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Abstract

The rise of flux tubes with intense magnetic fields from the base of the convection zone to the solar surface has
been substantiated as a probable mechanism for sunspot formation. The origin of flux tubes of a sufficient strength
(~10° G) is, however, uncertain. This paper considers the instability of a large-scale toroidal magnetic field caused
by the magnetic suppression of convective heat transport as a candidate for the flux-tube formation mechanism.
The consideration employs the analytical dependence of eddy diffusion on the magnetic field supplied by mean-
field magnetohydrodynamics. The instability tends to produce regions of increased field strength with spatial scales
of the order of 100 Mm at the base of the convection zone. Characteristic growth times of the instability are short
compared to the 11 yr cycle. The threshold field strength for the onset of the instability increases from several
hundred Gauss in the vicinity of the equator to some kilo-Gauss at middle latitudes. Growth rates of unstable
disturbances decrease with latitude. These latitudinal trends can be the reason for the observed confinement of

sunspot activity to a near-equatorial belt.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503)

1. Introduction

The emergence of spots on the Sun is usually explained by
the rise of magnetic flux tubes from a region near the base of
the convection zone to the solar surface. The closeness of the
initial position for the rise to the base of the convection zone is
substantiated by the sufficiently large strength (~10° G) of the
magnetic field that can be stored in this region against magnetic
buoyancy (Moreno-Insertis et al. 1992). This initial location is
also supported by recent helioseismic detections of the
meridional circulation. Advection by the meridional flow
remains the most viable explanation for the observed equatorial
drift of sunspot activity in the course of solar cycles
(Charbonneau 2010). The detected flow points to the equator
near the bottom of the convection zone only (Rajaguru &
Antia 2015; Liang et al. 2018; Mandal et al. 2018).
Computations of the flux-tube rise reproduce the observed
predominantly east—west orientation of spot groups and Joy’s
law for their tilt relative to the lines of latitudes (D’Silva &
Choudhuri 1993; D’Silva & Howard 1993; Caligari et al. 1995;
Weber et al. 2011). Computations for rapidly rotating stars
explain their polar spots (Schuessler & Solanki 1992). Flux-
tube rise and emergence can explain the magnetic topology of
M stars (Weber & Browning 2016).

Some questions with the flux-tube concept remain unan-
swered, however. Spots on the Sun are observed to emerge in a
narrow equatorial belt. The mean latitude of their emergence is
about 15°, and spots at latitudes above 30° are rare (see, e.g.,
Solanki 2003, and references therein). The strong fields rise
close to a radial direction (Choudhuri & Gilman 1987; Weber
et al. 2011). This explains the sunspots’ presence at low
latitudes, but not their absence at high latitudes. Solar dynamo
models typically show toroidal fields above 30° latitude are not
much smaller than those below this latitude (see, e.g., Jouve
et al. 2008; Karak et al. 2014). The origin of fields as strong as
10° G seems to be even more problematic. Flux tubes of this
strength are required to reproduce surface observations. A

mechanism producing such strong fields is, however, uncertain.
The equipartition value for the kinetic energy of near-bottom
convection is slightly below 10* G. The convective dynamo is
therefore not a probable mechanism for strong field production.
The formation of 10°G flux tubes near the base of the
convection zone needs a more powerful source of energy.
Thermal energy with an equipartition field strength of about
3 x 10" G could be a possibility if a mechanism for flux-tube
formation that can tap energy from this source exists.

A promising possibility was noticed by Parker (1984):
magnetic suppression of convective heat transport makes a
distribution of magnetic field with intense flux tubes inter-
mittent with extended regions of weak field “energetically
profitable.” Flux-tube formation thus releases thermal energy
that is otherwise blocked inside the convection zone by
magnetic inhibition of convection.

It has been shown in the preceding paper (Kitchatinov 2019)
that magnetic quenching of turbulent heat transport by a
smoothly distributed (mean) magnetic field increases thermal
energy by an amount that is large compared to the magnetic
energy. An equilibrium state of a near-bottom layer with a
smooth horizontal magnetic field is unstable. The instability
redistributes matter along the field lines, producing flux tubes
with alternating regions of increased and reduced field strength.
The horizontal wavelengths of most rapidly-growing distur-
bances are comparable with scales of the solar active regions.

