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Abstract — In this letter, we present a variational approach with a recently proposed form of local
deformed derivative, the dual conformable derivative, which leads us to obtain a class of nonlinear
equations. The ansatz on the solutions can be mathematically inferred by this dual conformable
derivative eigenvalue equation and the g-exponential family functions appear naturally. Also, a
clear and natural justification for the appearance of the ¢ — 2 — g-symmetry is given. To show
the potential of our variational approach with this type of dual deformed derivative, we obtain the
porous medium equation and present insight for the solution in terms of the ¢g-Gaussian. Also, a
new dual conformable wave equation, which is nonlinear, is proposed and a solution is built up
in terms of ¢g-plane waves. A dual conformable harmonic oscillator equation is also obtained and
promptly solved by the natural ansatz. Aspects of the nonlinear Schroedinger equation are also
contemplated and one shows that it can be obtained without the need of an additional ®-field,
from a simple Lagrangian density. The solution to the nonlinear Schroedinger is also expressed in

terms of the g-exponential family of functions.

Copyright © EPLA, 2020

Introduction. — In recent papers [1,2], some of the
authors have presented an extension of the standard
variational calculus to include the presence of deformed
derivatives, both in the Lagrangian of systems of parti-
cles and in the Lagrangian density of field-theoretic mod-
els. Our first and main focus is on a variational approach
with a recently proposed form of local deformed derivative,
the dual conformable derivative (DCD) [3]. Following, we
show that a certain class of nonlinear equations can be ob-
tained from this variational approach. One also shows that
the ansatz on the solutions can be mathematically inferred
by an eigenvalue equation along with the appearance of a
natural justification for of the ¢ — 2—¢g-symmetry, present
in some versions of the nonlinear Fokker-Plank equation
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(NFPE) in the context of the nonaddictive statistical me-
chanics by Tsallis [4]. Considering the DCD, we claim that
the justification is based on an eigenvalue equation for this
deformed operator. In the light of the DCD approach, we
make clear why some nonlinear equations have a common
type of solutions [5].

Treading this variational context, as one of the possi-
ble applications, we shall obtain the nonlinear parabolic
equations for slow diffusion, known as porous media equa-
tion (PME), also known as nonlinear heat equation. It
describes various diffusion processes, e.g., the flow of a
gas through a porous medium. A linear form of PME is
the Fourier heat equation. The porous medium equation,
also called by some authors NFPE [6], describes the diffu-
sion of the molecules of a gas and fluid particles through
porous media [7]. Despite the simplicity of PME, it is
important to better understand this equation, because it
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is well known that most of the equations modeling phys-
ical phenomena without excessive simplification become
nonlinear [8]. Also, in this research we discuss some as-
pects involved in the solutions to such an equation. In
a similar way to what was done in ref. [2], we set out
mainly to present developments that go beyond the issue
of Lagrangian mechanics in the classical sense. Also, as in
ref. [2], we claim that the approach with deformed deriva-
tives, here with DCD, is a simple and efficient option to
obtain the equations describing the dynamics for a broad
variety of linear and nonlinear systems, particularly com-
plex systems.

As far as detailed solutions to PME and other nonlinear
equations are concerned, our focus here is not to solve com-
pletely or to obtain rigorous solutions to these equations,
but to present the variational approach with DCD embed-
ded into a Lagrangian or Lagrangian density to obtain a
class of nonlinear equations and to understand the origin
of the ansatz, making available a tool to search for the
solutions to a certain class of nonlinear equations. There-
fore, the approach itself is of sufficient fundamental or gen-
eral mathematical interest, especially because it leads to
nonlinear equations and indicates possible solutions.

To reinforce and emphasize the potentiality of our ap-
proach, some other problems are tackled here. A dual
conformable wave equation is proposed and its solution is
presented in terms of g-plane waves. A nonlinear harmonic
oscillator is promptly obtained and studied. Its solution is
presented through a natural ansatz. Finally, with a sim-
ple Lagrangian density —it is important to note that here,
without the necessity of an additional ®-field— one is able
to obtain a nonlinear Schroedinger equation (NLSE) for a
free particle of mass m, as proposed in ref. [5]. The well-
known solution to this equation is also formed with the
g-exponential family of functions.

