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Abstract – The study of the black holes in higher-dimensional space-time has got the focus
mainly after developments of string theory or M -theory. Beside this, construction of brane world
scenario also motivates to study the properties of higher-dimensional black holes. In this letter, we
calculate the maximal interior volume of higher-dimensional charged black holes which is actually
the extension of a previous work (Ong Y. C., Gen. Relativ. Gravit., 47 (2015) 88 (arXiv:gr-
qc/1503.08245)) in addition to the study of entropy of the same class of black holes’ interior.
The actual detail investigation and proof have been shown in Christodoulou M. and Lorenzo

T. D., Phys. Rev. D, 94 (2016) 104002 (arXiv:gr-qc/1604.07222). We try in this letter, to
establish a generalized form which is not only the maximal interior volume but also the entropy
of the black hole in its interior for Schwarzschild like regular black holes. We also show how their
behaviors depend on the mass parameter m considering the constant valued horizon and for the
charge parameter q = 0 and q > 0.

Copyright c© EPLA, 2020

Introduction. – Since the idea of black hole’s (BH
hereafter) volume depends on the choice of space-like hy-
persurface, it is not well defined in general relativity (GR
hereafter). Reference [1] has shown some explicit examples
in this regard. The concept of BHs’ interior volume is diffi-
cult to recognize, as there is no suitable method to choose
an appropriate space-like hypersurface in a BH yet. Ref-
erence [2] has recently proposed that the volume acts like
a space-like surface with spherical nature in the interior of
the BH. It is shown that the maximal interior volume V at-
tained by an asymptotically flat Schwarzschild BH having
ADM mass M is linearly proportional to advanced time
v, such as V ∼ 3

√
3πM2v. This means the maximal in-

terior volume grows with advanced time. If Schwarzschild
coordinates (t, r, θ, φ) are considered, the maximal volume
reaches the r = 3M

2 hypersurface, which is again the max-
imal space-like strip in the interior of Schwarzschild geom-
etry. In the classical limit, the BH remains static from the
outside view attaining the same area as 16πM2.

References [3,4] have extended the above result to the
Reissner-Nordström and Kerr BH and derived the formula

(a)E-mail: amritendu.h@gmail.com
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of the maximal interior volume of the Reissner-Nordström
BH which is almost similar to that of the Schwarzschild
BH. Interior volume of this article also increases linearly
with the advanced time v. For Kerr BH, the interior vol-
ume does not necessarily act in accordance to the flat
space intuition [4]. For a nonstatic BH such an amount
of volumetric maxima is found in refs. [5,6]. Generally,
it is not necessary to increase the volume monotonically
with the increase of horizon area [7], e.g., i) the maximal
interior volume for asymptotically locally AdS BHs hav-
ing AdS length L with total topology which grows like
V ∼ 4πMLv, independently of their horizon area; ii) for
asymptotically locally AdS BHs in 5D space-time with lens
space topology S3/Zp, the maximal interior volume grows
like V ∼ 8

3πMLv, which shrinks the horizon area to zero
at the limit p → ∞.

Two questions mainly motivate us to study BHs’ in-
terior volume: i) a BH has nonstatic interior due to the
swapping nature of its space and time coordinates; ii) the
nature of space-time slices taken in GR, the volume de-
pends on the way space-time is sliced. For a station-
ary BH, a slicing invariant volume is however found in
ref. [8]. A definition of the volume rate for a stationary
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nondegenerate BH is raised in the article in [9]. The con-
cept of “vector volume” is explained by examining the rate
of growth of an invariant volume for some space-time re-
gions along a divergence-free vector field [10]. A spher-
ically symmetric BH’s horizon is foliated by space-like
spheres Sv labeled by the symmetric time v and the sphere
Sv is defined as the one crossed by a light signal sent by a
remote stationary observer at position r with proper time
t = v − r. CR volume is nothing but the maximal vol-
ume of the spherically symmetric surface Σ bounded by
Sv. Interior volumes grow with time for different kinds
of BHs [4,11–13]. Analysis of entropy of massless scalar
particles inside the BHs [14,15] may provide us with im-
plications on discussions of the information paradox, since
a larger volume can accommodate huger information [16].

The formulation of maximal interior volume is useful to
estimate not only phase space volume but also the horizon
entropy of the BHs [4]. When the Hawking radiation is
taken into account, such construction of volume has re-
markable importance to resolve the information paradox
problem [17]. Since the volume is always increasing with
advanced time, one will have a large amount of volume
to hide this significantly huge information at the end of
evaporation [3]. The entropy of the hidden modes in the
interior of the BHs [18,19] is one of the important quanti-
ties observed in this context. The authors of ref. [14] have
studied the entropy for a Schwarzschild BH. The entropy
in the interior of a Kerr BH has investigated and a general
method to find the entropy within the BH has proposed
in ref. [20].

