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Abstract.  The dimer model on a strip is considered as a Yang–Baxter 
integrable six vertex model at the free-fermion point with crossing parameter 
λ = π

2
 and quantum group invariant boundary conditions. A one-to-many 

mapping of vertex onto dimer configurations allows for the solution of the free-
fermion model to be applied to the anisotropic dimer model on a square lattice 
where the dimers are rotated by 45◦ compared to their usual orientation. In a 
suitable gauge, the dimer model is described by the Temperley–Lieb algebra 
with loop fugacity β = 2 cosλ = 0. It follows that the model is exactly solvable 
in geometries of arbitrary finite size. We establish and solve transfer matrix 
inversion identities on the strip with arbitrary finite width N. In the continuum 
scaling limit, in sectors with magnetization Sz, we obtain the conformal 

weights ∆s =
(
(2− s)2 − 1

)
/8 where s = |Sz|+ 1 = 1, 2, 3, . . .. We further 

show that the corresponding finitized characters χ
(N)
s (q) decompose into sums 

of q-Narayana numbers or, equivalently, skew q-binomials. In the particle 
representation, the local face tile operators give a representation of the fermion 
algebra and the fermion particle trajectories play the role of nonlocal degrees of 
freedom. We argue that, in the continuum scaling limit, there exist nontrivial 
Jordan blocks of rank 2 in the Virasoro dilatation operator L0. This confirms 
that, with quantum group invariant boundary conditions, the dimer model 
gives rise to a logarithmic conformal field theory with central charge c  =  −2, 

minimal conformal weight ∆min = −1
8 and eective central charge ceff = 1. 
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Our analysis of the structure of the ensuing rank 2 modules indicates that the 
familiar staggered c  =  −2 modules appear as submodules.

Keywords: dimers, conformal field theory, algebraic structures of integrable 
models, solvable lattice models
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1.  Introduction

The dimer model [1, 2] was solved exactly [3–6] in the early sixties. After more than 
50 years, the model continues to be the subject of extensive study [7–14]. The current 
interest is twofold: (i) to understand the finite-size eects of boundary conditions and 
steric eects [15–17] under the influence of infinitely repulsive hard-core local interac-
tions and (ii) to understand the conformal description of the model in the continuum 
scaling limit. Traditionally, it is asserted that the dimer model is described [18] by a 
c  =  1 Gaussian free field. But without full access to the various sectors and boundary 
conditions on the strip, it is dicult to distinguish between a c  =  1 theory and a ceff = 1 
theory and a number of authors [8, 9] have suggested that the model is described by a 
logarithmic conformal field theory (CFT) with c  =  −2.

Recently, the dimer model was shown [19] to be Yang–Baxter integrable [20] by 
mapping [17, 21, 22] it onto the free-fermion six vertex model [23–27]. Notably, this 
maps six vertex configurations onto dimer configurations where the dimers are rotated 
by 45◦, as shown in figures 2, 4 and 5, compared to their usual orientation parallel to 
the bonds of the square lattice. This technique combined with inversion identities [20, 
28, 29] enables the model to be solved exactly for finite lattices with various boundary 
conditions and topologies. The conformal properties can therefore be readily extracted 
from the finite-size scaling behaviour. On this basis, it was argued in [19] that the dimer 
model is best described as a logarithmic CFT with eective central charge ceff = 1 but 
central charge c  =  −2, in agreement with the findings of [8–10, 14]. The primary char-
acterization of logarithmic CFTs is the appearance of nontrivial Jordan blocks in the 
Virasoro dilatation operator L0. Indeed, for simple dimer boundary conditions on the 
strip, corresponding to the Uq(sl(2))-invariant XX Hamiltonian H of the free-fermion six 
vertex model, the preliminary results of [19] indicate that H admits nontrivial Jordan 
blocks for finite systems. Since the appearance of these blocks is stable, as the system 
size increases, these blocks are expected to persist for large sizes and appear in the 
Virasoro operator L0.

In this paper, we solve exactly the anisotropic square lattice dimer model with 
the 45◦ rotated orientation on the strip in sectors labelled by the magnetization Sz of 
the related free-fermion six vertex model. This is achieved, using Yang–Baxter inte-
grability, by mapping the model with given boundary conditions onto a free-fermion 
six vertex model and solving the associated inversion identities [20, 28, 29] satisfied 
by the double row transfer matrices. The solution of the inversion identities allows to 
obtain the exact finite spectra in the various sectors. Finite-size scaling then yields the 
central charge and the conformal weights. In addition, combinatorial analysis of the 
patterns of zeros, in the complex spectral parameter plane, of the double row transfer 
matrix eigenvalues allows us to obtain finitized characters. We confirm the central 

charge c  =  −2 and the conformal weights ∆s =
(
(2− s)2 − 1

)
/8 with s = 1, 2, 3, . . .. 

Remarkably, although the characters are dierent, the conformal weights coincide with 
those in the first column of the infinitely extended Kac table of critical dense polymers 
[30–35], as shown in figure 1.

The layout of the paper is as follows. In section 2, we recall the rotated dimer model 
on the square lattice and review its relation to the free-fermion six vertex model. We 
also describe the underlying free-fermion and Temperley–Lieb algebras. In section 3, 

https://doi.org/10.1088/1742-5468/ab54bd
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we present the local Yang–Baxter relations of the six vertex model using the particle 
representation of the planar algebra and establish the commutation of the double row 
transfer matrices. In section 4, we specialise to the dimer model and solve the asso-
ciated inversion identities on the strip for the finite size spectra. This involves the 
combinatorial analysis of the patterns of zeros of the eigenvalues and the empirical 
determination of selection rules to fix the eigenvalue degeneracies which are not fixed 
by the functional equations alone. Jordan decompositions of the isotropic double row 
transfer matrices and their quantum Hamiltonians, for some small system sizes, are 
presented in section 5 to reveal the existence of nontrivial Jordan blocks of rank 2. 
In the continuum scaling limit, the Hamiltonian gives rise to the Virasoro dilatation 
operator L0. Since the indications are that these Jordan blocks persist in the continuum 
scaling limit, we are led to conclude that the CFT describing the dimer model is loga-
rithmic. We also analyse the structure of the ensuing rank 2 modules and determine 
the finitized characters of their irreducible sub-quotients. We finish with some conclud-
ing remarks in section 6, comparing dimers with critical dense polymers. Details of the 
proof of the inversion identities and the properties of the skew q-binomials appearing 
in the selection rules are relegated to Appendices.

2. Dimers as a free-fermion six vertex model

2.1. Face tiles and equivalence of vertex, particle and dimer representations

A mapping between the free-fermion six vertex model and dimer configurations was 
given in [19]. The allowed six vertex (arrow conserving) face configurations and the 
equivalent tiles in the particle (even and odd rows) and dimer [17] representations are 
shown in figure 2. The vertex (arrow) degrees of freedom σj = ±1 and the particle occu-

pation numbers aj =
1
2
(1− σj) = 0, 1 live on the medial lattice. The Boltzmann weights 

of the six vertex tiles are

a(u) = ρ
sin(λ− u)

sinλ
, b(u) = ρ

sin u

sinλ
, c1(u) = ρg, c2(u) =

ρ

g
, λ ∈ (0, π), ρ ∈ R.�

(2.1)
The spectral parameter u plays the role of spatial anisotropy with u = λ

2
 being the iso-

tropic point. Geometrically [36], varying u eectively distorts a square tile into a rhom-
bus with an opening anisotropy angle ϑ = πu

λ
. The arbitrary parameter ρ is an overall 

normalization. Assuming boundary conditions such that there are an equal number of 
sources and sinks of horizontal arrows (vertices c1 and c2) along any row, the transfer 
matrix entries are all independent of the gauge factor g which may depend on u.

At the free-fermion point (λ = π
2
), the six vertex face weights reduce to

a(u) = ρ cos u, b(u) = ρ sin u, c1(u) = ρg, c2(u) =
ρ

g
, ρ ∈ R.� (2.2)

These weights satisfy the free-fermion condition

https://doi.org/10.1088/1742-5468/ab54bd
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a(u)2 + b(u)2 = c1(u)c2(u).� (2.3)

As shown in section 2.2, with the special choice of gauge g = z := eiu, the tiles give a 

representation of the free-fermion algebra with generators f j , f
†
j  and, consequently, also 

a representation of the Temperley–Lieb algebra [37] with generators ej  and loop fugac-
ity β = 2 cosλ = 0. Explicitly, the face operators are

Xj(u) = ρ(cosu I + sin u ej).� (2.4)
This Temperley–Lieb model is directly equivalent to an anisotropic dimer model as 
shown in figures 2, 4 and 5. A dimer weight is assigned to the unique square face which 
is half-covered by the dimer as shown in figure 4. The statistical weights assigned to 
‘horizontal’ and ‘vertical’ dimers are

ζh(u) = a(u) = ρ cos u, ζv(u) = b(u) = ρ sin u.� (2.5)
Setting g = ρ, and allowing for the facts that (i) the c1 face has two allowed configurations 
and (ii) no dimer covers the c2 face, it follows that
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Figure 1.  Kac table of conformal weights ∆r,s of critical dense polymers taken 
from [34]. The conformal weights of dimers coincide with the conformal weights 
in the first (r  =  1) column of this Kac table. Both theories are described by CFTs 
with c  =  −2, although their conformal characters are dierent.
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2 + ζv(u)

2 = ρ2(cos2 u+ sin2 u) = ρ2, c2(u) = 1.� (2.6)

Additionally, fixing ρ =
√
2 at the isotropic point (u = λ

2
= π

4
) gives

a(
π

4
) = 1, b(

π

4
) = 1, c1(

π

4
) = 2, c2(

π

4
) = 1.� (2.7)

It follows that, with this choice of gauge and normalization, the partition function at 
the isotropic point gives the correct counting of distinct dimer configurations.

