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1.  Introduction

A power transformer is one of the most expensive assets and 
plays a vital role in electric power transmission and distribu-
tion (T&D) systems [1]. A failure of a power transformer may 
lead to substantial costs and cause detrimental social impacts, 

e.g. power outage and complaints [2]. Oil-paper insulation 
inside the transformer will be gradually aged under synergistic 
effects such as electrical, thermal, mechanical and chemical 
stresses during the long-term operation, during which the 
probability of equipment failure gradually increases [3]. The 
remaining lifetime of a transformer is determined by the con-
dition of the solid dielectrics, i.e. insulating paper wrapped on 
the windings, because the insulating oil in the transformers can 
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be replaced or easily filtrated on site while the aging processes 
of the insulating paper is irreversible [4]. Among the dozens of 
aging-related parameters, the degree of polymerization (DP), 
that a factor approximately is equal to the average cellulose 
molecules chain length of insulating paper, is considered as 
the most direct and reliable chemical parameter characterizing 
the aging conditions of insulating paper. DP is therefore deter-
mined by the IEEE guidelines as the basis for the quantitative 
measurement of the aging conditions of insulating paper [5].

As the growing requirement for the reliability of power supply, 
the quick view of the operating condition has prevailed and the 
interval of planned outage for maintenance is required less than 
ever. The conventional measurement of the DP of insulating 
paper is called the viscometric method introduced by ASTM 
D4243 [6]. Though it provides amenable results, all tests should 
be conducted in a laboratory after field sampling, which is not 
only a destructive procedure for the insulation of the transformer 
[7] but also time consuming. Therefore, the non-destructive field 
assessment of the DP of insulating paper is in great need and 
might become a powerful tool for condition assessment.

Near-infrared spectroscopy (NIRS) has many advantages, 
like non-destructive detection and rapid processing [8]. It has 
been widely employed in agriculture, pharmaceutical and 
food industries, petrochemical engineering, etc in the past few 
decades. Until recent years, the power industry has gradually 
started to introduce the NIRS technique as an alternative to 
traditional laboratorial tests for the quantitative analysis of 
cellulose paper due to its great advantages.

Initial explorations using NIRS to assess the aging condi-
tions of oil-paper insulation have been conducted in recent 
years and remarkable progress has been made for practical 
implementations. Ali et al [9] applied the chemometric method 
to the near-infrared (NIR) spectrum of aged kraft paper to 
extract the spectral characteristic parameters. Their chemo-
metric model predicted the aging time of kraft paper with an 
error of 95 h for samples up to 3000 h of ageing. Santos et al 
[10] collected the diffuse-reflectance spectra between 1260 
and 2500 nm from insulating paper with varying aging condi-
tions, and established the assessment models by multiple linear 
regression (MLR) and partial least squares (PLS) methods, 
respectively. The established PLS model using the first-order 
derivation of spectra suggests a better prediction performance 
than multivariate calibration. Baird et  al [11, 12] developed 
a portable fiber-optic spectroscopic system with multivariate 
statistical analysis to measure the DP, water and oil content of 
insulating paper non-destructively. Several field experiments 
on power transformers have been performed to verify the prac-
ticability of the system. Li [13] found that insulating oil within 
the paper has great influences on NIR spectra and the DP pre-
diction accuracy of paper can be significantly improved after 
oil removal procedures.

Theoretically, the absorbance of NIR spectra has a linear 
connection with the chemical composition of material in a 
certain range according to Kubelka–Munk law [14]. However, 
for the field disassembly tests of the transformer, insulating 
paper wrapped on the windings is inevitably immersed with oil 
although oil drain-off is a standard procedure before the tests. 
The acquired NIR spectra comprise the vibrational information 

of both paper and oil, causing the nonlinear perturbation of 
absorption coefficient and scattering coefficient. Therefore, 
NIR spectra are difficult to be directly interpreted and quanti-
fied by the linear analysis methods [10, 15]. In recent years, 
intelligent algorithms, mostly nonlinear methods such as back 
propagation neural network (BPNN), have shown promising 
applications in the component determination of soil and seed, 
the quality analysis of fruit, etc [16], providing potential solu-
tions to solve the nonlinear problems of quantitative analysis.