In this letter, we are inspired to study the BHs
embedded in higher-dimensional space-time due to the de-
velopment of string theory, M -theory and brane world
scenario. The naive geometric volume, thermodynamic
volume, entropy in the exterior of the BHs and the ef-
fects of logarithmic correction have been studied in the
literature [21,22]. But the interior properties are still not
studied deeply. This fact motivates us to concentrate on
different properties of the interior volume and entropy in
the background of different dimensions.

This letter is organized as follows: in the next section,
we will calculate the interior volume of higher-dimensional
charged BHs. In the third section, the entropy will be
calculated. Finally, we will give a brief discussion and
conclude the letter. Throughout this letter, we use the
Planck units, i.e., G = c = � = κB = 1 and signature
(− + + · · ·+).

The brief review of thermodynamics of higher-
dimensional charged black holes. – Authors of
ref. [23] have investigated the nature of the low frequency
absorption cross section for electromagnetic waves for ex-
treme Reissner-Nordström BHs in higher-dimensions. The
case of higher-dimensional collapsing and static thin mas-
sive charged dust shells in a Reissner-Nordström BH back-
ground is found in refs. [7,24–30].

The higher-dimensional charged BHs metric is ex-
pressed as [31]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2,

where f(r) = 1 − m

rd−3
+

q2

r2(d−3)
,

(1)

and dΩ2
d−2 represents the canonical volume associated

with eq. (1). The parameters m and q are, respectively,
related to the ADM mass M and the electrical charge of
the BH Q given in ref. [31] as

m =
16πM

(d − 2)Bd−2
and

q =
8πQ

Bd−2

√
2(d − 3)(d − 2)

,
(2)

with the volume of the unit d-sphere, Bd−2 = 2π
d−1
2

Γ( d−1
2 )

. On

the event horizon r = rh =
[

m
2 +

√
m2−4q2

2

] 1
d−3

, the mass

parameter m can be expressed as

m =
q2

rd−3
h

+ rd−3
h . (3)

The BH metric given in eq. (1), while written in
Eddington-Finkelstein coordinates (v, r, θ, φ), takes the
form

ds2 = −
(

1 − m

rd−3
+

q2

r2(d−3)

)
dv2 + 2vdvdr + r2dΩ2

d−2,

(4)
where v is the “advanced time” related to the
Schwarzschild coordinates (t, r, θ, φ) as

see eq. (5) on top of the next page

The maximal volume inside the BH is [12] given by

V ∼
∫ v ∫

Ω

√
−f(r)dΩdv =

Bd−2

∫ v

rd−2

√
m

rd−3
− q2

r2(d−3)
− 1dv =

Bd−2

∫ v √
3
[
1
8

(
m +

√
m2 − 16q2

)] d−2
d−3

dv, (6)

where m and q are both the functions of advanced time v.
This maximal volume (6) corresponds to the hypersurface
having radius given as

r± =
[
1
8

(
m ±

√
m2 − 16q2

)] 1
d−3

. (7)

Since r− < r−, we consider the positive root. Here

r−

(
=

[
m
2 −

√
m2−4q2

2

] 1
d−3

)
denotes the inner horizon of
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v= t+
∫

1
f(r)

dr= t+
r

2
√

m2 − 4q2

⎡
⎣2

√
m2−4q2−2

1
d−3

(√
m2−4q2 + m

)⎧⎨
⎩ q2r3

rd
(√

m2 − 4q2 − m
)

+ 2q2r3

⎫⎬
⎭
⎤
⎦

1
d−3

× Hypergeometric2F1

⎛
⎝ 1

d − 3
;

1
d − 3

; 1 +
1

d − 3
;− 2rd

−2rd + r3
(
m −

√
m2 + 4q2

)
⎞
⎠− 2

1
d−3

(√
m2 − 4q2 − m

)

×

⎧⎨
⎩ q2r3

2q2r3−rd
(√

m2−4q2+m
)
⎫⎬
⎭

1
d−3

Hypergeometric2F1

⎛
⎝ 1

d − 3
;

1
d − 3

; 1+
1

d − 3
;

2rd

2rd−r3
(
m −

√
m2 − 4q2

)
⎞
⎠. (5)
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Fig. 1: The variations of dV
dv

with respect to m for different dimensions d for q = 0 (a) and q > 0 (b).

the BH. The variation of maximal volume inside the BH
V with respect to the advanced time v calculated as

dV

dv
∼ Bd−2

√
3
[
1
8

(
m +

√
m2 − 16q2

)] d−2
d−3

. (8)

