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Abstract

Absorption line spectroscopy is a powerful way of measuring properties of stars and the interstellar medium.
Absorption spectra are often analyzed manually, an approach that limits reproducibility and which cannot
practically be applied to modern data sets consisting of thousands or even millions of spectra. Simultaneous
probabilistic modeling of absorption features and continuum shape is a promising approach for automating this
analysis. Existing implementations of this approach use numerical methods such as Markov Chain Monte Carlo to
marginalize over the continuum parameters. When continua are parameterized as linear functions such as
polynomials or splines, it is possible to reduce continuum parameter marginalization to an integral over a
multivariate normal distribution, which has a known closed form. Analytic marginalization makes it possible to
combine optimization for absorption line parameters with marginalization of nuisance continuum parameters. We
compare the accuracy to within which absorption line parameters can be recovered using different continuum
placement methods and find that marginalization with an informative prior on continuum parameters is a clear
improvement over other continuum placement methods over a broad range of signal-to-noise ratios. We implement
analytic marginalization over linear continuum parameters in the open-source package amlc.
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1. Introduction

Absorption lines contain information on the composition and
properties of interstellar matter (ISM) and stellar atmospheres.
To extract this information, it is necessary to decompose the
spectrum into absorption features and the intrinsic flux,
typically referred to as the continuum, produced by the
illuminating background source toward which the absorption
is seen. The most common way of doing this separation has
been manually finding regions in a spectrum that do not contain
absorption features, fitting a function to these regions, and
using this function to interpolate over the absorption features.
Given the longevity and popularity of this approach, it is clear
that it can produce acceptable results. It does, however, have
two important weaknesses. The first is that every spectrum
must be examined and interacted with by a human. This cannot
efficiently be done for data sets containing thousands or even
millions of spectra. The second is that it is unlikely that the
absorption parameter estimator this procedure implicitly
defines uses data efficiently. There is variance between
analyses done by different humans as well as between analyses
done by the same human at different times. If there is a subset
of analysts whose estimates are the most accurate and precise,
then the estimates of the rest are using the available data
inefficiently.

An alternative approach is to infer absorption line and
continuum parameters simultaneously. To improve the accur-
acy of the inferred absorption line parameters, it can be useful
to marginalize over, rather than fit for, the continuum
parameters. This has been done in packages meant for the
analysis of absorption lines from both the ISM (BayesVPp,
Liang et al. 2018) and stellar atmospheres (Starfish, Czekala
et al. 2015; sick, Casey 2016). In these packages, continuum
parameter marginalization is done numerically, using Markov
Chain Monte Carlo (MCMC). As the authors of two of these

packages point out, including large numbers of continuum
parameters in MCMC sampling leads to long convergence and
autocorrelation times. To keep the number of continuum
parameters low, these packages either do not support
(BayesVP) or advise against (sick) including continuum
parameters when simultaneously analyzing multiple spectral
segments.

In the packages discussed above and in much of the
absorption line analysis literature, the continuum is assumed to
be a low-order polynomial or spline. Polynomials and splines
are nonlinear functions of their x variable, in this case
wavelength, but linear functions of their coefficients. For
example, a quadratic function, f(x) = ax? + bx + ¢, is non-
linear in x but linear in a, b, and c. The same is true of any
function that can be expressed as a linear combination of fixed,
possibly nonlinear functions of x. This linearity means that it is
possible to marginalize over these coefficients analytically if
some additional assumptions hold.

Analytic marginalization has several advantages over
numerical marginalization. It reduces the dimensionality of
the parameter space that would need to be mapped out by an
exact’ probabilistic inference method such as MCMC. This
reduction is useful because exact probabilistic inference
methods tend to operate more efficiently in spaces of lower
dimensionality. The continuum parameter-marginalized like-
lihood and its gradient can also be used as an objective function
for optimization. Finally, it makes marginalizing over different
continuum parameterizations trivial.

The assumptions required for this particular form of analytic
marginalization are: that the continuum can be expressed as a
function that is linear in its parameters; that the priors on the
parameters of this function are either improper uniform or

3 In the sense of (possibly approximately) exploring the true posterior

probability distribution.
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multivariate normal; and that residuals from the model are
normally distributed. If these assumptions hold, then, given a
model for the absorption, the posterior probability distribution
function of the continuum parameters is itself a multivariate
normal distribution. The first assumption, that the continuum
can be expressed as a function that is linear in its parameters, is
fulfilled by commonly used functions such as polynomials and
splines. One of the options given in the second assumption, that
the priors on the parameters of this function are improper
uniform, is made implicitly any time a continuum is fit without
explicitly defining priors. The third assumption, that residuals
from the model are normally distributed, is made whenever a
spectrum is analyzed as a set of continuous quantities, such as
fluxes, rather than as a set of discrete photon counts.*

The key concept is that when a set of absorption line
parameters is specified, the continuum parameters can be
treated as additive, rather than multiplicative, linear nuisance
parameters. Marginalizing over additive linear nuisance para-
meters simply updates the covariance matrix of the model
residuals; see Luger et al. (2017) for an explanation in an
astronomical context. This approach to marginalizing over
multiplicative linear nuisance parameters has already been used
in several astronomical applications, for example for analyzing
sparsely sampled radial velocity measurements (Price-Whelan
et al. 2017). Models for absorption line spectra have structural
features, such as the presence of a line-spread function (LSF),
which need to be accounted for to more efficiently compute
marginalized likelihoods and likelihood gradients.

In this work, we derive expressions for these quantities that
account for these features. This derivation is given in Section 2.
We have created a package, amlc,” for evaluating these
expressions. The package is described in Appendix A.

The performance of continuum marginalization and other
continuum placement methods in absorption line analyses is
explored with artificial data in Section 3 and, briefly, with
actual data in Section 4. We discuss the assumptions,
limitations, and prospects of analytic marginalization in
Section 5 and conclude in Section 6.

