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1 Introduction

An interesting extension of supersymmetric hybrid inflation [1–5] is tribrid inflation [6–10]
where a matter field can be employed to realize inflation. One of the simplest candidates
for tribrid (matter) inflation could be a sneutrino, the superpartner of the right handed
neutrino. An early model of sneutrino inflation was proposed in [11] as a chaotic model
of inflation. [Also see [12, 13] where the various predictions of this model were compared
with the available experimental data.] This model, however, is plagued with the common
problems of realizing chaotic inflation in a supergravity framework [14]. The first model of
sneutrino tribrid inflation was introduced by in [6]. This framework, however, is not suited
for realizing inflation in a grand unified theory (GUT) model since the gauge symmetry
associated with the waterfall GUT Higgs field breaks down at the end of inflation, and so
the monopole problem is not resolved. In addition, a domain wall problem arises from the
spontaneous breaking of a Z4 symmetry which is introduced to constrain the structure of the
superpotential. In order to resolve this problem higher order Z4 symmetry breaking terms
are introduced. For a general discussion of tribrid inflation see [9, 15], where three types of
tribrid inflation are identified, depending on terms of different origin dominating the scalar
potential. From these scenarios, only pseudosmooth tribrid inflation [9] is well suited for
GUTs with the potential monopole problem. In pseudosmooth tribrid inflation, a shifted
smooth track is employed for inflation with the GUT symmetry broken during inflation, such
that the monopoles produced during inflation are inflated away.

In this paper we study the possibility of realizing sneutrino tribrid inflation in SU(5)
GUT. A pseudosmooth tribrid inflation model employing a Z5 symmetry is particularly
suited for the SU(5) case. A non-minimal Kähler potential is required for the realization of
this model. Including a supergravity mass term for the waterfall GUT Higgs field a shifted
smooth track, suitable for inflation, can be generated. On this track the SU(5)×Z5 symmetry
is broken and, therefore, any defects produced during inflation are inflated away. Another
common problem in an R-symmetric SU(5) GUT is the presence of light triplet and octet
fields [16, 17], so that a successful gauge coupling unification in minimal supersymmetric
standard model (MSSM) is spoiled. According to a no-go theorem discussed in [18, 19],
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this is a generic problem of R-symmetric GUTs based on a simple group. This problem is,
however, circumvented in our model with the help of additional vector-like families and as we
shall show, a successful gauge coupling unification is achieved. Moreover, assuming relatively
large squarks/sleptons masses of order 10 TeV or so, the dimension five proton decay rate is
suppressed in accordance with the experimental bound [20].

An attractive feature of sneutrino tribrid inflation is the realization of reheat temper-
ature as low as 106 GeV. This feature naturally avoids the gravitino problem usually en-
countered in supergravity models of inflation. A model of non-thermal leptogenesis [21] is
employed in order to explain the observed baryon asymmetry. The numerical predictions of
the various inflationary observables are found to be perfect agreement with the latest Planck
2018 results [22, 23]. In particular, a tensor to scalar ratio r ≈ 0.0027 can be obtained, and
this hopefully can be tested in future experiments [24, 25].

2 Superpotential for tribrid inflation in SU(5) × Z5 model

The minimal supersymmetric standard model (MSSM) matter content with right handed
neutrinos are embedded into 5̄i, 10i and 1i dimensional representations of supersymmetric
SU(5) as

5̄i = Dc
i (3̄, 1, 1/3) + Li(1, 2,−1/2),

10i = Qi(3, 2, 1/6) + U ci (3̄, 1,−2/3) + Eci (1, 1, 1),

1i = Ni = νci (1, 1, 0), (2.1)

where i is the generation index (i = 1, 2, 3) and Ni = νci represents the right handed neutrino
superfield. The GUT Higgs superfield, 24H , is responsible for the breaking of SU(5) into
MSSM whereas the electroweak Higgs doublets (Hu, Hd) contained in the 5H and 5̄H Higgs
superfields trigger the electroweak breaking. The decomposition of minimal Higgs sector in
terms of MSSM superfields is given by

5H = HT (3, 1,−1/3) +Hu(1, 2, 1/2),

5H = HT (3̄, 1, 1/3) +Hd(1, 2,−1/2),

24H = H24(1, 1, 0) +WH(1, 3, 0) +GH(8, 1, 0) +XH(3, 2,−5/6) +XH(3, 2, 5/6). (2.2)

