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Abstract
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A ring-vortex soliton (RVS) is unstable in a uniform microcavity polariton condensate (MPC).
We propose a method for generating a stable RVS in an MPC subjected to a ring-shaped defect
potential. The density distribution of a RVS with a pump strength is obtained numerically for a
given defect size and strength. Then we discover two types of RVSs: soliton with a dark ring and
soliton with a gray ring. And the stabilities of RVSs are dependent on the pump and defect

strength.
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1. Introduction

Vortices are relevant in many areas of science, including
particle physics [1-3], superfluids [4], condensed matter
systems [5], ultracold atomic gases [6] and microcavity
polaritons [7, 8]. They are characterized by the winding of a
phase around a point known as the vortex core whose density
is zero. Because the total phase change for a complete loop
must be an integer multiple of 27, a vortex is a state with
quantized orbital angular momentum (OAM). Vortices have
been intensively studied in classical systems including optical
vortex beams [9] and lasers [10]. They are also the char-
acteristic property of condensed-phase systems such as
atomic Bose—Einstein condensates (BECs), liquid helium, and
superconductors [11].

A ring-vortex soliton (RVS) is one of the most fasci-
nating and universal structures in fluids of various natures.
RVSs have been the subject of numerous studies on classical
fluid mechanics [12], lasers and nonlinear optics [13-17]. In
bulk optical media, toroidal dissipative solitons with an inner
phase field in the form of rotating spirals have been studied
using the complex Ginzburg-Landau equation with cubic-
quintic nonlinearity [18]. Stable toroidal dissipative solitons
could easily self-trap from pulses carrying orbital angular
momentum. With respect to quantum fluids and degenerate
gases, considerable efforts have been made to identify mul-
tidimensional solitons with vorticity [19-21]. RVSs with a
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closed-loop core occupy a special place among other non-
linear excitations. RVSs play a crucial role in quantum tur-
bulence and the decay of superflow [22]. Several
experimental schemes for creating RVSs in BECs based on
dynamical instabilities of collective excitations [23] or con-
densate collisions [24, 25] have been successfully tested.
However, to meet the requirements of atomic BECs, an
extremely low temperature is necessary to study the properties
of the RVS. In contrast to atomic BECs, RVSs are easier to
create in a polariton condensate because polariton BECs have
been observed during experiments conducted at room
temperature.

Polariton condensates in microcavities have been the
topic of intensive research over the past two decades because
of their progress towards a new generation of ultralow
threshold lasers, ultrafast optical amplifiers, and room temp-
erature switches [26]. Polaritons are bosonic quasiparticles
that arise from strong exciton—photon coupling in semi-
conductor microcavities. Characteristic bosonic phenomena,
such as stimulated scattering [27] and polariton condensation
have been reported [28-31]. However, the polaritonic system
is intrinsically out-of-equilibrium, meaning that continuous
pumping is required to balance the fast polariton decay and
sustain a steady-state solution [32-35]. The steady-state
solution is characterized by a supercurrent that drives polar-
itons from gain-dominant to loss-dominated regions. In a
nonresonantly pumped microcavity, polaritons from reservoir

© 2020 IOP Publishing Ltd  Printed in the UK


https://orcid.org/0000-0003-1728-4946
https://orcid.org/0000-0003-1728-4946
mailto:twchen@mail.ncyu.edu.tw
https://doi.org/10.1088/1361-6455/ab5e3f
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ab5e3f&domain=pdf&date_stamp=2020-01-24
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ab5e3f&domain=pdf&date_stamp=2020-01-24

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 045401

S-C Cheng et al

turn into condensed polaritons and spontaneously evolve into
vortices [36, 37] or vortex lattices [34] without stirring or
rotating. The dynamics and properties of the polaritonic
vortices have attracted intensive investigation in these two
decades [38—41].

In this study, we propose a method for generating an
RVS in a microcavity polariton condensate (MPC) with a
ring-type defect in the system. The RVS state of MPCs has
been studied using the complex Gross—Pitaevskii equation
(cGPE) coupled to the reservoir polaritons at high momenta
[33] with polariton mass m and interaction strength g between
the condensed polaritons. This mean-field model for none-
quilibrium MPCs is a generic model for evaluating the effects
from pumping, dissipation, defect potential, relaxation and
interactions. Because of the nonequilibrium character of
MPCs, the excitation frequency (2 is a complex value [33, 42]
whose real part, Re({2), and imaginary part, Im({2), represent
the excitation energy and decay or growth rate of the system,
respectively. The stability of an RVS is justified by Im((2),
provided that Im (2) < 0.