In addition to the vertex and dimer representations, the six vertex free-fermion 
model admits a particle representation as shown in figures 2 and 5. A reference state 
on the strip is fixed as in figure 3. An edge of a given vertex is a segment of a particle 
trajectory (and has particle occupation number aj   =  1) if its arrow points in the oppo-
site direction to that of the reference state. Otherwise, if the edge arrow points in the 
same direction as the reference state, the edge is not a segment of a particle trajectory 

or

a(u) b(u) c1(u) c2(u)

Figure 2.  Equivalent face tiles of the six vertex model in the vertex, particle (even 
and odd rows) and dimer representations. On the strip, the odd and even rows 
alternate. For periodic boundary conditions, all rows are odd. The heavy particle 
lines are drawn whenever the arrows disagree with the reference state, as shown 
in figure 3. The particles move up and to the right on odd rows and up and to the 
left on even rows.

https://doi.org/10.1088/1742-5468/ab54bd
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(and the particle occupation is aj   =  0). The segments of particle trajectories live on the 
medial lattice and are indicated with heavy lines in figure 3. The number of particles 
is conserved and their trajectories are non-intersecting. The particle representation is 
the simplest of the three representations and is convenient for coding in Mathematica 
[38] and for manipulations in the diagrammatic planar algebra [39] so we usually work 
in the particle representation. The Z2 arrow reversal symmetry of the vertex model 
implies a particle-hole duality in the particle representation.

2.2. Free-fermion and Temperley–Lieb algebras

In this section, we consider the free-fermion model (2.2) with λ = π
2
 and set g = z := eiu 

and ρ = 1.

2.2.1.  Free-fermion algebra.  Regarding the elementary tiles as operators acting on 
an upper (zigzag) row particle configuration to produce a lower (zigzag) row particle 
configuration, we write them respectively as

Ej = n00
j , n11

j , f †
j fj+1, f †

j+1fj, n10
j , n01

j , n00
j + n11

j + n10
j + n01

j = I.

�
(2.8)

The four operators nab
j  are (diagonal) orthogonal projection operators which factorize 

into single-site orthogonal projectors corresponding to left and right half (triangular) 
tiles

nab
j = na

jn
b
j+1, na

jn
b
j = δab n

a
j , n0

j + n1
j = I, a, b = 0, 1.� (2.9)

Here nj = n1
j = f †

j fj is the number operator counting single site occupancy at position j  

and n0
j = fjf

†
j = 1− f †

j fj is the dual number operator counting the single-site vacancies 

at position j . The operators f j  and f †
j  are single-site particle annihilation and creation 

operators respectively. It follows that all of the elementary tile operators can be written 

as combinations of bilinears in the fermion operators f j  and f †
j . Diagrammatically, the 

particle hopping terms f †
j fj+1 and f †

j+1fj factorize into left and right half (triangular) 
tiles

f †
j fj+1 =

j j+1
f †

j+1fj =
j j+1

� (2.10)

so that the fermion generators are represented by half (triangular) tiles

f .†
j =

j
=

j
, fj =

j
=

j
� (2.11)

As defined here, the operators f j  and f †
j  satisfy the mixed commutation relations

f 2
j = ( f †

j )
2 = 0, { fj, f †

j } = 1, [ f †
j , fk] = [ f †

j , f
†
k ] = [ fj, fk] = 0, j �= k

� (2.12)
so they are not, strictly speaking, fermion operators. However, it is straightforward 
[40] to transform by a linear transformation to new operators that are strictly fermion 
operators.

https://doi.org/10.1088/1742-5468/ab54bd
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2.2.2. Temperley–Lieb algebra.  The Temperley–Lieb algebra is realized [41, 55] by 
setting x = eiλ = i and defining the generators

ej = x + x−1 + +� (2.13a)

= xf †
j fj(1− f †

j+1fj+1) + x−1(1− f †
j fj) f

†
j+1fj+1 + f †

j fj+1 + f †
j+1fj� (2.13b)

= xf †
j fj + x−1f †

j+1fj+1 + f †
j fj+1 + f †

j+1fj.� (2.13c)

The quartic (interacting) terms vanish, since β = x+ x−1 = 0, leaving bilinears in fer-
mion operators. Using the planar algebra [39] of tiles, it readily follows that these 
operators yield a representation of the Temperley–Lieb algebra

e2j = βej = 0, ejej±1ej = ej, β = 2 cosλ = x+ x−1 = 0.� (2.14)

Equivalently this follows, purely from fermionic algebra, by writing the generators in 

terms of the fermionic operators f j  and f †
j  as in (2.13c).

3. Six vertex model on the strip

The commuting double row transfer matrices of the six vertex model were constructed 
algebraically by Sklyanin [42]. In this section, we develop a diagrammatic construction 
of the commuting double row transfer matrices of the six vertex model by generalizing 
the methods of [43] and using planar algebras [39].

Figure 3.  Reference states for the single and double row transfer matrices for 
mapping onto the particle representation. The reference arrows point up and to 
the right for the single row transfer matrices. For the double row transfer matrices, 
the reference arrows point up and right on odd rows and up and left on even rows.

https://doi.org/10.1088/1742-5468/ab54bd
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3.1. Local relations

We describe the local relations satisfied by the six vertex face operators in the planar 
and linear algebra settings. Because it has local degrees of freedom, in the form of par-
ticle occupation numbers, the planar algebra of the six vertex model just involves local 
tensor contractions of the indices giving the particle numbers. By fixing the planar 
algebra operators to act in an arbitrary fixed direction, the local relations presented in 
this section are easily established concretely using matrix representations (for example 
in Mathematica [38]). Alternatively, a local relation can be established diagrammati-
cally directly in the planar algebra setting. It then follows that the local relation holds 
for all matrix representations and for all choices of the direction of action.

3.1.1.  Face operators, symmetries and face weights.  As elements of a planar algebra, 
the face operators of the six vertex model in the particle representation decompose [44] 
into a sum of contributions from six elementary tiles

u, g = s1(−u) + + s0(u) + + g + g−1
� (3.1)

where sk(u) =
sin(u+kλ)

sinλ
 and g is a gauge factor. Multiplication of the tiles in the planar 

algebra is given [19, 44] by local tensor contraction of indices a, b, c, d, . . . = 0, 1 specify-
ing the particle occupation numbers on the centers of the tile edges. As orientated in 
(3.1), the face operators are invariant under reflection about the horizontal diagonal 
and not invariant (for g �= 1) under reflection about the vertical diagonal. Rotating the 
face operator by 90◦ gives

u, g = s1(−u) + + s0(u) + + g + .g−1
� (3.2)

Further rotations by 90◦ give

u, g .= u,g−1 , u, g = u,g−1� (3.3)

Only the occupation numbers a, b, c, d = 0, 1 of the edges are important. The colors of 
the face operators (indicating their relative orientation) and the internal particle tra-
jectories are just for easy visual identification so that

≡ ≡� (3.4)

Usually, we work in the fixed gauge g = z := eiu with x = eiλ and set

u .= u, z� (3.5)

Using this gauge, gives

u = s1(−u) 0 + s0(u) λ� (3.6)

https://doi.org/10.1088/1742-5468/ab54bd
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where the generators of the planar Temperley–Lieb algebra are

0 = + + +� (3.7a)

λ .= + + x + x−1
� (3.7b)

Acting vertically, the first operator acts as the identity and the second, acting at posi-
tion j , acts as the Temperley–Lieb generator ej .

More conventionally, the bulk face weights of the six vertex model are

W
0

0 0
0

z, g = 0

0

0

0

= 0

0

0

0

= s1(−u)

W
1

0 0
1

z, g = 0

1

0

1

= 0

1

0

1

= s0(u)

W
0

0 1
1

z, g = 0

1

1

0

= 0

0

1

1

= g−1

W
1

1 0
0

z, g = 1

0

0

1

= 1

1

0

0

= g

W
0

1 1
0

z, g = 1

0

1

0

= 1

0

1

0

= s0(u)

W .
1

1 1
1

z, g = 1

1

1

1

= 1

1

1

1

= s1(−u)

�

(3.8)

The set of six allowed (blue) faces is not invariant under rotations through 90◦. There 
is therefore no crossing symmetry. Instead, we distinguish the set of six rotated faces 
(pink) by the position of the corner marked by the (red) arc. In the blue faces, the 
particles move up and to the right and, in the pink faces, they move up and to the 
left. A face weight is unchanged under a rotation if the face configuration and the 
marked corner are rotated together. Again, the colour of the faces is just for easy visual 
identification.

