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Abstract

Computational modelling is not only an important element in scientific
research, it also has a rich history in physics education and its application in
the classroom has changed greatly over the last few decades. To explain
why computational modelling is used in physics education, we discuss its
use in teaching and the benefits to the teaching and learning process. Sec-
ondly, historical developments are highlighted, and different methods of
computational modelling are discussed in more detail, developing the
desired features of modern software for classroom computational modelling.
A review of the research in this field was conducted, showing what is known
about the effects of computational modelling on students’ conceptual
understanding, systemic thinking, views about nature of science and interest
in physics, among others variables. Derived from the research results,
recommendations are given about the use of computational modelling in
physics education and research recommendations are presented with the
goal to better understand the interaction between the student and compu-
tational modelling process.
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1. Educational reasons for the use of modelling systems?

Modelling is a central method in physics. In the context discussed here, modelling is defined
as the construction of a network of physical concepts and relationships with which the
behaviour of a physical system can be described and predicted ([2], p. 23). A modelling
system is a computer program with which physical models can be constructed and calculated,
and the results of the calculations to be displayed. These are computational models that are
quantitative realisations of a mental model. The aim of such models is to understand observed
phenomena and processes and to gain new insights into complex interrelationships.

One of the aims of physics teaching is to give students an understanding into how
different physical quantities are related. In many cases there is even a chain of (inter-)
dependencies that needs to be considered to understand the whole process. For example, the
most important connections of Newtonian dynamics could be drawn on the blackboard as
shown in figure 1. The ‘dynamic chain’ F,.,, — a — v — x together with m — a is also
called the ‘standard model’ [3]. This physical structure is used in modelling to illustrate the
cause-effect relationship [4] between forces and acceleration and the connection between the
other important physical quantities in mechanics, such as acceleration and velocity and
velocity and position.

Developing the model shown in figure 1 with learners, facilitates learning processes that
help to clarify the learner’s own ideas about the underlying structural relationships of different
physical quantities. The calculation and presentation of the model sequence also provides the
learners with crucial feedback: does an observed phenomenon or a given prediction corre-
spond to the model sequence? Possible discrepancies can be analysed and discussed: did the
learner’s idea match the model, is the model consistent with what is observed, were important
aspects such as the direction of forces taken into account? [5].

An often discussed prerequisite for good curriculum design is that physics teaching
should focus on students’ everyday experiences. Given the small number of experiments
conducted in many physics lessons, students often find it difficult to understand key ideas and
retain them over a longer period of time. On the other hand, students already come to class
with many prior experiences, especially in the field of mechanics. Here especially, it is
important to relate everyday experiences to the physical concepts in the classroom. This is
particularly important as students often believe that the concepts taught in physics lessons
have nothing to do with their everyday life and only refer to an ideal world or a laboratory
context ([6], p. 166). By discussing authentic problems in real-life contexts, however, stu-
dents can see that physics is relevant to their life, applicable to it, and that physical concepts
are useful outside the context of the classroom.

However, in physics, authentic problems are usually also complex problems. In regard to
real-life examples in the field of dynamics, this usually means two things: firstly, that several
forces act simultaneously. Secondly, that friction must also be taken into account since it
plays a crucial role in almost all motion in nature and technology. In physics lessons,
however, a variety of idealisations, e.g. the elimination of friction, are used to form theories
and to obtain ‘bare phenomena’ in order to develop simple concepts, principles and laws. As
in applied physics and engineering, the application of these theories to real-life situations
must also be a part of physics lessons. However, if a force and thus the acceleration is
dependent on the velocity or the location, this can lead to differential equations which are
difficult or impossible to solve explicitly. A promising way to still discuss these real-life
situations in the classroom is to use computational modelling, which allows these problems to

2 Some ideas discussed in this article are taken from [1].
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Figure 1. Possible sketch to visualise the relationships between various physical
quantities.

be solved numerically. For the reasons previously outlined computational modelling is often
used in, but not limited to, Newtonian mechanics. Therefore, this article is focused on this
context.

The big advantage of computational modelling is that even very complex phenomena in
mechanics can be analysed using only a small number of basic concepts and rules. However,
in physics lessons the focus is usually on certain equations, in which a closed form solution is
accessible [7], such as x(f) = x¢g + vo - t + % ~a-t? and v(t) = vy + a - t when dealing
with uniform acceleration. This limitation often has purely mathematical reasons. In contrast,
model-building systems work with basic definitions such asv = Ax/Aranda = Av/At as
well as fundamental laws such as a = XF/m. As mentioned before, the idea is to explain a
large number of phenomena using only a small number of general laws and rules ([8], p. 153).

