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Abstract: The paper considers the influence of the size of the front end gap between the 
impeller and the housing on the energy performance of the pump, selects the parameters, 
compiles a mathematical model used in hydrodynamic modeling, presents the results of the 
study, draws conclusions about the influence of the size of the front gap between impeller and 
housing on efficiency and pump head. A comparison is made of the dimensionless pump 
characteristics obtained by the methods of hydrodynamic modeling with experimental 
dependences. 

Introduction  
In the case of the development of centrifugal pumps with a low speed coefficient, the question often 
arises of choosing the type of impeller [1]. The impeller can be closed, half open and open type, each 
of which has its advantages and disadvantages. So the open type impeller consumes much less power 
when working at high viscosity [2] relative to other types, does not have a front gap seal, which allows 
pumping contaminated liquid [3–9]. However, due to the lack of a driven disk, it is impossible to 
accurately calculate volumetric losses, since the fluid flow in the gaps between the impeller and the 
walls of the casing is part of the working process of the impeller [10–12]. It is also worth noting that 
currently there is not enough literature for the design of impellers with low and ultra-low speed 
coefficient, and theoretical formulas give large errors. Therefore, at this stage, it is necessary to make 
sure that the calculations of the complex flow in the open impeller, including the end gap region, can 
be performed by numerical simulation methods and to verify the obtained calculated dependences by 
comparing them with experimental data. 

Methods 
The method of numerical simulation is based on the solution of discrete analogues of the basic 
equations of hydrodynamics. In the case of the selected model of an incompressible fluid ( ),const   

this is: 
The continuity equation of a liquid medium [1]: 
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where iu — time-averaged projections of fluid velocities on the corresponding axes; 
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The equation of change in momentum [7] 

In such a simulation, there is a flow region that rotates with the rotor - this is the flowing part of the 

impeller. The flow equation for a given region is written in terms of relative motion [4], so the 

equation of change in momentum is as follows: 
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where iW — average speed: W V u  — ratio of relative, absolute and transfer speeds; 

p — averaged pressure; 

 
2 ijijT s


  —viscous stress tensor for incompressible fluid; 
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— strain rate tensor; 

i jWW — Reynolds stresses; 

2
iF r  —inertia force; 

2к xyF W  —cariolis stress. 

The Reynolds system of equations [1] is open due to the presence of unknown Reynolds stresses. 

System closure is performed using the k-ωSST turbulence model [5]. This model combines k-ω and  

k-ɛ models: the first is used in the near-wall region, the second in the central part of the flow. 

This model includes two equations of transport of turbulence parameters [12]: 

1. The equation of transfer of kinetic energy of turbulence 
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where  ' 2 ' 2 ' 21

2
x y zk u u u   — kinetic energy of turbulence; 

'
iu —pulsation of speed; 

kP —turbulence energy generation; 

—relative turbulence dissipation rate; 

T —turbulent viscosity. 

2. The equation of transport of the relative velocity of dissipation of turbulence energy: 
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Reynolds stresses in the equations of dynamics are based on the Boussinesq hypothesis: 
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where ij —Kronecker symbol. 

Using empirical closure coefficients of these equations [11], one can obtain a numerical solution of 

the turbulent fluid flow in the computational domain. 

The impeller has been designed for the following parameters.: 

25 H m — pressure head, 



Hydraulics

IOP Conf. Series: Materials Science and Engineering 779 (2020) 012014

IOP Publishing

doi:10.1088/1757-899X/779/1/012014

3

 

 

 

 

 

 

325  /Q m h — flow rate, 

2900 n rpm —rotation speed. 

The drawing of the impeller under study is shown in Figure 1. The drawing shows the size 1  of 

the front axial clearance between the wheel and the casing wall, as well as the width 2b of the impeller 

at the exit, along which dimensioning was carried out. The size 2  of the rear axial clearance between 

the wheel and the housing wall is fixed and equal to half the width 2 .b  

 

Figure 1. Impeller drawing 

 

When modeling the fluid flow, it is necessary to break the flow geometry into cells, for which the 

equations given above [5] will be applied. For this, a model was chosen that generated polyhedral 

cells, as well as a model for constructing prismatic cells for modeling fluid flow near the wall [9].  

