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Surface Majorana flat bands in 𝑗 = 3/2 superconductors with
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Recent experiments [Science Advances 4 eaao4513 (2018)] have revealed the evidence of nodal-line superconductivity
in half-Heusler superconductors, e.g., YPtBi. Theories have suggested the topological nature of such nodal-line supercon-
ductivity and proposed the existence of surface Majorana flat bands on the (111) surface of half-Heusler superconductors.
Due to the divergent density of states of the surface Majorana flat bands, the surface order parameter and the surface im-
purity play essential roles in determining the surface properties. We study the effect of the surface order parameter and the
surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model. To be
specific, we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing, clas-
sify all the possible translationally invariant order parameters for the surface states according to irreducible representations
of C3v point group, and demonstrate that any energetically favorable order parameter needs to break the time-reversal sym-
metry. We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different
order parameters and non-magnetic or magnetic impurities. We propose that the splitting in the energy spectrum can serve
as the fingerprint of the pairing symmetry and mean-field order parameters. Our theoretical prediction can be examined in
the future scanning tunneling microscopy experiments.
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1. Introduction
Recent years have witnessed increasing research

interests in half-Heusler compounds (RPdBi or RPtBi
with R a rare-earth element)[2] due to their non-trivial
band topology,[3–16] magnetism,[17–25] and unconventional
superconductivity.[1,17,20–22,26–33] Half-Heusler superconduc-
tors (SCs) are of particular interest because of the low carrier
density (1018–1019 cm−3), the power-law temperature depen-
dence of London penetration depth, and the large upper critical
field. Furthermore, it was theoretically proposed that electrons
near Fermi level in half-Heusler SCs possess total angular
momentum j = 3/2 as a result of the addition of the 1/2 spin
and the angular momentum of p atomic orbitals (l = 1).[1,34]

Therefore, half-Heusler SCs provide a great platform to study
the superconductivity of j = 3/2 fermions. Such j = 3/2
fermions were also studied in anti-perovskite materials[35] and
the cold atom system.[36,37] Due to the j = 3/2 nature, the
spin of Cooper pairs can take four values: S = 0 (singlet), 1
(triplet), 2 (quintet), and 3 (septet), among which quintet and
septet Cooper pairs cannot appear for spin-1/2 electrons.

In order to understand the unconventional supercon-
ductivity, various pairing states were proposed, including
mixed singlet-septet pairing,[1,34,38,39] mixed singlet-quintet
pairing,[40–42] s-wave quintet pairing,[34,39,43,44] d-wave quin-
tet pairing,[44,45] odd-parity (triplet and septet) parings,[45–48]

et al.[46,49] In particular, references [1,34,38–42] proposed that
the power-law temperature dependence of London penetration

depth can be explained by topological nodal-line superconduc-
tivity (TNLS) generated by the pairing mixing between differ-
ent spin channels. In particular, it has been shown that two
types of pairing mixing states, the singlet-quintet mixing and
singlet-septet mixing, can both give rise to nodal lines in cer-
tain parameter regimes.

In this work, we focus on the singlet-quintet mixing,
which was proposed in Ref. [40]. As a consequence of
TNLS, the Majorana flat bands (MFBs) are expected to ex-
ist on the surface perpendicular to certain directions. Such
surface MFBs (SMFBs) are expected to show divergent quasi-
particle density of states (DOS) at the Fermi energy and
thus can be directly probed through experimental techniques,
such as scanning tunneling microscopy (STM).[50] Due to
the divergent DOS, certain types of interaction[51–54] and sur-
face impurities[55–57] are expected to have a strong influ-
ence on SMFBs. This motivates us to study the effect of
the interaction-induced surface order parameter and the sur-
face impurity on the SMFBs of the superconducting Luttinger
model with the singlet-quintet mixing. Specifically, we clas-
sify all the mean-field translationally invariant order parame-
ters of the SMFBs according to the irreducible representations
(IRs) of C3v group, identify their possible physical origins, and
show their energy spectrum by calculating the corresponding
DOS. We find that the order parameter needs to break the time-
reversal (TR) symmetry in order to either gap out the SMFBs
or convert the SMFBs to nodal-lines or nodal points. We also
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study the quasi-particle local DOS (LDOS) of SMFBs with a
surface charge impurity or a surface magnetic impurity (whose
magnetic moment is perpendicular to the surface), and show
that the peak splitting induced by different types of impuri-
ties can help to distinguish the pairing symmetries and surface
order parameters.

The rest of the paper is organized as follows. In Sections 2
and 3, we briefly review the superconducting Luttinger model
with singlet-quintet mixing and illustrate the symmetry prop-
erties of SMFBs. In Section 4, we classify all the mean-field
translationally invariant order parameters according to the IRs
of C3v and identify their physical origin. We also calculate the
energy spectrum and DOS of SMFBs with different order pa-
rameters. In Section 5, the impurity effect on the LDOS of
MFBs with/without the surface order parameter is discussed.
Finally, our work is concluded in Section 6.

2. Model Hamiltonian
The model that we used to generate MFBs in this work is

the same as that studied in Ref. [40], which describes the su-
perconductivity in the Luttinger model with mixed s-wave sin-
glet and isotropic d-wave quintet channels. The Bogoliubov–
de-Gennes (BdG) Hamiltonian in the continuous limit reads

H =
1
2 ∑

𝑘

Ψ
†
𝑘 hBdG(𝑘)Ψ𝑘+ const., (1)

where Ψ
†
𝑘 = (c†

𝑘,c
T
−𝑘) is the Nambu spinor and c†

𝑘 =

(c†
𝑘,3/2,c

†
𝑘,1/2,c

†
𝑘,−1/2,c

†
𝑘,−3/2) are creation operators of j =

3/2 fermionic excitations. The term

hBdG(𝑘) =

(
h(𝑘) ∆(𝑘)

∆ †(𝑘) −hT(−𝑘)

)
(2)

consists of the normal part h(𝑘) that is the Luttinger
model[4,40,58,59]

h(𝑘) =
(

k2

2m
−µ

)
Γ

0 + c1

3

∑
i=1

g𝑘,iΓ i + c2

5

∑
i=4

g𝑘,iΓ i (3)

and the paring part ∆(𝑘) that contains s-wave singlet and
isotropic d-wave quintet channels

∆(𝑘) = ∆0
Γ 0

2
γ +∆1

5

∑
i=1

a2g𝑘,iΓ i

2
γ, (4)

where µ is the chemical potential, c1,c2 indicate the strength
of the centrosymmetric spin–orbital coupling (SOC) which is
the coupling between the orbital and the 3/2-“spin”, d-wave
cubic harmonics g𝑘,i and five Γ matrices are shown in Ap-
pendix A, ∆0,1 are order parameters of the singlet and quintet
channels, respectively, a is the lattice constant of the mate-
rial, and γ = −Γ 1Γ 3 is the TR matrix. The coexistence of
the two order parameters is allowed by their same symmetry
properties.[40,60–66]

Before demonstrating the SMFB generated by Eq. (1),
we first discuss the symmetry properties of Hamiltonian H.
As discussed in Ref. [40], H has TR symmetry, and its
point group is O(3) or Oh for c1 = c2 or c1 ̸= c2, respec-
tively. Due to the coexistence of TR and inversion sym-
metries, the Luttinger model h(𝑘) has two doubly degen-
erate bands ξ±(𝑘) = k2/(2m±)− µ , where m± = mm̃± are
effective masses of two bands, m̃± = 1/(1 ± 2mQc), Qc =√

c2
1Q2

1 + c2
2Q2

2, Q1 =
√

ĝ2
1 + ĝ2

2 + ĝ2
3, Q2 =

√
ĝ2

4 + ĝ2
5, and

ĝi = gi/k2. In addition, the particle–hole (PH) symmetry can
be defined as −𝒞h*BdG(−𝑘)𝒞† = hBdG(𝑘) and Ψ

†
𝑘𝒞 =Ψ T

−𝑘 for
the BdG Hamiltonian, where 𝒞 = τx with τx the Pauli matrix
for the PH index. Combining the PH and TR symmetries, we
have the chiral symmetry −χhBdG(𝑘)χ

† = hBdG(𝑘), where
χ = i𝒯 𝒞* and 𝒯 = diag(γ,γ*) is the TR matrix on the Nambu
bases. The representations of other symmetry operators are
shown in Appendix B.

3. Surface Majorana flat bands

In this work, we choose µ < 0, m < 0, c1c2 > 0, and
focus on the case where c1 ̸= c2, m± < 0, and SMFBs exist
on the (111) surface.[40] To solve for SMFBs, we consider a
semi-infinite configuration (x⊥ < 0) of Eq. (1) along the (111)
direction with an open boundary condition at the x⊥ = 0 sur-
face, where x⊥ labels the position along (111). In this case, the
point group is reduced from Oh to C3v, which is generated by
three-fold rotation Ĉ3 along the (111) direction and the mirror
operation Π̂ perpendicular to the (1̄10) direction. Although
the translational invariance along (111) is broken, the momen-
tum 𝑘‖ that lies inside the (111) plane is still a good quantum
number, and we define k‖,1 and k‖,2 along the (112̄) and (1̄10)
directions, respectively.

Following Ref. [40], we find that SMFBs can exist in
certain regions of the surface Brillouin zone, denoted as A in
Fig. 1, and originate from the non-trivial one-dimensional AIII
bulk topological invariant (Nw = ±2). At each 𝑘‖ ∈ A, the
semi-infinite model has two orthonormal solutions of zero en-
ergy that are localized near the x⊥ = 0 surface and have the
same chrial eigenvalues, coinciding with the bulk topological
invariant Nw =±2.

We label the creation operators for the two zero-energy
solutions at 𝑘‖ ∈ A as b†

i,𝑘‖
with i = 1,2, and they satisfy the

anti-commutation relation

{b†
i,𝑘‖

,b j,𝑘′
‖
}= δi jδ𝑘‖𝑘

′
‖
. (5)

The subscript i = 1,2 of b†
i,𝑘‖

can be regarded as the pseu-

dospin index, since b†
i,𝑘‖

can furnish the same representation

of TR, Ĉ3, and Π̂ operators as a two-dimensional j = 1/2
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fermion by choosing the convention
𝒯 b†

𝑘‖
𝒯 −1 = b†

−𝑘‖
𝒯b,

Ĉ3b†
𝑘‖

Ĉ−1
3 = b†

C3𝑘‖
C3,b,

Π̂b†
𝑘‖

Π̂−1 = b†
Π𝑘‖

Πb,

(6)

where 𝒯b = iσ2, C3,b = e−iσ3
π
3 , Πb = −e−iσ2

π
2 , and σ1,2,3

are the Pauli matrices for the pseudospin of SMFBs. Since
the chiral matrix χ commutes with any operation in C3v and
anti-commutes with TR operation, b†

i,𝑘‖
has the same the chiral

eigenvalue as b†
i,R𝑘‖

, but opposite to b†
i,−𝑘‖

, where R ∈C3v. As
a result, the surface zero-energy modes cannot exist on three
lines parametrized by k‖,1 = 0 and k‖,2 = ±k‖,1/2, dividing
the region A into six patches as shown in Fig. 1. Since the
chiral eigenvalues of the zero-energy modes in one patch are
the same, we can label each patch as Alχ ,lc with lχ =± for the
chiral eigenvalues ±1 and lc = 1,2,3 marking three patches
related by Ĉ3 rotation. Furthermore, we choose Alχ ,3 to be
symmetric under k‖,2 → −k‖,2, i.e., the mirror operation per-
pendicular to (1̄10). Due to the PH symmetry, the surface zero
modes at ±𝑘‖ are related by

b†
𝑘‖
(−δ

χ

𝑘‖
σ2) = bT

−𝑘‖
, (7)

where δ
χ

𝑘‖
is the chiral eigenvalue of the zero modes at 𝑘‖, i.e.,

δ
χ

𝑘‖
= ±1 for 𝑘‖ ∈ A± with Alχ = ∪lcAlχ ,lc . TR and C3v sym-

metries imply δ
χ

−𝑘‖
=−δ

χ

𝑘‖
and δ

χ

R𝑘‖
= δ

χ

𝑘‖
with R ∈C3v (see

Appendix C for details).
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Fig. 1. Distribution of SMFBs for |2m|c1 = 0.8, |2m|c2 = 0.5, ∆̃0/|µ|=
1, and ∆̃1/|µ| = 1.6, where ∆̃0 = sgn(c1)∆0, ∆̃1 = 2mµa2∆1, and
k̃1,2 = k1,2/

√
2mµ . The surface zero modes in red (orange) regions

have 1 (−1) chiral eigenvalue, and Alc ,lχ ’s are labeled according to the
convention. The dashed lines are given by k‖,1 = 0 and k‖,2 =±k‖,1/2,
where the surface zero modes cannot exist.

