the voltage-split Kondo peaks for AT = 0, for easy
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Figure 3. DOS of the quantum dot for the voltage eV = 0.5 applied between left and right electrode (a), showing two Kondo peaks
pinned at the chemical potentials of the leads 1, g = +eV/2. In panel (b) the evolution of the Kondo peaks with increase of
temperature in the left lead by ATis illustrated. The other parametersare:e; = —4, U = 10,T = 0.01,and ' = 1.

comparison, while panel (b) demonstrates the evolution of both peaks with increasing T;. The peak pinned to
the chemical potential of the left electrode (appearing at E = pp) is strongly affected by the temperature bias, it
broadens and vanishes with increasing temperature. One observes only small changes of the other Kondo peak.
Thus under voltage and temperature bias the peaks” heights and widths depend mainly on the conditions (V,
AT) at the electrode with the chemical potential to which it is pinned. For diminishing external voltage bias both
peaks overlap in energy, and one observes a single feature in the density of states corresponding to the average
temperature, T,, = (Ty + Tgr)/2, of the system.

4. Linear and nonlinear thermopower and the role of asymmetry

Nonlinear effects are expected to be important for many experiments on nano-devices [6, 15]. Hence in such
cases alternative definitions of the thermoelectric coefficients are required. To start with, a suitable
generalisation of the definition (1) of the Seebeck coefficient to nonlinear situations reads

B
! AT )iarvy=o

The traditional way to measure the Seebeck coefficient assumes the application of the temperature bias AT, and
finding the voltage V such that the current across the device vanishes, (AT, V) = 0. In this formulation, the
only source of nonlinearity is directly given by the value of AT, assumed to be large enough to preclude the linear
expansion of the charge current I(AT, V) in first powers of Vand AT.

On the contrary, when the linear expansion is valid, V — 0and AT — 0, we have I(AT,

V) = L,V + L;,AT,and the corresponding thermopower is given by the ratio of kinetic coefficients,
S = Ly,/L;,. Expanding equation (8) for small Vand AT up to linear order, one finds an explicit expression
for S.

Sometimes the definition (15) of the nonlinear Seebeck coefficient S,, is extended to the differential one, S,
calculated formally for constant current flowing as a result of the external voltage V. This S; measures the
response of the system with current flow to a minute change in temperature difference. Ata given applied
external voltage Vand temperature difference AT, S, is hence defined [31, 61] as

() (), 3,
OAT ), OAT )y OV )ar

Asargued earlier, S;should be accessible experimentally [31] in appropriate ac circuits. In that paper, the
response (01 /OAT) has been calculated under the additional assumption that, at a given external voltage, a very
small temperature bias AT'is applied to the system. The definition (16) is analogous to the differential
conductance G(V)) = 9I/0V often employed in the nonlinear regime.

Here we investigate the generalisation of S to arbitrary temperature differences and arbitrary bias as well as
its comparison to S, and S. Of course, for infinitesimally small AT and Vall definitions are equivalent and lead to
the sameresult, S = S,, = S,;. For arbitrary Vand T but vanishingly small AT, the two nonlinear Seebeck
coefficients are equal, S, = S, However, for both alarge AT and a large bias voltage V, they differ, with the
relative values depending on the parameters (see below).

To gain some feeling about the relative values and the behaviour of the three, generally different Seebeck
coefficients, we show in figure 4 the linear, S (where appropriate), as well as the nonlinear, S, and the
differential, S, coefficients as calculated for the two-terminal device. The panels (a)—(c) in figure 4 illustrate their

15)
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Figure 4. (a) The middle curve shows that all three Seebeck coefficients (linear, S, nonlinear, S,,, and differential, S,;) of the two-
terminal device calculated for V = 0 and an infinitesimal value of AT agree with each other for all temperatures. The two other curves
represent the nonlinear thermopowers S,, = S, calculated for two values of bias, eV = —0.1 and eV = 0.1. (b) Here we show the
three thermopowers versus temperature difference AT between left and right electrodes, with Tr = T, T; = T + AT, calculated for
the base temperatures T = 0.05, 0.10, and 0.15, and for V = 0. For large AT’s strong nonlinearities are clearly visible, as well as
apparent differences between the coefficients. (c) Voltage dependence of the nonlinear Seebeck coefficients S,, and S, for two
temperature differences, AT = 0.005and AT = 0.05. (d) The ratio S/S,, depends on the system parameters. Here it is shown for
T = 0.1,ande; = —2.5, —2,and 5. Other parametersare: U = 8,I'y = I'; = I'g. The results presented in panels (a)—(c) have been
obtained fore,; = 5.

dependence on temperature, temperature difference, and voltage. Weassume T = T, T, = T + AT,
pr = p+ eV/2, ug = p—eV/2,and U = 8Ty, ¢4 = 5. For U = 8 yand ¢; = —5I, the Haldane formula
for the Kondo temperature

T
T — «/(2 N exp[md(ed + U)], Iy — I, + FR) an

InU 2

leadsto Tx ~ 0.071T",,.

