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Abstract
A recently proposed density-dependent van der Waals model, with only 4 free
parameters adjusted to fix binding energy, saturation density, symmetry energy,
and incompressibility, is analyzed under symmetric and asymmetric nuclear
matter constraints. In a previous paper, it was shown that this model is fully
consistent with the constraints related to the binary neutron star merger event
named GW170817 and reported by the LIGO and Virgo collaboration. Here, we
show that it also describes satisfactorily the low and high-density regions of
symmetric nuclear matter, with all the main constraints satisfied. We also found a
linear correlation between the incompressibility and the skewness parameter, both
at the saturation density and show how it relates to the crossing point presented in
the incompressibility as a function of the density. In the asymmetric matter
regime, other linear correlations are found, namely, the one between the symmetry
energy (J) and its slope (L0), and other one establishing the symmetry energy
curvature as a function of the combination given by 3J–L0.

Keywords: nuclear matter, correlations, van der Waals model

(Some figures may appear in colour only in the online journal)

1. Introduction

An often-used approach to treat many-nucleon systems is to fit directly some of the many-
nucleon observables, allowing the construction of thermodynamic equations of state to study
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the infinite nuclear matter. Among the main models constructed through this procedure, one
can mention the widely known nonrelativistic Skyrme model [1, 2]. For the relativistic case,
on the other hand, a Lagrangian density is proposed and all thermodynamic quantities are
derived from it. In its simplest version, the Walecka model [3–5], based on relativistic field
theory in a mean-field approach, depends on free parameters fitted to reproduce the infinite
nuclear matter bulk properties. The applications of these models extend to different ranges of
temperature and density. For the zero temperature regime, the detailed knowledge of the
hadronic equations of the state, coming from both, relativistic and nonrelativistic models, is
very important for the description of, for example, neutron stars, which are studied in den-
sities up to around six times the nuclear saturation density (ρ0) [6, 7].

In the finite temperature regime, in which the hadronic models are generalized to ¹T 0
but keeping the adjustment of the free parameters performed at T=0, the phenomenon of
phase transitions in nuclear matter takes place. In general, hadronic models exhibit a liquid–
gas phase transition characterized by regions presenting low (gas phase) and high (liquid
phase) densities at a temperature range of T20 MeV [8, 9]. This is the typical feature
presented by the known van der Waals (vdW) model [10, 11] in a temperature range of
T<Tc, where Tc is the critical temperature. Such similarities pose the question of whether
the vdW model could also be used to describe hadronic systems. In [12], the vdW model
had its canonical ensemble thermodynamics converted into the grand canonical one. Later
on, in [13], the authors performed a direct application of this model to the nuclear matter
environment at zero and finite temperature regime. In [14], the authors used the same
procedure adapting it to other real gases models (Redlich–Kwong–Soave, Peng–Robinson,
and Clausius) to describe the infinite nuclear matter. However, these models present a
limitation at high-density regime since they produce equations of state in which causality is
violated for densities around 2.5ρ0 at most. Therefore, an important nuclear matter con-
straint, namely, the flow constraint [15], can not be reached since it is defined in the region
of 2�ρ/ρ0�5. Furthermore, the stellar matter can also not be described due to this
limitation. The origin of such a problem is the absence of a suitable relativistic treatment of
the hard-core repulsion, namely, the implementation of the Lorentz contraction (see, for
instance [16]).

In [17], the authors considered a density-dependent vdW model in which the attractive
and repulsive strengths were converted from constants to density-dependent functions
properly chosen in order to avoid superluminal equations of state at low densities. It was
shown that such a model, named as the DD-vdW model, is able to reproduce the flow
constraint and also observational data of neutron stars. In particular, it was also shown that the
constraints coming from the analysis of the GW170817 event, performed by the LIGO and
Virgo collaboration, are fully satisfied by this model [18, 19]. In the present work, we focus
on the analysis of the DD-vdW model against the symmetric and asymmetric nuclear matter
constraints used in [20] to test 263 parametrizations of different relativistic mean-field (RMF)
models. We also investigate the correlations between the bulk parameters presented by this
model concerning the isoscalar and isovector sectors.

