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Abstract

To improve respiratory-gated radiotherapy accuracy, we developed a machine learning approach
for markerless tumor tracking and evaluated it using lung cancer patient data. Digitally
reconstructed radiography (DRR) datasets were generated using planning 4DCT data. Tumor
positions were selected on respective DRR images to place the GTV center of gravity in the center
of each DRR. DRR subimages around the tumor regions were cropped so that the subimage size
was defined by tumor size. Training data were then classified into two groups: positive (including
tumor) and negative (not including tumor) samples. Machine learning parameters were optimized
by the extremely randomized tree method. For the tracking stage, a machine learning algorithm
was generated to provide a tumor likelihood map using fluoroscopic images. Prior probability
tumor positions were also calculated using the previous two frames. Tumor position was then
estimated by calculating maximum probability on the tumor likelihood map and prior probability
tumor positions.

We acquired treatment planning 4DCT images in eight patients. Digital fluoroscopic imaging
systems on either side of the vertical irradiation port allowed fluoroscopic image acquisition during
treatment delivery. Each fluoroscopic dataset was acquired at 15 frames per second. We evaluated
the tracking accuracy and computation times.

Tracking positional accuracy averaged over all patients was 1.03 & 0.34 mm (mean =+ standard
deviation, Euclidean distance) and 1.76 4= 0.71 mm (95" percentile). Computation time was 28.66
=+ 1.89 ms/frame averaged over all frames. Our markerless algorithm successfully estimated tumor
position in real time.

1. Introduction

Radiation therapy is one of the main treatments for cancer. To deliver radiation to a target tumor accurately,
very accurate and repeatable patient positioning is necessary (Jakel, Karger and Debus 2009, Mori,
Shibayama, Tanimoto, Kumagai, Matsuzaki, Furukawa, Inaniwa, Shirai, Noda, Tsuji and Kamada 2012)
because tumors, particularly in the thoracoabdominal region, move with patient respiration; hence the beam
must be accurately controlled to follow changes in tumor position over time. There are two well-known
methods for estimating tumor position: external surrogate motion tracking and internal tumor tracking.
Kubo and Hill (Kubo and Hill 1996) integrated external gating into proton beam therapy using a motion
sensor on the surface of the abdomen. However, it has been suggested that the correlation between the
observed external respiratory signal and actual internal tumor motion was insufficiently accurate (Meschini,
Seregni, Pella, Ciocca, Fossati, Valvo, Riboldi and Baroni 2017).

Shirato et al (Shirato, Harada, Harabayashi, Hida, Endo, Kitamura, Onimaru, Yamazaki, Kurauchi,
Shimizu, Shinohara, Matsushita, Dosaka-Akita and Miyasaka 2003) developed fiducial marker tracking with
fluorscopy. This technique solved the gating problem by directly detecting implanted markers. However, in
order to estimate the tumor position from the marker position, the marker must be implanted near the
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tumor but this may, depending on tumor position, carry the risk of pneumothorax (Li, Lewis, Cervino and
Jiang 2009). To solve these problems, several other methods have proposed tracking tumors without fiducial
markers (Cui, Dy, Sharp, Alexander and Jiang 2007a, 2007b, Rottmann, Aristophanous, Chen, Court and
Berbeco 2010, Teo, Crow, Van Nest, Sasaki and Pistorius 2013, Bryant, Rottmann, Lewis, Mishra, Keall and
Berbeco 2014, Zhang, Homma, Ichiji, Abe, Sugita, Takai, Narita and Yoshizawa 2014, Shieh, Keall, Kuncic,
Huang and Feain 2015, Zhang, Homma, Ichiji, Takai and Yoshizawa 2015, Mori, Karube, Shirai, Tajiri,
Takekoshi, Miki, Shiraishi, Tanimoto, Shibayama, Yasuda, Yamamoto, Yamada, Tsuji, Noda and Kamada
2016, Shieh, Caillet, Dunbar, Keall, Booth, Hardcastle, Haddad, Eade and Feain 2017).