4. Mean-field order parameters of surface Ma-
jorana flat bands
Due to the divergent DOS, the interaction may result in

the nonvanishing order parameters at the surface and give rise
to a gap of SMFBs. In this section, we study the possible
mean-field order parameters on the (111) surface that preserve

the in-plane translation symmetry. We find that the order pa-
rameters must break the TR symmetry in order to gap out the
SMFB; all the TR-breaking surface order parameters are clas-
sified based on the IRs of C3v and their physical origins are
identified. Then, to the leading order approximation where
the surface order parameters are independent of 𝑘‖ in each
of the surface mode regions, we find that the SMFBs can be
generally gapped out by these order parameters, and the gap-
less modes are only possible for certain IRs with certain finely
tuned values of parameters. We further study the LDOS struc-
ture of SMFBs in the presence of various order parameters
and find that the splitting patterns of the LDOS peak can be
used to distinguish different order parameters as summarized
in Figs. 2 and 4.

4.1. Symmetry classification and physical origin

The general form of translationally invariant fermion-
bilinear terms for SMFBs can be constructed as

Hmf =
1
2 ∑

𝑘‖∈A
b†
𝑘‖

m(𝑘‖)b𝑘‖ + const., (8)

where m(𝑘‖) is a 2× 2 Hermitian matrix. The PH symmetry
makes m(𝑘‖) satisfy m(𝑘‖) =−σ2 mT(−𝑘‖)σ2 up to a shift of
the ground state energy based on Eq. (7), while the TR sym-
metry requires 𝒯bm*(−𝑘‖)𝒯 †

b = m(𝑘‖) according to Eq. (6).
As a result, the combination of PH and TR symmetries, which
is equivalent to the chiral symmetry, leads to m(𝑘‖) = 0, in-
dicating that the existence of a non-vanishing fermion bilinear
term m(𝑘‖) for the SMFBs requires the breaking of the TR
symmetry, i.e.,

𝒯bm*(−𝑘‖)𝒯 †
b =−m(𝑘‖). (9)

As the C3v point group symmetry can also be spontaneously
broken by these fermion-bilinear terms, we can further clas-
sify these TR-breaking order parameters according to the IR
of C3v, of which the character table (Table A1) is shown in Ap-
pendix A. Since C3v has three IRs A1, A2, and E, equation (8)
can be expressed as the linear combination of the three corre-
sponding parts

m(𝑘‖) = mA1(𝑘‖)+mA2(𝑘‖)+mE(𝑘‖). (10)

Here the A1 term mA1(𝑘‖) preserves C3v symmetry, and the A2

term mA2(𝑘‖) preserves Ĉ3 symmetry but has odd mirror par-
ity. The E term has the expression mE(𝑘‖) = a1mE,1(𝑘‖)+

a2mE,2(𝑘‖) with (mE,1(𝑘‖),mE,2(𝑘‖)) a two-component vec-
tor that can furnish a E IR; it breaks the entire C3v symme-
try except for some special values of (a1,a2), e.g., one of
the three mirrors is preserved but Ĉ3 is broken for (a1,a2) ∝

(1,0),(1,
√

3), or (1,−
√

3).
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Table 1. The irreducible representations of C3v generated by δ
lχ lc
𝑘‖

, σl , ρl ,

or λl with their parities under TR, PH, and chiral operation. The trans-
formation of δ

lχ lc
𝑘‖

is defined as δ
lχ lc
𝑘‖

→ δ
lχ lc
R−1𝑘‖

, the transformation of σl

is σl → RbσlR
†
b, the transformation of ρl is ρl → Rχ ρlR

†
χ , and the trans-

formation of λl is λl → RcλlR
†
c , where R = −1,−1,1,C3,Π ; Rb = iσ2K,

σ2K, 1, C3,b, Πb; Rχ = 𝒯χ K, 𝒞χ K, χχ ,C3,χ , Πχ ; and Rc = 𝒯cK, 𝒞cK,
χc,C3,c, Πc for TR, PH, χ , C3, and Π , respectively, and K is the complex
conjugate operation. The parity α = ± is defined as X → αX under the
operation of TR, PH, or χ and thus being TR, PH, and χ symmetric corre-
spond to α =+,−,−, respectively. lχ =±, lc = 1,2,3, and δ

lχ lc
𝑘‖

is equal to

1 if 𝑘‖ ∈ Alχ ,lc and 0 otherwise. (δ
E1 ,+
𝑘‖

,δ
E2 ,+
𝑘‖

) =
(

∑lχ
1
2 (δ

lχ ,1
𝑘‖

+ δ
lχ ,2
𝑘‖

−

2δ
lχ ,3
𝑘‖

), ∑lχ

√
3

2 (−δ
lχ ,1
𝑘‖

+ δ
lχ ,2
𝑘‖

)
)

and (δ
E1,−
𝑘‖

,δ
E2 ,−
𝑘‖

) =
(

∑lχ
lχ
2 (δ

lχ ,1
𝑘‖

+

δ
lχ ,2
𝑘‖

−2δ
lχ ,3
𝑘‖

), ∑lχ
lχ
√

3
2 (−δ

lχ ,1
𝑘‖

+δ
lχ ,2
𝑘‖

)
)
.

C3v Bases TR PH χ

A1 ∑lχ ,lc δ
lχ lc
𝑘‖

= 1 for 𝑘‖ ∈ A + + +

A1 δ
χ

𝑘‖
= ∑lχ ,lc lχ δ

lχ lc
𝑘‖

− − +

E (δ
E1 ,+
𝑘‖

,δ
E2 ,+
𝑘‖

) + + +

E (δ
E1 ,−
𝑘‖

,δ
E2,−
𝑘‖

) − − +

A1 σ0 + + +

A2 σ3 − − +

E (−σ2,σ1) − − +

A1 ρ0 + + +

A1 ρ1 + − −
A1 ρ2 + − −
A1 ρ3 − − +

A1 Λ1 = λ0 + + +

A1 Λ2 =
1√
2
(λ1 +λ4 +λ6) + + +

A2 Λ3 =
1√
2
(λ2 −λ5 +λ7) − − +

E 𝛬4 =
√

3
2 (λ8,−λ3) + + +

E 𝛬5 =
√

3
8 (λ5 +λ7,

−2λ2−λ5+λ7√
3

) − − +

E 𝛬6 =
√

3
8 (

−2λ1+λ4+λ6√
3

,λ4 −λ6) + + +

Next we illustrate the physical origin of each term in
Eq. (10) by considering the following on-site mean-field
Hamiltonian that is independent of 𝑘‖:

H̃mf =
A

∑
𝑘‖

∫ 0

−∞

dx⊥[c
†
𝑘‖,x⊥

M̃(x⊥)c𝑘‖,x⊥

+
1
2

c†
𝑘‖,x⊥

D̃(x⊥)(c
†
−𝑘‖,x⊥

)T

+
1
2

cT
−𝑘‖,x⊥D̃†(x⊥)c𝑘‖,x⊥ ], (11)

where M̃†(x⊥) = M̃(x⊥) and −D̃T(x⊥) = D̃(x⊥). Equation (9)
can be obtained by projecting the above Hamiltonian onto the
surface, and such projection does not change the symmetry
properties. Since m(𝑘‖) must be TR odd in order to be non-
vanishing, it requires M̃(x⊥) and D̃(x⊥) to be TR odd. Then,
the TR-breaking M̃ and D̃ can be classified into different IRs
of C3v:

M̃(x⊥) = M̃A1(x⊥)+ M̃A2(x⊥)+ M̃E(x⊥), (12)

D̃(x⊥) = D̃A1(x⊥)+ D̃A2(x⊥)+ D̃E(x⊥), (13)

where M̃β (x⊥) and D̃β (x⊥) can only give rise to mβ (𝑘‖) in
Eq. (10) with β = A1,A2,E (see Appendix D for details). Con-
cretely, we have

M̃A1(x⊥) = ζ2(x⊥)n2,

M̃A2(x⊥) = ∑
5
j=3 ζ j(x⊥)n j,

M̃E(x⊥) = ∑
10
j=8 𝜁 j(x⊥) ·𝑛 j,

D̃A1(x⊥) = ∑
1
j=0 iζ j(x⊥)n jγ,

D̃A2(x⊥) = 0,
D̃E(x⊥) = ∑

7
j=6 i𝜁 j(x⊥) ·𝑛 jγ,

(14)

where ni’s are listed in Table A2 of Appendix A, and ζ j(x⊥)’s
are real. Physically, n0γ corresponds to the singlet pairing,
n1γ , 𝑛6γ , and 𝑛7γ generate quintet pairings, and n4, n8,1,
and n8,2 give FM in (111), (11̄0), and (112̄) directions, re-
spectively. Since n2,n3,n5,𝑛9, and 𝑛10 can be represented by
the linear combinations of c†

𝑘‖,x⊥
S3mc𝑘‖,x⊥ with the septet spin

tensor S3m (m = −3,−2, . . . ,3), we dub these terms the spin-
septet order parameters. As a summary, mA1(𝑘‖) can be gen-
erated by the singlet pairing, the quintet pairing, and the spin-
septet order parameter; mA2(𝑘‖) can be generated by (111)-
directional ferromagnetism (FM) and the spin-septet order pa-
rameter; mE(𝑘‖) can be generated by the quintet pairing, the
FM perpendicular to the (111) direction, and the spin-septet
order parameter.

