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Abstract
Accelerated MRI involves undersampling k-space, creating unwanted artifacts when reconstructing
the data. While the strategy of incoherent k-space acquisition is proven for techniques such as
compressed sensing, it may not be optimal for all techniques. This study compares the use of
coherent low-resolution (coherent-LR) and incoherent undersampling phase-encoding for
real-time 3D CNN image reconstruction. Data were acquired with our 3 T Philips Achieva system.
A retrospective analysis was performed on six non-small cell lung cancer patients who received
dynamic acquisitions consisting of 650 free breathing images using a bSSFP sequence. We
retrospectively undersampled the data by 5x and 10x acceleration using the two phase-encoding
schemes. A quantitative analysis was conducted evaluating the tumor segmentations from the
CNN reconstructed data using the Dice coefficient (DC) and centroid displacement. The
reconstruction noise was evaluated using the structural similarity index (SSIM). Furthermore, we
qualitatively investigated the CNN reconstruction using prospectively undersampled data, where
the fully sampled training data set is acquired separately from the accelerated undersampled data.
The patient averaged DC, centroid displacement, and SSIM for the tumor segmentation at 5x and
10x was superior using coherent low-resolution undersampling. Furthermore, the patient-specific
CNN can be trained in under 6 h and the reconstruction time was 54 ms per image. Both the
incoherent and coherent-LR prospective CNN reconstructions yielded qualitatively acceptable
images; however, the coherent-LR reconstruction appeared superior to the incoherent
reconstruction. We have demonstrated that coherent-LR undersampling for real-time CNN image
reconstruction performs quantitatively better for the retrospective case of lung tumor
segmentation, and qualitatively better for the prospective case. The tumor segmentation mean DC
increased for all six patients at 5x acceleration and the temporal (dynamic) variance of the
segmentation was reduced. The reconstruction speed achieved for our current implementation was
54 ms, providing an acceptable frame rate for real-time on-the-fly MR imaging.

1. Introduction

The use of convolutional neural networks (CNNs) is becoming an increasingly popular trend in image
processing and reconstruction (Kensuke et al 2017, Valverde et al 2017, Qin et al 2017, Schlemper et al 2018,
Zeng et al 2018, Dietz et al 2019, Eppenhof et al 2019). As linac-MR (LMR) systems are becoming
increasingly popular with many sites across the globe, there will be an increase in demand for real-time MR
imaging techniques for adaptive radiotherapy purposes. There are several LMR systems available ranging in
field strengths from 0.35 T to 1.5 T (Fallone et al 2009, Raaymakers et al 2009, Fallone 2014, Keall et al 2014,
Mutic et al 2014, Acharya et al 2016, Fischer-Valuck et al 2017, Liney et al 2018). Real-time on-the-fly
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Figure 1. Coherent-LR verses incoherent phase encoding schemes. At 4x acceleration, each undersampling scheme uses 32 phase
encodes (assuming 128× 128 image). The coherent-LR undersampling only samples the central band of k-space, whereas the
incoherent undersampling is focused on the central band, but also utilizes a pseudo-random sampling of the outer k-space
regions.

imaging using MRI is challenging due to the slow acquisition of k-space. One way to speed up the acquisition
is to skip lines of k-space, also known as phase-encode lines. However, this results in a violation of the
Nyquist criterion, resulting in artefacts occurring throughout the image. Parallel imaging is a common
technique that is used to correct for fold-over aliasing using a coherently undersampled acquisition
(Griswold et al 1999, Pruessmann et al 1999). Parallel imaging requires intricate coil construction to achieve
high acceleration factors and can still suffer from suboptimal results (Glockner et al 2005).