One approach to markerless tumor tracking uses fluoroscopic image patterns. One method (Cui et al
2007a, 2007b) employed multi-template matching based on markerless tumor tracking using fluoroscopic
images and is now in clinical use (Mori et al 2016). The templates are created from training fluoroscopic
images taken during the patient setup session. However, it is necessary to manually input the tumor position
on the template before treatment, which is very time consuming. Other methods to improve throughput
using image pattern features employ either the mean-shift method or level set method (Zhang et al 2014,
2015). In addition, a method of tracking landmarks that are set based on the intensity variance by Normalized
Cross-Correlation (Rottmann ef al 2010) and another method of tracking tumors by optical flow have been
proposed (Teo et al 2013). These methods require input of the tumor boundaries or the tumor position on
the first frame, but this is difficult in the presence of motion artifact. To solve this, (Bryant et al 2014, Shieh
et al 2015, Shieh et al 2017) proposed creating template images from treatment planning 4DCT images
that include the position and contour of the tumor. However, the performance of this method was
suboptimal.

To solve these problems, we developed a machine learning approach for markerless tumor tracking using
4DCT images. Before treatment, classifiers from training datasets are constructed to estimate the likelihood
of the presence of a tumor given a certain image pattern. During treatment, features from the fluoroscopic
images are sampled and classified to generate a tumor likelihood map, which shows the relationship between
tumor position and tumor likelihood on the image. Tumor position is then estimated using the tumor
likelihood map and prior information obtained from the tumor’s motion. Here, we retrospectively evaluated
the tracking accuracy of this proposed markerless method in eight lung cancer patients.

2. Methods and materials

2.1. Image acquisition

Treatment planning 4D-CT images were acquired under free-breathing conditions using a 320-slice CT
(Aquilion One Vision®©, Canon Medical Systems, Otawara, Japan). 4D-CT images were subdivided into 10
phases between T00 (peak inhalation) and T50 (around peak exhalation). CT section thickness was 1.0 mm.
A board-certified oncologist manually contoured the CTV on the CT data at T50, and the contours at other
respiratory phases were then automatically generated using B-Spline-based deformable image registration
(Sharp, Kandasamy, Singh and Folkert 2007). The errors in the CTV contours created by deformable image
registration were & 2 mm in Euclidean distance and the contours were checked by an oncologist and medical
physicist (Mori, Karube, Yasuda, Yamamoto, Tsuji and Kamada 2017). Reference tumor positions in the
respective phases were defined as the center of mass of the CTV.

Fluoroscopic images were acquired during treatment delivery using a dynamic flat panel detector
(DFPD) (PaxScan 3030©, Varian Medical Systems, Palo Alto CA, USA) installed on each side of the vertical
irradiation port, with the corresponding x-ray tubes installed under the floor of our treatment room
(figure 1) (Mori, Shirai, Takei, Furukawa, Inaniwa, Matsuzaki, Kumagai, Murakami and Noda 2012).

Image size at the room isocenter is 298 x 298 mm, matrix size is 768 x 768 and pixel spacing is 0.388 mm x
0.388 mm. Fluoroscopy data were acquired at 15 frames per second (fps).

2.2. Tracking algorithm

The tumor tracking algorithm consists of three steps (figure 2); step 1 (learning classifier) is the training
stage, which is performed before treatment, and steps 2 (likelihood map estimation) and 3 (tumor tracking)
are the tracking stages. Tumor position in 3D space is expressed as X = (x,y,z)", and on 2D flat panel images
as u = (u,v)', respectively, where the superscript ¢ means transpose.

2.2.1. Step I: Learning classifier

The classifier was trained using the 4DCT planning data of the target patient. Digitally reconstructed
radiography (DRR) images of the chest for training data were generated from 4DCT planning data
(figure 2(a)). Then, DRR subimages, consisting of small square regions of interest (ROIs), one baseline
subimage encompassing the tumor, and others including regions containing partial to little or no tumor,
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X-ray source 1

X-ray source 2

Figure 1. Geometry of the fluoroscopic imaging system in the treatment room. The room isocenter and source-image receptor
distance are 170 cm and 241 cm, respectively. Image matrix size was 768 X 768 and physical pixel size was 0.388 x 0.388 mm.

were delineated. The subimage size was defined by clinical target volume (CTV) size as defined by treatment
planning data (figure 2(b)). The cropped subimages were defined by the position coordinates du, dv, which
represent the subimage position on DRR. The position of the baseline subimage that contains the tumor is
(0.0, 0.0). Figure 3 demonstrates the scale and rotation angles of the subimages, with a baseline scale of 1.0
and a baseline rotation of 0°.