Again, as in refs. [1,2,9-11], one should consider that
justification for the use of deformed derivatives finds its
physical basis on the mapping into the fractal contin-
uum [9,12-14]. That is, one considers a mapping from a
fractal coarse-grained (fractal porous) space, which is es-
sentially discontinuous in the embedding Euclidean space,
to a continuous one [1,2]. A mapping into a continuous
fractal space naturally yields the need for modifications
in the derivatives and, in connection with the metric, the
modifications of the derivatives lead to a change in the
algebra involved, which, in turn, may lead to a general-
ized statistical mechanics with some suitable definitions of
entropy [10]. This is a different paradigm as compared to
the one in the generalized statistical mechanics’ literature,
because the deformed derivative is reached from mapping.
Therefore, the concept of entropy seems to be adjoint.

Another explanation for deformed derivatives can be ex-
pressed in terms of a canonical transformation from one
Euclidean space to a deformed space [15]. A number of dis-
cussions on the physical interpretation of deformed deriva-
tives in terms of the Gateaux extended derivative may be
found in ref. [16].

Our article is outlined as follows. The next section, ad-
dresses mathematical aspects and the eigenvalue equation.
In the third section, we focus on the variational approach
with dual conformable derivatives. In the fourth section,
one applies our approach to obtain and solve the porous
medium equation, a nonlinear one-dimensional wave equa-
tion, a nonlinear harmonic oscillator and a nonlinear
Schroedinger equation. Finally, in the last section, we
cast our general conclusions and possible paths for further
investigations.

Mathematical aspects and the eigenvalue equa-
tion. — The DCD was introduced in ref. [3] and the basic
eigenvalue equation can be written as

@) _ py). 1)

F a—1 —
Pt
Solving the equation, along with the condition F(0) = 1,
leads to the following important function:

F(z)=[1+ (o —1)z]t/ (=Y, (2)

This function is nothing but the reparameterized
g-exponential, ubiquitous in one version of generalized sta-
tistical mechanics [17]. This can be clearly seen by re-
defining the relevant parameter « in term of the entropic
parameter ¢, as a« = 2 — ¢q. With this reparametrization,
the solution to eq. (1) becomes

F(z) =1+ (1 - q)a]V170 = ey (x), 3)

that is exactly the g-exponential e, () [18].

Some mathematical properties.  Now, let us present
below some important and useful relations, that will be
helpful in the forthcoming calculations. These are:

1) First derivative of a g-exponential

deg(Ax) p
4a) _ Njey ().

(4)
2) Eigenvalue equation
D%es_o(Ax)] = Nea_a(A2),
with Dg[es—o(Az)] = [ea—a(A2)]* ! g [ea—a (A2)].

3) Chain rule

()

Delu(A@)] = ue— LOE)
apdudX dh, -,
= R T @ R )

Equation (5) renders evident the appearance of sym-
metry ¢ — 2 — ¢ (or « — 2 — @) in the context of
generalized nonaddictive statistical mechanics. It is
now clear that this relationship involves the eigen-
value equation and the DCD. Some aspects of this
symmetry were also studied in refs. [19-21]. But here,
a clear connection appears. The chain rule appears
in ref. [3].
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DCD variational approach. — Consider now the
Lagrangian density L‘(x,t,gz&,Df ¢, D), and the action
functional

to [e’e] - N
Jig) = / at / del(e,t, 6, D06, D2d).  (7)

Here, ¢ = ¢(z,t) can be the representation of some generic
field ¢(x,t).

We shall find the condition for J[¢] to present a local
minimum. To do so, we consider the new fractional func-
tion depending on the parameter ¢.

Consider the variable ¢ = ¢(z,t): ¢ = o(x,t) =
é(z,t) + en(z,t); ¢(z,t) is the objective function, and
n(xz,t1) = n(x,ta) =0, € is a parameter.

We are going to apply the DCD to ¢(x) as De¢(z) =
$°1 L g(a):

o _ aflad_)(m7t) a71877(x7t)

Do) = o 0D | e TILD )
Analogously for t:

N _ B-1 3(5(x,t) [— 1377(517 t)

Now, the usual §-variational processes related to the e
parameter and the use of the chain rule, leads to

oL oL - oL
= ~__5.(D? -
56"t o0ra) " ) 5bee)

The variation J. can be calculated, remembering that

0 L= 06+ 5.(Dg¢). (10)

¢z, t) = ¢(x,t) + en(,t):
o _ o— 8(2)($,t) a— 677(95775) _
(55(qu§) = 0 <¢ ! o +e¢ ! o ) =
(OL _ 1)¢a72n(x)8¢227 t) + Qsaflang;j t)
on(x,t)