2. Assumptions and Formalism

We assume the following model for a spectrum y given
parameters 0, m, and b:

p
y(©) = L[d(9) © (um(9) + Zam,imi)

i=1

0
+ ub(ﬂ) + Zab,ibi) + €. (1)

i=1

The background source emits a continuum, which is expressed
as the sum of a mean term, p,,(¢), which may be a nonlinear
function of # and a linear combination of basis elements a,, ;
with coefficients m;. Intervening matter absorbs part of this
continuum with the transmittance function d (). The absorp-
tion happens independently at each wavelength. This is
indicated by the elementwise product © between the
transmittance and continuum. Foregrounds, such as sky lines

4 Assuming that a spectrum consists of, e.g., fluxes rather than photon counts
does not require the assumption that residuals are normally distributed, but
normality has been assumed in every such instance known to the author.

amlc is available at https://github.com/ktchrn/amlc.
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or instrumental artifacts are, like the continuum, expressed as
the sum of a possibly nonlinear mean term, p,,(¢), and a linear
combination of basis elements a;; with coefficients b;. The
resulting spectrum is convolved with an LSF L and observed. €
are the residuals between the observed y and the LSF-
convolved spectrum and are assumed to be normally distributed
with mean zero and covariance matrix K. The length of the
observed spectrum is M, the length of the model spectrum
before convolution with the LSF is &, the number of continuum
basis elements is P, and the number of foreground basis
elements is Q.

Collecting the multiplicative (continuum) and additive
(foreground) basis elements a,,; and a;; into matrices Ay,
and A, and converting the transmittance vector d(6) into the
diagonal matrix Dy = diag(d (9),

y = L(p,(0) + Apb + Dy(p1,,(0) + Apm)) + € (2)
= L(,(8) + Dy, (0) + Be) + €. 3)

In the second expression, B and ¢ are defined as

c= ['Z] 4)

We consider two possible priors for the nuisance parameter
vector ¢, a multivariate normal distribution with mean zero and
covariance matrix A and an improper uniform distribution of

B = [DyA,  Ap)

P+Q
p,(€) = N0, A)(normal) and p, (c) = H Z,»_l(uniform),
i=1

3)
where Z; is an arbitrary positive constant.

2.1. Conditional Probability of the Nuisance Parameters

For both priors, the conditional distribution of ¢ at fixed 6 is
proportional to a multivariate normal distribution. The mean ¢
of this normal distribution is

ényu = C,,,BTL'K"'r, (6)
where r is the vector of residuals
r=y — L(1,(0) + Dyps,, (0) ©)
and G, is
C,=AN'+ B'L'K'LB, 8)
if the prior on ¢ is normal, and
C,=B"L'K"'LB ©)]

if the prior on ¢ is uniform. The covariance matrix of the
conditional distribution of ¢ is C, .

The conditional distribution of ¢ can be used for visualiza-
tion and predictive checks. The mean of the conditional
distribution is also its mode, so LB¢ is the best-fit model for y
at a given value of #. Samples drawn from the conditional
distribution of ¢ can be used to visualize the effect and extent of
nuisance parameter variation.
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2.2. Marginal Likelihood

Assuming the normal prior p, (¢), marginalizing over ¢ gives

+o00
2,10, L, B, K, A) = f p(le. 0, L, B, K, A)p, (c) de

(10)
= (27)" % det (K)~z det (A) > det (C,) >
X exp[—%rTKl(r — f‘,,)], (11
where
f'n/u = LBén/u. (12)

If we instead assume the improper prior p, (c),

+o0o
PO LB K) = [ p(yle, 0. L B, K)p,(©)de (13)

P10 M—(P+Q) 1 1
=| ] z'|@r)" > det(K)>det(C,) 2
i=1

X exp[—%rTKfl(r - i'u)]. (14)

The marginal likelihood p, will be proper if C, is positive
definite, which will be the case when LB has full rank and
M > P + Q. The marginal likelihood p, is always proper
because C, is always positive definite. C, is always positive
definite because A°! is always positive definite and
BTL'K~'LB is always at least positive semidefinite.

2.3. Gradients

We give expressions for the gradients of log(p,) and log(p,)
with respect to d (0), w,,(8), and p,, (6). The gradient of log(p)
with respect to the parameters # can be obtained by evaluating
each of these gradients, computing the Jacobians of d(0),
w,(8), and p,, (6) with respect to 6, and applying the chain rule.

The gradient of log(p) with respect to d () is

Vlog(p)d(0)) = 'K \(r — #y0)) © B¢ + p,)
- %((C,Z/LB’T) ©® (BTL'K™'L)
+ (C,,B"L'K"'L) ® B')1, (15)

where 1 is a column vector of ones of length P + Q. B’ is the
sum of derivatives of B with respect to each element of d (6):

N 9B
B=S—"_ 16
;adi(a) (10
N
=>[J"An 0 x 4] 17)
i=1
= [Am O], (18)

where J% is a square matrix whose (i, i)-th entry is 1 and whose

other entries are all 0. The first row of Equation (15) is the

gradient of the argument of the exponentials in Equations (10)

and (13). The second row is the gradient of log (det (C,,)).
The gradient of log(p) with respect to p,,(0) is

Viog(p) (1, (0)) = DyL"K~'(r — 7,1 19)
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and the gradient of log(p) with respect to p,,(6) is
Viog(p)(p,(0)) = LK™ '(r — #,.). (20)

2.4. Marginalizing over Parameterizations

If there are multiple possible models whose marginal
likelihoods are available in closed form, it is trivial to
marginalize over the choice of model. In the case of continuum
marginalization, the models could be polynomials of different
degrees. For marginalization over model choice to be well
defined and meaningful, the prior within each of the possible
models must be proper. It is also necessary to specify a prior
over the choice of model. If the models are assumed to be
equally likely before seeing the data, the prior probability of
each model would be the inverse of the number of possible
models. In general, the prior will be a set of weights, one per
model, that sum to one.