4.2. Surface local density of states

In the following, we focus on the order parameters that
are independent of 𝑘‖ in every one of six surface mode regions
Alχ ,lc ’s. In this case, equation (10) can be expanded as

m(𝑘‖) =
4

∑
l=0

∑
lχ=±

3

∑
lc=1

f lχ lc
l σlδ

lχ lc
𝑘‖

, (15)

where f lχ lc
l is real, δ

lχ lc
𝑘‖

= 1 if 𝑘‖ ∈ Alχ ,lc and 0 otherwise,
and σl labels the Pauli matrix for pseudospin. Then, for any
symmetry transformation of m(𝑘), we can convert the trans-
formation of pseudospin index and 𝑘‖ dependence of m(𝑘) to

the transformation of σl and δ
lχ lc
𝑘‖

, respectively. Based on the

symmetry transformation, we can classify δ
lχ lc
𝑘‖

and σl accord-
ing to the IRs of C3v and the parities under TR, PH, and χ , as
shown in the top and second top parts of Table 1, respectively.
The symmetry classification of TR-odd terms in m(𝑘‖) can be

obtained by the tensor product of σl and δ
lχ lc
𝑘‖

, as shown in Ta-
ble A3 of Appendix A with various terms labeled by Ni’s. As a
result, we have the following general expressions of the order
parameters in different IRs of C3v:

mA1(𝑘‖) =
2

∑
j=1

m jN j(𝑘‖), (16)

mA2(𝑘‖) =
4

∑
j=3

m jN j(𝑘‖), (17)
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mE(𝑘‖) =
8

∑
j=5

𝑚 j ·𝑁 j(𝑘‖). (18)

Here all m j’s are real.
With Eqs. (16)–(18), we next discuss the energy spectrum

and LDOS of SMFBs after including these order parameters.
Due to the PH symmetry, only half of the energy spectrum
(non-negative energy part) gives the quasi-particle LDOS of
SMFBs. However, it is more convenient to study the full spec-
trum, since the LDOS, which is probed by the tunneling con-
ductance of STM, must symmetrically distribute with respect
to the zero energy in experiments.[67] Since the order param-
eters in each patch are 𝑘‖-independent, we choose the mode

at the geometric center 𝐾 lχ ,lc
‖ of each patch Alχ ,lc as the rep-

resentative mode. In the following, we only consider the rep-
resentative modes and use the term “degeneracy” to refer to
the extra degeneracy determined by the symmetry, excluding
the large degeneracy given by the flatness of the dispersion in
each patch. For convenience, we define the creation operator
b†

i,lχ ,lc = b†

i,𝐾
lχ ,lc
‖

to label the representative mode in the patch

Alχ ,lc with the pseudo-spin index i. Since only the uniform
order parameters are considered, lχ and lc are good quantum
numbers, while different pseudo-spin components (the σl part)
are typically coupled by the order parameter m(𝑘‖). Thus, we
introduce the band index s = ± and label the eigen-mode as
b̃†

s,lχ ,lc = ∑i X s,lχ ,lc
i b†

i,lχ ,lc with

∑
lχ ,lc

m(𝐾
lχ ,lc
‖ )X s,lχ ,lc = ∑

lχ ,lc

Es,lχ ,lcX s,lχ ,lc (19)

the eigen-equation.
Without any order parameters, all these 12 modes, in-

cluding 6 patches and 2 pseudospin components, are degen-
erate and thus the SMFBs have a zero-bias peak for LDOS,
as shown in Fig. 2(a). For the A1 order mA1(𝑘‖), the eigen-
energies are given by m1δ

χ

𝑘‖
±|m2|, and once |m1| ≠ |m2|, all

the zero energy peaks will be split for SMFBs. As a result, the
LDOS of the A1 order parameter typically has 4 peaks shown
in Fig. 2(b). This peak structure of LDOS can be understood
from symmetry consideration. Due to the breaking of TR sym-
metry, as well as the chiral symmetry, we only need to consider
the point group symmetry C3v. As mentioned before, any op-
eration in C3v does not change the lχ index, and since the A1

order parameter is C3v invariant, the band index s cannot be
changed either. The C3 rotation only transforms the lc = 1,2,3
index counter-clockwise, resulting in the three-fold degener-
acy among the eigen-modes b̃†

s,lχ ,lc with the same s and lχ .
On the other hand, Π interchanges lc = 1,2 and makes sure
that b̃†

s,lχ ,1 has the same energy as b̃†
s,lχ ,2, meaning that Π does

not give extra constraints compared with C3. Thus, there are
12/3 = 4 peaks in the LDOS of the A1 order parameter with
each peak of 3-fold degeneracy. For the A2 order parameter

SMFBs

L
D
O
S

L
D
O
S

L
D
O
S

L
D
O
S

(a) (b)

(c) (d)

-0.3 0 0.3

E/µ
-0.3 0 0.3

E/µ

A1

A2 E

-0.3 0 0.3

E/µ

-0.3 0 0.3

E/µ

Fig. 2. The LDOS on the (111) surface as a function of the energy (E/|µ|)
(a) without any order parameters, (b) with the A1 order parameter, (c) with
the A2 order parameter, and (d) with the E order parameter. Due to the PH
symmetry, only non-negative-energy half of the LDOS is physical. The
broadening of each peak is plotted via Gaussian distribution with stan-
dard deviation being 10−3. The parameters choices for each order if exist
are m1/|µ| = 0.05 and m2/|µ| = 0.1 for the A1 order parameter (16),
m3/|µ| = 0.05 and m4/|µ| = −0.1 for the A2 order parameter (17), and
𝑚5/|µ| = (0.01,0.02), 𝑚6/|µ| = (0.03,0.04), 𝑚7/|µ| = (0.05,0.06),
and 𝑚8/|µ| = (0.07,0.08) for the E order parameter (18). Here we do
not show the numbers on the vertical axis[68] since only the position of
LDOS peak can be probed in the STM experiments.

mA2(𝑘‖), the eigen-energies are given by ±
√

m2
3 +m2

4, leading
to 2 peaks in the LDOS (Fig. 2(c)), resulted from the six-fold
degeneracy of each eigen-energy due to the symmetry. Among
the six-fold degeneracy, three-fold degeneracy is due to the
translational invariance and C3 symmetry as the A1 order pa-
rameter, meaning that b̃†

s,lχ ,1, b̃†
s,lχ ,2, and b̃†

s,lχ ,3 have the same
energy. The remaining double degeneracy originates from the
combination of the odd mirror parity of the A2 order parame-
ter and the PH symmetry, i.e., Πbσ2m*

A2
(−Π−1𝑘‖)(Πbσ2)

† =

mA2(𝑘‖). This combined symmetry does not change the band
index s, but transforms lχ as + ↔ − and lc as 1 ↔ 2. As a
result, b̃†

s,±,lc with fixed s and lc also have the same energy,
giving the extra double degeneracy. For the E order parameter
mE(𝑘‖), the eigen-energies are ∑lχ ,lc(lχ m̄lc ± m̄′

lc)δ
lχ ,lc
𝑘‖

, where

m̄1 =
m5,1

2
−

√
3

2
m5,2,

m̄2 =
m5,1

2
+

√
3

2
m5,2, m̄3 =−m5,1,

m̄′
1 =

[(√
3

2
m6,1 +

m6,2

2

)2

+

(
−m7,1 +

m8,1

2
+

√
3

2
m8,2

)2

+

(
m7,2 −

√
3

2
m8,1 +

m8,2

2

)2]1/2

,
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m̄′
2 =

[(
−

√
3

2
m6,1 +

m6,2

2

)2

+

(
−m7,1 +

m8,1

2
−

√
3

2
m8,2

)2

+

(
m7,2 +

√
3

2
m8,1 +

m8,2

2

)2]1/2

,

m̄′
3 = [m2

6,2 +(m7,1 +m8,1)
2 +(m7,2 −m8,2)

2]1/2. (20)

Therefore, all the modes are typically split for the E order
and the corresponding LDOS generally has 12 peaks shown
in Fig. 2(d).

We would like to mention that if including the momentum
dependence of the surface order parameter in each surface-
mode region, it can broaden the LDOS peaks in Fig. 2. In
addition, the momentum dependence may also lead to the exis-
tence of arcs of surface zero modes in certain small parameter
regions as discussed in Appendix E.

5. Impurity effect
In this section, we will study the effect of surface non-

magnetic and magnetic impurities. The effect of non-magnetic
impurity on SMFBs in the absence of the mean-field order
parameters has been studied in Refs. [55–57,69], showing
that any non-magnetic impurity can generally induce a local
gap for the SMFBs of DIII TNLS. Our work here aims to
present a systematic study on how the LDOS of SMFBs is
split around a single non-magnetic or magnetic impurity in the
absence/presence of the mean-field order parameters.

5.1. Preliminaries

To consider the local potential, we first need to transform
SMFBs to the real space with

b†
lχ ,lc,i,𝑟‖

=
1√
𝒮‖

Alχ ,lc

∑
𝑘‖

e−i𝑘‖·𝑟‖b†
i,𝑘‖

, (21)

where the momentum summation is limited into the surface
mode region Alχ ,lc . Under the symmetry operations, the in-
dexes i, lχ , lc of b†

lχ ,lc,i,𝑟‖
defined here are transformed in the

same way as those of b†
i,lχ ,lc defined in Section 4. In the fol-

lowing, we adopt the following approximation:

1
S‖

Alχ ,lc

∑
𝑘‖

e i(𝑘‖−𝐾
lχ ,lc
‖ )·𝑟‖ ≈ δ

(2)(𝑟‖), (22)

resulting in

{b†
lχ ,lc,i,𝑟‖

,bl′χ ,l′c,i′,𝑟′‖
}= δlχ l′χ δlcl′cδii′δ

(2)(𝑟‖−𝑟′‖). (23)

Further, we define

d†
𝑟‖

= (b†
+,1,𝑟‖

,b†
+,2,𝑟‖

,b†
+,3,𝑟‖

,b†
−,1,𝑟‖

,b†
−,2,𝑟‖

,b†
−,3,𝑟‖

) (24)

for convenience.
The behavior of d†

𝑟‖
under the symmetry transformation

is crucial for the understanding of LDOS. In general, the rela-
tion required by the PH symmetry has the form d†

𝑟‖
𝒞d = dT

𝑟‖
,

and the transformation under TR, Ĉ3, and Π̂ operations reads
𝒯 d†

𝑟‖
𝒯 −1 = d†

𝑟‖
𝒯d , Ĉ3d†

𝑟‖
Ĉ−1

3 = d†
C3𝑟‖

C3,d , and Π̂d†
𝑟‖

Π̂−1 =

d†
Π𝑟‖

Πd , respectively. As d†
𝑟‖

, besides 𝑟‖, carries three indexes
lχ , lc, i that transform independently under the symmetry oper-
ation, the transformation matrices presented above should be
in the tensor product form as

𝒞d = 𝒞χ ⊗𝒞c ⊗σ2 with 𝒞χ =−iρ2 and 𝒞c = λ0,

𝒯d = 𝒯χ ⊗𝒯c ⊗𝒯b with 𝒯χ = ρ1 and 𝒯c = λ0,

C3,d =C3,χ ⊗C3,c ⊗C3,b with C3,χ = ρ0,

Πd = Πχ ⊗Πc ⊗Πb with Πχ = ρ0, (25)

where C3,c = exp(−i λ2−λ5+λ7√
3

2π

3 ), Πc =−exp(i λ5+λ7√
2

π), ρi’s
are Pauli matrices for lχ = ± index, σi’s are for the pseudo-
spin of the surface modes as before, and λi’s are Gell–Mann
matrices (Appendix A) for lc = 1,2,3 index with λ0 the 3×3
identity matrix. In addition, the representation of the transla-
tion operator perpendicular to (111) direction is T̂𝑥‖d†

𝑟‖
T̂−1
𝑥‖

=

d†
𝑟‖+𝑥‖

.