Up to now, however, attempts of quantitative analysis for 
insulating paper in a transformer by nonlinear methods are still 
insufficient and the comparison between linear and nonlinear 
methods is less unveiled. In this paper, we aim at establishing 
DP prediction models of NIRS to assess the aging conditions 
of insulating paper and comparing the different advantages of 
linear and nonlinear methods by revealing their operating pro-
cesses. The comparative study would improve diagnostic acc
uracy of aging assessment through optimizing both methods.

The paper structure is organized as follows. Three typical 
types of insulating paper are prepared and raw spectra as well 
as DP tests of the insulating paper are subsequently performed 
to construct the paper database of varying aging conditions in 
section 2. We introduce the PLS method, a widely used linear 
method in NIR spectra quantitative analysis, to establish the 
aging condition calibration model of insulating paper in sec-
tion 3. As a typical nonlinear method, the BPNN calibration 
model is established to compare the prediction performance 
of two modeling algorithms in section 4. We summarize the 
modeling results and draw the conclusion in section 5.

2.  Sample preparation and experimental 
measurement

2.1.  Collections of aging samples

The types of insulating paper used in the transformer manu-
facturing are diverse. We choose three typical kinds of insu-
lating paper, i.e. kraft paper (BZZ-75), crepe paper (58HC) 
and thermally upgraded paper (22HCC) to characterize a 
broad range of paper sources employed in the 110–1000 kV 
transformers. The thermally accelerated aging of paper sam-
ples is conducted in the presence of oil in a vacuum-heat oven 
to obtain oil-immersed paper samples.

The oil has undergone a regular filtering and degassing 
procedures before used in the experiments. The moisture and 
gas dissolved in oil can be removed via the vacuum pump, 
which allows the vacuum degree of the cabinet under 50 Pa. 
The insulating paper is dried in a vacuum oven at 105 °C for 
24 h. The moisture in the oil and paper are less than 10 mg kg−1 
and 1% in mass fraction, respectively. Paper samples are then 
immersed with oil by the weight ratio of 1:10 and stored in a 
vacuum at 90 °C for another 24 h to guarantee that the paper 
has fully impregnated with oil [17]. Subsequently, the paper 
and oil are transferred into glass bottles with the same weight 
ratio. Thermally accelerated aging procedure are implemented 
at 120 °C [18, 19]. All the experiments are conducted in our 
laboratory under ambient control, e.g. temperature of around 
20 °C and relative humidity of 65%.
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We obtain the oil-immersed paper samples with varying 
aging conditions by collecting bottles at different inter-
vals from the oven. The sampling frequency depends on the 
decreasing speed of DP. A high frequency of the sample col-
lection is necessary in the initial aging stage as the DP of 
paper samples decreases quickly, e.g. daily sample collection 
until the DP of the kraft paper falls to 700 (the kraft paper has 
a faster aging speed than the other two types of paper). When 
the DP of the paper samples decreases to 500, the intervals 
between two consecutive sample collections are widened to 3 
days or more. In total, 230 aged samples are obtained in the 
experiment before the DP of the kraft paper falls to about 300, 
a threshold indicating that a transformer is severely aged and 
should be replaced at the end of its service lifetime.

The DP of the paper samples is measured by viscometry 
according to ASTM D4243, which consists of a series of pro-
cedures, such as degreasing, abrading, dissolving and viscosity 
measurement. The measurement results of DP are a function 
of aging time as shown in figure 1. Note that each data point 
of DP is averaged by two independent DP measurements of 
paper and the data is acceptable when the deviation is less 
than 2.5% of the mean value. The differences in decreasing 
speed of DP for three types of paper are pronounced and 
the thermally upgraded paper shows a strong decomposi-
tion resistance due to chemical modification techniques [20]. 
The DP of three types of paper decreases rapidly in the early 
phase and the descending rate slows down when the aging 
time increases, as indicated by fitted curves in figure 1. The 
range of DP variation is different under the influence of pulp 
types, manufacturing processes and the individual difference 
of aging samples.

2.2.  Acquisition of NIR spectra

As mentioned above, the insulating paper of the disassembled 
transformer is immersed with oil although oil drain-off is a 
regular procedure in the field tests. This means that the spectral 

scanning and analysis of oil-immersed paper may have a 
greater significance in application if quantitative analysis can 
deal with overlaid spectral information with reliable accuracy. 
Therefore, in the experiment, we acquire the spectra of aged 
paper samples coupled with the spectra of oil and use them as 
the input for further modeling. Note that for the scanned oil-
immersed paper in the lab, the oil contents of paper are con-
trolled roughly under 35% by mass ratio to maintain desired 
homogeneity between tested samples. The oil contents in the 
paper are close to that of the outer layer paper in the field dis-
assembled transformer (after oil drain-off).

