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Abstract

Wereport a theoretic study of the two-parameter adiabatic charge pump based on the bilayer and
trilayer graphene systems. The two perpendicular time-dependent electric fields with a phase lag
between them are taken as the pumping potentials, which induce an instant energy gap in each
pumping region. Based on both a continuum model and a lattice model, we show that the pumping
results from the bilayer and trilayer graphene systems are very different when the Fermi energy
happens to reside in the opened energy gap: there is no pumping current for the bilayer system whereas
aquantized charge pumping effect emerges in the trilayer-graphene based pump device. This
difference can be accounted for by the different Berry phases of Dirac electrons in the two systems.
Our findings may shed a light on developing a quantized charge pumping device.

1. Introduction

Since a single layer of graphite isolated successfully in 2004 [1], graphene has attracted swiftly a great interest in
condensed matter physics. As both the thinnest and the strongest material ever measured [2], graphene further ignited
the research of the devices based on carbon material [3, 4]. Moreover, the particles have a linear energy dispersion
around the band center that can be described by a massless Dirac equation leading to many peculiar transport
properties [5]. The Carbon atoms are assembled into a hexagonal lattice with a unit cell comprising the two site-
inequivalent Carbon atoms [6], which can be regarded as pseudospin, another degree of freedom in addition to the
valley and spin. In the last several years, the bilayer (BLG) and trilayer graphene (TLG) have attracted much attention of
researchers [7, 8]. A striking feature is the stacking arrangement of graphene layers which fundamentally changes the
electronic properties of multilayer graphene [9-11]. And it has been demonstrated systematically that the band gap of
the multilayer graphene with rhombohedral stacking can be controlled by a perpendicular electric field [12—-15].

The transport properties of multilayer graphene have also been extensively and intensively studied in
literatures [16—18], and much different and unconventional transport phenomena were predicted. Among those
is the quantum pumping effect of the electric charge, spin and valley degree of freedom on the multilayer
graphene system [19-25]. E.g. Chan [26] and coauthors studied the possible layer polarization pump in a BLG
system, and they regarded the graphene layer as one pseudospin degree of freedom in order to obtain the
pseudospin polarized pumping currents by a perpendicular time-dependent electric field.

In the field of the quantum parameter pump, researchers are paying much attention to the quantized pump
effect, i.e. an integer number of charges are pumped out in a pumping cycle because the pumping quantization is
quite desirable in building a standard of electric current. For the noninteracting electron system, the Thouless
topological pump [27] is the first proposal stating that a one-dimensional (1D) moving potential can pump out
an integral charge when the Fermi energy lies in the energy gap opened by the moving potential. Recently, several
research groups [28-31] have independently observed such quantized pump in 1D optical superlattice or cold-
atom systems. However, it is still a challenge to implement such an experiment in the electron system, because it
is quite difficult to control the varying potential precisely in experiments.

In a previous work [32], two of the authors investigated a new pumping scheme for the quantized charge
pump in the monolayer graphene system, and they concluded that the pump is quantized as long as the pumping
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Figure 1. Schematic of the adiabatic pumping device based on the bi(tri)layer graphene. The two time-dependent potentials with
identical length L, a phase lag ¢ and distance L, between them are applied, U,(7) and U,(7). The pumped current flows along the x axis
and the device is connected to semi-infinite left (L) and right (R) electrodes.

potential can induce an energy gap of the Dirac electrons. However, it is practically difficult in experiment to
generate a time-dependent staggered potential in the monolayer graphene. On the contrary, one can easily
employ a perpendicular electric field to induce a staggered potential in a multilayer graphene system [12—15],
and the potential difference among layers will open an energy gap of the electrons. Therefore, it is desirable to
study whether the quantized pump found in the monolayer graphene [32] is automatically applicable to the
multilayer graphene device.