With the above definition of d†
𝑟‖

operator, we next con-
sider the Hamiltonian that describes the effect of a surface im-
purity on the SMFBs, given by

HV =
∫

d2r‖d†
𝑟‖

MV (𝑟‖)d𝑟‖ + const., (26)

where MV (𝑟‖) is Hermitian, the PH symmetry requires
𝒞dM*

V (𝑟‖)𝒞
†
d = −MV (𝑟‖), and the impurity is chosen to be at

𝑟‖ = 0 without the loss of generality. Such form of impurity
Hamiltonian is justified in Appendix F. MV (𝑟‖) in general is
the linear combination of ρ j ⊗ λk ⊗ σl with coefficients de-
pending on 𝑟‖. In this case, we can convert the symmetry
transformation of lχ and lc indexes of MV (𝑟‖) to the trans-
formations of ρ j’s and λk’s, respectively. Based on Eq. (25),
ρ j’s and λk’s can be classified according to the IRs of C3v and
parities of TR, PH, and χ , as shown in the second lowest and
lowest parts of Table 1. Then, the terms in MV (𝑟‖) with certain
symmetry properties can be constructed via the tensor product
of the classified ρ j’s, λk’s, and σl’s listed in Table 1, which can
further determine the number of LDOS peaks. Similar as Sec-
tion 4, the LDOS discussed here is based on the full spectrum
of MV (𝑟‖), of which only the half with non-negative energy is
physical. In the following, we study the LDOS at the impu-
rity position 𝑟‖ = 0 with the focus on two types of impurities:
(i) non-magnetic charge impurity, and (ii) magnetic impurity
with magnetization along the (111) direction.
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5.2. Non-magnetic charge impurity

For a charge impurity, the potential term MV (𝑟‖ = 0) =
Mc possesses the TR symmetry 𝒯dM*

c𝒯
†

d = Mc, the C3v sym-
metries centered at the impurity RdMcR†

d = Mc with R ∈ C3v,
and the chiral symmetry χdMcχ

†
d =−Mc (see Appendix F for

details). According to its symmetry properties and Table 1, the
generic form of Mc reads

Mc = (η1ρ1 +η2ρ2)⊗Λ1 ⊗σ0

+(η3ρ1 +η4ρ2)⊗Λ2 ⊗σ0 +(η5ρ1 +η6ρ2)⊗Λ3 ⊗σ3

+(η7ρ1 +η8ρ2)⊗ (−Λ5,1 ⊗σ2 +Λ5,2 ⊗σ1), (27)

where η1,...,8 are real. Below we examine the LDOS on a sin-
gle charge impurity for SMFBs and compare the case without
any order parameter to the cases with A1 (16), A2 (17), and E
(18) order parameters. The LDOS around the charge impurity
is shown in Figs. 3(a)–3(d), which reveal the following fea-
tures. (1) Since the PH symmetry exists in all the cases, the
LDOS is always symmetric with respect to zero energy. (2)
If no order parameters exist, there are six peaks (Fig. 3(a)),
given by the TR protected double degeneracy of each eigen-
value of Mc according to the Kramer’s degeneracy. (3) In the
presence of the A1 order parameter, 8 peaks exist at the impu-
rity (Fig. 3(b)). The reason is the following. Since the trans-
lational invariance is absent, the modes with different lχ or lc
are coupled by the charge impurity, and the three-fold degen-
eracy for the pure A1 order parameter case is lifted. Moreover,
the appearance of the order parameter breaks the TR symme-
try, leaving only the C3v symmetries to protect the degeneracy.
For convenience, we choose the eigenstates of Ĉ3 rotation as
the bases to make the representation C3,d diagonal as

C̃3,d =

 e−i π
3 14

−14

e i π
3 14

 , (28)

where 1n is the n× n identity matrix. Due to the presence of
the A1 order order parameter, the Hamiltonian at the charge
impurity becomes Mc +MA1 with MA1 given by transforming
Eq. (16) to the d bases (see Appendix F). With the eigen-
bases of Ĉ3 rotation, Mc +MA1 can be block diagonalized as
diag(h1,h2,h3), where h1, h2, and h3 are 4×4 Hermitian ma-
trices. With the same bases, the mirror matrix Πd has the form

Π̃d =

 UΠ

UΠ

UΠ

 (29)

with

UΠ =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (30)

The mirror symmetry gives UΠ h3U†
Π
= h1 and UΠ h2U†

Π
= h2,

which means the eigenvalues of h1 are the same as those of
h3. In fact, the representations of symmetry operations show
that the bases of h1 and h3 belong to two-dimensional IRs of
C3v while those of h2 belong to one-dimensional IRs of C3v.
Therefore, Mc +MA1 has four doubly degenerate and four sin-
gle eigenvalues, resulting in the 8 LDOS peaks. (4) The 12
LDOS peaks exist at the impurity in the presence of the A2

order parameter (Fig. 3(c)) since the translational invariance
and the odd mirror parity of the A2 order parameter are bro-
ken by the impurity, and there are no symmetries ensuring any
degeneracy. (5) There are 12 LDOS peaks at the impurity for
the E order parameter (Fig. 3(d)) because no new symmetries
are brought by the impurity. Besides the above five features,
the sign change of the charge does not affect the LDOS peaks
since the order parameters are all chiral anti-symmetric while
the charge impurity is chiral symmetric.

5.3. Magnetic impurity

The potential term MV (𝑟‖ = 0) = Mm is still Hermitian
and PH symmetric for a magnetic impurity with magnetic
momentum along (111) direction. Moreover, it is TR-odd
𝒯dM*

m𝒯
†

d = −Mm, Ĉ3-symmetric C3,dMmC†
3,d = Mm, and Π̂ -

odd ΠdMmΠ
†
d = −Mm (Appendix F). According to the sym-

metry properties and Table 1, the generic form of Mm reads

Mm = η9ρ0 ⊗Λ1 ⊗σ3

+η10ρ0 ⊗Λ2 ⊗σ3 +η11ρ0 ⊗Λ3 ⊗σ0

+η12ρ0 ⊗ (Λ4,2 ⊗σ2 +Λ4,1 ⊗σ1)

+η13ρ3 ⊗ (Λ5,2 ⊗σ2 +Λ5,1 ⊗σ1)

+η14ρ0 ⊗ (Λ6,2 ⊗σ2 +Λ6,1 ⊗σ1), (31)

where η9,...,14 are real. Figures 3(e)–3(h) show the LDOS
around the magnetic impurity and reveal the following fea-
tures. (1) The PH symmetry again ensures that the LDOS is
always symmetric with respect to zero energy and the E order
parameter still has 12 LDOS peaks at the magnetic impurity
since no new symmetries appear as shown in Fig. 3(h). (2)
If no order parameters exist, there are six peaks (Fig. 3(e))
resulted from the double degeneracy given by the combi-
nation of the PH symmetry and odd Π̂ parity. It is be-
cause the combination of the PH symmetry and odd Π parity
gives Πd𝒞dMm𝒞†

dΠ
†
d = Mm, and since Πd𝒞d(Πd𝒞d)

* = −1,
each eigenvalue of Mm must be doubly degenerate (similar to
Kramer’s theorem). (3) The original 4 peaks of the A1 order
are splitted into 12 peaks since the magnetic impurity breaks
the translational invariance and Π̂ symmetry (Fig. 3(f)). (4) As
shown in Fig. 3(g), the 6 LDOS peaks of the magnetic impurity
remain in the presence of the A2 order since the PH symme-
try and odd Π̂ parity are not broken. Besides the above four

017402-7



Chin. Phys. B Vol. 29, No. 1 (2020) 017402

features, flipping the direction of the magnetic moment, i.e.,
Mm → −Mm, does not affect the LDOS distribution in pres-

ence of the A1 order parameter, since the A1 order parameter
has Π̂ symmetry while Mm has odd Π̂ parity.
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Fig. 3. The LDOS as a function of the energy (E/|µ|) with surface impurities: (a)–(d) a surface charge impurity and (e)–(h) a surface magnetic
impurity. The four columns from left to right correspond to no order parameters, A1 order parameter, A2 order parameter, and E order parameter,
respectively. The broadening of each peak and the parameters choices for the orders if exist are the same as those in Fig. 2. The potential form of
the charge or magnetic impurity is shown in Appendix F. The numbers on the vertical axes are again omitted.

5.4. Summary for impurity effect

To sum up, the number of LDOS peaks at a charge im-

purity or a magnetic impurity with magnetic moment in (111)

direction is 6 or 6 for no order parameters, 8 or 12 for the A1

order parameter, 12 or 6 for the A2 order parameter, and 12 or
12 for the E order parameter, respectively, as summarized in
Fig. 4.

Π Π-

Cv

… … … … …

…

12

12 12128 12

Deg=12

TR, PH, T

SMFB

TR

Deg=3

T↪C

TR

Deg=6

Π→Π- Π→Π-

Deg=1

TR

Deg=2

TR

Deg=2

T T,TR

T T T T T T

Deg=2(*) Deg=1 Deg=1 Deg=1 Deg=1Deg=2

Π,PH

A1 A2 E

Vc Vc

Vc

VcVm Vm Vm

Vm

Cv

T,C,Π-,PH Π-,PH

Fig. 4. This graph shows how the number of LDOS peaks shown in Figs. 2 and 3 is determined by the symmetry. The solid black lines indicate
the LDOS peaks. A1, A2, and E stand for the surface order parameters, and Vc and Vm denote the charge and magnetic impurities, respectively.
“Deg” indicates the symmetry protected degeneracy of each LDOS peak, except the case marked by (*) where only half of the eight peaks
have the double degeneracy. If Deg > 1, the line below shows the crucial symmetries that account for the degeneracy. Here Π− means odd
mirror parity, T means the translational invariance, and the origin for the rotation C3 or mirror Π is located at the impurity center. The red lines
crossing the symmetry operations indicate the breaking of the corresponding symmetries.
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Combining the above results with the LDOS peaks with-
out impurity given in Section 4, it is more than enough to iden-
tify the order parameters in our system. In the above analysis,
we adopt the approximation (22), only consider translationally
invariant order parameters that are 𝑘‖-independent in each sur-
face mode region, and assume the surface mode wavefunctions
are 𝑘‖-independent in each surface mode region to deal with
the impurity. These approximations neglect high-order effects
which typically can only broaden the LDOS peaks without af-
fecting the qualitative result.

6. Discussion and conclusion
We studied the energy spectrum (or LDOS) of the SMFBs

localized on (111) surface of the half-Heusler SCs with
translationally invariant order parameters or magnetic/non-
magnetic impurities based on the Luttinger model with
singlet–quintet mixing. Our work demonstrates that the zero-
bias peak of SMFBs can be split to reveal a rich peak struc-
ture when different types of order parameters induced by in-
teraction or magnetic/non-magnetic impurities are introduced.
Such peak structure can be viewed as a fingerprint to dis-
tinguish different types of order parameters in the standard
STM experiments. In addition, we notice that the SMFBs in-
duced by singlet–septet mixing proposed in Ref. [34] possess
six patches without any additional pseudospin degeneracy in
the surface Brillouin zone (see Fig. 5(a) and the discussion
in Ref. [39]). Due to the different number of degeneracy, we
expect the peak structures given by the order parameters and
magnetic/non-magnetic impurities will be different in the two
cases, which thereby may help distinguish the singlet–quintet
mixing from the singlet–septet mixing in experiments.

Acknowledgement
We acknowledge the helpful discussion with C Wu. J.Y

thanks Yang Ge, Rui-Xing Zhang, Jian-Xiao Zhang, and
Tongzhou Zhao for helpful discussion. We acknowledge the
support of the Office of Naval Research (Grant No. N00014-
18-1-2793), Kaufman New Initiative research grant KA2018-
98553 of the Pittsburgh Foundation, and the U.S. Department
of Energy (Grant No. DESC0019064).

Appendix A: Convention and expressions
The Fourier transformation of creation operators in the

continuous limit reads

c†
𝑟 =

1√
𝒱 ∑

𝑘

e−i𝑘·𝑟c†
𝑘, (A1)

where 𝒱 is the total volume of the entire space.
The five d-orbital cubic harmonics read[70]



g𝑘,1 =
√

3kykz,

g𝑘,2 =
√

3kzkx,

g𝑘,3 =
√

3kxky,

g𝑘,4 =
√

3
2 (k2

x − k2
y),

g𝑘,5 = 1
2 (2k2

z − k2
x − k2

y).

