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Abstract — This paper carries out a cluster mean field analysis for spontaneous symmetry break-
ing in a two-lane totally asymmetric exclusion processes with an intersection. We find that the
boundaries of the asymmetric phase are determined by differences of upstream segment densities

and downstream segment flow rates of two lanes.

The spontaneous symmetry breaking phe-

nomenon exists when the interaction of particles is strong enough. The critical values, beyond
which the phenomenon disappears, are identified through simulation and analysis, and they are
in excellent agreement. The analytical results of the asymmetric phase boundaries are closer to
simulation ones than those of simple mean field analysis. The analytical results of density profiles
and the simulation ones are also in excellent agreement.

Copyright © EPLA, 2020

Introduction. — The transportation phenomenon
is very common in our world, including microscopic
objects such as ribosomes motion and protein synthesis,
and macroscopic objects such as the vehicular traffic
flow. In these phenomena, transport is often organized
along linelike pathways, and interactions exist between
entities [1]. The totally asymmetric simple exclusion
process (TASEP) is considered to be the simplest model
for studying various transport phenomena. In the model,
particles move in one direction along a segment of con-
secutive sites but are subject to the principle of excluded
volume. It was first introduced in 1968 to model mRNA
translation by ribosomes [2]. Since then it is used as a
predominant model to investigate stochastic dynamics
along one-dimensional lattice [3], e.g., gel electrophore-
sis [4], polymer dynamics in dense media [5], diffusion
through membrane channels [6], dynamics of motor
proteins moving along rigid filaments [7,8] and dynamics
of traffic flow [9-11]. Despite their simplicities, TASEPs
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can successfully explain some complex non-equilibrium
phenomena such as boundary-induced phase transi-
tion [12-14], phase separation and condensation [15-19],
shock formation [20-22] and so on.

In order to analyze more realistic situations that
involves movement along multiple lanes, for instance,
vehicle traffic, pedestrian flow and molecular motor mo-
tion, several studies investigated the multilane TASEP
model [23-26]. In addition, in recent decades, the TASEP
system with single species of particles was generalized
to multispecies particles, exhibiting spontaneous sym-
metry breaking (SSB) when the microscopic symmet-
ric dynamic rules lead to the existence of macroscopic
asymmetric stationary-state properties for some sets of
parameters [27-34].

Originally, the SSB was first observed in the single-
lane exclusion process with two species of particles mov-
ing in the opposite directions, which is known as “bridge
model” [27]. It is shown that two stationary phases with
broken symmetry could exist for the same part of the pa-
rameter space, though the update rules are symmetric
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with respect to the two species. In the original model,
particles of different species interact with each other at
every site of the lane. Later, the study was extended to
two-channel asymmetric exclusion processes with narrow
entrances where particles move on two parallel lanes, two
species of particles only interact at entrances [25]. The
study was also extended to a new class of bridge model
fed by junctions [35]. It is found that the local interac-
tion strongly influences the macroscopic particle dynam-
ics of the system. However, understanding of the nature
of the SSB phenomenon is still an open question. It is
known that the SSB is not observed in the single species
system [26].

In molecular motor motion, molecular motors move
along filaments, the filaments may be crossed with each
other. When the molecular motors arrive at the inter-
section, they may go to each of the two filaments. In
vehicle traffic, drivers usually know where the destina-
tion is. When they arrive at crossroads, they may change
road if the pre-defined moving road is in congestion. Mo-
tivated by these phenomena, Yuan et al. have studied
two-lane TASEP in which the two lanes intersect at a
center site. In this model, the SSB phenomenon is also
observed [23]. The model was analyzed using the simple
mean field (SMF) approach in which correlation of sites is
ignored. Four phases are identified in simulations, while
only three phases excluding the asymmetric phase can be
predicted in the analysis. The asymmetric phase cannot
be analyzed. Later, Zhu et al. studied another TASEP
on two intersected lanes, and the SSB phenomenon exists.
Motivated by the fact that the simple mean field (SMF)
fails to investigate the asymmetric phase, the cluster mean
field (CMF) analysis was adopted. In the analysis, corre-
lation of three sites (i.e., intersected site, two upstream
sites next nearest to the intersected site) was considered.
The boundaries of the asymmetric phase are determined
by the difference of densities of two lanes [36]. However,
the downstream sites next nearest to the intersected site
were not considered in the analysis, and it is not known
whether flow rates of two lanes have effect on the bound-
aries of the asymmetric phase.

