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Abstract

We report on the dynamics of a Bose—FEinstein condensate in one and two dimensions driven by the
time-dependent harmonic trapping potential. Without the inter-particle interaction, the condensate
exhibits the coherent behavior with the time-oscillating density distribution. When the inter-particle
interaction is taken into consideration, the phase fluctuations, the multi-peak structure of the density
distribution, and the coherence revival phenomenon, apart from the well-studied density oscillation
behavior, can be observed in the condensate. Furthermore, it is demonstrated that due to the
dimensional restriction these effects are more stable in the two and three-dimensional system, if
compared to the one-dimensional case.

1. Introduction

Phase coherence is a novel property of a Bose—Einstein condensate (BEC), which is important for metrology and
quantum information applications [ 1-4]. However, the phase coherence property of BECs can be perturbed, or
ultimately destroyed by phase fluctuations arising from various sources [5—20]. For instance, the thermal
fluctuation [9-11], change of the trapping potential [ 18, 19], variance of the inter-particle interaction [6, 13]
have been reported to suppress the phase coherence of BEC. By releasing from the trapping potential, the phase
fluctuations can be transformed into density fluctuations, represented typically by a multi-peak distribution
structure, which can be in turn used for the description of the phase fluctuations [16, 17].

On the other hand, the time-dependent harmonic trapped BECs exhibit an intrinsic conformal symmetry
[21-23], where the widths of the condensate wave packet for different times can be linked to each other by the
time-dependent scale parameters. Hence, with the aid of scale parameters, the condensates experiencing the
time-dependent harmonic potentials can be transformed into time-independent forms of which the spatial
variation of density widths can be inferred from the scale parameters [23—38]. The monopole, dipole and
quadrupole collective dynamics of the condensate, the self-similar collapsing dynamics, and the expanding
dynamics after switching off the trapping potential can all be well described by the scaling method
[24,31, 36, 38]. Kuznetsov et al [33] and Zakharov et al [36] have also demonstrated that the scaling method in
the hydrodynamic limit can be used for describing the angular oscillations of differently shaped BECs and the
oscillations at the edges of the expanding condensate. However, when the trapping potential varies fast or
changes suddenly, the condensate cannot evolve adiabatically; large phase fluctuations may occur in the
condensate, which could give rise to a multi-peak structure of the density distribution of the condensates, and
ultimately would lead to the deterioration of the coherence of BEC[18, 31]. Such dynamic effects are clearly
beyond capabilities of the scaling method. The origin of phase fluctuations in the time-dependent trapped BECs
has not been fully understood and their effect on the phase coherence of the condensates needs to be investigated
in detail.

In this paper, the phase fluctuations induced in a BEC by the time-dependent harmonic trapping potential
are investigated. By using the algebraic dynamic approach and the scaling method in the ideal Bose gas limit with
no inter-particle interaction, a comprehensive descrition of the condensate density variation with time is
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provided and subsequently confirmed by numeric simulations. In the ideal Bose gas limit, the phase fluctuations
are absent, and so the condensate remains coherent all the time, even the trapping potential changes very fast
with time. If the inter-particle interaction is taken into account, the scaling method can provide a consistent
description of the overall variation of the condensate driven by slowly (harmonically) changing potentials.
However, additional multi-peak structure appears in the system due to the phase fluctuations induced by the fast
time-increasing potential. In addition, the formation of such complex structure is found to be accompanied by
the coherence revival phenomena.

2. Theoretical analysis

Let us focus on the dynamic evolution of a two-dimensional (2D) condensate driven by a time-dependent
(anisotropic) harmonic potential V (r) = m>", war; /2 with u = x, y. The corresponding dynamics of the
system is described by the Gross—Pitaevskii equation (GPE)

i 8_1/} — _ﬁ_z m 2 2 2
i7 5 - am Ay + [ 5 ;wu(t)ru + Ulyl ]zb, (1)

where ¥ (7, t) is the normalized wavefunction satisfying f dryfyp = 1. For convenience, we take natural units of

length and energyas ag = /2 /mw, and E,, = hw, respectively, with wy = w,(0) = w,(0) being the initial
isotropic harmonic frequency. The GPE then can be written in the dimensionless form

00 _

1 L 2 el
o [ 2A+ zzujAu(t)rﬁﬂlwl ]1,/1, ®)

where ¢ = agt, 7, = 1,/a¢ T = wot, Au(t) = w(t) /wi,and B = U /(a/iv,). In the following, the tilde is
omitted without losing the physical properties.