This paper includes rotation that was not accounted for in
Kitchatinov (2019). The allowance for rotation reveals the
instability dependence on latitude. The main motivation for this
new paper came from the fact that the threshold value of
magnetic field strength for the onset of the instability increases,
and the growth rate of the instability decreases, with latitude
thus offering a possible explanation for the confinement of
sunspot activity to the near-equatorial region.

The next section describes the model used in the stability
analysis. Section 3 presents and discusses the results. Section 4
summarizes the results and concludes.
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2. Model
2.1. Model Design

The model concerns a horizontal layer of thickness 4 at the
base of the convection zone where the solar af) dynamo is
expected to produce the strongest toroidal fields. Spherical
curvature is neglected and the layer is plane and unbounded in
horizontal directions. Our analysis is therefore local in
horizontal dimensions. A Cartesian coordinate system is used
with its z=0 plane being the bottom boundary, the z-axis
points upwards.

Stratification in the lower part of the convection zone is close
to the adiabatic one. Relative deviation from adiabaticity is
51075 in this region (see, e.g., Gilman 1986, p. 98). The
bottom boundary is placed slightly above the base of the
convection zone by selecting the bottom values of density
po=0.15 gem ™, temperature Ty = 2.1 x 10° K, gravity
g =75 x 10" cms ™2, and specific heat at constant pressure
cp =345 x 10° cgs from solar structure models (see
Stix 1989). With these values, the radiative heat flux
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for the adiabatic temperature gradient T /0z = —g/c;, is only
marginally smaller than the total heat flux at the bottom
boundary: F™ = (1 — e)LO/(47rrbz), where € ~ 10> and r,,
is the radius where the above parameters of the bottom
boundary are met. The opacity « in Equation (1) is computed
with the OPAL tables® for fractional by mass hydrogen content
X = 0.71 and metallicity Z = 0.02.

Deviations in density and temperature from their adiabatic
profiles

T() =T —z/H), H=c,To/g,
p(2) = po(1 — z/H)'/0=D, ()

are neglected; v = cp/c, = 5/3 is the adiabaticity index.
Deviation from adiabaticity cannot be neglected, however, in
the specific entropy S = ¢, In(P/p"), whose gradient is not
small compared to the (zero) gradient for the adiabatic
stratification.

Constant heat flux F = Lo/(4mr}) = 1.226 x
10" erg cm~2s~! enters the layer through its bottom. Inside
the layer, heat is transported by radiation and convection.

The layer rotates about the axis lying in the xz-plane of the
coordinate system. The axis is inclined to the z-axis by angle 6.
The x-axis points in the direction of the increasing colatitude 6.
The angular velocity has the characteristic value 2 =
2.87 x 10 %rad s™' of the sidereal solar rotation. The
centrifugal force is small compared to gravity and its influence
on the background stratification is neglected.

2.2. Equation System and Background Equilibrium

The expected instability results from the magnetic quenching
of convective heat transport. Mean-field hydrodynamics is an
appropriate tool for treating the quenching effect for highly
supercritical (turbulent; Brandenburg & Subramanian 2005)

3 https: / /opalopacity.llnl.gov

Kitchatinov

solar convection. The mean-field heat transport equation
oS d
oT 8—+v-VS =V - (pITxVS — F™9) 3)
t

involves the quenching effect via dependence of the thermal
eddy diffusivity x on the magnetic field:

X = X, 2(0). 4)

In this equation, x_ is the thermal diffusivity for the
nonmagnetic case and the quenching function ¢(() involves
the dependence on the field strength 3 = B/B.q normalized to

the energy equipartition value By = u\/m ; u is the rms
convective velocity. Equation (4) neglects for simplicity the
tensorial character (anisotropy) of the eddy diffusion. The
quasi-linear theory of turbulent transport in magnetized fluids
provides the explicit expression

3 ,62—1+ﬁ2+1
852\ 32 + 1 g

for the quenching function (Kitchatinov et al. 1994).
Thermal diffusivity for the nonmagnetic case, X, = lu /3,

can be estimated from the mixing-length relation u®>=

—02g(0S/0z)/(4cp), where ¢ = . H, is the mixing length
proportional to the pressure scale height H, = P/(pg). The
steady solution of Equation (3) for the plane layer and zero
magnetic field then gives the eddy diffusivity