Given a parameter set 6 and 7 possible continuum bases and
priors, the parameter and parameterization-marginalized like-
lihood is the weighted sum of the parameter-marginalized
likelihoods

pW|0, L, By, Bs,....Br,p, K, A, Ay,...,Ar, p)

T
=>"p x pyl0, L, B;, K, A)), 1)
i=1

where the weights p; are the prior probabilities of each model.
This way of marginalizing over models is not specific to the
likelihood function described in this section—it works for any
set of proper marginalized likelihoods. It cannot be applied if
the prior over any of the marginalized parameters is improper
(e.g., the uniform prior defined in Equation (5)).

3. Tests on Artificial Data

In this section, we explore how different continuum
placement methods affect the accuracy and precision with
which column densities can be measured from absorption lines.
We do this by generating artificial spectra containing absorp-
tion lines with known input parameters and attempting to
recover these parameters using different continuum placement
methods. The central question of this section is: are line
parameters obtained by marginalizing over continuum para-
meters more accurate and precise than line parameters obtained
using other continuum placement strategies? The answer
depends on whether or not a correct, informative prior over
continuum parameters is used for marginalization. If an
informative and accurate prior is available, continuum margin-
alization produces results that are almost as precise and
accurate as those obtained when each test spectrum’s true
continuum is known. If continuum marginalization is instead
done with a diffuse, uninformative prior, the results are no
better than simultaneously fitting for line and continuum
parameters.

To isolate the effect of continuum placement, we keep the
test problem simple: a single resolved and unsaturated
absorption line superimposed on a continuum that is a first or
second degree polynomial (i.e., a line or a quadratic function).
We vary the depth of the absorption line, the extent of the
spectrum surrounding the line, and the signal-to-noise ratio
(S/N) of the artificial data. We generate 2000 spectra for each
combination of total optical depth, S/N, spectrum extent, and
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Table 1
Parameters That Define an Atrtificial Test Spectrum
Parameter Values
Continuum degree 1,2
Total optical depth 1.0, 2.0, 3.0
Velocity extent 35, 50, 65 kms ™!
Signal-to-noise ratio 5, 6.66..., ..., 20; AS/N = 5/6 = 1.66...

Continuum coefficients Randomly generated
Noise Randomly generated

Note. Multiple realizations are generated for fixed values of the degree of the
polynomial describing the continuum, total optical depth of the absorption
feature, extent of the spectrum, and signal-to-noise ratio of the spectrum.
Continuum coefficients and the noise vector are randomly generated for each
realization.

continuum degree. Each spectrum has a different set of
continuum parameters, which are generated from a normal
distribution. The input parameters we adopt are listed in
Table 1. Example spectra generated using each of the
considered total optical depths and extents are shown in
Figure 1.

3.1. Continuum Placement Methods

We consider two categories of continuum placement
method: ones in which continuum parameters are optimized
for, or fitted continuum (FC) methods, and ones in which
continuum parameters are marginalized over, or marginalized
continuum (MC) methods. We also consider a case where the
true continuum is known (case TC) and only the line
parameters need to be determined. Since case TC’s error in
line parameters due to continuum placement error is, by
definition, identically zero, case TC provides an estimate of the
error in line parameters purely due to independent normally
distributed noise. To determine line parameters from a
spectrum in case TC, we minimize® the discrepancy between
the data and a model consisting of the correct continuum
attenuated by an absorption line.

Within the two categories, we define methods based on
different amounts of prior knowledge about the continuum. In the
continuum fitting category, we provide two levels of prior
knowledge: knowledge of which part of the spectrum is
effectively free of absorption and no additional knowledge
besides which continuum parameterization to use (i.e., whether to
use a first or second degree polynomial). The first level represents
a perfectly competent analyst or algorithm selecting an absorp-
tion-free region over which to fit a continuum. The second level
provides enough information to ensure that the correct solution is
allowed by the model. To determine line parameters given a true
absorption-free region, we fit a continuum to this region and then
optimize for line parameters assuming the obtained continuum.
To determine line parameters just given the correct continuum
parameterization, we simultaneously optimize for continuum and
line parameters. We will refer to these continuum placement
methods by the abbreviations TR—FC (true region—fit continuum)
and FC (fit continuum).

We provide three levels of prior knowledge in the continuum
marginalization category: knowledge of the correct prior; knowl-
edge of several possible priors, one of which is the correct prior;

5 All optimization is done using routines from the SciPy package’s

optimize module.
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and no meaningful prior knowledge. The correct prior is the
distribution used to generate the continuum parameters. This level
of knowledge provides a baseline for how well it is possible to
recover absorption line parameters while using continuum
marginalization. The second level can be thought of as having
accurate knowledge of the range of plausible continuum shapes in
several distinct classes of continuum, but not knowing in advance
which class should be used for a given spectrum. The third level is
a pessimistic scenario and is analogous to method FC. To ensure
numerical stability, we still use a proper prior in this method, but
one which is orders of magnitude broader than the correct one. In
the first and third methods, absorption line fitting is done using the
logarithm of Equation (10) as the objective function. In the second
method, the objective function is the logarithm of Equation (21).
We refer to these continuum placement methods by the
abbreviations TCov-MC (true covariance-marginalized conti-
nuum), MCov—MC (marginalized covariance—marginalized con-
tinuum), and DCov-MC (diffuse covariance—marginalized
continuum).

3.2. Results

Using these six objective functions and nonlinear optim-
ization routines from the SciPy package, we fit absorption
profiles to each of the generated test spectra. This yields one set
of line parameters—center, breadth, and total optical depth—
per test spectrum. Because it is the most challenging line
parameter to correctly recover, we will focus on the total
optical depth. To quantify the quality of recovery, we compute
the root mean square error (RMSE) of the logarithm of the total
optical depth:

N
RMSE(log7) = \/%Z(log% — log Tirge )2 - (22)

i=1
7; is the total optical depth value recovered from spectrum
realization 7 and Tiypy is the total optical depth actually used to
generate the spectra. We use the RMSE of the logarithm
instead of the linear value of the total optical depth because it is
equal to the RMSE of a corresponding column density. The
total optical depth of a line is equal to the product of the
column density of the absorber and some physical constants.
The difference of the logarithms of a pair of total optical depths
is therefore equal to the difference of the logarithms of the
corresponding column densities—the multiplicative constant
factors become additive and cancel.