+e(a — 1)¢p* n(x,t) ax’ (11)

or, by a simple derivative algebra, one can write that

3(D39) = o 2UET)
+ (0= 16" 2n(z, 1) 3(2_5(‘(;715) N ané:i,t)
¢! é ‘) (a—1)¢a*2n(x,t)a¢é?t> —
¢! (E) )Jrn(x,t)ad();;l _

Analogous expression may be obtained for 6E(Df ¢). The

result is given by

o, 1)6°~)

0 (D) = ==, (13)

The result in eq. (10) is

oL o OL 19 (1w pgh1
100+ 5 | e 09

(§§¢)[8<< o)

Consider now the variational principle, that is, d.J = 0.
Integrating by parts the second and the third terms in
eq. (14) and using the usual transversality condition for an
extreme value, one obtains the deformed Euler-Lagrange

(EL) equation as
oL 5.0 [ OC a_13< ) B
<3¢ ¢ ( Dﬁgb) 4 dx \ 9D ¢ >_O’
(15)

For purposes that shall become clear when we will
present our applications, one can also consider the
presence of complementary field ¢*(z,t), independent
of ¢(x,t). In this case, the Lagrangian reads as
L(z,t,¢,¢*, D¢, D*¢, D’ ¢*, D*¢*) and the action will
become

6] = /t t at

. { / " deL(a,t, 66", Do, D2, Df¢*,Dz¢*>}. (16)

— 00

0L =

(14)

oL

Following the analogous variational processes, two EL
equations can be obtained, one for each independent field,
¢ and ¢* that are analogous to eq. (15).

Note the presence of similar operators in ref. [22].

The approach above can also be followed for the La-
grangian L, instead of the Lagrangian density £. The EL
resultant is similar, by replacing £ by L

Applications. —

General dual conformable porous medium equation.
Consider now the Lagrangian density

L(z,t,6,0", Df"¢, Doy, D", Ding*) =

¢ o

S D1(6") = 5 D (@) + m(Dy) (D). (17)

The EL equation for ¢ is what we can call dual con-
formable porous media equation:

O(Dy¢)
oz
Expanding the DCD, we can write the EL equation as

1,09
()
¢m71% o mqsmfl a:E _ 0

D —mg™ ! =0. (18)

19

5 (19)

Observe that one could define a sequential dual deriva-
m—1 a¢ )

. ¥ s _10(¢
tive as, for example, D™ (D™¢) = m¢™ ! (¢™ n
However, to avoid confusions, we will not follow this path.
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For a particular choice of nonzero field, ¢™~1 # 0 (Note
that the equation becomes degenerate at ¢ = 0, resulting
to the phenomenon of finite speed of propagation.), the
equation can be simplified to

o5 0(o"'5)

ot ox =0

(20)

Equation (20) can be simplified to the well-known
porous medium equation:

% 82¢m 0

— 21
ot Ox? (21)
For the complementary field ¢*, the equation reads as
below 96 R
=0. 22
ot * ox? (22)

The plus sign in the second term of the left-hand side
may be interpreted as related to the external part of
system. Consider that a possible explanation for the
complementary field ¢* can be done as a field related to
the border line of the system. Since we are here dealing
with open systems, there is a field flow from the system to
the border line. That flux, in turn, is going towards the
exterior region. Probably, there are other possible inter-
pretations of the auxiliary field, but the result given here
obtained is undeniable.

Natural ansatz.  Now, it seems natural to propose an
ansatz for the solution of porous media eq. (21), but with
eq. (18) being the starting point. Since eq. (18) contains
dual deformed derivatives in time and space coordinates,
a natural ansatz can be

Pz, t) = T(t)egma—m(A(z), B(1)),

where we have defined a generalized two-variable g-ex-
ponential as

eq(A(2), B(1)) = [1+ (1 — @)\ (@) B(1)]/ 1~

and \(z), B(t),T'(t) will be determined further.

The reasoning here is to consider the meaning of the
eigenvalue equation (5), including two variables, ¢,
in the new eigenfunction e,(A(x),5(t)). But there is a
close resemblance with the ansatz for solutions of nonlin-
ear Fokker-Planck equation, in the context of anomalous
diffusion [4,23].