The position and size of the baseline subimages in other planes were automatically calculated from the
tumor position and CTV, which were projected onto the DRR. By changing these parameters, multiple
subimages could be cropped from one DRR. Subimage position, scale and rotation angle were changed by
cropping (£ 10 mm, 0.7-1.3, = 10°) (data augmentation). Training data were then classified into two
groups, namely positive and negative samples (figure 2(c)). The positive samples represent the center of the
tumor in 2D. However, if a positive sample was derived from the center of the tumor only, the number of
positive samples would be only one per DRR image, and therefore significantly smaller than the number of
negative samples. This may not lend itself well to machine leaning model optimization due to the large
difference in the number of positives and negatives. Positive samples were therefore derived from images
sampled with a narrow margin around the tumor position (position < 3 mm, scale 0.9-1.1, rotation angle
< 5°), and negative samples were made with subimages peripheral to the tumor (figure 4). The number of
subimages was 1000 for each of 10 DRR phases for two sets of subimages, one positive and one negative, for a
total of 1000 x 2 x 10 =20000 subimages. The cropped subimages were converted into a feature vector by
the method detailed in equations (1) and (2) below, and the classifier was learned.

Feature information on the subimages was assessed using intensity gradients to minimize the image
quality differences between the digitally reconstructed radiographic (DRR) and fluoroscopic images. The
intensity of an image at the image coordinate u was I(u). The intensity gradient G(u) was calculated as
follows:

g(u) (0<I)
Gu)=1< gluw)+7 (I,<0,0<1I) (1)
glu)—m (I, <0,I,<0)

oL OI(u) ~ 0I(u)
g(u) = tan Iu’ Iu - au ) IV - 81/ (2)

Even in images with different intensity ranges, the intensity gradient direction will be close if the objects have
the same shape (figure 5(a)). The correlation between the DRR baseline subimage cropped to contain the
tumor position and fluoroscopic images containing the tumor were evaluated based on the intensity gradient
direction (inner product between unit vectors) and the intensity (zero means Normalized Cross Correlation)
(figure 5(b)). In the intensity gradient direction, the correlation was maximum at the tumor position,
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Figure 2. Step 1 (learning classifier): (a) DRR images as a function of respiratory phase (4D-DRR) were calculated using 4DCT
data. (b) Two types of 4D-DRR subimages around tumor regions were cropped. (c) These images were classified into two groups;
positive (including tumor) and negative (not including tumor). (d) Classifier parameters were then optimized by the extremely
randomized tree method. Step 2 (likelihood map estimation): Tumor likelihood maps were generated with a classification
approach using a sliding subimage (marked in dotted white square in figure 2(e)) to include the entire search region. Step 3
(tumor tracking): Tumor position was estimated by the tumor likelihood map and prior probability obtained from the tumor
motion. Tumor position in 3D space can be derived using paired x-ray fluoroscopic images.

whereas the intensity was maximum at a position slightly deviated from the tumor position (figures 5(c) and
(d)). In this way, by using the intensity gradient direction to reduce the image quality difference between the
DRR and fluoroscopic images, the tumor position on the fluoroscopic image can be detected using the image
pattern learned from the DRR.

Machine learning parameters were optimized by the extremely randomized trees (ERT) method
(figure 2(d)) (Geurts, Ernst and Wehenkel 2006). ERT consist of many tree-based classifiers and are able to
classify quickly. The parameters of ERT were set as follows based on the recommended values (Geurts et al
2006). Number of trees = 100, number of features randomly selected at each node = v/d, number of
thresholds set by the selected features = 2, where d is the number of dimensions of the feature vector, which
is the size of the subimage. The learned ERT (®(-)) outputs the tumor likelihood ! of the input feature vector

g= (8,8 ,8)
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Baseline subimage

* position : tumor position on DRR
* scale : 1.0 (defined by tumor size)
* rotation angle : 0°
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Figure 3. An example of subimage generation. The cropped subimages were created by transforming the baseline subimage with
the position (du, dv), scale and rotation angle parameters. The position and scale of the baseline subimage were determined by the
projected tumor position and CTV size on the DRR. Subimages were resized by cropping.