2.1. Absence of inter-particle interaction

Considering an ideal Bose gas without any inter-particle interactions (i.e. 5 = 0), the dynamics of the
condensate along the x- and y- directions are completely decoupled from each other. The total Hamiltonian can
be writtenas H (t) = >_, H,, where

H(t) = (%ﬁj + %Aua)qj) =k, + Auk) 3)

with £, = p2/2, k, = r2/2and k= —i(p, 1, + 1uP,) /4 being the operators of the SU(1, 1) algebra,
satisfying [12:, IQV_] = 20, l€u0 and [lguo, Igvi] = +6, léf. By performing the gauge transformation
Uit) = exp(iy_, v, (t) Igu_) exp(X, vy léf ) under the best gauge conditions

2v, — 70 =0, expv)[(v,)? + Au(t) + v, 1 =1, 4)

the Hamiltonian transforms into [39]
a=uvnhu-—iv?Y - S°f, (t)(lﬁ2 + léz)
or o\t )
where f (t) = exp(— v2(t)). The instantaneous gauged ground state of H is easily derived as

D(ry 1) = \/g exp(—iy Hu(t))exP(—% >, 5)

u

where 6,(t) = — fo ' 1, (7)d /2. Correspondingly, the exact solution of the origin Hamiltonian H(#) with the
time-dependent potential can be found,

_ s i, 1 2,2
WYty t) = T exp[ 1; 0,(t) + ; Zvu ru]exp[ 5 ;ru /X (t)] 6)

with x,(t) = exp(v2(t) /2). From the equation (6), one can see that under the influence of the time-dependent
harmonic potential, the wavefunction of the ideal Bose gas includes a dynamic phase 3 (v, .2) /2. The spatial
distribution of density becomes time-dependent as well, and its width is modulated by x,(¥).
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Taking into account gauge conditions in equation (4), the equation of motion of () can be written as,

X = — — AuD X @

u

which determines the time evolution of the density distribution. Note that the dynamic parameter v, depends
on X,(t) through the relationship v, = X/, Therefore, the density and phase dynamics are not independent
but bound to each other even without any inter-particle interactions.

2.2. Presence of inter-particle interaction

If the inter-particle interaction is taken under consideration, the system becomes highly nonlinear, and the
above algebraic dynamic approach is no longer applicable. However, if the BEC is in the hydrodynamic limit, the
system preserves the intrinsic conformal symmetry [21, 22, 32]. Using the scaling approach and introducing the
scaling parameter b,,(t) gives the solution of the condensate in the following form [24-26]

Y= VA& (dw T(0)explio(r, 1)) ®

whered, = r,/b,(t), the dimensionless volume V(¢) = [], b,(t)and 7(¢) = ft dt’/V(t’). The phase is given

byo(r, t) =3, r? [b,(t) /2b,(1)], which is very similar to the dynamic phase in equation (6). In other words,
the scaling parameter b, plays the same role as x,,(¢) in the ideal Bose gas limit. Furthermore, here, b,, is
determined by the self-consistent equation

by + Au(t)b, = 1/(b, (1)), ©)

which takes similar form of the equations of motion of x,,(¢) (equation (7)). It is clear that the induced time
modulations of the density (described by b,,) and the phase (determined by b, /byu(t))are ultimately coupled to
each other in the condensate with finite inter-particle interactions.