If a speed-dependent air friction force is included in the model, a number of interesting
examples such as falling cones [9], parachutists, meteors, raindrops or a car accelerating with
a constant force can be analysed. Coulomb friction, on the other hand, is not dependent on
speed, but only on the direction of motion. A location-dependent force, for example, must be
taken into account when a trolley collides with a spring, an athlete bounces on a trampoline or
in any oscillations. In particular, the degree of idealisation can be reduced step by step by
taking into account initially neglected effects such as friction later in the modelling process. In
that way, the user is able to decide autonomously which effects should be included in the
model and therefore practices an important scientific skill.

Thus, computational modelling also presents the possibility to include aspects of nature
of science in physics classes [10]. Using computer models, learners are able to learn important
skills, such as estimation and approximation that are needed to model nature [11]. Learners
can create models in a dynamic and iterative process [12] and reflect on scientific reasoning.
More generally, computers are increasingly important in scientific research [13] and the role
of models in gaining scientific insight can be discussed in class. The interplay between theory,
experiment and computation in scientific research [14] can be highlighted using computa-
tional modelling.

The term ‘simulation’ on the other hand is used to describe the application or ‘running’ of
a model under certain boundary conditions. In order to run a simulation, it is therefore
necessary to develop a model first. It is this development of a model, not its simulation, where
most of its educational value lies [15-17]. Therefore, the use of computers for simply
executing simulations will not be addressed in this article.
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2. The history of computational modelling

The development of computational modelling in physics education can be divided into dif-
ferent phases. It is important to note, however, that these phases did not necessarily take place
one after another, but rather overlapped.

2.1. Open programming languages

The first phase of computational modelling in physics teaching was defined by the use of
personal programming languages. While computers were already successfully used in uni-
versity introductory physics for simulations and ‘controllable worlds’ in the 1970s [18],
computational modelling using programming languages started to be used in physics teaching
shortly after [19, 20], mostly using ‘Fortran’ and ‘Basic’ programming languages. Though
focussing on simulations and calculations, Kane and Sherwood also used the mini-language
‘grafit’ during the 1970s to model physical systems [21]. In the 1980s, the first course was
created that revolved around the use of programming languages for computer-based model
building. The Maryland University Project in Physics and Educational Technology (M.U.P.P.
E.T.) used the IBM XT and AT personal computers to analyse and model real physical
systems with the ‘Pascal’ programming language with the goal of teaching students the power
tools of physics [22]. However, the Commodore 64 was the first computer to be used in
physics lessons in secondary schools in the same decade. Teachers were primarily using it in a
similar way as the M.U.P.P.E.T. program—namely to calculate motions based on certain
mechanical forces. For this purpose, an imperative programming language was used, in which
the source code determines what is calculated in which order and how. The programming
languages commonly used were also ‘Basic’, ‘Comal’ and ‘Pascal’ as well. These line-
oriented programs essentially consisted of a loop, where a single pass corresponds to a single
time step Atr. In addition to the calculation of the single forces and the resulting total force
F,.;, each loop contains the following steps:

a = F_net/m,;
Av = a*At; v=v + Av;
Ax = V¥AL, x = x + Ax;

t=t+ At

Location and velocity are determined by adding up the individual changes based on a
start value (see figure 2).

This simple numerical method is also called the ‘Euler method’ [23]. In many cases
though, such as oscillations, it can lead to major errors after a relatively short time.

Soon other programs like ‘Dynamos’ were developed for the operating system MS-DOS.
A different contemporary approach was to program pocket calculators to numerically solve
the (differential) equations of motion of physical systems [24].