Another common technique for reconstructing undersampled data is compressed sensing (CS) (Lustig
et al 2007); however, CS reconstruction can be time restrictive in a real-time application. There have been CS
reconstruction techniques that address reconstruction speed; however, higher acceleration factors still suffer
from artefacts (Yip et al 2014, 2017). The CS technique utilizes incoherently acquired k-space, with a greater
density of the k-space acquisition near the central (low spatial resolution) region and pseudo-random
sampling of the outer (high spatial resolution) k-space. Reconstruction of the incoherent acquisition results
in a noise-like artefact occurring throughout the image that must then be suppressed by the reconstruction
algorithm. The implementation of incoherent undersampling is not without challenges: its use can present
confounding eddy current artefacts. The increased eddy current contributions are caused by the rapid
gradient switching during the inconsistent phase-encoding jumps required by the pseudo-random sampling.
These eddy currents can result in suboptimal reconstruction when using techniques that rely on previously
acquired (fully sampled) data, such as CNN reconstruction techniques. The suboptimal reconstruction is
due to the fully sampled acquisition used for training having a differing eddy current contribution from the
incoherently acquired (undersampled) data. Techniques can be used to mitigate eddy currents during
imaging (Bieri et al 2005); however, they may not reduce all the eddy current artefacts and can be restrictive
in terms of sequence playout.

One way to avoid issues associated with incoherent encoding, is to acquire only the central portion of
k-space and exclude the outer regions collected during the incoherent acquisition. This alternative k-space
acquisition technique results in a low-resolution reconstruction in image space. While this does not give
sufficient data to generate a fully-resolved reconstruction on its own, when paired with a CNN trained on a
previously acquired fully-sampled data set the un-sampled data can be inferred during reconstruction,
whether in the high spatial resolution region alone or scattered throughout k-space as in the
incoherent-sampled case. An example of the two phase encoding (PE) schemes are shown in figure 1. This
coherent low-resolution (hereafter known as coherent-LR) undersampling is ideal, as it is simple to
implement on any MR system and does not lead to eddy current artefacts, due to both the fully sampled and
coherent-LR undersampled data having identical sampling intervals. The previously acquired fully sampled
data, on which the CNN is trained, will more closely resemble the data acquired via the coherent-LR
undersampled acquisition. It is the purpose of the trained CNN to generate this high resolution data based
on fully sampled data, from which relationships between low resolution structure and high resolution detail
can be established It is the authors’ hypothesis that this will be a more straightforward task for the CNN to
fulfil and may result in a more robust algorithm. Our study investigates and compares the use of incoherent
and coherent-LR undersampled k-space acquisitions for real-time on-the-fly 3D CNN reconstruction, both
retrospectively and prospectively.

A common paradigm for the use of (convolutional) neural networks involves training a network using a
large cohort of patient data in order to recover information from a single patient. Our paradigm differs, in
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that we focus on a personalized healthcare approach, such that a CNN is specifically trained for each patient.
This requires having a previously acquired fully sampled dynamic data set for training the CNN, which is
then applied to reconstruct the accelerated data acquisition.

In this study we present the use of 3D CNNs to retrospectively reconstruct undersampled dynamic data
from six non-small cell lung cancer patients on a patient-by-patient basis. A quantitative comparison of
coherent-LR and incoherent acquisitions for the use of CNNMR image reconstruction was conducted. We
focus on the ability to track and segment a tumorous region located in the lung. Lung was specifically
chosen, as breathing motion is a challenging component to account for using conventional linac systems. We
further validate and compare the two encoding schemes in the realistic prospective imaging scenario, where
the fully sampled training data is acquired separately from the accelerated undersampled data. By reducing
the images acquisition and reconstruction time, a higher frame rate with low latency can be achieved, which
is of importance for adaptive radiotherapy The aim of this study is to develop a patient-specific 3D CNN
reconstruction technique for use in real-time on-the-fly scenario for LMR adaptive radiotherapy purposes.

2. Materials andmethods

2.1. Convolutional neural network
The original CNN code used for this study was written by Schlemper et al in Python using Theano and
Lasagne packages (Schlemper et al 2018), that has been adapted for the use in real-time dynamic image
reconstruction using 3D CNNs (Dietz et al 2019). A dynamic CNN network was proposed by Schlemper that
aimed to reconstruct the entire temporal domain in spatial patches; however, the application to rapid
real-time reconstruction was not addressed. Our adaptation allows for real-time on-the-fly reconstruction
that incorporates both spatial and temporal data. We further adapted the CNN code to allow the use of
coherently undersampled data.

