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Abstract
Optomechanical systems attract a lot of attention because they provide a novel platform for quantum
measurements, transduction, hybrid systems, and fundamental studies of quantumphysics. Their
classical nonlinear dynamics is surprisingly rich and so far remains underexplored.Works devoted to
this subject have typically focussed on dissipation constants which are substantially larger than those
encountered in current experiments, such that the nonlinear dynamics of weakly dissipative
optomechanical systems is almost unchartedwaters. In this work, wefill this gap and investigate the
regular and chaotic dynamics in this important regime. To analyze the dynamical attractors, we have
extended the ‘generalized alignment index’method to dissipative systems.We show that, evenwhen
chaoticmotion is absent, the dynamics in theweakly dissipative regime is extremely sensitive to initial
conditions.We argue that reducing dissipation allows chaotic dynamics to appear at a substantially
smaller driving strength and enables various routes to chaos.We identify three generic features in
weakly dissipative classical optomechanical nonlinear dynamics: theNeimark–Sacker bifurcation
between limit cycles and limit tori (leading to a combof sidebands in the spectrum), the quasiperiodic
route to chaos, and the existence of transient chaos.

1. Introduction

Cavity optomechanics [1] aims to explore and exploit the interaction between radiationfields andmechanical
vibrations, with important applications ranging from sensitivemeasurements to quantum communication. The
foundations for this researchfieldwere established already at the end of the 60s, when the classical effects of
radiation on themotion of a testmasswere studied in the context of precisionmeasurements [2, 3]. For an
extended reviewwe refer the reader to [1]. In the past few years, a range of impressive achievements has been
observed, which includes topological transport in optomechanical arrays [4, 5], the engineering of nonreciprocal
interactions [6–11], the generation of single phonon states using optical control [12], the generation of
mechanical squeezed states [13], measurement-based quantum control ofmechanicalmotion [14], conversion
of quantum information tomechanicalmotion [15], conversion between light in themicrowave and optical
range [16], single photon frequency shifters [17], forcemeasurements using cold-atomoptomechanics [18], and
the use of unconventionalmechanicalmodes, like high frequency bulkmodes of crystals [19], multilayer
graphene [20], and themodes of superfluid helium [21].

Classical nonlinear optomechanics is relevant in the case of highly populated optical andmechanicalmodes.
Though it attracted slightly less attention during the initial evolution ofmodern cavity optomechanics, a
number of significant theoretical studies have been devoted to understanding the structure of the phase space,
including limit cycles andmultistability [22–26], and chaotic dynamics [27, 28]. Experimental studies have been
relatively rare, but important phenomena have already been observed, including limit cycles [29, 30], period
doubling and chaos [31–36], the predictedmultistable attractor diagram [37, 38]which is characteristic for
optomechanical systems, as well as further aspects [39, 40].More recent studies have exploited the coupling of
severalOM limit cycle oscillators to exploreOM synchronization dynamics. OM synchronizationwasfirst
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predicted theoretically in [41], later observed experimentally for few-mode systems [42–45], and analyzed in
subsequent theoretical studies of large-scale lattice dynamics [46–49].

Many theoretical works on nonlinear classicalOMdynamics have consideredmainly systems operating
outside the so-called resolved sideband regime. Thismeans that the optical dissipation is assumed to be of the
same order or larger than themechanical frequency. At the same time, themechanical quality factor is often
assumed relatively small, of the order ofO(103). For instance, the authors of [27] have shown that limit cycles in
such strongly dissipativeOM systems undergo a period doubling cascade and become chaotic attractors.

On the other hand,most state-of-the-art experiments reach the resolved sideband regime and deal with
substantially largermechanical quality factors, ranging from104 to 109 (see figures 11 and 10 in [1]). These
experiments raise a natural question: do suchweakly dissipative systems show something qualitatively new in
their classical dynamics? The straightforward guess is: yes, because nonlinear phenomena are expected to be
enhancedwith decreasing dissipation. For instance, theHopf bifurcation [23], at which an equilibriumpoint of
the dynamics becomes unstable and a limit cycle emerges, has a clear dependence on the dissipation constants.
The smaller the dissipation constants, theweaker the laser pumping needed to observe theHopf bifurcation.
Bistability, which is another nonlinear phenomenon, follows the same rule. Of course, the possible types of
attractors are also very sensitive to the dissipation strength. One could take one step further and askwhether the
chaoticOMdynamics is enhanced aswell and acquires new features in the resolved sideband regime.

In this workwe investigate the nonlinear dynamics of weakly dissipativeOM systems.Weakly dissipative in
this context is the same as sideband resolved,meaning that the optical dissipation ismuch smaller than the
mechanical frequency. Firstly, we are interested in performing a classification of attractors: whether they are
chaotic or regular, what is their dimensionality, etc.We show that theweakly dissipative regime ismuchmore
complex and nontrivial than the strongly dissipative one. In particular, theOMdynamics becomes very sensitive
to the initial conditions in the resolved sideband regime, which represents the first substantial difference
between the strongly andweakly dissipative cases.

This sensitivity to initial conditions (aswell as the long relaxation times)makes the study of weakly
dissipativeOMsystems computationally very challenging. To overcome this problem,we suggest a new
approach to classify the attractors and to detect dynamical chaos. It is based on the generalized alignment index
(GALI )method [50–52] and has several advantages. Besides being significantly faster than commonly used
methods based on the calculation of themaximal Lyapunov exponent (LE), themodifiedGALImethod provides
an efficient tool to learn the dimensionality of the attractors. This has allowed us to explore theOMattractors in
a large range of parameters and to reveal important phenomenawhich arewell-known in nonlinear science but
have been overlooked so far in optomechanics. They include transient classical chaos, quasiperiodic orbits, and
routes to chaos beyond the period doubling.

The rest of this paper is organized as follows: in section 2, we introduce the equations ofmotion of anOM
system and discuss the basic differences between the strongly andweakly dissipative regimes. Section 3 is
devoted to theGALImethod and its extension to the analysis of dissipative nonlinear dynamics.We use this
method and our numerical simulations to present a diagram that illustrates various regular and chaotic weakly
dissipative dynamical regimes in section 4. In particular, we identify two generic features that will become
important in the exploration of nonlinear optomechanics: aNeimark–Sacker bifurcation between limit cycles
and limit tori (leading to a combof sidebands in the spectrum) and the existence of transient chaos. In section 5,
we discuss the experimental relevance of our results. Finally, section 6 contains our conclusions.