Figure 4(a) illustrates the T-dependence of all Seebeck coefficients for three values of the voltage
eV = —0.1'y, 0, and 0.1T"y, and for a very small temperature difference, AT — 0. Thevalue V = 0in fact
denotes a very small voltage, V — 0. For the actual calculations, we have used §T = 10~ °T', and to calculate the
voltage derivative in (16) we have used 8V = 10~ °T. All coefficients have the same value S = S,, = S, for
V — 0. For arelatively large value of V, the calculation of § is meaningless; the figure shows that independent of
Tand for both values of Vone has S,, = S, (since the applied temperature difference is infinitesimal).

The situation is different if AT is finite. The results for V = 0 are presented in figure 4(b); it is apparent that
all coefficients assume different values, except for very small AT. The differences increase with increasing AT,
with S, lying below S, (and S,, below S) for all T'and a given set of parameters.

For finite voltages the relative order of S,, and S, may be different, as is visible from panel (c) of the figure. The
Seebeck coefficient S,, provides a generalisation of the standard definition to the nonlinear regime, while the
differential one, S, characterises the response to a minute temperature change of the voltage biased system. The
data presented in figure 4(c) have been obtained for T = 0.01Iy, and the two values AT = 0.005I" and 0.051,.
For small temperature bias the curves corresponding to S, and S, are rather close to each other. However, for
larger AT the nonlinear dependence of the Fermi functions and the on-dot density of states on Vand AT lead to
various contributions to both S,,and S,;.




IOP Publishing New J. Phys. 22 (2020) 013045 U Eckern and K I Wysokiriski

0.02. |
S —
0l V=0 AT=0.03 Sh
Sy .

S! Sn, Sd [kB/e]
S
o
N

-0.08] *res, | | |
0 02 04 06 08 1

T/Tk

Figure 5. The anisotropy of the couplings I'r /I'; # 1 results in increased absolute values of the Seebeck coefficients. We show all
three coefficients, albeit the temperature difference AT = 0.03 is slightly beyond the validity of the linear approximation. Other
parameters of the model read: U = 8,e; = —5. The Kondo temperature is T ~ 0.004 for the symmetric case, I'r/T";, = 1,and
~0.034 for /Ty, = 2.

It has to be underlined that S can be smaller or larger than S,,, depending on the system parameters. For
example, fore; = —2.51, T = 0.1y, and other parameters as in figure 4(d), we have |S| > |S,|, with the
difference increasing with AT. Itis also apparent that for £, = 5I'¢ the ratio is smaller than one, i.e. for these
parameters the linear thermopower happens to be smaller than the nonlinear one.

The non-zero value of both Seebeck coefficients S, and S; for V = 0 in figure 4(c) can be understood by
taking into account the lack of particle-hole symmetry, 2¢; + U = 0, for the set of parameters used. For these
parameters the density of states is similar to that shown in panel (b) of figure 2. The differences between the
curves S,(V)and S4(V) for the same AT are of the same character as those observed in figure 4(b), while the
global similarities between the two sets of curves calculated for AT = 0.005'gand AT = 0.05I' can be traced
back to alarger contribution to (0I/ OAT) obtained from equation (8):

(ﬂ)m%znf“;{m, T) ~ f(E, T)](w)

OAT OAT
of, (E)
— N(E, T, AT)| ——— AT)?
( )( AT )}+O(( )?) + (18)
Note that the difference
D) =1[f(E, T) — fx(E, T)] = —=D(=V) (19)

is an odd function of the voltage, which implies that the resulting curves are nearly anti-symmetric with respect
to V = 0 (and that the ordinates are equal, S,,(0) ~ S4(0)). The smaller contribution proportional to

(—0f, (E)/OAT) depends on Vin a non-universal way. This causes the crossing of two coefficients at various
voltages and for AT well beyond the validity of the linear approximation.