Given the initial conditions b,(0) = 1, b,(t) = 0, we get the dynamic equation of &, [25]

'% - _l V() l 2 2
e = Tl iy Aty i+ OGP (10)

In the Thomas—Fermi limit, an universal scaling solution reads

u

2

1/2
&6y T(D) = %[u ~ %Z b?(‘t)) exp(—iuT (1)), (11)

u

where p1is the chemical potential. The dynamics of BECs is then described by the equations (8), (9), and (11).

3. Numerical simulations

According to the above theoretical analysis, when the system is driven by the time-dependent harmonic trapping
potential, the condensate wavefunction includes an extra dynamic phase, no matter if there is the inter-particle
interaction or not. Such a dynamic phase quadratically depends on the position r,, and may lead to decoherence
effects. Moreover, because b, /b, (X, /x,) varies with time, it could also exert further influence on the
decoherence process. These combined spatiotemporal oscillations of the dynamic phase may produce
significant phase fluctuations in the dynamic evolution process [ 19]. However, both the algebraic dynamic
approach and the scaling method can only give a consistent description for the overall density profile of the
condensate, the detailed structure and internal fluctuation evaluation are beyond their capabilities and the use of
quantitative numeric methods is required.

The coherent property of the condensate is directly linked to the long range off-diagonal order of BEC [42],
which can be inferred from the spatial correlation function [7, 8, 20, 43—45]

C(r) = [P0 Y(r) + (1) ¥ (0)] /2. (12)

Clearly, the phase decoherence will result in random spatial fluctuations of C(r). For the (coherent) ideal Bose
gas, described by equation (6), the correlation function reads,

C(r) = exp(—x?/2x})cos(v, x2/2) (13)

X
which is determined by the spatial distribution of density and the extra dynamic phase through the parameters
Xxand v, respectively. On the other hand, in the strong inter-particle interaction limit, with the scaling solution
equation (11), the correlation function is given by
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Figure 1. The dynamic evolution of the 1D time-dependent harmonic potential trapped BEC with 3 = 0and A = 10. (a) The
variation of the density distribution with time. (b) The condensate size o, obtained from the numerical simulation and its matching
with the scaling result 0¥ and the exact solution oX.

B2V 257 byt

1 1 r?
Cr) = —= [mlw = =22 cos(¢) (14)
which is given by the chemical potential and the dynamic phase ¢. In addition, in the following, we will trace the
dynamic evolution of the amplitude and the phase through two well-defined functions f”(t) = 1/b,(t) and

£2(t) = b, (t) /(2b, (1)), respectively.

3.1. One-dimensional (1D) BEC

For better understanding of the dynamic phenomenon in BECs, the 1D condensate was investigated firstly. To
induce phase fluctuations in 1D system, the trapping potential parameter 4,(f) is set to increase with time,

A, = (1 + \t)%, where \is the tunable speed parameter.

The time evolution of BECs is obtained by introducing 4,(t) into equations (4), (7), and (9). For comparison,
abetter quantitative description of BEC dynamics is provided by numerically solving the GPE via the well-
developed GPELab [40, 41]: firstly, the ground state of the system is obtained with the imaginary time method
[41], then with the time-splitting scheme[40], the dynamic evolution of the system driven by the time-
dependent trapping potential is determined. Numerically, the expected value (02) of x” is used to characterize
the density dynamics, 03 = [¢*x%)dx.