2. Classical dynamics of aweakly dissipative optomechanical system

2.1. Equations ofmotion
The classical dynamics of anOMsystemwith one opticalmode and onemechanicalmode (sometimes referred
to as the optical cavity and themechanical oscillator, respectively) is described by the following equations of
motion [1]:

( ) ( ) ( )k= D - + + +
t

a a g a b b E
d

d
i 2 i , 10 *

( ) ∣ ∣ ( )g= - W - +
t

b b g a
d

d
i 2 i . 2m 0

2

Here ( )= +b q pi 2 , with q and p being the dimensionless position andmomentumof themechanical
oscillator, and a is the suitably normalized complex amplitude of the electric field inside the cavity (∣ ∣a 2 and ∣ ∣b 2

are the photon and phonon number, respectively). Themechanical (optical)mode has frequencyΩm (ωc) and
dissipation constant γ (κ). The opticalmode is pumped by an external laser with frequencyωL and amplitude E;
Δ=ωL−ωcdenotes the detuning between the laser frequency and the cavity frequency; g0 is the bare
optomechanical coupling constant.We note that Ehere is normalized such that E2/κ is the rate of photons

2

New J. Phys. 22 (2020) 013049 T FRoque et al



impinging on the cavity. The typical representation of anOMsystem is shown infigure 1. As usual, wework in a
reference framewhich rotates at the laser frequency4. Equations (1), (2) assume that quantumfluctuations can
be neglected, i.e. the dynamics is governed by highly populated optical andmechanical states. These coupled
equations have been employed to describe countless experiments to high precision, both in the linearized regime
but also in the fully nonlinear regime of interest here.

Further numerical study requires to rewrite equations (1), (2) in a dimensionless form. This can be done by
defining rescaled variablesα=aΩm/2E andβ=g0b/Ωm, fromwhichwe obtain the following equations:
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where t = W tm and = WP g E8 m0
2 2 4 . Note that there are fewer parameters in the rescaled equations (3), (4) than

in the original equations (1), (2). Thismeans the qualitative features of the dynamics will only depend on four
dimensionless combinations of the original physical parameters: dimensionless power P, normalized detuning
Δ/Ωm, normalized cavity decayκ/Ωm, andmechanical dissipation γ/Ωm. For amore extended discussion of the
essential dimensionless parameters affecting classical or quantumOMdynamics, we refer the reader to [23, 48].

The parameter P is a dimensionlessmeasure of the laser input power, which also includes the strength of the
optomechanical interaction. P can be related to the standardmeasure of coupling strength versus dissipation,
the so-calledOMcooperativity gk=C g n4 c0

2 . Here nc is themean number of photons stored in the optical
cavity. For our purposes the cooperativity is still slightly inconvenient, since nc depends on the detuning (atfixed
drive power). For that reason, we rather introduce themaximum cooperativity ˜ gk=C g n4

0
2

0 , where
n0=4E2/κ2 is the number of photons in the resonantly pumped optical cavity in the absence of the
optomechanical interaction. P is then proportional to themaximum cooperativity as follows:

˜ ( )k g= WP C 2 . 5m
3 4

This relationwill be useful for comparisonwith experimental parameters.

2.2. Fixed points
Let us start our study of the dynamics with the analysis of thefixed points of the system. Fixed points are points in
the phase spacewhich are invariant under time evolution: if we take afixed point as initial condition of the
system, the system stays on the fixed point forever. The analysis of trajectories whose initial conditions are
arbitrarily close to thefixed point allows one to classify thefixed point as stable, unstable, or hyperbolic. If any
such trajectory is attracted to (repelled from) thefixed point, thefixed point is stable (unstable). If some
trajectories are attracted to the fixed point, while other trajectories are repelled from it, the fixed point is
hyperbolic. Stable fixed points are the simplest attractors of a dynamical system.

Although thefixed points of theOMsystems have been known for a long time [1, 53], it is important to
understand them inmore detail, because this will provide the context for the discussions of the dynamical
attractors. Thefixed point equations are obtained by setting the time derivatives in equations (3), (4) to zero and
solving the resulting set of nonlinear equations:

Figure 1.Representation of a genericOM system: an optical cavitywith amovablemirror driven by an external laser.

4
If a is the complex amplitude of the electric field inside the cavity, its counterpart in the lab frame reads = w-a ae t

lab
i L .
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Here ( )b b= +Q 2* is the rescaled position of themechanical oscillator. After inserting equation (6) into
(7), we obtain a third order polynomial equation forQwith real coefficients. SinceQ is also real, the systemhas at
least one fixed point; themaximumnumber is obviously three [53]. Figures 2(a), (b) show thefixed point
diagram for anOMsystemwith dissipation constantsκ=Ωm and γ=10−3Ωm, and for anOMsystem in the
sideband-resolved regime,κ=10−1Ωm and γ=10−4Ωm, respectively. Below, wewill refer to these two
representative cases as the ‘strongly dissipative’ and the ‘weakly dissipative’OMsystems, respectively. For
sufficiently smallP there is, as onewould expect, just one stablefixed point. As the parameter P is increased, the
fixed points can follow two possible scenarios with different bifurcation phenomena. A bifurcation is a
qualitative change of the dynamics which occurs as a systemparameter is varied [54]. For fixed points, this
typicallymeans creation or annihilation offixed points, or change of the type of afixed point (whether thefixed
point is stable, unstable or hyperbolic). Thefirst scenario is shown infigure 2(c): an (inverse) saddle-node
bifurcation5 takes place at some value of P and a pair of stable–unstablefixed points is created. Increasing P leads
to aHopf bifurcation6 at which the stable fixed point becomes unstable. Further increase ofP results in a saddle-
node bifurcation at which a pair of stable–unstablefixed points is annihilated. In some cases, theHopf
bifurcationmay occur after the saddle-node bifurcation. This scenario occurs only atΔ<0 (‘red detuning’).
The second scenario is shown infigure 2(d): theHopf bifurcation again occurs at some value ofP andmakes the
stablefixed point unstable. Further increase ofP does not change the nature and the number of the fixed points.

Even though the above described bifurcations can be observed in both strongly andweakly dissipativeOM
systems,figures 2(a) and (b) clearly show the essential difference between them.When the dissipation is weaker,
the bifurcationsmay occur atmuch smaller values ofP and the stability diagrambecomesmore complex. Since
these bifurcations are genuine nonlinear phenomena and P is the strength of the nonlinear interaction,
figures 2(a), (b) provide uswith a first indication that nonlinear effects aremore pronounced and even
qualitatively altered in theweakly dissipative case.

2.3. Attractors
The Liouville’s theorem guarantees that the time evolution ofHamiltonian systems preserves volumes in the
phase space. In contrast toHamiltonian systems, dissipative systems are defined as systems inwhich volumes
shrink over time in some region of the phase space [54]. For these systems, generically speaking, the shrinking
volumes collapse, in the long time limit, to the so-called attractors. An attractor has the following properties [55]:

(i) It is a subset of the phase space which is invariant under the dynamics.