We remark that the differential Seebeck coefficient, S, has been analysed in [31, 61]; in particular, the
authors claim that S, allows for a better understanding of decoherence processes at finite voltage. Indeed, as
observed in figure 3(b), the decoherence processes at finite voltage V are mainly induced by the increase of
temperature at one of the electrodes. These processes are most effective at energies around the chemical
potential of the hotter electrode. It follows from our calculations of S, which is typically larger than S, that
measuring the thermopower under a finite voltage and sensing the temperature at the same time may be
challenging, as the current flow (over-)heats the system. In fact, overheating of a metallic quantum dot has been
observed in recent measurements of the thermovoltage in a two-terminal device [62], despite the open circuit
(I = 0) condition.

We note that the asymmetry of the couplings I'; = I'galso affects the Seebeck coefficients. To see this, we
assume V = 0 and a relatively small temperature difference AT = 0.031. Figure 5 shows S, S,,, and S,
calculated for symmetric coupling (thin lines) as well as for an asymmetric system with I'y/I"; = 2 (thick lines).
Interestingly, the largest decrease of the Seebeck coefficient is observed at low temperatures, well below the
Kondo temperature, in agreement with recent findings [61] based on the non-crossing approximation. The
Seebeck coefficient has a minimum at temperatures below T, and the minimum is lower for the asymmetric
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Figure 6. Linear Seebeck coefficient (), calculated for three temperatures T = 1, 0.3, and 0.05, versus e; + U/2 which measures the
distance from the particle-hole symmetric point. The interaction parameteris U = 12,and I'y, = I'g. The indicated occupancy of the
level £ ;depends on the gate voltage.

coupling. The asymmetry of the couplings is an important experimental observation [63], and should be taken
into account in any calculation comparing with experiment [64].

The experiment mentioned above [62] has shown the usefulness of the nonlinear Seebeck coefficient for the
analysis of the experimental data. The authors have directly measured the thermovoltage Vy;, of a two-terminal
device, similar to that shown in figure 1(a), however, for a sizable metallic island. In order to compare
experimental data with theory, Vi, was calculated as S - AT: notably, the agreement can be improved (details
depending on parameters) when using the nonlinear expression [62], i.e. the calculated S,, instead of S. The
remaining disagreement is likely due to heating. In this context, it may also be useful to employ the differential
coefficient, ;. However, a detailed quantitative comparison with experimental results is beyond the scope of this
paper, since, inter alia, the model investigated here likely is too simplified compared to the metallic islands
actually studied.

Our theory also allows to explain the results shown in figure 4(a) of a recent experimental paper [29], albeit
with a notable exception. These authors have found ‘striking’ sign changes of the Seebeck coefficients, in
addition to the standard sign change at the particle-hole symmetric point. These sign changes depend on the spin
configuration of the quantum dot and are observed with increasing temperature. In the experiment [29], Sin
fact changes sign at three values of the gate voltage, with one of them at the particle-hole symmetric point. Two
other gate voltages at which sign changes appear are related to consecutive energy levels crossing the chemical
potential.

In our theory for the single-level quantum dot, the sign change is observed when one of the resonance levels
eqorey + Ucrosses the Fermilevel in response to the gate voltage. In order to describe this effect, we have
calculated the linear Seebeck coefficient for U = 12I'y, and for three different temperatures, see figure 6. One
sees that the Seebeck coefficient vanishes not only at the particle-hole symmetric point, e; + U/2 = 0, butalso
atthe pointse; + U/2 = —6['gande,; + U/2 = 61y Intherangee,; + U/2 > —61, Sis positive for low T
but negative for elevated temperatures. For the considered value of U = 12I'y, and for a gate voltage such that
€4 + U/2 = —61y, the doubly occupied level ¢; + Ujust crosses the chemical potential (located at zero energy)
from below. This implies that at this gate voltage the system crosses over from double to single occupancy. A
similar situation is observed to theleft of ¢; + U/2 = 6"y, when the level £ ; crosses the Fermi energy and the
occupancy changes from single occupation to empty with increasing e; + U/2 from below to above 61,

The vanishing of the high temperature thermopower at these two points in our approach results from the
perfect symmetry of the dot density of states around the Fermi energy for the corresponding two gate voltages. At
very low temperature, the Kondo effect sets in and we are getting very deep minima when e 0re; + U cross the
chemical potential, while experiment shows a local maximum of the thermopower at these points for T < Tk.
We emphasise that the typical asymmetry of the Kondo peak outside the particle-hole symmetry point is well
reproduced by the present approach. The experimental data in figure 4(a) in [29], on the other hand, seem to
show only positive (or negative), i.e. finite values of S around those special points at the lowest temperatures,
with an apparent maximum (minimum) at the gate voltage where the theoretical Seebeck coefficient hasa
dip (peak).
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In this context, we also wish to mention the experimental results presented by Svilans et al [65], which for
zero magnetic field are essentially very similar to our findings (figure 6). The experimental results are analysed
theoretically in [66] with focus on the field dependence, employing the numerical renormalisation group (NRG)
method. While this technique is numerically exact, it is limited to linear response. In particular, the NRG
method provides a maximum of S, in agreement with experiment, where our elaborated EOM technique
predicts a dip. Seemingly, the NRG characterises the Kondo state better than the EOM method.