The desired superpotential of an R-symmetric SU(5) × Z5 model, including a gauge-
singlet superfield S, can be written as

W = κS

(
µ2 +

Tr(245
H)

mP
3

+ α
Tr(242

H) Tr(243
H)

mP
3

)
− βij

Tr(243
H)

mP
2

NiNj

+λ1
Tr(242

H)

mP
5H5H +

λ2

mP
5H242

H5H

+y
(u)
ij 10i10j5H + y

(d,e)
ij 10i5j5H +

λνij
m2

P

Tr(242
H)Ni5j5H +

λ̃νij
m2

P

Ni5j242
H5H , (2.3)

where µ is a superheavy mass, mP = 2.43 × 1018 GeV is the reduced Planck mass and all
other couplings (κ, α, βij , λ1, λ2, · · · ) are dimensionless. The charge assignments of the various
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superfields under U(1)R and Z5 symmetries are respectively given by

R(S, 24H , 5H , 5̄H , 10i, 5̄i, Ni) =

(
1, 0,

2

5
,
3

5
,

3

10
,

1

10
,
1

2

)
,

q5(S, 24H , Ni, 5H , 5̄H , 10i, 5̄i) = (0, 1, 1, 3, 0, 1, 4), (2.4)

with R(W ) = 1. The terms in the first line of the superpotential W are relevant for tribrid
inflation which is discussed below in detail. Owing to SU(5) gauge invariance of the super-
potential it is required to align Higgs 24H superfield along the standard model (SM) gauge
singlet direction, H24, as

24H −→ H24 =
h√
15

(1, 1, 1,−3/2,−3/2). (2.5)

The global supersymmetric minimum, therefore, occurs at

〈
h5
〉
≡M5 =

8
√

15(
13
30 + α

)µ2m3
P, 〈S〉 = 0, 〈Ni〉 = 0, (2.6)

for the relevant superfields. The importance of the various terms in the superpotential can
now be described conveniently in terms of h and its vacuum expectation value M .

The terms in the second line of eq. (2.3),

W ⊃ h2

mP

((
λ1

2
+
λ2

15

)
HTHT +

(
λ1

2
+

3λ2

20

)
HuHd

)
⊃ µ2HuHd + µ3HTHT , (2.7)

are relevant for the doublet-triplet problem. Here, the mass parameter, µ2, is just the µ-
parameter of MSSM which is usually taken to be of electroweak scale with λ1 ' −3λ2/10. On
the other hand, the mass parameter, µ3 ' −λ1(M/mP)M/12, is taken to be order GUT scale
in order to suppress dimension-5 proton decay amplitude mediated by the color triplet Higgs
pair. This further requires the squark/slepton masses to be & 10 TeV. Therefore, the doublet-

triplet problem is solved, as usual, by fine tuning. Lastly, the couplings, y
(u)
ij , y

(d,e)
ij , λ

(ν)
ij , λ̃

(ν)
ij ,

in the third line of eq. (2.3) include the quark and lepton Yukawa couplings. In order to obtain
the observed tiny neutrino masses, Majorana mass terms for the right handed neutrinos are
required. Even though an explicit Majorana mass term is not allowed due to Z5 symmetry,
the spontaneous breaking of SU(5) gauge symmetry generates an effective Majorana mass
term, (1/2)MR

ijNiNj , with

MR
ij =

βij

2
√

15

(
M

mP

)2

M, (2.8)

from the last term in the first line of eq. (2.3). Taking Majorana masses to be order 1013 GeV
the light neutrino masses are naturally explained via type-I seesaw mechanism. As we discuss
below, this term also plays an important role in realizing sneutrino inflation and subsequent
reheating.
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3 Inflationary scalar potential

To discuss inflation we consider the following superpotential terms from eq. (2.3),

W ⊃ κS

(
µ2 +

Tr(245
h)

mP
3

+ α
Tr(243

h) Tr(242
h)

mP
3

)
− βij

Tr(243
h)

mP
2
NiNj ,

⊃ µ2S

(
1−

(
h

M

)5
)

+ β(µ2mP)

(
h

M

)3(N
M

)2

, (3.1)

where β = 2β11
( 13
30

+α)
, N ≡ N1 and to achieve M � mP with a natural value of κ we set κ = 1.