In the present paper, we investigate the two-channel
TASEP model with an intersection in ref. [23] by simu-
lation and analysis. We focus on the SSB phenomenon.
Through simulation, it is found that the region of the
asymmetric phase changes gradually in the phase diagram
with the change of parameter. Only when the interaction
of particles is strong enough, the SSB phenomenon is ob-
served. To analyze the change of the asymmetric phase
quantitatively, we adopt the cluster mean field (CMF) ap-
proach in the analysis. The correlation of the intersected
site and four sites next nearest to it are considered. We
find that the boundaries of the asymmetric phase are de-
termined by differences of densities and flow rates of the
two lanes, and the simulation results and analytical re-
sults are in excellent agreement. The proposed system and
the analysis help to better understand the non-equilibrium
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Fig. 1: (a) Sketch of the model. The arrows show allowed
hopping and the crosses show prohibited hopping. Entrance
rates at both lanes are equal to o and exit rates are equal to (.
Filled circles indicate that the sites are occupied by particles.
(b) The sketch of the five sites and effective injection rates and
removal rates in the cluster mean field analysis of the model.

transport phenomena observed at macroscopic and micro-
scopic level.

This paper is organized as follows. In the next section,
we present a detailed description of the model. In the third
section, we analyze the system using the cluster mean field
and simple mean field approaches, and we compare the an-
alytical results with simulation ones. We summarize and
conclude in the forth section. We describe master equa-
tions used in the cluster mean filed analysis in the Supple-
mentary Material Supplementarymaterial.pdf (SM).

Model. — In this section, the update rules of the model
are introduced. In the model, the system consists of two
one-dimensional lanes with an intersection under the open
boundary condition. Lane 1 is in the horizontal direction
and lattices are numbered from 1 to L, while lane 2 is
in the vertical direction and lattices are numbered from
L+1 to 2L. The random update rule is adopted. At the
entrance site, a particle is inserted with rate a provided
the site is empty. At the exit site, a particle is removed by
rate 3. In the bulk (except for site C'), a particle hops to
the next site with rate 1 provided the target site is empty.
The lanes are sketched in fig. 1.

In the model, there are two types of particles which cor-
respond to the vehicle traffic or molecular motor motion.
Type 1 enters from site 1 and type 2 enters from site L+1.
If site C' is occupied by a particle of type 1(2), the particle
moves to the site C3(Cy) with rate 1 if site C3(Cy) is empty
independent of the status of site C4(C3), and the particle
moves to the site Cy(C3) with rate p if site C3(Cy) is occu-
pied and C4(Cs) is empty. Here p controls the strength of
the interaction at the intersected site. With decrease of p,
the interaction of particles at the intersection increases.

Analytical and simulation results. — The analytical
and simulation results are discussed in this section. The
phase diagram is shown in fig. 2. When p = 0, there ex-
ist three phases, i.e., symmetric LL phase, symmetric HL
phase and asymmetric phase. In the symmetric LL phase,
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Fig. 2: The phase diagram of the model, obtained from sim-
ple mean field analysis (black dashed lines), cluster mean field
analysis (red dashed lines) and Monte Carlo simulations (black
solid lines). The parameter is (a) p = 0.1, (b) p = 0.02,
(¢) p=10.01, (d) p=0.

two lanes are both in low densities, see fig. 3(a). In the
symmetric HL phase, the system is in the high-density up-
stream of the intersection site and in the low-density down-
stream of the site, see fig. 3(b). In the asymmetric phase,
one lane is in high density, the other lane is in the HL
phase, see fig. 3(c) and fig. 3(d). When p < p., & 0.025,
the asymmetric phase exists, which is reported in ref. [23].
Through simulation, we find that the asymmetric phase
shrinks with the increase of p. Moreover, a new symmet-
ric HH phase appears, in which the two lanes are both
in high densities. The symmetric HH phase expands with
the increase of p. When p > p.., the asymmetric phase
disappears. In ref. [23], the theoretical boundaries were in-
vestigated by simple mean field analysis, in which the cor-
relation of sites is ignored. It has been found that when
the system is in the symmetric LL phase, the following
conditions should be satisfied:

—34+ P —2p+9
a<p + D p—&-’

. 1
o a<p (1)
When
—3+Vp2—2p+9
ﬁ<p tVP P+ and (< a, (2)
2p
the system is in symmetric HH phase.
When
—3+p*—2p+9 —3+/p*—2p+9
a>p + /D D+ ’ ﬂ>p + /D D+ ’
2p 2p

(3)

the system is in symmetric HL phase.
From the analysis, we know that the asymmetric phase
could not exist. This is because of the neglect of the cor-
relation of sites. The simple mean field analysis predicts
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Fig. 3: The density profiles obtained from Monte Carlo simu-
lations corresponding to different values of p. (a) The sym-
metric LI phase, with the parameters o = 0.2, § = 0.7.
(b) The symmetric HL phase, with the parameters o« = 0.8,
B = 0.7. (c) The HL phase (p = 0, 0.01, 0.02) and the HH
phase (p = 0.1) of one lane in the system, with the parameters
a = 0.7, 8 =0.2. (d) The HH phase of the other lane in the
system, with the parameters a = 0.7, 3 = 0.2.

that there are three phases in the system, which is not
in accordance with simulation results, see fig. 2(b) and
fig. 2(c).