Figure 2. Stability diagram for anOMsystem. Panels (a) and (b) correspond to a strongly dissipativeOMsystemwithκ=Ωm and
γ=10−3Ωm and to aweakly dissipative onewithκ=0.1Ωm and γ=10−4Ωm, respectively. Colorsmark different regions
concerning the number and stability of thefixed points. Panels (c) and (d) illustrate the evolution of thefixed points with increasing P.
Stable and unstablefixed points are represented by black and red dashed lines, respectively.

5
In a saddle-node bifurcation a pair of stable–unstablefixed points approach each other as a parameter η is varied (for simplicity and

without loss of generality, let us suppose that we are increasing η). At h h= * the twofixed pointsmerge and formone single stablefixed
point; if h h> * thefixed points cease to exist. If η is decreased one comes across the inverse saddle-node bifurcation, inwhich a pair of
stable–unstablefixed points is created.
6
In theHopf bifurcation a stablefixed point becomes unstable and a periodic orbit appears as a parameter η is varied. The periodic orbit can

be unstable or stable. In the latter case it is called a limit cycle. TheHopf bifurcation is also known as a Poincaré–Andronov–Hopf
bifurcation.
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(ii) There must exist another (noninvariant) subset of the phase space which defines the initial conditions for
the trajectories asymptotically approaching (being ‘attracted’ by) the attractor at  ¥t . The second subset
is called the basin of attraction.

(iii) An attractor cannot be decomposed in two ormore disjoint attractors.

The attractors of a dissipative system typically provide important information about its dynamics. In
particular, we expect them to illustrate the differences between the strongly andweakly dissipative nonlinear
dynamics ofOM systems. As said before, a stablefixed point is the simplest kind of attractor. TheHopf
bifurcation leads to the emergence of stable limit cycles, which in turn can undergo transitions to other
attractors, including chaotic ones. In the strongly dissipative regime the limit cycles of aOMsystemundergo the
well known ‘period-doubling cascade’7 atP∼1, becoming chaotic attractors. This phenomenonwas described
theoretically in [27] and observed in early pioneering experiments [31]. In theweakly dissipative regime,
however, where the fixed point analysis suggests stronger nonlinear effects, neither the attractors nor the
associated routes to chaos have been studied. Belowwe focus on this regime.

2.3.1. Basins of attraction and hypersensitivity to the initial state
Anonlinear dissipative systemhas generallymore than one attractor and its long time dynamics depends on
initial conditions which can belong to one or another basin of attraction. Some attractors can be very challenging
to reach both in numerical simulations and real experiments because their basin of attraction is rather small and
their detectionwould require a nontrivialfine tuning of the initial conditions.Wewill address the properties of
thoseOMattractors which are easily accessible and, therefore, relevant for experiments. Throughout this
section, we focus on theweakly dissipative case.

We have simulated equations (3), (4) for different initial conditions of themechanical oscillator8, assuming
that the laser is turned on abruptly at t=0 (thusα(0)=0). Figure 3 shows the observed attractors and their
basins of attraction.While the strongly dissipativeOMdynamics usually reveals just one attractor, the phase
space of theweakly dissipativeOM systems ismuch richer. One can observe not only several co-existing
attractors, i.e.multistability, but also very complex and entangled basins of attraction, see figure 3(b). Figure 3(c)
shows a zoomof a small part of the basin of attraction from figure 3(b) (the areawithin thewhite square)with a
higher resolution. One can see that, even on this scale, the basin of attraction is very complex. This confirms that
theweakly dissipative systempossesses hypersensitivity to the initial conditions.

In a real experiment, themechanical oscillator’s initial state is given by a thermal distribution at a given
temperature  . In the classical regime studied here, one can use the Boltzmann (normal) distributionwith zero
mean and variance ∣ ∣s = á ñ = Wb km m

2 2
B . Note that, though the equations ofmotion (3), (4) contain only

the parameter P, wewill need also theOMcoupling g0 to calculate the standard deviation of the dimensionless

Figure 3.Panel(a): attractors of theOMsystem, projected into themechanical phase space.We have chosenΔ=−0.754Ωm and
P=0.33 and detected limit cycles with periods 1 (blue and red lines), 2 (yellow line), and 4 (green line). Panel(b): basins of attraction
close to the origin of themechanical phase space. Colors correspond to the attractors shown in panel(a). Thermalmechanical

fluctuations ∣ ∣ ( )s b= á ñ = Wb g nm
2

0 th would be on the order of 10−3 for realistic parameters with 100 thermal phonons and
g0/Ωm∼10−4. Panel(c): zoomof the area within thewhite square shown in panel(b). The zoomed picture displays the same degree
of complexity as in panel(b) and illustrate regions where the system is extremely sensitive even tominor changes in the initial
conditions. TheOMsystemoperates in theweakly dissipative regime (κ=0.1Ωm and γ=10−4Ωm).

7
In a period-doubling bifurcation a stable orbit with a periodT becomes unstable and a stable orbit with period 2T appears as a parameter η

is varied. A period-doubling cascade is an infinite sequence of period-doubling bifurcations. The resulting stable orbit does not have afinite
period. Such orbits can be shown to be chaotic attractors [54].
8
Wehave used the Julia packageDifferentialequations.jl [56] to obtain the numerical solution of the equations ofmotion. The numerical

integrationmethod used is a 9th order Runge–Kuttamethod [57]with relative tolerance set to 10−9 and absolute tolerance set to 10−13.
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variableβ: ∣ ∣ ( )s b= á ñ = Wb g nm
2

0 th . For a typical value g0=10−4Ωm and a thermal phononnumber of
100, this amounts toσβ∼10−3. As one can see in the simulations, this standard deviation covers a range of
different attractors.

The hypersensitivity to the initial conditions hampers a comprehensive study of the attractors of theweakly
dissipativeOMsystem. In addition to analyzing dynamics for different values ofP andΔ, onewould need also to
considermany different initial conditions. This can be computationally very expensive, especially in the
presence of chaotic attractors. Themost commonway to detect dynamical chaos is to calculate the LE of a given
trajectory.However, the convergence of the numericalmethods available for calculating the LEs is usually slow.
This calls for the development of alternative approaches. In the next section, we discuss such an alternative
which is faster, reliably detects the chaotic attractors, andmoreover allows one to determine the dimensionality
of the regular attractors.