The RMSEs for each combination of input parameter set and
continuum placement method are shown in Figures 2 and 3.
One way to summarize these results across the tested parameter
space is to compare the performance of each method relative to
the performance of each other method. To do this quantita-
tively, we calculate the fraction of cases in which the RMSE of
method A is less than or equal to the RMSE of method B. A
visual representation of this relative performance summary is
shown in Figure 4.

The two informed continuum marginalization methods,
TCov-MC and MCov-MC, consistently yield the lowest
RMSEs of all the continuum placement methods. For about
80% of the fixed input parameter combinations, TCov—MC and
MCov-MC perform as well as the known-continuum reference
case, TC. Informed continuum fitting, TR-FC, performs more
poorly than informed marginalization but better than both
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Figure 1. Examples of the artificial spectra that are used in the tests described in Section 3. Each panel shows a noise-free spectrum with absorption (solid black line),
a noise-free continuum (dotted gray line), and a noisy realization of the spectrum with absorption (solid gray). These artificial spectra have a signal-to-noise ratio of 20
and a polynomial of degree 2 as the continuum. The panels are numbered in order of increasing total optical depth (TOD). The vertical lines and letters shown in each
panel correspond to different spectrum extents, +35 (a), 50 (b), and £65 km s~ (c). The numbers and letters used to indicate the TODs and spectrum extents in this

figure are consistent with the labeling used in Figures 2 and 3.

uninformed fitting and uninformed marginalization. Finally,
uninformed fitting, FC, performs better on average than
uninformed marginalization, DCov—MC. Below, we discuss a
few aspects of the results in more detail.

3.2.1. The Value of Different Kinds of Prior Continuum Information

All of these methods combine prior and observed continuum
information. The performance of the methods reflects the value
of the prior information available to them and the efficiency
with which they extract continuum information from the
observed spectrum.

By definition, case TC has as much continuum information
as it is possible to have. The fact that methods TCov—MC and
MCov-MC perform almost as well as case TC suggests that the
accurate priors used in these methods are almost as informative
as knowing the actual continuum. These particular priors are
not so constraining that all continuum realizations would be
indistinguishable. The (clearly distinguishable) continua of the
spectra shown in Figure 1 were generated from the prior used
in method TCov—-MC. The prior used by method MCov-MC is
less specific, but apparently no worse, than that of TCov—MC.
The fact that these priors are so informative is noteworthy
because it is, in many cases, possible to infer them; this point is
discussed further in Section 5.2.

The performance of method TR-FC suggests that knowing
where the spectrum is free of absorption has value, but not as much
as an accurate prior on the continuum shape. The value of this
information is greatest for parameter sets with the lowest TOD, i.e.,
the least contrast between the continuum and absorption.

3.2.2. Solutions with RMSEs that are Lower than those of the TC
Solution are Biased

There is a small number of fixed input parameter combinations
for which the RMSE of method FC is lower than that of case TC.
All of these combinations have low S/Ns, small TODs, and short
continuum extents. This can be explained by the fact that much of
the RMSE of method FC for these combinations is due to bias,
rather than variance. Method FC is consistently finding solutions
that are incorrect by an amount that is small relative to the scatter
in the less-biased TC solution. This bias is favorable for those
particular true line parameters, but may be unfavorable for other
values of the true line parameters.

3.2.3. Continuum Marginalization is not Substantially Slower than
Continuum Fitting

On a single core of a 2.2 GHz Intel i7 processor, obtaining
line parameters for 2000 spectra took approximately 2 s in case
TC, 5s with method TR-FC, 10s with methods MCov—-MC
and DCov-MC, 15 s with method FC, and 20 s with method
MCov-MC. Method TR-FC is a factor of 2—4 faster than the
other continuum placement methods once absorption is
masked. When analyzing actual observations, this advantage
would be outweighted by the human interaction time required
to define absorption masks. More generally, all of these times
are short enough that any spectrum-by-spectrum interaction by
a human would be the main processing bottleneck.

4. Demonstration on Actual Data

In this section, we analyze absorption features using
continuum marginalization in a case where all continuum
placement methods should agree. The absorption features are
due to C1in the Large Magellanic Cloud (LMC). The data are
spectra of the LMC stars Sk-67 5, Sk-68 73, and Sk-70 115
taken with the Space Telescope Imaging Spectrograph (STIS;
Woodgate et al. 1998) on board the Hubble Space Telescope
(HST) using the E140H grating (R ~ 114,000). These absorp-
tion features in this data set were previously analyzed by Welty
et al. (2016), whose C 1 results we adopt as ground truth. Welty
et al. (2016) did continuum placement by fitting polynomials to
manually selected line-free regions.

We downloaded the default pipeline-extracted one-dimen-
sional spectra from the Mikulski Archive for Space Telescopes.
Individual exposures within a single echelle order were shifted
to the wavelength grid of one of the exposures using nearest-
neighbor interpolation and coadded. We did not splice different
echelle orders into a combined spectrum.

To measure C I column densities, we fit Voigt profiles to the
C1, CI", and C I** absorption in these spectra. We modeled the
continuum as the sum of a first degree polynomial and a
Gaussian process with a Matern-5/2 kernel. The LSFs we used
were downloaded from the HST-STIS website.” Following
the example of Welty et al. (2016), we analyzed only the
CI multiplets near 1280.1 A and 1328.8 A. All absorption