Subimage position, rotation angle and scale were
changed by cropping.

* position (du, dv) : [-10.0 mm, 10.0 mm]

* scale:[0.7, 1.3] times baseline size.

* rotation angle : [-10°, 10°].

Baseline
subimage

Positive Samples

vV du? + dv? < 3mm
0.9 <scale < 1.1
-5° < rotation angle < 5°

Negative Samples

Figure 4. Subimages were cropped while randomly varying the parameters’ position, scale, and rotation angle from the baseline
subimage. Positive samples were therefore derived from images sampled with a narrow margin around the tumor position
(position & 3 mm, scale 0.9-1.1, rotation angle & 5°), and negative samples were made with subimages which differed
considerably from the tumor position and contained little or no tumor.

(3)

Regression can be used to estimate the tumor position directly from g, but regression is generally more
difficult than classification. For real-time tumor tracking, we chose the proposed method to solve simpler

problems.

2.2.2. Step 2: Likelihood map estimation

Fluoroscopic images were acquired during treatment. A subimage was cropped by changing the incoming
fluoroscopic image region, and the machine learning algorithm generated a tumor likelihood map. The
tumor likelihood map L (u) was generated following equation.

L(u)

P (gu)

(4)

First, a subimage at u was cropped from the input fluoroscopic image and converted into a feature vector g,
by equations (1) and (2). Next, the feature vector g, was input to the ERT, and the tumor likelihood at u was
calculated. These operations were performed on each pixel position in the search range to obtain L (u)
(figure 6). This process was performed with the data from each DFPD, resulting in two likelihood maps

(Ll (111) and Lz (uz)).
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Figure 5. (a) The intensity direction gradient around the tumor position in the DRR and fluoroscopic images. (b) The range
where the correlation was calculated between the DRR subimage and the fluoroscopic image. The position of x was the tumor
position on the fluoroscopic image. (c) The correlation of the intensity gradient direction between the DRR subimage and the
fluoroscopic image at each position on the fluoroscopic image. The correlation was maximum at the tumor position (position
of x). (d) The correlation of the intensity between the DRR subimage and the fluoroscopic image at each position on the
fluoroscopic image. The correlation was maximum at a position slightly deviated from the tumor position.
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Figure 6. The subimage cropped from the input image was converted into a feature vector, and the tumor likelihood was
calculated by ERT.
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2.2.3. Step 3: Tumor tracking
Step 3 estimated tumor position in 3D space X; at the current frame by using both likelihood maps and prior
probability tumor positions in previous frames as follows:

First, to estimate tumor position in 3D space X, a likelihood map in 3D space Ling(X) was calculated
using equation (5).

Limg(X) = Ll(ul )Lz (U2) (5)

where u; and u, are projections of the tumor position in 3D X on each flat panel detector, and they were

calculated using equation (6).
w | X w | X
w3 e ®

where P, and P, are projection matrices of the respective flat panel detector, and A is a scaling factor. To
shorten the calculation time, we did not calculate Ling(X) in every calculation of X, but reused L, (u; ) and
L2 (uz ) .

Second, tumor positional probability density function Lyeve (X) was estimated by tumor positions in the
previous two frames:

Linove(X) = ———— exp (_; (X—p) 2 (X — uf) 7)
(2r)’ ||
Y=o, p=X_1+ X — thz) (8)

where X;_; and X;_, are tumor position on the previous 1 and 2 frames, respectively, 3 is the covariance
matrix of the Gaussian distribution, I is the 3 x 3 identity matrix, and « is the scale of the variance. Since the
fluoroscopic imaging rate was 15 fps, we assumed that tumor speed in the previous two frames could be
roughly the same (Teo, Guo, Ahmed, Alayoubi, Kehler, Fontaine, Sasaki and Pistorius 2019). Therefore, for
real-time processing, we used an isotropic Gaussian distribution, which is easier to calculate, as the prior
distribution of the tumor motion. The parameter « affects the probability distribution, with a smaller value
providing a sharper probability distribution and a higher value, making a flatter curve.

Next, the 3D tumor position was estimated from Limg(X) and Lieve(X). The posterior distribution of the
tumor position p(X|Liyg) with the prior distribution Lieve(X) after the tumor likelihood map Ling(X) was
observed was calculated from Bayes rule as follows.

