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Abstract. Research on the spectra of a graph still attracts the attention of many researchers over 

the last decades. In addition, research related to graphs obtained from an algebraic structure such 

as groups and rings is also growing. This paper determines the spectrum of the anti-adjacency 

and Laplacian matrices of inverse graph of a finite commutative group, namely the addition 

group of integers modulo n. It can be concluded that all eigenvalues of anti-adjacency and 

Laplacian matrices of the inverse graph of addition group of integers modulo n are integer 

1. Introduction 

Since Norman Bigg [1] first introduced the spectrum adjacency or spectrum concept of a graph in 1974, 

researchers continue to develop various other spectrum concepts. At present, several spectrum concepts 

have been developed and studied, such as Laplacian [2-9], signless Laplacian [10-16], detour [17], 

distance [18-23], distance Laplacian [24], distance signless Laplacian [25], detour distance Laplacian [26], 

color Laplacian [27] and color signless Laplacian [28] spectra of various types of graphs. This shows 

that the spectrum topic of a graph is still in great demand by researchers. Laplacian spectrum and its 

variation received more attention than the adjacency spectrum and detour spectrum from the researchers. 

On the other hand, the study of graphs obtained from an algebraic structure also continues to develop 

and produces various types of graphs. Some examples of graphs obtained from a group are Cayley graph 

[29], subgroup graph [30], commuting graph [31,32], non-commuting graph [33], identity graph [29], 

graph conjugate graph [34] and inverse graph [35]. Inverse graph of a group is first introduced by 

Alfuraidan and Zakariya [35] in 2017. Suppose that  is a finite group and S is a set of non-self-invertible 

elements in , namely S = {u  : u  u-1}. The inverse graph of  is denoted by GS() and is defined 
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as a graph whose set of vertex is the set  and two different elements v and w of  will be joined by an 

edge in GS() if and only if either vw or wv are elements of S. 

Several studies on the spectra of graph obtained from a finite group have been conducted and 

published. For dihedral group, the spectra of non-commuting and commuting graphs [36], conjugate 

graph and its complement [37,38] and subgroup graph and its complement [39-41] have been reported. 

Nevertheless, study on the spectra of inverse graph of the symmetry group and the addition group of 

integers modulo n has not been found. 

Edwina and Sugeng [42] introduced the notion of anti-adjacency matrix. Suppose that graph G is 

simple (without loops or multiple edges) with order p and A(G) = [aij] (1  i,j  p) is its adjacency matrix. 

The anti-adjacency matrix of graph G is matrix B(G) = [bij] (1  i,j  p) where bij = 1 if aij = 0 and bij = 

0 if aij = 1. So, anti-adjacency matrix B(G) can be expressed as B(G) = J – A(G) where J is p  p matrix 

whose all entries are one [43]. In other words, the anti-adjacency matrix B(G) is the opposite of the 

matrix A(G) [44]. Until now, no one has examined the anti-adjacency spectrum of graphs, especially of 

graphs associated with a group. 

This study examines the spectrum of anti-adjacency and Laplacian matrices of the inverse graph of 

a group. This study focuses on the addition group of integers modulo n where n is a positive integer. 

2. Literature Review 

Suppose G is a simple and finite graph with order p = |𝑽(𝑮)| and size q = |𝑬(𝑮)|. Suppose V(G) = {vi : 

1  i  p }. The degree deg(vi) of a vertex vi in G is defined as the number of vertex vj (j  i) in G such 

that vivj is an element of E(G) [45]. The matrix A(G) = [aij] (1  i,j  p) where aij = 1 if vivj is an element 

of E(G) and aij = 0 if vivj is not element of E(G) is called the adjacency matrix of a graph G [46]. The 

matrix D(G) = [dij] (1  i,j  p) where dij = deg(vi) if i = j and dij = 0 if i  j is called the degree matrix 

of graph G [47]. The matrix L(G) = D(G) – A(G) is called the Laplacian matrix of graph G [2,4]. The 

characteristic polynomial of A(G) is a polynomial () = det(A(G) - I) where I is p  p identity matrix 