The CNN image reconstruction (xcnn) can be expressed as

xcnn = fcnn (xu|
⇀

θ ,λ,Ω) ,

where the term xu is the zero-filled undersampled image and fcnn (xu|
⇀

θ ,λ,Ω) is the CNN reconstructed
image. The function fcnn attempts to reconstruct the undersampled image xu and depends on the trained
CNN parameters

⇀

θ , a data fidelity weighting term λ, and the known k-space locationsΩ. The data fidelity
term λ is calculated such that λ= q/σ, where q is a hyper-parameter and σ2 is the noise power. The λ term is
initialized to 0.025 as it was empirically shown that this value performs well (Caballero et al 2014). Given the
fully sampled input training data D, the CNN is trained to reconstruct the data by minimizing the following
cost function,

Z(θ) =
∑

(xu,xgnd)∈D

∥xgnd − xcnn∥22.

The terms xgnd and xcnn = fcnn (xu|
⇀

θ ,λ,Ω) are the ground truth image and the CNN reconstructed
images (from the undersampled ground truth data), respectively. Once trained, the parameters can then be
rapidly applied directly to the undersampled data (either prospectively or retrospectively). The Adam
optimizer was implemented for the CNN training (Kingma et al 2014).

The CNN is comprised of a deep network of alternating convolutions layers and data consistency layers.
The convolutional layer convolves filters with the undersampled data in order to inhibit the aliasing artefacts
or low-resolution blur corresponding to the raw undersampled data. The convolutional layer applies N
convolutions sequentially, which are each followed by the rectifier linear units (ReLU) nonlinearity activation
function. The final N th convolution output is summed with the initial input data, via the process known as
residual connection (He et al 2016). Following the convolutional layer the data is passed to the consistency
layer, which enforces data fidelity by ensuring that the acquired portion of k-space is always incorporated
into the 3D CNN. The data consistency step takes the image xcnn (output from the convolutional layer),
which is Fourier transformed (FT) into k-space. If no k-space was initially acquired, it is set equal the value
from the FT of xcnn; however, if k-space was initially acquired then the value is equal to a weighted sum of the
original k-space and the FT of xcnn. The process of convolutions followed by data consistency continues forM
data consistency layers.

2.2. CNN hyperparameter optimization
Finding the optimal hyperparameters for our CNN was done systematically by setting the number of
convolutional layers, data consistency layers, and number of convolution filters. The CNN was trained for a
reduced number of iterations (25), and the reconstructed data was quantitatively evaluated using metrics
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Figure 2. The six non-small cell lung cancer patients. These data sets consisted of 650 dynamic frames which were retrospectively
undersampled to quantitatively evaluate and compare the incoherent and coherent-LR undersampled phase encoding schemes
using our 3D CNN reconstruction technique.

Table 1. Tumor statistics for each of the six patients. The area contains the mean and standard deviation over the 650 fully sampled
dynamic images. It is evident from the motion extents (superior-inferior and anterior-posterior) that the tumors ranged in size and
motion.

Patient Area (cm2) Sup-Inf Extent (cm) Ant-Post Extent (cm)

1 2.57 (0.09) 1.97 0.40
2 3.76 (0.25) 2.63 0.75
3 1.36 (0.16) 1.57 0.66
4 4.96 (0.31) 0.94 0.39
5 2.09 (0.19) 1.07 0.72
6 4.99 (0.30) 0.87 0.17

described below. The trained CNN was then used to reconstruct the data set, which was evaluated using
various imaging metrics (described in depth below). The systematic hyperparameter search was conducted
for each retrospective patient. We evaluated the convolutional layers from two to six, data consistency layers
from one to five, and the number of filters was set to either 16, 32, or 64. This resulted in a total of 75 sets of
hyperparameters for each patient.

2.3. Tumor segmentation via autocontouring
An automatic contouring program previously developed by our group was used for the automatic
segmentation of the lung tumors (Yun et al 2012, 2013, 2016). Using contours drawn on several phases of the
breathing cycle as input data (a total of 30 images were used), the program trains a neural network to find the
region of interest (tumor) and segment it. This contouring program was used for all segmentations
performed in this study, which was trained using contours drawn by a radiation oncologist.