In this work, we study the charge pumping effect in some typical multilayer graphene systems like the BLG
and TLG, which are chosen as the base materials for the pumping device as examples. By using the Biittiker—
Prére-Thomas (BPT) pumping formula [33] in the adiabatic limit, we calculate the pumping current in both a
continuum model and a lattice model and show that the pumping results from the BLG and TLG systems are
almost opposite. The quantized pump is only found in the TLG system whereas there is no any pumping current
in BLG system when the Fermi energy resides in the energy gap opened by the applied pumping potentials. The
drastically contrary results stem from the different Berry phases of the massive Dirac electrons in the BLG
and TLG.

The paper is organized as follows. In section 2 we introduce a simplified model for bi(tri)layer graphene and
work out the consequences on the pumping current. In section 3 we discuss the results for the continuum model
on account of the two-band Hamiltonian of multilayer graphene. The discussions and conclusions are presented
in section 4.

2. Lattice model

In order to systematically examine the pumping effect in the multilayer graphene system, we consider a
traditional two-parameter pumping device based upon Bernal(AB)-stacked BLG and rhombohedral(ABC)-
stacked TLG. The pumping setup is composed of two electrodes and two pumping regions, which are separated
within alength of Ly and subjected to the time-dependent pumping potentials U;_; , on the outermost regions as
shown in figure 1, which can be implemented by perpendicular electric fields via capacitors. As a result, the
staggered potential in each layer due to the electric field will open an energy gap of Dirac electrons in the local
pumping regions. This energy gap is the prerequisite for possible pumping quantization in the monolayer
graphene system [32].

We first consider a lattice model to calculate the possible pumping current flowing through the BLG and
TLG device in figure 1. Actually, the features of the low-energy Dirac electrons depend crucially on the stacking
style of multilayer graphene. In this work, the AB(C) stacking is chosen because the energy gap can be opened
much easier due to the applied electric field [ 11]. And we just take the nearest hopping terms in interlayer and
intralayer into account, since the trigonal warping effects has little effect on our study. The low-energy bands can
be described by an effective tight-binding Hamiltonian [34]

H= -t Z CiTn Cj,n +m Z CiTn Cj,n’ + Z UT (l) Hy CiTn Ci)”' (1)
(ij),n ij,n=n’ in
Here, the first and second terms describe pristine multilayer graphene, (ij) stands for the nearest-neighboring
sites, CiTn(Ci,n) is the creation (annihilation) operator at site i in the nth layer, n(n’ = n + 1) is the layer index, t

is the nearest hopping energy in the same layer, and -, = 0.13t is the vertical hopping energy between the nearest
layers. The third term is the time-dependent pumping potentials induced by the perpendicular electric field,
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Figure 2. Color plot of the pumping current I; as a function of E in BLG device (black-dashed line) and TLG device (red-solid line).
The width of device is N, = 48. Other parametersare Uy = 0.1, ¢ = 7/2, L = 150a,and L, = 0 with a being the lattice constant.

i, = +(—)1for the bottom (top) layer for simplicity, i.e. the top and bottom layers of the BLG and TLG have
opposite on-site potential energy while a zero energy potential is assumed in the middle layer of the TLG

Uy cos(wT), 1€(0,L)
U-(i) = qUycos(wt + ¢), i€ (L + Lo, 2L + Ly)
0, others,

where U, is homogeneous in the finite-length L region, Uy is the pumping strength, and ¢ is the pumping phase
shift. Ly is assumed to be the region length between two pumping areas. The frequency of the potential
modulation wassumed to be infinitesimal since the adiabatic pump is considered in this work. Similar to the
monolayer graphene [32], the pumping potentials with opposite signs will generate a topological interface state
between the two pumping regions, which are critical to generate a quantized charge current when the Fermi
energy lies in the energy effect gap opened by the pumping potentials U,. The BPT formula [33] is employed here
to calculate the pumping current in adiabaticity

h_llfﬂhneﬁﬁ), @)

2nT Jo or o

where §; is the instantaneous scattering matrix with o being the left or right electrode index, « = L, R, and
T = 2m/wis the pumping cycle. In order to carry out numerical calculations by the convenient Green’s function
method, the above equation can be written as [32]

T
e .
gz——ﬁ dr Tr(CG U, G, 3
TP ( ) (3

where I, = i(X, — ) is the line-width matrix of the semi-infinite electrode v, and ¥, is its corresponding
self-energy function. G/ @ — [E + 10T — H.]"!is the instantaneous retarded (advanced) Green’s function of
the two-terminal device, U, = dU, /dr is the time derivative of pumping potentials, and the trace is over the
transverse sites of a unit slice of the lattice pumping model. The Green’s function G’ can be calculated by using
usual recursive Green’s function method [35] since the model device can be decomposed into three parts of left
and right electrodes as well as the scattering region.