7 http://www.stsci.edu /hst/instrumentation /stis/performance /spectral-

resolution
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Figure 2. How the root mean square error (RMSE) in the recovered log total optical depth (TOD) varies as a result of changing the true TOD of the absorption feature,
the extent of the spectrum around the absorption feature, the signal-to-noise ratio (S/N) of the spectrum, and the continuum placement method. In this figure, the
continuum is a polynomial of degree 1, i.e., a line. Each panel corresponds to a different combination of true TOD and spectrum extent. The TOD increases from
bottom to top and is indexed by the underlined number in the corner of each panel; the indices 1, 2, and 3 correspond to the linear (i.e., non-log) TODs of 1.0, 2.0, and
4.0. The spectrum extent increases from left to right and is indexed by the underlined letter in the corner of each pixel; the indices a, b, and c correspond to extents
of £35, £50, and +65 km s~ '. These labels are consistent with those used in Figure 1, which shows examples of spectra at each combination of TOD and spectral
extent. Within each panel, each line connecting a series of points corresponds to a different S/N; these are labeled at the top of panel (3a). The minimum S/N whose
RMSE:s are small enough to fall within the range shown is indicated at the top of each panel. The vertical axis within each panel corresponds to different continuum
placement methods. The full names corresponding to the abbreviations shown here are given in Section 3.1.

features for a target were fit simultaneously by maximizing the
continuum-marginalized likelihood function of the data given
the absorption model. Each velocity component had a single
central velocity and breadth and a separate column density for
the ground and two excited states of CI. Optimizing over the
profile parameters while marginalizing over continuum para-
meters for a single object took between a few and 10s per
target. The computation time is dominated by evaluating the
continuum-marginalized likelihood and its gradient with
respect to the Voigt profile parameters.

The maximum likelihood absorption solution for target
Sk-67 5 is shown in Figure 5. For all three targets, the total

recovered C 1 column densities across all velocity components
and excitation levels agree within the uncertainties of those
found in Welty et al. (2016). This agreement is expected,
since these are data with high spectral resolution and S/N and
the absorption lines are narrow and clearly distinct from the
continuum. In this regime, all valid continuum placement
methods should perform equally well.

We have chosen a data set with these characteristics to limit
the plausible reasons for any potential disagreement to the
continuum placement method. Preparing a more challenging
low S/N spectrum for analysis often requires bespoke, and
proprietary, processing (see, e.g., Wakker et al. 2015 for a
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continuum is a polynomial of degree 2, i.e., is a quadratic function. Panel labels and axes are defined in the caption of Figure 2.

well-documented example). As a result, there is no guarantee
that there should be agreement between line parameters
obtained using the same continuum placement and line fitting
method applied to different reductions. To be able to compare
results produced by continuum marginalization against the best
efforts of other analysts, we therefore chose a data set where
there should be no such ambiguity.

5. Discussion
5.1. Assumptions and Consequences

The explicit assumptions of the analytic marginalization
method are that the continuum is a linear combination of basis
functions, that the prior on the coefficients of this linear
combination is the improper uniform or multivariate normal
distribution, that residuals between the data and model are
normally distributed, and that the covariance matrix of the

residuals does not depend on the continuum. It is obvious that
these assumptions do not hold in a strict sense for any data set.
For example, both of these priors do not place any hard
constraints on the continuum coefficients, meaning that
negative continuum values are allowed by the model. This is
unphysical, but practically not an issue in most applications—a
negative continuum would be inconsistent with a typical
spectrum and would therefore have a low likelihood. In
addition to these largely irrelevant violations of the strict letter
of the assumptions, there are also some meaningful cases.
One such case is data in the low photon count regime.
Depending on whether a spectrum is left in terms of photons or
converted to a rate (or further transformed into, e.g., a flux) and
on whether and how background subtraction is done, the value
of a low photon count measurement is best described by a
Poisson, Skellam, Gamma, or difference-of-Gammas distribu-
tion. All of these distributions converge to the normal
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Figure 4. Summarized comparison of the relative performance of different continuum placement methods. Each row and each column correspond to a different
method: knowing the true continuum (TC); marginalization with the correct prior over continuum parameters (TCov—MC); marginalization with an prior over
continuum parameter priors that include the correct prior (MCov-MC); continuum fitting to a correctly chosen absorption-free portion of the spectrum (TR-FC);
simultaneously fitting continuum and absorption parameters (FC); and marginalization with an uninformative prior (DCov—MC). These methods are described in
greater detail in Section 3.1. The color of each pixel indicates the fraction of input parameter sets for which the log total optical depth (TOD) root mean square error
(RMSE) of the method on the x-axis is less than or within 0.01 dex of the log TOD RMSE of the method on the y-axis. This comparison quantity is an average across
the different continuum degrees, true TODs, and spectrum extents and signal-to-noise ratios. The higher the fraction is, the better—a value of 1.0 means that the
method on the x-axis is at least as precise/accurate as the method on the y-axis for every input parameter set. Methods TCov—MC and MCov-MC perform as well as
knowing the true continuum (case TC) in approximately 80% of our test setups and outperform all three of the other methods in almost all of our test setups. Method

DCov-MC has the worst performance of all of the considered methods.

distribution as the number of photons grows, but are poorly
approximated by it at low counts. Furthermore, the variance of
these distributions is a function of the true count rate. Point
estimates of the uncertainties derived from the observed
number of counts or a related quantity will therefore
themselves be uncertain. Errors in the measurement itself and
the estimate of its uncertainty will also be covariant. Assuming
normality and using uncertainty point estimates in this regime
can produce biased estimates of the parameters. This means
that analytic marginalization of the kind described in this work
should not be applied to low S/N X-ray or UV spectra.

A more implicit nontrivial assumption that can be broken is
that the absorption model is realistic. Absorption features that
cannot be described by the absorption model will be described
by the continuum model. For example, if a region of a spectrum
contains two clearly distinct absorption lines but the model
only allows for a single line, the presence of the unmodeled line
will bias the continuum model. In short, improvements in
continuum modeling cannot solve problems of absorption
model misspecification. However, the model does not need to
be realistic in an absolute physical sense. If the two
hypothetical lines appear to be and can be precisely emulated

by a single line at the resolution of the spectrum, then an
absorption model consisting of a single line will suffice for the
purpose of avoiding bias in the continuum model.

Another nontrivial assumption is that the continuum can be
described by an effective, rather than a physical, model. The
continua of most background sources that are used for
absorption spectroscopy can be approximated in this way.
Examples of sources with slowly varying continua include
quasars and (particularly rapidly rotating) hot stars. With
flexible linear models such as Gaussian processes, it is even
possible to describe more complicated pseudo-continua. To
describe sources such as cool stars, however, it is still necessary
to use a nonlinear model. Marginalizable linear models can still
be useful even in this case as a way of introducing small
corrections for pseudo-continuum features that are not perfectly
described by the nonlinear model.