With smaller values of κ, the value of M becomes Planckian. As there is no contribution from
the relevant fields in the D-term scalar potential, the global SUSY scalar potential obtained
from the F -term is given by,

VF = µ4

(∣∣∣∣∣1−
(
h

M

)5
∣∣∣∣∣
2

+

∣∣∣∣3β (mP

M

)(N2h2

M4

)
− 5Sh4

M5

∣∣∣∣2 +

∣∣∣∣2β (mP

M

)(Nh3

M4

)∣∣∣∣2
)
, (3.2)

where, VF = |∂W/∂zi|2, with zi ∈ (S, h,N). To keep the discussion simple we assume that
the phases of the fields have been stabilized before the start of observable inflation and,
therefore, the above potential reduces to the following form,

VF = µ4

((
1− z5

)2
+
(

3β
(mP

M

)
y2z2 − 5xz4

)2
+
(

2β
(mP

M

)
yz3
)2
)
, (3.3)

where,

x =
|S|
M
, y =

|N |
M

, z =
|h|
M
. (3.4)

Next we aim to find an effective single field form of the above potential, and to achieve
this goal we need to include supergravity (SUGRA) corrections which are obtained from the
following formula,

VF = eK/m
2
P

(
K−1
ij DziWDz∗j

W ∗ − 3m−2
P |W |

2
)
, (3.5)

where

DziW =
∂W

∂zi
+

1

m2
P

∂K

∂zi
W, Kij =

∂2K

∂zi∂z∗j
, Dz∗j

W ∗ = (DziW )∗. (3.6)

Here, we consider the following power-law expansion of the Kähler potential

K = |S|2 + |N |2 + Tr |24H |2

+κS
|S|4

4m2
P

+ κN
|N |4

4m2
P

+ κh
(Tr |24H |2)2

4m2
P

+κSN
|S|2|N |2

m2
P

+ κSh
|S|2 Tr |24H |2

m2
P

+ κNh
|N |2 Tr |24H |2

m2
P

· · · . (3.7)
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Including only the relevant SUGRA correction terms, the scalar potential as a function of
the three fields is given by

V3(x, y, z) = µ4

((
1− z5

)2
+
(

3β
(mP

M

)
y2z2 − 5xz4

)2
+
(

2β
(mP

M

)
yz3
)2

−κS
(
M

mP

)2

x2 + κh

(
M

mP

)2

z2 + γ

(
M

mP

)2

y2 + δ

(
M

mP

)4

y4 + · · ·

)
, (3.8)

where γ = 1− κSN and δ = 1
2 + κ2

SN − κSN + 1
4κN .

Stabilization of S (x = S/M) field

In order to obtain an effective single-field potential we first minimize the three-field potential
V3 with respect to x. The potential minimum occurs at,

xmin =
15y2z6βm3

P

25m2
Pz

8 −M2κS
, (3.9)

with β > 0 and κS < 0. The mass squared of the S field, m2
S , in term of Hubble mass

squared, H2 ' µ4

3m2
P

, is given by

m2
S/H

2 '
(

75
(mP

M

)2
z8 − 3κS

)
. (3.10)

Therefore, the S field attains Hubble size mass for κS . −1
3 and quickly settles down to its

minimum. This leads us to the following effective two-field potential,

V2(y, z) ≡ V3(xmin, y, z)

= µ4

((
1− z5

)2
+
(

3β
(mP

M

)
y2z2 − 5xminz

4
)2

+
(

2β
(mP

M

)
yz3
)2

−κS
(
M

mP

)2

x2
min + κh

(
M

mP

)2

z2 + γ

(
M

mP

)2

y2 + δ

(
M

mP

)4

y4 + · · ·

)
,

(3.11)

where xmin is given by eq. (3.9). This two-field potential is displayed in figure 1 for values
of the various parameters given in the caption. A smooth trajectory suitable for inflation is
clearly visible in this figure. For greater clarity a closer look at this trajectory is displayed
in figure 2. The smooth trajectory here actually ends at a waterfall point which is shown
by a red dot in figure 2. This is the reason why inflation along this trajectory is termed as
pseudosmooth inflation [9]. In this model the sneutrino N field actually plays the role of the
inflaton whereas variation in the z field remains negligible during inflation.