In section 2, we present the density-dependent perspective of the real gases models
with the DD-vdW model properly described in section 3. The model is submitted to the
constraints in section 4, and the summary and conclusions of this work are shown in
section 5.
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2. Real gases in a density dependent model perspective (nuclear matter
description)

The classical vdW model in the canonical ensemble is expressed by the following equation of
state for the pressure [10, 11],

( ) ( )r
r
r

r=
-

-P T
T

b
a,

1
, 12

in which the parameters a and b represent, respectively, the strength of the attractive and
repulsive parts of the interaction between the hard-sphere particles of radius r. The excluded
volume parameter b relates to r through b=16πr3/3, in the so-called exclude volume
mechanism. The Redlich–Kwong–Soave [21, 22], the Peng–Robinson [23] and the Clausius
models present the same expression for the first term on the right hand side of equation (1),
but different structures for the second one.

In [13, 14], a suitable conversion of equation (1) to the grand canonical ensemble, with
relativistic treatment, was performed in order to use the vdW model and the other real gases
ones in the description of infinite nuclear matter. By taking such a procedure into account, it is
possible to construct a unique formulation to all the real gases if one considers a suitable
description in terms of density-dependent functions for the attractive and repulsive parts of the
nuclear interaction. In this case, the energy density for the infinite symmetric nuclear matter
(SNM) in the grand canonical ensemble reads [17]
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The quantity  id* is the kinetic energy of a relativistic ideal Fermi gas of nucleons of mass
M=938MeV, given by
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2 1

3* * . The degeneracy factor is γ=4 for SNM.
The attractive interaction, now depending on ρ, assumes different forms for the real

gases, namely,
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for van der Waals (vdW), Redlich–Kwong–Soave (RKS), Peng–Robinson (PR), and
Clausius-2 (C2) models. The last model is denoted by Clausius-2 since it is a two parameters
version of the original Clausius model in which three parameters are considered [24]. For the
repulsive interaction, on the other hand, it is possible to construct at least two possible forms
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for all the real gases models. The first is related to the conventional excluded volume
mechanism in which

( ) ( )r =b b, 9

i.e. a pure constant. Another form takes into account the Carnahan–Starling (CS) [25] method
of excluded volume, in which the pressure of hard-core nucleons of radius r is given as
P=ρTZCS (η), with

( )
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and η=bρ/4. Using this method, we can find the first eight coefficients of the virial
expansion unlike the traditional excluded volume method (EV), in which only two of them
are recovered since, for this case, one has Z(η)=(1–4η)−1. Such a procedure, used for the
description of nuclear matter by the real gases models in [14], leads to the following density-
dependent form for the repulsive interaction [17],
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As one can see in figure 1, b(ρ) is a decreasing function for all the real gases models
submitted to the CS procedure.

For all the real gases models constructed with the EV or CS methods, there are only two
free parameters to be adjusted, namely, the constants a and b, found in this case by imposing the
binding energy value of B0≈16.0MeV at the saturation density given by ρ0≈0.16 fm−3. For
the vdW-EV model, for instance, one has a=328.93MeV fm3 and b=3.41 fm3 whereas for
the vdW-CS model, these numbers change to 347.02MeV fm3 and 4.43fm3, respectively.

Figure 1. Density dependence of the repulsive interaction for the real gases submitted
to the CS method of excluded volume, equation (11).