P(B) =

tanl(ﬁ)) )

1/3
T((y— 1)oF
— A4/3
= (cp — ¢y)— 6
X, = al(ep )g( o (©)
and the equipartition field
1 1/3
Beg = pl/6ﬁ(6aMm—7 5F) , (7
Y

where 6F = F — F™ is the convective heat flux in the
horizontally uniform background equilibrium.
The mean-field induction equation

OB

E:VX(VXB_\/TI_TVX(\/T]_TB)) 8)
accounts for the diamagnetic pumping effect with the
effective velocity v, = —VnT /2 (see Equation (3.10) in
Kichatinov & Riidiger 1992). This paper does not include
magnetic modifications of the eddy magnetic diffusivity and
viscosity, which are not relevant to the instability considered.
Equal values for the (turbulent) magnetic and ordinary Prandtl
numbers, Pm = VT/nT =0.8, Pr = l/T/XT = 0.8, i.e., N, = X,
(Kitchatinov et al. 1994; Yousef et al. 2003), are applied. The
motion equation then reads

2
ot
+2r xQ —VP+ pg+ V-1II, 9)

p— + p(v-V)v = (V x B) x B/(4n)

where €2 is the angular velocity and
Il; = pVT(ViVj + Vv — ééij(V . v)) (10)

is the viscous stress tensor.
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Figure 1. Profiles of the eddy diffusivity (full line, left scale) and the ratio B/B,
of the background field to its value on the top boundary (dashed line, right
scale).

The magnetic field in the background equilibrium is assumed
to possess only one nonzero (toroidal) y-component that
depends on z only. Equation (8) then gives the steady
background profile

1/2
mmj ’ an

B(z) =B
() o[ e
where the model parameter By is the field strength on the top
boundary. Figure 1 shows profiles of the ratio B/By and the
eddy diffusivity for o, = 0.49 (the choice of this value for
o, , Will be explained later). The diffusivity attains its local
maximum at z ~ 40 Mm. Diamagnetic pumping is therefore
upward above this position and downward below it. The
pumping effect separates to some extent the near-bottom layer
from the upper convection zone. The upper boundary of the
layer is placed at the distance 4 = 40 Mm from the bottom
where direction of the pumping reverses. The increase of the
background field with depth in Figure 1 is caused by the
downward pumping.

The motion Equation (9) permits the trivial solution v = 0
for the background state.

With the profile of the magnetic field known, Equation (3)
provides the background entropy gradient

ds, ____oF

= 12)
dz pTx ,¢(3)

The quenching function of Equation (5) decreases steadily with
increasing (. The absolute value of the (negative) entropy
gradient of Equation (12) and the thermal energy stored in the
layer increase with the strength of the magnetic field. The
magnetically-induced increase in thermal energy can be shown
to exceed the magnetic energy more than ten times (Kitch-
atinov 2019). A rearrangement of the horizontally uniform
magnetic field in order to release the excess in thermal energy
can indeed be ‘“energetically profitable” in spite of a
concomitant increase in magnetic energy.

Kitchatinov

2.3. Linear Stability Problem

The linear stability equations can be derived by linearizing
the Equations (3), (8), and (9) in small deviations from the
above-defined background equilibrium.

The inelasticity condition, V+(pv) = 0, is assumed to apply
to the velocity disturbances. Separation of toroidal and poloidal
parts in the magnetic and velocity fields,

b=V x GT' +V x ZP),
v=p1V x GW + V x @V), (13)

ensures divergence-free magnetic and momentum disturbances.
Dashes in the notations for the toroidal (7”) and poloidal (P’)
field potentials distinguish them from temperature and pressure.