The six vertex face weights can be organized into an Ř-matrix. Explicitly, choosing 
the particular basis {(0, 0), (0, 1), (1, 0), (1, 1)} gives

https://doi.org/10.1088/1742-5468/ab54bd
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W
( d

a c
b

∣∣∣z, g
)
= X(u, g)ab

dc, X(u, g) =




s1(−u) 0 0 0

0 g−1 s0(u) 0

0 s0(u) g 0

0 0 0 s1(−u)




W
( d

a c
b

∣∣∣z, g
)
= X̃(u, g)da

cb, X̃(u, g) =




s1(−u) 0 0 g−1

0 0 s0(u) 0

0 s0(u) 0 0

g 0 0 s1(−u).




�

(3.9b)
�

(3.9a)

Let us define

Xj(u, g) = I ⊗ I ⊗ · · · I ⊗X(u, g)⊗ I · · · ⊗ I ⊗ I� (3.10)

acting on (C2)⊗N where X(u, g) acts in the slots j  and j   +  1 and similarly for X̃(u, g). 
Setting

Xj(u) = Xj(u, z) = s1(−u) I + s0(u) ej� (3.11)
the generators of the linear Temperley–Lieb algebra are then

Xj(0) = I, Xj(λ) = ej, j = 1, 2, . . . ,N − 1� (3.12)
satisfying

e2j = βej, ejej±1ej = ej, j = 1, 2, . . . ,N − 1, β = x+ x−1.� (3.13)

This corresponds to the linear vertical action of the planar algebra.

3.1.2.  Inversion relations.  The elementary face weights satisfy two distinct inversion 
relations. In the planar algebra, they are

Inv1 : u, g −u, 1
g = η1(u) 0 , η1(u) = s1(u)s1(−u)� (3.14a)

Inv2 : .2λ−u, g u, g = η2(u) 0 , η2(u) = s0(u)s2(−u)

�

(3.14b)

In the linear algebra acting from left to right, these become

Xj(u, g)Xj(−u, 1/g) = s1(u)s1(−u) I� (3.15a)

X̃j(2λ− u, g)X̃j(u, g) = s0(u)s2(−u) I.� (3.15b)

Up to the scalar on the right side, the face X̃j(2λ− u, g) (shown in yellow) is the inverse 
of the face X̃j(u, g). We also observe the commutation relations

https://doi.org/10.1088/1742-5468/ab54bd
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[Xj(u),Xj(v)] = 0, [X̃j(u, g), X̃j(v, g)] = 0.� (3.16)

3.1.3. Yang–Baxter equations.  The fundamental Yang–Baxter equation (YBE) [20] in 
the planar and linear algebra is

u

v

u+v =

u

v

u+v� (3.17a)

Xj(u)Xj+1(u+ v)Xj(v) = Xj+1(v)Xj(u+ v)Xj+1(u).� (3.17b)
Distorting the faces into rhombi leads to the alternative representation of the YBE as the 
following diagrammatic equality holding for all values of the indices a, b, c, d, e, f = 0, 1, 
of the two partition functions

u

v

v + u

a

b

.

c

d

e

f

= v + u

v

u

a

b

c

d

e

f

� (3.18)

To establish commuting transfer matrices with Kac boundary conditions, we need 
three independent YBEs. In the planar algebra, these are

YBE1 :

v−ξ

u+ξ

u+v =

u+ξ

v−ξ

u+v =
u+ξ

v−ξ

u+v =

v−ξ

u+ξ

u+v� (3.19)

YBE2 :

u−ξ

v−ξ

v−u =

v−ξ

u−ξ

v−u =
v−ξ

u−ξ

v−u =

u−ξ

v−ξ

v−u� (3.20)

YBE3 :

u+ξ

v+ξ

u−v =

v+ξ

u+ξ

u−v =
v+ξ

u+ξ

u−v = .

u+ξ

v+ξ

u−v

� (3.21)
Here ξ is an arbitrary boundary field.

https://doi.org/10.1088/1742-5468/ab54bd
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3.1.4. Boundary Yang–Baxter equations.  In the presence of a boundary, there are 
addtional local relations in the form of boundary Yang–Baxter or reflection equa-
tions [42, 43, 45]. The nonzero left and right boundary triangle weights and the corre
sponding planar operators are independent of u and given by

KL
( b
a

)
= x1−2aδ(a, b), KR

( b
a

)
= δ(a, b)� (3.22a)

u = x + x−1 , u = + .� (3.22b)

The general right boundary Yang–Baxter equation (RBYBE) is

Xj(u− v)KR
j+1(u)Xj(u+ v)KR

j+1(v) = KR
j+1(v)Xj(u+ v)KR

j+1(u)Xj(u− v)
�

(3.23a)

RBYBE:

u − v

u + v

v

u

= u + v

u − v

v

u

= u + v

u − v u

v

=

u + v

u − v

u

v

�

(3.23b)

where the relevant position is j   =  N  −  1. After removing the right boundary triangles 

KR
j+1(u) = I, this reduces to the commutation relation [Xj(u− v),Xj(u+ v)] = 0.
With z := eiu, w := eiv, the general left boundary Yang–Baxter equation (LBYBE) 

is

Xj+1(v − u,
z

w
)KL

j (u)X̃j+1(2λ− u− v, zw)KL
j (v) = KL

j (v)X̃j+1(2λ− u− v, zw)KL
j (u)Xj+1(v − u,

z

w
)

� (3.24a)

LBYBE: 2λ−u−v

v − u

v

u

= 2λ−u−v

v − u

v

u

=

v − u

2λ−u−v

u

v

=

2λ−u−v

v − u

u

v

�

(3.24b)

where the gauge factors have been omitted in the diagrams and the relevant position 
is j   =  0. For the dimer model under consideration, the boundary triangles are indepen-
dent of the spectral parameters.

https://doi.org/10.1088/1742-5468/ab54bd
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3.2. Commuting double row transfer matrices

The general double row transfer matrices are defined diagrammatically by

D(u) = u

uu u − ξ

uu u + ξ

u

. . .

. . .

� (3.25)

where ξ is an arbitrary boundary field. There are a total of N columns in the bulk and 
w = 0, 1 columns in the boundary. We are primarily interested in the following two 
cases: (i) w  =  0 in which case there is no boundary column and the system is homo-
geneous and (ii) w  =  1 for which the boundary consists of the right-most column with 

ξ = λ
2
. The specialization ξ = λ

2
 has nice properties compared to other nonzero values of 

ξ. In particular, the inversion identity can be solved exactly for ξ = λ
2
.

3.2.1.  Sectors and quantum numbers.  In the six vertex arrow (or spin) representation, 
the total magnetization

Sz =
N∑
j=1

σj = −N ,−N + 2, . . . ,N − 2,N , N = N + w� (3.26)

is conserved under the action of the transfer matrix. By the Z2 up–down symmetry, the 
spectrum for the sectors Sz = ±m coincide for m  >  0. More generally, the number of 

down spins is d = 1
2
(N − Sz). The number of up spins is thus N − d = 1

2
(N + Sz) and 

the counting of states in the Sz sector is given by the binomial 

(
N
d

)
 with Sz = N  mod 

2. In the particle representation, a particle configuration along a row of the double row 
transfer matrix takes the form

a = {a1, a2, . . . , aN−1, aN}, aj = 0, 1 forj = 1, 2, . . . ,N .� (3.27)

The total number of particles d =
∑N

j=1 aj coincides with the number of down arrows 

and is also conserved. The transfer matrix and vector space of states thus decompose as

D(u) =
N⊕
d=0

Dd(u), dimV (N ) =
N∑
d=0

dimV(N )
d =

N∑
d=0

(
N
d

)
= 2N = dim (C2)⊗N .� (3.28)

For comparing the spectra sector-by-sector with critical dense polymers [33], it is use-
ful to define

� = |N − 2d| = |Sz| =
{
0, 2, 4, . . . ,N , N even

1, 3, 5, . . . ,N , N odd
.� (3.29)

In the context of critical dense polymers, � is the number of defects.

https://doi.org/10.1088/1742-5468/ab54bd
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3.2.2. Diagrammatic proof of commutation.  Setting η1 = η1(u− v), η2 = η2(u+ v) 
as in (3.14), the commutation of the double row transfer matrices is established 
diagrammatically

D(u)D(v) =

u u

v v

u u u u − ξ

u u u u + ξ

v v v v − ξ

v v v v + ξ

. . .

