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Abstract
We report a theoretic study of the two-parameter adiabatic charge pumpbased on the bilayer and
trilayer graphene systems. The two perpendicular time-dependent electric fields with a phase lag
between them are taken as the pumping potentials, which induce an instant energy gap in each
pumping region. Based on both a continuummodel and a latticemodel, we show that the pumping
results from the bilayer and trilayer graphene systems are very different when the Fermi energy
happens to reside in the opened energy gap: there is no pumping current for the bilayer systemwhereas
a quantized charge pumping effect emerges in the trilayer-graphene based pumpdevice. This
difference can be accounted for by the different Berry phases ofDirac electrons in the two systems.
Ourfindingsmay shed a light on developing a quantized charge pumping device.

1. Introduction

Since a single layer of graphite isolated successfully in 2004 [1], graphenehas attracted swiftly a great interest in
condensedmatter physics.Asboth the thinnest and the strongestmaterial evermeasured [2], graphene further ignited
the researchof thedevices basedoncarbonmaterial [3, 4].Moreover, theparticles have a linear energydispersion
around thebandcenter that canbedescribedby amasslessDirac equation leading tomanypeculiar transport
properties [5]. TheCarbonatomsare assembled into ahexagonal latticewith aunit cell comprising the two site-
inequivalentCarbonatoms [6],which canbe regardedaspseudospin, anotherdegreeof freedominaddition to the
valley and spin. In the last several years, thebilayer (BLG) and trilayer graphene (TLG)have attractedmuchattentionof
researchers [7, 8]. A striking feature is the stacking arrangementof graphene layerswhich fundamentally changes the
electronicproperties ofmultilayer graphene [9–11].And it hasbeendemonstrated systematically that thebandgapof
themultilayer graphenewith rhombohedral stacking canbe controlledby aperpendicular electricfield [12–15].

The transport properties ofmultilayer graphene have also been extensively and intensively studied in
literatures [16–18], andmuch different and unconventional transport phenomenawere predicted. Among those
is the quantumpumping effect of the electric charge, spin and valley degree of freedomon themultilayer
graphene system [19–25]. E.g. Chan [26] and coauthors studied the possible layer polarization pump in a BLG
system, and they regarded the graphene layer as one pseudospin degree of freedom in order to obtain the
pseudospin polarized pumping currents by a perpendicular time-dependent electric field.

In thefield of the quantumparameter pump, researchers are payingmuch attention to the quantized pump
effect, i.e. an integer number of charges are pumped out in a pumping cycle because the pumping quantization is
quite desirable in building a standard of electric current. For the noninteracting electron system, the Thouless
topological pump [27] is the first proposal stating that a one-dimensional (1D)moving potential can pump out
an integral charge when the Fermi energy lies in the energy gap opened by themoving potential. Recently, several
research groups [28–31] have independently observed such quantized pump in 1Doptical superlattice or cold-
atom systems.However, it is still a challenge to implement such an experiment in the electron system, because it
is quite difficult to control the varying potential precisely in experiments.

In a previous work [32], two of the authors investigated a newpumping scheme for the quantized charge
pump in themonolayer graphene system, and they concluded that the pump is quantized as long as the pumping
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potential can induce an energy gap of theDirac electrons. However, it is practically difficult in experiment to
generate a time-dependent staggered potential in themonolayer graphene. On the contrary, one can easily
employ a perpendicular electric field to induce a staggered potential in amultilayer graphene system [12–15],
and the potential difference among layers will open an energy gap of the electrons. Therefore, it is desirable to
studywhether the quantized pump found in themonolayer graphene [32] is automatically applicable to the
multilayer graphene device.

In this work, we study the charge pumping effect in some typicalmultilayer graphene systems like the BLG
andTLG,which are chosen as the basematerials for the pumping device as examples. By using the Büttiker–
Prêre–Thomas (BPT) pumping formula [33] in the adiabatic limit, we calculate the pumping current in both a
continuummodel and a latticemodel and show that the pumping results from the BLG andTLG systems are
almost opposite. The quantized pump is only found in the TLG systemwhereas there is no any pumping current
in BLG systemwhen the Fermi energy resides in the energy gap opened by the applied pumping potentials. The
drastically contrary results stem from the different Berry phases of themassiveDirac electrons in the BLG
andTLG.

The paper is organized as follows. In section 2we introduce a simplifiedmodel for bi(tri)layer graphene and
work out the consequences on the pumping current. In section 3we discuss the results for the continuummodel
on account of the two-bandHamiltonian ofmultilayer graphene. The discussions and conclusions are presented
in section 4.