We perform our calculations in a finite-width N, device and present the pumping current I; in both the BLG
and TLG devices versus the Fermi energy E in figure 2. In numerics, the pumping strengths are set as the same
Uy = 0.17y, the interlayer hopping energy set asy; = 0.13¢, while the in-plane hopping energyissetast = 1 eV
as the energy unit, and the ambient temperature is taken as zero. In figure 2, the red-solid line represents the
pumping result in the TLG system and the current is quantized when the Fermi energy is around the Dirac point
(E = 0). This is the same as the I; —E curve of the monolayer-graphene pumping device [32] that the platform
valueis +-2¢/T, which indicates that in a pumping cycle, two charges are pumped out. Here, the ‘two’ denotes
the valley degeneracy in the graphene system. In contrast, one can see that there is no current flowing around the
band center E ~ 0 from the black-dashed line representing the BLG case. This is drastically contrary to the
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Figure 3. Color plot of the pumped current I; as a function of (a) ¢ and (b) L, in the TLG device, the parameter ¢ = /2. The width of
deviceis N, = 48. Other parameters are Uy = 0.17,, E = 0.1Up, L = 150a with a being the lattice constant.

pumping result of the TLG device. When E 2 |0.4U| that the Fermi energy locates outside of the effective gap,
the pumping current for the BLG begins to raise up but the pumping value is not quantized, and this is just a
usual quantum parameter pump. It is noted here that in our calculations, only one transverse mode is involved
in the transport because the Fermi energy is near to the charge neutral point and a narrow lattice ribbon with
N, = 48is considered, where N, is the atom number in a transverse one-layer atom chain.

Itis seen that the zero-current platform in the BLG system and the quantized platform in the TLG one almost
occur in the same energy region around the original Dirac point. Itis clear that the quantized platform stems
from the Fermi energy locating the effective energy gap opened by the pumping potential U,, which are the same
as the monolayer graphene case [32]. Certainly, the energy maximum value for the quantized platform is much
less than the theoretic value Uy /+/2 and this is related to fact that the effective gap in the multilayer graphene
would decrease with the increasing layer number [14]. Outside the effective energy gap, the pumping results are
not quantized and meanwhile, the instant transmission would not keep zero in a pumping cycle. The zero
pumping current I; = 0in the bilayer system is very different from the odd-number layer of the graphite system
like the monolayer and TLG systems. This is related to the Berry phase of electrons responsible for the pumping
current and we will return to it in next subsection.

In comparison with the monolayer graphene pumping, we also study the pumping current I; as a function of
phase difference ¢. The essential parameter ¢ guarantees the gap opened in the whole pumping period, which is
the prerequisite of the pumping quantization. In figure 3(a), the pumping current is present for the TLG case and
itis seen that except for ¢ ~ nm (n, integer), I; is quantized. Oppositely, there is still no current pumped out
from the BLG device as illustrated, and only for ¢p ~ n7 is anonzero pumped current seen, where the effective
energy gap is so small and the Fermi energy may locate outside of it in some time interval of the pumping cycle.