(A2)

The j = 3/2 angular momentum matrices are[59]

Jx =


0

√
3

2 0 0√
3

2 0 1 0
0 1 0

√
3

2
0 0

√
3

2 0

 , (A3)

Jy =


0 − i

√
3

2 0 0
i
√

3
2 0 −i 0

0 i 0 − i
√

3
2

0 0 i
√

3
2 0

 , (A4)

Jz =


3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

 . (A5)

The five Gamma matrices are[70]

Γ 1 = 1√
3
(JyJz + JzJy),

Γ 2 = 1√
3
(JzJx + JxJz),

Γ 3 = 1√
3
(JxJy + JyJx),

Γ 4 = 1√
3
(J2

x − J2
y ),

Γ 5 = 1
3 (2J2

z − J2
x − J2

y ).

(A6)

Clearly, {Γ a,Γ b} = 2δabΓ 0, where Γ 0 is the 4× 4 identity
matrix.

Table A1. Character table of C3v. Here 1 means identity operation.[71]

C3v 1 C3 Π

A1 1 1 1
A2 1 1 –1
E 2 –1 0

Table A2. Expressions of ni in Eq. (14). Pi = J3
i − 41Ji/20, Vx =

1
2{Jx,J2

y − J2
z }, Vy = 1

2{Jy,J2
z − J2

x }, Vz =
1
2{Jz,J2

x − J2
y }, and Jxyz =

JxJyJz + JzJyJx.

C3v TR
A1 n0 = Γ0 +

A1 n1 =
1√
3
(Γ1 +Γ2 +Γ3) +

A1 n2 =
1√
3
(Vx +Vy +Vz) −

A2 n3 = Jxyz −
A2 n4 =

1√
3
(Jx + Jy + Jz) −

A2 n5 =
1√
3
(Px +Py +Pz) −

E 𝑛6 = ( 1√
6
(Γ1 +Γ2 −2Γ3),

1√
2
(−Γ1 +Γ2)) +

E 𝑛7 = (Γ5,Γ4) +

E 𝑛8 = ( 1√
2
(Jx − Jy),

1√
6
(Jx + Jy −2Jz)) −

E 𝑛9 = ( 1√
2
(Px −Py),

1√
6
(Px +Py −2Pz)) −

E 𝑛10 = ( 1√
6
(Vx +Vy −2Vz),

1√
2
(−Vx +Vy)) −

017402-9
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Table A3. Expressions of Ni in Eqs. (16), (17), and (18).

C3v TR
A1 N1(𝑘‖) = δ

χ

𝑘‖
σ0 −

A1 N2(𝑘‖) = δ
E1 ,+
𝑘‖

(−σ2)+δ
E2,+
𝑘‖

σ1 −
A2 N3(𝑘‖) = σ3 −
A2 N4(𝑘‖) =−δ

E2,+
𝑘‖

(−σ2)+δ
E1 ,+
𝑘‖

σ1 −
E 𝑁5(𝑘‖) = (δ

E1 ,−
𝑘‖

σ0,δ
E2 ,−
𝑘‖

σ0) −
E 𝑁6(𝑘‖) = (−δ

E2 ,+
𝑘‖

σ3,δ
E1 ,+
𝑘‖

σ3) −
E 𝑁7(𝑘‖) = (−σ2,σ1) −
E 𝑁8(𝑘‖) = (−δ

E1 ,+
𝑘‖

(−σ2)+δ
E2,+
𝑘‖

σ1, δ
E1 ,+
𝑘‖

σ1 +δ
E2 ,+
𝑘‖

(−σ2)) −

The list of Gell–Mann matrices[72]

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (A8)

And λ0 is defined as the 3×3 identity matrix.

Appendix B: Representations of symmetry oper-
ators

In this section, we show the representation of symmetry
operators on the c†

𝑘 bases and the Nambu bases. Before show-
ing the representation, we define the following notations: P̂F is
the fermion parity operator, T̂𝑥 with 𝑥 ∈R3 is a generic trans-
lation operator, the generators of Oh group, Ĉ3, P̂, Ĉ4, and
Π̂ , are 3-fold rotation along (111), inversion, 4-fold rotation
along (001), and mirror perpendicular to (11̄0), respectively,
and 𝒯 is the time-reversal operator. Representations of O(3)
are not shown here since we only care about the c1 ̸= c2 case.

B1: The c†
𝑘 bases

P̂F c†
𝑘P̂−1

F =−c†
𝑘, P̂F c𝑘P̂−1

F =−c𝑘, (B1)

T̂𝑥c†
𝑘T̂−1

𝑥 = e−i𝑘·𝑥c†
𝑘, T̂𝑥c𝑘T̂−1

𝑥 = e i𝑘·𝑥c𝑘, (B2)

Ĉ3c†
𝑘Ĉ−1

3 = c†
C3𝑘

C3, Ĉ3c𝑘Ĉ−1
3 =C†

3cC3𝑘, (B3)

P̂c†
𝑘P̂−1 =−c†

−𝑘, P̂c𝑘P̂−1 =−c−𝑘, (B4)

Ĉ4c†
𝑘Ĉ−1

4 = c†
C4𝑘

C4, Ĉ4c𝑘Ĉ−1
4 =C†

4cC4𝑘, (B5)

Π̂c†
𝑘Π̂

−1 = c†
Π𝑘Π , Π̂c𝑘Π̂

−1 = Π
†cΠ𝑘, (B6)

𝒯 c†
𝑘𝒯

−1 = c†
−𝑘γ, 𝒯 c𝑘𝒯 −1 = γ

†c−𝑘, (B7)

where C3 = exp(−i Jx+Jy+Jz√
3

2π

3 ), C3𝑘 = (kz,kx,ky), C4 =

exp(−iJz
2π

4 ), C4𝑘 = (−ky,kx,kz), Π = −exp(−i Jx−Jy√
2

2π

2 ),
and Π𝑘 = (ky,kx,kz).

B2: The Nambu bases

P̂FΨ
†
𝑘 P̂−1

F =−Ψ
†
𝑘 , P̂FΨ𝑘P̂−1

F =−Ψ𝑘, (B8)

T̂𝑥Ψ
†
𝑘 T̂−1

𝑥 = e−i𝑘·𝑥
Ψ

†
𝑘 , T̂𝑥Ψ𝑘T̂−1

𝑥 = e i𝑘·𝑥
Ψ𝑘, (B9)

Ĉ3Ψ
†
𝑘 Ĉ−1

3 =Ψ
†

C3𝑘
C̃3, Ĉ3Ψ𝑘Ĉ−1

3 = C̃†
3ΨC3𝑘, (B10)

P̂Ψ
†
𝑘 P̂−1 =−Ψ

†
−𝑘, P̂Ψ𝑘P̂−1 =−Ψ−𝑘, (B11)

Ĉ4Ψ
†
𝑘 Ĉ−1

4 =Ψ
†

C4𝑘
C̃4, Ĉ4Ψ𝑘Ĉ−1

4 = C̃†
4ΨC4𝑘, (B12)

Π̂Ψ
†
𝑘 Π̂

−1 =Ψ
†

Π𝑘Π̃ , Π̂Ψ𝑘Π̂
−1 = Π̃

†
ΨΠ𝑘, (B13)

𝒯Ψ
†
𝑘𝒯

−1 =Ψ
†
−𝑘𝒯 , 𝒯Ψ𝑘𝒯 −1 = 𝒯 †

Ψ−𝑘, (B14)

where C̃3 = diag(C3,C*
3), C̃4 = diag(C4,C*

4), Π̃ =

diag(Π ,Π *), and 𝒯 = diag(γ,γ*). C̃3, Π̃ , 𝒯 K, and 𝒞K com-
mute with each other, where K is the complex conjugate oper-
ation. χ anti-commutes with 𝒯 K and 𝒞K and commutes with
C̃3 and Π̃ .

Appendix C: Surface Majorana flat bands
C1: Existence of surface zero modes

Due to the topological invariant Nw = ±2 at each non-
trivial 𝑘‖, we expect two boundary modes at each non-trivial
𝑘‖ on one surface of our model.[40] Therefore, we consider a
semi-infinite version of Eq. (1) (x⊥ < 0) with open boundary
condition at x⊥ = 0, where x⊥ is the position on (111) axis.
The corresponding Hamiltonian reads

H⊥ =
1
2 ∑

𝑘‖

∫ 0

−∞

dx⊥Ψ
†
𝑘‖,x⊥

hBdG(𝑘‖,−i∂x⊥)Ψ𝑘‖,x⊥

+∑
𝑘‖

∫ +∞

0
dx⊥E∞c†

𝑘‖,x⊥
c𝑘‖,x⊥ + const., (C1)

where c†
𝑘‖,x⊥

= 1√
L⊥

∑k⊥ e−ik⊥x⊥c†
𝑘 with L⊥ the length along

the (111) direction of the entire space, hBdG(𝑘‖,−i∂x⊥) is
obtained by replacing k⊥ in hBdG(𝑘) by −i∂x⊥ , Ψ

†
𝑘‖,x⊥

=

(c†
𝑘‖,x⊥

,cT
−𝑘‖,x⊥

), and E∞ → +∞ is for the open boundary
condition. For such a semi-infinite system, the translation
symmetry in the (111) direction, the inversion symmetry,
and the 4-fold rotational symmetry along (001) are bro-
ken. The Hamiltonian hBdG(𝑘‖,−i∂x⊥) still has PH, TR,
chiral, and C3v symmetries −𝒞[hBdG(−𝑘‖,−i∂x⊥)]

*𝒞† =

hBdG(𝑘‖,−i∂x⊥), 𝒯 [hBdG(−𝑘‖,−i∂x⊥)]
*𝒯 † = hBdG(𝑘‖,

−i∂x⊥), −χhBdG(𝑘‖, −i∂x⊥)χ
† = hBdG(𝑘‖, −i∂x⊥), and

R̃hBdG(R−1𝑘‖,−i∂x⊥)R̃
† = hBdG(𝑘‖, −i∂x⊥), respectively,

where R = C3,Π . In addition, the PH symmetry requires
𝒞(Ψ †

−𝑘‖,x⊥
)T =Ψ𝑘‖,x⊥ and the commutation relation is

{Ψ †
𝑘‖,x⊥,α,s,Ψ𝑘′

‖,x
′
⊥,α

′,s′}= δ𝑘‖,𝑘
′
‖
δ (x⊥− x′⊥)δαα ′δss′ ,

{Ψ †
𝑘‖,x⊥,α,s,Ψ

†
𝑘′
‖,x

′
⊥,α

′,s′}= δ𝑘‖,−𝑘′
‖
δ (x⊥− x′⊥)(τx)αα ′δss′ , (C2)

where α,α ′ = 1,2 stand for the particle–hole index and s, s′

are spin indexes of the j = 3/2 fermion.
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The surface mode with zero energy b†
𝑘‖

of H⊥ in Eq. (C1)
is defined as

b†
𝑘‖

=
∫ 0

−∞

dx⊥Ψ
†
𝑘‖,x⊥

v𝑘‖,x⊥ , (C3)

which satisfies [H⊥,b
†
𝑘‖
] = 0 and v𝑘‖,0 = v𝑘‖,−∞ = 0. With

the PH symmetry and the commutation relation, the equation
[H⊥,b

†
𝑘‖
] = 0 can be simplified as

hBdG(𝑘‖,−i∂x⊥)v𝑘‖,x⊥ = 0. (C3)

Now we try to figure out the properties of the solution. First,
transform the above equation to chiral eigen-bases,

U†
χ hBdG(𝑘‖,−i∂x⊥)UχU†

χ v𝑘‖,x⊥ = 0, (C5)

where

Uχ =
1√
2

(
14 14
iγ −iγ

)
(C6)

is the unitary matrix that diagonalizes χ:

U†
χ χUχ =

(
14

−14

)
, (C7)

U†
χ hBdG(𝑘‖,−i∂x⊥)Uχ =

(
q(𝑘‖,−i∂x⊥)

