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Abstract. When designing a variable capacity pressure regulator, it is necessary to select 

parameters that meet certain criteria. In this article optimization of regulator parameters by LPτ 

search method is considered. The mathematical model of the regulator is made, a possible set 

of quality criteria is given, dependent criteria are established and the majority of approximate 

effective points are found. Setting of criteria restrictions is performed in the dialog mode. The 

methods described in the article allow to obtain an optimal design of the pressure regulator 

with variable characteristic. 

 

Introduction 

The use of pumps with a pressure regulator is a widespread way to increase the energy efficiency of 

hydraulic systems. Improving the performance of hydraulic systems is an urgent task [1–4]. In many 

hydraulic systems operating at constant pressure, there is a need to change the pressure itself. There 

are circuits with a variable characteristic in which, at a constant load, a change in the characteristic 

causes a transition to a new static state with a new pressure value. 

Choosing the parameters of a pressure regulator is a complex multi-criteria task [5–9]. Choosing a 

set of quality criteria is also not an easy task. It is necessary to determine a set of quality criteria, 

which, on the one hand, reflects as much information as possible about the operation of the system, 

and on the other hand, is minimal for solving the optimization problem. 

There are various methods for solving optimization problems [10–13]. We will optimize the 

parameters of a pressure regulator with a variable characteristic by the LPτ search method, which is 

widely used and underlies many other methods [14–19]. 

The mathematical model of the regulator. 

The schematic diagram of the controller is presented in Fig. 1. 

The principle of operation and the mathematical description of the equilibrium of this regulator is 

given in [20]. Consider the dynamics equations of the regulator. 

Spool movement equation: 

 
2

1 f1 1 0 ext cf d sf2

d d
m х k x c x x p A p A

dtdt
         (1) 

Where 1m — reduced mass of the spool, 
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t— Time 

x — Spool offset from neutral, 

f1k — reduced damping coefficient of the spool, 

1c — The stiffness of the spring acting on the spool, 

0x — initial spring preload, 

extp —external pressure 

cfA —theareaaffectedbyexternalpressure, 

dp —is the discharge pressure 

sfA —The area of the end face of the spool. 

 

Fig. 1.Schematic diagram of the controller. 

 

Equation of piston movement: 

2

2 f 2 2 c 22

d d
m y k y c y p A

dtdt
       (2) 

Where 2 m — the reduced mass of the piston, 

y — The coordinate of the piston position, 

f 2k — The reduced damping coefficient of the piston, 

2c — The stiffness of the control piston spring, 

cp — The control pressure 

2A — The area of the end face of the control piston.  

The equation of the balances of the costs of the pump - throttle simulating the load: 
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d com1Q Q Q  (3) 

Where dQ — flow rate on the throttle simulating the load, 

com1Q — Flow rate for fluid compression in the discharge line, 

Q — pump feed. 

We replace the input quantities with the expressions for their calculation. 

d lin d
d max c

2 p V dp
μ f Q k y

ρ B dt


     (4) 

Where μ— flow rate 

df — flow area of the throttle simulating the load, 

ρ— Fluid density, 

linV —discharge line volume (assumed constant), 

B— Reduced volume modulus of elasticity of the working fluid, 

maxQ — Maximum pump flow. 

max
c

max

Q
k

y
 (5) 

Where maxy — maximum movement of the control piston. 

The equation of the balance of expenses: 

fs com2 ds c thQ Q Q Q Q    (6) 

Where fsQ — flow rate through the filling gap, 

com2Q — Fluid compression rate in the control cavity, 

dsQ — Flow rate through the drain slot 

cQ — control flow, 

thQ — flow on the throttle. 

Replace the incoming values with expressions to calculate them. 