2. Latticemodel

In order to systematically examine the pumping effect in themultilayer graphene system, we consider a
traditional two-parameter pumping device based uponBernal(AB)-stacked BLG and rhombohedral(ABC)-
stackedTLG. The pumping setup is composed of two electrodes and two pumping regions, which are separated
within a length of L0 and subjected to the time-dependent pumping potentials =Ui 1,2 on the outermost regions as
shown infigure 1, which can be implemented by perpendicular electric fields via capacitors. As a result, the
staggered potential in each layer due to the electricfieldwill open an energy gap ofDirac electrons in the local
pumping regions. This energy gap is the prerequisite for possible pumping quantization in themonolayer
graphene system [32].

Wefirst consider a latticemodel to calculate the possible pumping currentflowing through the BLG and
TLGdevice infigure 1. Actually, the features of the low-energyDirac electrons depend crucially on the stacking
style ofmultilayer graphene. In this work, the AB(C) stacking is chosen because the energy gap can be opened
much easier due to the applied electricfield [11]. Andwe just take the nearest hopping terms in interlayer and
intralayer into account, since the trigonal warping effects has little effect on our study. The low-energy bands can
be described by an effective tight-bindingHamiltonian [34]
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Here, thefirst and second terms describe pristinemultilayer graphene, á ñij stands for the nearest-neighboring
sites, ( )†C Ci n i n, , is the creation (annihilation) operator at site i in the nth layer, ( )¢ = n n n 1 is the layer index, t
is the nearest hopping energy in the same layer, and g = t0.131 is the vertical hopping energy between the nearest
layers. The third term is the time-dependent pumping potentials induced by the perpendicular electricfield,

Figure 1. Schematic of the adiabatic pumping device based on the bi(tri)layer graphene. The two time-dependent potentials with
identical length L, a phase lagj and distance L0 between them are applied,U1(τ) andU2(τ). The pumped currentflows along the x axis
and the device is connected to semi-infinite left (L) and right (R) electrodes.
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( )m = + - 1n for the bottom (top) layer for simplicity, i.e. the top and bottom layers of the BLG andTLGhave
opposite on-site potential energywhile a zero energy potential is assumed in themiddle layer of the TLG
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whereUτ is homogeneous in thefinite-length L region,U0 is the pumping strength, andj is the pumping phase
shift. L0 is assumed to be the region length between two pumping areas. The frequency of the potential
modulationω assumed to be infinitesimal since the adiabatic pump is considered in this work. Similar to the
monolayer graphene [32], the pumping potentials with opposite signs will generate a topological interface state
between the two pumping regions, which are critical to generate a quantized charge current when the Fermi
energy lies in the energy effect gap opened by the pumping potentialsUτ. The BPT formula [33] is employed here
to calculate the pumping current in adiabaticity
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where t is the instantaneous scatteringmatrix withα being the left or right electrode index,α=L,R, and
T=2π/ω is the pumping cycle. In order to carry out numerical calculations by the convenient Green’s function
method, the above equation can bewritten as [32]
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where ( )G = S - Sa a a
+i is the line-widthmatrix of the semi-infinite electrodeα, andΣα is its corresponding

self-energy function. [ ]( ) =  -t t
+ -G E i0r a 1 is the instantaneous retarded (advanced)Green’s function of

the two-terminal device,  t=t tU Ud d is the time derivative of pumping potentials, and the trace is over the
transverse sites of a unit slice of the lattice pumpingmodel. TheGreen’s function ( )

tGr a can be calculated by using
usual recursive Green’s functionmethod [35] since themodel device can be decomposed into three parts of left
and right electrodes as well as the scattering region.

We performour calculations in afinite-widthNy device and present the pumping current IL in both the BLG
andTLGdevices versus the Fermi energy E infigure 2. In numerics, the pumping strengths are set as the same
U0=0.1γ1, the interlayer hopping energy set as γ1=0.13t, while the in-plane hopping energy is set as t=1 eV
as the energy unit, and the ambient temperature is taken as zero. Infigure 2, the red-solid line represents the
pumping result in the TLG system and the current is quantizedwhen the Fermi energy is around theDirac point
(E= 0). This is the same as the IL−E curve of themonolayer-graphene pumping device [32] that the platform
value is e T2 , which indicates that in a pumping cycle, two charges are pumped out.Here, the ‘two’ denotes
the valley degeneracy in the graphene system. In contrast, one can see that there is no currentflowing around the
band center E∼0 from the black-dashed line representing the BLG case. This is drastically contrary to the

Figure 2.Color plot of the pumping current IL as a function ofE in BLGdevice (black-dashed line) andTLGdevice (red-solid line).
Thewidth of device isNy=48.Other parameters are g j p= = =U L a0.1 , 2, 1500 1 , and L0=0with a being the lattice constant.
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pumping result of the TLGdevice.When ∣ ∣E U0.4 0 that the Fermi energy locates outside of the effective gap,
the pumping current for the BLGbegins to raise up but the pumping value is not quantized, and this is just a
usual quantumparameter pump. It is noted here that in our calculations, only one transversemode is involved
in the transport because the Fermi energy is near to the charge neutral point and a narrow lattice ribbonwith
Ny=48 is considered, whereNy is the atomnumber in a transverse one-layer atom chain.