[q(𝑘‖, i∂x⊥)]
†

)
,

(C8)

q(𝑘‖,−i∂x⊥) = h(𝑘‖,−i∂x⊥)− i∆(𝑘‖,−i∂x⊥)γ. (C9)

The TR and PH matrices in the chiral representation read

U†
χ𝒯 U*

χ =

(
γ

γ

)
, (C10)

U†
χ𝒞U*

χ =

(
iγ

−iγ

)
. (C11)

In the chiral representation, both TR and PH symmetries give
the same condition on q,

γ[q(−𝑘‖, i∂x⊥)]
T

γ
† = q(𝑘‖,−i∂x⊥). (C12)

By defining U†
χ v𝑘‖,x⊥ = (uT

𝑘‖,x⊥
,wT

𝑘‖,x⊥
)T with u(w) corre-

sponding to the chiral eigen-wavefunction with chiral eigen-
values 1 (−1), equation (C5) can be expressed as{

q(𝑘‖,−i∂x⊥)w𝑘‖,x⊥ = 0,
q†(𝑘‖,−i∂x⊥)u𝑘‖,x⊥ = 0. (C13)

Since hBdG(−𝑘‖, i∂x⊥) = hBdG(𝑘‖,−i∂x⊥) originated from
the bulk inversion symmetry, we have q(𝑘‖,−i∂x⊥) =

q(−𝑘‖,−i∂x⊥). Combined with TR, the equation of u in
Eq. (C13) can be transformed to

q(𝑘‖,−i∂x⊥)γ
Tu*𝑘‖,−x⊥ = 0. (C)

Since u𝑘‖,x⊥ = 0 for x⊥ = 0,−∞, which means γTu*𝑘‖,−x⊥
= 0

for x⊥ = 0,+∞, the above equation is the same as the equa-
tion of w except that the open boundary conditions are at

x⊥ = 0,+∞. Therefore, we can solve the equation of w in
Eq. (C13), i.e.,

q(𝑘‖,−i∂x⊥)w𝑘‖,x⊥ = 0, (C15)

with w𝑘‖,0 = w𝑘‖,−∞ = 0 to have the solutions of w and with
w𝑘‖,0 = w𝑘‖,∞ = 0 to have the solutions of u by u𝑘‖,x⊥ =

γw*
𝑘‖,−x⊥

.

With the ansatz w𝑘‖,x⊥ = eλx⊥w̄𝑘‖ , equation (C15) be-
comes

q(𝑘‖,−iλ )w̄𝑘‖ = 0 (C16)

with the solution determined by the octic equation
det[q(𝑘‖,−iλ )] = 0 for λ . The equation has 4 double
roots λ1,2,3,4 since det[q(𝑘‖,−iλ )] can be written in the
form of the square of certain function, det[q(𝑘‖,−iλ )] =
[q̃(𝑘‖,−iλ )]2.[40] In addition, since q̃(𝑘‖,−iλ ) does not
have λ 3 term, the sum of λ1,2,3,4 is zero. Each double root
λi can give two orthogonal solutions w̄𝑘‖,i, j of Eq. (C16)
with i = 1,2,3,4 and j = 1,2. Then the general solution
of Eq. (C15) without boundary condition reads

w𝑘‖,x⊥ =
4

∑
i=1

2

∑
j=1

bi j eλix⊥w̄𝑘‖,i, j. (C17)

Now let us impose the boundary condition. w𝑘‖,∞ = 0 or
w𝑘‖,−∞ = 0 requires Re[λi] < 0 or Re[λi] > 0, respectively,
and w𝑘‖,0 = 0 requires ∑i, j bi jw̄𝑘‖,i, j = 0. Since the sum of
the four λi’s is zero, it is impossible to have four Re[λi]’s with
the same sign. If only two Re[λi]’s have the same sign, there
will be typically no solutions, since the corresponding four
four-component w̄𝑘‖,i, j’s typically can not be linearly depen-
dent. If three λi’s satisfy Re[λi] > 0 (Re[λi] < 0), there are
six corresponding four-component w̄𝑘‖,i, j’s, resulting in two
solutions to w(u) corresponding to two surface zero modes
v𝑘‖,x⊥ = Uχ(0,wT

𝑘‖,x⊥
)T (v𝑘‖,x⊥ = Uχ(uT

𝑘‖,x⊥
,0)) with chiral

eigenvalue −1 (1). Therefore, the generic number of sur-
face zero modes at a fixed 𝑘‖ on one surface, if exist, is two
and those two modes are chiral eigenstates of the same chiral
eigenvalues.

C2: Symmetries of surface zero modes

Now we will show the symmetry properties of the surface
zero modes. We take vi,𝑘‖,x⊥ with i = 1,2 as the two orthonor-
mal surface wavefunctions that satisfy Eq. (C3) at 𝑘‖ with the
boundary conditions. Orthonormality requires∫ 0

−∞

dx⊥v†
i,𝑘‖,x⊥

v j,𝑘‖,x⊥ = δi j. (C18)

The creation operators of the surface modes read

b†
i,𝑘‖

=
∫ 0

−∞

dx⊥Ψ
†
𝑘‖,x⊥

vi,𝑘‖,x⊥ , (C19)

and the orthonormal condition of vi,𝑘‖,x⊥ leads to the anti-
commutation relations{

b†
i,𝑘‖

,b j,𝑘′
‖

}
= δi jδ𝑘‖𝑘

′
‖
. (C20)
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The effective Hamiltonian for the surface zero modes can thus
be expressed as

Hsurf = Esurf ∑
𝑘‖∈A

b†
𝑘‖

b𝑘‖ , (C21)

where A stands for the entire surface mode regions in the sur-
face Brillouin zone, Esurf = 0, and b†

𝑘‖
= (b†

1,𝑘‖
,b†

2,𝑘‖
). The

Fermion parity operator will transform the b𝑘‖ operators as

b†
𝑘‖

→ −b†
𝑘‖

and b𝑘‖ → −b𝑘‖ . The 2D translations read

T̂𝑥‖b†
𝑘‖

T̂−1
𝑥‖

= e−i𝑘‖·𝑥‖b†
𝑘‖

and T̂𝑥‖b𝑘‖ T̂−1
𝑥‖

= e i𝑘‖·𝑥‖b𝑘‖ . Due
to the TR symmetry, two orthonormal surface wavefunctions
vi,−𝑘‖,x⊥ at −𝑘‖ can be given by the linear combinations of
𝒯 v*i,𝑘‖,x⊥

. Due to {𝒯 K,χ}= 0, vi,−𝑘‖,x⊥ and vi,𝑘‖,x⊥ have op-
posite chiral eigenvalues. It means that A± can be related by
𝑘‖ →−𝑘‖, where A± are the surface mode regions in the 𝑘‖
space that are filled with the momenta of surface zero modes
with chiral eigenvalues ±1, respectively. Based on the same
logic, C3v symmetries gives that vi,C3𝑘‖,x⊥ are linear combi-

nations of C̃3vi,𝑘‖,x⊥ and vi,Π𝑘‖,x⊥ are linear combinations of

Π̃vi,𝑘‖,x⊥ . Furthermore, since χ commutes with any opera-
tion in C3v, vi,C3𝑘‖,x⊥’s and vi,Π𝑘‖,x⊥’s have the same chiral
eigenvalue as vi,𝑘‖,x⊥ , meaning that both A+ and A− are C3v

symmetric. The representations of 𝒯 , Ĉ3, and Π̂ rely on the
convention that we choose for vi,𝑘‖,x⊥’s. For convenience, we
choose a special convention such that

𝒯 v*i,𝑘‖,x⊥
= ∑ j v j,−𝑘‖,x⊥(−iσ2) ji,

C̃3vi,𝑘‖,x⊥ = ∑ j v j,C3𝑘‖,x⊥(e−iσ3
π
3 ) ji,

Π̃vi,𝑘‖,x⊥ = ∑ j v j,Π𝑘‖,x⊥(−e−iσ2
π
2 ) ji.

(C22)

As a result, b†
𝑘‖

imitates a j = 1/2 fermion,
𝒯 b†

𝑘‖
𝒯 −1 = b†

−𝑘‖
− iσ2,

Ĉ3b†
𝑘‖

Ĉ−1
3 = b†

C3𝑘‖
e−iσ3

π
3 ,

Π̂b†
𝑘‖

Π̂−1 = b†
Π𝑘‖

(−e−iσ2
π
2 ),

(C23)

where σ1,2,3 are Pauli matrices for the double degeneracy of
the surface modes. And we can treat the double degeneracy
of the surface modes as the pseudospin of the surface modes.
Since the PH symmetry is related with TR and chiral symme-
tries by χ = i𝒯 𝒞*, we have

vi,−𝑘‖,x⊥ =
2

∑
j=1

𝒞v*j,𝑘‖,x⊥(δ
χ

𝑘‖
σ2) ji, (C24)

where δ
χ

𝑘‖
= ±1 for 𝑘‖ ∈ A±, χvi,𝑘‖,x⊥ = δ

χ

𝑘‖
vi,𝑘‖,x⊥ , δ

χ

−𝑘‖
=

−δ
χ

𝑘‖
since vi,𝑘‖,x⊥ and vi,−𝑘‖,x⊥ have opposite chiral eigen-

values, and δ
χ

R𝑘‖
= δ

χ

𝑘‖
with R ∈ C3v since vi,𝑘‖,x⊥ and

vi,R𝑘‖,x⊥ have the same chiral eigenvalue. Furthermore, using

Ψ
†
−𝑘‖,x⊥

=Ψ T
𝑘‖,x⊥

𝒞, we can get

b†
−𝑘‖

= bT
𝑘‖
(δ

χ

𝑘‖
σ2)⇔ b†

𝑘‖
(−δ

χ

𝑘‖
σ2) = bT

−𝑘‖
. (C25)

Thus, the PH symmetry gives rise to the following relation:{
b†

i,𝑘‖
,b†

j,𝑘′
‖

}
=

{
b†

i,𝑘‖
,bi′,−𝑘′

‖
(δ

χ

−𝑘′
‖
σ2)i′ j

}
(C26)

= (δ
χ

𝑘‖
σ2)i jδ𝑘‖,−𝑘′

‖
, (C27)

which implies that only half the surface modes are actually
physical due to the double counting of the BdG Hamiltonian.
In this case, we can treat the surfaces modes as two Ma-
jorana zero modes at each 𝑘‖ as described below. In gen-
eral, the fermionic creation operator b†

i,𝑘‖
can be expressed

as the linear combination of two Majorana operators: b†
i,𝑘‖

=
1
2 (γi,𝑘‖ +−iγ̃i,𝑘‖), where

γi,𝑘‖ = b†
i,𝑘‖

+bi,𝑘‖ ,

γ̃i,𝑘‖ =
1
i
(b†

i,𝑘‖
−bi,𝑘‖). (C28)

Due to Eq. (7), γi,𝑘‖ and γ̃i,𝑘‖ depend on each other by the rela-
tion γi,−𝑘‖ = −δ

χ

𝑘‖
∑ j γ̃ j,𝑘‖(−iσ2) ji. Therefore, γ̃i,𝑘‖ ’s can be

chosen to be redundant and we can treat the physical degrees
of freedom as two MZMs at each 𝑘‖, of which the Majorana
operators are γi,𝑘‖ . And the γi,𝑘‖ operators satisfy the follow-
ing anti-commutation relation:

{γi,𝑘‖ ,γ j,𝑘′
‖
}= {b†

i,𝑘‖
,b†

j,𝑘′
‖
}

+{b†
i,𝑘‖

,b j,𝑘′
‖
}+{bi,𝑘‖ ,b

†
j,𝑘′

‖
}+{bi,𝑘‖ ,b j,𝑘′

‖
}

= 2δi jδ𝑘‖,𝑘
′
‖
+(δ

χ

𝑘‖
σ2)i jδ𝑘‖,−𝑘′

‖
+(δ

χ

𝑘‖
σ2)

*
i jδ𝑘‖,−𝑘′

‖

= 2δi jδ𝑘‖,𝑘
′
‖
. (C29)

Although the actual physical degrees of freedom are MZMs,
we still use b†

𝑘‖
and b𝑘‖ in the following for convenience.

