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Abstract – We study the dynamics of coupled systems, ranging from maps supporting chaotic
attractors to nonlinear differential equations yielding limit cycles, under different coupling classes,
connectivity ranges and initial states. Our focus is the robustness of chimera states in the presence
of a few time-varying random links, and we demonstrate that chimera states are often destroyed,
yielding either spatiotemporal fixed points or spatiotemporal chaos, in the presence of even a single
dynamically changing random connection. We also study the global impact of random links by
exploring the Basin Stability of the chimera state, and we find that the basin size of the chimera
state rapidly falls to zero under increasing fraction of random links. This indicates the extreme
fragility of chimera patterns under minimal spatial randomness in many systems, significantly
impacting the potential observability of chimera states in naturally occurring scenarios.

editor’s  choice Copyright c© EPLA, 2020

Coupled dynamical systems have provided a wide class
of simple models that have significantly captured the es-
sential features of large interactive complex systems [1–5].
Such spatially distributed systems have provided frame-
works for understanding and characterizing spatiotempo-
ral patterns emerging in problems ranging from multimode
lasers and coupled Josephson junctions, to microfluidic ar-
rays and evolutionary biology [6–9].

A particular spatiotemporal pattern, the chimera state,
has caught widespread research attention in recent years,
in fields ranging from physics and chemistry to biology
and engineering [9–30]. One of the simplest examples of a
chimera state [10] is a ring of coupled identical phase os-
cillators which spontaneously breaks the underlying sym-
metry and splits into synchronized and desynchronized
groups. While such fascinating patterns had been ob-
served in many systems in the past [1–5], they have been
dubbed a “chimera” in recent times [11]. In particular
chimera-like phenomena have been seen in numerical sim-
ulations, as well as some experimental realizations, such
as Josephson junction arrays [12], star networks [14], elec-
trochemical systems [15,16], uni-hemispheric sleep [16],
electronic circuits [14,18], optical analogs of coupled map
lattices [19], mechanical metronomes [20] and Belousov-
Zhabotinsky chemical oscillator systems [21]. A very
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pertinent issue for the observability of chimeras is the ro-
bustness of these patterns, and significant understanding
of chimeras under varying connection topologies and inho-
mogenieties has been obtained in refs. [22,23]. In this work
we will extend this understanding, by focusing on the per-
sistence of chimera patterns in coupled nonlinear systems
under time-varying random links. The surprising leading
result here is the following: when a few of the regular con-
nections in these systems are dynamically randomized, the
chimera states are destroyed and the symmetry-breaking
spatial patterns are eliminated. Namely, the chimera
states are very fragile under dynamic random links. Since
in many systems of physical, technological and biological
significance a certain degree of randomness in spatial links
is closer to physical reality [31], our finding that random
links kill chimeras is significant and suggests a generic un-
derlying mechanism due to which complex systems may
not exhibit chimera states.

As a sufficiently general test-bed we will consider a
range of generic coupled systems, comprised of nonlin-
ear local dynamics and a coupling term modelling the in-
teraction, and we will demonstrate our central result in
different classes of such systems. First we will consider
coupled circle maps and coupled bistable maps under dif-
fusive coupling, varying in range from local intercations
to connections spanning a large set of neighbours. We
will also go on to explore the robustness of chimeras in
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coupled oscillator systems, considering another class of
coupling, namely conjugate coupling through dissimilar
variables. We will consider examples where the chimera
state arises from generic random initial states in a ring,
as well as situations where special initial states give rise
to chimeras. The salient question here is the resilience of
the chimera state under dilute time-varying random links
in these systems.

Coupled map lattices. – Our first representative ex-
ample is in the general class of Coupled Map Lattices
(CML) [1,2], where the local dynamics at the sites is de-
scribed by a circle map. The maps are coupled to two
nearest neighbours through diffusive coupling, and such a
system has been used to model the behavior of coupled
oscillators, such as Josephson junction arrays. The dy-
namical equations for such coupled maps are:

xt+1(i) = (1− ε)f(xt(i)) +
ε

2
{f(xt(i + 1)) + f(xt(i− 1))},

(1)
where the on-site dynamics is given by f(x) = x + Ω −
K
2π sin(2πx). The dynamics above is defined modulo 1,
i.e., it maps a circle onto itself. The two significant pa-
rameters in the system is Ω which can be interpreted as
an externally applied frequency, and K which reflects the
strength of the nonlinearity [32].