The background state of the preceding section is uniform in
horizontal dimensions. The wave-type dependence exp(ikjx +
ik,y) on the horizontal coordinates can therefore be assumed
for the small disturbances. Linearization of Equation (3) gives
the equation for the entropy disturbance:

%—ifqﬂwwﬁﬁﬁﬁﬁﬂ—hr”

E_p_TaZ Beq dZ BZ
k2 ds,
— —=2V — k2 6 (B)S
p dz
19 aS
+ —=|pT =, 14
T 0 (p X, ¢(8) 8z) (14)

where k2 = k? + k3 is the square of the wavevector. The first
term on the right-hand side of Equation (14) includes the
derivative ¢'(8) = 9¢(3)/08 of the diffusivity quenching
function. The problem at hand differs from the standard
convective instability analysis by the presence of this term.
This term reflects the interpretation of the instability as
resulting from rearrangement of thermal diffusion in response
to a change in the magnetic field structure.
The equation for the poloidal magnetic disturbances,

OP’ 0 oP’ B
= = — | — n. k%P + ik,=V, 15
y NN 7 (1/77T 7 ) n, I 2p (15)

results as the z-component of the linearized induction
Equation (8). The z-component of the curled induction equation
gives the equation for toroidal magnetic disturbances

0z

! 0] T’

ik Bw - ﬂq(ﬁﬁ]v. (16)
p Oz p

In these equations, B is the background field of Equation (11).
Similarly, the curled motion Equation (9) gives the toroidal
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+ L(Bsz’ + d—BklP’). (17)
4 dz

The motion equation curled twice leads to the equation for
poloidal flow

2
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o\ 022 dz\p 0z
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Equations (14)—(18) constitute the complete system for the
linear stability analysis. They should be supplemented by
boundary conditions.

Conditions on the bottom boundary assume a superconduc-
tor beneath the layer, zero surface density of external force,
zero disturbance in the vertical heat flux, and vanishing normal
components of magnetic and velocity fields:

0 o(w oS
—( / T/:—— :—:P/:V:O
82( e 1) 82(,0) 0z

at z =0. (19)

All the disturbances are put to zero at the top boundary of
z = h to minimize the influence of this artificial boundary.
The equations were solved numerically with finite difference
representation of derivatives in z. Low diffusivity near the
bottom (Figure 1) implies a possibility of fine spatial structure
in this region. A nonuniform grid with a higher density of grid-
points near the bottom boundary was therefore applied,

1-3/2

2=0,z7=nh l—COS(TF
2N — 3

)], 2<ILKN, (20)

where N is the grid-point number. Results of the next section
were obtained with N = 101. Several trial computations with
N =51 have shown practically the same results, thus
confirming a sufficient spatial resolution.

As explained in the Introduction, instability is supposed
to result from magnetic quenching of turbulent thermal
diffusion. However, the instability to thermal convection
can arise even without magnetic fields if too small an eddy
diffusion is prescribed (Tuominen et al. 1994; Kitchatinov &
Mazur 2000). The smaller the diffusivity, the larger the
entropy gradient and the corresponding Rayleigh number in
the background equilibrium. For a sufficiently large Rayleigh
number, instability to thermal convection onsets and the
mean-field approach loses its consistency. The thermal
diffusivity of Equation (6) is controlled by the mixing-length

Kitchatinov

parameter . The threshold value of this parameter for the
onset of (nonmagnetic) thermal convection is «,,, = 0.48.
Computations in this paper are done with a slightly larger
value of v, = 0.49 that insures stability for the nonmagnetic
case. Argumentation in favor of such a choice was given in
Kitchatinov & Mazur (2000). The relatively low value of o,
is related to the deep region of the convection zone
considered. The smaller the depth of the region considered,
the larger the marginal value of «,,, for the onset of
instability. A more realistic mixing-length formalism should
probably employ «,, ., decreasing with depth.

Exponential time dependence exp(ot) can be prescribed for
the dependent variables in linear stability analysis. A positive

growth rate, R(c) > 0, means an instability.

3. Results and Discussion

Stability properties depend on four parameters of the model:
the strength of the background magnetic field B, the latitude
A =90° — 6, and two components (k; and k) of the horizontal
wavevector. Fortunately, dependence on the wavevector is in
some sense not essential, thus avoiding the unbearable task of
exploring four-dimensional parameter space. This is because
the dominant modes of the instability have almost the same
wavevector.

For a variety of trial latitudes and field strengths, the
maximum growth rates belong to the wavevector that has either
the x- or y-component equal to zero. Multiple trials leave little
doubt that the dominant modes of the instability have their
wavevectors oriented along the x- or y-axis depending on Bj.
The modes with k = 0 and k, =0 can be called the
“interchange modes” because they interchange the background
field lines without bending the lines. The modes with k; = 0
and k, = 0 bend the lines and will be called the “bending
modes.”