Appendix D: Projecting Eq. (11) onto the surface
to get Eq. (8)

In this part, we will derive Eq. (8) by projecting Eq. (11)
onto the surface. First, we show the relation between the sur-
face modes b† and the Nambu bases Ψ †. Due to the com-
pleteness of eigenstates of Hermitian operator, Ψ

†
𝑘‖,x⊥,α,s and

Ψ𝑘‖,x⊥,α,s can be expressed in terms of eigenstates of Eq. (C1)
for x⊥ < 0 and 𝑘‖ ∈ A as{

Ψ
†
𝑘‖,x⊥,α,s = ∑i v*i,𝑘‖,x⊥,α,sb

†
i,𝑘‖

+bulk modes,
Ψ𝑘‖,x⊥,α,s = ∑i vi,𝑘‖,x⊥,α,sbi,𝑘‖ +bulk modes,

(D1)

where α = e,h is the particle–hole index and s =±3/2,±1/2.
Let us define v𝑘‖,x⊥ as a 8× 2 matrix with (α,s) labeling the
row and i being the column index, and then the above relations
can be expressed in the matrix version{

Ψ
†
𝑘‖,x⊥

= b†
𝑘‖

v†
𝑘‖,x⊥

+bulk modes,
Ψ𝑘‖,x⊥ = v𝑘‖,x⊥b𝑘‖ +bulk modes.

(D2)
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In the matrix version, the symmetries of the surface eigenvec-
tors become 

𝒯 v*𝑘‖,x⊥
= v−𝑘‖,x⊥𝒯b,

C̃3v𝑘‖,x⊥ = vC3𝑘‖,x⊥C3,b,

Π̃v𝑘‖,x⊥ = vΠ𝑘‖,x⊥Πb,

v−𝑘‖,x⊥ = 𝒞v*𝑘‖,x⊥
δ

χ

𝑘‖
σ2,

χv𝑘‖,x⊥ = δ
χ

𝑘‖
v𝑘‖,x⊥ .

(D3)

If 𝑘‖ is outside the surface mode regions, Ψ
†
𝑘‖,x⊥,α,s and

Ψ𝑘‖,x⊥,α,s only contain bulk modes.
In the Nambu bases, equation (11) reads

H̃mf =
1
2

A

∑
𝑘‖

∫ 0

−∞

dx⊥Ψ
†
𝑘‖,x⊥

h̃(x⊥)Ψ𝑘‖,x⊥ + const., (D4)

where

h̃(x⊥) =
(

M̃(x⊥) D̃(x⊥)
D̃†(x⊥) −M̃T(x⊥)

)
. (D5)

Using Eq. (D2) and neglecting terms involving bulk modes,
we can obtain Eq. (8) with m(𝑘‖) =

∫ 0
−∞

dx⊥v†
𝑘‖,x⊥

h̃(x⊥)v𝑘‖,x⊥

being Hermitian. Due to the PH symmetry of h̃(x⊥),
i.e., −𝒞h̃T(x⊥)𝒞† = h̃(x⊥), and v𝑘‖,x⊥ in Eq. (D3), the ob-
tained m(𝑘‖) is PH symmetric. Only the TR odd part of
m(𝑘‖), as well as h̃(x⊥), is allowed for the surface or-
ders and thereby we only need to consider h̃(x⊥) satisfying
𝒯 h̃*(x⊥)𝒯 † = −h̃(x⊥), which is equivalent to γM̃*(x⊥)γ† =

−M̃(x⊥) and γD̃*(x⊥)γT = −D̃(x⊥). Suppose h̃(x⊥) is the
linear combination of h̃i(x⊥) and R̃h̃i(x⊥)R̃† = ∑ j fi jh̃ j(x⊥)
with fi j ∈ R, where the latter is equivalent to RM̃i(x⊥)R† =

fi jM̃ j(x⊥) and RD̃i(x⊥)RT = fi jD̃ j(x⊥), and R ∈ C3v. Ac-
cording to the transformation of v𝑘‖,x⊥ under C3v (D3), we

have Rbm̃i(R−1𝑘‖)R
†
b =∑ j fi jm̃ j(𝑘‖), where m̃i(𝑘‖) is the sur-

face projection of h̃i(x⊥). Therefore, if h̃i(x⊥), or equivalently
M̃i(x⊥) and D̃i(x⊥), belongs to a certain IR of C3v, the corre-
sponding surface projection belongs to the same IR.

Appendix E: Arcs of Majorana zero modes
In this section, we will discuss the condition for the arcs

of MZMs in the 𝑘‖-space induced by order parameters. The
analysis in Section 4 only included orders that are uniform
in each Alχ lc , and thereby the surface zero modes either ex-
ist or disappear at all 𝑘‖ points in one Alχ lc simultaneously.
If the momentum dependence of the orders within each Alχ lc

is considered, it is possible that MZMs exist at lines in the
surface mode regions. To illustrate this, we consider the A2

order parameter to the linear order of momentum, which has
no MZMs according to the analysis in Section 4. To take
into account the momentum dependence inside Alχ ,lc , we de-

fine 𝐾
lχ ,lc
‖ to be the geometric center of Alχ ,lc , and define

hlχ ,lc
A2

(𝑞‖) ≡ mA2(𝑞‖ +𝐾
lχ ,lc
‖ ) with 𝑞‖ ≡ 𝑘‖ −𝐾

lχ ,lc
‖ . Due to

the odd mirror parity of A2 order parameter and the Π sym-
metry of A+,3, h+,3

A2
(𝑞‖) to the first order of 𝑞‖ is

h+,3
A2

(𝑞‖) = B0q‖,2σ0 +(−m4 +B1q‖,1)σ1

+(−B2q‖,2)σ2 +(m3 +B3q‖,1)σ3, (E1)

where K+,3
‖,2 = 0 is used. In the following, we assume B1,2,3,4 ̸=

0. Using C3v and PH symmetries, we have h+,1
A2

(𝑞‖) =

C3,bh+,3
A2

(C−1
3 𝑞‖)C

†
3,b, h+,2

A2
(𝑞‖) = C†

3,bh+,3
A2

(C3𝑞‖)C3,b, and

h−,lc
A2

(𝑞‖) = −σ2[h
+,lc
A2

(−𝑞‖)]
Tσ2. As a result, the number of

MZMs at 𝑘‖ is the same as that at C3𝑘‖, Π𝑘‖, and −𝑘‖, and
thereby we only need to study the existence of MZMs in A+,3.
The eigenvalues of h+,3

A2
(𝑞‖) are

B0q‖,2 ±
√

(m4 −B1q‖,1)2 +(B2q‖,2)2 +(m3 +B3q‖,1)2. (E2)

In the case where −m3/B3 = m4/B1, two MZMs exist at
𝑞‖ = (m4/B1,0) if (m4/B1,0) ∈ A+,3, and one MZM exists at
every other point (in A+,3) on the straight line (m4/B1,q‖,2) if

B2
0 −B2

2 = 0 or on the straight lines (q‖,1,±
√

B2
3+B2

1
B2

0−B2
2
(m4/B1 −

q‖,1)) if B2
0 −B2

2 > 0. In the case where −m3/B3 ̸= m4/B1,
one MZM exists at every point on the part of the hyperbolas

(q‖,1,±
√

(m4−B1q‖,1)2+(m3+B3q‖,1)2

B2
0−B2

2
) that is in A+,3 if B2

0−B2
2 >

0. If none of the conditions listed above are satisfied, no
MZMs exist. As an example, figure E1(a) shows the surface
Majorana arcs for B2

0 −B2
2 > 0 and −m3/B3 ̸= m4/B1, where

only one MZM exists at each point of the arcs and the distri-
bution of MZMs has C3v and PH symmetries as mentioned be-
fore. In the plot, we assume that only surface order is formed
and the bulk nodal lines as well as the boundaries of the sur-
face mode regions do not change. Such distribution of Majo-
rana arcs is possible to be generated by surface FM along the
(111) direction since it is an A2 order parameter.

Next we consider how the E order parameter changes the
distribution of Majorana arcs. Suppose the surface Majorana
arcs exist for the A2 order which is given by surface FM in the
(111) direction. In this case, the presence of the small E or-
der parameter can be achieved by tuning the surface magnetic
moment slightly away from the (111) direction with a weak
external magnetic field, which can change the distribution of
the surface Majorana arcs. To illustrate that, we add only the
momentum independent E order parameter 𝑚7 ·𝑁7 to the A2

order hlχ ,lc
A2

(𝑞‖) for simplicity. If the magnetic moment is tilted
to the (112̄) direction, then the system still has odd Π par-
ity, meaning that m7,1 = 0. In this case, the C3 symmetry of
the distribution of surface Majorana arc is broken while its Π

symmetry is preserved, which is exactly shown in Fig. E1(b).
If the magnetic moment is tilted to the (1̄10) direction, then
the extra term should be Π symmetric, meaning that m7,2 = 0.
As a result, the entire C3v symmetry of the surface Majorana
arc distribution is broken, which matches Fig. E1(c).
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Fig. E1. The distribution of surface MZMs in the presence of A2 surface translationally invariant order parameter (a) without the E order parameters,
(b) with the Π anti-symmetric component of E order parameters, and (c) with the Π symmetric component of E order parameters. Blue lines
are the boundaries of surface mode regions shown in Fig. 1 and one MZM exists on each point of orange lines. m3/|µ| = 0.05, m4/|µ| = 0.04,
B0
√

2m/µ = 0.8, B1
√

2m/µ = B3
√

2m/µ = 1, and B2
√

2m/µ = −0.5 are chosen for (a), (b), and (c), while (m7,1/|µ|,m7,2/|µ|) = (0,0) for
(a), (m7,1/|µ|,m7,2/|µ|) = (0,0.05) for (b), and (m7,1/|µ|,m7,2/|µ|) = (0.05,0) for (c). The non-zero values of (m7,1/|µ|,m7,2/|µ|) indicate the
existence of E order. The values of all other parameters are the same as those in Fig. 1.

Appendix F: More details on impurity effect
In this section, we will provide more details on the impu-

rity effect of SMFBs.