· · ·

· · ·

. . .

� (3.30a)

Inv2=
1
η2

u u

v v

u u u u − ξ

u u u u + ξ

v v v v − ξ

v v v v + ξ

. . .

· · ·

· · ·

. . .

2λ−u−v u + v� (3.30b)

YBE1=
1
η2

u u

v v

2λ−u−v u + v

u u u u − ξ

v v v v − ξ

u u u u + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·

� (3.30c)

https://doi.org/10.1088/1742-5468/ab54bd
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Inv1=
1

η1η2

u u

v v

u u u − ξ

v v v − ξ

u u u + ξ

v v v + ξ

· · ·

· · ·

· · ·

· · ·
v − u u − v

2λ−u−v u + v� (3.30d)

YBE2=
1

η1η2

u u

v v

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

u u u v + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·

� (3.30e)

BYBE=
1

η1η2

v v

u u

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

u u u u + ξ

v v v v + ξ

· · ·

· · ·

· · ·

· · ·

� (3.30f )

YBE3=
1

η1η2

v v

u u

2λ−u−v u + v

v − u u − v

v v v v − ξ

u u u u − ξ

v v v v + ξ

u u u u + ξ

· · ·

· · ·

· · ·

· · ·

� (3.30g)
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Inv1=
1
η2

v v

u u

2λ−u−v u + v

v v v v − ξ

u u u u − ξ

v v v v + ξ

u u u u + ξ

· · ·

· · ·

· · ·

· · ·

� (3.30h)

YBE1=
1
η2

v v

u u

v v v v − ξ

v v v v + ξ

u u u u − ξ

u u u u + ξ

. . .

· · ·

· · ·

. . .

2λ−u−v u + v� (3.30i)

Inv2=

v v

u u

v v v v − ξ

v v v v + ξ

u u u u − ξ

u u u u + ξ

. . .

· · ·

· · ·

. . .

= D(v)D(u .)� (3.30j )

4. Solution of dimers on a strip and finite-size spectra

In this section, we specialise to the six vertex model at the free-fermion point with 
λ = π

2
 and x  =  i corresponding to dimers.

4.1.  Inversion identities on the strip

In appendix A, we show that the double row transfer matrices (3.25) satisfy the inver-
sion identities

https://doi.org/10.1088/1742-5468/ab54bd
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w = 0 : D(u)D(u+ λ) = − tan2 2u
[
cos2N u− sin2N u

]2
I� (4.1)

w = 1 : D(u)D(u+ λ) = − tan2 2u
[
sin(u+ ξ) sin(u− ξ) cos2N u− cos(u+ ξ) cos(u− ξ) sin2N u

]2
I.

� (4.2)
The first inversion identity is obtained from the second by dividing both sides by cos4 ξ 
and taking the braid limit ξ → i∞. It is useful to introduce the normalized transfer 
matrices

d(u) =

{
D(u)
sin 2u

, w = 0
D(u)

sin2(ξ+λ) sin 2u
, w = 1

� (4.3)

satisfying the initial condition and crossing symmetry

d(0) = I, d(λ− u) = d(u).� (4.4)
Remarkably, the normalized double row transfer matrices (4.3) satisfy precisely the 

same inversion identities as critical dense polymers [31, 34]. Specifically, we find

w = 0 : d(u) =
D(u)

sin 2u
, d(u)d(u+ λ) =

(cos2N u− sin2N u

cos2 u− sin2 u

)2

I� (4.5a)

w = 1, ξ =
λ

2
: d(u) =

2D(u)

sin 2u
, d(u)d(u+ λ) =

(
cos2N u+ sin2N u

)2
I.

� (4.5b)
Using standard inversion identity techniques [20, 28, 29], the last two functional equa-
tions can be solved, for arbitrary finite sizes N, for the eigenvalues d(u) of d(u). The 
calculation of the eigenvalues by solving the functional equations (4.5a) and (4.5b) follows 
exactly the same path as in [34]. So let us just summarize the salient facts. The eigenval-

ues d(u) are Laurent polynomials in z = eiu. Consequently, they are determined by their 

complex zeros in the analyticity strip −π
4
� Re u � 3π

4
. Following [34], these zeros occur 

as 1-strings in the center of the analyticity strip or as ‘2-strings’ with one zero on the 

boundary Re u = −π
4
 of the analyticity strip and its periodic image on the other bound-

ary Re u = 3π
4
. The ordinates of the 1- and 2-strings are quantized and given by

yj = − i

2
ln tan

Ejπ

2N
, Ej =

{
j, N + w even

j − 1
2
, N + w odd

j ∈ Z.� (4.6)

At each allowed ordinate, there is either two 1-strings, two 2-strings or one 1-string and 
one 2-string. The fact that double zeros occur has its origins in the relation between 
critical dense polymers and symplectic fermions [46]. Due to complex conjugation sym-
metry, the pattern of zeros in the upper and lower half-planes is the same. We can 
therefore focus solely on the lower half-plane. A typical pattern of zeros is shown in 
figure 6.

A pattern of zeros is completely determined by specifying the location of the 
1-strings. A 1-string at position j  is a local elementary excitation with associated con-
formal energy Ej . In the ground state, with energy E0, there are no 1-strings. Counting 
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the doubled 1-strings as two separate 1-strings, the conformal excitation energy above 
the ground state is given by

E = E0 +
∑
j

Ej, j = position of 1-strings.
� (4.7)

The lowest state energy is E0 = − c
24

+∆s where c is the central charge and ∆s is 
the conformal weight associated with the particular sector labelled by

s = |Sz|+ 1, N + s odd.� (4.8)
The lowest states in each sector exactly coincide with those of critical dense polymers 
for arbitrary finite sizes. The zero patterns for these lowest states are encoded as double 
column diagrams in figure  7. On the strip, the only dierence between dimers and 
critical dense polymers with (r, s) = (1, 1) boundary conditions resides in the degen-
eracy of energy levels and the counting of states. The finite-size corrections based on 
Euler–Maclaurin calculations therefore also coincide, yielding ceff = 1. As justified in 
section 5, we conclude that the central charge is c  =  −2 and the conformal weights are 

∆s =
(
(2− s)2 − 1

)
/8 with s = 1, 2, 3, . . ..

It follows that the finitized characters take the form

χ(N)
s (q) = q−c/24+∆s

∑
E

qE, E = eigenvalue excitation energy.
� (4.9)

This is a truncated set of conformal eigenenergies of the infinite system. The finitized 
characters are the spectrum generating functions for the finite set of conformal energies. 
The parameter q is the modular nome and arises through the finite-size calculation as

q = exp(−2π
N ′

N
sin 2u)� (4.10)

where N ′/N  is the fixed lattice aspect ratio. The remaining problem is thus to classify 
the allowed patterns of zeros and their degeneracies. This is a combinatorial problem 
and, since not all patterns of zeros occur, it entails certain selection rules. We deter-
mine the classification of zero patterns empirically based on examining the patterns of 
zeros for modest sizes N. For critical dense polymers on the strip, the empirical selec-
tion rules obtained were ultimately shown to be correct [47].

4.2. Combinatorial analysis of patterns of zeros

Combinatorially, the key building blocks are q-Narayana numbers (or equivalently 
skew q-binomials) enumerated by double-column diagrams with dominance.

The information in a zero pattern is simply encoded in a double-column diagram. 
A double-column configuration S = (L,R) is called admissible if L � R with respect to 
the partial ordering

L � R if Lj � Rj, j = 1, 2, . . . ,m� (4.11)
which presupposes that

0 � m � n � M .� (4.12)
Admissibility is characterized diagrammatically as in the following example
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.
� (4.13)

One draws line segments between the occupied sites of greatest height in the two 
columns, then between the occupied sites of second-to-greatest height and so on. 
The double-column configuration is now admissible if m � n and it does not involve 
line segments with a strictly negative slope. Thus, in an admissible double-column 
configuration, there are either no line segments (m  =  0) or each line segment appears 
with a non-negative slope. Such admissible diagrams are said to satisfy dominance. At 
each position or height j , there is zero, one or two occupied sites corresponding to zero, 
one or two 1-strings in the lower half-plane.