The growth rates for the interchange and bending modes are
shown in Figure 2 in dependence on By. As the strength of the
background field grows, instability to bending disturbances
onsets first at the threshold value of about By = 1.3 kG (at the
latitude of 10° for which Figure 2 is constructed). This mode
remains dominant until the field strength reaches about 8.5 kG.
For an even stronger field, the Lorentz force opposes the
bending of the field lines and interchange instability prevails.
The bending mode is more promising for the formation of
increased field regions, because producing such regions by
interchanging field lines without matter redistribution along the
lines is problematic. This paper is therefore mainly focused on
the bending modes. Another consequential feature of Figure 2
is the slight dependence of the wavelength of bending modes
on the field strength. As the strength varies, the wavelength
remains close to 130 Mm or k =~ 0.05 Mm ™" in terms of the
wavenumber.

Figure 3 shows the dependence of growth rates and
oscillation frequency w = J(o) on the orientation angle
o = tan"Y(k, /k;) of the horizontal wavevector and fixed
wavenumber k = 0.05 Mm ™. The eigenmodes are oscillatory
in general but the most rapidly growing (bending) mode is
steady. The plot shows also that the eigenvalue does not change
with a reversal k — —k of the wavevector.

Figures 2 and 3 correspond to the latitude of 10°. The
stability parameters depend on latitude, but the predominance
of bending modes for not too strong fields and the closeness of
the wavelength of the most rapidly-growing mode to 130 Mm



THE ASTROPHYSICAL JOURNAL, 893:131 (7pp), 2020 April 20

0.100 F e

\
|

0.010

Lol

Growth rate (day™)

0.001

130 ¢
120 £
110

I
-

100 '

T
-,

90 ;

Wave length (Mm)

80 - ~<

IRTTRTETI NTRRRRITI NRRRREETE FNRRRRAUTI FNRRAREATE FNNRRRRUTI NN

By (kG)

Figure 2. Top panel: growth rates of the most rapidly growing bending (full
line) and interchange (dashed) modes as functions of the background field
strength. Bottom panel: wavelengths 27k~! for which the the maximum growth
rates of the top panel are achieved. All for the latitude of 10°.
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Figure 3. Growth rate (full line) and oscillation frequency (dashed) as the function
of the orientation angle « of the wavevector: k; = k cosa, k, = ksina. By =
3 kG, k = 0.05 Mm ', latitude A = 10°.

were found for all tried latitudes from —60° to 60°. A slight
predominance of the bending modes has also been found for
nonrotating fluid (Kitchatinov 2019). With allowance for
rotation, the predominance becomes much more pronounced.
The explanation for this rotational effect is straightforward. The
influence of the Coriolis force on the motions interchanging the
azimuthal field lines deviates the motions in the azimuthal

Kitchatinov

-60 -40 -20 0 20 40 60
Latitude (degree)

Figure 4. Lines of constant growth rates on the coordinate plane of latitude and
Bo. Numbers in the isoline gaps give the rates in units of day '. The red line
shows the border of the instability region. The growth rates are positive above
this line. Growth rates of the plot were computed for the constant wavenumber
k= 0.049 Mm ™.

direction. The azimuthal motion does not participate in the
instability. Energy sink into this “parasitic” azimuthal motion
hinders the instability to the interchange disturbances.

The bending modes at the equator do not suffer from this
effect. The equatorial bending modes are uniform along the
rotation axis. Therefore, these modes satisfy the Taylor—
Proudman constraint and the Coriolis force can be balanced by
pressure. The Taylor-Proudman balance is satisfied at the
equator only and a deviation from the balance increases with
latitude. Accordingly, the threshold field strength for the onset
of the bending instability increases and the growth rates
decrease with latitude. These latitudinal trends are clearly seen
in Figure 4. This figure shows lines of constant growth rates of
unstable bending modes on the plane of latitude and the
background field B. As the latitude increases, the same growth
rates require a stronger background field.

As explained in the Introduction, the considered instability is
expected to result from reshuffling of thermal diffusion in
response to variations in the magnetic field. This destabilizing
effect is accounted for by the first term on the right-hand side of
the entropy Equation (14). Mathematical formulation of this
paper differs from the standard convection analysis by this term
only. Computations with this term neglected result in a
considerable shift of the isolines of Figure 4 upward.