F1: Order parameters in r‖ space

In this part, we will discuss the transformation of order
parameters from the 𝑘‖ space to the 𝑟‖ space. Let us consider
the general order parameters that are independent of 𝑘‖ in each
Alχ ,lc , i.e., Eq. (8) with m(𝑘‖) having the form Eq. (15). Using
Eqs. (21) and (22), we have

Hmf =
1
2

∫
dr2

‖d†
𝑟‖

Md𝑟‖ , (F1)

with Mlχ l′χ ,lcl′c,ii′ = ∑
3
l=0 f lχ ,lc

l (σl)ii′δlχ l′χ δlcl′c . The f lχ ,lc
l ’s

for different lχ , lc are given by 1 or δ α
𝑘‖

with α =

χ,(E1,±),(E2,±). Specifically, we have

1 = ∑
lχ ,lc

(ρ0)lχ lχ (Λ1)lclcδ
lχ ,lc
𝑘‖

,

δ
χ

𝑘‖
= ∑

lχ ,lc

(ρ3)lχ lχ (Λ1)lclc δ
lχ ,lc
𝑘‖

,

δ
E1,+
𝑘‖

= ∑
lχ ,lc

(ρ0)lχ lχ (Λ4,1)lclc δ
lχ ,lc
𝑘‖

,

δ
E1,−
𝑘‖

= ∑
lχ ,lc

(ρ3)lχ lχ (Λ4,1)lclc δ
lχ ,lc
𝑘‖

,

δ
E2,+
𝑘‖

= ∑
lχ ,lc

(ρ0)lχ lχ (Λ4,2)lclc δ
lχ ,lc
𝑘‖

,

δ
E2,−
𝑘‖

= ∑
lχ ,lc

(ρ3)lχ lχ (Λ4,2)lclc δ
lχ ,lc
𝑘‖

, (F2)

where all matrices involved are diagonal due to the translation
symmetry. Using the above correspondence, Table A3, and
Eqs. (16)–(18), we can get

Hα
mf =

1
2

∫
d2𝑟‖d†

𝑟‖
Mα d𝑟‖ + const., (F3)

where α = A1,A2,E,

MA1 = m1ρ3 ⊗Λ1 ⊗σ0

+m2(−ρ0 ⊗Λ4,1 ⊗σ2 +ρ0 ⊗Λ4,2 ⊗σ1), (F4)

MA2 = m3ρ0 ⊗Λ1 ⊗σ3

+m4(ρ0 ⊗Λ4,2 ⊗σ2 +ρ0 ⊗Λ4,1 ⊗σ1), (F5)

ME = m5,1ρ3 ⊗Λ4,1 ⊗σ0 +m5,2ρ3 ⊗Λ4,2 ⊗σ0

+m6,1(−ρ0 ⊗Λ4,2 ⊗σ3)+m6,2(ρ0 ⊗Λ4,1 ⊗σ3)

+m7,1(−ρ0 ⊗Λ1 ⊗σ2)+m7,2(ρ0 ⊗Λ1 ⊗σ1)

+m8,1(ρ0 ⊗Λ4,1 ⊗σ2 +ρ0 ⊗Λ4,2 ⊗σ1)

+m8,2(ρ0 ⊗Λ4,1 ⊗σ1 −ρ0 ⊗Λ4,2 ⊗σ2). (F6)

According to Table 1, equations (F4)–(F6) are the most gen-
eral PH symmetric uniform order parameters for the A1, A2,
and E IRs.

F2: Verification of LDOS peaks for translational invariant
order parameters with d bases

The purpose of this section is to re-derive the distribu-
tion of LDOS peaks from the symmetry aspect of the or-
der parameters in Eqs. (F4)–(F6) with the d bases and es-
tablish the formalism that can be generalized to the case with
charge/magnetic impurities. Since the position 𝑟‖ is now ap-
proximately a good quantum number, the number of LDOS
peaks is directly determined by the number of different eigen-
values of Mα . It means that the numbers of LDOS peaks far
away from impurities should be typically 1, 4, 2, and 12 for no
order parameters, the A1 order parameter, the A2 order param-
eter ,and the E order parameter, respectively, as indicated in
Section 4. The 12 LDOS peaks for the E order parameter are
justified by the fact that Mα ’s are all 12×12 matrices with 12
eigenvalues and the E order parameter typically has no sym-
metries to ensure any degeneracy. To discuss A1 and A2 order
parameters, we again transform all the symmetry operators to
the eigenbases of C3,d as discussed in the main text. By choos-
ing the same convention (28) and (29) in the main text, the
representations of the symmetry operations other than Ĉ3 and
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Π̂ are

ŨT =

 14
14

14

 , (F7)

𝒞d =

 Uc
Uc

Uc

 , (F8)

with

Uc =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 , (F19)

χ̃d =

Uχ

Uχ

Uχ

 , (F10)

Uχ =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , (F11)

where R̃ means the matrix form of R in the C3,d eigenbases
and UT is defined such that M is diagonal for lc index if
and only if [M,UT ] = 0. The A1 order parameter satisfies
[MA1 ,C3,d ] = [MA1 ,UT ] = 0. Due to the commutation rela-
tion with C3,d , M̃A1 should be block-diagonal and written as
M̃A1 = diag(h1,h2,h3), where h1,2,3 are Hermitian 4× 4 ma-
trices. Furthermore, due to the commutation relation with
UT , we require h1 = h2 = h3, which leads to the three-fold
degeneracy of each eigenvalue. As a result, MA1 has typi-
cally 4 LDOS peaks. The A2 order parameter satisfies not
only [MA2 ,C3,d ] = [MA2 ,UT ] = 0 but also [MA2 ,Πd𝒞dK] = 0, in
which we have (Πd𝒞dK)2 = −1. The former leads to M̃A2 =

diag(h1,h1,h1) as mentioned above, while Πd𝒞dM*𝒞†
dΠ

†
d =M

results in UΠUch*1U†
c U†

Π
= h1. Thereby, each eigenvalue of h1

has double degeneracy due to UΠUc(UΠUc)
* = −1. As a re-

sult, all eigenvalues of MA2 have six-fold degeneracy and the
A2 order parameter typically has 2 peaks. In addition, Mα ’s
are PH symmetric, which guarantees that the LDOS peaks are
symmetric with respect to zero energy.

F3: Derivation of Eq. (26) and the symmetry properties

In this part, we will derive Eq. (26) and discuss the corre-
sponding symmetry properties. The surface impurity Hamil-
tonian that we consider has the general form

HV =
∫

d3rc†
𝑟V (𝑟)c𝑟, (F12)

where the impurity is at 𝑟 = 0 (certainly on the x⊥ = 0 sur-
face) and V (𝑟)† = V (𝑟) decays fast away from 𝑟 = 0. First
we express Eq. (F12) in the Nambu bases as

HV =
1
2

∫
d2r‖

∫
dx⊥

1
S‖

∑
𝑘‖,𝑘

′
‖

e−i𝑘‖·𝑟‖+i𝑘′
‖·𝑟‖

Ψ
†
𝑘‖,x⊥

Ṽ (𝑟)Ψ𝑘′
‖,x⊥

+ const., (F13)

where

Ṽ (𝑟) =

(
V (𝑟)

−V *(𝑟)

)
, (F14)

and Ψ †
𝑟 = 1√

S‖
∑𝑘‖ e−i𝑘‖·𝑟‖Ψ †

𝑘‖,x⊥
is used. Using Eq. (D2),

we only keep terms that involve surface modes and assume
v𝑘‖,x⊥ ≈ v

𝐾
lχ ,lc
‖ ,x⊥

for all 𝑘‖ ∈ Alχ ,lc and all lχ , lc. This leads

to Eq. (26) with

[MV (𝑟‖)]lχ l′χ ,lcl′c,ii′ =
∫ 0

−∞

dx⊥v†

i,𝐾
lχ ,lc
‖ ,x⊥

Ṽ (𝑟)v
i′,𝐾

l′χ ,l′c
‖ ,x⊥

. (F15)

Since V †(𝑟) =V (𝑟), we have M†
V (𝑟‖) = MV (𝑟‖). Due to

∑
l′χ ,l′c,i′

[𝒞d ]lχ l′χ ,lcl′c,ii′vi′,𝐾
l′χ ,l′c
‖ ,x⊥

= 𝒞v*
i,𝐾

lχ ,lc
‖ ,x⊥

, (F16)

MV (𝑟‖) is PH symmetric, written as

−𝒞dMT
V (𝑟‖)𝒞

†
d = MV (𝑟‖). (F17)

Due to

∑
l′χ ,l′c,i′

[𝒯d ]lχ l′χ ,lcl′c,ii′vi′,𝐾
l′χ ,l′c
‖ ,x⊥

= 𝒯 Tv*
i,𝐾

lχ ,lc
‖ ,x⊥

, (F18)

MV (𝑟‖) has the same TR properties as Ṽ (𝑟):

[𝒯dM*
V (𝑟‖)𝒯

†
d ]lχ l′χ ,lcl′c,ii′

=
∫ 0

−∞

dx⊥v†

i,𝐾
lχ ,lc
‖ ,x⊥

𝒯 Ṽ *(𝑟)𝒯 †v
i′,𝐾

l′χ ,l′c
‖ ,x⊥

. (F19)

Similarly, due to

∑
l′χ ,l′c,i′

[Rd ]lχ l′χ ,lcl′c,ii′v
†

i′,𝐾
l′χ ,l′c
‖ ,x⊥

= v†

i,𝐾
lχ ,lc
‖ ,x⊥

R̃, (F20)

MV (𝑟‖) has the same C3v properties as Ṽ (𝑟):

[ℛdMV (𝑟‖)ℛ†
d ]lχ l′χ ,lcl′c,ii′

=
∫ 0

−∞

dx⊥v†

i,𝐾
lχ ,lc
‖ ,x⊥

R̃Ṽ (𝑟)R̃†v
i′,𝐾

l′χ ,l′c
‖ ,x⊥

, (F21)

where R ∈C3v. Furthermore, since Ṽ (𝑟) behaves the same as
V (𝑟), the TR and C3v properties of MV (𝑟‖) are the same as
those of V (𝑟).

For a charge impurity, V (𝑟) = Vc(𝑟)14×4 with Vc(𝑟) a
real scalar function. In this case, Vc(𝑟)14×4 has TR symmetry
γ(Vc(𝑟)14×4)

*γ† =Vc(𝑟)14×4 and satisfies R(Vc(𝑟)14×4)R† =

Vc(𝑟)14×4 with R ∈ C3v. As a result, Hermitian and PH sym-
metric MV (𝑟) has TR symmetry 𝒯dM*

V (𝑟‖)𝒯
†

d = MV (𝑟‖) and
satisfies RdMV (𝑟‖)R

†
d = MV (𝑟‖) with R ∈C3v. Combining TR

and PH symmetries, we have chiral symmetry for MV (𝑟‖), i.e.,
χdMV (𝑟‖)χ

†
d =−MV (𝑟‖). By defining Mc = MV (𝑟‖ = 0), the

symmetry properties of Mc can be directly obtained.

017402-15
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For a magnetic impurity, we choose the magnetic moment
of the impurity to be perpendicular to the surface and couple
to the electron spin locally, i.e., choosing V (𝑟) =Vm(𝑟)𝑒⊥ ·𝐽
with Vm(𝑟) a real scalar function and 𝑒⊥ = (1,1,1)/

√
3.

In this case, Vm(𝑟)𝑒⊥ · 𝐽 is TR odd γ(Vm(𝑟)𝑒⊥ · 𝐽)*γ† =

−Vm(𝑟)𝑒⊥ ·𝐽 , and satisfies C3(Vm(𝑟)𝑒⊥ ·𝐽)C†
3 =Vm(𝑟)𝑒⊥ ·𝐽

and Π(Vm(𝑟)𝑒⊥ · 𝐽)Π † = −Vm(𝑟)𝑒⊥ · 𝐽 . As a result, the
Hermitian and PH symmetric MV (𝑟‖) has TR antisymme-
try 𝒯dM*

V (𝑟‖)𝒯
†

d =−MV (𝑟‖), and satisfies C3,dMV (𝑟‖)C
†
3,d =

MV (𝑟‖) and ΠdMV (𝑟‖)Π
†
d = −MV (𝑟‖). By defining Mm =

MV (𝑟‖ = 0), the symmetry properties of Mm can be obtained.
In Fig. 3, Vc(𝑟)/|µ| = 2/(|𝑟|

√
2mµ + 0.02)2 if

the charge impurity is considered, and Vm(𝑟)/|µ| =

5ex⊥
√

2mµ/2θ(|𝑟‖,0| − |𝑟‖|) with |𝑟‖| < |𝑟‖,0| if the magnetic
impurity is considered.
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