This is always non-negative. This means the interior vol-
ume is always increasing even if the mass of the BH is de-
creasing. If m and q be considered as constant parameters,
as classical general relativity without Hawking radiation,
then the maximal volume becomes

V ∼ Bd−2

√
3
[
1
8

(
m +

√
m2 − 16q2

)] d−2
d−3

v. (9)

In the limit q → 0 and for d = 4, the result approaches
to the largest interior volume contained within the event
horizon of an asymptotically flat Schwarzschild BH which
is shown in the appendix. Increment in dimension in-
creases the degrees of freedom. This again prefers the for-
mation of a naked singularity rather than a BH for which
a part of space-time should be wrapped by a singularity
known as the event horizon. Actually, more the dimen-
sion we have, more free we are to overcome a space-time
wrap. Now when it is likely to have naked singularities
rather than a BH we may take it as an incident where the
event horizon is very small or turning infinitely small with
the increment of d. This is found in figs. 1(a) and (b),
where we see the rate increment of interior volume with
advanced time reduces down abruptly if the dimension is
increased.

If the mass of the BH is increased then the rate of in-
crement of interior volume increases. Increment in mass
primarily increases the radius of event horizon and hence
the interior volume. Besides these phenomena, the gravi-
tational attraction power increases with the increment in
mass. This again leads to further increment in volume,
i.e., an increment in the volume increases the rate of in-
crement of mass. But staying at a same mass if we in-
crease the static charge, due to Pauli’s exclusion principle
the rate of change of volume should be deceased up to a
certain level of charge, dV

dv stays same and, after a certain
critical value of q, dV

dv falls abruptly (figs. 2(a) and (b)).

Entropy in the volume of d-dimensional
Reissner-Nordstrom black hole. – In ref. [20],
the authors have established the expression of number of
quantum states with energy less than E as

g(E) =
E3V

12π2
, (10)

the Helmholtz free energy and the pressure as

F (β) = − π2V

180β4
and

P (β) = −
(

∂F

∂V

)
β

,
(11)

where β is the inverse of the Hawking temperature Th, i.e.,
β = 1

Th
. Here the exotic features of the interior volume is

temporarily ignored.
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Fig. 2: The variations of dV
dv

with respect to m and q for d = 4 (a) and d = 9 (b).

Thus, the entropy in the interior is calculated as

Sinterior = β2 ∂F

∂β
=

π2V

45β3
=

π2V

45
T 3

h . (12)

This expression of the entropy in the interior is actu-
ally based on the two impotant assumptions mentioned in
refs. [14,15,32] as follows: i) the Hawking radiation of a BH
may be considered as black body radiation. Thus, the tem-
perature of radiation can be supposed as the temperature
on event horizon and ii) the evaporation process is consid-
ered as slow enough as that taking place in the quasi-static
process. Thus, between the event horizon and the scalar
field inside the BH, the thermal equilibrium can be
established.

To calculate the relationship between the changes in
entropy of scalar field and that of Bekenstein-Hawking
entropy, we use the differential form directly. The two
methods that generally are used to measure the changes in
entropy of scalar field cannot be applied in our case. Those
are i) method of equilibrium statics and ii) method of
integral.

If we assume that only the Hawking radiation is re-
sponsible for losing the mass of the BH, then by Stefan-
Boltzmann law [33,34], we have

dm

dv
= − 1

γ
T 4

hAh, γ > 0, (13)

where γ is a positive constant which depends on the num-
ber of quantized matter fields coupling with gravity, Ah

denotes the area of the BH at event horizon, respectively,
and they are given as

Ah = rd−2
h Bd−2,

Th =
f ′(rh)

4π
=

d − 3
4πrh

(
1 − q2

r
2(d−3)
h

)
.

(14)

The internal energy U(β), enthalpy H(β) and Gibb’s
free energy G(β) in the interior of the BH are

obtained as

U(β) = F (β) +
1
β

Sinterior =
V π2

60β4
=

V π2

60
T 4,

H(β) = U(β) + PV =
V π2

45β4
=

V π2

45
T 4 and (15)

G(β) = F (β) + PV = H(β) − 1
β

Sinterior = 0.

In ref. [3], the authors showed that the maximal volume
sustains until the last stage of black body evaporation.
The radiation may last at this point. Thus, for this BH,
we obtain

dv = − 28γπ4

rd−7
h

{
(d − 3)

(
1 − q2

r
2(d−3)
h

)}4

Bd−2

dm. (16)

Here the mass parameter m is not a constant quantity, due
to Hawking radiation. It changes with advanced time v.
Substituting eq. (16) in eq. (8), we obtain the differential
form of interior volume as

dV = −
28
√

3γπ4
{

1
8

(
m +

√
m2 − 16q2

)} d−2
d−3

rd−7
h

{
(d − 3)

(
1 − q2

r
2(d−3)
h

)}4 dm.