2.2. Spreadsheet processing

The use of spreadsheet programs such as ‘Excel’ can also be regarded as a variant of the use
of personal programming languages. VisiCalc appeared on the Apple II in 1979 [25] and
spreadsheets were used in education as early as 1984 [26]. Their main advantage is that users
do not need to learn a programming language to use them [27]. Therefore, the focus can
remain on teaching physics with computing—not the other way around [28]. Analogous to
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Figure 2. Basic principle of the ‘Euler method’.

the programmatic method outlined in the previous section, a row in the spreadsheet corre-
sponds to one time step. In the columns, different physical quantities are calculated from other
quantities of the row or those of the previous row. By adding further rows to the spreadsheet,
the motion path can be calculated over time. This process highlights the iterative nature of
numerical calculations. With spreadsheet software it is also possible to show the results
graphically. However, the use of spreadsheets for this purpose is not intuitive and requires a
good grasp of the software. Also, the result of the simulation is a table full of numbers with no
overview of the calculations, which makes both finding errors and modifying the calculation
difficult [29]. Nonetheless, spreadsheet processing has been a popular way of implementing
computational modelling in physics teaching in various contexts [30].

2.3. Graphical modelling

In the 1990s, graphic-structure-oriented modelling systems became increasingly popular.
Based on ‘STELLA’, further programs such as ‘Powersim’ were brought to market. The
programs ‘Dynasys’, ‘Modus’, ‘Coach’ as well as ‘VisEdit” were specifically developed for
educational purposes. With these programs, a model is first created with a graphical model
editor by introducing the relevant physical quantities and their relationships. Specifically,
symbols for the individual quantities are set and linked according to their corresponding
physical relationships (see figure 3, analogous to figure 1). Only in a second step are these
qualitatively defined relationships between the individual physical quantities then quantified
using fundamental physical relationships ([31], p. 151). The graphical representation has
many advantages over equations. First of all, the structure of the model can be recognised
quickly and easily, which makes it easier to discuss it in group work, for example. In addition,
it is easy to immediately recognise how the different quantities affect each other. Furthermore,
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Figure 3. Graphical model of a vertical spring oscillation in ‘Dynasys’.

learners only have to be able to manipulate a few symbols and not learn an additional
programming language.

These modelling systems go back to Forrester [32], who developed System Dynamics in
the 1950s. In System Dynamics, three fundamentally different types of system parameters can
be distinguished:

1. Default parameters, i.e. parameters and exogenous influences, that is, values that act on
the system from the outside but are not influenced or changed by it (red circles in
figure 3).

2. State parameters (‘stocks’), i.e. memory variables in which the current state of a system is
expressed, based on its previous development (blue rectangles in figure 3). These
parameters represent the memory of the system.

3. Intermediate parameters, i.e. parameters that can be calculated at any time directly from
default and state parameters (black circles in figure 3).

The programs ‘STELLA’, ‘Powersim’, ‘Dynasys’ as well as ‘Coach 6’ and ‘Coach 7’
and others use a ‘flow analogy’ to illustrate these relationships: changes ‘flow’ through a
pipeline into a ‘stock’, while the flow (the rate of change) can be regulated by valves (a
comparison sometimes referred to as ‘stock-and-flow model’ or ‘flow diagram’). This
‘flowing into the stock’ corresponds to integrating an analytical solution. If a variable is both
a state variable and a rate of change for another state variable, it must be entered twice, which
can be confusing for learners [[2], p. 33-34]. This is the case, for example, with velocity and
acceleration in figure 3.

Tinker ([33], p. 98f) criticises that this ‘flow analogy’ requires an intuitive understanding
of the flows of incompressible fluids and points out that it is particularly problematic in the
case of Newton’s second law (What is it that ‘flows’ controlled by the ‘acceleration’ into the
stock ‘velocity’?). Sander ([34], p. 197), on the other hand, claims that students have little
difficulty with the analogy itself, but rather with the software STELLA ([34], p. 179).
The programs ‘VisEdit’, ‘Modus’, ‘Moebius’ and ‘Coach 5’ use another analogy: A syringe is
used to make changes to a stock, which can be positive or negative, while the visualisations
used by ‘STELLA’ misleadingly suggest that the flow can only enter the stock from the
source. Other programs like ‘IQON’ (Interacting Quantities Omitting Numbers) go even
further and only focus on the qualitative aspects of modelling. The software helps the user to
formulate causal relationships between different physical quantities by expressing these

6
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1 from vpython import *

2 scene.background=vector(2.8,0.8,0.8)

3 f1 = gcurve(color=color.orange)

4 cone = cone(pos=vector(9,1,0),axis=vector(@,-0.1,0),radius=0.1)

5 vcone = arrow(pos=cone.pos, axis=vector(9,0,0), shaftwidth=0.015,
6 color=color.orange)

8 cone.velocity = vector(e,9,0)