In the model, p represents the strength of the inter-
action at the intersection. With the increase of p, the
interaction decreases, and the asymmetric phase is sup-
pressed. Then the asymmetric phase exists only when p
is small enough. The asymmetric phase exists when « is
large and 3 is small. The appearance of the asymmetric
phase can be qualitatively explained as follows. It is ini-
tially supposed that segments II and IV are empty, see
fig. 1(a). When particles reach the exit sites of the two
segments, the shock will form on the two segments and
propagate upstream because the removal rate is smaller
than the effective entrance rate in the two segments. One
of the shock reaches site C' first, which leads to the stable
HD phase in the segment. On the other hand, a barrier
is formed at site C', which leads to a significant decrease
of the effective entrance rate in the other segment. Thus,
LD phase instead of HD phase exists in the other segment.
As a result, the system is found in the asymmetry phase
with one lane in the HH phase and the other one in the
HL phase.

In this paper, we carry out the analysis of the asym-
metric phase using the cluster mean field approach in this
model. The update of particle in the intersection site (site
() is related to the conditions of sites C3 and Cy, the
five sites (sites C, Oy, Cs, C3, C4) are considered in the
analysis, see fig. 1(b).

Let a1 and as denote the effective injection rates into
site i and m; (7 and [y denote the effective removal rates
of particles from site k and n; Pr r,7,7,, denote the prob-
ability that site i in state 71, site j in state 7o, site k in
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state 73, site m in state 74, site n in state 75, and 7, 73,
T4, T5 can only be 0 and 1 (0 means empty, 1 means oc-
cupied), 72 can be 0, 1 and 2 (0 means empty, 1 means
occupied by an eastbound particle, 2 means occupied by
a northbound particle); J; and Jo denote the flow rates
of the upstream of the intersection site on the eastbound
and northbound lanes; J3 and Jy denote the downstream
flow rates on the eastbound and northbound lanes; p; and
p2 denote the densities of sites i and m.

Now we can write the master equations of Pr ryryr,7s-
Take Pyoooo for example,

dPooooo
dt

= —(a1 + a2)Pooooo + F2Poooo1 + B1Pooroo (4)

and the other equations are shown in the SM. In the sta-
tionary state, we obtain dPr, ryryr,rs/dt = 0. Therefore,
we have 48 equations, but only 47 of them are indepen-
dent ones. Due to the conservation of probability, we can
obtain that

Pyoooo + Poooor + Poooo + Fooor1 + Pootoo + Pootor

+ Poo11o + Poot11 + Poiooo + Fotoor + Pototo + Fotort
+ Po110o + Portor + Poriio + Por111 + Po2o00 + Fo2001
+ Poz2o010 + Pozo11 + Po2100 + Po2101 + Po2110 + Fo2111
+ P1oooo + Prooo1 + Prooto + Proo11 + Pro1oo + Pro1o1
+ Pro110 + Pro111 + Priooo + Pr1oot + Prioto + Prionn
+ Pr1100 + Pr11o1 + Pri11o + Pri111 + Pi2ooo + P12001
+ P12010+ P12011 + Pr2100 + P12101 + Pr2110+ Pr2111 = 1.

(5)
Furthermore, p; and py are given by

p1 = P1o000 + Prooo1 + Prooto + Proo11 + Pro1oo + Pro1o1

+ Pro110 + Pro111 + Priooo + Prioor + Prioto + Prio11

+ Pr1100 + Pritor + Priiio + Prii11 + Pr2ooo + P12001

+ Pi2010 + P12011 + P12100 + P12101 + Pi2110 + Proi1,
(6)

p2 = Pooo1o + Pooor1 + Poo11o + Poor11 + Poto1o + Poto11

+ Por11o + Porrir + Pozoto + Po2o11 + Po2110 + Fo2111

+ Pioo1o + Pioo11 + Pio11o + Pro111 + Prioto + Prionn

+ Pi1110 + Pi1111 + Pi2o10 + Pr2o11 + Pr21io + Proiir-

(7)

In addition, by ignoring correlations, the relationship
between p; and Jp, p2 and Jy can be obtained:

Ji = pi(1—p1),
Jo = p2(1 = p2).
Jp and Js can also be expressed as

Ji = a1(1 = p1),
Jo = az(1 — pa).