The variation of density distribution with time is shown in figure 1(a) and the parameters used in the
simulation were set as follows: 3 = 0, A = 10. For better quantitative comparison, by multiplying the parameter
b, and x, with the initial condensate size 0,(0), the condensate size predicted by the scaling method and the
algebraic dynamic approach can be obtained: Ufc = b,0,(0), 0¥ = X, 0,(0). Figure 1(b) shows the numeric
condensate size o, together with the analytical result 0¥ and oX. As demonstrated in figure 1, in the case of BEC
without inter-particle interaction (8 = 0), the exact solution o} oscillates with the amplitude reducing and the
frequency increasing gradually. Furthermore, both the condensate size o, (from numeric simulation) and the
scaling result 0¥ give correct predictions of the oscillation behavior, confirming, thus, the validity of the GPELab
and the scaling method. On the other hand, one can see that while the oscillation behavior of o} is perfectly
synchronized with o, the scale parameters o shows a little phase mismatch and amplitude decrease comparing
with o, due to the difference in equations of motion used. Figures 2(a) and (b) demonstrate the dynamic
evolution of space- and phase- time modulating functions f”, f;/’, as obtained from the scaling method, and
1/Xx% v, inalgebraic dynamic approach, respectively. From the figures, it is obvious that both the scaling
method and the algebraic dynamic approach give similar results; the space- and phase- time modulating
functions are fully synchronized with f;/’ (g ), which changes abruptly at the peak of f” (1/x ). As can be seen in
figure 1(a), even with such an abrupt phase variation, the condensate only oscillates with time and no signature
of the phase decoherence is observed. This behavior can be explained by the sound velocity in BEC, which is
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Figure 2. The space- and phase- time modulating function from (a) the scaling method f7, ff’ and (b) the algebraic dynamic
approach v, 1/x,. (The parameters are settobe 8 = 0 and A = 10.)

directly linked to the inter-particle interaction ¢ = W [42] (nis the particle density), and sets up the upper
limitation for the speed of information exchange in the condensate. In the absence of the inter-particle
interaction, the sound velocity in condensate is zero. Hence, the dynamics in different locations is uncorrelated
and controlled only by the external time-dependent potential, as results from the correlation function
equation (13). The wavefunction of the system is well described by the solution of equation (6) in the algebraic
dynamic approach, which is exact and coherent all the time. Thus, the system changes adiabatically under the
drive of trapping potential, the coherent property of the condensate is preserved and the changes in the
condensate phase do not cause any fluctuations in the density distribution.

When the strength of the inter-particle interaction is non-zero, the condensate size is again modulated by
parameter b, (equation (9)) and the time variations in the space- and phase- modulating functions f?, ff are
also same as in the non-interacting case (see figure 2(a)). But the presence of the inter-particle interaction makes
the condensate dynamics in different positions correlated and the abrupt phase variation can lead to changes in
the density distribution.

For the inter-particle interaction strength 3 = 100, variations in the density distribution and condensate
width with time are shown in figures 3(a) and (b), respectively. From figure 3(b), one can see that the variations
of condensate size o, and the scaling result o, are synchronized in the early stage. But starting around t = 3,
there is a great discrepancy between . and o and the amplitude variation of o is much smaller than o, which
indicates that the system radically changes from the hydrodynamic limit and goes beyond the scaling method
description.

Figure 4 shows the condensate density distributions (black line) and the corresponding spatial correlation
(redline) C(x) at different times t = 0.0, 1.63, 1.70, 1.97, 2.03, 5.50. As can be seen in the figures, the spatial
correlation profiles not only overlap with the density distribution lines, but also contain the additional phase
distribution information, from which the phase fluctuations can be determined. In contrast to the non-
interacting particle case, where the phase variation does not affect the condensate density distribution, the inter-
particle interaction leads to the phase dispersion across the condensate, which would give rise to the additional
phase fluctuations and interference effects in the system. Because the dynamic phase quadratically depends on x,
it willincrease faster further away from the center of the condensate. Therefore, under the influence of the
phase-time modulating function f¢, in the contraction process, the wide phase variations at the edges of the
condensate quickly disperse inwardly and multi-phase modes accumulate in the condensate. Due to these
process, the phase of the condensate will be disturbed by the multi-peak structure arising at the edges of the
condensate and subsequently moving towards the center of the condensate. From figure 4, it is obvious that the
distinct phase fluctuations arise in the condensate att = 1.63, 1.97. On the other hand, in the expanding process,
the phase variations move outwards and the correlation function follows the proposed model and varies
smoothly; no observable phase fluctuations emerge (+ = 1.7 and 2.03 ). In addition, the phase-time modulating
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Figure 3. (a) Multi-peak structure of the density distribution of the 1D Bose—Einstein condensate for the interaction strength
8 = 100. (b) The condensate size o, which for 3 = 100 deviates from the scaling result ¢ in long time.
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Figure 4. The condensate density distribution (black line) and the corresponding spatial correlation function (red line) at different