A high-performance NIR spectrometer with the spectral 
detection range of 895–2202 nm and resolution of 5 nm is 
employed in the measurement. An InGaAs detector with 
256 linear arrays is the main working component inside the 
spectrometer, and the background noise can be reduced by 
the imbedded auto-zero function via software and cooling 
the detector through a hardware set. A standard whiteboard 
is scanned to obtain the reference spectrum before spectral 
scanning of paper samples for the purposes of instrument 
baseline calibration and systematic error elimination. Each 
acquired spectrum is determined by averaging 32 times of 
spectral scanning at the same position of insulating paper 
to reduce the deviations caused by manual and ambient 
interferences.

The acquired NIR spectra of three types of oil-immersed 
paper under varying aging conditions are plotted in figure 2. 
Generally, the spectral differences between three types of 
paper are visually minor except several variations of absorb-
ance peaks in the scope of 1700–2000 nm in wavelength. 
Further, each spectrum of one type of paper is too similar to 
identify the aging conditions just by reading the spectrum. 
In other words, it is impossible to have a clear connection 
merely by comparing the absorbance peaks of NIR spectra to 
the aging time or aging conditions. Consequently, developing 
chemometric methods and quantitative analysis are essential 
to extract hidden information and identify the aging states of 
oil-immersed paper.

3. Typical linear model: PLS method

In order to obtain the quantitative relationship between the 
absorbance of spectra and physicochemical properties (DP in 
this paper), the calibration model is usually established by a 
multivariate statistical analysis method with paper samples in 
the training set [12]. The prediction ability of the calibration 
model is then verified with paper samples in a testing set and 
statistical parameters are calculated for quantitative evalua-
tion and comparisons.

3.1.  Basic PLS procedures and modeling

PLS is a convenient and effective method for relating two data 
matrices by a linear multivariate model that has been widely 
used in the quantitative analysis of NIR spectra [21]. We 
develop the PLS calibration model from the training set of 
aging paper samples to reflect the linear relationship between 
the spectra (Matrix X) and aging conditions (Matrix Y).

Figure 1.  DP of three types of paper samples as a function of aging 
time. The fitted curves indicate that the DP follows a decreasing 
exponential function. Note that the colors of the fitted curves are the 
same with the colors of data points of corresponding paper types.
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Matrix X consists of the original spectral data of different 
aging paper samples and each of the spectra owns the absorb-
ance of 254 wavelengths. Matrix Y contains the DP of aging 
paper samples. Note that here Y is a matrix of n  ×  1, therefore 
we actually use PLS1 method (for univariate response) in this 
paper. Both matrix X and Y are transformed via scaling and 

centering to increase the distinctions between samples. The 
derived principal components (PCs) of PLS by a cross-vali-
dation method are orthogonal to eliminate redundant infor-
mation, noting that the original spectra have high collinearity. 
X is decomposed by equations  (1). The linear relationship 
between X and Y is built through equation (2) in a stepwise 
regression manner. Therefore, the extracted PCs are primarily 
related to Y (i.e. DP):

X = TP′ + E =
a∑

j=1

tjp′j + E� (1)

Y = TC′ + F = XB + F� (2)

where a stands for the number of PCs, T for the score matrix, 
P for the loading matrix of X, and E for the matrix of X resid-
uals. C for Y-weight matrix, F for the matrix of Y-residuals, 
and B is the matrix of regression coefficients of Y.