2. Model

In semiconductor microcavities, a nonresonant excitation
leads to photo-creation of electron-hole pairs, which quickly
cool through the emission of phonons to create polaritons,
which populate the lower polariton branch (LPB) at high
k -values. Subsequent steps consist of polariton relaxation
(mostly through polariton—polariton scattering) on the LPB
towards the radiative states at the bottom of the LPB near
k, = 0. In a larger time frame, the non-condensed polaritons
near k, = 0 may either decay through radiative and non-
radiative recombinations or replenish into the coherent con-
densed polaritons with slightly higher blue-shift energy equal
to the repulsive nonlinear interaction energy [28]. Therefore,
we treat the non-condensed polaritons as a reservoir and
employ the dissipative cGPE for a condensate that is coupled
to the reservoir. The system is uniformly pumped with a
pump power P, which contributes to population of the
reservoir polaritons near k,, = 0 during a short time frame.
Let (7, t) and ng (¥, 1) represent the MPC wave function and
reservoir polariton density, respectively, the dynamics of the
MPC and reservoir polaritons are then given by:
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where m is the polariton mass, # is the Planck constant. V (¥)
is the defect potential of polaritons. R(ng) is the replenishment
rate of the condensed polaritons from the non-condensed
reservoir polaritons, v describes the polariton decay rate due
to of the imperfections of the cavity mirrors, 7 is the decay

rate of reservoir polaritons, and g and § (¢ = 2g under the
Hartree—Fock approximation) are the coupling constants of
polariton—polariton interactions and condensate-reservoir
interactions, respectively [33].

For nonequilibrium MPCs, we treat the polaritons at high
momenta as a reservoir and employ the cGPE, using the
condensed polaritons that couple to the reservoir polaritons
with density ng(r, t), to describe the time evolution and
probability amplitude function W(r, 7) of the condensate. In
the cGPE, we add a defect potential with a ring-shaped form
V(F#) = Voe‘("rﬂ)y"2 to the equation to mimic a potential
defect. Besides, a pumping term with power P that exceeds
the threshold of P, (P > P,) is introduced into the rate
equation of reservoir. By selecting the length, energy and time
scales in units of A\ = /7% 2y0/2mgP,,, /wy = /2/2mX* and
T = 1/wy, respectively, in which o = 1/[1 — (4v/)] is
associated with the relative decay rate, we can rescale
the wave function of the condensed polaritons as
Y(p, T) = V(r, t)//n. and the reservoir polariton density as
n(p, 7) = ng(r, t)/nfl'. Here n. = |¥(r — oo, 7)|* repre-
sents the steady-state condensate density far from the vortex
core, and n!' = P, / g is the reservoir density at the threshold
pumping power Py, in the unit of decay rate of the reservoir
polaritons Y. p = (p, §) with p = r/X being the dimen-
sionless radial coordinate. After this rescaling, the condensate
wave function ¢ (p, 7) and reservoir density n(p, 7) satisfy
the coupled differential equations as follows [37]
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Here the Laplacian operator associated with the dimensionless
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polar coordinate p is defined as V ap( ap) + o0

The scaled defect potential V(p) = Vie~»~70/a’ had the
dimensionless potential strength V| = Vy/hw, and width
a; = a/ ) positioned at a distance py away from the center of
the condensate. & = (P/P;) — 1 was the relative pumping
intensity beyond the threshold. 4, /¥ = 5 are chosen based on
previous literatures [33, 43]. The other notations indicated the
following. R(n) = R(ng)/wy is the dimensionless amplifica-
tion rate describing the replenishment of the condensate state
from the reservoir state through stimulated scattering;
¥ = v/wy and G = 7, /wy are the decay rates of condensate
and reservoir polaritons, respectively.