3. TheGALImethod

3.1. Indicators of dynamical chaos
An important task of any study of nonlinear dynamics is to distinguish regular and chaotic parts of the phase
space in themost efficient way. A standard procedure for detecting chaotic trajectories is based on calculations of
themaximal Lyapunov exponent (mLE). Let us consider the following general dynamical equations:

( ) ( )  
=

t
x F x

d

d
. 8

One can start from a given trajectory ( )
x t and focus on small deviations ( )

w t from that trajectory. The linearized
dynamics of ( )

w t is described by

( ) ( )  
=

t
w J x w

d

d
, 9F

where ( )J xF is the Jacobianmatrix of ( )
 
F x ; [ ] = ¶ ¶J F xF lj l j. ThemLEλ1 is defined as

( ) ( ) ∣ ( )∣
∣ ( )∣

( )

l = L L =

¥
t t

t

w t

w
lim ,

1
ln

0
. 10

t
1

Clearly, themLE reflects the sensitivity of the trajectory ( )
x t to perturbations. A chaotic trajectory has positive

mLEwhile regular trajectories have nonpositivemLE,makingλ1 a good indicator of chaotic dynamics. A
numerical approximation forλ1 can be obtained by calculatingΛ(t) in equation (10) for a sufficiently large t, at
whichΛ(t) converges. This approach, however, has the drawback that the convergence ofΛ(t) can be rather
slow, and a long computation time is needed to learnwhetherλ1 is positive or not.Many chaos indicators have
been suggested towork around this problem; see [58].We have used two of them: the smaller alignment index
(SALI) [50] and theGALI [52], which are especially well-suited for our goals.

Before we discuss the SALI and theGALI, we have to define all LEs. Firstly, let us replace the n-dimensional
vector ( )

w t in equation (9) by a n×n time-dependentmatrixW(t), whose initial condition is ( ) =W 0 . The
ith columnofW(t) describes the propagation of a perturbation acting in the ith direction of the phase space at
t=0 (i.e. a perturbation proportional to the vector with components d=vj j i, , where di j, is the Kronecker delta).
Using the singular value decomposition, one can show that there is a set of n non-negative real numbers {σ1,K,
σn}, and two sets of n orthonormal vectors, { } 

¼v v, , n1 and { } 
¼u u, , n1 , which satisfy the following equation [58]:

( ) ( ) s=W t v u . 11j j j

Thismeans that a perturbation in the direction of

vi at t=0 ismapped to a perturbation in the direction of


ui

multiplied byσi at time t. The definition of the LEs reads

( )l s=
¥ t
lim

1
log , 12j

t
j

where {σj} are sorted in decreasing order. Equation (12) gives all LEs of the dynamical system, and not onlyλ1.
Let us return to the n-dimensional vector ( )

w t , which satisfies equation (9). Using equation (11), we can
rewrite ( )

w t for  ¥t in the followingway:

( ) ( ( )) ( )   å= l

=

w t v w u, 0 e , 13
j

n

j j
t

1

j

where ( ) 
a b, denotes the inner product between


a and


b . Since t is very large, the termproportional to le t1

dominates the time dependence of ( )
w t (provided thatλ2<λ1), such that equations (10) and (12) are

consistent.
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Now,we are in a position to introduce the SALI and theGALI. These indicators of chaos have been initially
suggested forHamiltonian systems, whose evolution preserves areas in the phase space. Thismeans that the LEs
are either zero, or appear in pairs with the same absolute value and opposite signs. The SALI and theGALI are
constructed in a similar way, but the SALI is simpler; therefore, we start with the SALI: Consider two orthogonal
initial conditions for equation (9), ( ) ( ) 

^w w0 01 2 . Their evolution yields vectors ( )
w t1,2 which become parallel

to

u1, and consequently to each other, at  ¥t ; see figure 4(a). This holds true ifλ1>λ2 regardless of the

initial condition. The SALImethod uses this property to distinguish the chaotic dynamics from the regular one.
Let us define

( ) {∣ ˆ ( ) ˆ ( )∣ ∣ ˆ ( ) ˆ ( )∣} ( )= + -SALI t w t w t w t w tmin , , 141 2 1 2

where ˆ ( ) ∣ ∣ 
=w t w w1,2 1,2 1,2 are unit vectors, and ( ( ) ( )) 

=w w0 , 0 01 2 . The above discussion suggests that, if the
dynamics is chaotic, the SALI tends to zero as t tends to infinity. In fact, the SALI decays exponentially to zero at
the rateλ1−λ2 [51]. If the dynamics is regular, all LEs are zero, and there is no reason for the alignment of
vectors ( )

w t1 and ( )
w t2 . The SALI does not decay to zero in this case.

Thus, the SALI is a good chaos indicator forHamiltonian systems provided that l l¹1 2. In the opposite
case, whereλ1=λ2, equation (13) suggests that ( )

w t tends to
 
+c u c u1 1 2 2, with c1,2 depending on ( )

w 0 .
Therefore, ( )

w t1 and ( )
w t2 do not become parallel at  ¥t but rather approach the plane defined by


u1 and


u ;2

see figure 4(b). The SALI does not decay to zero and amore advanced chaos indicator is needed. To construct it,
we calculate the time evolution of a third deviation vector, ( )

w t3 , satisfying ( ( ) ( )) 
=w w0 , 0 03 1,2 .We then

compute the volume of the parallelepiped defined by the vectors ˆ ( )w t1,2,3 . It is given by the so-calledGALI3:

( ) ∣ ˆ ( ) ˆ ( ) ˆ ( )∣ ( )=  GALI t w t w t w t . 153 1 2 3

Here ˆ ∣ ∣ 
=w w wi i i is again the unit vector, and

 
a b is the exterior product between the vectors


a and


b . One

can show that ( )l l lµ - + +GALI t t texp 23 1 2 3 [52], and it decays to zero exponentially quickly unless
λ1=λ2=λ3. It can be shown that theGALI3 decays to zero also on some regular orbits. However, such a
nonchaotic decay ismuch slower as it follows a power law. This allows one to distinguish the chaotic and regular
motion [52].

If the first ( )-k 1 LEs are equal to each other and positive, the chaotic and regularmotion are distinguished
by theGALIk [52]:

( ) ∣ ˆ ( ) ˆ ( )∣ [ ( ) ( ) ( ) ] ( )l l l l l l=  ¼  µ - - - - -¼- -GALI t w t w t t t texp . 16k k k1 1 2 1 3 1

It is clear thatGALIk(t) does not decay exponentially if and only ifλ1=λ2=K=λk. This applies to regular
orbits whereλ1Kk=0. If the trajectory is chaotic, there exists a kwhich is smaller than the phase space
dimension such thatGALIk decays exponentially. One can show that SALI∝GALI2 [52]. Therefore, wewill
refer only to theGALI inwhat follows.

3.2. TheGALImethod for dissipative systems
Wehave alreadymentioned that theGALI has been developed as an indicator of chaos forHamiltonian systems,
and its archetypal treatment generally does notwork in the presence of dissipation and attractors.