5. Three-terminal thermoelectric heat engine: the role of strong Coulomb interactions

As already noted, a thermoelectric device can serve as waste heat to electricity converter. Since energy harvesting
is an important issue at large and small scales, its proper understanding may have important scientific and
societal implications. As discussed in the Introduction, the figure of merit, ZT, ceases to be a good quality
indicator in nanostructures [13, 15], and both the power and the efficiency are required. The quantities of
interest are the maximum power, and the efficiency at maximum power. As it turns out the interactions between
electrons strongly modify all transport characteristics. In the present model, the linear response calculations
generally lead to lower values of /7 than those obtained from the fully self-consistent results, to be described in
the following. However, in both cases the interactions tend to diminish the maximal power and the efficiency.

The focus of this section is on the effects of strong interactions between the on-dot electrons on the
performance characteristics of the three-terminal heat engine shown in figure 1(b). For the non-interacting case
but well outside equilibrium, such a device has been studied earlier [28, 38]. A more recent extension takes
screening effects into account, treating the interactions within a mean-field approximation [37]. The main
conclusion was that albeit the screening modifies the parameters at which the engine is optimal, it does neither
change the maximal power nor the efficiency at maximum power. A similar heat engine has also been optimised
with respect to the transmission function [67].

In particular, we have found [37] that the three-terminal heat engine at optimised conditions attains an
efficiency slightly above 0.2 in units of the Carnot efficiency, and that this value is roughly the same as the one
without screening effects. The optimisation involved the effective coupling between the dots and the leads,

I'/ T, the temperature difference between the electrodes, AT/ T,,, and the load voltage, V; T, denotes the
average temperature of the system. (The coupling I" introduced here refers to the symmetric case with

I'} = I'r = 'y = I'[37]). The calculations have shown that the optimal coupling, i.e. the one leading to the
maximal power if other parameters remain fixed, is of the order of the average temperature, I'/T,, ~ 1. The
efficiency has been found to depend rather weakly, and the power strongly on the temperature difference AT
between the hot (H), Ty = T + AT, and the two cold (R, L) electrodes, Ty = Ty = T.

Here we shall pursue the analysis assuming nonlinear working conditions and taking strong interactions into
account. In particular, the calculations include the Kondo regime. To this end, we use the general expressions (3)
for the charge and (4) for the heat current flowing out of the A lead, energy conservation, and the general
expression (11) for the on-dot Green function. From the charge current flowing from the left to the right
electrode, and the heat current flowing from the hot to the cold electrodes, we calculate the performance of the
engine as quantified by the maximum power P, and the efficiency n at maximum power.

In order to demonstrate the effect of the Coulomb interaction on the performance of the engine, we show in
figure 7 the efficiency ) versus power P. The efficiency is measured in units of the Carnot efficiency,

Nc = AT/Ty = 0.4, and the power is normalized by (kg Tay)?. The plot shown in panel (a) has been obtained by
calculating the heat and charge currents as well as the optimal voltage (and the power) for a given difference of
the dot’s energy levels, AE = e — &1, where ey (¢]) refers to the energy level of the right (left) dot, see figure 1.
Note that for appropriate values of e (¢1) and low temperature, the respective dot may show Kondo behaviour.
This has an important effect on the 7—P plot.

In panel (a) of figure 7 one sees that the U = 0 curve essentially encompasses all curves obtained for the
interacting case. Coulomb interactions generally suppress the performance characteristics—at least so under the
assumptions of the present approach, including the wide-band approximation. The temperature of all
electrodes are such that this system (figure 7(a)) is always outside the Kondo regime.

To illustrate the behaviour of an engine working in the Kondo regime, we show in figure 7(b) a similar plot,
but obtained for a two-terminal system and a much lower value of the average temperature. For the interaction
U = 8I'y, and temperatures T; = 0.15I'g, Tr = 0.25I, the dot enters the Kondo regime for a range of gate
voltages (or 7). The Kondo effect results in the appearance of the new performance branch on the n—P plane. As
visible in panel (b) of the figure, this region is characterised by efficiencies and powers lower than those outside
the Kondo regime.