On the other hand, J3 and J4 can be calculated by

J3 = p1(1 = p1) = 0.5(Por100 + Por11o + Pii1oo + Pii110)
+0.5(Po2001 + Pozo11 + Pi2oo1 + Pi2o11), (12)
Jy = p2(1 = p2) — 0.5(Po2001 + Pozo11 + Pi2001 + Pi2o11)
+0.5(Po1100 + Por110 + Pi11oo + Pii110)- (13)

In the asymmetric phase, one lane is in high density
(HD), the other lane is in the HL phase. Without loss of
generality, we suppose that the eastbound lane is in the
HD phase and the northbound lane is in the HL phase.
Then J3 is determined by

Js = B(1=p). (14)

Since the northbound lane is in the HL phase, which
means that the upstream segment of the intersection site
is in high density and the downstream segment is in low
density. Thus Jy can also be calculated by

Ja = B2(Poooor + Pooor1 +Pooro1 +FPoor11 + FPo1oo1 + FPoroit

+ Porror + Pori11 + Pozoor + Po2o11 + Po2101 + Po2111

+ Piooor + Proo11 + Protor + Pro111 + Prioor + Prio1t

+ Pi1101 + P11 + Pi2oor + Pi2o1n + Pizior + Piii1)-
(15)

Now we have 58 unknowns, including 48 probabilities
Priryryrirs, @1, a2, B1, B2, p1, p2, J1, J2, J3 and Jy. We
also have 58 equations, i.e., eqs. (4)—(15) and (A1)-(A46).
We can solve the equations to obtain py, pa, Ji, Jo, J3
and Jy. We have plotted the differences between p; and
p2, J3 and Jy vs. § when p = 0, see fig. 4.

It can be seen that ps — p; and Js — J, are both positive
in the range of 0 < B < .. The differences decrease
when [ approaches (.. p2 —p1 = 0 and J3 — Jy =0
when 3 = (.. In the analysis of the asymmetric phase,
we suppose that the eastbound lane is in the high density
and the northbound lane is in the HL phase. It means
that the density of the upstream of the intersection site of
the northbound lane is larger than that of the eastbound
lane, i.e., po — p1 > 0. The flow rate of the downstream
of the intersection site of the northbound lane is smaller
than that of the eastbound lane, i.e., Jy — J3 < 0 [37,38].
Therefore, the asymmetric phase exists when 0 < § < g,
see fig. 4. The system is in symmetric HL phase when
B> Be.

When p > 0, take p = 0.01 for example, the relations of
p2—p1, Js—Jy and [ can also be obtained, see fig. 5. pa—p1
is also positive in the range 0 < 8 < f.1. However, only
when B.3 < 8 < Be2, J3 — Jy is positive, and (o # Beo. It
means that when 0 < 8 < .3, p2 — p1 > 0 is satisfied but
Jy—J3 < 0is not. Therefore, the asymmetric phase exists
when .3 < 6 < Be1. When 0 < 8 < .3, the system is in
symmetric HH phase. It means that the bottom boundary
of the asymmetric phase is determined by the difference of
flow rates of the two lanes’ downstream segments, and the
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p = 0.01, obtained from cluster mean field analysis.

top boundary boundary is determined by the difference of
densities of the two lanes’ upstream segments.

Actually, in the model of ref. [36] and when p = 0 in
the present model, two particles of different species can-
not change hopping directions. Then the flow rates of
upstream and downstream segments of the same lanes
are equal, i.e., J; = Js and Jo = Jy are always satis-
fied. When p; — ps =0, J3 — Jy = 0. The values of 3.
corresponding to the asymmetric phase boundaries deter-
mined by the difference of densities of upstream segments
of the two lanes are identical to that determined by the
difference of flow rates of downstream segments of the two
lanes. However, when p > 0 in the present model, par-
ticles may change hopping directions at the intersection,
then J1 75 J3 and Jg 7& J4. ‘When pP1— P2 = 0, J3 —J4 =0
may not be satisfied. The 3. obtained from the differences
of the densities and flow rates are not identical. From fig. 5
and fig. 6, we can see that 5.1 # Beo and .3 # 0. The dif-
ferences of the densities of the upstream segments and flow

Fig. 7: The density profiles obtained from Monte Carlo sim-
ulations (dashed lines) and cluster mean field analysis (solid
lines). The black and red lines represent HD and HL phases.
The parameters are p = 0.01, « = 0.7 and § = 0.2.

rates of the downstream segments of two lanes together
determine the boundaries of the asymmetric phase.