Before extending theGALI to dissipative dynamics, let usfirst comment on the relation between attractors
and LEs. The ‘attraction’ of nearby orbits by the attractor comes from the fact that some LEs are negative (when
the system is near the attractor). If the attractor is regular, all LEs are nonpositive, and the number of zero-valued
LEs is equal to the dimension of the attractor, see chapter 10 of [59]. If all LEs are negative, the attractor is afixed
point. An attractor with only one zero-valued LE is a 1D curve in phase space, that is commonly called a limit

Figure 4.Panel(a): evolution of two deviation vectors along a chaotic trajectory. Even if ( ) ( ) 
^w w0 01 2 , the chaotic dynamics ensures

that ( ) ( )  w t w t1 2 at  ¥t provided thatλ1>λ2. Panel(b): evolution of the normalized deviation vector ˆ ( )w t in the caseλ1=λ2.
When  ¥t , ˆ ( )w t approaches the plane defined by


u1 and


u2.
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cycle. An attractor which has p zero-valued LEs is a p-dimensional torus in phase space, that is dubbed a limit
torus. Themost complex attractors have positive and negative LEs, such that ‘attraction’ co-exists with chaotic
divergence of the trajectories. Those are called chaotic or strange attractors.

Consider now theGALI2 in a dissipative system.On a limit cycle, ( )
w t approaches


v1 (regardless of the initial

condition), and theGALI2 decays exponentially to zero at a rate−λ2. On the other hand ( )
w t approaches


v1 on a

chaotic attractor withλ1>λ2 (again regardless of the initial conditions) andGALI2 decays exponentially to zero
at a rateλ1−λ2.We can conclude that theGALIk decays to zero both on the limit cycle and on the chaotic
attractor for all possible values of k. Therefore, theGALImethod cannot distinguish between the limit cycle and
the chaotic attractor.We argue that theGALI is nevertheless useful for the study of dissipative systems because it
is able to distinguish dynamics in the vicinity of the attractor from transient dynamics. Let us use equations (13),
(16) to analyze the behavior of the deviation vectormodulus, ∣ ( )∣

w t , and of theGALIk on the different kinds of
attractors:

• Fixed point: all LEs are negative. Consequently, ∣ ( )∣
w t decays to zero exponentially quickly. TheGALIk do not

necessarily decay to zero since some of the LEsmay have the same value.

• Limit cycle:λ1=0, while all other LEs are negative. Consequently, ∣ ( )∣
w t does not decay to zero. TheGALIk,

on the other hand, decay to zero exponentially quickly for k�2.

• p-dimensional limit torus:λ1=K=λp=0, while all other LEs are negative. Consequently, ∣ ( )∣
w t and the

GALIk for k�p do not decay to zero. TheGALIk for k>p, on the other hand, decays to zero exponentially
quickly.

• Chaotic attractor: there are genericallyN1 positive LEs andN2 negative ones, whereN1,2>0. Consequently,
∣ ( )∣
w t grows and the >GALIk N1

decay exponentially quickly. The behavior of the  GALI k N2 1
(whether or not

they decay to zero) depends on the degeneracy of the positive LEs.

Hence, when the trajectory is in the vicinity of an attractor, either ∣ ( )∣
w t or someGALIkmust decay

exponentially. Note that the inverse statement does not hold true: the fast decay of either ∣ ( )∣
w t or someGALIk

cannot prove that the trajectory is in the vicinity of the attractor.
The transient dynamics ismore difficult for the analysis since one cannotmake any general statement about

the behavior of ∣ ( )∣
w t or theGALIkwhen the trajectory is not close to any attractor. In principle, there is a

possibility that ∣ ( )∣
w t or theGALIk could decay to very small values during the transient dynamics. On the other

hand there is no generic reason for such a behavior and it seems unlikely thatmany different deviation vectors
would behave in such away. Therefore, wewill assume thatwhenever either ∣ ( )∣

w t or theGALIk decays to zero,
the trajectory is in the vicinity of an attractor.

Oncewe know that the trajectory is in the vicinity of the attractor, knowing the properties of ∣ ( )∣
w t suffices

to distinguish the chaotic attractors from the regular ones. If ∣ ( )∣
w t grows exponentially the attractor is chaotic;

if there is no exponential growth of ∣ ( )∣
w t the attractor is regular. In the latter case, theGALIk provides the

information about the dimensionality of the attractor. The ability of theGALI to detect the transient dynamics is
especially important for a blue detunedOMsystem, since deterministic (nonchaotic) amplification of the
mechanicalmotion represents the default behavior in this regime and the growth of ∣ ( )∣

w t could be easily
misinterpreted as a signature of chaos.

Armedwith this novel understanding, we have successfully applied theGALImethod to the dynamics of
weakly dissipativeOM systems. This will be the focus of the next section.

4. Applying theGALImethod toOMsystems

4.1.Details of the implementation
In the previous section, we have explained that theGALImethod is a powerful tool for the analysis of the
attractors of weakly dissipativeOMsystems because it allows one to detect the chaotic attractors very efficiently
and to distinguish the regular attractors of different dimensionality. To study the nonlinearOMdynamics, we
have solved the equations ofmotion (3), (4) and analyzed the evolution of three deviation vectors ( )

w t1,2,3 whose
initial conditions are orthogonal. After this, we have calculated theGALI2,3(t). Three different pairs chosen from
the three deviation vectors can generate threeGALI2.We have calculated the ( )( )GALI tw w

2
,1 2 based on ( )

w t1,2 and
the ( )( )GALI tw w

2
,1 3 based on ( )

w t1,3 .We have used the average norm

( ) [∣ ( )∣ ∣ ( )∣ ∣ ( )∣] ( )  
á ñ = + +w t w t w t w t 3, 171 2 3
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the averageGALI2,

( ) [ ( ) ( )] ( )( ) ( )á ñ = +GALI t GALI t GALI t
1

2
, 18w w w w

2 2
,

2
,1 2 1 3

and theGALI3(t) for classification of the attractors. Specifically, we have assumed that any of these quantities has
effectively ‘decayed to zero’when it becomes smaller than a given cutoff ò.We have chosen ò=10−6. Our
operational rules are:

• If ( )á ñ < w t , the attractor is a fixed point.

• If ( ) á ñ - w t 1 and ( )á ñ < GALI t2 , the attractor is a limit cycle.

• If ( ) ( ) á ñ á ñ - w t GALI t, 2
1 andGALI3(t)<ò, the attractor is a two-dimensional limit torus9.

• If ( )á ñ > -w t 1 and either ( )á ñ < GALI t2 orGALI3(t)<ò, the attractor is chaotic.

Note that, since theOMphase space is four-dimensional, we could, in principle, come across limit tori with
higher dimensionality. Their detectionwould require using the fourth vector ( )

w t4 and constructingGALI4(t)
because neither ( )á ñw t nor ( )á ñGALI t2 norGALI3(t)would drop below ò.Wewill show, however, that this is not
the case for our choice of the parameters and of the initial conditions and, thus, the selected indicators suffice for
our purposes.