[48]. The roots of () = 0 are eigenvalues of A(G) [49]. Suppose 1 > 2 > … > k (k  p) are the distinct 

eigenvalues of A(G) and m(i) is the algebraic multiplicity associated with i (1  i  k). The adjacency 

spectrum 𝒔𝒑𝒆𝒄𝑨(𝑮) of a graph G is a 2  k matrix that contains the distinct eigenvalues of A(G) in the 

first row and their corresponding multiplicities in the second row [50]. The adjacency spectrum of G can 

be written as 

𝑠𝑝𝑒𝑐𝐴(𝐺) = [
𝜆1 𝜆2 ⋯ 𝜆𝑘

𝑚(𝜆1) 𝑚(𝜆2) ⋯ 𝑚(𝜆𝑘)
]                                            (1) 

In a similar way, the Laplacian spectrum 𝑠𝑝𝑒𝑐𝐿(𝐺) of a graph G is obtained from matrix L(G) [51] 

while the anti-adjacency spectrum 𝑠𝑝𝑒𝑐𝐵(𝐺) of a graph G is obtained from matrix B(G). If all of the 

eigenvalues of L(G) are integer, then graph G is called integral [40]. 

3. Results 

Suppose (Zn, +) is the addition group of integers modulo n where n is positive integer. It is well known 

that Zn = {0̅, 1̅, 2̅, … , 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ } and 0̅ is identity element of Zn. If n is odd, then 0̅ is the only self-invertible 

element of Zn. Hence, the set of non-self-invertible elements S of Zn is S = {1̅, 2̅, … , 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ } = 𝑍𝑛\{0̅}. If 

n is even, then 0̅ and 
𝑛

2

̅
 are self-invertible elements of Zn. Therefore, the set of non-self-invertible 

elements S of Zn is S = {1̅, 2̅, … ,
𝑛

2

̅ − 1,
𝑛

2

̅ + 1,… , 𝑛 − 2̅̅ ̅̅ ̅̅ ̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ } = 𝑍𝑛\{0̅,
𝑛

2

̅}. According to the definition 

of inverse graph of Zn, it is straightforward that deg(0̅) = |𝑆| − 1 = 𝑛 − 1 if n is odd and deg(0̅) =  |𝑆| −

1 = deg(
𝑛

2

̅
) if n is even. Furthermore, deg(v) = |𝑆| − 2 = 𝑛 − 2 for v  𝑍𝑛\{0̅} if n is odd.  

The results of the present study on the inverse graph of the addition group Zn are presented as the 

following. First, the results will be presented with proof. 
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Theorem 3.1 

The characteristic polynomial of anti-adjacency matrix B(Gs(Zn)) is  

(𝜆) = (𝜆 − 2)
𝑛−1
2 (𝜆 − 1)(𝜆)

𝑛−1
2                                               (2) 

if n is odd.  

 

Proof 

Because n is odd, then the set of all non-self-invertible elements of group 𝑍𝑛 is S = 

{1̅, 2̅, … , 𝑘̅, … , 𝑛 − 𝑘̅̅ ̅̅ ̅̅ ̅, …𝑛 − 2̅̅ ̅̅ ̅̅ ̅, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅ }. In the inverse graph Gs(Zn), the vertex 𝑘̅ is not adjacent to 

vertex 𝑛 − 𝑘̅̅ ̅̅ ̅̅ ̅ (1  k < n) and is adjacent to all other vertices. Therefore, the adjacency matrix of 

Gs(Zn) is 𝐴(𝐺𝑆(𝑍𝑛)) = [𝑎𝑖𝑗] where  

 

𝑎𝑖𝑗 = {
1, if i =j or i = t and j = n – (t – 2) (1< t   n) 

0, otherwise
 

 

and the anti-adjacency matrix of Gs(Zn) is 𝐵(𝐺𝑆(𝑍𝑛)) = [𝑏𝑖𝑗] 

𝑏𝑖𝑗 = {
0, if i =j or i = t and j = n – (t – 2) (1< t   n) 

1, otherwise
 

 

The matrix 𝐵(𝐺𝑆(𝑍𝑛)) can be presented as  

0̅ 1̅  2̅  …  k̅ …   n-k̅̅ ̅̅ … n-2̅̅̅̅̅ n-1̅̅̅̅̅ 

 

B(Gs(Zn)) =

0̅
1̅
2̅
⋮
k̅
⋮

n − k̅̅ ̅̅ ̅̅ ̅

⋮
n − 2̅̅ ̅̅ ̅̅ ̅

n − 1̅̅ ̅̅ ̅̅ ̅

 