Combinatorially, the (generalized) q-Narayana numbers 
〈 M

m,n

〉
q
 are defined as 

the sum of the monomials associated to all admissible double-column configurations 

of height M with exactly m and n occupied sites in the left and right columns, 
respectively

〈 M
m,n

〉
q
=

∑
S: |L|=m,|R|=n

qE(S).� (4.14)

These are the basic building blocks to describe the allowed patterns of zeros in each sec-
tor. Physically, these are the generating functions for the spectrum encoded in a double 
column diagram with conformal energies Ej   =  j . The monomials qE(S) need to be scaled 

or

Figure 4.  Face configurations showing (in light yellow) the one or two dimers 
associated with each face. No dimers are associated with the last face.
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xx−1 1 1

Figure 5.  Typical dimer configuration on a 6× 4 strip with vacuum boundary 
conditions in the vertex, particle and dimer representations. For the vertex 
representation, the boundary arrows can be in either one of the two possible 
directions (corresponding to a particle or vacancy in the particle representation). 
Particles move up and right on odd rows and up and left on even rows. The 
number of particles/down arrows inside the strip is conserved from double row to 
double row but not necessarily from single row to single row. For dimers, there 
are two dierent zigzag edges allowed independently on the left and right edges of 
each double row. The left boundary zigzags have weights x,x−1 as shown. The right 
boundary zigzags have weight 1.
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by the factor q−
1
2
(m+n) in sectors with Ej = j − 1

2
. The q-Narayana numbers admit the 

closed-form expressions
〈 M

m,n

〉
q
= q

1
2
m(m+1)+ 1

2
n(n+1)

{
M
m,n

}

q
� (4.15)

= q
1
2
m(m+1)+ 1

2
n(n+1)

([
M
m

]

q

[
M
n

]

q

− qn−m+1

[
M

m− 1

]

q

[
M

n+ 1

]

q

)
� (4.16)

where 
[ M
m

]
q
 is a q-binomial (Gaussian polynomial) and 

{
M
m,n

}

q

 are skew q-binomials, 

as in appendix B. The (generalized) q-Narayana numbers coincide with q-Narayana 
numbers [48, 49] when m  =  n.

4.3. Empirical selection rules

In this section  we consider the empirical classification of patterns of zeros for the 
cases w = 0, 1. Empirically, using Mathematica [38] to examine the spectra out to 
N = N + w = 8, we find that the finitized characters are classified in terms of patterns 
of zeros, double column diagrams and q-Narayana numbers by

χ(N)
s (q) =





q−c/24+∆1
∑�N−1

2
�

m,n=0 A
(s)
m,n

〈 �N−1
2

�
m,n

〉
q
, ∆1 = 0, s odd

q−c/24+∆2
∑�N−1

2
�

m,n=0 B
(s)
m,n q−

1
2
(m+n)

〈 �N−1
2

�
m,n

〉
q
, ∆2 = −1

8
, s even

.

�

(4.17)

−π
4

π
4

π
2

3π
4

y5

y4

y3

y2

y1

−y5

−y4

−y3

−y2

−y1

Figure 6.  A typical pattern of zeros in the complex u-plane associated to a transfer 
matrix eigenvalue. Single zeros are shown by grey disks, double zeros are shown by 
black disks and the absence of zeros is shown by white disks. The upper and lower 
half-planes are related under the Z2 complex conjugation symmetry.
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The �N+1
2

� × �N+1
2

� matrices A(s) and B(s) are special Toeplitz matrices with a simple 
structure as indicated in the following examples

N = 8 : A(1) =




2 2 2 2
0 2 2 2
0 0 2 2
0 0 0 2


 , A(3) =




1 2 2 2
0 1 2 2
0 0 1 2
0 0 0 1


 , A(5) =




0 1 2 2
0 0 1 2
0 0 0 1
0 0 0 0


 , . . . ,

A(9) =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0




�

(4.18)

j = 1

j = 2

...

j = 1

j = 2

...

j = 1

j = 2

...

j = 1

j = 2

...

∆ = 0 ∆ = 1 ∆ = 3 ∆ = 6

∆ = −1/8 ∆ = 3/8 ∆ = 15/8 ∆ = 35/8

∆ = 0 ∆ = 0 ∆ = 1 ∆ = 3

∆ = 3/8 ∆ = −1/8 ∆ = 3/8 ∆ = 15/8

s = 1

s = 2

s = 3

s = 4

r = 1 r = 2 r = 3 r = 4

Ej = j

Ej = j− 1
2

Ej = j

Ej = j− 1
2

Figure 7.  Lowest or groundstate double-column configurations arranged by sectors 
in a Kac table for r, s = 1, 2, 3, 4 for critical dense polymers. The continuation of 
the pattern for larger values of r and s is clear. Only the first column with r  =  1 
relates to dimers. The solid grey dots represent single 1-strings in the center of the 
analyticity strip. There are no double zeros in the center of the analyticity strip for 
these groundstates. The vacuum sector with ∆ = 0 lies at (r, s) = (1, 1).
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N = 7 : B(2) =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 , B(4) =




0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0


 , B(6) =




0 0 1 1
0 0 0 1
0 0 0 0
0 0 0 0


 ,

B(8) =




0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0


 .

� (4.19)
Following [33], for r � 1, we define the following (generalized) q-analogs of Catalan 

numbers

CM ,r(q) =
∑M−r+1

m=0

〈 M
m,m+ r − 1

〉
q
= q

r(r−1)
2

(1−qr)
(1−qM+1)

[
2M + 2

M + 1− r

]

q

s odd

C ′
M ,r(q) = q−

r−1
2

∑M−r+1
m=0 q−m

〈 M
m,m+ r − 1

〉
q
= q

(r−1)2

2
(1−q2r)

(1−qM+r+1)

[
2M + 1

M + 1− r

]

q

s even

.

� (4.20)
These q-Catalan polynomials are simply related to finitized irreducible characters [34]

ch
(M)
r,1 (q) = q−

c
24CM ,r(q), ch

(M)
r,2 (q) = q−

c
24

− 1
8C ′

M ,r(q).� (4.21)

Using the result

lim
M→∞

[
M
m

]

q

=
1

(q)m
, (q)m =

m∏
k=1

(1− qk)� (4.22)

it follows from (4.20) that, in the thermodynamic limit, the irreducible characters are

chr,1(q) = lim
M→∞

ch
(M)
r,1 (q) = q−

c
24

+
r(r−1)

2
1− qr

(q)∞
� (4.23)

chr,2(q) = lim
M→∞

ch
(M)
r,2 (q) = q−

c
24

− 1
8
+

(r−1)2

2
1− q2r

(q)∞
.� (4.24)

Summing over diagonals in (4.17) with n−m = r − 1 � 0 gives the decomposition into 
finitized irreducible characters

χ(N)
s (q) =




�N+1
2

�∑
r=1

A
(s)
1,r ch

(M)
r,1 (q), s odd

�N+1
2

�∑
r=1

B
(s)
1,r ch

(M)
r,2 (q), s even

M = �N − 1

2
�.

� (4.25)

For w = 0, 1 and s odd or even, the finitized characters can be written in terms of 
q-binomials

χ(N)
s (q) = q−c/24+∆s

1 + q(s−1)/2

1 + qN/2

[
N

1
2
(N + s− 1)

]

q

, N = N + w� (4.26)
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where

∆s =
(2− s)2 − 1

8
.� (4.27)

Setting q  =  1 gives the correct counting of states χ
(N)
s (1) =

( N
1
2
(N+s−1)

)
. Observing that 

|q| < 1 and using the result (4.22), it follows that, in the thermodynamic limit,

χs(q) = lim
N→∞

χ(N)
s (q) =

q−c/24+∆s

(q)∞
(1 + q(s−1)/2) =

q−c/24

(q)∞
(q∆s + q∆s+2).� (4.28)

Notice that, for s  =  1, all states are doubly degenerate and that, for s even, q(s−1)/2 is a 
half-integer power of q.

5. Jordan decompositions and irreducible modules

5.1.  Isotropic double row transfer matrices

It is easy to verify that, at the isotropic point u = λ
2
, the double row transfer matrix 

D(u) is not Hermitian. Nevertheless, it has real eigenvalues. For N  odd, we find no 
Jordan blocks. But, for N  even, we find the Jordan decomposition produces nontrivial 
Jordan blocks of rank 2. Explicitly, for w  =  0 and N = N even,

N = 2, Sz = 0 :

(
1 1
0 1

)
� (5.1)

s = 1:

∆ =0 1 3 6 10 15

· · ·
· · ·
· · ·

s = 3:

· · ·
· · ·
· · ·

s = 5:

· · ·
· · ·
· · ·

∆ =0 1 3 6 10 15
...

Figure 8.  Loewy diagrams of the Virasoro modules Ds for s = 1, 3, 5, . . .. The 
nodes represent irreducible sub-quotients, or equivalently, sub-singular vectors 
generating these sub-quotients. The black arrows indicate the o-diagonal action 
of L0 in the rank 2 Jordan blocks. The gray arrows indicate the conjectured action 
by the Virasoro algebra linking the irreducible sub-quotients.
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N = 4, Sz = 0 :
1

2
⊕

(
3
2
−

√
2 1

0 3
2
−
√
2

)
⊕

(
3
2
+
√
2 1

0 3
2
+
√
2

)
⊕ 1

2
� (5.2)

with similar results for w  =  1, N odd and ξ = λ
2
.