5.2. Informative Priors Are Valuable and Realistically
Obtainable

The continuum placement methods with the best absorption
line parameter measurement performance in Section 3 were
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Figure 5. A fit to absorption from ground and excited state C 1 absorption
toward the star Sk-67 5 in the Large Magellanic Cloud. The data, continuum,
and combined fit are shown in solid gray, dotted gray, and solid black lines.
The velocities shown on the x-axis are relative to the C1 A1329 A (top panel)
and A1277 A lines (bottom panel). Line centers of the ground and first two
excited states are indicated by data points of different shapes and colors. The
number of excited state line centers is greater than the number of ground state

line centers because there are multiple excited state transitions and a single
ground state transition in each velocity range.

both forms of continuum marginalization with an accurate and
informative prior on continuum parameters. In one case, the
prior was the distribution that had actually been used to
generate the test continua. In the other, the prior was a mixture
of several different priors, one of which was the correct one.
Both methods performed equally well and, for 80% of input
parameter combinations, matched the accuracy and precision
obtained by fitting for line parameters using the true, input
continuum.

While it is not possible to know the true continuum of a real
background source, it is, in many cases, possible to learn an
accurate and informative prior on continuum parameters. The
main requirement is the availability of a training set: multiple
continuum observations with consistent statistical properties.
This requirement can be fulfilled using background sources of a
single class whose member-to-member continuum variation
can be described using a small number of parameters. Quasars
are one such class. A number of authors have derived bases for
describing quasar continua (e.g., Suzuki 2006; Zhu &
Meénard 2013). These bases provide informative priors on
continua even when the priors on their coefficients are
uninformative. Eilers et al. (2017) adopt one of these bases
and numerically marginalize over continuum coefficients as
part of an analysis of absorption in the Lyman « forest.

The spectrum of a single object can also serve as a training
set for a prior that is applied over small segments of that
object’s spectrum. If the goal is to analyze absorption over
regions spanning 200kms~', for example, the procedure
would be to select other 200 kms ™' regions with statistically
similar continua, use these regions to derive a basis and prior,
and then apply that prior in the analysis of the region of
interest. This procedure depends on there being statistically
consistent regions of continuum in the spectrum of the object in
question.

Tchernyshyov

5.3. Applications of Analytic Marginalization

Section 3 shows that marginalization over continuum
parameters and parameterizations allows measurements of
absorption line parameters that are as precise and accurate as
measurements obtained with knowledge of the true continuum
so long as accurate and informative prior information is
available. Without an informative prior, analytical margin-
alization is just a potentially more computationally efficient
replacement for numerical marginalization in probabilistic
inference schemes; a quantitative assessment of possible
efficiency gains in MCMC is presented in Appendix B. The
two scenarios discussed above in which it is possible to infer an
informative prior may be useful in two categories of the
absorption line analysis problem.

The first scenario, in which the background source belongs
to a class with limited variation, is appropriate for modern
spectroscopic surveys that produce thousands to millions of
spectra. Surveys such as the Galactic Archaeology with
HERMES (GALAH; Buder et al. 2018) observe sources whose
continua do not all have consistent statistical properties.
However, it is possible to divide these sources into multiple
categories such that there is limited variation within each
category. In the case of GALAH, such a division could be
based on stellar parameters. The spectra in each division would
have their own prior over continuum shapes. Absorption
features in these spectra would need to be analyzed using
optimization methods rather than probabilistic ones due to
computation time considerations.

The second scenario, in which the prior is instead learned
from absorption-free portions throughout the spectrum, is
appropriate for detailed analyses of individual objects. Splitting
the spectrum up to produce a training set would require either
human interaction or sophisticated and time-consuming
inference, especially in cases where the statistical properties
of the continuum vary across the spectrum. The UV spectrum
of a rapidly rotating O star, for example, can contain regions
that are largely devoid of features, regions containing many
broad stellar absorption lines, and regions dominated by stellar
winds. If the absorption features of interest are present in all of
these regions, it would be necessary to infer a continuum shape
prior for each region. Absorption features in these spectra could
be analyzed using probabilistic methods such as MCMC.

5.4. Toward Automation

Continuum marginalization can be used in a way that brings
the analysis of absorption spectra closer to automation. In the
analysis procedure described in the discussion of large surveys
immediately above the present section, for example, the role of
a human analyst in continuum placement would be limited to
the division of spectra into categories based on stellar
parameters. However, this procedure does not account for
another step of absorption line analyses that typically requires
human intervention—specifying the absorption model. This
includes deciding on a number of components into which an
absorption feature should be split.

For large surveys, a derivative spectroscopy technique along
the lines of autonomous Gaussian decomposition (AGD) could
be a viable solution (Lindner et al. 2015; Riener et al. 2019). If
the absorption lines in question are not saturated and can be
described as Gaussians, AGD itself may be sufficient. For
individual spectra, where MCMC is possible, component
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structure specification can be done using trans-dimensional
inference, in which the dimensionality of parameter space (in
this case the number of sets of absorption line parameters) is
itself a parameter of the model.

6. Conclusion

Absorption lines are an important source of information
about stars and the gaseous universe. As larger spectroscopic
data sets become available and as reproducibility becomes
more standard in astronomy, it becomes necessary to move
beyond ad hoc absorption line analysis methods, particularly
ones in which a human directly interacts with data. In multiple
recent works, there have been attempts to partially automate
continuum placement by including and marginalizing over
continuum parameters in probabilistic spectral models. Margin-
alizing over continuum parameters has, in these works, been
hypothesized, though not experimentally shown, to also
improve the accuracy of the recovered absorption line
parameters. Despite these advantages, this approach has so
far not become popular, in part due to the computational
expense of numerically marginalizing over these additional
parameters.