9 deltat = 0.005

et =20
11m = ©.00043

12k = 0.0019

14 while cone.pos.y>@:

15 rate(100)

16 f1.plot(pos=(t,cone.velocity.y))

17 Fg=-m*9.81

18 Ffric=k*cone.velocity.y**2

] Fnet=Fg+Ffric

cone.velocity.y = cone.velocity.y + Fnet/m*deltat
cone.pos = cone.pos + cone.velocity*deltat
22 vcone.pos = cone.pos

23 vcone.axis = cone.velocity/5

24 t = t + deltat

Figure 4. Code in VPython for a falling cone.

relationships as strong and weak links. It can therefore be helpful for younger learners and
serve as a preparation for the quantification of models [3].

2.4. Output of animations

Students find it difficult to interpret graphs [35-37]. It can therefore make sense to not only
show the results of a calculation in the form of a diagram, but also in an animation. When
simulating the model in a modelling software, the animation immediately reveals an incorrect
input without having to interpret the corresponding graph.

For this reason, software products such as ‘VisEdit’ (with ‘PAKMA’) and ‘JPAKMA’
were developed in the 1990s and 2000s. Similar to the newer software ‘Modellus 4°, these
programs were specifically designed for teaching purposes in schools. Other programs like
‘VPython’ [38] and ‘Easy Java Simulations’ [39] can also be used for this purpose. ‘VPython’
was built to let the user create 3D objects and animations easily, whereas Easy Java is a
modelling tool that allows the user to create scientific simulations, while reducing the amount
of programming necessary to implement an idea. Today ‘VPython’ seems to be the most used
tool for computational modelling in universities because it teaches basic programming skills
in Python and combines that with an easy 3D animation output [7]. It is, however, also
possible to utilise ‘“VPython’ in schools [40].

‘VPython’ requires the user to write the code by themselves. In the example shown
below (see figure 4), a falling cone is modelled with air friction. In the first section, the
background colour is specified, the plot and the cone and its velocity vector are defined. The
cone is a 3D object that is part of the VPython module. The second section includes

7
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-0.5

Figure 5. Animation and t-vy-diagram in VPython for a falling cone.

the starting conditions and parameters that influence the motion. In the while loop, the
velocity is plotted, the forces are defined and the calculation of motion takes place.

The use of VPython is similar to the use of the personal programming languages
described above. The biggest difference is the possibility to create 3D animations easily. The
code produces an animation that is shown in figure 5. While the cone is moving towards
the ground, its velocity vector is embedded in the animation and an additional graph of the
y-component of the velocity appears simultaneously with the motion of the cone.

3. Computational modelling schools today

3.1. Current expectations for good software

Today, software is expected not only to run stably, but to also be highly intuitive to use. If
modelling software is difficult to use, the problem is shifted from a computational level to a
technical level and the original physical question might easily get lost. Programming lan-
guages, spreadsheet programs, graphic-oriented programs as well as the creation of anima-
tions require users to invest a significant amount of time to familiarise themselves with the
product and, while programming can teach students useful skills needed for a physics major
[7], it is often impractical to utilise open programming languages in secondary schools.
Unfortunately, this is probably one reason why modelling software is rarely used in schools

8
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Figure 6. Fall with friction, modelled in Newton-II.

M

today and why ready-to-use animations tend to be more popular with teachers [41]. As a
result, unfortunately, important phenomena such as friction are often not covered at all in
traditional physics lessons. This can easily be changed by using modern modelling software.

Both ‘Newton-II’ and ‘Fluxion’ (available free of charge [42]) can be used on all
standard operating systems and are designed as one-window applications. This means that all
important elements of the programs except a few dialogue boxes for special settings are
displayed in one window. In the input and action area on the left, all equations, constants,
calculation conditions as well as axis settings can be entered in order to start the calculation
(see figure 6). In the display area on the right, a graphical visualisation of the solution can be
found. The program is designed to display the equation defining the force, the parameters and
the output as a graph in one window (spatial contiguity) [43]. The trajectory is calculated
immediately and displayed simultaneously with all inputs and parameter values as a
graph (temporal contiguity) [43]. This allows a fast and uncomplicated variation of the
different parameters in real time. In addition, the software offers an intuitive way to make
certain changes to the graph: the axes can be stretched or compressed by clicking and moving
the mouse with the mouse button pressed or by simply turning the mouse wheel.