уc c
f d c d c 2 th

dp2 V 2 dy 2 p
μbX p p μbX p A μ f  

ρ B dt ρ dt ρ


         (7) 

Where b— the total width of the dispenser windows, 

cV — Volume of the control cavity (assumed constant), 

thf — Throttle bore area, 

The following spool geometry model is adopted: 

   
22

fX 2R δ 2R 0,25 S 2R x S 2R x               (8) 

   
22

d X 2R δ 2R 0,25 S 2R x S 2R x              (9) 

Where R — spool edge radius 

δ— Spool radial clearance, 

S—spool  edge overlap. 
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Mathematical Modeling Results 

A program was written in the Python programming language that allows the entire optimization 

process to be performed for this device. It includes an LPτ sequence generator, subroutines that accept 

a list of variable parameters and return a list of criteria corresponding to it, a dialog algorithm for 

specifying criteria constraints, and a generator of a set of approximately effective points. To calculate 

transients was used the scipy.integrate.solve_ivp function from the scipy library, which allows to find 

a solution to systems of ordinary differential equations. The integration method BDF is used (an 

implicit multi-step method of variable order (from 1 to 5) based on the backward differentiation 

formula). To work with data arrays, the numpy library is used. 

To determine the optimal parameters of the controller, the following variable parameters were 

identified: 

1 2a A —end face of the control piston, 

2 2a c —control piston spring stiffness, 

3 sfa A —Spool end face, 

4 1a c — The stiffness of the spring acting on the spool, 

5 tha f —throttle bore area, 

6a b — The total width of the dispenser windows, 

7a S — overlapping spool edges, 

8 ca k — Coefficient of influence of piston movement on pump flow, 

9 f1a k — reduced damping coefficient of the spool, 

10 f 2a k —Reduced piston damping coefficient. 

The parameters were varied using an LPτ sequence generator based on an arithmetic algorithm. At 

the output of the generator, we have an LPτ sequence in a unit cube, which is then recalculated for any 

given parallelepiped P. The accepted number of points in the sequence is N=256. 

The value calculation cfA , 0x  is made separately for each selected point in the space of variable 

parameters so that the static characteristics set has the same value of the regulation start pressure, 

which is the initial value for design. 

Variable parameters are sought in the multidimensional parallelepiped P, which is determined by 

the inequalities: 

 * **
i i ia a a   i 1,2 10    (10) 

Where *
ia — the restriction on the ith criterion from below, 

**
ia —restriction on the ith criterion from above. 

Before solving the optimization problem, 0
ia — the values of the parameters corresponding to some 

prototype. And found  0Ф   1,  2 16    — values of the quality criteria for the prototype. 

Tab. 1. Values of parametric restrictions on the values of the parameters of the prototype 

i  1 2 3 4 5 6 7 8 9 10 

* 0
i ia / a  0,56 0,67 0,56 0,90 0,88 0,83 0,80 0,82 0,61 0,75 

** 0
i ia / a  1,27 3,06 1,59 1,10 1,32 1,17 1,50 1,36 1,46 1,25 

 

The following quality criteria were assigned as optimality criteria for the regulator. 

Group I (criteria related to the static characteristic). 
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1
Qp1

1
Ф

k
  

Where Qp1k —gain flow pressure at a flow rate of maxQ

2
 and at maximum extp .  

2 fs01Ф Q  

Where fs01Q — flow rate through the filling gap at the flow rate point maxQ

2
 

and at maximum extp .  

3
Qp2

1
Ф

k
  

Where Qp2k —the pressure gain of the flow rate at the point with the flow rate maxQ

2
 and at 

maximum extp .  

4 fs02Ф Q  

Where fs02Q — flow rate through the filling gap at the flow rate point maxQ

2
 

and at maximum extp .  

Group II (criteria related to the dynamics of the regulator). 

For each selected point in the space of variable parameters, the following system responses are 

constructed  dp t .  

1) System response to step increase extp .Initially, the system is in equilibrium at a point with a 

flow rate of maxQ

2
 with a minimal extp .  The magnitude of the step effect at the input is chosen such 

that the change in dp  is 
1

3
 of the original value. 

2) System response to step increase extp .Initially, the system is in equilibrium at a point with a 

flow rate of maxQ

2
 with a maximal extp .  The magnitude of the step effect at the input is chosen such 

that the change in dp  is 
1

3
 of the original value. 