In this work, we have shown that it is possible in many cases
to replace this numerical marginalization with analytic margin-
alization (Section 2). Marginalizing over different possible
continuum models, as well as over the parameters of each
individual possible model, is a trivial extension of this result.
Using tests on artificial data, we have shown that when an
accurate and informative prior on continuum parameters is
available, marginalizing over continuum parameters in an
absorption line analysis produces absorption line parameters
that are as accurate and precise as line parameters obtained
when the true continuum is known. This is true even at low
S/N where other continuum placement methods do not perform
as well.

We have released an open-source python package, amlc,
which can be used to evaluate continuum parameter-margin-
alized likelihoods and related quantities. Features of this
package are described in Appendix A. It is meant to be used as
a drop-in replacement for likelihood functions in existing
absorption spectrum analysis tools.

The author thanks the referee for comments and suggestions
that greatly improved this work, Andrew Casey, Andrew Fox,
Cameron Liang, and Yong Zheng for discussions about use
cases, and Joshua Peek and Linda Tchernyshyov for helpful
comments. This research is based on observations made with
the NASA/ESA Hubble Space Telescope obtained from the
Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS 526555. These observations are
associated with programs 9757 and 12978. K.T. was supported
by the National Science Foundation under grant 1616177.

Software: emcee (Foreman-Mackey et al. 2013), matplotlib
(Hunter 2007), numpy (van der Walt et al. 2011), scipy (Jones
et al. 2001).

Appendix A
Implementation and Demonstration

In this Appendix, we describe how amlc is implemented
(Appendix A.l), list some of its capabilities (Appendix A.2),
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and show how the computation time of different calculations
grows with data set and continuum model size (Appendix A.3).

A.1. Implementation

We have implemented amlc as a pure Python package with
numpy and scipy as dependencies. amlc does not contain
functionality for building LSFs or computing transmittances
from absorption parameters and is not intended to be a stand-
alone analysis tool. It is meant to be used as a drop-in
likelihood function replacement in analysis packages or scripts.

A.2. Package Functionality

This package was designed for a use case where the log-
marginal likelihood and its gradient are evaluated at many
different values of the 6-dependent parameters (see Section 2)
while the f-independent parameters are held constant. The core
feature of the package is the MarginalizedLikelihood
class. A MarginalizedLikelihood instance stores 6-
independent parts of the model and pre-computes quantities
that are reused during repeated marginalized likelihood
evaluations. In particular, it stores the data covariance matrix
K; the ¢ prior covariance matrix A and its explicit inverse, if
applicable; and the LSF mapping L and its transpose.

Both covariance matrices can be diagonal or fully general.
The package includes the CovarianceMatrix class, which
defines a consistent interface for calculations, and two
subclasses, DiagonalCovarianceMatrix and Gener-
alCovarianceMatrix. DiagonalCovarianceMa-
trix wraps the simple, one-dimensional determinant and
inverse calculations possible with a covariance matrix consist-
ing purely of variances and does the book-keeping required to
produce output with the correct shape. GeneralCovar-—
ianceMatrix uses the Cholesky decomposition of the
supplied covariance matrix to calculate its determinant and to
left multiply matrices and vectors by its inverse. Computing the
Cholesky decomposition of a general covariance matrix of size
M by M takes O(M?3) calculations, making it prohibitively
computationally expensive for large M.

The LSF mapping L can be any object that implements the
matrix multiplication interface, i.e., has a matmul or
__matmul__ method. For example, L can be a dense matrix
represented by a numpy array, a sparse matrix represented by a
scipy.sparse matrix, or a convolution operator repre-
sented by a scipy.sparse.linalg LinearOperator.
L can also be the identity mapping (indicated by None), in
which case it is left out of any likelihood calculations.

A.3. Computation Time as a Function of Data Set and
Basis Size

The most time-consuming step in computing all of the
quantities derived in Section 2 is forming the matrix C,,. This
step requires matrix—matrix products, while most other steps
only involve matrix—vector products. These expensive products
are LB and K~!'(LB). The amount of time required to compute
these products depends on the structures L and K.

L can be the identity matrix, a dense matrix, a sparse matrix,
or a linear mapping such as convolution. The fastest case is
when L is the identity matrix, since then LB does not need to
be computed. The slowest case is when it is a dense matrix, in
which case computation time grows as O(MMN(P + Q)). When
L is a sparse matrix or linear mapping, the scaling depends on
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its exact structure. An LSF that varies with wavelength can be
represented by a banded matrix, which will be sparse if the
spectrum spans many resolution elements. If the bandwidth of
L is independent of the size of the data set, the computation
time of this product grows as O(M (P + Q)).

We consider covariance matrices K that are either diagonal
or general. If K is diagonal, K~'(LB) requires exactly
M (P + Q) multiplications. When K is a general covariance
matrix, we decompose it into its Cholesky factors and left
multiply LB by K~' by solving the linear problem LB = KX.
The time needed to factor K grows as O(M?>) but only needs to
be done once per set of observations. The time needed to solve
the linear problem grows as O(M2(P + Q).

To empirically confirm these growth rates, we timed how
long it takes to evaluate the log-likelihood and its gradient for a
range of data set sizes M and basis sizes P+Q and three L and
K structure scenarios. The scenarios are: L is the identity
mapping, K is diagonal; L is a dense matrix, K is general; and
L is a sparse, banded matrix and K is diagonal. The first two
scenarios are the fastest and slowest combination. The third
scenario is more typical for a spectrum; the data uncertainty is
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diagonal and the LSF has finite extent. The evaluation time of
the log-likelihood as a function of M and P+Q for these three
scenarios is shown in Figures 6-8. We do not show the
evaluation time of the gradient because it behaves in the same
way as the evaluation time of the log-likelihood in all three
scenarios; the most expensive step of the two calculations is
the same.

The dependence of computation time on M and P+Q
generally agrees with the predictions based on the two most
time-consuming steps. At low M and in particular at low P+Q,
the computation time is either overhead-dominated or evenly
split between the most time-consuming steps and other steps.
When M 2> 103, computation time increases faster than
expected purely from the growth rate of the required number
of operations (see, e.g., the left panel of Figure 6). This excess
increase in computation time is most likely due to changes in
memory bandwidth, as the size of matrix rows and columns
increases past the size of the highest-level CPU cache on the
laptop used to run these tests.