4.2. Attractors of weakly dissipativeOMsystems
figure 5(a) shows a diagram as a function of the detuningΔ and the drive power Pwhich confirms the existence
of various attractors in the phase space of a weakly dissipativeOMsystem.Wehave already discussed thatOM
systems possessmultistability: several attractors of different dimension can co-exists at given values ofΔ andP.
Therefore, each pixel of the diagramhas been obtained by solving the equations ofmotion for ten different initial
conditions. Its color corresponds to themost ‘complex’ attractor observed in these ten simulations. The
attractors, sorted by increasing ‘complexity’, are: fixed points, limit cycles, limit tori, transiently chaotic
attractors, and chaotic attractors.

Figure 5.Attractor diagrams for theweakly dissipativeOMsystemwhich have been generated by using theGALImethod (panels (a)
and (b)) and themLEmethod (c). Each pixel has been obtained after solving the equations ofmotion for ten different initial
conditions. Its color corresponds to the themost ‘complex’ attractor whichwe have detected for givenΔ andP. Note that themLE
method does not distinguish between the limit cycles and the limit tori. Panel(b) shows a zoomof the areawithin thewhite box in
panel(a). TheOMsystemoperates in the weakly dissipative regime (κ=0.1Ωm and γ=10−4Ωm).

9
When the attractor is a limit cycle, theGALI3 frequently decaysmuch faster than theGALI2. For this reason, one can erroneously conclude

that the attractor is a two-dimensional torus. To avoid thismistake, one should calculate theGALI2 for a longer time. This will reliably detect
the cases where the attractor is a limit cycle, and not a torus.
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Toprove that our implementation of theGALImethod yields reliable results, we show infigure 5(c) a similar
diagramwhich has been obtained by calculating themLE.One can observe qualitative similarity of the results
generated by the two differentmethods, which confirms the validity of the diagram 5(a). On the other hand, this
comparison also shows that themLEmethod yields less detailed information and is unable to distinguish
between the limit cycles and the limit tori.

4.3. Limit tori, Neimark–Sacker bifurcation, and transition to chaos
The diagram5(a) displays the presence of fourOMattractors with different dimensions: fixed points, limit
cycles, limit tori and chaotic attractors.While there is a number of works addressingOM limit cycles (see e.g.
[22–25, 29, 30, 48]), and someworks devoted to chaos inOMsystems (see e.g. [27, 28, 31–36, 60, 61]), studies of
theOM limit tori, or quasiperiodic orbits, are scarce.We are aware of only one paper [62], which reports the
theoretical prediction of quasiperiodicOMorbits for parameters close to our choice. Quasiperiodic orbits were
not observed in the strongly dissipativeOM system, see [27].

We have detected the limit torimostly in the range 0.6Ωm�Δ�Ωm, which corresponds to the blue-
detuned regime. The limit tori can be also found in the red detuned region, but they are rather rare there.
Figure 6(a) shows how a quasiperiodic orbit appears and disappears when the detuning is changed
adiabatically10.We have plotted the spectrumof the position of themechanical oscillatorwhen theOMsystem is
close to some attractor. There is only one peak in the spectrum atΔ∼0.7Ωmwhichmeans that the attractor is a
limit cycle. A qualitative change occurs atΔ;0.77Ωm and several peaks appear at largerΔ. Themotion is
quasiperiodic in this range and the attractor is now a limit torus11. All secondary peaks disappear at
Δ;0.89Ωm, and again only one peak is visible

12; the attractor becomes a limit cycle atΔ>0.89Ωm. These two
transitions between a limit cycle and a limit torus agreewith the diagram 5(a) and are known in the literature as
theNeimark–Sacker bifurcation [63, 64]. Figure 6(b) shows time evolution of themechanical degree of freedom.
This trajectory is in the vicinity of a limit torus. The beating created by the sidebands is clearly visible. A similar
phenomenon has been observed in [43, 65].

Our remarkable finding is that the critical value ofP, at which chaos appears, becomes considerably smaller
when the dissipation is weak; compare the value Pc≈0.1 from figure 5(a)withPc≈1.4 reported in [27] for the
strongly dissipative case.We have discovered another qualitative difference between the strongly andweakly
dissipative chaoticOMdynamics: chaos is observedmostly in the red detuned regime (Δ<0) in the former
case, while in the latter case it is observedmostly in the blue detuned regime (Δ>0). In order to support the
claim that the differences between the strongly and theweakly dissipative regimes depend on the sideband
parameterκ/Ωm only, we have obtained the attractor diagram also forκ=10−1Ωm and γ=10−3Ωm. This
diagram,which is not shownhere, displays the same qualitative features observed infigure 5(a), differing

Figure 6.Panel(a): themechanical spectrum for anOMsystem close to an attractor.Wehave initially simulated the dynamics for
P=0.075Ωm andΔ=0.74Ωm until the system reached an attractor. Afterwards, the detuningΔ has been slowly increasedwhileP
was kept fixed. The spectrumof the position of themechanical oscillator has been computed during this process. Colors denote the
absolute value of the spectrum, ∣ ( )∣wS . Only one peak is observed atΔ<0.77Ωm, i.e. the attractor is a limit cycle. Several other peaks
appear atΔ;0.77Ωm, i.e. the attractor becomes a limit torus. These secondary peaks disappear atΔ;0.89Ωm; forΔ>0.89Ωm,
the attractor is again a limit cycle. Panel(b): time evolution of themechanical degree of freedom; the system is in the vicinity of the
limit torusmarked by the red line in panel(a). The beating created by the sidebands is visible. Panel(c): zoomof the areawithin the
black box in panel(b).

10
Adiabatic change heremeans that the detuningwas changed very slowly, such that if the system is initially close to some attractor, it

remains close to it.
11

The presence of the secondary peaks does not necessarily imply that the attractor is a torus. For this to happen, two frequencies in the
spectrummust be incommensurate.Wehave concluded that the attractor is indeed the limit torus because theGALI2 does not decay to zero.
12

The low-intensity semi-periodic pattern around themain peak is a numerical artefact connected to theway the Fourier transformwas
implemented.
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markedly from the results reported in [27]. This shows that the sideband parameterκ/Ωm is the only relevant
parameter in our classification of strongly andweakly dissipative regimes.

Thoughwe have detected chaos for both positive and negative detuning, the chaotic region in the blue
detuned part of the diagram looksmore ‘dense’ because pixels denoting chaotic dynamics agglomerate and are
not isolated.We expect that small changes of the parameters inside the agglomerates cannot destroy chaotic
dynamics. The chaotic region in the red detuned regime is very sparse and even subtle changes of the parameters
are likely to convert the chaotic attractor to a regular one. Such a ‘sparse chaotic region’ is shown infigure 5(b)
which displays a zoomed part offigure 5(a) (the areawithin thewhite box in the red detuned region). One can see
that the sparse chaotic region consists of very thin chaotic layers.