P(Limg|X)p(X)
P(X|Limg) = p(gLTg)
= CLimg (X) Lmove (X)
X Limg (X)Lmove (X) (9)

Where c is the normalization constant for | p(X|Limg)dX = 1. In this paper, the tumor position was
estimated as the expectation of the posterior distribution. The tumor position X; was calculated as follows.

X, = / Xp(X| Limg)dX
R

1
T YxearlX) XXG;XL(X) "o

where, R is the search range in 3D space and L(X) = Ling(X) Lmove (X).

The proposed method tracked the tumor by learning the image pattern around the tumor. If the image
pattern around the tumor is clearly contained in the fluoroscopic image, it is possible to track the tumor
without using the prior distribution by tumor motion. However, the position of the detected tumor may
become unstable due to image quality degradation due to noise and estimation error. In order to stabilize the
result, the proposed method utilized the prior distribution by tumor motion.
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Table 1. Tumor tracking accuracy expressed as Euclidean distance and computation time.

Tumor position error (mm) Tracking computation time (ms/frame)
Case number Mean 4+ SD 95t percentile Training time (s) Mean =+ SD
Case 1 1.55 £+ 0.77 2.94 81.75 29.57 £ 2.01
Case 2 0.64 +0.17 0.96 53.60 28.73 £+ 2.00
Case 3 1.53 4+ 0.56 2.54 79.60 28.90 + 1.75
Case 4 0.59 4+ 0.44 1.55 48.90 28.30 +1.95
Case 5 1.02 +£0.31 1.48 55.00 28.29 +1.83
Case 6 0.52 £0.27 0.83 64.95 28.68 + 1.95
Case 7 1.37 £ 0.54 2.32 70.71 28.46 +1.74
Case 8 1.08 4+ 0.20 1.44 71.55 28.31 +1.85
mean 1.03 +0.34 1.76 £ 0.71 65.76 + 11.48 28.66 + 1.89

Abbreviation: SD = standard deviation

3. Evaluation

3.1. Tracking accuracy

Retrospective tracking positional analysis was performed on the data of eight patients with lung cancer, who
were receiving carbon-ion pencil beam scanning treatment in our hospital. All gave informed consent for use
of their data in this study, which was reviewed and approved by the Institutional Review Board of our
hospital.

A certified oncologist delineated the gross tumor volume (GTV) on the planning 4DCT at T50. The GTV
contour at T50 was transferred to other respiratory phases by deformable image registration (Vincent,
Larochelle, Lajoie, Bengio and Manzagol 2010). The tumor contours were then projected onto the DRR
images, which were transformed into 2D images, in their respective respiratory phases (4D-DRR). The
oncologist and medical physicist independently entered the reference tumor positions (ground truth [GT])
on DFPD images (approximately five respiratory cycles [ = 300 frames]) and checked the results together on
the basis of the 4D-DRR.

Tracking accuracy was evaluated as the Fuclidean distance between the reference and calculated tumor
positions.

3.2. Computation time

Computation times for the training (step 1) and tracking (steps 2—3) stages were averaged over all frames and
averaged over all fluoroscopic images. Our tracking algorithm was programmed using the C++ program
language (Microsoft Visual Studio 2012©, Microsoft, Redmond WA, USA). It works under a Windows 7
environment and is installed on a workstation (Intel Xeon© CPU@ 3.6 GHz, 32 GB physical memory,
Hewlett-Packard, Inc. Palo Alto CA, USA). Calculations were performed by multithreading computation

(7 cores).

4, Result

4.1. Tracking accuracy
The tumor tracking accuracy averaged over all patients was 1.03 &= 0.34 mm (mean £ SD) and 1.76 +
0.71 mm (95" percentile) in Euclidean distance (table 1).

Figures 7 and 8 show the best (case 6) and worst (case 1) examples of tumor tracking by the proposed
method, respectively. According to the best case, tracking accuracy in the x, y, and z directions was 0.04 &
0.32 mm, 0.14 4 0.21 mm and -0.34 & 0.26 mm, respectively. In the worst case these values were 0.89 £+
0.88 mm, —0.63 £ 0.66 mm, and 0.13 % 0.75 mm, respectively.