To put these data set sizes into context, a Sloan Digital Sky
Survey Baryon Oscillation Spectroscopic Survey or Apache
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Point Observatory Galactic Evolution Experiment spectrum is
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Appendix B
Convergence and Effective Sample Generation Rate
of MCMC

In ISM absorption spectra, it is common to have multiple
lines in a spectrum with shared parameters. These lines can be
from the same species, e.g., the Lyman series, or from different
species, e.g., from Mgl, Zn1l, and Crl1I, which have over-
lapping lines in the near-ultraviolet. When these lines are in
different parts of a spectrum, each part needs its own
continuum parameters. This is a case in which analytic
marginalization can potentially be more efficient than MCMC
marginalization.

We compare how quickly MCMC is done using each of the
two methods converged and how efficient MCMC done using
each method is post-convergence. Which comparison is more
informative for choosing a method to use will depend on the
purpose of the MCMC run. If the goal of an MCMC run is to
estimate some value at low-to-moderate precision, the rate of
convergence will be the more important factor. If the goal is
instead to estimate some value at high precision, the burn-in
period will usually be a small fraction of the total chain and
post-convergence efficiency will be more important.

We consider a case where there are N absorption lines with
shared central velocities and widths and independent column
densities. Each absorption line is in a different spectral region.
The continuum in each spectral region is a polynomial of
degree M. The marginalized likelihood has 2 + N absorption
line parameters. The unmarginalized likelihood has 2 + N
absorption line parameters and N X M continuum parameters.
We use the emcee implementation of the Goodman and Weare
affine-invariant MCMC ensemble sampler to generate draws
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Figure 9. Convergence rate of MCMC with analytic and numerical continuum
parameter marginalization for absorption line analysis problems with different
complexities. The convergence diagnostic (y-axis) is the Rubin—Gelman
statistic, an estimate of how much smaller the Monte Carlo error of an MCMC-
based parameter estimate can get. Each line shows the evolution of this
convergence diagnostic as a function of the number of MCMC steps taken (x-
axis). Line styles indicates whether continuum parameters are marginalized
over analytically (solid) or included in MCMC (dashed). Line colors and
markers indicate the number of spectral regions being analyzed simultaneously;
each region has its own set of continuum parameters. The Rubin—Gelman
statistic and the problem setup are discussed in more detail in Appendix B.

from the posterior corresponding to each of these likelihoods.
We use the minimum number of walkers, which is twice the
number of parameters.

We use the Rubin-Gelman statistic R (Gelman &
Rubin 1992) to assess convergence. The Rubin—Gelman
statistic compares the variance between and within different
MCMC instances. If the instances have all converged, these
two variances should be approximately equal. We run 10
MCMC instances for 12,800 (per walker) steps and compute
the Rubin—Gelman statistic from the second half of subchains
of length 2¥ x 100 for p = 0, 1,...,7. Ris computed separately
for each parameter. Following common usage, we consider
convergence to be reached when the R of all parameters is less
than 1.1. We run this test for 1, 2, and 3 regions and absorption
lines assuming a continuum of degree 1. The value of the R as a
function of the (total) number of steps is shown in Figure 9.
When there is a single region and line, the MCMC margin-
alization chain takes twice as many steps as the analytic
marginalization chain to converge; when there are two regions,
it takes eight times as many steps; when there are three, the
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Figure 10. Relative efficiency of MCMC with analytic and numerical
continuum parameter marginalization for absorption line analysis problems
with different complexities. The relative efficiency is the ratio of the number of
independent samples, niy, generated in the same amount of time by the two

marginalization approaches; ni%) uses the analytically marginalized likelihood,

n{" uses the unmarginalized likelihood. The larger the relative efficiency, the

more independent samples generated by analytic marginalization. Line colors
and markers correspond to different continuum parameterizations: degree 1
polynomial (black squares), degree 2 polynomial (blue circles), and degree 3
polynomial (orange triangles). Line styles indicate whether a nontrivial LSF is
used in the analysis. The relative efficiency is shown as a function of the
number of spectral regions being analyzed simultaneously; each spectral region
has its own set of continuum parameters. The relative efficiency and the
problem setup are discussed in more detail in Appendix B.

MCMC marginalization chain has not converged by the
maximum chain length of 12,800 while the analytic margin-
alization chain converges within 1600 steps.

We use the number of independent samples per unit time to
assess efficiency. We run MCMC with the marginalized
likelihood for 2000 burn-in steps and 8000 converged steps
and record the average time per sample, #,. Because MCMC
with the unmarginalized likelihood takes many steps to
converge, we use draws from the converged part of the
marginalized likelihood chain as a starting point; these draws
only have values for the absorption line parameters. At each set
of absorption line parameters, we sample a set of continuum
parameters from the conditional distribution discussed in
Section 2.1. From this starting point, we run MCMC with the
unmarginalized likelihood for 4000 burn-in steps and 36,000
converged steps and record the average time per sample. We
then compute the average integrated autocorrelation times 7y of
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the walkers in both chains. The number of independent samples
per unit time is n; = (17 ;)" L.

We compute n; for a number of regions N =1, 2,...,6,
continua of polynomial degree M= 1-3, and either a trivial
LSF or a banded LSF. The ratio "y /n{") for each of these

1
cases is shown in Figure 10. When this ratio is greater than 1,

running MCMC with the marginalized likelihood for a fixed
amount of time will produce more independent samples than
running MCMC with the unmarginalized likelihood for the
same amount of time. The greater the number of regions and
the degree of the continuum, the greater the efficiency
advantage of the marginalized likelihood over the unmargina-
lized likelihood. This advantage will not depend on the number
of data points in each spectral region so long as the LSF is
trivial or banded, since in these cases the evaluation time of
both likelihoods grows linearly with data set length (see
Appendix A.3).
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