Using the eigenvalue equation, property 2), and the
chain rule for the derivative, property 3), one can read-
ily obtain that

(23)

(24)

B leqms-m(A@), B0)] = LN @)eyos (@), B0),
(25)
and
-~ dA(z)

ﬂ(t)eq=2—m()‘(x)v ﬂ(t))
(26)

dx

But, we have to remember that eq. (18) is a nonlin-
ear equation and the ansatz given by eq. (23) contains a
pre-factor I'(t) that has to be considered. In this way,
considering the natural anzats and the properties in the
second section, we can write

Dy {T () [eq=2-m(A(2), B(1))]} =

ol { S s, )"
+ F(t)%it))\(x)eng,m()\(x), ﬂ(t))} . (27)
Analogously for z, D~;”¢(:c, t):
D (LB qman(Mw). )]} =
dA(z)
rO2 )6, 0@ B0, (29)

In the sequence

6 DT () eqmam (A@). O =

d?M(z)
dx?

L™ =6() leg=2—m(A(x), B(1))]™

Frope (S

) eosm(A@), B1). (29)

Substituting into eq. (18), considering a nondegenerate
solution, that is,

6 =T(W)leqmam(A@) AN £0,  (30)
and, simplifying, it gives
dr()
dr 6q:27m()‘(m)75(t))
00O A e (M), B
~mp0) e, (@) B)
=m0 () IO g2 M) B =0
(31)

Two equations can be obtained from the equa-
tions above, by taking the corresponding powers of
[eg=2—m(A(z), B())]>~™ and eq—o—m(A(z), 3(t)), equal to
zero, in a similar way to that of ref. [24]. The result is

given by
dr'(t) m—1 d?\(z) B
dp(t) - dA(@)\* _
() 25w - i e () =0,
(32)
From the first equation, one can write
dr(t)
m—1 __ dt

m([L(t)] = Wa (33)
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which, by substituting into the second equation of the sys-
tem and simplifying, yields

A (x) y2
r Py - T Ca o 3y
dx2

Now, let us suppose simple possibilities for the func-
tion A(z).

For A(z) considered as a constant or a simple function
A(z) = z, an indeterminate result is obtained.

Considering the spatial invariance * — —z, a simple
choice can be A\(x) = 2. With this choice, the obtained

equation is

dr
L ot (35)

B ~ @

Integration of last equation gives

I2(t) _ I?(t)
Bt)  Blto)

where k is a constant. This equation is connected with
the normalization [24,25].

In so doing, one can write a simple relation between T'(¢)
and G(t) as T'(t) = /kB(¢).

Now, a simple choice for 3(t) leads to a vanishing func-
tion I'(t), for t — oco. So, one can choose 3(t) = C(t)~2«,
where «, C' are constants. Then, the solution to the dual
deformed porous media equation (18), that is the nonde-
generate solution of the porous medium equations (20),
can be written as the well-known Barenblatt—Pattle’s-like
solution [7] and is also referred to as a g-Gaussian-like solu-
tion. The g-Gaussian distribution generalizes the standard
Gaussian [5],

=k, (36)

1
1 x? T
¢($at):\/gtj 1*00@*1)@)72& (g=2-m).
(37)
Dual conformable one-dimensional wave equation:

q-plane wave solution.  Consider a string which has con-
stant tension and density p. In equilibrium, it is stretched
along the z-axis, and we consider small displacements

away from this equilibrium position, n(z,t). The La-
grangian density may be written as

L(z,t,n, D'y, Dmy) = 2D ()2 — Z(Dmy)2. (38

(z,t,n, Di*n, D) = S(D*(0))” = 5(Dgn)”. (38)

Here k is the Young’modulus.
The resulting EL is the new dual conformable wave
equation (DCWE), that is a nonlinear equation:

L, 0 = .0 -
n" (D) — A"t —(Diy) =0,

ot oxr (39)

where ¢ = %.
Following the same steps as in the previous section,
one can show that the ansatz n(x,t) = N.e4[i(kx — wt)]

is a solution for this type of nonlinear equation, with

c= % = %; N is some normalizing factor. The ansatz

proposed is also a solution to the simple and standard one-
dimensional linear wave equation [5]. Here, our nonlinear
wave equation is different from that given in ref. [26].

Dual conformable harmonic oscillator.  Consider now
a Lagrangian similar to one-dimensional harmonic oscil-
lator, but here with the DCD substituting the first-order
derivative in space z as
L= %m(ﬁw - %ka. (40)
Again, following the approach, one can show that the
natural ansatz x(t) = A.eq[i(wt + ¢)] is a solution of this
oscillator, with w = \/A'=@%/m. A very interesting result
is that the angular frequency, w, now depends on the am-
plitude A. Note that for « - 1= ¢ =2 —a — 1, what
implies that e, becomes the usual exponential and the an-
gular frequency becomes independent of the amplitude,

equal to w = /*¥/m.