4.2. Computation time

Training time averaged over all patients was 65.76 £ 11.48 s (table 1). Computation time for tumor tracking
with two DFPDs averaged over all cases was 28.66 £ 1.89 ms per frame. Since the almost same subimage size
was used for all cases, the computation times described above were closely similar for all cases.

5. Discussion

In this study, we evaluated the positional accuracy and computation time of our machine learning-based
markerless tracking algorithm using eight lung cancer cases. Our algorithm achieved good tracking
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Figure 7. An example of successful tracking (case 6). (a) DRR images and (b) fluoroscopic image on DFPD1. (c) Tumor tracking
results in the x direction (upper panel), y direction (middle panel) and z direction (lower panel). Abbreviations: DRR = digitally
reconstructed radiography, DFPD = dynamic flat panel detector, GT = ground truth.

positional accuracy ( = 1.76 4= 0.71 mm) in real time ( = 28.66 + 1.89 ms/frame), suggesting it can be used
at a 30-fps acquisition rate.

5.1. Tracking accuracy

An example of a successful case (case 4) shows tumor shape clearly on DRR and DFPD images (figures 9(a)
and (b)). Pulmonary vessels are visible on both images; however, image contrast of ribs was relatively low on
DRR images compared to DFPD images. The tumor was located in the upper lobe. Tumor displacement in
the y direction was approximately 5 mm, and the calculated tracking positions were close to the GT positions
(figure 9(c)) (0.59 £ 0.44 mm).

Another example (figures 7(a) and (b)) shows that the tumor shape is visualized clearly but overlaid by
the heart (case 6). Image contrast of the tumor was slightly lower than that of case 4. Since the proposed
method learns the image pattern, it is difficult to track the tumor if the contrast of the image is low. However,
in case 6, although image contrast of the tumor is low, the pattern of the pulmonary vessels is characteristic,

9
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Figure 8. An example of a less successful tracking case (case 1). (a) DRR images and (b) fluoroscopic image on DFPD2. (c¢) Tumor
tracking results in the x direction (upper panel), y direction (middle panel) and z direction (lower panel). Abbreviations: DRR =
digitally reconstructed radiography, DFPD = dynamic flat panel detector, GT = ground truth.

and the tumor can be tracked using the pulmonary vessel pattern as a clue. Thus, even if the image contrast
of a tumor is low, the proposed method can track the tumor with high accuracy if the anatomic pattern
around the tumor is characteristic. In particular, the lung has characteristic vessels, hence tracking lung
tumor is compatible with the proposed method. The calculated tumor positions in the x and z directions
were affected by cardiac motion; however, tracking accuracy was 0.52 £ 0.31 mm. If the training data contain
variations in cardiac motion, the motion pattern of the heart can also be learned, and hence the effect of the
cardiac motion on the tracking result is small.

The tracking accuracy of case 1 was degraded due to the collision prevention sensor on the couch
(= 1.55 =% 0.77 mm). The sensor was not visualized on DRR images (figure 8(a)) but was on DFPD images
(figure 8(b)). Moreover, since the tumor was located close to the sensor and the image contrast of the sensor
was higher than that of the tumor, the calculated tumor position was shifted approximately 1 mm in the x

10
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Figure 9. An example of successful tracking (case 4). (a) DRR images and (b) fluoroscopic image on DFPD1. (c) Tumor tracking
results in the x direction (upper panel), y direction (middle panel) and z direction (lower panel). Abbreviations: DRR = digitally
reconstructed radiography, DFPD = dynamic flat panel detector, GT = ground truth.

direction (figure 8(c)). On the other hand, objects with high contrast include the spine. If an object is inside
the body, such as the spine, it can be learned from the treatment planning CT because it is contained within
the CT. These objects are therefore considered to have little effect on tracking accuracy.

5.2. Computation time

Computation time was strongly dependent on the subimage size. In this study using a subimage size of

60 mm X 60 mm — 90 mm x 80 mm, computation time was 28.66 & 1.89 ms/frame. However, subimage size
could be larger to cover the whole target volume; as a result, the computation time would likely increase. To
improve computation time, another solution would be to set subimage position on a part of the target

volume.
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5.3. Other markerless tracking methods

Reports of other markerless tumor tracking algorithms require tumor position on training fluoroscopic
images (Culi et al 2007a, 2007b, Zhang et al 2014, 2015, Mori et al 2016). This manual input of tumor
position on fluoroscopic images is time-consuming. Since our algorithm uses 4DCT and tumor position
input from the treatment planning system, it does not require manual input of tumor position, obviating the
need for extra work.