Waterfall critical point

In pseudosmooth tribrid model inflation ends by a waterfall transition whereas in standard
smooth hybrid model it ends by a slow-roll breaking with no waterfall along the complete
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Figure 1. The normalized two-field potential V2/µ
4 as a function of z = h

M and y = N
M with

x = S
M = xmin, κh = −1, κS = −1/3, γ = δ = 0 and M = 1017 GeV. The zoom-in plot of

pseudosmooth inflationary valley with z 6= 0 is shown in figure 2.

●●●
●

●
●

●
●

●

0

z

V
2
μ
4

Figure 2. The normalized two-field potential V2/µ
4 as a function of z = h

M for various values of

y = N
M . We fix γ = δ = 0, κS = − 1

3 , κh = −1 and M = 1× 1017 GeV.

smooth trajectory. The waterfall critical point (zc, yc) can be obtained from the following
conditions,

∂V2(zc, yc)

∂zc
=
∂2V2(zc, yc)

∂z2
c

= 0. (3.12)

Applying these conditions we obtain the following critical point,

yc =

(
5

2
5
2

) 1
6

 (−κh)
1
3

3β2
(
M
mP

)4/3


1
4 (

M

mP

)
, zc =

(
2

5

) 1
3

(
(−κh)

(
M

mP

)2
) 1

3

, (3.13)

which also defines the condition for the end of inflation.
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Effective single-field potential

Finally, minimizing V2 with respect to field z gives us the following approximate form of the
effective single-field potential,

V (y) ≡ V2(y, zmin) ' µ4

(
1− 1

18y4

(
M

mP

)6(κh
β

)2

+ γ

(
M

mP

)2

y2 + δ

(
M

mP

)4

y4

)
,

(3.14)
along the pseudosmooth trajectory approximately given by

zmin '
1

3

√
M4(−κh)

2β2m4
Py

4
. (3.15)

In the leading order slow-roll approximation defined below, the prediction for the various
inflationary parameters can be calculated by employing the above form of the potential.

As natural values of the parameters are mostly involved in our analysis with field values
of order GUT scale, a quick stabilization of all three phases is generally expected owing to
their large masses. In the remaining 3-dimensional field space, any local minimum trajec-
tory, if present, is expected to be isolated from the pseudosmooth trajectory and the global
susy minimum. Any impact on inflationary predictions could be from the possible quantum
tunneling transitions among these minima. A full analysis of estimating this impact on the
model predictions can be quite cumbersome and lies beyond the scope of the current paper.

We have explicitly checked that the radiative corrections are negligibly small in our
model. To see it with an order of magnitude estimate, we consider the following values of
mass squared,

4

(−κh)±

√
(−κh)2 +

2κ3
h

9β2y6

(
M

mP

)4
 µ4

m2
P

, 2(−κh)
µ4

m2
P

, 2(−κh)
µ4

m2
P

, (3.16)

for the inflaton-Higgs system in the limit x = xmin � 1 and z = zmin � 1. With an
approppriate choice of renormalization scale, the radiative correction is proportional to
(−κh)2(µ/mP)4µ4. As the quadratic mass term in the above potential plays equally im-
portant role in realizing inflation along with the other terms, the radiative correction can
be ignored compared to this term for γ � (−κh)2(µ/mP)2(µ/M)2 with N = M . This con-
straint is naturally satisfied in our numerical estimates. [Also see [15] for a discussion of the
smallness of radiative corrections in a typical model of tribrid inflation.]

The suppression of soft SUSY breaking terms with TeV scale soft masses is a common
feature of tribrid inflation. In our model this can be seen with the following argument. As
both xmin and zmin are very small during the bulk of the inflationary phase (10−10 . xmin .
10−5 and 0.005 . zmin . 0.05), both W and zi∂W/∂zi ∼ O(W ) turn out to be negligibly
small. Hence, the soft SUSY breaking A-term is negligible. Furthermore, the soft mass term
m2

soft|N |2 can be ignored compared to the quadratic mass term in the above potential for
msoft �

√
γµ(µ/mP). With µ . (1013–1016) GeV, we obtain a soft mass msoft �

√
γ(105–

1011) TeV. Thus, the approximation of ignoring the soft SUSY breaking terms throughout
our calculations is justified.
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Inflationary slow-roll parameters

