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Abstract
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In the protocols of device-independent quantum random number generator, it is essential to certify
the randomness of the generated numbers. However, statistical fluctuations in measurement data
might break the nosignaling conditions, making those data unphysical. In this letter, we proposed
to circumvent this problem by using the standard constrained least-squares method. As examples,
we apply our present approach on post-processing two different experimental data by utilizing

either CHSH correlations or complete measurement statistics, and do comparisons with the original
distribution. The post-processing results not only prove the effectiveness of our work to solve the
unphysical problem, but also show that randomness certified by processing complete measurement

statistics is always larger than through Bell-like inequalities.
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1. Introduction

Random number generators (RNGs) are important devices in
the information processing field, ranging from gaming, simu-
lations to cryptography. Traditionally, RNGs which are widely
used mainly develop from the deterministic algorithm. These
RNGs are also known as pseudo-random number generators
[1] because the randomness supported by algorithm is inau-
thentic, which leads to the system vulnerability. As a coun-
terpart, quantum random number generators (QRNGs) [2-4]
provide true random numbers by the guarantee of unpredict-
ability of quantum measurement outcomes. The reasons why
QRNGs have not been widely used are listed as follows. On
the one hand, the systematic errors caused by various imper-
fections in the experiment are difficult to estimate [5], which
reduces the reliability of the QRNGs. On the other hand, it is a
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difficult task to mathematically characterize the randomness of
the sequence generated by QRNGs under the adversarial
attacks. Fortunately, with the in-depth understanding of the
relation between the randomness [6] and non-locality of
quantum theory, this problem can be circumvented by a
device-independent way. In other words, it is possible to certify
the randomness of QRNG protocols even with untrusted
devices [7]. The device-independent protocols originated from
the context of quantum key distribution [8, 9], following the
DI-QRNG protocols [10, 11]. Moreover, the experimental
realization of the DI-QRNG protocol was already demonstrated
[12]. As shown in the subsequent study [13, 14], DI-QRNG
protocols can largely reduce the threat of classical adversaries
under some reasonable assumptions. Due to its high security
against the adversarial attacks, efforts were made on DI-QRNG
both theoretically [15, 16] and experimentally [17].

In DI-QRNG protocols, it is essential to certify the ran-
domness of the generated numbers, which is usually quantified
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by guessing probability of the eavesdropper Eve. Taking the
unavoidable system error of an experiment into consideration,
the key for DI-QRNG protocols is how to bound Eve’s gues-
sing probability, which can only be limited by the laws of
quantum physics. The answer can be given through the fol-
lowing way. Assuming a simple experimental setup consists of
two parties, Alice and Bob. In the beginning, they choose their
measurements from a finite set and perform on the systems
immediately. After taking a series of measurements, the con-
ditional probabilities derived from the measurement outcomes
are used to obtain the violation of a prechosen Bell inequality
[18]. Furthermore, Eve’s best guessing probability can be
computed numerically from the violation [12] as long as the
systems satisfy some requirements, i.e. two parties are sepa-
rated and do not interact with each other. The parameter of
inequality can also be replaced with complete measurement
statistics [19] to obtain the bound. Moreover, using the com-
plete non-local behavior to characterize the randomness of raw
data is equivalent to optimizing overall Bell inequalities which
are compatible for experiments [19]. It is worth noting that
these bound are achieved under the independent and identically
distributed (i.i.d) assumption. Specifically, Alice and Bob
should perform the same measurements on their quantum states
in every stage of the protocol. There also exist some protocols
[20-22] without i.i.d assumption, which we do not discuss
more details here. While various protocols based on above
methods have been proposed [16, 21, 23], an important issue
following is how to realize the protocols experimentally. The
underlying statistics distribution of the experiment was
replaced by relative frequency, which may yield a unphysical
behavior and leave the optimization problem unsolvable.

In this letter, we put forward an approach to solve the
problems caused by statistical fluctuations. The core of our
approach is in the form of the semidefinite hierarchy [24] to
bound the set of quantum correlations. Details on constructing
the bound are presented in section 3. We show that the
approach is extremely efficient to tackle the problems caused
by statistical fluctuations. The remainder of the paper is
structured as follows. In section 2, we briefly review the DI-
QRNG theoretical model and some notations as well as other
preliminary materials about the nonlocal correlations. In
section 4, we perform a numerical simulations and apply it on
experimental data to show the usefulness of our approach.
Finally, section 5 concludes with summary.