J. Phys. G: Nucl. Part. Phys. 47 (2020) 035101 M Dutra et al

4



From equation (2), and by using the general relationship
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coming from equation (3), the pressure of the system is obtained, namely,
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Here, a′ and b′ are the density derivatives of a(ρ) and b(ρ), respectively, and the
rearrangement term is

( ) ( )r r rS = ¢ - ¢b P a . 15id
2*

A generalization of the equation of state given in equation (2) to asymmetric nuclear
matter, i.e. a system in which r rº ¹y 1 2p (ρp is the proton density), was proposed in
[17]. It consists of adding a term proportional to the squared difference between protons and
neutrons densities, namely, ρ3=ρp−ρn, as used widely in some RMF models [20]. The
individual components (nucleons) are also distinguished by their respective kinetic energies.
The final form for the energy density in this perspective is given by
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iid* * following the same form as in equation (4)

with γ=2, k kF F
i* * and r r i* * (i=p, n). The different densities are related to each other
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with b(ρ) given in equation (11). An interpretation for this new term in equation (16) is that it
mimics the ρ meson exchange between the finite structure nucleons.

3. DD-vdW model

An important limitation of the real gases models presented in the previous section is the
production of superluminal equations of state at densities not so high in comparison with the
saturation density. The maximum densities attained by these models immediately before the
violation of the causal limit ( = ¶ ¶ >v P 1s

2 ) is presented in table 1 for the EV and CS
method of excluded volume.

It is worth to note that the repulsive interaction plays an important role in the causal limit
of the models since its density-dependent version induces the violation of causality at higher
densities. The physical reason of this finding is that the CS method weakens the repulsive
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interaction as a function of density, according to the results displayed in figure 1, producing
results closer to those of an ideal gas of massive point-like nucleons. For this case, causality is
not violated [17]. Even with this effect, the CS method is still not able to generate equations
of state for densities greater than around 2.5ρ0, which is the best case of the C2-CS model.
This result does not allow an analysis of the nuclear matter at high-density regime. Motivated
by this limitation, it was proposed in [17] a new form for the attractive interaction, given by

( )
( )

( )r
r

=
+

a
a

b1
. 18

n

It is inspired in the C2 model, where causality is violated at higher densities in comparison
with the remaining models. The set of equations of state given in equations (2) and(13) for
SNM, and (16) for the asymmetric case, with the repulsive and attractive interactions given by
equations (11) and(18), respectively, was named as the DD-vdW model. Notice that for the
particular cases of n=0, and n=1, the vdW-CS and C2-CS models are reproduced,
respectively, see equations (5) and(8). In table 2, we show the limit density reached by this
model for some values of the powern.

The effect of the n power in a(ρ) is that it weakens the strength of the attractive inter-
action. Therefore, the model approaches the free Fermi gas of massive particles in which the
condition <v 1s

2 is verified. The combined effect of the density-dependent parameters a(ρ)
and b(ρ) enables the model to reach higher densities.

The additional free parameter of the DD-vdW model, n, is adjusted in order to correctly
fix the value of the incompressibility at the saturation density, namely, ( )∣r= ¶ ¶ rK P90 0

.
For the real gases models in the CS method, this value is in the range of 333MeV�
K0� 601MeV [14]. In [26, 27], a formulation including induced surface tension was
implemented in the van der Waals model. The resulting approach also satisfies the flow
constraint and the maximum mass observational data for neutron stars.

Table 1. Maximum density ratio, ρmax/ρ0, for the real gases models submitted to the
two mechanisms of excluded volume, namely, EV and CS methods.

Model r rmax
EV

0 r rmax
CS

0

vdW 1.38 1.69
RKS 1.58 2.07
PR 1.65 2.16
C2 1.84 2.51

Table 2. Maximum density ratio, ρmax/ρ0, for some values of the n power,
equation (18), of the DD-vdW model.

n ρmax/ρ0

0 1.69
1 2.51
2 3.74
3 5.16
4 6.61
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4. Constraints and correlations from the DD-vdW model

In this section, we proceed to analyze the DD-vdW model against the constraints used to
select the 35 parametrizations of different RMF models out of 263 investigated in [20]. These
selected parametrizations had their bulk and thermodynamical quantities compared to
respective theoretical/experimental data from symmetric matter, pure neutron matter (PNM),
and a mixture of both, namely, symmetry energy and its slope evaluated at the saturation
density (J and L0), and the ratio of the symmetry energy at ρ0/2 to its value at ρ0. We also
investigate whether correlations between the bulk parameters also arise in the isoscalar and
isovector sectors of the DD-vdW model.