‘Newton-II’ is specifically designed for problems in mechanics. It is therefore not
necessary for the user to specify how the velocity and the location are obtained from the
acceleration. Instead, the user only needs to specify how the acceleration is calculated. Since
the calculation of velocity and location are already a fixed component of the software, users
can fully concentrate on the modelling.
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Table 1. Software already used at least once by region (Ngyynxfure = 515 NEranconia = 005
Nswabia = 50; tested for significant differences using the x* test, *: p<0.05, **: p<0.01,
+++: p<0.001).

City of Frankfurt Lower Franconia Bavarian Swabia

Spreadsheet (e.g. Excel) 47%"* 68%" 60%
Dynasys 4% 2% 8%
Newton-IT 2% 229%* tHF 0%+
VisEdit with PAKMA 2% 13%* 2%*

The model-building module of the video analysis software “Tracker’ [44] goes one step
further. Here, only the mass and the resulting total force for each component have to be
specified, while the software automatically calculates the resulting acceleration. In other
words, the entire ‘standard model’ F,,; and m — a — v — x is already part of the software.

3.2. Software currently used in school

Between November 2014 and February 2015, a survey was conducted in three regions of
Germany using an online questionnaire. The objective was to find out which modelling
software is used today in the respective regions [41]. It should be noted here that numerical
calculations are a mandatory part of the curriculum in Lower Franconia and Bavarian Swabia.
In total, N = 163 participants took part in the survey, well distributed between the three
regions.

As shown in table 1, the number of different pieces of software used in schools is rather
limited. The frequent choice of spreadsheet programs is in contradiction to the recommen-
dations in the educational literature. However, it is unclear whether the teachers who stated
that they used ‘Excel’ in their teaching were actually using it for computational modelling or
for different purposes. The significantly higher popularity of ‘Newton-II’ in Lower Franconia
compared to Frankfurt or Swabia is probably due to the fact that the software was developed
in that region.

4. Research results on computational modelling in literature

As already mentioned, the educational reasons to include computational modelling in the
physics curriculum are varied. Therefore, different research has been conducted to investigate
the effects of computational modelling in schools and universities, ranging from aspects of
nature of science to systemic thinking and content knowledge. A brief overview of the
findings is given here.

There were two major course structure changes to introductory physics in the US in the
1980s that included computational modelling. The M.U.P.P.E.T. project was a curriculum
reform study that included computers to analyse real physical systems. By including student
programming in Pascal in introductory physics in the late 1980s, Redish and Wilson [11]
were able to change the curriculum in a way that professional skills, such as theoretical and
modelling skills, could be introduced at an earlier stage, which lead to a significant increase in
valuable research projects carried out by their students.

In contrast, the creators of the Workshop Physics decided not to include a programming
languages in their program in order concentrate on physics rather than computation. They
used the computer in various ways and restructured introductory physics completely, with the

10
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addition of mathematical modelling using spreadsheet software. There have been different
evaluations, showing that the conceptual understanding of mechanics was higher than in the
traditional approach [45] and the interest of students in studying physics improved with no
deterioration relative to the classical approach in the ability to solve classical textbook pro-
blems [46]. Due to the extensive changes made, it is unclear which part of the computational
modelling was most significant in the achievements of Workshop Physics.

According to Schecker, Klieme et al ([47], p. 21), the studies in the 1990s on model-building
systems carried out in Germany were less focussed on conveying subject-specific content
knowledge, rather on promoting skills like systemic thinking in general ([48]; [49], p. 337). While
some results from laboratory studies suggest that such software could be used to teach systemic
thinking in the classroom, field studies in various subjects [50] showed no such effects ([47],
p. 21).

Since then, modelling systems are primarily used to teach physical content knowledge in
schools. Bethge and Schecker conducted several months of testing in various physics courses
(grades 11 to 13) in Bremen [2, 31, 34, 51]. The only major study in Germany on the teaching
of physical content knowledge in schools is the project ‘Physics Learning with Modelling
Systems’, funded by the German Research Foundation (DFG), which was carried out between
1996 and 1999 at the University of Bremen and the Institute for Educational Research in
Bonn ([47], p. 3; [52], p. 230). In two advanced physics courses in the eleventh grade, the
STELLA modelling software was used during a fifth of the teaching time—mainly in small
groups working with computers. In contrast, the two advanced courses of the control group
had no computer use in their lessons. One hypothesis was that students who have worked with
the modelling software achieve a higher level of conceptual physical competence than their
traditionally taught peers. In particular, the assumption was that this higher competence
would translate into a higher ability for conceptual-qualitative and semi-quantitative analyses.
However, this hypothesis was not confirmed in the study ([47], p. 11; [53], p. 87).