[
 
 
 
 
 
 
 
 
 
1 0 0 … 0 … 0 … 0 0
0 1 0 … 0 … 0 … 0 1
0 0 1 … 0 … 0 … 1 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 … 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 0 0 … 1 … 1 … 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮
0 0 1 … 0 … 0 … 1 0
0 1 0 … 0 … 0 … 0 1]

 
 
 
 
 
 
 
 
 

                                 (3) 

 

By using Gaussian elimination on 𝐵(𝐺𝑠(Z𝑛)) − 𝜆𝐼, an upper triangular matrix U will be obtained. 

Therefore, 𝜎(𝜆) = det(𝐵(G𝑠(Z𝑛)) − 𝜆𝐼) can be obtained by multiplying entries along the main 

diagonal of U. Finally, by simplifying the results of multiplication, it will be found that 𝜎(𝜆) =

(𝜆 − 2)
𝑛−1

2 (𝜆 − 1)(𝜆)
𝑛−1

2 .  

 

Corollary 3.1  

The anti-adjacency spectrum of 𝐺𝑆(𝑍𝑛) is   

 

𝑠𝑝𝑒𝑐𝐵(Gs(Zn)) = [
2 1 0

𝑛−1

2
1

𝑛−1

2

]                                                  (4) 

 

if n is odd. 
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Proof 

Based on Theorem 3.1, the different eigenvalues of 𝐵(𝐺𝑆(𝑍𝑛)) are 𝜆1 = 2, 𝜆2 = 1 and 𝜆3 = 0 

and their multiplicities are 𝑚(𝜆1) =
𝑛−1

2
,  𝑚(𝜆2) = 1  and 𝑚(𝜆3) =

𝑛−1

2
, respectively. By the 

definition of the spectrum of a graph, it is obvious that 

 

𝑠𝑝𝑒𝑐𝐵(Gs(Zn)) = [
2 1 0

𝑛 − 1

2
1

𝑛 − 1

2

]                                              (5) 

Theorem 3.2 

The characteristic polynomial of L(Gs(Zn)) is  

 

𝜎(𝜆) = (𝜆 − 𝑛)
𝑛−1
2 (𝜆 − 𝑛 + 2)

𝑛−1
2 (𝜆)                                               (6) 

 

if n is odd. 

 

Proof 

Previously explained that deg(0̅) = |𝑆| − 1 = 𝑛 − 1 and deg(v) = |𝑆| − 2 = 𝑛 − 2 for v  𝑍𝑛\{0̅} 
if n is odd. Hence, the degree matrix of Gs(Zn) is 𝐷(𝐺𝑆(𝑍𝑛)) = [𝑑𝑖𝑗] where  

 

𝑑𝑖𝑗 = {

n – 1, if i = j =1 
n – 2, if i = j ≠1

0, i ≠ j 
      

 

Thus, the matrix L(Γs(Zn)) = D(Γs(Zn)) - A(Γs(Zn)) is 

0̅         1̅         2̅    …   k̅   …  n − k̅̅ ̅̅ ̅̅ ̅ … n − 2̅̅ ̅̅ ̅̅ ̅ n − 1̅̅ ̅̅ ̅̅ ̅ 

L(Γs(Zn)) =

0̅
1̅
2̅
⋮
k̅
⋮

n − k̅̅ ̅̅ ̅̅ ̅

⋮
n − 2̅̅ ̅̅ ̅̅ ̅

n − 1̅̅ ̅̅ ̅̅ ̅

 

[
 
 
 
 
 
 
 
 
 
𝑛 − 1 −1 −1 … −1 … −1 … −1 −1
−1 𝑛 − 2 −1 … −1 … −1 … −1 0
−1 −1 𝑛 − 2 … −1 … −1 … 0 −1
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

−1 −1 −1 … 𝑛 − 2 … 0 … −1 −1
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

−1 −1 −1 … 0 … 𝑛 − 2 … −1 −1
⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮

−1 −1 0 … −1 … −1 … 𝑛 − 2 −1
−1 0 −1 … −1 … −1 … −1 𝑛 − 2]

 
 
 
 
 
 
 
 
 

    (7) 

 

 

Through Gaussian elimination on 𝐿(𝐺𝑠(Z𝑛)) − 𝜆𝐼 and some computation will be obtained 𝜎(𝜆) =

det(𝐿(𝐺𝑠(Zn)) − 𝜆𝐼) = (𝜆 − 𝑛)
𝑛−1

2 (𝜆 − 𝑛 + 2)
𝑛−1

2 (𝜆). 