An automatic markerless tumor tracking algorithm (Shieh et al 2017) using treatment planning CT had
an accuracy of 1.6-2.9 mm in 3D Euclidean distance, which was inferior to our result (0.52—1.6 mm).

Deep neural networks (DNN) represent a relatively new technique and have improved performance in
artificial intelligence more than conventional machine learning (Vincent ef al 2010, Masci, Meier, Ciresan
and Schmidhuber 2011). Our group previously published a DNN-based markerless tumor tracking
algorithm and evaluated tracking positional accuracy using lung and liver cases (Hirai, Sakata, Tanizawa and
Mori 2019). Although the training time for DNN required several hours, positional accuracy and
computation time were 2.25 £ 1.03 mm and 39.9 + 3.4 ms for lung cases, respectively. While our algorithm
is based on conventional machine learning, its tracking accuracy and computation time are superior to those
of the DNN algorithm. The model was designed for individual patients, and therefore does not require
greater robustness. As DNN requires very large training datasets to optimize large numbers of parameters, it
is difficult to prepare very large training datasets from one patient. Our markerless tumor tracking was
achieved by the conventional machine learning approach, which does not require such large datasets.

5.4. Treatment throughput

Currently, our institute has started respiratory-gated carbon-ion scanning beam treatment using markerless
tracking (Mori et al 2016). It requires template images, which are generated in the preparation stage just after
the patient setup procedure. In our clinical experience, this takes an average of 8.6 min. Use of our new
algorithm could improve treatment throughput by omitting this template image preparation process. Since
we perform markerless tracking in the fixed-beam-port treatment room (figure 1), once a template image is
prepared, it can be reused when horizontal and orthogonal beams are used in the same fraction. However, in
the rotating gantry treatment room, the DFPDs change position as a function of gantry angle. Therefore, a
separate template image must be prepared for each gantry angle. This may slow throughput. Use of our
algorithm could solve this problem.

5.5. Study limitations

Several limitations of this study warrant mention. First, a certified oncologist and medical physicist input the
reference tumor position by comparing 4D-DRR images with the target counters, but this does not guarantee
the elimination of observer error. However, we carefully checked the reference tumor position to decrease
this error.

Second, our algorithm considered organ deformation only on 4D-DRR images. However, we applied the
data augmentation process in translation and rotation but not deformation on the training data to prevent
the degradation of tracking accuracy due to interfractional changes. Even though our algorithm calculated
tumor position using a classification model, it might still have oversimplified the deformation. Therefore, if
the machine learning approach had not worked well, we would have been unable to continue treatment
because it is impossible to modify the model to estimate tumor positions with accuracy. One solution is to
retrain the model (fine-tuning) using additional 4DCT images acquired before each fraction. This limitation
will apply to any study using the machine learning approach to calculate a model using planning CT data.

Third, we did not evaluate our algorithm for abdominal organs such as liver and pancreas. This is
because it is still difficult to capture tumor position due to low contrast. At the present time, use of external
gating or insertion of implanted fiducial markers are still standard practice. In this paper, we utilized an
isotropic Gaussian distribution as the prior distribution of the tumor motion. However, if the covariance
matrix of the tumor motion is able to be estimated from the 4DCT, the tracking results may be more stable.
It may help in tracking the tumor from low contrast images. We hope our new method will represent an
improvement on these.

6. Conclusions

We developed a machine learning-based markerless tumor tracking algorithm. Our algorithm trained on the
tumor image patterns from the DRR images generated from the treatment planning CTs and tracked the
tumors in the fluoroscopic images fully automatically. By learning the tumor image patterns by ERT using
the intensity gradient direction as the feature descriptor to reduce the image quality differences between the
DRR and the fluoroscopic images, markerless tumor tracking can be performed with high accuracy and in
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real time. Allowing that the evaluation was conducted in a limited number of lung cases, the algorithm
achieved good tracking accuracy in a short computational time. We consider that our algorithm will be
highly useful in improving gate treatment accuracy.
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