The slow-roll parameters are given below

ε(y) =
1

4

(mP

M

)2
(
∂yV

V

)2

, η(y) =
1

2

(mP

M

)2
(
∂2
yV

V

)
, ξ2(y) =

1

4

(mP

M

)4
(
∂yV ∂

3
yV

V 2

)
,

(3.17)
where the subscript y on ∂ denotes the derivative with respect to y. In the leading order
slow-roll approximation, with (ε, η, ξ2) � 1, the tensor-to-scalar ratio r, the scalar spectral
index ns and the running of the scalar spectral index dns/dlnk are given by

ns ' 1 + 2η(y0)− 6ε(y0), r ' 16ε(y0), (3.18)

dns
d ln k

' 16ε(y0)η(y0)− 24ε2(y0)− 2ξ2(y0), (3.19)

where y0 is the field value at the pivot scale which is taken to be at k0 = 0.05 Mpc−1. The
amplitude of curvature perturbation is given by

As(k0) =
1

24π2

(
V (y)/m4

P

ε(y)

)∣∣∣∣
y=y0

, (3.20)

where As(k0) = 2.142× 10−9 is the Planck normalization at k0 = 0.05 Mpc−1 [22, 23]. This
constraint can be used to express µ in terms of r,

µ '
(

3As(k0)π2r

2

) 1
4

mP. (3.21)

The number of efolds, ∆N , from the pivot scale to the end of inflation is given by

∆N = 2

(
M

mP

)2 ∫ y0

ye

V

∂yV
dy, (3.22)

where the field value at the end of inflation is ye = yc. Assuming standard thermal history
we express the number of e-folds, ∆N , in terms of the reheat temperature, Tr, as

∆N ' 47 +
1

3
ln

(
Tr

106 GeV

)
+

2

3
ln
( µ

1013 GeV

)
. (3.23)

In estimating the numerical predictions of the various inflationary parameters we set Tr =
106 GeV. The realization of such a low reheat temperature and related non-thermal leptoge-
nesis is justified after the discussion of numerical results.

4 Discussion of numerical results

The numerical predictions of inflationary parameters are estimated by fixing the scalar spec-
tral index at its central value, ns = 0.968, and by setting ye = yc = 1. Using yc = 1 in
eq. (3.13) the parameter β can be written in terms of the other parameters as,

β =

(
5

2
5
2

) 1
3

 (−κh)
1
3

3
(
M
mP

)4/3


1
2 (

M

mP

)2

. (4.1)
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Figure 3. The number of e-folds ∆N (left panel) and the µ (right panel) versus the coupling γ.
We set the scalar spectral index, ns = 0.968 (central value of Planck’s data), the end of inflation,
ye = Ne

M = 1, and the reheat temperature, Tr = 106 GeV.

We fix the reheat temperature to its lowest possible value, i.e. Tr = 106 GeV, allowed by the
successful non-thermal leptogenesis, as discussed in section 5 below. This value avoids the
gravitino problem for a relatively wider range of gravitino mass [26–28]. We further impose
N0 ≤ mP as required by the reliability of supergravity corrections.

To identify a relatively natural region of parametric space we restrict |γ| & 10−4, |δ| . 1
and −1 ≤ κh ≤ −0.1. We require κh < 0 in order to generate a smooth inflationary track
while a successful realization of inflation further requires δ < 0 and γ > 0. Assuming
α � 13/30, the parameter µ and tensor to scalar ratio, r, can be directly related to M , via
eqs. (2.6) and (3.21), as

µ '

√
13

240
√

15

(
M

mP

)5/2

mP, r '
(

1

2× 10−4

)(
M

mP

)10

. (4.2)

From eq. (3.23), we can also write down µ in terms of ∆N as µ/1013 GeV = e3(∆N−47)/2 with
Tr = 106 GeV. After solving eq. (3.22) and eq. (3.23) numerically with the above mentioned
constraints we obtain ∆N ' 47.6–51.5 as shown in figure 3. This range of ∆N corresponds
to the range 2 . µ/1013 GeV . 744. This yields, via the above equations, 5.4 × 1016 .
M/GeV . 5.6× 1017 and 10−13 . r . 2.4× 10−3. Moreover, the approximate upper bound
M . 5.6 × 1017 with N0 = mP translates into the upper bound y0 . 4. These approximate
estimates are compatible with the exact numerical results displayed in figure 4.