It is seen that the zero-current platform in the BLG system and the quantized platform in the TLGone almost
occur in the same energy region around the original Dirac point. It is clear that the quantized platform stems
from the Fermi energy locating the effective energy gap opened by the pumping potentialUτ, which are the same
as themonolayer graphene case [32]. Certainly, the energymaximumvalue for the quantized platform ismuch
less than the theoretic valueU 20 and this is related to fact that the effective gap in themultilayer graphene
would decrease with the increasing layer number [14]. Outside the effective energy gap, the pumping results are
not quantized andmeanwhile, the instant transmissionwould not keep zero in a pumping cycle. The zero
pumping current IL=0 in the bilayer system is very different from the odd-number layer of the graphite system
like themonolayer andTLG systems. This is related to the Berry phase of electrons responsible for the pumping
current andwewill return to it in next subsection.

In comparisonwith themonolayer graphene pumping, we also study the pumping current IL as a function of
phase differencej. The essential parameterj guarantees the gap opened in thewhole pumping period, which is
the prerequisite of the pumping quantization. Infigure 3(a), the pumping current is present for the TLG case and
it is seen that except forj p~ n (n, integer), IL is quantized. Oppositely, there is still no current pumped out
from the BLGdevice as illustrated, and only forj p~ n is a nonzero pumped current seen, where the effective
energy gap is so small and the Fermi energymay locate outside of it in some time interval of the pumping cycle.

The results obtained above is under the condition that the distance L0=0 between the two pumping
regions. Itmay be difficult to apply the electric field on the two regions abruptly. Therefore, we consider the
current versus afinite separation L0 in the TLGdevice. Fromfigure 3(b), one can see the current exhibits an
alternative effect from- e T2 to+ e T2 with the variation of L0. It indicates that the distance length only affects
the signs of the current but not the quantized feature, whichmay provide a practical convenience for the
experimentalmeasurement. Certainly, we can even employ a gate voltage tomodulate the local potential in the
middle region between two pumping potentials, which can in turn controls and reverses the pumping results.
The reason is the dynamic phase of electrons traveling the graphenewill contribute to the pumping phase
differencej.

Figure 3.Color plot of the pumped current IL as a function of (a)j and (b) L0 in the TLGdevice, the parameterj=π/2. Thewidth of
device isNy=48.Other parameters are g= = =U E U L a0.1 , 0.1 , 1500 1 0 with a being the lattice constant.
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3. Continuummodel

In order to get some insight on the reason that there is no pumping current in the BLG system, we here utilize a
two-band approximateHamiltonian [36] of themultilayer graphene to further analyze the pumping effect. This
is feasible because the low-energy behavior of electrons near theDirac point is our concern. The continuum
Hamiltonian reads
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here,Nz=2(3) is the layernumber,η=±1 is the valley index. It is noted thatwe takeonlyonevalley into account

(η=1)becauseof thevalleydegeneracy.kx,ky are the in-planemomentum. ( ) ( ) ( )
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so there are 2Nz different values forkx. Sinceweconsider the adiabatic limit, the transversemomentum ky is assumed to
conserve in the instantaneous scatteringprocess. In the above latticemodelwith afinitewidth, there is only one
propagatingmodeactive.Therefore,we just fucuson thenormal incidenceky=0 in the following. In fact, the larger ky
the electronshave, themore liable thepumpingquantization is, because in the effective gap the evanescentwavevector
(momentum)becomes largerwith an increaseof ky andand the transmission easilydamps to zero.

We take the calculation of reflection in the TLG (Nz=3) as example. From theHamiltonwe can also get the
wavefunction
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( ) ( )= - + = +k k k k1 2 3 i 2 , 1 2 3 i 22 1 3 1.Weacquire the reflection and transmission coefficient by
utilizing theboundary conditions [16]
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where Y -I V are thewavefunctions in the left electrode, the left potential island, the normal L0 region, the right
potential island, and the right electrode, respectively. For the electrode L and electrodeR of the TLGdevice, the
vectorsCL andCR can be expressed asCL=[1 r1 0 r2 0 ] [=r C t,T

R3 10 t2 0 t3 0]
T.