4.1. Constraints in symmetric matter

As a first constraint, we analyze the region in the density dependence of the pressure
determined in [15] from the analysis of the flow in the collisions of 197Au. The result is
depicted in figure 2.

In [17], the authors considered the region obtained in [15]. Here, we also take into
account the 20% of increasing in this band as used in [20]. Such an increase was based on the
band region obtained in [28] in which the authors performed an analysis based on observa-
tional data of bursting neutron stars showing photospheric radius expansion and transiently
accreting neutron stars in quiescence. From the figure, one can verify that the parametrizations
presenting 242.4 MeV�K0�255MeV are in full agreement with the flow constraint.
Furthermore, such a range for K0 also agrees with the constraint used in [20], namely,
190MeV�K0�270MeV. It also overlaps with the restriction for this quantity given by
250MeV�K0�315MeV found in [29]. Furthermore, it is also consistent with the range
recently discussed in [30], namely, K0=(240±20)MeV.

Another SNM constraint, coming from experiments of kaon production in heavy-ion colli-
sions [31, 32], also defines a band in the density dependence of the pressure but now at 1.2�
ρ/ρ0�2.2. In figure 3, we show the behavior of the DD-vdW model against this constraint.

One can see that the DD-vdW model is also consistent with this particular constraint.

Figure 2. Pressure as a function of ρ/ρ0 for different DD-vdW parametrizations. Bands:
flow constraint described in [15, 20].
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4.2. Correlations in isoscalar sector

We also investigate for the DD-vdW model, a possible correlation between bulk parameters in
the SNM, namely, the one involving K0 and the skewness coefficient at the saturation density,
Q0=Q(ρ0) with

( ) ( ) ( )r r
r

r
=

¶
¶


Q 27 . 193
3

3

The skewness coefficient is a bulk parameter that directly affects the high-density
behavior of a hadronic model. In [33], for instance, the authors provide a detailed studied
showing the impact of Q0 in the RMF hadronic model. Different parametrizations with the
same bulk parameters excepting the skewness coefficient were used to investigate the specific
role played by Q0 in the flow constraint and mass-radius diagram of neutron stars [33].

In order to examine a possible relationship between Q0 and K0, we proceed here as in
[34] where the authors have shown that a signature of linear correlations is exhibited in the
density dependence of the bulk parameter analyzed. For instance, if we look for the density
dependence of K(ρ), and if a crossing point arises, consequently it generates to the linear
relation between Q0 and K0. Actually, in figure 4 we show that this is the case for the DD-
vdW model.

From the expansion of the energy per particle given by,
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Figure 3. Pressure as a function of ρ/ρ0 for the DD-vdW parametrizations consistent
with the flow constraint. Band and circle-dashed line: experimental data extracted from
the [31, 32].
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If the following linear correlation is true,

( )= +Q a K a , 220 1 0 2

then

( ) ( )[ ( ) ( ) ] ( )r + + +K x K F x x a x3 1 1 6 , 230 2

with F(x)=1+(9+a1 )x+6a1x
2, and K(ρcross) will present the same value for different