(17)
Substituting eqs. (14) and (17) in the differential form

of entropy in the interior of the BH, we obtain

dSinterior =−
γπ3rd+4

h

(√
m2 − 16q2 + m

) d−2
d−3

15
√

3(d − 3)
(
r2d
h − q2r6

h

)
2

d
d−3

dm.

(18)
The entropy of this kind of BHs on the event horizon rh

is obtained directly from the definition of the Bekenstein-
Hawking entropy along with and the differential form of
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Fig. 3: The variation of Sinterior with respect to m for different dimensions d for q = 0 (a) and q > 0 (b).
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Fig. 4: The variations of Sinterior with respect to m and q for d = 4 (a) and d = 9 (b).

this entropy will be

Sh =
Bd−2

2
3d−8
d−3

(√
m2 − 4q2 + m

) d−2
d−3

and

dSh =
(d − 2)Bd−2

(√
m2 − 4q2 + m

) d−2
d−3

2
3d−8
d−3 (d − 3)

√
m2 − 4q2

dm.

(19)

The ratio of the differential form of entropy in the inte-
rior to that on the event horizon of the BHs is given as

dSinterior

dSh
= − γ2

2d−8
d−3 π3rd+4

h

√
m2 − 4q2

15
√

3(d − 2)Bd−2

(
q2r6

h − r2d
h

)
×

(√
m2 − 16q2 + m√
m2 − 4q2 + m

) d−2
d−3

. (20)

In figs. 3(a) and (b), we have plotted interior entropy vs.
m for different dimensions. Sinterior exponentially raises
due to the increment in m. If dimension is high, entropy
is lower than the lower-dimensional case. Increment in
dimension reduces the quantity of wrapped region of the
event horizon which may lead to the decrease in entropy,
i.e., the amount of disturbances enclosed by the horizon.

With m and charge q, the changes of interior entropy is
protrayed in figs. 4(a) and (b). We observe that q must
have an upper limit for physical cases and for high charge,

interior entropy increases. High change is responsible for
high valued radius of event horizon. This indirectly in-
creases interior entropy.

Brief discussions and conclusions. – It is obvious
that the quantity of volume wrapped by the event horizon
of a BH depends on the concerned nature of the hyper-
surface on which the BH is embedded. Mass of the BH,
charge or dimension and many more physical properties
may act as the controller. Use of Eddington-Finkelstein
coordinates (v, r, θ, φ) and introduction of advanced time
together convince us to have the expression of interior vol-
ume of a BH which is dependent on the advanced time and
the corresponding ADM mass. We try to calculate the in-
terior volume trapped inside the event horizon of a higher-
dimensional BH. Previously, in other articles [35,36], it
was shown that if we consider the higher dimensions it is
likely to have naked singularity rather than a BH wrapped
by event horizon. Not having an event horizon is equiva-
lent to having a very small radius of event horizon (as large
as possible). This shows from eq. (15) that the internal
energy for a constant volume obeys the Stefan’s law, i.e.,
the temperature to the power-four law. Again for constant
temperature, the internal energy is proportional to the vol-
ume. As we increase the span of the space-time confined
in a BH’s event horizon, we observe that a higher amount
of internal energy is trapped inside it. For enthalpy the
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dependence on temperature and volume is quite the same
except for the fact that the enthalpy is higher than that
of internal energy. This is obvious as a pressure times
volume amount of energy is added to the internal energy.
Gibb’s free energy, however, is found to vanish. This im-
plies that the reaction is at equilibrium and no more work
is allowed. This will give us a small interior volume and
hence a large/blown to infinity slope of volume for low
dimensions will decrease with increasing dimension. This
is what we found in the plots given in figs. 1(a) and (b).
Again presence of charge should try to bind the celestial
object up in the smaller boundary radius/the low radius
event horizon due to “Pauli’s exclusion principle”. This is
found in the figs. 2(a) and (b). Entropy of a BH is increas-
ing function of the radius of event horizon. But it seems
as dimension is high, entropy is low (see figs. 3(a), 4(b)).
Involvement of higher dimension may be the cause for re-
ducing the disturbances confined in the event horizon of
higher dimensions. This is justified by the increment in
degrees of freedom.
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Appendix

Equation (10) gives

V ∼ Bd−2

√
3
[
1
8

(
m +

√
m2 − 16q2

)] d−2
d−3

v.

For d-dimensional spacetime, when q = 0, the equation
reduces to

V ∼ 4π

3

√
3
[
2m

8

]2

=
√

3
12

πm2v

and this reduces to an asymptotically flat Schwarzschild
black hole with ADM mass M as

V ∼ 3
√

3M2v.
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