2.4. Retrospective data analysis
The acquisition of data from six non-small cell lung cancer patients was subject to approval by our
institutional board of ethics. Lung cancer was chosen as it often involves large tumor motion from breathing,
making it an ideal challenging case for real-time imaging and segmentation for LMR tumor tracking
applications. Figure 2 contains images displaying the field of view (FOV) with the tumor present. Table 1
contains tumor specific information for each patient.
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Figure 3. Dice coefficient results of the hyperparameter search. Based on the results we chose: 4 convolutional layers, 4 data
consistency layers, and 16 filters. The reconstruction time increases as the number of filters, convolutional layers, or data
consistency layers increase.

The retrospective data sets comprised of 650 dynamic frames acquired with a Cartesian bSSFP sequence
using a multi-channel chest array. The data were acquired using our 3 T Philips Achieva system (Philips
Medical Systems, Cleveland, OH, USA). The MR imaging parameters consisted of a 40× 40 cm2 FOV, a slice
thickness of 2 cm, 128× 128 voxels, a flip angle of 20o, and TR/TE= 2.2/1.1 ms. The dynamic data were
acquired at a rate of 4 frames per second. The data was split up such that the first 450 dynamic frames were
used to train the CNN and the remaining 200 dynamic frames were used to quantitatively evaluate the CNN.
In order to robustly train the CNN, a 5-fold cross validation was used on the training data portion (450
dynamic frames). Thus, each CNN k-fold iteration used 90 dynamic frames for test data and trained on the
remaining 360 dynamic frames. The training data was mini-batched into groups of 5 images and shuffled to
further increase the generalization of the model.

2.5. Prospective data analysis
The prospective data was acquired from a volunteer. The acquisition imaging parameters were identical to
the retrospective case. However, here we have two separate acquisitions; a fully sampled acquisition (exact
same parameters as the retrospective case) and an undersampled acquisition at 4x acceleration. The training
of the CNN was conducted similarly to the retrospective case; except the training data comprised of 650
frames instead of the 450 frames as in the retrospective training (since the undersampled data is acquired
separately). The undersampled acquisition contained the same parameters, except that only the central 32
lines of k-space were acquired, resulting in data of the size 32× 128 pixels per dynamic frame. The remaining
96 unacquired lines of k-space were zero-filled (48 on either side of the acquired 32 lines), ultimately
resulting in a matrix size of 128× 128 voxels.

2.6. Quantitative analysis
The metrics we have chosen are specific for the analysis of tumor segmentations, being that our focus lies on
the ability to segment a tumor for the purpose of real-time adaptive radiotherapy. The image quality, while
an important aspect for image reconstruction, is secondary to the tumor segmentation.

2.6.1. Dice coefficient
The Dice coefficient is an ideal way to compare how well the tumor can be resolved in the CNN reconstructed
data, by comparing the Boolean segmentation with the fully sampled segmentation (Dice 1945). This metric
compares how well the two segmentations overlap. A DC is equal to unity if the two segmentations overlap
entirely, meaning there is no depreciable difference in the image reconstruction using the CNN technique.

The Dice coefficient can be measured as,

DC= 2 · ROIFS∩ROIUS
ROIFS +ROIUS

where ROIFS is the contour region of interest (ROI) for the fully sampled data and ROIUS is the contour for
the undersampled CNN reconstructed data.

2.6.2. Centroid displacement
The centroid displacement offers another metric to evaluate how well the CNN reconstructed segmentation
matches the fully sampled segmentation. The centroid displacement is simply the difference in the center of
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Figure 4. Tukey box plots containing the DC results from the 200 CNN reconstructed images using the incoherent and
coherent-LR undersampled phase encoding schemes at 5x and 10x acceleration. It is evident that that the coherent-LR
undersampling scheme for both 5x and 10x acceleration provide a larger mean DC, and less variation than the incoherent phase
encoding.

masses between the two segmentations. The smaller the value, the closer the two overall segmentations
overlap. This metric evaluated in concert with the DC gives a more complete picture of how well the CNN
reconstruction is performing, for the purpose of segmentability.

2.6.3. Structural similarity index
The structural similarity index (SSIM) attempts to evaluate the perceived quality through the comparison of
two data sets (Wang et al 2004). The SSIM requires the computation of three distinct terms: the luminance,
contrast, and structural terms. Combining these terms, we get an expression

SSIM=
(2µFSµUS +C1)(2σFS,US +C2)

(µ2
FS +µ2

US +C1)(σ2
FS +σ2

US +C2)
.