parametrizations only if one has F(xcross)=0 for a particular point (crossing point) given by
ρcross=(3xcross+1)ρ0. Since we found this crossing point in figure 4(a), the correlation in
equation (22) holds and the condition F(xcross)=0 is satisfied, in this case for ρcross/ρ0=0.8
(also from figure 4(a)). The relationship between Q0 and K0 is exhibited in figure 4(b),
confirming the linear correlation. A linear fitting points out to a1=9.79, generating the more
accurate value of ρcross/ρ0=0.798, coming from the exact solution of F(xcross)=0. The
authors of [35] also found a crossing for some nonrelativistic Skyrme and Gogny
parametrizations, with ρcross/ρ0=0.7. However, for the RMF models analyzed, they did
not find any linear correlations or even crossing points. In this case, this is due to the different
values of the effective nucleon mass for the distinct parametrizations, as explained in [34].
However, for Boguta–Bodmer models in which effective mass is 0.6M, for instance, one has a
crossing in the K(ρ) curve at ρcross/ρ0=0.77 and, as a consequence, a linear correlation
between Q0 and K0 [34]. The crossing density found in the DD-vdW model is close to the
values obtained by the aforementioned models.

For the DD-vdW parametrizations in which the flow constraint is satisfied, the respective Q0

values are in the range of −740MeV�Q0�−569MeV, which is compatible with other
calculations giving −690MeV�Q0�−208MeV [36], −790MeV�Q0�−330MeV [36],
and −1200MeV�Q0�−200MeV [37].

4.3. Asymmetric matter

In the SNM, the DD-vdW model contains only three free parameters, namely, the constants a,
b and n present in equations (11) and (18). In the generalization to asymmetric matter
proposed in equation (16), there is one more free constant, namely, the d parameter. In [17],

Figure 4. (a) Incompressibility as a function of ρ/ρ0 for some DD-vdW parametrizations.
The density in which the parametrizations cross each other is given by ρcross. (b) Q0×K0

linear correlation observed for the same parametrizations. Solid line: fitting curve.
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this constant was adjusted in order to fix the symmetry energy at the saturation density,
( )rº J 0 , where

( ) ( ) ( ) ( )r
r

r r=
¶
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, 24

y

2

2 kin
1
2

*

with ( ) ( )r = k E6kin F
2

F* * * and = +E k MF F
2 2* * . The choice of fixing J in the range of

25MeV�J�35MeV automatically becomes the model consistent with the constraint
used in [20], obtained from the data collection reported in [38].

From equation (24), one obtains the symmetry energy slope as follows,
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and ( ) ( ) [ ( ) ]x r r r r= + ¢ -b b1 12 .
One advantage of the specific form of the last term added in the energy density in

equation (16), namely, that one containing the d parameter, is that it generates an analytical
relationship between ( )r and L(ρ) for all densities, since one can write ( ) r= - d kin*
from equation (24). This result leads to ( ) ( ) ( )r r r= +L g3 , with
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F
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i.e. a linear correlation between L(ρ) and ( )r is clearly established if g(ρ) does not vary
significantly.

A possible linear correlation at saturation density given by

( ) ( )r º = +L L J g3 280 0 0

is of great interest, since it is observed in many hadronic models [34, 39–41]. It will be
satisfied if g(ρ0)≡g0 is approximately fixed regarding a variation of J. Indeed, this is the
case for the DD-vdW parametrizations in which ρ0, B0 and K0 are kept fixed for different
values of J. The reason is that g0 is a function of quantities depending only on free parameters
adjusted from observables related to the symmetric matter, which means that g0 depends only
on ρ0, B0 and K0, i.e. g0=g0(ρ0, B0, K0). For parametrizations presenting these symmetric
matter quantities fixed, independently of their J values, g0 is a constant. This situation could
not be the same if we had proposed terms in equation (16) with more than one isovector free
parameter to be adjusted. The linear correlation in equation (28) can be blurred in this case
since g0 can also depend on J. However, some relativistic and nonrelativistic models with
more than one isovector free parameter also present the same relationship of equation (28), as
the NL3* [42] family and some Skyrme parametrizations, for instance [34, 43].