 

Corollary 3.2 

The Laplacian spectrum of 𝐺𝑆(𝑍𝑛) is 

𝑠𝑝𝑒𝑐𝐿(𝐺𝑠(𝑍𝑛)) = [
𝑛 𝑛 − 2 0

𝑛 − 1

2

𝑛 − 1

2
1
]                                    (8) 

if n is odd. 
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Proof 

It is obvious from Theorem 3.2, 

If n is even, then n  0 (mod 4) or n  2 (mod 4). Henceforth, the main results of this study are 

presented without proof.  

 

Theorem 3.3 

The characteristic polynomial of B(Gs(Zn)) is  

 

𝜎(𝜆) = (𝜆 − 3)
𝑛−4
4 (𝜆 − 2)2(𝜆 − 1)

𝑛−4
2 (𝜆)2(𝜆 + 1)

𝑛−4
4                        (9) 

 

if n  8 and n  0 (mod 4). 

 

Corollary 3.3 

The anti-adjacency spectrum of 𝐺𝑆(𝑍𝑛) is  

 

𝑆𝑝𝑒𝑐𝐵(Gs(Zn)) = [
3 2 1 0 −1

𝑛−4

4
2

𝑛−4

2
2

𝑛−4

4

]                                        (10) 

 

if n  8 and n  0 (mod 4). 

 

Theorem 3.4 

The characteristic polynomial of L(Gs(Zn)) is  

 

𝜎(𝜆) = (𝜆 − 𝑛)
𝑛

4(𝜆 − 𝑛 + 2)
𝑛

2(𝜆 − 𝑛 + 4)
𝑛−4

4 (𝜆)                                 (11) 

 

if n  8 and n  0 (mod 4). 

 

Corollary 3.4 

The Laplacian spectrum of 𝐺𝑆(𝑍𝑛) is 

 

𝑠𝑝𝑒𝑐𝐿(Gs(Zn)) = [
𝑛 𝑛 − 2 𝑛 − 4 0
𝑛

4

𝑛

2

𝑛 − 4

4
1
]                                         (12) 

 

if n  8 and n  0 (mod 4). 

 

Theorem 3.5 

The characteristic polynomial of B(Gs(Zn)) is  

 

𝜎(𝜆) = (𝜆 − 3)
𝑛−2
4 (𝜆 − 2)(𝜆 − 1)

𝑛−2
2 (𝜆)(𝜆 + 1)

𝑛−2
4                                (13) 

 

if n  2 (mod 4). 
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Corollary 3.5 

The anti-adjacency spectrum of 𝐺𝑆(𝑍𝑛) is   

 

𝑠𝑝𝑒𝑐𝐵(Gs(Zn)) = [
3 2 1 0 −1

𝑛 − 2

4
1

𝑛 − 2

2
1

𝑛 − 2

4

]                              (14) 

 

if n  2 (mod 4). 

 

Theorem 3.6 

The characteristic polynomial of L(Gs(Zn)) is  

 

𝜎(𝜆) = (𝜆 − 𝑛)
𝑛−2
4 (𝜆 − 𝑛 + 2)

𝑛
2(𝜆 − 𝑛 + 4)

𝑛−2
4 (𝜆)                               (15) 

 

if n  2 (mod 4). 

 

Corollary 3.6 

The Laplacian spectrum of 𝐺𝑆(𝑍𝑛) is   

 

𝑠𝑝𝑒𝑐𝐿(Gs(Zn)) = [
𝑛 𝑛 − 2 𝑛 − 4 0

𝑛−2

4

𝑛

2

𝑛−2

4
1]                                         (16) 

 

if n  2 (mod 4). 

 

4. Conclusion 

According to the results of this study, it can be seen that all eigenvalues of anti-adjacency and Laplacian 

matrices of the inverse graph of addition group of integers modulo n are integer. So, the inverse graph 

of this group is integral. The next research can be done to examined the other spectrum of inverse graph 

of this group or other groups. 
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