3. Steady-state ring-vortex solitons

The solutions of equations (3) and (4) with V(p) = 0 differ
from those for the homogeneous MPC without defect
potential. For a finite defect, the amplification rate R(n) has
spatial dependence rather than being uniform across the entire
system. In such a steady state, fluxes that connect the regions
of loss and gain constantly occur, leading to the possible
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Figure 1. Radial density profiles of ring-vortex solitons (blue solid
lines) and reservoirs (green solid lines): (a) o = 0.3, (b) a = 0.8,

(¢) = 1.1 and (d) « = 1.3. Parameters: V; = 1, a; = 1, pg = 4.5,
4 = 1, and 4 = 5. The winding number of a vortex is m, = 1. The
Gaussian potentials are presented as black dashed lines for reference.

formation of a dynamically stable condensate. We assume that
the amplification rate is a linear function of reservoir density
(i.e. R(n) = pn, with being a constant). This is an accurate
approximation for a weak pumping regime. The steady state of
the system under uniform pumping could therefore be obtained
by substituting ¥(p, 8) = 1o(p)e™ =7 into equations (3)
and (4), where my, is the winding number of a vortex and
fi = p/ 7w is the dimensionless chemical potential of the
system. In the limit p — £o00, Yo(p) — 1 and ny — 1, we
discover that 3 = 4 under the steady state of the system
and the chemical potential of the system is given by
fi = ac + (o — 1). Applying R(n) = 4n and [i to the steady
states of equations (3) and (4), we obtain

d%y, 1dyy  mf

40 + ;E - ?ﬂ}o — V@)Y, + ac(l — 1),
(0 = Do — Dy — g — Dy = 0. )
where ng = @1 _ We can solve equation (5) numerically

(a| g > +1
by using the Nlev(;/lton—Raphson method. In the following dis-
cussions, we will see that the dips in the vortex core and dark
ring contain some reservoir polaritons in the background,
which is consistent with experimentally observed vortex den-
sity patterns [44].

We calculate the density distributions of the steady states
of polariton condensates for various uniform pumps under the
defect potential of constant width (a; = 1) and strength
(Vy = 1) in figure 1. For the low pump strength displayed in
figure 1(a), a vortex with m, = 1 can be observed in a uni-
form MPC background at p = 0. With increased pump
strength crossing the first critical value (~0.53 for V; = 1) to
a moderate value (a = 0.8), as presented in figure 1(b), a
bright part loops away from the vortex core and back on itself
to form a gray-ring part accompanied with the outer uniform
MPC background. It is a solution with all three character-
istics: core and ring, separated by a hump. Therefore, the two-
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Figure 2. Density profiles of ring-vortex solitons (blue solid lines)
and reservoirs (green solid lines): (a) V| = 0, (b) V; = 0.5,

(¢) Vi =1 and (d) V| = 2. Parameters: o = 1.1, a; = 1, pg = 4.5,
4 = 1, 4 = 5. The winding number of a vortex is m, = 1, and the
Gaussian potentials are presented as black dashed lines for reference.

dimensional MPC has the density profile of an RVS with a
concentric gray ring around its core. As the pump strength is
increased crossing a second critical value (~1.06 for V| = 1),
the reservoir polariton density is increased (peak value from
0.24 in figure 1(b) to 0.41 in figure 1(c) around p ~ 4.5) so
that the gray ring becomes dark since the repulsive force from
reservoir polaritons on the condensed polaritons is increased
(see figure 1(c)). The condensed polariton density in the dark
ring region centered around p ~ 4.5 is almost negligible
(9Yol> ~ 0.02). When the pump strength is increased higher
than a third critical value (~1.23 for V; = 1), the reservoir
polariton density starts to decrease dramatically compared
with that of figure 1(c), piling up some condensed polaritons
back into the dip around p ~ 4.5, creating the gray ring again
as presented in figure 1(d).

Figure 2 displays the density distributions of o = 1.1
with varying defect potential V;. Figure 2(a) demonstrates
that the RVS solutions do not exist in the absence of defect
potential. This indicates that the bright ring part of the RVS is
artificially created by the defect potential. It is not an intrinsic
solution of the nonequilibrium polariton system without the
defect potential. Moreover, the defect potential here not only
creates the RVS but plays the role of stabilizing the RVSs
under certain pump strengths and defect conditions.