The explicit dependence of γ and δ in terms of the remaining parameters can be obtained
from eq. (3.17) as

γ ' 1

4
(1− ns) +

3
√
r

8y0

(mP

M

)
+

8κh
3y6

0

(
−2κh

5

(
M

mP

)2
) 2

3

, (4.3)

δ ' (ns − 1)

8y2
0

(mP

M

)2
−
√
r

16y3
0

(mP

M

)3
− κh
y8

0

(
−2κh

5

(mP

M

)) 2
3

. (4.4)

For relatively large values of r only the first two terms in the above expressions are important.
This leads to the weak dependence of γ and δ on κh as depicted in figures 3–5. For instance,
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M = 1 and the reheat temperature Tr = 106 GeV.

with N0 = mP we obtain

γ ' 1

4
(1− ns) +

3
√
r

8
' 0.026, δ ' −(1− ns)

8
−
√
r

16
' −0.007. (4.5)

This again is a very good approximation of the more precise numerical estimates shown in
figures 3–5.

In the small r limit the second terms in eqs. (4.3) and (4.4) become negligible. The last
term in eq. (4.3) becomes comparable to the first term while making γ small compared to
(1− ns)/4. This fact allows us to write y0 and M in terms of δ and κh as

y0 '
(

27(−κh)5

33 × 52(ns − 1)δ2

) 1
22

, M ' 1

4δ
3
2

(
3

3
2 × 5((ns − 1)δ2)6

29(−κh)
5
2

) 1
11

mP, (4.6)

for γ � (1 − ns)/4. Using these expressions with y0 ' 1 and −0.8 . κh . −0.5 we obtain
−1.4 . δ . −0.4 and 6.5 × 1016 GeV . M . 1.2 × 1017GeV, which is in good agreement
with our numerical estimates, as shown in figures 4–6. Note that in these figures the lower
bounds on M and r are very sensitive to the upper bound on |δ|. For example, increasing
the value of |δ| above unity, represented by the cyan curve, can further reduce the lower
bound on M and r as shown by the δ = −2 black curve. Moreover, the bound on M with
−1 ≤ κh ≤ −0.1 gives the range, 10−3 . β . 10−2, via eq. (4.1).

Finally, the running of spectral index dns
d ln k can be described in terms of r, ns and other

parameters as

αs ≡
dns
d ln k

' r (ns − 1)

2
− 3

32
r2− 2

√
r

(
22/351/3(−κh)5/3

y7
0

(
M

mP

)1/3

+ 3y0δ

(
M

mP

))
. (4.7)

The largest possible value of dns
d ln k . 2× 10−3 appears in the large r limit (see figure 6). This

shows that our results are perfectly consistent with the latest Planck data results.

5 Reheating and non-thermal leptogenesis

The reheating in the current model proceeds in analogy with the Z4 sneutrino model [6], and
the observed baryon asymmetry is explained by nonthermal leptogenesis [21]. The inflaton
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value of Planck’s data), the end of inflation ye = Ne

M = 1 and the reheat temperature Tr = 106 GeV.

N1, being the lightest sneutrino field, is assumed to play a dominant role in reheating after
inflation and subsequent leptogenesis. This is possible if the Higgs field decays earlier than
the inflaton as discussed below. From eq. (2.8), the mass of the singlet sneutrino inflaton N1

is given by

M I
R =

(
β11

2
√

15

)
M3

m2
P

=

(
13

8y2
c

)(
(−κh)

1
3

34 × 2
5
3 × 5

7
3

) 1
2 ( M

mP

)10/3

M. (5.1)

The inflaton decays through the effective Yukawa coupling,

λν1j
Tr(242

h)

m2
P

N15j5h +
λ̃ν1j
m2

P

N15j242
h5h ⊃ Y ν

1jN1LjHu, (5.2)

into sleptons and Higgs or into lepton and Higgsino with a decay width given by

ΓN1 '
y2
ν

4π
M I
R =

y2
ν

4π

(
13

8y2
c

)(
(−κh)

1
3

34 × 2
5
3 × 5

7
3

) 1
2 ( M

mP

)10/3

M, (5.3)
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where,

y2
ν ≡ (YνY

†
ν )11, Y ν

ij =

(
λνij
2

+
λ̃νij
15

)(
M

mP

)2

. (5.4)

Compared to the Z4 sneutrino tribrid model, we have an extra suppression factor
(M/mP)2 which can make the fundamental Yukawa couplings (λνij , λ̃

ν
ij) relatively natural.