For DD-vdW parametrizations consistent with the flow constraint, namely, those in which
242.4MeV�K0�255MeV, we found the slope of symmetry energy at saturation density in the
range of 63.4MeV�L0�97.1MeV, see figure 5(a). It was obtained from equation (28) and by
taking into account the J constraint of 25MeV�J�35MeV. These L0 values are in full
agreement with constraint of 25MeV�L0�115MeV applied in the RMF parametrizations
studied in [20], and obtained from the data collection presented in [38].
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It is also possible to find analytic expressions for higher-order terms of  from
equation (24). In particular, its curvature is given by

( ) ( ) ( )r r
r

r r=
¶
¶

= ¢


K g9 3 . 29sym
2

2

2

At the saturation density, we have Ksym
0 = r ¢g3 0 0 , with Ksym

0 ≡Ksym(ρ0). Likewiseg0, the quantity
¢g0 is a function only of the isoscalar bulk parameters of the model, i.e. ( )r¢ = ¢g g B K, ,0 0 0 0 0 .

Notice that if the quantity ¢g0 can be given also as a function of g0 in a linear form as
a a¢ = +g g0 1 0 2, then Ksym

0 would be given by [ ( ) ]r a a= - - +K J L3 3sym
0

0 1 0 2 , according

to equation (28), i.e. a linear correlation between Ksym
0 and 3J−L0 would arise (α1 and α2 are

constants). Indeed, it is verified that ¢g0 linearly depends on g0 as one can see in figure 6. The
black circles were obtained by using the values of ρ0=0.16 fm−3, B0=16MeV and
runningK0 in the range of 242.4 MeV�K0�255MeV. The direct consequence of the
relationship between ¢g0 and g0 is the correlation between Ksym

0 and 3J–L0 presented in

figure 5(b), with a fitting curve given by Ksym
0 = ( )- - +J L6.3 3 51.50 . As in figure 6, the

full circles in figure 5(b) were calculated by using the range of 242.4 MeV�K0�255MeV,
with the aforementioned fixed values for ρ0 and B0. This linear correlation between Ksym

0 and
3J−L0 was shown for 500 relativistic and nonrelativistic parametrizations in [44], and
specifically for the Skyrme model in [45]. Also in [46], the authors have discussed such
relationships. From this strong linear behavior, it is possible to obtain a range for the sym-
metry energy curvature for the DD-vdW parametrizations consistent with flow constraint,
namely, -  K20.6 MeV 2.5 MeVsym

0 . This range is inside the one obtained for some
RMF parametrizations in [44], according to figure 1 of this reference.

Another constraint adopted in [20, 47] was the one concerning the density dependence of
PNM energy per particle (equation (16) evaluated at y=0) at very low density regime. It was
based on the lattice chiral effective theory including corrections due to finite scattering length,
nonzero effective range, and higher-order corrections related to the nucleon–nucleon inter-
action in that regime. We submitted the DD-vdW model also to this constraint with results

Figure 5. (a) L0 as a function of J, and (b) Ksym
0 as a function of 3J−L0=−g0(ρ0, B0,

K0). The full circles were obtained by using the range of 242.4 MeV�K0�
255 MeV, with fixed values of ρ0=0.16 fm−3 and B0=16 MeV. Both panels
constructed from the DD-vdW parametrizations consistent with the flow constraint.
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displayed in figure 7. One can see that the DD-vdW model is also consistent with this
particular restriction.

Finally, we analyze the DD-vdW model against a constraint explored in [20, 47] related
to the difference between proton and neutron densities (neutron skin thickness). In [48], the
author associated this difference to the reduction of the symmetry energy at ρ0/2 in terms of
the quantity ( )rº r J20 and found the limit of 0.57� r� 0.83. This constraint is named
as MIX4 in [20, 47]. In table 3, we show the values of ( )r J20 for the parametrizations of
the DD-vdW model consistent with the J and the flow constraints.