With the increase of p, (.3 increases, see fig. 6. It means
that the asymmetric phase shrinks and the symmetric HH
phase expands when p increases. Through analysis, we
find that when p = p.. =~ 0.023 which is very close to
the simulation value p = p., &~ 0.025. When .3 becomes
equal to (.1, the asymmetric phase disappears.

From the analysis, in the asymmetric phase, ps > p1,
which means that the density of the upstream segment of
the intersection site on the lane with HL phase is larger
than that of the lane with HD phase. This is in accor-
dance with the simulation, see fig. 7. In fig. 7, the densi-
ties obtained from simulation and analysis are in excellent
agreement. Following the parameters presented in fig. 7,
the values of flow rates of the downstream segment of the
lane with HL phase and HD phase obtained from simu-
lations are 0.151738, 0.164441, and the values obtained
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Fig. 8: The density profiles of the symmetric HL phase. The
black dashed lines are obtained from Monte Carlo simulations.
The red solid lines are obtained from the cluster mean field
analysis. The parameters are o = 0.8, § = 0.7 and (a) p = 0,
(b) p=10.01, (c) p=0.1.

from analysis are 0.151459, 0.163657. The flow rates from
simulation and analysis are also in excellent agreement.

In this model, when p = 0.1, the asymmetric phase
does not exist, and the boundary § = (. between the
symmetric HH phase and the symmetric HL phase can
also be calculated. In the symmetric HL phase, the two
lanes are both in HL phase. The upstream segments of
the intersection site on both lanes are in high density and
the downstream segments on two lanes are in low density.
Because of the symmetry, a3 = aq, f1 = (B2, J1 = Jo,
Js = Jy4, p1 = p2, therefore we have 53 unknowns, in-
cluding 48 probabilities, aj(asz), G1(B2), J1(J2), J3(Js)
and pi(p2). We also have 53 equations, i.e., eqgs. (4)—(6),
(8), (10), (13), (15) and (A1)—(A46). We solve these equa-
tions, and the boundary is determined by

ﬁc(l - ﬁc) = J3-

We also compare the analytical results with the Monte
Carlo simulation ones in fig. 2(a) and fig. 8. In fig. 2(a), the
cluster mean field analytical results are closer to the sim-
ulation ones than those of the simple mean field analysis.
In fig. 8, the analytical results are in excellent agreement
with the simulation ones.

(16)

Conclusion. — To summarize, we have studied the
model of the totally asymmetric simple exclusion process
on two intersected lanes under open boundaries with ran-
dom update. In the model, two types of particles move in
two lanes. In the intersected site, a particle can change
the moving lane with rate p. Extensive Monte Carlo sim-
ulations show that there are four phases (symmetric HH
phase, symmetric HL phase, symmetric LL phase and
asymmetric phase) in the system when 0 < p < p.. =
0.025. When p > p. ~ 0.025, the asymmetric phase
disappears.

In the simple mean field analysis, correlation between
sites is ignored. The analysis indicates that three phases
(symmetric HH phase, symmetric HL phase, symmetric
LL phase) exist in the system, and the asymmetric phase
cannot be obtained. With the decrease of p, the inter-
action of particles at the intersection increases, and the
correlation becomes stronger. The simple mean field ap-
proach cannot be used in the analysis. Motivated by this,
we have carried out the cluster mean field analysis for the
model. Five sites including the intersection site are con-
sidered in the analysis because the motion of the particle
in the intersection site is related to the nearest-neighbor
two sites in every lane.

In the cluster mean field analysis, the analytical bound-
aries and density profiles are obtained. For the analyt-
ical boundaries, the cluster mean field analytical results
of boundaries of the asymmetric phase are closer to the
simulation ones than those of the simple mean field anal-
ysis, this is because the correlation of sites is considered.
The top boundary of the asymmetric phase is determined
by the difference of densities of upstream segments of the
two lanes, and the bottom boundary of the asymmetric
phase is determined by the difference of the flow rates of
downstream segments of the two lanes. With increase of p,
the analysis indicates that the asymmetric phase shrinks.
When p = p., = 0.023, the asymmetric phase disappears.
It is very close to the simulation value of p.,. ~ 0.025. For
the density profiles, when the system is in the asymmet-
ric phase, the cluster mean field analysis indicates that
the density of the upstream segment of the intersection
in the lane with HL. phase is larger than that of the lane
with HD phase, this is in accordance with the simulation.
When the system is in the asymmetric phase and in the
symmetric HL. phase, the cluster mean field analytical re-
sults of density profiles and simulation ones are both in
excellent agreement.
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