2. Preliminaries

In the scenario of standard DI-QRNG protocols, it consists of
two separated non-communicating parties, usually called
Alice and Bob. There also exist an adversary called Eve, who
is committed to improve the guessing probability of random
numbers through all feasible methods. The whole quantum
system shared by Alice, Bob and Eve is marked as papg. We
label the measurements chose by Alice and Bob with x € {1,
omgt, ye{l, ..., m,}, and the outcomes after measured by
corresponding settings with a € {1, ..., o,}, be {1, ..., 0,}.
Hence, p(ab|xy) denotes the joint probability of obtaining the

output a, b given the input x, y. We refer to the set
P = {p(ab|xy)} of all these probabilities as a behavior [24],
which can be considered as a point P € R™a*"MX0%x0%
belonging to the probability space 2 C R™a*"s>x%*o% [6].
Since DI-QRNG protocols are physically realizable, the
behavior P must satisfy the no-signaling constraints [25]. To
be specific, neither Alice nor Bob can transfer their choices of
inputs to the other, which is formalized by the conditions:

> plablxy) =) p(ablxy’), ¥ a, x,y,y',
b

b
> plablxy) =" p(ablx'y), ¥V b, y, x, x'. (1)

We also use the symbol of NS to denote the set of
behaviors satisfying the no-signaling constraints (1).

The behavior P belongs to the set of quantum behaviors
Q if there exists a state p,gr in a composite Hilbert space
Ha ® Hp @ He, a set of measurement operators M,, for
Alice, and a set of measurement operators Mp,, for Bob. Thus
for all @ and b [24], we can obtain

p(ablxy) = (UapelMajx @ My)y ® I [YapE), 2

where I¢ is the identity operator for Eve’s system. Formally,
the set £ of local behaviors is defined by the elements of P
that admit a local model in the form of

plablxy) = fA Ag(Np(alx, Np(bly, M), 3)

where A is an arbitrary variable in the space A. p(blx, \)
denotes the probability of Alice (Bob) getting the outcome a
(b) given A and the choice of measurement x (y). Moreover,
we have the strict inclusions £ C Q@ C NS. Alice and Bob’
systems are then characterized by the finite set P.

In general, the DI-QRNG protocols eliminate the uncer-
tainty of using untrusted devices in the schemes based on Bell
inequality, which can distinguish the quantum system from a
classical one. From the point of mathematics, there exists a
hyperplane separating all the P € £ [1] from the point given
by the behavior P € Q. This hyperplane H then defines the
Bell inequality written as

H'P = > hip(ablxy) < Si. 4)

abxy

None of the knowledge about the internal functioning of the
devices is used in this scenario. Hence, we only need the
observing behavior which violates a Bell inequality to bound
Eve’s guessing probability. To guess the outcomes generated
by Alice and Bob’s measurements, Eve can perform an
positive-operator valued measure (POVM) Z, on his own
subsystem to obtain the outcomes corresponding to the values
a and b. The guessing probability is thus given by

Pouess @lX*, Z) = (WapelMaj+ @ 1 @ Zo|Vape). (5)

Moreover, Eve can optimize all possible measurements to
acquire the maximum guessing probability, which can be
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Figure 1. The maximal violation of CHSH inequality (B,,,,) of K trials. B,,,, produced by the behavior F,,, are marked by rthombi. B,,,,
produced by the behavior P are marked by green-asterisks. The red-line represents the maximal CHSH violation of 2/2. All the dots are

obtained using the second order relaxation of the SDP hierarchy.

formulated as the following optimization problem:

GAKY, Z) = Max 3 Py (@i, 2),

st. HTP = Q,
Pe Q, (6)

where the optimization is carried over all P compatible with
the Bell violation Q.

Although we can find the optimal solution listed as
equation (6), the information obtained in a Bell experiment is
much more than the parameter of a prechosen Bell inequality
[19]. In other words, more randomness can be obtained from
the same observed behavior. The above optimization problem
can be transformed to a convex problem:

G(Alx*, Z) = max Y p®(alx™),
) 5
s.t. Z p* =P,

pre 0, a=1,...04, (7)

where p? are unnormalized behavior and @ denotes the
convex set of the unnormalized quantum behaviors.
Equations (6) and (7) hence provide a sophisticated formulas
for calculating G (A|x*, Z). Smaller guessing probability of
Eve certifies more randomness of the generated random
numbers transformed between Alice and Bob.

3. A general procedure for DI-protocols robust
against statistical fluctuations

Although we have equations (6) and (7) to estimate the ran-
domness theoretically, it is widely ignored that the observed
behavior F,,; may not belonging to Q even NS experimen-
tally. With sufficient trials, the observed behavior satisfies

Fobs = Napxy /N, where N is the total number of coincidence
counting and N, is the count of obtaining the outcome a
and b while measuring along x and y respectively. However,
since one can only perform a finite number of experimental
trials, the correlations described by measured data contains
statistical fluctuations which can not be neglected.

Our task is to remove the influence of statistical fluctua-
tions acting on the observed behavior F,,. In other words, we
need to find a set of quantum correlations in Q to formulate
Fops- To solve this problem, we use the least-squares approx-
imation D(P, F) = [P — Fyps|3 with ufly = (u'u)!/? as
the degree of difference between two behaviors.