From table 3, one can verify that all parametrizations present numbers out of the limit of
the MIX4 constraint. However, to follow the same criterion adopted in [20, 47] for that

Figure 6. Correlation between ¢M g2
0 and g0 for DD-vdW parametrizations consistent

with the flow constraint.

Figure 7. Density dependence of energy per particle in PNM for DD-vdW
parametrizations consistent with the flow constraint. Band region: constraint given
in [20, 47].
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parametrizations do not satisfy only one of the analyzed constraints, we also establish here
that a particular parametrization is approved if the value of the quantity exceeds the limits of
the respective constraint by less than 5%. This is the case for the parametrizations reported in
table 3, except for that presented in the last line. Therefore, one can conclude that the DD-
vdW model also predicts parametrizations in agreement with this particular constraint.

5. Summary and conclusions

In this paper, we revisited the recently proposed density-dependent van der Waals model
(DD-vdW) [17] by submitting it to the symmetric and asymmetric nuclear matter constraints
used in [20]. The constraints used are summarized in table 4 as follows.

In order to become the model capable to reach the high-density regime, the new density
dependent attractive interaction is considered, see equation (18). The new free parameter, n, is
used to fix the value of the incompressibility at the saturation density. The other ones, found
at the SNM regime, namely, a and b, are found by imposing the model to present the
B0=16MeV at ρ=ρ0. By imposing the model to satisfy the flow constraint [15], see
figure 2, K0 is found to be restricted to 242.4MeV�K0�255MeV, values compatible with
the SM1 constraint. It also overlaps with the restriction proposed in [29], namely, 250MeV�
K0�315MeV.

The last free parameter, d, is adjusted to generate parametrizations in which 25MeV�
J�35MeV. Therefore, the model automatically satisfies the constraint named as MIX1a. All
the other constraints are fully satisfied, excepting the MIX4. However, some parametrizations
are out of its range only by less than 5%, which makes this constraint also satisfied, according
to the criterion adopted in [20, 47].

Table 3. Values of r for DD-vdW parametrizations presenting 242.4 MeV�K0�
255 MeV and 25 MeV�J�35 MeV.

K0 (MeV) J (MeV) r

242.4 25 0.56
242.4 35 0.54
255 25 0.55
255 35 0.53

Table 4. Set of updated constraints (SET2a) used in [20] and applied to the DD-vdW
model. See that reference for more details concerning each constraint.

Constraint Quantity Density region Range of constraint

SM1 K0 at ρ0 190–270 MeV
SM3a P(ρ) < <r

r
2 5

0
Band region

SM4 P(ρ) < <r
r

1.2 2.2
0

Band region

PNM1 rPNM < <r
r

0.017 0.108
o

Band region

MIX1a J at ρ0 25–35 MeV
MIX2a L0 at ρ0 25–115 MeV
MIX4

( )r
J

20 at ρ0 and ρ0/2 0.57–0.83
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We also analyzed the correlations between the bulk parameters in this model. It was
shown that the crossing point in the K(ρ) function, see figure 4(a), is related to the linear
correlation between K0 and the skewness coefficient at ρ=ρ0, see figure 4(b). For the
isovector sector, we also verified the linear correlation between J and L0 (slope parameter at
ρ=ρ0), according to equation (28) and figure 5(a). Furthermore, a linear correlation between
3J−L0 and Ksym

0 (symmetry energy curvature at ρ=ρ0) also arises for the DD-vdW model,
as shown in figure 5(b). This kind of correlation was also studied for relativistic and non-
relativistic mean-field models in [44–46].

In [17], it was shown that this new proposed model, with only 4 free parameters,
satisfactorily describes the constraints related to the binary neutron star merger event named
as GW170817, and reported by the LIGO and Virgo collaboration [18, 19]. Here, we con-
tinued the analysis of the model and found that the mainly symmetric and asymmetric nuclear
matter constraints are also satisfied, with some correlations between bulk parameters also
observed.
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