Assuming the Higgs decay rate to be larger than the inflaton decay rate we obtain the fol-
lowing bound on yν ,

y2
ν �

(
M

(2,3)
R

M

)(
M

(2,3)
R

M I
R

)
, (5.5)

where M
(2,3)
R are the masses of the heavier neutrinos N(2,3). This bound is easily satisfied in

our model for the numerical data displayed in figure 7. After inflation, the universe reheats
via inflaton decay to a temperature,

Tr '
(

90

g∗π2

) 1
4 √

ΓN1mP, (5.6)

where g∗ = 228.75.
The lepton asymmetry generated by the inflaton decay can be partially converted into

the observed baryon asymmetry through sphaleron processes. We assume M I
R � Tr in order

to suppress the washout factor of lepton asymmetry. The baryon asymmetry can be estimated
in terms of the lepton asymmetry factor εL as

nB
nγ
' −1.84 εL

Tr

M I
R

, (5.7)

where εL satisfies the following bound,

(−εL) .
3

8π

√
∆m2

31M
I
R

〈Hu〉2
, (5.8)

assuming a hierarchical structure of neutrino masses. Here, the atmospheric neutrino mass
squared difference is ∆m2

31 ≈ 2.6 × 10−3 eV2 and 〈Hu〉 = 174 GeV in the large tanβ limit.
Finally, the bound on εL translates into the bound on reheat temperature Tr & 106 GeV for
the observed baryon-to-photon ratio nB/nγ = (6.10 ± 0.04) × 10−10 [29]. Thus, the reheat
temperature is small enough to avoid the gravitino problem. We set Tr = 106 GeV in all
numerical work and obtain 2.8× 109 .M I

R/GeV . 4× 1013 and 6.3× 10−10 . yν . 10−7, as
depicted in the figure 7.

6 Gauge coupling unification in R-symmetric SU(5)

According to the no-go theorem mentioned in [18, 19], we obtain ‘massless’ fields in any
R-symmetric grand unified theory (GUT) based on a simple gauge group after spontaneous
breaking of the GUT symmetry. These fields, however, can acquire TeV scale masses from
the soft SUSY breaking terms. In our R-symmetric SU(5) model we obtain light (∼TeV)
octet and triplet components from the 24H Higgs field [16, 17]. The presence of these light
fields, in turn, ruins the successful gauge coupling unification feature of MSSM. To circumvent
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Figure 7. The mass of the (s)neutrino inflaton M I
R (left panel) and the neutrino Yukawa coupling

yν (right panel) versus the coupling γ. We set the scalar spectral index ns = 0.968 (central value of
Planck’s data), the end of inflation ye = Ne

M = 1 and the reheat temperature Tr = 106 GeV.

this problem we add copies of vectorlike families 5 + 5̄ + 10 + 1̄0. This does not solve the
problem of gauge coupling unification unless we allow mass splitting within their MSSM field
components,

5 + 5 =
(
D +D,L+ L

)
, 10 + 10 =

(
Q+Q,U + U,E + E

)
. (6.1)

This splitting is achieved in a way similar to the doublet-triplet splitting but with far less
fine tuning. With additional vectorlike families we obtain the following mass terms in the
superpotential,

W ⊃
λ

(10,10)
ij

mP
Tr(242

h) Tr(10i10j) +
λ̃

(10,10)
ij

mP
Tr(10i242

h10j) (6.2)

+
λ

(5,5)
ij

mP
Tr(242

h) Tr(5i5j) +
λ̃

(5,5)
ij

mP
Tr(5i242

h5j), (6.3)

⊃ MQQQ+MUUU +MEEE +MDDD +MLLL, (6.4)

with Z5-charge, q5

(
5 5, 10 10

)
= (3, 3), and R-charge, R

(
5 5, 10 10

)
= (1, 1). For simplicity,

assuming λij = δijλ and λ̃ij = δij λ̃, the masses of the MSSM field components of a vectorlike
family are given by