4, Stabilities of ring-vortex solitons

Having determined the density profiles of the steady states of
RVSs, we investigate the excitations and stability of an RVS.
We consider the small fluctuations ¢ty and én acting on the
steady state 1o and ng of the system that has an RVS with an
angular momentum characterized by the quantum number
my = 1. Though the steady-state solution is rotationally
invariant, we still assume the excitation being a general non-
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symmetrized excitations:

P(p, 0) = e" 1™ [ho(p) + u(p, 0)e ™ + v¥(p, 0)e*],
(6)
n(p, 0) = ng + w(p, 0)e ™ + w¥(p, 0, (7

where u, v, w are the amplitudes of the excitation quasi-
particles, and 2 is the index labeling the excitation frequency.
The excitation frequency indicates the phase fluctuation of
any of the small fluctuating components, which is the phase
of the excited collective condensate state. For a none-
quilibrium system such as the exciton—polaritons inside the
microcavity, the excitation frequency is a complex number.
By substituting ¢(p, 8) and n(p, 0) into equations (3) and (4)
and linearizing them around the steady state, we obtain three
coupled Bogoliubov equations [45] that could be used to
study the excitations and stability of the system:

—Ayu + (A(p) — pu + B(p)v + C(p)w = Qu,  (8)
A v — A%p) — v — B (pu — Cp)w = Qv, (9

—iF*(p)u — iF (p)v — iG(p)w = Qw, (10)
where the operators AL = (1/p)8/0p(pd/dp) + (1/p?)
(0%/06%) £ (Qimy/p»(0/00) — mi/p  A(p) = 2a0
[¥ol + V(p) + (0 — Do + Z(ng — 1), B(p) = ao 4,
C(p) = [i7/2 + (o — DIy, F(p) = 45(=")anghy and
G(p) = 4&(0(11)[1 + ao |Yg|*]. Of the many excitation
states, we are primarily interested in the branch with the
lowest excitation frequency. The decay [Im (£2) < 0] and
growth [Im (€2) > 0] behaviors of the excitation mode indi-
cate the stability and instability of the steady state of the
system, respectively.

By establishing a uniform pumping power scheme, we
test the stability of the steady-state RVSs through the three
coupled Bogoliubov equations (8)—(10). No stable RVS is
observed in a uniform MPC. However, depending on the
pump and defect potential strengths, the RVS could be sta-
bilized by introducing a ring-shaped defect into an MPC. The
excitation frequencies of the steady RVSs with respect to the
angular momentum ¢ are displayed in figure 3 for the defect
potential of constant width (a¢; = 1) and strength (V; = 1).
The stability of an RVS is fulfilled if Im(2) < 0, where (2 is
the excitation frequency of the system. For the vortex under a
low pump strength, as displayed in figure 1(a), we observe
that the vortex is unstable as shown in figure 3(a). After
increasing the pump strength to a moderate value as displayed
in figure 1(b), the overall density grows up with a dip region
caused by the repulsive force of the defect potential. How-
ever, the local increase of the reservoir polariton density
around the center of defect is insufficient to fully deplete the
condensed polaritons out of the dip. Thus the steady-state
solution is a gray RVS. The stability analysis in figure 3(b)
indicates that the RVS in MPCs can be stabilized with a
defect potential that has suitable strengths and widths. Local
accumulation of the reservoir density, which is related to both
V; and «, should create an effective potential barrier that can
repel the condensed polaritons around the dip [33]. Though a
constant inward flow is directed into the dip [46], the
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Figure 3. Bogoliubov excitation spectra for V; = 1 and a; = 1.

(@) a = 0.3; (b) @ = 0.8; (¢c) @ = 1.1; (d) @ = 1.3. The instabilities
are revealed by the positive imaginary parts of the excitation eigen-
energies.
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Figure 4. Radial density profiles and Bogoliubov excitation
spectra of stable RVSs for higher topological charges at v = 0.8.
(a)—(c) my = 2; (b)~(d) m, = 3. Parameters: V; = 1, a; = 1,
po=45,49=1,and 5 = 5.

1.5
o 1.0}
0.5} -
0.0L==" : : :
00 05 10 15 20
v

1

Figure 5. Phase diagram of ring-vortex solitons under a fixed defect
width a; = 1. Abbreviations DRVS and GRVS represent the ring-
vortex soliton with a dark ring and ring-vortex soliton with a gray
ring, respectively.
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Figure 7. Numerical simulations of the RVS for a = 0.8 with simulated time interval of (a) r = 2.57; (b) t = 7.57; (¢c) t = 12.57; (d) t = 17.57;
(e) t = 22.57; () t = 1007. Parameters: V; = 1, a; = 1, pp = 4.5, ¥ = 1, and 4, = 5. The winding number of a vortex is m, = 1.