A value of 5 mm was taken as the base size. The maximum and minimum cell sizes and the thickness 

of the boundary layer were specified as a percentage of the base size — 80%, 40%, and 24%, 

respectively. For the mesh in the impeller, the cell sizes are different from those specified for the 

entire model: the maximum cell size is 40%, the minimum cell size is 20%. The stretching of the 

prismatic layer occurs with a coefficient of 1.3. 5 layers have been created. At the exit from the spiral 

outlet, an extruder was created with a constant speed parameter in the normal direction [10]. The 

length of the extruder is 1 m, the number of layers is 500. It is necessary to equalize the flow at the 

output boundary [12] in order to reduce the influence of reverse currents, which significantly reduces 

the calculation accuracy near the boundary. An example of the generated grid is shown in Figure 2. To 

check the accuracy of the results, a calculation was performed with increased accuracy with the 
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following values of the main parameters: the base size is 2.5 mm, the maximum cell size is 50%, the 

minimum cell size is 20%, boundary layer thickness — 48%; for the impeller: the maximum cell size 

is 20%, the minimum cell size is 10%. The discrepancy between the results of a more accurate and 

simplified modeling is insignificant (less than 0.5%). Thus, all calculations were performed on 

simplified models to reduce the calculation time. 

 

Figure 2.Impeller cross section 

 

In this study, the value of only the front gap was changed, since the influence of the dimensions of 

the rear gap does not strongly affect the power characteristic [2]. The relative gap value is calculated 

by the formula 

1

2

.
b


   

For the calculation, models with a relative gap ∆ from 0.1 to 1.0 in increments of 0.1 were used. 

The correspondence between the numbers of the studied models and the values of the relative gap Δ 

are given in table 1. 

Table 1 

Model no. 1 2 3 4 5 6 7 8 9 10 

  0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 

Results 

When simulating the flow, the following were determined: pressure at the inlet to the inlet and outlet 

of the spiral outlet, the moment at the impeller. After processing the results, the following values were 

obtained: the pressure created by the impeller, the moment on the impeller, and efficiency. The results 

are shown in table 2. 

Table 2 
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Model no. ,H  m ,M N∙m   

1 25,79 2,679 68,95 

2 25,97 2,740 67,87 

3 25,55 2,723 67,18 

4 25,26 2,710 66,73 

5 25,09 2,700 66,55 

6 24,87 2,680 66,44 

7 24,71 2,668 66,33 

8 24,58 2,665 66,06 

9 24,38 2,655 65,76 

10 24,27 2,660 65,32 

 

In [2], experimental results are presented. For comparison, the pressure was reduced to  

a dimensionless form by the formula 

 
2

2

 ,
H

H
D n




 

and for efficiency the coefficient is used 

 .
max

k





 

The obtained values are displayed on the graphs (Figure 4, 5) of the dependence of the 

dimensionless pressure and efficiency coefficient on the dimensionless axial clearance —  H   

and  .k   

The dependences obtained by calculation were compared with the experimental data given in [2]. 

The results, recalculated in the same dimensionless quantities, are shown in Figures 4 and 5. Good 

convergence of the type of experimental and theoretical characteristics is visible. A certain deviation 

can be explained by a limited number of experimental points and a certain difference in the speed 

coefficients of the impeller, on which the experiments were performed, and the impeller investigated 

by hydrodynamic modeling methods, as well as by a small (for such pump parameters) absolute value 

of efficiency, which increases the ―price‖ of its minimum deviation in absolute terms. 
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Figure 3. Dependence graph  k   obtained by hydrodynamic modeling 

 

 

Figure 4. Dependency graph  k   
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Figure 5.Dependency graph  H   

Conclusion 

1. Good convergence of the efficiency coefficient graphs was obtained, with the exception of one 

experimental value at 0,5,   which is explained by small values of efficiency, and therefore, a large 

influence of the error. 

2. The graph of the dimensionless pressure repeats the shape of the experimental curve, however, 

it has slightly larger values and does not completely coincide. Such a difference could arise due to a 

different slope of the pressure characteristic due to a different speed coefficient. This issue requires for 

there study. 

3. On the obtained efficiency graph, the area is clearly visible on which the change in the values of 

the function of the end gap is small. The presence of such a zone can save on ensuring the accuracy of 

manufacturing parts included in the dimensional chain, while maintaining a high value of efficiency. 
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