Root mean square error (RMSE) and correlation coeffi-
cient r are two independent criterions to characterize the pre-
diction performance of calibration models [15]. RMSE is the 
quality standard to estimate the training network as calculated 
through equation (3). r is calculated to evaluate the statistical 
relationship between measured DP by viscometry and pre-
dicted DP by the spectral calibration model via equation (4). 
The optimal topology parameters are determined under the 
conditions of low RMSE and high r for all the selected sets 
at the same time:

RMSE =

 ∑n
i=1 (yi,act − yi,predi)

2

n
� (3)

r =

√
1 −

∑n
i=1 (yi,act − yi,predi)

2

∑n
i=1 (yi,act − yave,act)

2� (4)

where n stands for the number of paper samples in the selected 
set, e.g. the training set, validation set or testing set. y i,act stands 
for DP of ith sample measured by viscometry, y ave,act for the 

Figure 2.  NIR spectra of three types of paper samples. The number 
of spectra in (a), (b) and (c) is 95, 67 and 68, respectively (total 
230). An example of aging durations (in days) of the selected 
spectra are marked out in figure (a), but the correlation between 
aging conditions and absorbance of NIR spectra is not clear.

Figure 3.  Prediction of PLS calibration model for BZZ-75 paper 
samples.
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mean DP of paper samples in the selected set, and y i,predi for 
DP of ith paper sample predicted by the corresponding cali-
bration model.

A first attempt of the PLS method by the aforementioned 
modeling using the full spectrum is applied to kraft paper 
(BZZ-75) and the prediction performance is shown in figure 3. 
We can find that the prediction of the BZZ-75 paper samples 
has remarkable error (RMSE  =  77, r  =  0.92). A reasonable 
cause is that the full spectra of the aging paper samples include 
all the wavelengths that may contribute more collinearity, 
redundancies and noise than characteristic aging-relevant 
information to the PLS model. In other words, it indicates that 
not all the wavelengths in the spectrum are strongly related to 
the DP prediction. Table 1 lists prediction performance of all 
three types of insulating paper, and the prediction accuracy is 
unsatisfactory, hence further optimized methods are required.

3.2.  Model optimization via CARS

The above attempts indicate that selecting characteristic 
wavelengths strongly related to the DP of paper samples is a 
potential solution to improve the prediction performance of 
the PLS model. Santos et al [10] employed the successive pro-
jection algorithm (SPA) to select wavelength variables. The 
prediction results show that the application of the modified 
SPA improves the root mean square error of cross-validation 
(RMSECV), but the RMSE obtained after external testing is 
slightly higher than PLS. In this paper, we use the competitive 
adaptive reweighted sampling (CARS) to enhance character-
istic wavelength selection as it proves good performance in 
the wavelength selection of NIR spectra compared with some 
traditional methods [22].

The essence of CARS is to determine optimal wavelength 
combination so as to construct the PLS model with the lowest 
RMSECV. CARS procedures for wavelength combination 
selection of NIR spectra are shown in figure 4. For the first 
sampling run, all the absorbance of the full spectra is extracted 
and the PLS model is established using the extracted data. 
Subsequently, the RMSECV of the PLS model is calculated 
and the regression coefficients of the specific wavelengths 
are available as well. The number of selected wavelengths is 
characterized by the ratio of the selected wavelengths over all 
wavelengths, rk. As a matter of fact, rk is derived from the 
exponentially decreasing function as given by equation (5):

rk = ae−bk� (5)

where rk stands for the ratio of the selected wavelengths over 
all wavelengths in the kth iteration (1  ⩽  k  ⩽  N), and con-
stants a and b are calculated according to equations(6)–(7) 
respectively:

a =
(p

2

)1/(N−1)
� (6)

b =
ln(p/2)
N − 1

� (7)

where p  is the number of wavelengths for full spectrum 
(p   =  254 in our experiments), and N is the default times of 
sampling runs.

The wavelengths (amount: 254  ×  rk) with high regression 
coefficients are chosen for the next sampling run and the other 
wavelengths are eliminated. Eventually, the optimal wave-
length combination is obtained in an iterative and competitive 
manner until the sampling run times reach the default number 
(N  =  50 in our practices). Note that the established PLS model 
using optimal wavelengths has the lowest RMSECV.

Based upon the above procedures, the CARS-PLS cali-
bration model is established and the prediction performance 
of different paper samples is listed in table  1. For each type 
of insulating paper, we select approximately 85% of its total 
sample size as the training set and the left samples form the 
testing set. The selection of samples are implemented by 
Kennard–Stone (K–S) method [23]. It is clear that the accuracy 
of the CARS-PLS model is higher than traditional PLS method 
in all the cases except that they share the same RMSE (32) of 
58HC specimens but CARS-PLS has a higher r. It is worth 
mentioning that the CARS-PLS model has higher accuracy, 
even the mixed samples including all paper samples are taken 
into account, however the correlation with DP measured by vis-
cometry is not sufficiently high for field application (r  <  0.9).