ME =
30λ(10,10) + 9λ̃(10,10)

30

(
M2

mP

)
, (6.5)

MQ =
60λ(10,10) + 13λ̃(10,10)

30

(
M2

mP

)
, (6.6)

MU =
15λ(10,10) + 2λ̃(10,10)

30

(
M2

mP

)
, (6.7)

MD =
15λ(5,5) + 2λ̃(5,5)

30

(
M2

mP

)
, (6.8)

ML =
20λ(5,5) + 6λ̃(5,5)

40

(
M2

mP

)
. (6.9)
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Figure 8. The evolution of the inverse gauge couplings versus the energy scale Λ in R-symmetric
SU(5) model, with two (left-panel) and three (right-panel) generations of vectorlike families (5 +
5 + 10 + 10). The effective SUSY breaking scale is set at MS = 10 TeV. The masses of vectorlike
MSSM components are taken as MQ = MU = 1016 GeV, MD = 1013.5 GeV, ML = 107.6 GeV,
ME = 104.8 GeV (left-panel) and MQ = MU = 1016 GeV, MD = 1012.845 GeV, ML = 108.719 GeV,
ME = 108.2 GeV (right-panel). The GUT scale, MGUT = 1017 GeV, in both cases.

Now we can make a selected single field component to be light in both vectorlike multiplets

of SU(5). We choose light masses for E + E, and L + L with
(

30λ(10,10) + 9λ̃(10,10)
)
∼ 0,

and
(

20λ(5,5) + 6λ̃(5,5)
)
∼ 0. The other components can have masses as large as M2/mP ∼

1016 GeV. A successful gauge coupling unification can be achieved with two or three gen-
erations of additional vectorlike families. This is shown in figure 8 with different mass
splitting patterns described in its caption. As the triplet and the octet components of
24H Higgs field attain masses of order 〈S〉(M/mP)3, we take their masses to be around
the SUSY breaking scale MS , which is fixed at MS = 10 TeV in order to adequately sup-
press dimension five proton decay operator. The gauge coupling unification scale is set at
MGUT ≡ (5/6)g5M = 1017 GeV, where g5 is the unified gauge coupling of SU(5).

7 Summary

We consider a pseudosmooth tribrid model of sneutrino inflation in an R-symmetric SU(5)×
Z5 GUT model. With the help of an additional Z5 symmetry and a non-minimal Kähler po-
tential, a pseudosmooth trajectory is successfully generated to realize inflation while avoiding
the monopole problem. The predicted values of the various inflationary parameters are cal-
culated at the central value of the scalar spectral index, ns = 0.968. The predictions for
the tensor to scalar ratio, 2.7 × 10−3 . r . 10−13, and for the running of the scalar spec-
tral index, −0.00031 . dns/d ln k . 0.0024, are in agreement with the latest Planck 2018
results. These ranges are obtained with −1 ≤ κh ≤ −0.1, 5.5× 1016 .M/GeV . 5.6× 1017,
5× 1016 GeV . N0 . mP, |γ| & 10−4, |δ| . 1, yc = 1 and Tr = 106 GeV. The gravitino prob-
lem is avoided with the realization of reheat temperature Tr as low as 106 GeV. A common
problem of R-symmetric SU(5) GUT is the appearance of light triplet and octet components
from the GUT Higgs field, thus putting successful gauge coupling unification of MSSM in
jeopardy. This problem is avoided with the help of additional vector-like families residing in
complete multiplets, (5 + 5̄ + 10 + 1̄0), of SU(5).
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Before concluding we provide a few brief remarks related to proton decay and dark
matter. Rapid proton decay from renormalizable superpotential couplings is not allowed in
this SU(5) model thanks to the R-symmetry. Furthermore, with relatively large squark and
slepton masses of order 10 TeV or so, and with MGUT ∼ 1017 GeV, dimension five proton
decay is adequately suppressed, and dimension six proton decay mediated by the superheavy
gauge bosons is predicted to lie well beyond the scope of Hyper-Kamiokande [30, 31]. To
realize the lightest supersymmetric particle (LSP) as a viable cold dark matter candidate,
we need to separately invoke a Z2 matter parity.
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