A further hypothesis was that students who repeatedly used the modelling software in the
field of mechanics would be able to apply the problem-solving strategy learned through
modelling to new situations that do not necessarily require any modelling. To test this
hypothesis, experimental interviews were conducted, in which the students were asked to
describe and explain the motion of a cart in an experimental demonstration. The results
showed that the physically correct argumentation regarding mechanical forces was sig-
nificantly more frequent in the experimental group than in the control group ([47], p. 12; [54],
p- 73). However, the final survey at the end of the eleventh grade showed no significant
advantage of the experimental group in regard to non-mechanical forces, which were taught in
the second half of the eleventh grade ([47], p. 12; [54], p. 71 + 73). Encouragingly though,
the study confirmed the hypothesis that students in the experimental group use familiar
substructures like the standard model when modelling new tasks in mechanics ([47], p. 13).
However, the hypothesis that students in the experimental group have higher abilities in
systemic thinking in the domain of mechanics compared to their traditionally taught peers was
not backed by the study.

Overall, the DFG study has shown that the development of Newtonian ideas through
teaching with the STELLA model-building software is not improved to the extent that was
previously expected. Although semi-quantitative skills for describing and predicting motion
sequences were promoted, no differences to traditionally taught classes could be found with
regard to students’ basic understanding of key concepts of Newtonian mechanics and
equation-oriented quantitative tasks ([47], p. 25). According to this study, the effects on the
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development of systemic thinking are also limited to the semi-quantitative domain. Schecker,
Klieme et al therefore come to the following conclusion: ‘In the teaching concept investigated,
model-building systems have only proven to be effective to promote a better physical under-
standing, but not as a means of promoting overarching competences’ ([47], p. 25). While
graphic-oriented modelling software can therefore promote a general engagement with physics
and its methods, the effects of modelling on an increase in content knowledge remain limited
([55], p- 151). However, a strong argument in favour of using modelling software in mechanics
teaching is that it supports students in developing a Newtonian perspective on mechanical forces.

In a study by Sander [34] of 13 pre-service physics teachers in a German university, the
modelling software STELLA was used in connection with real experiments during eight two-
hour laboratory sessions during the students’ first semester. It was found that students tended
to discuss theoretical aspects more when working with the modelling software compared to
them just conducting experiments. It has to be noted, however, that the students discussed
even more theoretical aspects during the usual lab interview with their supervisor ([34], p.
121). Overall, the use of the modelling system promoted a conceptual-qualitative study of
physics ([34], p. 215). Modelling has been shown to be a promising way to consolidate and
deepen knowledge, but not to develop new conceptual knowledge. Although individual ideas
and strategies were pursued, the conscious formulation of hypotheses, for example, occurred
only to a limited extent. In contrast to original expectations, however, the intensive interaction
between modelling and experiment was not adequately stimulated. In the study, this is
explained by limitations of the software. In particular, it was criticised that it was not possible
to overlap the measured values and simulation results in the same window using the mod-
elling software STELLA. It is assumed that this limitation of the software particularly
favoured superficial comparisons regarding the curve progression ([34], p. 243).

Another study, in which six students in the experimental group worked on two experi-
ments with the STELLA modelling software, was carried out by Hucke and Fischer [56]. It
was shown that the students are more concerned with physical relationships when modelling,
but that there were only few changes in concept maps ([56], p. 252). A study by Tinker [33]
furthermore shows that it also plays a role where modelling software is used. In the study, the
modelling software STELLA was used in mathematics for students aged 14 and over to
introduce basic concepts of differential and integral calculus. The study reports difficulties in
dealing with the terms state and rate and in interpreting the resulting graphs, and therefore
concludes that STELLA is not an ideal tool for learning these concepts. For physics, the
author of the study expects problems with inflows and outflows that are controlled by valves,
since they have no concrete meaning in physics (what flows into the stock ‘velocity’?).