5.2. Quantum Hamiltonians

The quantum Hamiltonians are given by the logarithmic derivative

Hw = −1

2

d

du
logD(u)

∣∣∣
u=0

, w = 0, 1.� (5.3)

As pointed out in [19], the Hamiltonian of dimers on the strip with w  =  0 precisely 
coincides with the Uq(sl(2))-invariant XX Hamiltonian of the free-fermion six vertex 
model

Hw=0 = −
N−1∑
j=1

ej = −1

2

N−1∑
j=1

(σx
j σ

x
j+1 + σy

jσ
y
j+1)−

1

2
i(σz

1 − σz
N)� (5.4)

= −
N−1∑
j=1

( f †
j fj+1 + f †

j+1fj)− i( f †
1f1 − f †

NfN)� (5.5)

where σx,y,z
j  are the usual Pauli matrices and fj =

1
2
(σx

j − iσy
j ), f

†
j = 1

2
(σx

j + iσy
j ). 

This Hamiltonian is manifestly not Hermitian. Nevertheless, the eigenvalues of the 
Hamiltonian are real [50]. For N = N odd, we find no non-trivial Jordan blocks but, 
for N  even, we find rank 2 Jordan blocks. Separating into Sz = 0,±2,±4, . . . sectors 
and identifying the equivalent ±Sz sectors, the Jordan canonical forms for N = 2 and 
N = 4 are respectively

N = 2 :
[(0 1

0 0

)]
⊕ 2[0]� (5.6)

· · ·
· · ·
· · ·

∆s ∆s+2 ∆s+4 ∆s+6 ∆s+8 ∆s+10

Figure 9.  Loewy diagram for s odd with s  >  1.

0 1 ∆s ∆s+2 ∆s+4

Figure 10.  Staggered modules for c  =  −2, corresponding respectively to s  =  1 and 
s = 3, 5, . . ..
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N = 4 :
[(√2 1

0
√
2

)
⊕ 0⊕ 0⊕

(
−
√
2 1

0 −
√
2

)]
⊕ 2

[√
2⊕

(
0 1

0 0

)
⊕ (−

√
2)
]
⊕ 2[0].� (5.7)

Such Jordan blocks for the quantum group invariant XX Hamiltonian were observed 

in [51]. More generally, we find empirically that there are 
(
N−2
d−1

)
 rank 2 Jordan blocks 

in sectors with d down arrows where 1 � d � N − 1, in accordance with [47]. By com-
parison, the transfer matrices and Hamiltonians of the (r, s) sectors of critical dense 
polymers are diagonalizable [31] and do not exhibit Jordan blocks.

The Hamiltonian of dimers on the strip with w  =  1 agrees with the ρ = 2 Hamiltonian 
of critical dense polymers [34]

Hw=1 = −
N−1∑
j=1

ej +
1

s0(ξ)s2(ξ)
eN .� (5.8)

This can be written in terms of fermion operators using (2.13c). Specializing to ξ = λ
2
= π

4
, 

we find no Jordan blocks for N = N + 1 odd but rank 2 Jordan blocks for N  even

N = 2 :
[(0 1

0 0

)]
⊕ 2[0]� (5.9)

N = 4 :
[(√3 1

0
√
3

)
⊕ 0⊕ 0⊕

(
−
√
3 1

0 −
√
3

)]
⊕ 2

[√
3⊕

(
0 1

0 0

)
⊕ (−

√
3)
]
⊕ 2[0].� (5.10)

Although the eigenvalues are dierent, the patterns of the appearance of Jordan blocks 
is the same as for w  =  0. This is easily seen for N = 2, 4 by comparing (5.6) and (5.7) 
with (5.9) and (5.10).

5.3. Representation theory

In the continuum scaling limit, the w  =  0 and w  =  1 Hamiltonians give rise to the 
Virasoro dilatation operator L0. For s even (N  odd), we do not find any non-trivial 
Jordan blocks. For s odd (N  even), on the other hand, we do find non-trivial Jordan 
blocks, all of rank 2. Since the indications are that these Jordan blocks persist in the 
scaling limit, we see that the dimer model admits higher-rank representations of the 
Virasoro algebra. We thus conclude that, as a CFT, our dimer model is logarithmic.

Restricting to s odd and analysing the patterns of appearance of the Jordan blocks 
yields crucial insight into the structures of the ensuing Virasoro modules, here denoted 
by Ds, s = 1, 3, 5, . . .. Although not uniquely determined, see comment below, the Loewy 
diagrams in figures 8 and 9 are compatible with this analysis and with the results for 
the finitized characters. Thus, in the Loewy diagram indicated for Ds, the black dots 
represent singular vectors which generate the socle C•, i.e. the maximal completely 
reducible submodule of Ds. The gray dots represent sub-singular vectors that are singu-

lar in the quotient Ds/C
•; they generate the socle C• of Ds/C

•. Finally, the white dots 
represent sub-singular vectors that are singular in (Ds/C•)/C•; they generate the head, 
i.e. the maximal completely reducible quotient of Ds.

We note that our analysis so far is incapable of determining whether the left-
pointing horizontal (dashed) arrows, in particular, are actually present in the diagrams 
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for Ds in figures 8 and 9. As drawn, the diagrams describe indecomposable modules, 
whereas the diagrams obtained by removing the left-pointing horizontal arrows would 
describe decomposable modules. The latter option is supported by the analysis in [41]. 
However, independent of the presence of these arrows, the familiar c  =  −2 staggered 
modules [52] in figure 10 appear as submodules of our dimer modules Ds. This resembles 
the way the Virasoro Kac modules [53] appear as submodules of the Feigin–Fuchs mod-
ules [54] arising in the dimer model [13]. It therefore seems natural to expect that mod-
ules similar to our dimer modules exist for other logarithmic minimal models as well.

Following the conjectured module structures (with or without the left-pointing 

horizontal arrows), the finitized characters χ
(N)
s (q) decompose into finitized charac-

ters of the irreducible sub-quotients of conformal weights ∆ ∈ {0, 1, 3, 6, 10, 15, . . .}. 
Parameterising these weights as

∆r,1 = ∆2r+1 =
(2r − 1)2 − 1

8
, r = 1, 2, 3, . . .� (5.11)

the decompositions are given by (4.25), where the finitized irreducible characters are 

denoted by ch
(M)
r,1 (q) with M = �N−1

2
�. We can refine these decompositions by indicating 

the appearances of the Jordan blocks. For simplicity, we do this for the full Virasoro 
characters. Similar expressions for the finitized characters follow readily. We thus write

χs(q) =




∑
r∈1+2Z�0

2̂ chr,1(q) +
∑

r∈2+2Z�0

2 chr,1(q), s = 1

ch s−1
2

,1(q) +
∑

r∈ s+1
2

+2Z�0

2̂ chr,1(q) +
∑

r∈ s+3
2

+2Z�0

2 chr,1(q), s = 3, 5, . . .� (5.12)

where a hat on a multiplicity, 2̂, indicates that Jordan blocks are formed between the 
matching vectors in the two copies of the corresponding irreducible sub-quotient.

6. Conclusion

Although the dimer model was first solved many years ago, there remain a number of 
unanswered questions concerning its CFT description. In a previous paper [19], the 
dimer model on a cylinder, with 45◦ rotated dimers, was solved exactly. Moreover, the 
modular invariant conformal partition function was obtained from finite-size correc-
tions and shown to precisely agree with the modular invariant partition function of 
critical dense polymers.

In this paper, we have solved exactly the dimer model on a strip with Uq(sl(2)) 
invariant boundary conditions by viewing it as a free-fermion six vertex model and 
using Yang–Baxter techniques. The key to solving the lattice model is to show that 
the commuting double row transfer matrices satisfy special functional equations in the 
form of inversion identities. Due to the common underlying Temperley–Lieb algebra, 
these inversion identities coincide with those of critical dense polymers. This implies, 
essentially through the Temperley–Lieb equivalence, that the two models have the 
same eigenvalues, although the eigenvalue degeneracies and the counting of states 
dier. Indeed, the lowest eigenvalues in each sector (labelled by (r, s) = (1, s)) coin-
cide leading to the same finite-size corrections. This leads us to conclude that, for the 
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Uq(sl(2)) invariant boundary conditions, the two models share the same central charge 
and a common infinite set of conformal weights

c = −2, ∆s = ∆1,s =
(2− s)2 − 1

8
, s = 1, 2, 3, . . .� (6.1)

The common negative conformal weight

∆2 = ∆1,2 = −1

8
� (6.2)

implies that both CFTs are nonunitary. However, despite these similarities, combina-
torial analysis of the patterns of zeros of the transfer matrix eigenvalues of dimers on 
the strip leads to finitized and conformal characters (4.26) and (4.28) that are distinct 
from the Kac characters of critical dense polymers. So it appears that the dimer model, 
with these boundary conditions, lies in a dierent ‘universality class’ to that of critical 
dense polymers.