The terms µFS, µUS, σFS, and σUS are the means and standard deviation of the fully sampled and
undersampled data respectively. The term σFS, US is the cross-correlation of the fully and undersampled
images. The constants C1 and C2 are based on the dynamic range (DR) of the two image sets; these values are
typically set to C1 = (0.01 ·DR)2 and C2 = (0.03 ·DR)2.

3. Results

3.1. CNN hyperparameter search
An exploration of the optimal CNN hyperparameters was conducted. Figure 3 contains a visual
representation of the searched hyperparameter space. Based on the results of the hyperparameter search we
chose to use four convolutional layers, four data consistency layers, and 16 filters. This proved to be robust on
all retrospective patients and had a short reconstruction time of 54 ms per dynamic frame. For the
prospectively acquired volunteer data, we chose to use four convolutional layers and four data consistency
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Figure 5. The percent change in the mean and standard deviation for the Dice coefficient (DC) and centroid displacement (from
incoherent to coherent-LR). Nearly all patients had an increased DC when using of the coherent-LR phase-encoding scheme, with
the exception of P1, P3, and P6 at 10x acceleration. The DC standard deviation decreased or remained unchanged for all patients
except P4 at 10x acceleration. The mean CD decreased for all patients except for P1 and P6 at 10x acceleration. The CD standard
deviation decreased for all patients, except for P4 and P6 which only very slightly increased.

layers; however, we chose 64 filters. While this resulted in a slightly increased reconstruction time, it provided
a qualitatively better result (data not shown) than using 16 or 32 filters.

3.2. Retrospective CNN analysis
3.2.1. Dice coefficient
The DC was calculated for both the incoherent and coherent-LR undersampled phase encoding schemes at
5x and 10x acceleration for the six retrospective lung tumor. Figure 4 contains Tukey box and whisker plots
of the DC, performed on the 200 dynamic frames that were not included in the training of the network.

The percent changes (from incoherent to coherent-LR) for the mean and standard deviations of the DC
and CD are shown in figure 5. It is evident from figures 4 and 5 that the DC from the coherent-LR
undersampled PE scheme performed better than the incoherent PE scheme with less variability and resulted
in a higher mean value. Patients 2 and 5 had the greatest increase in mean DC (2.3% and 4.2% at 5x
acceleration; 4.4% and 7.0% at 10x acceleration) and reduction in variance of the DC values (−48% and
−55% at 5x acceleration;−71% and−67% at 10x acceleration); patients 1, 3, and 6 had a small decrease in
mean DC (−0.4%,−0.2%, and−0.3% at 10x acceleration; respectively). However, the standard deviation
for patient 1, 3, and 6 decreased by 8.6%, 36.5%, and 49.1% at 10x acceleration; respectively.

Furthermore, we have included an example of a poor segmentation for the most difficult patient (P5), as
shown in figure 6 for both phase-encoding schemes. It is evident that a blurring of the tumorous region
occurred, resulting in a reduced DC of 0.610 and 0.795 (at 10x acceleration) for the incoherent and
coherent-LR, respectively. The reduced DC may be a potential limitation of the acceleration and
segmentation itself; however, this example demonstrates how the coherent-LR improves upon the incoherent
PE. This patient was particularly difficult to segment, given the long tumor shape and sporadic motion.

3.2.2. Centroid displacement
The centroid displacement (CD) was calculated for both the incoherent and coherent-LR undersampled
phase encoding schemes at 5x and 10x acceleration for the six retrospective lung tumor patients for the 200
dynamic frames. Figure 5 contains the percent changes for the mean and standard deviation values for both
phase-encoding schemes for each patient and acceleration factor. As shown in figure 7, the centroid
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Figure 6. Example of the worst-case DC for patient 5 for the incoherent and coherent-LR phase-encoding with values of 0.610
and 0.795, respectively. It is evident for both PE schemes that some fine detail was lost; however, the incoherent had more
significant blurring.

displacement is reduced for the coherent-LR undersampled case for both acceleration factors, with the
exception of patients 1 and 6 at 10x acceleration (which can be seen in further detail via figure 5). The
variation of the centroid displacement values was reduced, similarly as the DC values, suggesting the
coherent-LR undersampled phase encoding scheme is superior to the incoherent phase encoding scheme for
our purpose. Furthermore, the CD had a greater improvement using the coherent-LR phase-encoding
scheme than the DC for both acceleration factors.