Through numerical calculations, we discover that the incident electron is fully reflectedwith ∣ ∣ =r 11 when
the Fermi energy is in the gap, as a result, we utilize r=r1 in the following consideration and neglect the
contribution from the transmission. Finally, the formula of the pumping current in equation (2) can be
rewritten as
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As is known, the pumping current equals the area enclosed by the directional trajectories of r on the complex
plane from the current formula expression. The trajectory goes around clockwise or anticlockwisemeaning
positive or negative pumping current.
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Infigure 4, we plot the argument ( ( ) ( ))R Iq = +t r rarg i of r as a function ofωτ and its trajectory [25, 37]. It
is seen that themagnitude of the reflection always equals 1 for the TLG andBLG systems. For the TLGdevice, θτ
increases to 2π in a pumping cycle and the track of r is a unit circle on the complex plane as shown infigure 4(a).
Reversely, a different situation appears in figure 4(b)where the BLGdevice is studied, θτ goes back to the initial
value after going through a cycle. The track of r does not enclose a finite area. This clearly indicates that the
winding number of the reflection coefficient r is equal to 1 for the TLGdevice but 0 for the BLGone. Therefore,
the pumping results are equal to be 1 or 0 in the two cases.

To further show the quantized pump, we present the pumping current IL as a function of the dynamic phase
kL0 of electrons traveling in the pristine graphene region between the two time-dependent potentials,

[( ) ] ( )g= + k E V vf0
2

1
4 1

6 , whereV0 is a gate voltage tomodulate the localmomentum. Infigure 5, IL exhibits
the same quantizedmagnitude e/T and the current direction can be reversedwith the dynamic phase kL0, which
is consistent with results shown infigure 3(b). The results validate the quantized pumping effect found in the
TLG latticemodel.

When the argument θτ of r advances 2π, the system can pumpout a chargewhile it advances zero in a
pumping cycle, the pumped charge is zero. From this perspective, the former case of the TLGwith an applied
staggered potential is a topologically nontrivial while the BLG is a trivial system. As amatter of fact, the Berry
phase of the TLG electrons is 3πwhile it is 2πfor the BLG electrons [38]. Togetherwith the quantized pump
found in themonolayer graphene [32], where the Berry phase of electrons is alsoπ, we can conclude that the
even-number-layermultilayer graphenewith Berry phase γ=nπ (n, even number) cannot lead to the reflection
coefficient exhibiting a phase reversal, or the 2πphase increment in a pumping cycle responsible for the
quantized pump.However, the odd-number-layer system can pumpout an integer number of charge. Because
the incident wavefunction of electrons has aπ phase difference from the reflectedwavefunctions in the
scattering event uponwith the pumping potentials, whichmeans the quantum states in the pumping region
experience a 2πincrement and keep in the same statewith a charge pumped out of the system.

Figure 4.Color plot of argument of the complex reflection amplitude ( ( )q =t rarg ) as a function of timeωt in one period for (a)TLG
device and (b)BLGdevice. The insets present the trajectory of r on complex plane in a cycle. Parameters are g j p= =U 0.1 , 2,0 1
= =E U L a0.1 , 1500 0 .

6

New J. Phys. 22 (2020) 013042 M-JWang et al



It has been argued in the literatures [32, 39] that the topological interface state between the two pumping
potentials is upmost important for the possible quantized pumping effect. However, one can see that the
electron properties in the device also play a vital role for the formation of the quantized pump. If the Berry phase
of electrons is not equal toπ, the pumping currentmay even not occur since the phase of the reflection
coefficient does not advance 2πin a pumping cycle. Alternatively, the electronswith an ordinary Berry phase nπ
(n, even number) does not produce any exotic results. As amatter of fact, there still exists an interface state
bridging two opposite staggered-potential regions in the BLG system, which has been observed in experiment
recently [40]. Hence, it is concluded that the topological interface state is not a unique prerequisite for the
pumping quantization for such a two-parameter pumping device. Note for the aforementioned twomodels in
[32, 39], themonolayer graphene and the nanowire superlattice with Rashba spin orbit interaction, the electrons
happen to possess aπBerry phase so that the quantized pumping effect is feasible.

Due to the layer structure, the energy band canbe easily opened in theboth the trilayer andBLGbyusing a
perpendicular electricfield in comparisonwith themonolayer graphene.A tunable energy gapof theTLGwas
reported by several experimentalworks [13, 41] and theobserved gap canbe as large as about 120meV. Such a large
gap is quite favorable for thepumpquantizationproposed in thiswork since the Fermi energy can easily keep in the
gap in thewhole pumping cycle, andmoreover, the temperature effect cannot smear the gap readily, either.

4. Conclusion

In conclusion, we have comparatively studied the charge pumping effect in both the TLG andBLGmaterials.
The pumping results are strikingly different for these two systems. For the BLGdevice, there is no pumping
current at all when the Fermi energy locates in the effective energy gap opened by the pumping potentials, but it
is exactly quantizedwithin the same parameters for the TLG case. It is believed that the different Berry phases of
theDirac electrons in these two systems account for such distinct pumping results. Our findingsmight shed a
new insight on the quantized pumping effect.
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