Using teacher-centred instruction, Wilhelm ([ 1], p. 64—83) used computational modelling
(with ‘VisEdit’) in several classes in grade eleven after a traditional mechanics course. It was
found that the students concentrated on specific motion functions, but did not know the basic
definitions v = Ax/At and a = Av/At. Moreover, they did not know how to deal with
multiple forces, since the equation F = m - a was interpreted as having only a single acting
force. In addition, they always indicated forces without the necessary sign to indicate their
direction. However, the use of the software was highly praised by the students. Moreover, a
survey showed that they were more likely to think that physics had something to do with their
everyday life. Significant changes could also be seen in the concept maps that students were
asked to draw before and after the teaching unit. Before the teaching unit, velocity was the
primary physical quantity for the students and only a few of them were able to correctly state
what quantities determine the acceleration. In addition, one third wrongly stated that the
acceleration and mass had an effect on the force, which was probably wrongly inferred from
the formula F = m - a. After the teaching unit, acceleration became the key quantity in the
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students’ concept maps. The ‘sum of the acting forces’ was also important and the students
stated much more frequently that forces and mass determine acceleration. Based on these
findings, it can be assumed that the students’ developed a deeper structural understanding of
dynamics. In another study ([1], p. 211-215), in which computational modelling was used in
mechanics lessons in grade eleven alongside the content, similar positive results were
reported.

The Modeling Instruction curriculum is a research-based program for high school science
education reform supported by the National Science Foundation in the United States that tried
to make school physics more student-centred while using the computer as an essential sci-
entific tool [57]. Scientifically testing the limits of physical models was a focus of the
curriculum. Data on 20 000 students showed that the emphasis on models and its focus on
inquiry helped the students to acquire a better understanding of physics than in the traditional
approach [57], also encouraged them in participating in class [58], improved their perception
of the nature of science [59] and promoted their self-efficacy [60]. While numerical com-
putation and computational modelling was originally not part of the curriculum Caballero
et al successfully included real-world problems in the framework by using ‘VPython’ with
ninth-graders [40]. They found that high school students are able to engage in computational
thinking in the context of physics and are capable of using numerical computation. Due to the
time students had to spend to learn and relearn ‘VPython’ they recommend a tighter inte-
gration in each modelling cycle of the Modeling Instruction curriculum and plan to provide
more scaffolding. They also found that the students’ success was closely tied to their ability to
connect physics and computation knowledge [61], meaning that students that presented both
an iterative-local and a force-causal view in the interviews were most likely to succeed in
creating a working model. One third of the students were able to construct a model of a new
physical system and thus complete the programming assignment. It remains to be seen if a
more scaffolded code and better integration into the course lead to a higher rate of success for
high school students.

In another study with 1357 students in university introductory physics also using the
‘VPython’ environment in 2012, where 11 out of the 13 mechanics laboratories included a
computational modelling activity and students additionally solved 13 computational model-
ling homework problems, Caballero et al found that after completing said tasks 60.4% of all
students were able to model a novel problem successfully [62]. A detailed cluster analysis
additionally showed that the most common problems while creating the model were related to
calculating the net force acting on the object. In a different study of Caballero and Pollock
students carried out self-chosen modelling projects with Mathematica and remarked that the
transition from physics on paper to physics on a computer was very important for their
understanding of physics [63]. Additionally, most students saw the computational tasks as a
boost for their confidence and motivation.

Based on these positive results, Irving et al developed a practice focused learning
environment (P) for university students structured around computational modelling [64] that
is built on matter and interactions (M and I) [65]. P? introduces modern problem-solving tools
and focuses on core fundamental principles instead of certain seemingly isolated formulas.
The course consists of 30 complex real-world problems. Computational modelling is used in
seven of them. Their first results showed an average normalised gain of 0.60 in the FMCE test
for the P*> environment, while traditional introductory physics lead to an average normalised
gain of 0.10-0.35. They also reported a slightly positive shift in CLASS-scores, which
measures the cognitive attitudes towards nature of science. It is also used as an indicator
whether students like physics. CLASS-scores normally tend to go down during other intro-
ductory physics courses [64]. Other universities successfully used ‘Modellus’ to create a new
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course based on computational modelling [66]. The use of ‘Modellus’ also improved the
performance in the interpretation of kinematics graphs [67]. Burke and Atherton designed a
project-based computational physics course that was focused on expert practice using
Mathematica and Python and analysed the initial implementation. They found that their
students drastically improved in carrying out these projects during the semester and rated the
course highly [68]. Similarly, in an interview study carried out by Hawkins et al most of the
participating students held the opinion that their use of ‘“VPython’ to model three different
problems helped them to learn physics [69]. Furthermore, they structured students’ statements
regarding the theme ‘Computation helps to Learn Physics’ into categories. The most popular
statements were that the practice of computation (‘thinking like a physicist’) helps to learn
physics and computation helps to build a conceptual understanding of physics.