Close proximity of chaotic and quasiperiodic regions in the diagram figure 5(a) atΔ>0 provides a hint that
OMsystems can reach dynamical chaos via a route involving quasiperiodic orbits. To test this guess, we have
investigated how anOMattractor behaves when the detuning is changed adiabatically such that the system starts
in a quasiperiodic region of the parameters space and ends in a chaotic region. The results are shown infigure 7.
The time evolution of ∣ ∣w , theGALI2, and theGALI3 are given in the upper panels, while the lower Panels present
the spectrumof themotion of themechanical oscillator. AtΔ=0.74Ωm, in panels(a), (e), ∣ ∣w andGALI2
oscillate around some nonzero values, whileGALI3 decays to zero exponentially quickly. Simultaneously, the
mechanical spectrumhas only two independent frequencies. Therefore, the attractor is a two-dimensional
torus.WhenΔ is decreased (down toΔ=0.735Ωm, panels(b), (f), and further toΔ=0.732Ωm, panels(c),
(g)), the behavior of all three indicators remains qualitatively the same thoughmore andmore additional peaks
(markingmore frequencies) become visible and pronounced in the spectrum. The dynamical picture becomes
qualitatively different at the smallest chosen detuning (Δ=0.727Ωm, panels(d), (h)): ∣ ∣w increases while the
GALI2,3 decay to zero exponentially. Itmeans that the attractor is chaotic. This conclusion is confirmed by the
dense nature of themechanical spectrum. The transition to chaos depicted infigure 7 is called the quasiperiodic
route to chaos [66]. It is characterized by the appearance of new frequencies when the control parameter (Δ in
our study) is changed. The new frequenciesmust be commensurate with the basic two frequencies, see
figures 7(e)–(g). If the new frequencies were incommensurate wewould come across a higher dimensional torus
and theGALI3 would not vanish.One can notice a similarity between the quasiperiodic route to chaos and the
period doubling cascade. Indeed, the dense chaotic spectrum is reached via an increasing number of new
frequencies which are commensurate.

Figure 7.Transition from a limit torus to a chaotic attractor when the detuningΔ is changed adiabatically. Panels(a)–(d) show the
time evolution of themodulus of the deviation vector, ∣ ∣w , (blue curve), theGALI2 (green curve), and theGALI3 (red curve).
Panels(e)–(h) display the spectrumof the position of themechanical oscillator. The power is kept fixed atP = 0.3 for allfigures while
the detuningΔ is changed. Panels(a), (e),Δ=0.74Ωm: the attractor is a two-dimensional torus because onlyGALI3 decays to zero
exponentially quickly. The spectrum shows only two frequencies. Panels(b), (f),Δ=0.735Ωm, and (c), (g),Δ=0.732Ωm: The
attractor remains a two-dimensional torus though the spectrum containsmore frequencies with decreasingΔ. Panels(d), (h),
Δ=0.727Ωm: the spectrum is dense; theGALI2,3 decay to zerowhile ∣ ∣w increases exponentially quickly.Hence, we have come across
a chaotic attractor.
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4.4. Classical transient chaos
Let usfinally discuss another nonlinear phenomenon, which is captured byfigure 5(a) but has not been revealed
in previous studies of classical OMchaos. This is thewell-known transient chaos. Its name perfectly reflects its
main features: a dynamical system can display chaoticmotion for a finite time interval after which its dynamics
becomes regular. Dissipative transient chaos can be explained by a coexistence of different attractors, e.g. one
attractor is chaotic and the other regular. Each attractor has its own basin of attraction. The basins could be
separated by only an unstable periodic orbit. One can tune a parameter of the nonlinear system, η, such that the
chaotic attractor approaches the unstable periodic orbit. At a critical value η=ηc, the chaotic attractor ‘touches’
the unstable periodic orbit. This phenomenon is called the boundary crisis [67, 68] and it is one possible
mechanismunderlying transient chaos. One can imagine that, at ηηc, a tiny fraction of the chaotic attractor
penetrates the basin of attraction of the regular attractor. If a chaotic trajectory reaches this intersection region,
where the chaotic attractor is entangledwith the regular basin of attraction, it can be intercepted and ‘dragged’
into the regular attractor. In other words, the chaotic attractor becomes leaky13.

Transient chaos also provides a possible route to chaos: changing η in the opposite direction results in the
creation of a chaotic attractor at ηηc. The time that a trajectory spends on the chaotic attractor before the
leakage is typically very sensitive to the initial conditions. Nevertheless, we can define the average escape time
τesc. To this end, we selectN0 points in the leaky attractor, and use them as initial conditions of the nonlinear
system.We then computeN(t), the number of trajectories remaining on the chaotic attractor at time t. The
escape time can be found from the approximation ( ) ( ) t-N t N texp0 esc . Clearly, numerical approaches
cannot distinguish the genuine chaotic trajectories and the transient trajectories with very large tesc

14.We have
used an empirical criterion: (i) trajectories which display chaoticmotion during a time interval larger than

= W-T 10 mcutoff
5 1 are labeled ‘chaotic’; (ii) trajectories whose dynamics remains chaotic only for shorter times and

becomes regular afterwards are labeled ‘transiently chaotic’. Interested readers canfindmore details on transient
chaos in the book [69].

Transient chaos inOMsystems has been discussed for the first time in [60]. The authors of this paper argue
that transient chaos underlies the breakdownof the quantum-classical correspondence in strongly dissipative
OMsystems, which display chaotic evolution in the classical regime and regular dynamics in the quantumone.
To the best of our knowledge, the purely classical OMchaos has not yet been studied.We explore it in theweakly
dissipative case. A representative example of transient chaos in classical OM is shown infigure 8. The time
evolution of the optical andmechanical variables, figures 8(a), (b), clearlymanifests a crossover from the initially
stochastic dynamics to subsequent regularmotion. The crossover is obvious also in the behavior of themodulus
of the deviation vector ∣ ∣w , and theGALI2,3,figure 8(c). Before the crossover, ∣ ∣w increases while theGALI2,3
decays exponentially, confirming that the trajectory is chaotic. ∣ ∣w stops increasing at some time instant and
oscillates around a nonzero value at longer times. Thismeans that the trajectory becomes regular. The decay of
theGALI2,3 is cut at evenmuch shorter times because of the finite numerical precision of themethodwhich has
been used to solve the equations ofmotion.