Starting with connections given by a ring topology, we
consider increasingly random networks formed dynami-
cally as follows: a fraction p of the regular links are re-
placed by random connections, i.e., “rewired randomly”.
This implies that at any instant of time a fraction p of
random links co-exist along-side regular links. Such net-
works have been seen to have widespread relevance to a
range of natural and engineered phenomena [31]. Note
that our coupling occurs on a degree preserving directed
network. Further, we consider the random links to be
time-varying here. So the underlying web of connections
changes over time, with a (typically small) number of links
dynamically rewired randomly from time to time [33–36].
For maps, the links switch at every iteration t. For net-
works of coupled nonlinear systems described by differen-
tial equations, which we will consider later, the rewiring
takes place at very short time intervals vis-à-vis the intrin-
sic time period of the constituent oscillators. The results
presented here are robust to a wide range of rewiring fre-
quencies. Such dynamic connections are expected to be
widely prevalent in complex systems, for instance in sce-
narios where links change from time to time in response
and adaptations to external environmental factors or in-
ternal influences [34,35].

The evolution of spatiotemporal patterns for this sys-
tem of coupled circle maps is displayed in fig. 1, for the
illustrative case of K = 1, Ω = 0.031, ε = 0.42 in eq. (1).
The first case is a regular ring of coupled maps (see top
panel of fig. 1), while the second case has a single link
rewired randomly (see lower panel of fig. 1). Both cases
evolve from the same random initial state, i.e., the set of
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Fig. 1: Evolution of coupled circle maps (with K = 1, Ω =
0.031, ε = 0.42 in eq. (1) and system size N = 100). The
top panel shows a regular ring (p = 0), after transience of 450
iterations. The lower panel shows the case of p = 0.01 where,
on an average, there is a single random link in the entire ring.
Both cases evolve from the same random initial state, with the
initial state drawn from an uniform random distribution in the
range [0 : 1]. Notice that the chimera-like pattern present in
a ring (top panel) is destroyed by the single dynamic random
link to yield the sptaiotemporal fixed point in (lower panel).

x(i), i = 1, . . . , N , at time t = 0 is identical for both cases.
However, very clearly, the dynamical outcome in the two
cases is drastically different. So the presence of a single
dynamically changing random link in the ring destroys the
chimera-like pattern observed in the ring, instead yielding
a homogeneous steady state (i.e., a spatiotemporal fixed
point where x(i) = x�, for all i).

We present another representative example of the de-
struction of a chimera state by a single random link.
Here the parameters in eq. (1) are K = 1, Ω = 0.019,
ε = 0.9616. Again it is clearly evident that the presence
of a single random link in the ring destroys the chimera-
like pattern observed in the ring (see fig. 2), yielding a
spatiotemporal fixed point instead (see fig. 3).

In order to quantify the global impact of random links
we explore the Basin Stability [37,38] of the chimera state,
which reflects the probability of a generic initial state
evolving to a chimera state. The Basin Stability is es-
timated by sampling a large set of initial states and as-
sessing the number of initial states that yield chimeras
asymptotically. If this fraction is close to 1, we can deduce
that a generic randomly chosen initial state will evolve to
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Fig. 2: Chimera-like spatial profile x(i) of coupled circle maps
(i = 1, . . . , 100), after 500 transient time steps, for a regular
ring (i.e., p = 0). Here K = 1, Ω = 0.019, ε = 0.9616 in eq. (1).
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Fig. 3: Time evolution of xt(i) of coupled circle maps, for frac-
tion of random links p = 0.01, i.e., when there is a single ran-
dom link in the entire ring. Here K = 1, Ω = 0.019, ε = 0.9616
in eq. (1) and system size N = 100. The initial conditions here
are the same as in fig. 2. However, in contrast to the chimera-
like pattern in fig. 2, we obtain a sptaiotemporal fixed point
here.

a chimera state with probability close to one, and if it
is close to zero, it implies that almost no random initial
state will yield a chimera. Figure 4 shows this fraction as a
function of the fraction of random links p in the ring. It is
clearly seen that the basin size of the chimera state sharply
decreases to zero as the fraction of random links becomes
non-zero, i.e., we obtain a sharp transition to generic non-
chimera states as p → 0. Identical Basin Stability results
are obtained for the two parameter sets investigated. So in
this CML a generic randomly chosen initial state will al-
most certainly yield a chimera state for a regular ring, but
one random link will almost certainly destroy the chimera
pattern and yield a non-chimera state.