Moreover, we have shown that for dimers on the strip, with Uq(sl(2)) invariant 
boundary conditions, the Jordan canonical forms of the isotropic double row trans-
fer matrices and quantum Hamiltonians exhibit nontrivial Jordan blocks. Assuming, 
as argued, that these Jordan blocks persist in the scaling limit, this implies that the 
dilatation operator L0 admits higher-rank Virasoro representations. All this points to 
a CFT description of the dimer model that is not rational. Indeed, we argue that, with 
Uq(sl(2)) invariant boundary conditions, the model is described by a logarithmic CFT 

with central charge c  =  −2, minimal conformal weight ∆min = −1
8 and eective central 

charge ceff = 1.
Notwithstanding our conclusion, some additional comments are in order. First, we 

have chosen to apply boundary conditions (3.22) with x  =  i compatible with Uq(sl(2)) 
invariance. Our boundary weights (3.22) are thus complex and lead to non-positive 
Boltzmann weights for the lattice model, a non-Hermitian XX Hamiltonian and a non-
unitary CFT. So, on this basis, it could be argued that our dimer model is ‘unphysical’. 
In fact, our dimer model is just the free-fermion point of the Uq(sl(2))-invariant XXZ 
Hamiltonian [55] which is a standard and very well-studied quantum chain. While the 
Uq(sl(2))-invariant XX Hamiltonian is non-Hermitian, its eigenvalues are all real. We 
have also demonstrated that it exhibits proper conformal properties in the continuum 
scaling limit. We thus argue that our dimer model on the strip and the Uq(sl(2))-
invariant XX Hamiltonian should not be regarded as ‘unphysical’ inasmuch as they 
relate to a seemingly well-defined, albeit logarithmic, CFT. The situation is analagous 
to the two-dimensional RSOS(2,5) lattice model studied by Forrester and Baxter [56]. 
Indeed, it could similarly be argued that this model is ‘unphysical’ in the sense that 
its Boltzmann weights are non-positive, its associated quantum Hamiltonian H2,5 is 
non-Hermitian and its associated CFT, which is the Yang–Lee minimal model M(2, 5), 
is nonunitary. Nevertheless, the free energy, correlation length, local height probabili-
ties and critical exponents of RSOS(2,5) all seem to make good sense. Indeed, for the 
Ising model in a complex magnetic field, the RSOS(2,5) theory describes [57, 58] the 
critical behaviour associated with the closure of the Yang–Lee zeros on the unit circle. 
This Yang–Lee edge singularity exemplifies the Yang–Lee universality class. Although 
H2,5 is non-Hermitian, its eigenvalues are all real and it provides a good example of 
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non-Hermitian quantum mechanics [59–61] which is now accepted to have many ‘phys-
ical’ applications. Similarly, although it is nonunitary, the minimal model M(2, 5) is a 
perfectly well-defined rational CFT [62, 63].
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Appendix A. Proof of inversion identities on the strip

In this appendix, we prove the inversion identity (4.1) for dimers on the strip

D(u)D(u+ λ) = − tan2 2u
(
cos2N u− sin2N u

)2
I, w = 0

� (A.1)
where D(u) is the double row transfer matrix (3.25) with w  =  0. The inversion identity 
(4.2) is proved similarly. Throughout this section, we work in the Temperley–Lieb rep-
resentation with the gauge g = z := eiu.

For a column at position j  with fixed aj, bj = 0, 1, let us define the four 16× 16 
matrices

R .
aj

bj
=

u

u

u+λ

u+λ

bj

aj

f

e

d

c

f

e

d

c

� (A.2)

The matrix elements of the product of double row transfer matrices, with upper and 
lower particle state configurations a = {a1, a2, . . . , aN} and b = {b1, b2, . . . , bN}, are 
then given by

[
D(u)D(u+ λ)

]
b,a

= 〈left|
N∏
j=1

R
(aj
bj

)
|right〉, aj, bj = 0, 1� (A.3)

where the left and right boundary vectors are

〈left| = (−1, 1, 1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ V6� (A.4)

|right〉 = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ∈ V6.� (A.5)
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Setting

s = sin u, c = cosu, z = eiu, x = i� (A.6)
and ordering the sixteen intermediate basis states as



0

0

0

0


 ,




0

0

1

1


 ,




1

1

0

0


 ,




1

1

1

1


 ,




0

1

1

0


 ,




1

0

0

1


 ;




0

0

0

1


 ,




0

0

1

0


 ,




0

1

0

0


 ,




0

1

0

1


 ,




0

1

1

1


 ,




1

0

0

0


 ,




1

0

1

0


 ,




1

0

1

1


 ,




1

1

0

1


 ,




1

1

1

0




� (A.7)

the four R
(aj
bj

)
 matrices are given explicitly by

R
(

0

0

)
=




c2s2 0 0 0 ics
z2

0 0 0 0 0 0 0 0 0 0 0

s2z2 s4 0 0 ics 0 0 0 0 0 0 0 0 0 0 0

−c2z2 0 c4 0 −ics 0 0 0 0 0 0 0 0 0 0 0

−z4 −s2z2 c2z2 c2s2 −icsz2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −c2s2 0 0 0 0 0 0 0 0 0 0 0

icsz2 ics −ics − ics
z2

0 −c2s2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 cs3 0 is2 0 is2

z2
0 0 0 0 0

0 0 0 0 0 0 0 cs3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −c3s 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −c2s2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −csz2 0 −cs3 0 0 0 0 0

0 0 0 0 0 0 0 ic2 0 0 0 −c3s 0 0 0 − ic2

z2

0 0 0 0 0 0 0 0 0 0 0 0 −c2s2 0 0 0

0 0 0 0 0 0 0 ic2z2 0 0 0 −csz2 0 −cs3 0 −ic2

0 0 0 0 0 0 −csz2 0 −is2z2 0 −is2 0 0 0 c3s 0

0 0 0 0 0 0 0 −csz2 0 0 0 0 0 0 0 c3s




�
(A.8)

R
(

1

1

)
=




c2s2 c2

z2
− s2

z2
− 1

z4
0 ics

z2
0 0 0 0 0 0 0 0 0 0

0 c4 0 − c2

z2
0 ics 0 0 0 0 0 0 0 0 0 0

0 0 s4 s2

z2
0 −ics 0 0 0 0 0 0 0 0 0 0

0 0 0 c2s2 0 −icsz2 0 0 0 0 0 0 0 0 0 0

icsz2 ics −ics − ics
z2

−c2s2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −c2s2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 c3s 0 0 0 0 0 0 0 − cs
z2

0

0 0 0 0 0 0 0 c3s 0 0 0 is2 0 is2

z2
0 − cs

z2

0 0 0 0 0 0 ic2 0 −cs3 0 − cs
z2

0 0 0 − ic2

z2
0

0 0 0 0 0 0 0 0 0 −c2s2 0 0 0 0 0 0

0 0 0 0 0 0 ic2z2 0 0 0 −c3s 0 0 0 −ic2 0

0 0 0 0 0 0 0 0 0 0 0 −cs3 0 − cs
z2

0 0

0 0 0 0 0 0 0 0 0 0 0 0 −c2s2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −c3s 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cs3 0

0 0 0 0 0 0 0 0 0 0 0 −is2z2 0 −is2 0 cs3




�
(A.9)

R
(

0

1

)
=




0 0 0 0 0 0 cs2

z
0 is3

z
0 is

z3
0 0 0 0 0

0 0 0 0 0 0 cs2z 0 0 0 ic2s
z

0 0 0 0 0

0 0 0 0 0 0 −cz 0 −is3z 0 − is
z

0 0 0 c3

z
0

0 0 0 0 0 0 −cz3 0 0 0 −ic2sz 0 0 0 c3z 0

0 0 0 0 0 0 0 0 −cs2z 0 − cs2

z
0 0 0 0 0

0 0 0 0 0 0 ic2sz 0 0 0 0 0 0 0 − ic2s
z

0

0 0 0 0 0 0 0 0 0 ics2

z
0 0 0 0 0 0

s3z s3

z
0 0 ics2

z
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 − c2s
z

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −c2sz 0 0 0 0 0 0

ics2z ic
z

− ics2

z
− ic

z3
0 − c2s

z
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 ic2sz 0 0 0 −cs2z 0 − cs2

z
0 − ic2s

z

0 ic3z 0 − ic3

z
0 −c2sz 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −ics2z 0 0 0 0 0 0

−sz3 −sz c2sz c2s
z

−ics2z 0 0 0 0 0 0 0 0 0 0 0




� (A.10)
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R
(

1

0

)
=




0 0 0 0 0 0 0 c3

z
0 0 0 ic2s

z
0 0 0 − c

z3

0 0 0 0 0 0 0 c3z 0 0 0 isz 0 is3

z
0 − c

z

0 0 0 0 0 0 0 0 0 0 0 −ic2sz 0 0 0 cs2

z

0 0 0 0 0 0 0 0 0 0 0 −isz3 0 −is3z 0 cs2z

0 0 0 0 0 0 0 ic2sz 0 0 0 0 0 0 0 − ic2s
z

0 0 0 0 0 0 0 0 0 0 0 −cs2z 0 − cs2

z
0 0

c2sz c2s
z

− s
z

− s
z3

0 ics2

z
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 ics2

z
0 0 0

ic3z 0 − ic3

z
0 − c2s

z
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ic2sz 0 −cs2z 0 − cs2

z
0 0 0 − ic2s

z
0

icz3 ics2z −icz − ics2

z
−c2sz 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 − c2s
z

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −c2sz 0 0 0

0 0 s3z s3

z
0 −ics2z 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −ics2z 0 0 0




.