Figure 8.Classical transient chaos in anOMsystem. The dynamics of optical andmechanical degrees of freedom is shown in
panels(a) and (b), respectively. In panel(c), we present the time evolution of three indicators, ∣ ∣w (blue curve), theGALI2 (green
curve), and theGALI3 (red curve). The parameters areΔ=0.5696Ωm andP = 0.3. All three plots clearly display the time instant at
which the trajectory leaves the chaotic attractor and is attracted to the regular one. The fast decay of theGALI2,3 is cut at valuesO
(10−12) andO(10−25), respectively, because of the numerical precision of ourmethod.

13
This discussion is, of course, not rigorous, rather illustrative. From amathematical point of view, the chaotic attractor ceases to exist at

η>ηc.
14

We distinguish here the average escape time τesc, which is a property of the chaotic attractor, and the escape time tesc, which is a property of
the particular trajectory.
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The chaotic fractions of the phase space are elaborately intertwinedwith the regions of transient chaos; see
figure 9.We expect that this is a generic property, though details of the phase space (whether a given pixel belong
to the genuine or transient chaos) are certainly sensitive to the cutoff time used in the empirical criterion
explained above. Figure 9(c) shows the same basin of attraction as that drawn infigure 9(a), but nowwith the
doubled cutoff ¢ = ´ WT 2 10 mcutoff

5 .We note thatmany pixels, whichwere classified as chaotic infigure 9(a),
are now classified as transiently chaotic infigure 9(c). Thus,many chaotic trajectories are actually transiently
chaotic, but with a large escape time tesc.

The high complexity of the phase space results in hypersensitivity of the dynamics to the initial conditions.
We have discussed this phenomenon already in section 2.3.1; see figure 3. Figure 9 suggests that the
hypersensitivity is generic in weakly dissipativeOMsystemswhich possessmultistability (co-existence of
different attractors).

5. Experimental relevance of our results

There are several experimental works devoted toOMsystems that report dissipation constants similar to (or
even smaller than) thosewe have used for our numerical simulations.Weakly dissipativeOMresonators can be
fabricated inmicrowave systems [70–72], microresonators [73, 74] and photonic crystals [75, 76], to name just a
few platforms The detuning can usually be changed in a broad range.More important for investigations of the
nonlinear effects is the accessible range of the driving strength, which governs the values of the parameter P. P
itself is not convenient to describe the experiments, and it is better to consider themaximum cooperativity C̃ .
The valueP∼0.1 corresponds to amaximum cooperativity ˜ ~C 106. This value agrees, for example, with the
experimental value reported in [77].We thus believe that the nonlinear phenomena described in the current
paper can be explored in the near future inmodern experiments. In particular, phenomena similar to the
Neimark–Sacker bifurcation have been already observed experimentally in [43, 65].

We note also that some platforms have dissipation constants substantially smaller than the values chosen for
our study [71, 72].We have not considered such aweak dissipation butwe think that nontrivial nonlinear
phenomena could be found in less dissipativeOMsamples for substantially smaller values ofP.

6. Conclusions

Wehave demonstrated that the classical nonlinear dynamics of an optomechanical resonator shows a great
variety of nontrivial properties when the dissipation is weak. This regime had not received proper attention in
the few previous studies dedicated to nonlinearOMdynamics, though it is of great experimental significance.

The phase space of the simplest OMsystem is four dimensional and includes twomechanical and two optical
variables. High dimensionality and the presence of dissipation bring an extreme level of complexity to any
systematic study. This is because analyticalmethods are basically unavailable while standard numerical
approaches converge rather slowly. To overcome these technical difficulties, we have suggested a novel
application of theGALImethod, whichwas initially developed forHamiltonian systems, to study attractors of
the dissipative nonlinearOM system.Our approach has several advantages. Firstly, it has proved to be
substantially faster than that based on an analysis of themLE. Evenmore importantly for our goals, it allows one
to easily distinguish attractors of different dimensionality.

Figure 9.Panel(a): basin of attraction of attractors with different dimensions. The parameters areP = 0.395 andΔ=0.61Ωm.
Panel(b): zoomof the area within the black box in panel(a). The basins of attraction display a similarly strong complexity at different
scales (panels (a) and (b)). Panel(c): the same basin of attraction as in panel(a) butwith a longer realization time. The equations of
motionwere solved up to times 105/Ωm for panel(a) and 2×105/Ωm for panel(c).Many pixels classified as chaotic in panel(a) are
transiently chaotic with a large escape time.

13

New J. Phys. 22 (2020) 013049 T FRoque et al



Wehave shown that weak dissipation strongly facilitates various nonlinearOMeffects, which can appear at
substantially lower laser power as compared to the previously studied strongly dissipativeOMdynamics. In
particular, weakly dissipative dynamics becomes chaotic at P≈0.1 (see the definition in section 2), one order of
magnitude smaller than the typical values ofP needed for chaos in the strongly dissipative case.

Our choice of parameters has allowed us to revealmultistability, i.e. the co-existence of different attractors.
Their basins of attraction are very complex and entangled. As a result, a tiny variation of the initial conditions
can completely change the dynamics on long time scales, since the trajectory is driven to a different attractor.
Such a hypersensitivity to the initial conditions occurs evenwhen the dynamics is regular and there are no
chaotic attractors.We believe this to be a generic property of weakly dissipativeOMsystems.

Another generic feature reported in the current paper is the existence of quasiperiodic attractors, or two-
dimensional tori, in theOMphase space.We have investigated the transition from limit cycles to quasiperiodic
orbits, which, in turn, can undergo a transition to chaos. The latter transition has some similarities to thewell
knownperiod doubling cascade and provides a new route to chaos forOM systems. Finally, we have detected
transient chaos. To the best of our knowledge, transient chaos has not been observed in previous studies of
classical OMdynamics.

In spite of the great power of our numerical approach, we have not been able to obtain completely exhaustive
information aboutweakly dissipativeOMdynamics. This is because scanning all possible combinations of the
four dimensionless parameters (rescaled power, detuning,mechanical and optical dissipation) and a broader
range of the initial conditions is simply not feasible.We have focussed on exploring the phase diagram in terms
of power and detuning, while keeping the dissipation values fixed. Thus, any complementary analyticalmethod
could be of great importance.We believe that an extension of themethod suggested in [78–80]might help to
achieve further progress. Thismethod is based on the analysis of hyperbolic trajectories in phase space. It has
initially been developed for ac driven dissipationless dynamics. However, its generalization to theweakly
dissipative case seems to be possible and promising.

We have argued that all the nonlinearOMphenomenawhichwe have described arewithin the reach of state-
of-the-art experiments in optomechanics.Moreover, it would be interesting to extend the present analysis to
OMarrays, which are known to have a tendency towards complex and chaoticmotion [41]. This could lead to
exploring the complex interplay of theAnderson localization physics, first predicted in [81], and nonlinearOM
dynamics.
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