Interestingly, the non-chimera states are spatiotemporal
fixed points for p < 0.5, while for higher p the chimeras are
destroyed yielding weak spatiotemporal chaos. So this sys-
tem of coupled circle maps yields three kinds of dynamical
states: i) “chimera-like” states for the special case of the
regular ring, ii) spatiotemporal fixed points for a small
number of random links, and iii) spatiotemporal chaos
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Fig. 4: Basin Stability of the chimera state in coupled circle
maps, where Basin Stability is estimated from the fraction of
initial states that go to the chimera state. Here K = 1, Ω =
0.019, ε = 0.9616 in eq. (1), and Basin Stability is obtained
by sampling 250 random initial conditions. State variables are
considered synchronized if they are similar within an accuracy
of 10−6, after transience of 103. Identical results are obtained
for the parameter set K = 1, Ω = 0.031, ε = 0.42.

when the number of random links is predominant. This
suggests that the chimera state is very delicate and occurs
only in the limit of a completely regular ring.

An important aspect to note here is the following: lin-
ear stability analysis cannot be employed to understand
this phenomena. The spatiotemporal fixed point is in fact
linearly stable for small p, and initial conditions very close
to the fixed point indeed evolve quickly to a homogeneous
steady state. However, in terms of global stability the sit-
uation is interesting and non-trivial under varying degrees
of randomness. For the regular ring (i.e., p = 0) the basin
of attraction of the homogeneous fixed point is localized
close to the fixed point, and a very large set of initial
conditions away from this narrow band in state space go
to chimera states. So when the state space is randomly
sampled this set dominates and the Basin Stability of the
chimera state tends to one. However counter-intuitively,
when even a single link is randomized, the basin of the spa-
tiotemporal fixed point grows explosively to a near global
attractor (within the limits of numerical sampling and ac-
curacy), and the basin of chimera states shrinks drasti-
cally. So our observed phenomena is crucially dependent
on global stability considerations, which is typically ana-
lytically intractable.

In order to check the generality of these observations, we
now explore another class of coupled map lattices where
the coupling range is not restricted to nearest neighbours.
Rather the coupling extends to k neighbours on both sides,
where k > 1 [39].

The local dynamics is also chosen to be in a different
class in order to explore a wider set of systems, and as-
certain the generality of our results. So now we go on
to consider coupled systems that are locally bistable, with
stable fixed points co-existing with chaotic attractors. Our
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particular example is a ring of coupled piecewise-linear
maps given as follows:

xt+1(i) = f(xt(i)) +
ε

2k

i+k∑
j=i−k

{f(xt(j)) − f(xt(i))}, (2)

where the on-site dynamics is given by

f(x) =

⎧⎪⎨
⎪⎩

p1x + (p1/l − 1) x ∈ [−1,−1/l),
lx x ∈ [−1/l, 1/l),
p2x − (p2/l − 1) x ∈ [1/l, 1].

The parameters p1, l and p2 determine the slopes of the
linear segments in different ranges of the state variable
x. We choose the parameters such that a stable fixed
point co-exists with a chaotic attractor [39]. Specifically,
we consider p1 = −0.5, p2 = −2.4, and l = 1.5. Here
the local dynamics supports a steady state at −8/9 whose
basin of attraction is the interval [−1, 0). It also supports
a chaotic attractor with span [0.2, 1], having a basin of
attraction in the interval (0, 1].

The evolution of spatiotemporal patterns for this sys-
tem of coupled piecewise-linear maps is displayed in fig. 5,
for two illustrative cases. The first case is a regular ring of
coupled maps (see top and middle panels of fig. 5), while
the second case has a fraction of links rewired randomly
(see lower panel of fig. 5). Both cases evolve from the same
random initial state, i.e., the set of x(i), i = 1, . . . , N , at
time t = 0 is identical for both cases. It is clearly evident
that the dynamical outcome in the two cases is again dras-
tically different and the presence of random links again
destroys the chimera-like pattern observed in the ring,
yielding a spatiotemporal fixed point instead.