The fluctuation of RMSE and r depends on the types of 
the paper samples and the calibration modeling methods. As 
can be seen from table 1, these two criterions fluctuate among 
three types of paper although the same modeling methods are 
applied. The fluctuation can be suppressed via optimizing 
algorithm framework and topology parameters to obtain reli-
able prediction performance, namely low RMSE and, mean-
while, high r. In this sense, the CARS-PLS method is an 
optimized calibration model.

Table 1.  The prediction of different PLS calibration models.

Type Algorithm
Number 
of PCs

Training set Testing set

Sample 
Size RMSE r

Sample 
Size RMSE r

BZZ-75 PLS 12 79 71 0.91 16 77 0.92
CARS-PLS 12 67 0.92 68 0.94

58HC PLS 10 60 70 0.78 7 32 0.92
CARS-PLS 10 74 0.75 32 0.93

22HCC PLS 20 60 54 0.90 8 48 0.61
CARS-PLS 20 59 0.87 21 0.93

Unclassified mixed samples PLS 24 200 94 0.86 30 100 0.85
CARS-PLS 24 90 0.88 62 0.89
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4.  Nonlinear modeling via BPNN

4.1.  Basic BPNN theory and experiments

Although the optimized linear model CARS-PLS has shown 
better prediction performance in DP evaluation than the tradi-
tional PLS model, it is still unable to overcome the influence 
of the coupled spectra in the field tests as mentioned above. 
Thus the nonlinear modeling method, typically as BPNN, 
to bridge the DP and NIR spectra is a potential solution that 
addresses these ambient influences in a self-adapted way.

BPNN is capable of mapping multidimensional relation-
ships and has been one of the most studied and used algorithms 
for neural network learning ever since [24]. The essence of 
achieving accurate nonlinear mapping between NIR spectra 
and DP by BPNN is to look for the minimum of the error 
function in the weight space, which is accomplished via the 
gradient descent method in this paper.

The most widely used BPNN model contains three layers, 
i.e. a classical input-hidden-output topology, and can approxi-
mate most of the functions with sufficient freedom degrees. 
We use all wavelengths of full spectra as the input parameters 
Ij  for the experiments of the BPNN model. The transferred 
data of the kth node in hidden layers, hk, is calculated based 
on equation (8) [25, 26]:

hk = s1(
m∑

j=1

Wi
1,k,j × Ij + b1)� (8)

where s1 is a tangent hyperbolic activation function between the 
input layer and the hidden layer, and s1(x1)  =  (1  −  exp(−2x1))/

(1  +  exp(−2x1)) in which x1 is an arbitrary variable. Wi
1,k,jis 

the weight of the j th node in the input layer connecting the 
kth node in the hidden layer at the ith iteration. m is the node 

number in the input layer and b1 is the bias between the input 
and the hidden layer.

The predicted DP of insulating paper, α, is calculated by 
transferring the information between the hidden layer and the 
output layer via equation (9):

α = s2(
n∑

k=1

Wi
2,k × hk + b2)� (9)

where s2 is a linear activation function between the hidden 
layer and the output layer, and s2(x2)  =  x2 in which x2 is an 
arbitrary variable; Wi

2,kis the weight of the kth node in the 
hidden layer connecting the output layer at the ith iteration; i 
is the iteration times. n is the node number in the hidden layer 
and b2 is the bias between the hidden and the output layer.

The default node number n in our experiment is 10 and the 
output layer exports one node representing the predicted DP by 
the model. Based on the above description, the BPNN model 
for the DP prediction of three types of insulating paper is 
established and the prediction performance is listed in table 2. 
Looking back at the PLS model in table 1, we can find that 
the prediction performance of BPNN is even worse than that 
of the PLS method (RMSE 87 versus 48 for 22HCC paper), 
much less prevails the CARS-PLS model. It is inferred as an 
essential point to improve the prediction performance that 
spectral information related to the aging conditions, instead 
of full spectra, should be extracted before being imported into 
the BPNN model.