The results obtained above is under the condition that the distance Ly = 0 between the two pumping
regions. It may be difficult to apply the electric field on the two regions abruptly. Therefore, we consider the
current versus a finite separation Ly in the TLG device. From figure 3(b), one can see the current exhibits an
alternative effect from —2e/T to +2¢/T with the variation of L. It indicates that the distance length only affects
the signs of the current but not the quantized feature, which may provide a practical convenience for the
experimental measurement. Certainly, we can even employ a gate voltage to modulate the local potential in the
middle region between two pumping potentials, which can in turn controls and reverses the pumping results.
The reason is the dynamic phase of electrons traveling the graphene will contribute to the pumping phase
difference .
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3. Continuum model

In order to get some insight on the reason that there is no pumping current in the BLG system, we here utilize a
two-band approximate Hamiltonian [36] of the multilayer graphene to further analyze the pumping effect. This
is feasible because the low-energy behavior of electrons near the Dirac point is our concern. The continuum
Hamiltonian reads
U e
T (—yp@e—D Ax T 1mky
(7we)Nz .
;(kx + lnky)Nz —U.

(- ™D

here, N, = 2(3) is the layer number, 7 = =£1 is the valley index. It is noted that we take only one valley into account

1712
(1 = 1) because of the valley degeneracy. k,, k, are the in-plane momentum. (k} 4 k)™ = (E? — U?) x [(;;;f); ] )

so there are 2N, different values for k.. Since we consider the adiabatic limit, the transverse momentum k, is assumed to
conserve in the instantaneous scattering process. In the above lattice model with a finite width, there is only one
propagating mode active. Therefore, we just fucus on the normal incidence k, = 0 in the following. In fact, the larger k,
the electrons have, the more liable the pumping quantization is, because in the effective gap the evanescent wavevector
(momentum) becomes larger with an increase of k, and and the transmission easily damps to zero.

We take the calculation of reflection in the TLG (N, = 3) as example. From the Hamilton we can also get the
wavefunction

3 (k)
U = Z ajs| E- U(m)? ) (o) | etikx (5)
j=1 1

= Pe(x)C, (6)

with matrices

(k)*(7ivp)? (=k)*(7avy)? (k) (7avy)? (—k)*(/avp)? (k3> (7avy)? (—k3)*(7ivy)?
P=|E-U)—)? E-U)—n)? E-U)n)? E-U-7)? E-U-71)? E-U)n) |, (7)
1 1 1 1 1 1
E(x) — Diag[eik“‘, efiklx, eikzx’ efikzx) eik3x) efik3x]’ (8)
and

C=lay o, ary, ay-asy, as_I', ©)

here, +/— indicates the right/left propagating or evanescent states, the momentum k, = [(E*> — U?) 'yf]% / (7vy),
ky = (=1/2 + /3i/2)k;, ks = (1/2 + /31/2)k;. We acquire the reflection and transmission coefficient by
utilizing the boundary conditions [16]

=y, = 2 P g

where U;_y are the wavefunctions in the left electrode, the left potential island, the normal L, region, the right
potential island, and the right electrode, respectively. For the electrode L and electrode R of the TLG device, the
vectors C; and Cg can be expressedas C; = [11,07,073]7, Cg = [,0£,0£50]".

Through numerical calculations, we discover that the incident electron is fully reflected with || = 1 when
the Fermi energy is in the gap, as a result, we utilize r = r; in the following consideration and neglect the
contribution from the transmission. Finally, the formula of the pumping current in equation (2) can be

rewritten as
ie or
I = —¢ dr —r*). 10
YT T It (87 (10)

Asisknown, the pumping current equals the area enclosed by the directional trajectories of r on the complex
plane from the current formula expression. The trajectory goes around clockwise or anticlockwise meaning
positive or negative pumping current.
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Figure 4. Color plot of argument of the complex reflection amplitude (6, = arg(r)) as a function of time wt in one period for (a) TLG
device and (b) BLG device. The insets present the trajectory of r on complex plane in a cycle. Parameters are Uy = 0.17;, ¢ = 7/2,
E= O.IU(), LO = 150a.