3.2.3. Structural similarity index
The SSIM was averaged over the 200 reconstructed frames at 5x and 10x acceleration for both phase
encoding schemes. The mean and standard deviation are plotted in figure 8, which demonstrates that the
coherent-LR image quality improved for all patients at both acceleration factors.

3.3. Prospective CNN analysis
Figure 9 contains spatial and temporal views of the CNN reconstructed volunteer data using the coherent-LR
and incoherent undersampled phase encoding schemes. The fully sampled training data, and the
prospectively acquired (zero-filled) data are also shown for comparison. While the CNN reconstruction
removed much of the aliasing from the incoherently acquired data, there were still artefacts present, which
manifests as a faint rippling throughout the image. The artefacts did not appear to be present in the
coherent-LR reconstruction. This demonstrates that the CNN technique does in fact work with real world
accelerated data that has been trained on a separate fully sampled data set (which is a different scenario than
the retrospective case). This figure thus has only qualitative value, since there is no fully sampled
‘ground-truth’ data set to compare to.

4. Discussion

By reducing the imaging time through undersampling, a higher frame rate and reduced latency can be
achieved, allowing for real-time adaptive radiotherapy treatment. The use of patient-specific trained CNNs
can be interpreted as personalized healthcare for the patient. This differs from the common NN paradigm,
where a generalized solution is sought to be applied to any new patient data.
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Figure 7. Tukey box plots containing the results of the centroid displacement between the CNN reconstructed data and the fully
sampled data. The mean and variation of the segmented tumor was reduced when using the coherent-LR undersampling phase
encoding scheme, compared to the incoherently undersampled data. It is evident that the coherent-LR (reg. undersampling)
reduced the variance and outliers as comparted to the incoherent acquisition.

Figure 8. The SSIM showed improvement for all patients when using the coherent-LR undersampled phase encoding scheme.

For the purpose of the study, clinical interpretation of the real-time tracking is not the primary objective.
Any required clinical interpretation would be achieved with other sequences in the planning or diagnostic
stage of the patient’s treatment. Further, delineation of the contours for training purposes would be
performed on the fully-sampled images, not the CNN reconstructed data in our purposed workflow. As
such, a successful match of the contour to the fully sampled case is the primary, or perhaps only requirement
of these images.
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Figure 9. Prospective reconstruction results for the coherent-LR and incoherent undersampled CNN reconstructions of a
volunteer data set. The first column contains the fully sampled (training) data, the second column is the prospectively acquired
data prior to reconstruction (zero-filled), and the third column contains the CNN reconstructed data. For each sampling scheme,
the top row contains a spatial view, while the bottom row contains a temporal view; note that there are four times more temporal
frames for the prospectively acquired data due to the reduced acquisition time. It is evident that the artefacts have been removed
from both the spatial and temporal views; however, the coherent-LR reconstruction produced a qualitatively better reconstruction.

As mentioned previously, the CNN training time is on the order of several hours; however, this does not
pose any issue for clinical implementation, given that the pre-treatment training data would be acquired
prior to the patients scheduled treatment. Patients undergoing external beam radiotherapy will generally
receive a pre-treatment CT for the dosimetrist to generate patient contours and plan how the radiation will
be delivered by the linac (or LMR). Institutes treating with LMR systems will also acquire pre-treatment MRI
data. This previously acquired MRI data could be utilized to train a patient-specific CNN prior to the
scheduled treatment, which can then be used to aid in reconstructing rapidly acquired (prospectively)
undersampled data during treatment. Because the MRI data would be acquired prior to the scheduled
treatment (often days prior), the training time is generally not much of concern; however, the reconstruction
time must be fast enough to facilitate real-time on-the-fly imaging.