The results shown in figure 7 have been obtained under the assumption that the couplings to the leads equals
the average temperature, I' = T,,, the value which has been found to be optimal (i.e. leading to the maximal
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Figure 7. Panel (a) shows efficiency versus power for the three-terminal quantum dot engine, assuming optimal values of the
couplings:I'y =T'r =Ty =T = T, with AT = 0.5, T, = T =T=0.75,Ty = T + AT = 1.25,T,, = T + AT/2,and afew
values of the Coulomb interaction parameters U. Panel (b) shows the efficiency versus power plot for a two-terminal system. For
U = 8and arange of values of the dot energies ¢4, the Kondo effect is observed at the considered temperatures. The Kondo effect
results in the second (lower) branch on the 7—P plane. In the Kondo region the performance of the system as a heat engine does not
exceed that in the other region.

power) for the non-interacting system. Analogous to [37], we change the dots’ energy levels, thereby varying the
difference AE = ez — €1, and calculate the power and efficiency for each AE for the optimised value of the load
voltage V. The curves in figure 7 are thus parametrised by AE.

Regarding the experimental situation, very recently a three-terminal two-quantum-dot system identical to
the three-terminal system studied here has been found [68] to generate a power of 0.13 fW, its efficiency being
estimated to belarger than ) = 0.17¢. To find the actual values of the device power, we need the width of the
resonance level, I'. Assuming I' = 0.15 meV (which is the average value of those mentioned in figure 4 of [68]),
we find that the maximal power in figure 7(a) equals 3.92 fW. The corresponding estimate of the power at the
efficiency n/nc = 0.1 gives P = 0.44 fW, in good agreement with the experimental value, taking into account
the uncertainty in estimating I', its non-optimal value in the actual experiment, and a possible asymmetry of the
couplings. In fact, the maximal efficiency we obtain, for optimised parameters, is slightly above 0.2 of the Carnot
value.

6. Summary and conclusions

We have studied the thermoelectric transport properties of two- and three-terminal systems with quantum dots,
paying attention to strong interactions of electrons on the dot(s) and far-from-equilibrium conditions. As
theoretical tool, we have used the suitably generalised equation of motion technique. We have shown that the
method is able to capture the Kondo resonance even for a system with particle-hole symmetry. The voltage
across the system splits the resonance. Interestingly, the increase of the temperature of one of the electrodes
affects the Kondo resonance pinned to the chemical potential of that electrode. This adds to the discussion of
decoherence effects in non-equilibrium conditions. It turns out that the decoherence mainly takes place at
energies close to the chemical potential of the electrode with temperature higher than the Kondo temperature.

Of particular importance is the nonlinear regime at large external voltage bias V and large temperature
difference AT, since the linear approximation is hardly ever valid in nanostructures. This has been again
confirmed here, and is visible as the detrimental effect of strong correlations on the performance of the three-
terminal optimised heat engine. Calculating the maximum power P and the efficiency 7 of the optimised device
for various interactions U, we have observed that except at very low temperatures the curves calculated for
U = 0 are encompassed by the curve obtained for the non-interacting system. Obviously the filtering properties
of the quantum dots are affected by the interactions which broaden or split the density of states, rendering the
filter less effective. This agrees with previous attempts at optimising heat engines by engineering the
transmission function [23, 67]. On the other hand, strong interactions are responsible for the second leaf on the
efficiency versus power plane, visible in figure 7(b). This special feature appears at low temperatures when the
system enters the Kondo regime, albeit for a relatively small range of gate voltages. However, the maximum
values of P and 1) are well below those on the main branch.

The generalisation of the standard linear-response Seebeck coefficient, S, to the strongly nonlinear regime
hasled us to define two coefficients, S,, and S, cf equations (15) and (16). Both are, in principle, valid for
arbitrary values of Vand AT, albeit the first coefficient, S,,, is easier to handle in systems with zero external
voltage but arbitrarily large temperature difference between a given pair of electrodes. The second, called
differential Seebeck coefficient, has been applied earlier [31, 61] to systems with finite current flow and a small
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temperature difference. It has been generalized and studied here for arbitrary AT in the presence of an external
voltage bias V. Interestingly, the asymmetry of the couplings to the external leads has a qualitatively similar
influence on both Seebeck coefficients. They develop a minimum for temperatures well below the Kondo
temperature. The observed quantitative differences between S, and S, are expected to be important for
temperature sensing by means of thermopower measurements [69].

The approach developed in this work has significantly enhanced the understanding of non-equilibrium
thermal transport through quantum-dot based devices, in particular, it has the potential to describe the existing
as well as future experiments on such systems.
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