Since the set of quantum correlations can not be descri-
bed by a finite number of extreme points, optimization over
the full set of quantum correlations is infeasible. To solve this
problem, we can resort to the NPA hierarchy [24], which
yields a nested set of semidefinite criteria for a given prob-
ability to have a quantum model. According to the convex
optimization [26], the above problem is easily cast and solved
as standard constrained least-squares:

minimize |[P — Fopl3

Pec Oy, k=1,2,3.., ®)

s.t.

where k is the level of NPA hierarchy. By minimizing
D(P, F,,), the above problems can be solved. In addition,
handling the unphysical behavior with the least-squares
approximation is originated from [27]. In order to demon-
strate the effect of the least-squares approximation, a num-
erical simulation with K = 200 instances is performed.
Meanwhile supposing the violation of K trials are subject to
poisson distribution with mean value of 2\/5 , which is the
maximal quantum limit of CHSH inequality. In this case, it
yields then our observed behavior F,,;. The numerical result
is shown in figure 1. It is clear that each observed behavior
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Table 1. The behavior F,,; of the experiment in [12]. The inequality is violate with Q ~ 2.414 525 317 94. Suffering from the statistical
fluctuations, F,,, does not satisfy the no-signaling constraints. The values are conditional probabilities of obtaining ab while given xy for

Alice and Bob.

xy

ab 00 01 10 11 Yppla=0,blxy) >,pla=1,blxy)
00 0.3896 0.150 0.0931 0.3923 0.5396 0.4854

01 03968 0.0932 0.0985 0.4115 0.4900 0.5100

10 04003 0.0976 0.0905 04116 0.4979 0.5021

11 0.0844 0.4218 0.3834 0.1104 0.5062 0.4938

Table 2. The behavior P calculating from equation (8) is the least-squares approximate of F,,,. The inequality is violated with
QO ~ 2.414 525 318 28. P satisfies the no-signaling constraints within the desired tolerance. The values are conditional probabilities of

obtaining ab while given xy for Alice and Bob.

xy

ab 00 01 10 11 Yppla=0,blxy) >,pla=1,Dblxy)
00 03855 0.1168 0.1013 0.3964 0.5023 0.4977

01 03961 0.1063 0.0855 0.4122 0.5024 0.4977

10 04003 0.1017 0.0864 04115 0.5020 0.4979

11 0.0892 04129 0.3924 0.1056 0.5021 0.4980

Fops 18 converted into the behavior P belonging to a quantum
behavior by our method. The simulation runs with MATLAB
toolbox QETLAB [28] and CVX [29].

4. Applications

In this section, we present two examples using different
inequalities to verify the method mentioned above.

CHSH correlations from the ion experiment—We reana-
lyze the data from the ion experiment [12]. Tables 1 and 2 show
the distribution F,;, of the raw data [12] and the distribution P of
the processed data. Through the process of equation (8), the
marginal distribution in table 2 always satisfies the non-signaling
condition, i.e. 3, p(a = 0, b|00) ~ >, p(a = 0, b|01). How-
ever, compared with the CHSH violation achieved by the raw
data, the processed data reached an approximate value at 2.4145.
In other words, it certifies that the standard constrained least-
squares method does no harm to the Bell test and removes the
statistical fluctuations in experiments. We regard the method
efficient when the no-signaling constraints are taking into con-
sideration for experiments.

The advantage of getting the data processed is more
eminent in the field of randomness certification. Table 3
presents bounds on the guessing probability G (A|x*, Z).
When we certify the randomness by the full non-local beha-
vior way, no solution of equation (7) is found for the raw
distribution F,;. It is because that the raw distribution F,
does not satisfy the no-signaling constraints due to the sta-
tistical fluctuations, which is also proved in table 1. After
processed by least-squares approximation of equation (8), the
behavior P in table 2 satisfies the no-signaling constraints
within the desired tolerance. In table 3, Eve achieves nearly
the same guessing probability before and after process by

Table 3. The first and the second rows in the table correspond to the
value in either the original distribution or after post-processing
through our present approach individually. The first and the second
columns represent the results using either CHSH inequality or
complete measurement statistics, respectively. Here in our approach,
we use the NPA hierarchy up to the second level.

CHSH fixed Full non-local behavior
Before  0.842 491748 979439  Infeasible
After 0.842491 748979 064  0.821 296 659 433 661

CHSH inequality, which means our method do no harm to the
Bell test. Less guessing probability is achieved only after
process, which certifies more randomness of the generated
random numbers transformed between Alice and Bob.

Gisin’s elegant Bell inequality (EBI) in optical experi-
ments [30]—Moreover, we consider the following set of
correlations of Gisin’s EBI obtained from [31] and combine
equations (6), (7) with our method to calculate
the G (Alx*, Z).