� (A.11)
The matrices R

(0
0

)
 and R

(1
1

)
 are block diagonal under a direct sum decomposition of 

the intermediate basis of states

V = V6 ⊕ V10� (A.12)
so that

R
(a
a

)
: V6 → V6, V10 → V10.� (A.13)

We show that non-diagonal matrix elements with a �= b vanish. In this case, the 

states on the left and right in (A.3) are built up by the action of R
(a
b

)
 on the left and 

right boundaries 〈left| and |right〉 with the occurrence of at least one R
( a

1− a

)
 matrix. 

We begin building up the states by acting with R
(a
a

)
 on the left and right states. We 

find that

vleft = 〈left|
n∏

j=0

R
(aj
aj

)
∈ Vleft, vright =

n∏
j=0

R
(aj
aj

)
|right〉 ∈ Vright, n � 0

� (A.14)
where the vector spaces Vleft,Vright are given by the linear spans

Vleft =
〈{

〈left|, 〈left|R
(0
0

)
, 〈left|R

(1
1

)
, 〈left|R

(0
0

)2}〉
� (A.15)

Vright =
〈{

|right〉, R
(0
0

)
|right〉, R

(1
1

)
|right〉, R

(0
0

)2

|right〉
}〉

.� (A.16)

These spaces are stable under the action of further R
(a
a

)
 matrices. The linear independ

ence of vectors is easily checked by calculating the rank of suitable matrices in 
Mathematica [38]. Since

vleftR
( a

1− a

)
vright = 0� (A.17)

let assume next that there are at least two R
( a

1− a

)
 matrices. In this case, we similarly 

find that

v′left = vleftR
( a

1− a

) n∏
j=0

R
( aj

aj

)
∈
〈{

〈left|R
( a

1− a

)
, 〈left|R

( 0
0

)
R
( a

1− a

)}〉
= V ′

left, n � 0

� (A.18)
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v′right =
n∏

j=0

R
( aj

aj

)
R
( a

1− a

)
vright ∈

〈{
R
( a

1− a

)
|right〉, R

( a
1− a

)
R
( 0

0

)
|right〉

}〉
= V ′

right, n � 0

� (A.19)
where the vector spaces are orthogonal. So next suppose that there are three or more 

R
( a

1− a

)
 matrices. In this case, we observe that

vleftR
( a

1− a

) n∏
j=0

R
( aj

aj

)
R
( a

1− a

)
= R

( a
1− a

) n∏
j=0

R
( aj

aj

)
R
( a

1− a

)
vright = 0�

(A.20)

so that the occurrence of the matrices R
(0
1

)
 and R

(1
0

)
 must alternate along the seg-

ment. Moreover, we observe that

veigleft = v′leftR
( a

1− a

)
R
( 1− a

a

)
, v′left ∈ V ′

left, veigright = R
( a

1− a

)
R
( 1− a

a

)
v′right, v′right ∈ V ′

right

� (A.21)
are simultaneous (respectively left and right) eigenvectors of R

(0
0

)
 and R

(1
1

)
 satisfying 

the orthogonality

veigleft · v
eig
right = 0, veigleftR

( a
1− a

)
= 0, R

( a
1− a

)
veigright = 0.� (A.22)

It follows that the only nonzero matrix elements in (A.3) are diagonal with a = b and

[
D(u)D(u+ λ)

]
a,a

= 6〈left|
N∏
j=1

R

(
aj
aj

)

6

|right〉6, aj = 0, 1� (A.23)

where R
(a
a

)
6
 denotes the 6× 6 diagonal block of R

(a
a

)
 and

6〈left| = (−1, 1, 1,−1, 0, 0), |right〉6 = (1, 1, 1, 1, 0, 0)T .� (A.24)

Let us now suppose that a = b = (0, 0, 0, . . . , 0, 0) and observe that R
(0
0

)
 can be 

diagonalized by a similarity transformation

S−1R

(
0

0

)
S =




s4 0 0 0 0 0

0 c4 0 0 0 0

0 0 s2c2 0 0 0

0 0 0 s2c2 0 0

0 0 0 0 −s2c2 0

0 0 0 0 0 −s2c2




,

S =




0 0 −(z4−1)
2
(z4+1)

4z8
z8−1
2z8

0 z4+1
z4

−(z4+1)
2

2z4
0 −(z4−1)

2

2z4
z4−1
z4

0
(z4+1)

2

2z4

0 −(z4+1)
2

2z4
−(z4−1)

2

2z4
z4−1
z4

0
(z4+1)

2

2z4

−z4 − 1 −z4 − 1 0 z8−1
2z4

0 z4 + 1

0 0 0 0 0 z8−1
2z4

z8−1
2z4

z8−1
2z4

z8−1
2z4

0 z8−1
2z4

0




�

(A.25)
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with

6〈left|S =
(z8 − 1

2z4
,
z8 − 1

2z4
,−(z4 − 1)

2
(3z4 − 1)

4z8
,−(z4 − 1)

3

2z8
, 0, 0

)
� (A.26)

S−1|right〉6 =
(2z4 (z4 − 1)

(z4 + 1)3
,
2z4 (z4 − 1)

(z4 + 1)3
,−4z4 (z4 − 1)

(z4 + 1)3
,
2z4 (5z8 − 2z4 + 1)

(z4 − 1) (z4 + 1)3
, 0, 0

)
.� (A.27)

Putting everything together, it follows that

6〈left|R
(0
0

)N

6
|right〉6 = − tan2 2u

[
c4N − 2(sc)2N + s4N

]
= − tan2 2u [c2N − s2N ]2.

�

(A.28)

The last step is to extend this result to all the other diagonal segments. To do this 
let us define

∆R =
2z2

1− z4

[
R
(0
0

)
−R

(1
1

)]
.� (A.29)

We then find, using induction, that

N−1∏
j=1

R
(aj
aj

)
∆R |right〉6 = (−s2c2)N−1(z−2, cos 2u, cos 2u, z2, i sin 2u, i sin 2u)T , aj = 0, 1.�

(A.30)
It follows that

6〈left|
N−1∏
j=1

R
(aj
aj

)
∆R |right〉6 = 0.� (A.31)

So the weight of the diagonal matrix elements with b = a are independent of a

[
D(u)D(u+ λ)

]
a,a

= 6〈left|
N∏
j=1

R
(aj
aj

)
6
|right〉6 = − tan2 2u [c2N − s2N ]2.

� (A.32)

Appendix B. Skew q-binomials

The skew q-binomials, related to generalized q-Narayana numbers (4.15), are [31, 32]
{

M
m,n

}

q

=

[
M
m

][
M
n

]
− qn−m+1

[
M

m− 1

][
M

n+ 1

]

= q−M+n
([ M

m

][
M + 1
n+ 1

]
−

[
M + 1
m

][
M

n+ 1

])
, 0 � m � n � M .

� (B.1)

At q  =  1, the skew binomials 

{
M

m,m

}

q=1

 are determinants of ordinary binomials
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Binomials
1
1 1
1 2 1
1 3 3 1 .
1 4 6 4 1
1 5 10 10 5 1

Skew Binomials (n = m)
1
1 1
1 3 1
1 6 6 1
1 10 20 10 1
1 15 50 50 15 1

Catalan
1
2
5
14
42
132

� (B.2)

The skew q-binomials are enumerated by double column diagrams with dominance

.

+ + + +1 2q 2q2 2q3 q4 =
3

1, 2
q

� (B.3)

A partition λ is equivalent to a Young diagram Y. A skew Young diagram Y2/Y1 is 
equivalent to the pair (Y1,Y2) with Y1 ⊆ Y2. Let us define

E(Y ) = Energy = {# of boxes in the Young digram Y }
Ym,n = {m× n rectangular Young diagram} .� (B.4)

A skew q-binomial can be written as an energy weighted sum over skew Young diagrams
{ M

m,n

}
q
= q(m−n)n

∑
Y1⊆Y2

∅⊆Y1⊆YM−m,m
Yn−m,n⊆Y2⊆YM−m,n

qE(Y1)+E(Y2), 0 � m � n � M .
� (B.5)

The bijection is implemented by interpreting the left and right column (particle) 
configurations in the double column diagrams as Maya diagrams and using the stan-
dard bijection between Maya diagrams and Young diagrams. For example, shading Y1, 
gives

.3
1, 2 q

= q−2





 ,

∅ ⊆ Y1 ⊆ Y2,1

Y1,2 ⊆ Y2 ⊆ Y2,2

1 + 2q + 2q2 + 2q3 + q4

� (B.6)
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