We present yet another representative example of the
destruction of a chimera state by random links in the ring
of piecewise-linear maps in fig. 6. It is clearly evident
that the presence of very few random links in the ring de-
stroys the chimera-like pattern observed in the ring (see
top panel of fig. 6 vis-à-vis the middle panel), yielding a
spatiotemporal fixed point. Increasing the fraction of ran-
dom links here continues to be eliminate chimeras, yield-
ing spatiotemporal chaos in a narrow band of state space.
This can be seen more directly in the contrasting spatial
profiles obtained for the case of p = 0 and p = 0.3 dis-
played in fig. 7.

In order to quantify the global impact of random links
we again estimate the Basin Stability of the chimera state,
which reflects the probability of a generic initial state
evolving to a chimera state. Figure 8 shows this frac-
tion as a function of the fraction of random links p in the
ring. It is clearly seen that the basin size of the chimera
state sharply decreases to zero as the fraction of random
links becomes non-zero. In contrast to the case of coupled
circle maps, the chimera state is not a global attractor for
the coupled piecewise-linear maps, and Basin Stability of
the chimera state for a ring of such maps is less than 1.
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Fig. 5: Spatial profile x(i) of coupled piecewise-linear bistable
maps (i = 1, . . . , 100), after 500 transient time steps (top
panel); time evolution of xt(i) for the case of a regular ring
(middle panel) and p = 0.3 (lower panel). The initial states
are identical in all panels. Parameters in eq. (2) are p1 = −0.5,
p2 = −2.4, l = 1.5, k = 25 and ε = 0.3. Notice that the
emergent chimera-like pattern in (top panel) is destroyed un-
der some fraction of random links in the ring to yield a spa-
tiotemporal fixed point in (lower panel).

However, it is still very clearly evident that on random-
izing even a few links the basin size of the chimera state
shrinks even further and rapidly becomes close to zero with
increasing fraction of random links. Similar trends were
observed for the other parameter sets investigated. So the
general trend of random links destroying chimera states
holds here as well, and there is a drastic reduction of the
fraction of initial states yielding chimeras in the presence
of a small number of random links.

So we find evidence of the rapid destruction of the basin
of chimera states for p → 0. This again indicates the
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Fig. 6: Evolution of coupled piecewise-linear bistable maps for
fraction of random links (top) p = 0, (middle) p = 0.05, (lower)
p = 0.3. Here system size N = 100 and the parameters in
eq. (2) are p1 = −0.5, p2 = −2.4, l = 1.5, k = 25 and ε = 0.35.
The initial state is the same in all panels.

huge effect of random links on chimera patterns in cou-
pled nonlinear systems. This finding significantly impacts
the potential observability of chimera states, as in natu-
rally occuring scenarios a small number of links may get
randomized from time to time.

Coupled limit cycle oscillators. – Lastly in order to
further explore the generality of the observations above,
we investigate another broad class of systems, namely a
collection of coupled oscillators described by coupled non-
linear ordinary differential equations. Further in this class
of systems, we consider yet another form of coupling: con-
jugate coupling.

Specifically we consider a collection of prototypical
Stuart-Landau (SL) oscillators. The Stuart-Landau oscil-
lator is of broad relevance, as sufficiently close to any Hopf
bifurcation, the variables with slower time-scales can be
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Fig. 7: Spatial profile x(i) of coupled piecewise-linear bistable
maps (i = 1, . . . , 100), after 500 transient time steps, for frac-
tion of random links: (top panel) p = 0, and (lower panel)
p = 0.3. Here the parameters in eq. (2) are p1 = −0.5,
p2 = −2.4, l = 1.5, k = 25 and ε = 0.35. The initial state
is exactly the same in both panels.
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Fig. 8: Basin Stability of the chimera state in coupled
piecewise-linear bistable maps, where Basin Stability is esti-
mated from the fraction of initial states that go to the chimera
state in the system of coupled piecewise linear maps. Here
ε = 0.2 (solid circles) and 0.25 (open circles), and Basin Sta-
bility is obtained by sampling 250 random initial conditions.
State variables are considered synchronized if they are similar
within an accuracy of 10−4, after transience of 103. Similar
results are obtained for the parameter sets ε = 0.3, 0.35.