Figure 5 shows the bending eigenmode structure for the
latitude of 10° and By = 3 kG. The meridional x-components
of the velocity and magnetic field of this figure result from the
Coriolis force. They were not present in the eigenmodes for
nonrotating fluid (Kitchatinov 2019). Linear stability analysis
does not permit determination of the unstable mode amplitude.
Color scales of this figure are therefore graduated in arbitrary
units. The eigenmode pattern does not show how the instability
changes the magnetic field distribution. Some impression of the
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Figure 5. Structure of the most rapidly growing bending eigenmode for the
latitude of 10° and By = 3 kG. The top panel shows the magnetic field pattern:
full (dashed) lines show the clockwise (counterclockwise) circulation of the
poloidal field vector and the color scale indicates the x-component of the field.
The middle panel shows a similar pattern for the velocity field. Entropy
disturbances are shown in the bottom panel. Color scales are graduated in
arbitrary units.

change is given by the superposition of the background field
with the eigenmode field shown in Figure 6. The eigenmode for
this superposition was normalized so that the amplitude of the
eigenmode magnetic field equals 50% of the background field,
max|b| = 0.5 max(B(z)). Figure 6 shows the poloidal field
lines and superimposed density of magnetic energy for the total
(poloidal plus toroidal) field. The corresponding patterns of the
flow and entropy disturbances can be seen in Figure 5. Thermal
shadow and downward flow above the increased field region of
Figure 6 are present in Figure 5. This is a particular realization
of the thermal shadow effect of magnetic structures (Par-
ker 1987; Brandenburg et al. 1992) in our model.

Figure 6 shows that the instability tends to increase the field
strength near the base of the convection zone. The increased
field region occupies the lower quarter of the layer.

It may be noted that smooth patterns of Figures 5 and 6
computed with the mean-field model do not show small-scale
structures parameterized by the eddy transport coefficients in
the mean-field theory.

4. Conclusions

Sunspot emergence in a near-equatorial region is usually
explained by an almost radial rise of intense magnetic flux
tubes from the deep solar interior (D’Silva & Choudhuri 1993;
Caligari et al. 1995; Weber et al. 2011). However, the
explanation does not clarify why the flux tubes are absent at
high latitudes or what the mechanism 5producing flux tubes of
the required strength of about 10°G is. The instability
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Figure 6. Field lines of a superposition of the background magnetic field and
poloidal field of the unstable bending eigenmode of Figure 5 normalized to the
amplitude of the magnetic eigenmode equal to 50% of the background field
amplitude. The color scale shows the magnetic energy density for the
superposition in units of 10° erg cm >,

considered above is a possibility for such a mechanism. The
threshold strength for the onset of the instability in Figure 4
increases with latitude. The reason for the near-equatorial
emergence of sunspots can be that the instability begins only
after the dynamo-generated toroidal field of required strength
reaches, in its equatorial propagation, a sufficiently low
latitude. It is possible for convective dynamos to produce the
threshold field strength of several kilogauss, and the character-
istic growth times of some months are short compared to the
solar cycle period. Wavelengths of the instability of Figure 2
are comparable to scales of the solar active regions.

Sunspot cycles differ in strength. Jiang et al. (2011) found that
the mean latitude and maximum latitude of sunspot emergence
both increase with cycle strength. Stronger cycles probably have
larger toroidal fields. Positive correlation between the character-
istic latitude of sunspots and a cycle’s strength is what should be
expected if sunspot emergence is related to instability.

The instability tends to increase field strength at the base of
the convection zone (Figure 6). Linear stability analysis of this
paper cannot, however, define the amplitude of the fields the
instability can produce. Only nonlinear computations can show
the field amplitude. Direct numerical simulations usually
prescribe large “microscopic” diffusion. The prescribed diffu-
sion has to include a magnetic field dependence similar to that
of Equation (4) in order not to miss the instability (see,
however, Nelson et al. 2013, 2014).

This work was supported by the Russian Foundation for
Basic Research (project 19-02-00088) and by budgetary
funding of the Basic Research program II.16.
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