3) System response to step increase df .  Initially, the system is in equilibrium at a point with a flow 

rate of 0  with a minimal extp .  The magnitude of the step effect at the input is chosen such that the 

flow rate varies from 0 to maxQ
.

2
 

4) System response to step increase df .  Initially, the system is in equilibrium at a point with a flow 

rate of 0  with a minimal extp .  The magnitude of the step effect at the input is chosen such that the 

flow rate varies from maxQ  to maxQ
.

2
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5) System response to step increase df .  Initially, the system is in equilibrium at a point with a flow 

rate of 0  with a maximal extp .  The magnitude of the step effect at the input is chosen such that the 

flow rate varies from 0 to maxQ
.

2
 

6) System response to step increase df .  Initially, the system is in equilibrium at a point with a flow 

rate of 0  with a maximal extp .  The magnitude of the step effect at the input is chosen such that the 

flow rate varies from maxQ  to maxQ
.

2
 

A stepwise action is defined by an exponential sigmoid. Operating points, if necessary, are found 

by the half-division method. For each i-th transient, the transient time t_i and the amount of overshoot 

are determined by  ih   i 1,  2 6 .    

Then 

2i 3 iФ ,t  (11) 

2i 4 iФ h .   (12) 

Total we have 16 quality criteria. 

After the values of the quality criteria were obtained for each selected point from the space of 

variable criteria, the correlation coefficients between the criteria were found. The exclusion of 

dependent criteria was carried out as follows: criteria that were desired to be maintained 

1 2 15 16(Ф ,  Ф ,Ф ,Ф ),  those criteria that had a correlation coefficient with these criteria greater than 0.9 

were excluded from consideration. As a result, the set of criteria considered has decreased 

1 2 7 15 16(Ф ,  Ф ,Ф ,Ф ,Ф ).  Test tables were compiled for each of these criteria, based on which criteria 

limitations were set. Taking into account the criteria constraints, a set of admissible points D was 

formed, and the criteria constraints were entered in the interactive mode with the subsequent 

verification of the set D for emptiness. 

From the set D, points are selected that form the set of approximately effective ones. An analysis of 

the table containing the parameters and quality criteria of approximately effective points made it 

possible to select the final set of parameters. 

Tab. 2. Values of the selected parameters relative to the values of the parameters of the prototype. 

1

0
1

a

a
 2

0
2

a

a
 3

0
3

a

a
 4

0
4

a

a
 5

0
5

a

a
 6

0
6

a

a
 7

0
7

a

a
 8

0
8

a

a
 9

0
9

a

a
 10

0
10

a

a
 

1,230 1,313 0,916 0,900 0,948 0,868 1,257 1,253 1,287 0,881 

Tab. 3. Values of the quality criteria of the selected option relative to the values of the quality criteria 

of the prototype. 

1

0
1

Ф

Ф
 2

0
2

Ф

Ф
 3

0
3

Ф

Ф
 4

0
4

Ф

Ф
 5

0
5

Ф

Ф
 6

0
6

Ф

Ф
 7

0
7

Ф

Ф
 8

0
8

Ф

Ф
 

0,999 0,875 0,997 0,875 1,009 0 0,857 0,773 

9

0
9

Ф

Ф
 10

0
10

Ф

Ф
 11

0
11

Ф

Ф
 12

0
12

Ф

Ф
 13

0
13

Ф

Ф
 14

0
14

Ф

Ф
 15

0
15

Ф

Ф
 16

0
16

Ф

Ф
 

1,453 0 1,067 0 0,758 0,168 1,194 0,034 
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Conclusions. 

A lot of approximately effective points are obtained. The point selected from this set, according to the 

results of expert evaluation and the selected quality criteria, is the best compared to the point 

corresponding to the original prototype, and meets the specified requirements. The same calculation 

can be performed for a larger number of points. In the presented model, a number of assumptions are 

made, in particular, it was assumed that the moment on the inclined disk changes slightly. 
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