Nonlinear Schroedinger equation. A nonlinear
Schroedinger equation (NLSE) for a free particle of mass
m was proposed in ref. [5] and it can in fact be expressed
in terms of DCD. Here we will show that one can obtain
this equation with our wvariational approach, without
the necessity of an additional field @, with a simple
Lagrangian density.

Let us now consider the Lagrangian density,

ih ih

L= 5@(5,t)*Df¢(§,t) — EW(E,t)Dg@(E,t)*

2

h = — ~ —
——VU(x,t)" -V (a,t 41
SNew (T, 1) V(T ) (41)

where we have defined the spatial DCD gradient as

- et w(x,t w(x,t
Va (:'L.7 ) _ (.’I;, ) ($3 ) . (42)
!po Lpo 0
The EL results in
— — a—1 —
o | P () n? | w(x,t) - | WU(x,t)
hD¥ =—— V4 Ve
! ¢ Ep() 2m EI/() !p() ’
(43)
or making the operators explicit,
— a—1 —
. V(xz,t) 0 |¥(x,1)
Wy ot | W N
_ a—1 _ a— —
(et W(x,t) W(x,t)
2m !po ![/0 WO
(44)

For nontrivial solutions, that is, for @ # 0, one can
also rewrite this equations as ’

— 2—
U(x,t)

Yo

0
'Lha

W (x,t)

1w,
@y v

T 2-¢2m
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where we have divided by - and renamed o = 2 — q.
The equation above is exactly the same NLSE presented
in refs. [5,22,27].

In this form, we render evident and natural a certain

definition of energy F and momentum P operators applied

to a function [%{)t)], which is taken in an ad hoc way in

ref. [5]. Here, based on our proposed Lagrangian density,
we can write naturally it in terms of DCD as

v (T ,t)
v,

— — 1 —
AP (x,t) i U(x,t) o |¥Y(z,)
o | 4 ol w7
D] () v (z,t)
WO o WO WO

The g-exponential-like solution (a g-plane wave) is also
admissible [5]. Other details can be found in ref. [28].
We emphasize that, with a g-exponential-like ansatz, also
using the form of equation with DCD, eq. (43), and
the mathematical properties for the DCD previously pre-
sented, the solution of eq. (45) can be more easily and
naturally found. Note that in ref. [22] the Lagrangian
density is a complicated one and contains an additional
field.

Conclusions and outlook for further investiga-
tions. — In this work, we present some important and
innovative results.

A variational approach with DCD is presented, the rele-
vance and potentiality of this operator for nonlinear prob-
lems have been put into evidence here.

We have applied this variational approach to obtain:
the porous medium equation, that is a well-known form of
nonlinear heat transfer equation, a dual conformable wave
equation, a dual conformable harmonic oscillator and the
nonlinear Schroedinger equation. All of those are non-
linear equations and have in common the fact that they
can be written in terms of DCD and, as a consequence of
an eigenvalue equation, they have solutions expressed in
terms of g-exponential family of functions.

The search for an ansatz on the solutions now becomes
more natural and related to the eigenvalue of DCD and
one shows the natural justification for the appearance of
the symmetry ¢ — 2 — ¢, which is present in the literature,
in the context of nonaddictive statistical mechanics [17].
This justification is also based on an eigenvalue equation
for the DCD.

A nonlinear wave equation is obtained from a simple
Lagrangian density and the solution in terms of g-plane
waves are presented. Following the same path, a nonlinear
harmonic oscillator is also approached and an interesting
solution was worked out. The solution indicates an an-
gular frequency w that is dependent on the oscillation’s
amplitude, A.

Finally, without the necessity of an additional heuris-
tic field and with a simple Lagrangian density, we have

built up a nonlinear Schroedinger equation. The equa-
tion agrees with the one presented in refs. [5,22,27]. In a
nutshell, we have presented the variational approach with
DCD embedded into a Lagrangian or Lagrangian density
to obtain a class of nonlinear equation and to understand
the origin of the ansatz, making available a mathemati-
cal tool to search for the solutions to a certain class of
nonlinear equations.

For future studies, as glimpse of the task ahead, we
can list some possible applications: a new formula-
tion of a nonlinear electrodynamics and field theory, a
nonlinear form for the Dirac equation, different from
refs. [5,29], nonlinear Fokker-Planck equation, nonlinear
models of population growth [30], population biology non-
linear equations [31], soil physics equations [32] and so on.
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