Work from Benacka investigates the motivating effects of using spreadsheet modelling of
real-world physics problems [70, 71]. For example, 97% of high school students that
modelled one of three mechanics problems, that are normally not part of high school physics,
with ‘Excel’ using the Euler Method found the lesson very interesting [72].

5. Recommendations for implementing computational modelling

As reported, there have been many different attempts to implement computational modelling
in schools and universities. Based on the research results it is a reasonable assumption to
make, that computational modelling can be used to contribute to an authentic and successful
physics curriculum.

Due to the vastly different goals that are pursued in the different settings where com-
putational modelling can be implemented (i.e. high school physics and introductory physics
in university) there is no one optimal solution for computer-based modelling work in physics
classrooms.

Regarding the software, research shows that students in secondary schools have more
difficulties using open programming languages than university students and the time to learn
to program might not always be available. Therefore, easy-to-use software is needed, which
enables high school students to focus on physics rather than computing. Therefore, it seems
reasonable to recommend software that does not require the knowledge of a computer lan-
guage [3]. Although there is software that tries to expand on the shortcomings of older
programs, there are no recent studies of their usability for school pupils. In contrast, at a
university level, programming environments like ‘VPython’ have proven to be successful,
specifically in introductory physics. Furthermore, as programming skills are becoming
increasingly important for further study in physics and engineering, this supports the
implementation of them in the early undergraduate curriculum.

Generally, there seems to be the consensus that computational modelling is a useful tool
to tackle authentic and complex problems. Therefore, it is necessary to not only include the
computer in traditional physics classes but to restructure the curriculum to make optimal use
of the possibilities of computational modelling. Then, it is possible to improve conceptual and
content knowledge of students and also to create an interesting physics curriculum that
highlights aspects of nature of science and how modern scientists work.

6. Desiderata for further research

While there have been some curriculum changes, especially in universities, using computa-
tional modelling that have already produced promising results, the work yet to be done is
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twofold. Firstly, more research in secondary schools is necessary. There are very few recent
research projects with school pupils and, due to the different goals and constraints, research
results in universities are only partly applicable to secondary schools. The existing studies
highlighted some of the problems that exist using modelling systems in schools and partly
explained the rather small effects with some shortcomings of the then existing software.
Research is therefore needed to find out if recent software, which tries to improve upon the
reported difficulties, is better suited to be used by pupils in schools.

Secondly, there is a need to understand how and why students learn while using the
computer for modelling physical systems. Though there have been quite a few studies that
showed some results of the use of the computer for modelling a physical system, it is not yet
known how exactly the interaction between student and computer works. Conceptual
knowledge of physics, a set of mathematical tools and knowledge about the computational
algorithms all play an important role in computational modelling. It is of great interest to find
out how these parts interact, while the student learns [63]. This knowledge would help to
better design programs and curricula that are well suited for their respective audiences.

7. Summary

Computational modelling is the construction of a network of physical quantities using the
computer. It therefore serves a different purpose in teaching than the usage of ready-to-use
animations. Computational modelling itself is an old idea in mechanics teaching, however the
way it is implemented in physics lessons has changed. These changes were partly driven by
research that suggested students to be more active in their learning process. The advent of
new software also made better implementations of computational modelling in physics classes
possible. Research results on computational modelling show that it can promote the under-
standing of Newtonian mechanics, although some far-reaching expectations have not been
fulfilled, especially in secondary schools. While some studies came to the conclusion that
students better understand the relationships of physical quantities in Newtonian mechanics
through computational modelling, it remains unclear, if the understanding of the physical
quantities themselves can also improve. Generally, it seems to be clear that computation alone
does not guarantee a better learning experience for students.

In particular, different programs have different strengths and weaknesses. Programming
environments like ‘VPython’ seem to be a good choice for university students, whereas
programs designed for secondary schools try to reduce requirements needed to use said
software. Further research is therefore necessary to analyse whether improved software,
which are more intuitive to use and allow for example comparisons with measurement data
such as video analysis, can better foster learning in the physics classroom.
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