repulsive force from the defect potential and reservoir’s
potential are still sufficient to prevent condensed polaritons
from further flowing into the gray ring and sustain a steady-
state density profile. Therefore, a stabilized RVS can occur in
a nonequilibrium MPC with defects. Further increasing the
pump strength to an even higher value as displayed in

figure 1(c), the reservoir polariton density inside the ring is
increasing so that more condensed polaritons are depleted in
the dip and the gray ring becomes dark (see figure 3(c)).
However, the RVS with a dark ring (see figure 3(c)) is
unstable and will eventually become an RVS with a gray ring
(see time evolution in figure 8). The non-monotonic transition
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Figure 9. Numerical simulations of the RVS for o = 1.3 with simulated
time interval of (a) t = 2.57; (b) t = 7.57; (¢c) t = 12.57; (d) t = 17.57;
(e) t = 22.57; (f) t = 1007. Parameters: V; =1, a; = 1, pg = 4.5,

4 = 1, A = 5. Here the winding number of a vortex is m, = 1.

from figures 1(c) to (d) is due to the rapid decrease of the
reservoir polariton density inside the dip of the ring. The
depletion effect from decreased reservoir polaritons is over-
whelmed by the replenishment of condensed polaritons due to
increased pumping. Therefore, the RVS turns to a gray ring
and it is unstable from the stability analysis (see figure 3(d)).

RVSs with higher topological charges, such as m, = 2, 3,
can not exist in the nonequilibrium polariton system. Exam-
ples of the instabilities of RVSs with higher m, are presented
in figure 4. As displayed in figure 4, RVSs in an MPC could
not be stabilized under a repulsive defect potential. Figure 5
presents the existence domains of RVSs in terms of the
strength of the defect potential and pump strength under a
constant defect width. The RVS with a gray ring is always
stable. For a given low defect strength, the RVS with a gray
ring can exist at a higher pump strength. When the defect
strength increases, the RVS with a gray ring can exist at two

regimes of pump strength separated by a regime of unstable
RVS with a dark ring.

5. Numerical simulations of the RVSs

We directly apply two-dimensional numerical simulations to
confirm the phase diagram obtained in figure 5. We numerically
solve the time evolution equations of equations (3) and (4). The
steady states presented in figure 1 with an extra noise term are
treated as the initial states of the time-evolving processes gov-
erned by equations (3) and (4) Modulus-Squared Boundary
Conditions are applied [47] to deal with the converging function
value at the boundary. The time intervals are successively
increased and the corresponding numerical results are displayed
separately in six sub-figures with time step equal to 0.000 27.
The numerical results for different states shown in figure 1 are
presented in figures 6-9. The first case with o = 0.3 and
Vi =1 is an unstable vortex. Concentric ring soliton is not
formed yet. The initial vortex profile evolves to a continuously-
changing gray RVS (GRVS) and never returns to its steady-
state structure (figure 6). Thus the vortex is not a steady-state
solution. The second case with o = 0.8 and V; = 1 is a stable
gray RVS (GRVS). The initial profile does not evolve to
another structure, it is stabilized quickly to a GRVS. We can see
that the density profile does not change with time from the very
beginning. The height of the bright part from the dynamical
evolution is nearly the same as that from the steady-state pre-
diction in figure 1 (see figure 7). The third case with a = 1.1
and V; =1 is an unstable dark RVS (DRVS). Its ring still
remains dark from the initial time point to around t = 27, then
we observe its evolution to a GRVS within 27 as shown from
figures 8(a) to (b). The time evolution ended in a non-central-
symmetrically rotating gray RVS. From figures 8(c) to (f), the
core of the vortex is off-center and rotates around the center of
the condensate slowly with time. The four panes of 2D density
distribution at four distinct time moments are shown instead of
1D radial density profiles. We can see that the dark RVS is not a
stable solution, it is continuously evolving. The fourth case with
a =13 and V; =1 is again a stable GRVS because its initial
gray ring is sustained with time, as displayed in figure 9.
Likewise, we observed that the height of the bright part from
the dynamical evolution is the same as that from the steady-state
prediction.

6. Conclusions

In summary, an RVS in a homogeneous microcavity polariton
condensate without defect potential is unstable. RVSs can be
created by adding a ring-shaped defect potential to the
microcavity polariton condensate. We demonstrate that two
types of RVSs exist, namely GRVSs and DRVSs. The GRVS
is stable when the pump power and defect strength are within
suitable values. However, the DRVS is unstable since the
repulsive force from the reservoir polaritons are insufficient to
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prevent condensed polaritons from further flowing into the
dip region. Therefore the time evolution ended in GRVSs,
and their steady-states are unstable.
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