eliminated, yielding first-order ordinary differential equa-
tions of the Stuart-Landau form. In our representative
example we have conjugately coupled SL oscillators, that
are non-locally connected to k neighbours on both sides,
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Fig. 9: Chimera-like spatial profile x(i) (i = 1, . . . , 100) of con-
jugately coupled Stuart-Landau oscillators, after 1000 transient
time steps, for a regular ring with p = 0 (top panel); evolu-
tion of xi(t) of the oscillators, for p = 0 (middle panel), and
p = 0.01, where at each instant, on an average, there is a single
random link in the ring (lower panel). The system evolves from
the exact same initial state in all panels. Parameters in eq. (3)
are ω = 0.5, ε = 0.9 and k = 35.

i.e., with range of coupling equal to 2k. So the dynamics
of this system is given by 2N coupled nonlinear ordinary
differential equations:

ẋi = (1 − x2
i − y2

i )xi − ωyi +
ε

2k

i+k∑
j=i−k

[yj − xi],

ẏi = (1 − x2
i − y2

i )yi + ωxi +
ε

2k

i+k∑
j=i−k

[xj − yi].

(3)

Here index i specifies the site in the ring, with the local
on-site dynamics being a Stuart-Landau limit-cycle oscil-
lator [40].

In this example we investigate a specific class of initial
states: half the ring (i = 1, . . . , N

2 ) has state (x0, y0) and
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Fig. 10: (Top panel) Spatial profile xi (i = 1, . . . , 100) for a
regular ring of conjugately coupled Stuart-Landau oscillators
(i.e., p = 0), after 1000 transient time steps; (lower panel)
evolution of the system, with fraction of random links p = 0.1,
from the same initial state as in the top panel. Parameters in
eq. (3) are ω = 0.5, ε = 0.9 and k = 2.

the other half (i = N
2 + 1, . . . N) has state (−x0,−y0).

We study parameter sets in eq. (3) where all such initial
states evolve to chimera states, as displayed in fig. 9 in a
regular ring (i.e., for fraction of random links p = 0). The
lower panel of fig. 9 shows the evolution of the same col-
lection of conjugately-coupled SL oscillator, with a single
link randomized from time to time. The initial state is
the same as in the top panels of fig. 9. Very clearly, the
dynamical outcome is now drastically different, with the
presence of the single random link in the ring destroying
the chimera-like pattern observed in the ring, and yielding
a spatiotemporal fixed point instead.

We present another representative example of the de-
struction of a chimera state by a single random link in
fig. 10. Here the oscillators are coupled to two nearest
neighbours on both sides, i.e., k = 2. Again it is clearly
evident that the presence of very few random links in the
ring destroys the chimera-like pattern (see top panel of
fig. 10), yielding a spatiotemporal fixed point instead (see
lower panel of fig. 10).

Again, to quantify the global impact of random links we
estimate the Basin Stability of the chimera state, which
reflects the probability of a generic initial state evolving
to a chimera state. Figure 11 shows this fraction as a
function of the fraction of random links p in the ring. It is
clearly seen that the basin size of the chimera state sharply
decreases sharply to zero as the fraction of random links
becomes non-zero.
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Fig. 11: Basin Stability of the chimera state in the conju-
gately coupled Stuart-Landau oscillator system, where Basin
Stability is estimated from the fraction of initial states that go
to the chimera state, obtained by sampling 250 random initial
conditions. State variables are considered synchronized if they
are similar within an accuracy of 10−6, after transience of 103.
Here parameters in eq. (3) are ω = 0.5, ε = 0.9 and k = 35.
Identical results are obtained for the parameter set ω = 0.5,
k = 2.

Conclusions. – In summary, we have studied the
dynamics of a collection of coupled nonlinear systems,
ranging from nonlinear maps to differential equations
supporting limit cycles, under different coupling classes,
connectivity ranges and initial states. Our focus in this
work has been on the robustness of chimera states in the
presence of a few time-varying random links. We find that
the chimera states are often destroyed, yielding either spa-
tiotemporal fixed points or narrow-band spatiotemporal
chaos, in the presence of even a single dynamically chang-
ing random link. We also study the global impact of ran-
dom links by exploring the Basin Stability of the chimera
state, and find that the basin size of the chimera state
rapidly decreases to zero as the fraction of random links
becomes finite, i.e., the transition to non-chimera states
occurs in the limit of the fraction of random links tending
to zero and very minimal spatial randomness is required
to eliminate the chimera state. This indicates the far-
reaching effect of a few switched links on chimera patterns
in many systems, and impacts the potential observability
of chimera states in naturally occurring scenarios.
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