timest = 0.0, 1.63, 1.70, 1.97, 2.03, 5.50 with parameter 5 = 100,and A\ = 10.
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Figure 5. The condensate dynamics under harmonically changing potential. (a) The condensate density distribution oscillates with
time. (b) The condensate sizes (o) perfectly matches with these obtained by the scaling method (of’().

function ff changes from negative value in the contraction process to positive value in the expanding process.
Atzero point, the coherence property of the system can revive [ 19], and so the phase coherence of the condensate
reemerges in the expanding process. However, in the long-time simulation (figure 4, t = 5.50), a chaotic motion
may occur in the system due to the accumulation of the phase and density fluctuations.

When the trapping frequency changes harmonically in time, instead of increasing the trapping potential
frequency linearly, the condensate oscillates with time following the variations in frequency. In figure 5, the
trapping frequency of 1D condensate was changed harmonically with A, = (1 + sin(10t)?. Itis shown that the
condensate remains coherent at all the investigated times, the variation of the condensate size can be well
described by the scaling method, and there is no signature of the density or phase fluctuations. For 2D and 3D
cases, the obtained results are similar to these of the 1D case: no phase fluctuations and multi-peak structure are
observed and the time evolution of condensate is consistent with the scaling method if the trapping potential
changes harmonically in time.

3.2.2D BEC

Due to the restriction of the 1D system, the phase fluctuation signature and the phase revival behavior cannot
sustain for long time. In order to stabilize these effects, a less restricted system, i.e. a 2D time-dependent
harmonic potential trapped BEC is considered. To induce phase fluctuations in this system, we increase the
frequency of harmonic trap in the x direction and keep the y direction unchanged, thisleads to A, = (1 + At)?,
A, =1

In the absence of the inter-particle interaction, the system dynamics along different directions are
decoupled. Since the frequency of the harmonic trapping potential only changes along x axis, the condensate
dynamics is restricted in the x direction, which makes the system an effective 1D system similar to the system
discussed in previous section. The condensate remains coherent all the time with the width along the x direction
varying with time identically as in the 1D case (figure 1(b)), the space- and phase- time modulating functions are
also synchronized, resembling the 1D case (figure 2).

In contrast to the ideal Bose gas limit, the presence of the inter-particle interaction as an origin of nonlinear-
type interactions would lead to the coupling of dynamics along different directions, as demonstrated in
equation (9). Then, the time-dependent harmonic potential along the x direction not only drives particles to
move around in the x direction, but also exerts a non-trivial influence on the dynamics along the y direction. The
dynamic equation (9) become as follows:

by =—(1 + \)*b, + 1/(b}b)),

by=—b, + 1/(b;by). (15)
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Figure 6. (a) The condensate density oscillation for the inter-particle interaction strength 3 = 100. The oscillation matches well with
the scale result in the x and y directions. (b) The space- and phase- time modulating function f?, ff respectively, in the x direction.
The functions are well synchronized. (c) The space- and phase- time modulating function f, ff’ along the y direction. The functions
are synchronized poorly. In addition, the ff’ function includes the phase fluctuations.

By solving the coupled equations in equation (15), the corresponding variation of the scaling parameters b,,
b, can be obtained. In our numerical calculations, the interaction strength was set to 3 = 100. As one can see in
figure 6(a), by including the inter-particle interaction, both the condensate size 0, and o, oscillate with time.
Comparing with the scaling results O’Z = b,0,(0)and Jl}], = b, 0,(0), the variation in the condensate size is well
described by the scaling method. Along the x direction, o, and ¢/ are synchronized, while in the y direction, o, is
smaller than the scaling method predicted value ai’,.