4.2.  CARS-BPNN model and PCA-BPNN model

The fact that the CARS-PLS model achieves good perfor-
mance as shown in section 3 suggests that selecting optimal 
wavelength combinations and extracting principal components 

Figure 4.  CARS selection procedures of optimal wavelength combination.
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(embedded in the PLS model) are two positive procedures to 
eliminate redundancies and noises, and thereby to improve the 
accuracy. We employ the characteristic wavelengths extracted 
by CARS in section  3 as the input of the BPNN model to 
verify the universality for calibration model improvement. 
Note that the node number of the input layer is determined 
by the selected wavelengths of individual paper type, there-
fore adjusting the weights of nodes for varying paper samples 
is required. The CARS-BPNN model of different types of 
paper samples is established and the prediction performance 
is shown in table 2. We conduct the sample selection by a sim-
ilar method described in section 3.2, but here the ratio of the 
training set, validation set and testing set is 70:15:15. It shows 
that the prediction results of the CARS-BPNN model are still 
not as good as that of CARS-PLS or that of PLS, especially 
for 22HCC that RMSE  =  109 and r  =  0.85, although CARS-
BPNN has slightly improved the prediction performance for 
BZZ-75 samples.

The differences in core working mechanisms between PLS 
and BPNN are assumed responsible for the varying predic-
tion performance of two models. PLS is a linear modeling 
technique that generalizes and combines ideas from principal 
components analysis (PCA) and traditional least squares 
regression methods [27]. Instead, BPNN builds a nonlinear 
mapping between the spectra and DP by a given activation 
function. However, the unsatisfactory prediction of BPNN 
and CARS-BPNN may be caused by the fact that the absorb-
ance of selected wavelengths is directly imported to BPNN 
without principal components selection. Therefore, we intro-
duce the PCA method into the BPNN algorithm to strengthen 
spectral characteristics.

The PCs are actually the linear combinations of original 
spectra. Hence the dimension of the input is dramatically 
reduced while the PCs still maintain most information of the 
original spectra. Figure 5 illustrates a typical example of PCA 
for BZZ-75 paper samples. Note that the extracted PCs are 
achieved by PCA instead of PLS method. It can be seen that 
selecting merely four PCs can extract around 95% spectral 
information (quantified as the cumulative contribution rate). 

Although 94 spectral PCs of BZZ-75 samples are extracted 
by PCA, the 13 PCs sorted by the variance contribution rate 
already contain 99.52% of the information of all spectral data. 
Therefore, we choose these 13 PCs as the input and thereby 
establish the PCA-BPNN model.

It is clearly seen in table 2 that the prediction performance 
of the PCA-BPNN model has been remarkably improved both 
in RMSE and r. The maximum prediction error of three types 
of paper is less than 24 with a high correlation coefficient 
(r  =  0.99). In other words, the established PCA-BPNN model 
owns much greater accuracy and reliability than the above-
mentioned models for all three types of paper sample. The 
overwhelming prediction performance of the PCA-BPNN 
model may be attributed to the combination of characteristic 
information selection by PCA and accurate nonlinear map-
ping between NIR spectra and DP by BPNN.

However, it is worth noting that none of the models, even 
PCA-BPNN, achieves a satisfactory prediction performance 
for the mixed samples. In fact, accurate DP prediction of 

Table 2.  Prediction of different BPNN calibration models.

Type Algorithm

Training set Validation set Testing set

Sample 
Size RMSE r

Sample 
Size RMSE r

Sample 
Size RMSE r

BZZ-75 BPNN 67 49 0.96 14 75 0.93 14 83 0.95
CARS-BPNN 21 0.99 47 0.96 50 0.93
PCA-BPNN 0 0.99 16 0.99 24 0.99

58HC BPNN 47 18 0.98 10 91 0.74 10 74 0.85
CARS-BPNN 68 0.80 48 0.90 64 0.81
PCA-BPNN 0 0.99 18 0.99 18 0.99

22HCC BPNN 48 57 0.90 10 72 0.90 10 87 0.72
CARS-BPNN 56 0.84 69 0.81 109 0.85
PCA-BPNN 1 0.99 18 0.99 18 0.99

Unclassified mixed samples BPNN 160 53 0.96 35 121 0.81 35 99 0.88
CARS-BPNN 74 0.93 82 0.88 81 0.92
PCA-BPNN 75 0.93 98 0.90 82 0.88

Figure 5.  Illustration of PCA by cumulative contribution rate. Note 
that the results are derived from BZZ-75 paper samples.
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unknown paper samples has greater practical significance 
since the insulating paper types of the power transformer in 
the field tests are often difficult to identify.