The EBI can be written as follows

S=E, 1+ E,—Ej3—FEas+E;—E)

+Ey3—Eys+ E31— E3p — E33+ E3sa< 6. (9)

Then Alice should perform three projective measurements
Ay =0, Ay = 0,, A3 = 0y, while Bob should perform the
following four projective measurements

-

B 7 (o, + 0y — 0y), (10a)
B, %(a: o + o), (10b)
By = %(—az T (10¢)
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Table 4. The behavior F,, inferred for the experiment reported in [31].The inequality is violate with Q ~ 6.813 799 426 31. The values are
conditional probabilities of obtaining ab while given xy for Alice and Bob.

xy

ab 00 01 10 11 Yppla=0,blxy) >,pla=1,Dblxy)
00 0.3935 0.0992 0.1189 0.3883 0.4927 0.5072
01 04018 0.1076  0.0900 0.4115 0.5094 0.5015
02 0.1110 0.3720 0.4001 0.1169 0.4830 0.5170
03 0.1085 0.3805 0.4033 0.1078 0.4885 0.5111
10 0.3809 0.1212 0.1307 0.3673 0.5021 0.4980
11 0.1212 0.3876 0.3670 0.1242 0.5088 0.4912
12 04075 0.0918 0.0925 0.4082 0.4993 0.5007
13 0.1014 04125 0.3985 0.0876 0.5139 0.4861
20 04188 0.0904 0.0841 0.4067 0.5092 0.4908
21 0.1037 0.4018 0.3961 0.0983 0.5055 0.4944
22 0.1303 0.3740 0.3822 0.1134 0.5043 0.4956
23 0.3794 0.1190 0.1232 0.3784 0.4984 0.5016

Table 5. The behavior P calculating from equation (8) is the least-squares approximate of F,;,. The inequality is violate with
0 ~ 6.813 799 425 74.The values are conditional probabilities of obtaining ab while given xy for Alice and Bob.

xy

ab 00 01 10 11 Yp,pla=0,blxy) >,pla=1,blxy)
00 03922 0.1013 0.1168 0.3897 0.4935 0.5065
01 03946 0.0989 0.0987 0.4078 0.4935 0.5065
02 0.1146 03789 0.3933 0.1132 0.4935 0.5065
03 0.1073 0.3862 0.3975 0.1090 0.4935 0.5065
10 03815 0.1244 0.1275 0.3666 0.5059 0.4941
11 0.1224 03836 0.3709 0.1231 0.5060 0.4940
12 0.4148 0.0912 0.0931 0.4009 0.5060 0.4940
13 0.0999 0.4061 0.4049 0.0892 0.5060 0.4941
20 04194 0.0849 0.0896 0.4061 0.5043 0.4957
21 0.0998 0.4045 0.3935 0.1022 0.5043 0.4957
22 0.1280 0.3764 0.3799 0.1157 0.5044 0.4956
23 0.3834 0.1209 0.1213  0.3743 0.5043 0.4956

Table 6. The first and the second rows in the table correspond to the
value either calculating using the original distribution or after post-
processing through our present approach individually. The first and
the second columns represent the results using either EBI inequality
or complete measurement statistics, respectively. Here in our
approach, we use the NPA hierarchy up to the second level.

EBI fixed Full non-local behavior
Before 0.537 747004 477 726  Infeasible
After 0.537 747004 851 328  0.489 875193 431 422

Lm0 -
\/g Z X
where o, o, 0, are pauli operations.
The raw and processed distribution of F,,; and P is listed
in tables 4 and 5 respectively. Through least-square approx-
imation, distribution satisfy the no-signaling condition.
Table 6 presents the bounds of Eve’s guessing probability
G (A|x*, Z). Unsuprisingly, the raw distribution F,,; can not
find a solution following equation (7). However, after post-

By = (104)

Uy)’

processing, an optimal solution of G (A| x*, Z) ~ 0.489 875
is found. It also shows that our method can be applied to
various correlations.

5. Conclusion

In conclusion, we have proposed an approach on the basis of
least-squares approximation and NPA, to handle the no
solution problem in dealing with randomness certification of
DI-QRNG protocols. The unphysical behavior caused by
experimental statistical fluctuations can be solved by carrying
out post-processing, i.e. to replace the unphysical F,,, with a
similar quantum behavior P, and weigh the similarity between
Fops and P through the least-squares approximations. Then we
implement the above approach onto analyzing two exper-
imental data through either Bell-like inequalities or complete
measurement statistics. We find that, after post-processing,
the guessing probability remains unchanged through arbitrary
Bell-like inequalities, while more randomness can be verified
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by utilizing complete measurement statistics. Therefore, our
work can provide valuable post-processing methods for ana-
lyzing DI-QRNG experimental data, and pave its way
towards practical implementations in the near future.
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