The benefits to using a coherent-LR undersampled acquisition is that it is simple to implement on an
MRI scanner and has reduced artefacts as compared to the incoherent sampling scheme. We have shown that
the realistic prospective imaging scenario qualitatively appears superior when using the coherent-LR
undersampled acquisition (compared to the incoherent undersampling). The coherent-LR undersampling
does result in a slight blurring of the reconstructed image; however, we believe that the segmentation
program handles this case better than the incoherent noise-like artefact. Furthermore, not all MR systems
have the software capability to implement an incoherent acquisition.
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Figure 10. Centroid plots for the six patients lung tumors. The orange displays the superior-inferior motion, while the blue
displays the anterior-posterior motion.

The use of low-resolution undersampling may evoke memories of keyhole imaging (van Vaals et al 1993),
since only the central region of k-space is acquired during the real-time imaging portion of the exam. Indeed,
both the incoherent and coherent-LR undersampling CNN strategies described in this work can be
considered sophisticated versions of view-share, since patient-specific fully-sampled data is used to train a
CNN to reconstruct a sub-sampling of that data during the real-time acquisition. However, unlike the
keyhole strategy, where blocks of k-space from fully-sampled acquisitions are simply imported into
newly-acquired frames, the trained CNN determines a custom k-space complement appropriate to the data
acquired in the undersampled frame. This complement will be different for every frame, based only on
patterns of correspondence seen in the training data.

Generally, the incoherent sampling scheme requires some correction for the increased artefacts cause by
eddy currents, either pre or post reconstruction. For our incoherent acquisition we used a ‘through-slice
technique’, where the slice preparation amplitude is increased. This creates a slight unbalancing of the
slice-selection gradient in order to suppress the eddy-current contributions (Bieri et al 2005). When using
the coherent-LR undersampling scheme, this is not a concern, given the coherent-LR sampling pattern does
not require rapidly changing gradients.

The tumor specifics are stated in table 1; however, figure 9 displays the centroid motion for the six
patients along the 650 fully sampled dynamic images. It can be seen patients 2, 4, 5, and 6 contain rhythmic
motion for the most part; while patients 1 and 3 had tumor motion that changed during the imaging. As
shown from figures 4 and 5, these patients did not correlate to a reduced DC or increased centroid
displacement.

There are several limitations to the study presented. Our patient cohort was small with only six patients;
however, the tumors varied in location, size, and motion. Further, our study only evaluated data acquired at
one field strength (3 T); however, the scenario of having training data acquired by a different system than the
treatment Linac-MR should be investigated as the contrast may differ between field strengths. While future
studies will be required to assess varying contrast etc; as a proof of concept this study provides encouraging
results, and a trend toward better segmentation when using coherent undersampling with the CNN.
Regarding the SNR, we have previously demonstrated that the presence of increased noise does not decrease
the accuracy of the CNN reconstruction (Dietz et al 2019). We only investigated one specific region for
tumor tracking of lung tumors; however, as outlined in table 1, the tumors varied in motion and size.
Figure 10 contains plots of the tumor centroid along the 650 fully sampled dynamic frames. In the future,
various other regions should be investigated such as the liver or pancreas. Furthermore, the smallest tumor
present in our data is 1.36 cm; future studies are required to determine the extent of how small the tumorous
region can be, while still providing an accurate reconstruction (with either phase encoding scheme).
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5. Conclusion

Incoherent undersampling results in a noise-like aliasing artefact, while coherent undersampling results in a
low spatial resolution blurring. We investigated the suitability of using these phase-encoding schemes for
MRI reconstruction using CNNs. In particular, we investigated the use for lung tumor segmentation for
adaptive radiotherapy purposes using an MR-Linac system. We believe our results support the hypothesis
that the CNN with coherent undersampling performs at least as well as, and often better than the CNN with
the more typical incoherent undersampling, at least with regards to this particular real-time tracking
scenario. We retrospectively evaluated the technique by comparing tumor segmentations of six non-small
cell lung cancer patients. The coherent-LR undersampled acquisition demonstrated larger DC values, but
more importantly, there was less variation in the DC across the temporal domain (200 dynamic frames). We
applied the coherent-LR undersampled acquisition in a prospectively undersampled volunteer data set. The
qualitative results from the prospective case demonstrate that the artefacts were removed, with only a slight
blurring occurring throughout the reconstructed images. The reconstruction speed of the 3D CNN
technique was 54 ms per image.
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