4.3.  KNN-PCA-BPNN calibration model for mixed samples

Though we have learned that the PCA-BPNN model has great 
prediction performance for each single type of paper, none of 
the models is able to assess the DP of mixed samples precisely. 
It is therefore reasonable to identify the paper type before 
inputting the spectral data into those calibration models to 
further improve the prediction performance of mixed samples.

We employ the k-nearest neighbors (KNN) method to dis-
criminate the type of paper samples. The essence of KNN is to 
calculate the Euclidean distance between the validation sam-
ples and the database samples in a specifically multidimen-
sional space, and accordingly to determine the type of testing 
paper by the majority of the samples among the k nearest sam-
ples [28].

Among the 230 mixed paper samples, 200 samples are 
used to establish the principal components score database 
while the other 30 samples are for validation. Note that here 
the selected PCs are the same as the PCA-BPNN presented in 
section 4.2. The 13 PCs are used to calculate the Euclidean 
distance. The results of paper type identification by KNN are 
shown in figure 6, note that in the figure only the first three of 
13 PCs are utilized to reveal the distribution of paper samples 
in a visualized way. The results show that 29 out of 30 valida-
tion samples are correctly classified (accuracy 96.7%).

Therefore, we employ KNN to classify the paper before 
importing the spectral data into the PCA-BPNN model. A 
KNN-PCA-BPNN calibration model for DP evaluation of 
mixed insulting paper is established. We verify the predic-
tion performance of the KNN-PCA-BPNN model as shown in 
figure 7. It is found that this combined calibration model has 

solved the problem of low prediction precision due to mixed 
(unknown) paper types. Quantitatively, RMSE is 36 with r as 
high as 0.98, recall that these result sets are (100, 0.85) for 
PLS and (99, 0.88) for BPNN.

One out of 30 validation samples has been proven the out-
lier of identification, and the sample has been mistakenly clas-
sified as the 58HC class that is supposed to be a 22HCC paper 
type. The prediction error for the outlier is 188 DP units with 
the measured DP showing 778, indicating the importance of 
accurate paper type identification.

5.  Conclusion and remarks

In this paper, we investigate different modeling methods, 
including linear PLS and nonlinear BPNN, using 230 paper 
samples of varying aging conditions to bridge the NIR spectra 
and the measured DP. Comparisons of prediction performance 
between the calibration models are studied in detail.

The linear models for DP evaluation of three types of 
insulating paper are established by PLS and CARS-PLS 
methods. It is found that using full NIR spectra as the input 
of the PLS model does not ensure a high prediction acc
uracy. Alternatively, the CARS-PLS model has a pronounced 
improvement in reducing the prediction by introducing the 
wavelength selection procedures of CARS.

The nonlinear modeling, BPNN, is then established 
to overcome the complex ambient influences on spectra. 
However, ordinary BPNN and optimized CARS-BPNN do not 
achieve as satisfactory a prediction precision as CARS-PLS. 
The improved PCA-BPNN model has shown overwhelming 
prediction performance with high accuracy (RMSR  ⩽  24) and 
correlation (r  =  0.99). Further, in order to accurately assess 
DP of the mixed samples, we introduce the KNN method to 
identify the paper type before DP prediction and build the 
KNN-PCA-BPNN model. The results show that the combined 
calibration model has solved the problem of low prediction 
precision for mixed (unknown) paper samples.

Figure 6.  Paper type identification by the KNN method. The first 
three PCs of 230 paper samples are used for visualization, and 10 
paper samples for each type paper are used to verify the identification 
accuracy of KNN. It is found that 29 out of 30 validation samples are 
correctly classified and the outlier is marked out.

Figure 7.  Prediction by the combined calibration model KNN-
PCA-BPNN. The prediction of validation samples achieves great 
performance with only one outlier of the unmatched paper type.
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It is worthwhile to point out that the diversity of insulating 
paper should be enriched to expand the evaluation database of 
NIRS. Moreover, the high prediction accuracy of mixed paper 
samples is of great significance for on-site tests of NIRS since 
the paper types of the power transformer in the field is often 
unknown. It still deserves further investigation at a broader 
scale of paper in future work to enhance the prediction perfor-
mance of calibration models.
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