Figures 6(b) and (c) show the variation of space- and phase- time modulating functions along the x and y
directions. From the figures, it is clear that both the functions along the x direction f”, ff are well synchronized
with their wave shapes modulated by the coupling with the y direction, while as those along the y direction
f y" , fy<D are roughly synchronized, and in addition, the phase modulating function fy‘z’ is accompanied with
fluctuations. Thus, the variation in BEC induced by the time-dependent potential in the x direction is
transferred to the y direction by the nonlinear interaction. On the other hand, the presence of the inter-particle
interaction makes the condensate dynamics in different positions correlated. Taking into account all these
effects, the system under the fast varying trapping potential is expected to change non-adiabatically and the
abrupt phase variations in the x direction and the phase fluctuations in the y direction would lead to considerable
changes in the density distribution and, thus, disrupt the coherence property of the system.

Figure 7 illustrates the numerically simulated condensate density distribution and the corresponding spatial
correlation functions at different times t = 0, 1.78,1.90,0.91, 2.72, and 5.5. As can be seen from the figure, the
system not only shows the oscillations of the density distribution with time, but also takes on the multi-peak
structure along both the x and y directions in the evolving process. Such behavior is similar to that in the 1D case.
Thus, the large phase variation induced by the time-dependent trapping potential causes the phase fluctuations
and the decoherence effect along the x direction, and concurrently through the nonlinear coupling, same
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Figure 7. The condensate density distribution and the corresponding spatial correlation function of the 2D BECs at different times
t=0,1.78,1.90,0.91,2.72and 5.5 (6 = 100, A = 10).

behavior can also be transferred into the y direction. Furthermore, a revival of the coherence can be observed
along the x, y directions at the same time, confirming the phase fluctuations and the decoherence effect being
induced by the variation of the time-dependent trapping potential. In contrast to the 1D case, the 2D BEC with
the inter-particle interaction is less restricted. Hence, the influence exerted by the time-dependent potential,
which can be transferred to the other direction, makes the above mentioned phase fluctuations, the decoherence
effect and the coherence revival behavior more stable and suitable for observation. However, in the longer time
simulation, the undesirable additional excitations and chaotic motion may occur in the system.

For experimentally feasible 3D case, we obtained similar results. Starting with an initial 3D isotropic
harmonic trap, we changed the harmonic potential frequency along the zdirection by A, = (1 + t)?with
A = 10and kept the frequencies along the x and y directions unchanged. Because of less dimensional restriction,
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the 3D case is found to be more stable, the related density and phase fluctuations, phase coherence revival
phenomena are similar to these of the 2D case but the phase coherence can be maintained for much longer time.
Furthermore, due to the isotropy in the xy plane, the density distribution in the xy plane is accompanied by a
formation of ring structures, similar to Newton rings in optics [33].

4, Conclusion

The dynamics of BECs under the time-dependent harmonic trapping potential was investigated. If there is no
inter-particle interaction, the condensate remains coherent all the time with its density distribution oscillating in
time. Even in the case of the strongly time-varied dynamic phase, no change in the density distribution of BEC
was found. By employing both the algebraic dynamic approach and the scaling method, the oscillation behavior
of BEC was successfully described. When the inter-particle interaction exists in the system, the sound velocity of
the condensate becomes non-zero. The abrupt phase change produces considerable phase fluctuations in the
system, which perturb and destroy the coherence property of the condensate. The occurrence of these
fluctuations was further linked with the existence of the multi-peak structure of the density distribution. Because
the dynamics phase induced by the time-dependent trapping potential can be zero at various time, the
condensate was also found to exhibit the coherence revival behavior. In the 1D time-dependent trapped BEC,
due to the low dimensional restriction, various modes and fluctuations are easily induced and populated with
time, and may lead the system into chaotic motion very quickly. In the less-restricted 2D and 3D BECs, the
dynamic characteristics along different directions are coupled together by the nonlinear interaction, making the
system more stable and suitable for observation.
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