In figure 4, we plot the argument 6, = arg(PR(r) + iJ(r)) of ras a function of wr and its trajectory [25, 37]. It
is seen that the magnitude of the reflection always equals 1 for the TLG and BLG systems. For the TLG device, 6.
increases to 27 in a pumping cycle and the track of ris a unit circle on the complex plane as shown in figure 4(a).
Reversely, a different situation appears in figure 4(b) where the BLG device is studied, 6, goes back to the initial
value after going through a cycle. The track of r does not enclose a finite area. This clearly indicates that the
winding number of the reflection coefficient r is equal to 1 for the TLG device but 0 for the BLG one. Therefore,
the pumping results are equal to be 1 or 0 in the two cases.

To further show the quantized pump, we present the pumping current I as a function of the dynamic phase
kL, of electrons traveling in the pristine graphene region between the two time-dependent potentials,
k=[(E+ Vo)zv‘f]% / (7ve), where V} is a gate voltage to modulate the local momentum. In figure 5, I; exhibits
the same quantized magnitude ¢/ T and the current direction can be reversed with the dynamic phase kL,, which
is consistent with results shown in figure 3(b). The results validate the quantized pumping effect found in the
TLG lattice model.

When the argument 6, of radvances 27, the system can pump out a charge while it advances zeroin a
pumping cycle, the pumped charge is zero. From this perspective, the former case of the TLG with an applied
staggered potential is a topologically nontrivial while the BLG is a trivial system. As a matter of fact, the Berry
phase of the TLG electrons is 37 while itis 27 for the BLG electrons [38]. Together with the quantized pump
found in the monolayer graphene [32], where the Berry phase of electrons is also 7, we can conclude that the
even-number-layer multilayer graphene with Berry phase v = nm (1, even number) cannot lead to the reflection
coefficient exhibiting a phase reversal, or the 27 phase increment in a pumping cycle responsible for the
quantized pump. However, the odd-number-layer system can pump out an integer number of charge. Because
the incident wavefunction of electrons has a 7 phase difference from the reflected wavefunctions in the
scattering event upon with the pumping potentials, which means the quantum states in the pumping region
experience a 27 increment and keep in the same state with a charge pumped out of the system.
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Figure 5. Color plot of the pumped current I as a function of the dynamic phase kL, in TLG device. Parameters are Uy = 0.1, ¢ = 7/2,
E = 0.1U, L = 150a, Ly = 150a.

Ithas been argued in the literatures [32, 39] that the topological interface state between the two pumping
potentials is upmost important for the possible quantized pumping effect. However, one can see that the
electron properties in the device also play a vital role for the formation of the quantized pump. If the Berry phase
of electrons is not equal to 7, the pumping current may even not occur since the phase of the reflection
coefficient does not advance 27 in a pumping cycle. Alternatively, the electrons with an ordinary Berry phase nm
(n, even number) does not produce any exotic results. As a matter of fact, there still exists an interface state
bridging two opposite staggered-potential regions in the BLG system, which has been observed in experiment
recently [40]. Hence, it is concluded that the topological interface state is not a unique prerequisite for the
pumping quantization for such a two-parameter pumping device. Note for the aforementioned two models in
[32, 39], the monolayer graphene and the nanowire superlattice with Rashba spin orbit interaction, the electrons
happen to possess a ™ Berry phase so that the quantized pumping effect is feasible.

Due to the layer structure, the energy band can be easily opened in the both the trilayer and BLG by using a
perpendicular electric field in comparison with the monolayer graphene. A tunable energy gap of the TLG was
reported by several experimental works [13, 41] and the observed gap can be as large as about 120 meV. Such a large
gap is quite favorable for the pump quantization proposed in this work since the Fermi energy can easily keep in the
gap in the whole pumping cycle, and moreover, the temperature effect cannot smear the gap readily, either.

4. Conclusion

In conclusion, we have comparatively studied the charge pumping effect in both the TLG and BLG materials.
The pumping results are strikingly different for these two systems. For the BLG device, there is no pumping
current at all when the Fermi energy locates in the effective energy gap opened by the pumping potentials, but it
is exactly quantized within the same parameters for the TLG case. It is believed that the different Berry phases of
the Dirac electrons in these two systems account for such distinct pumping results. Our findings might shed a
new insight on the quantized pumping effect.
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