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Abstract.  Simplicial complexes are increasingly used to study complex system 
structures and dynamics including diusion, synchronization and epidemic 
spreading. The spectral dimension of the graph Laplacian is known to determine 
the diusion properties at long time scales. Using the renormalization group 
here we calculate the spectral dimension of the graph Laplacian of two classes of 
non-amenable d dimensional simplicial complexes: the Apollonian networks and 
the pseudo-fractal networks. We analyse the scaling of the spectral dimension 
with the topological dimension d for d → ∞ and we point out that randomness 
such as the one present in Network Geometry with Flavor can diminish the 
value of the spectral dimension of these structures.
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1.  Introduction

Simplicial complexes [1–4] are generalized network structures that are ideal to inves-
tigate network geometry and topology. They are formed by simplices like nodes, links, 
triangles, tetrahedra etc that describe the higher order interactions between the ele-
ments of a complex system. The underlying decomposition of simplicial complexes 
in their geometric building blocks (the simplices) allows to answer novel questions 
in network topology and geometry. Network geometry and topology are emergent 
topics in statistical mechanics and applied mathematics that explore the properties 
of complex interacting systems using geometrical concepts and methods tailored to 
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the discrete setting. Novel equilibrium and non-equilibrium modelling frameworks for 
simplicial complexes have been proposed recently in the literature [5–12], and some 
classic example of deterministic networks such as Apollonian networks [13, 14] and 
pseudo-fractal networks [15] can be reinterpreted as skeleton of simplicial complexes. 
Additionally we note that simplicial complexes have been already extensively used 
in the quantum gravity literature to describe quantum space-time. They constitute, 
for instance, the underlying structures of causal dynamical triangulations and of ten-
sor networks [16, 17]. From the applied point of view tools of network topology and 
geometry span brain research [2, 18], financial networks [19], social science [12] and 
condensed matter [20].

Network geometry and topology have been recently shown to have a very significant 
eect on dynamics including synchronization dynamics [21–23], epidemic spreading 
[24–26] and percolation [27–29]. The spectral properties of network geometries consti-
tute a direct link to the diusion processes defined on the same structures. The spectral 
properties of networks have been extensively studied in the literature [30–35], however 
the study of the spectral properties of discrete network geometries is only at its infancy. 
Here we focus on the spectral dimension [36–41] of the network geometry, which is 
known to determine the return distribution of a random walk and define universality 
classes of the Gaussian model. Recently the spectral dimension has been shown to be 
key to characterize the stability of the synchronized phase in the Kuramoto model 
defined on simplicial complexes [21, 22]. The spectral dimension [36] is a concept 
that extends the notion of dimension for a lattice and in fact it is equal to the lattice 
dimension for Euclidean lattices. The spectral dimension dS is however distinct from 
the Hausdor dimension dH for a general network [42, 43]. This concept has been intro-
duced to study the diusion on fractal structures [36] and it has been then applied to 
a variety of contexts including the characterization of the stability of the 3D folding of 
proteins [41]. Interestingly, the notion of spectral dimension is used widely in quantum 
gravity to compare dierent models of quantum space-time in search for their universal 
properties [44–46].

In this work we investigate the spectral properties of the non-amenable skeleton 
of d-dimensional simplicial complexes generated by deterministic and random models: 
the Apollonian [13], the pseudo-fractal [15] simplicial complexes and the Network 
Geometry with Flavor (NGF) [6–8]. The Apollonian simplicial complexes and the NGF 
with flavor s  =  −1 are hyperbolic manifolds, while the other studied simplicial com-
plexes have a non-amenable hierarchical structure. These discrete network structures 
are ideal to perform real-space renormalization group calculations revealing the criti-
cal properties of percolation [27–29, 48–52] the Ising model [47] and Gaussian model 
[37, 38, 40]. Here we use the renormalization group technique proposed in [37, 38] to 
predict the spectral dimension of simplicial complexes of dierent topological dimen-
sion d for the Apollonian and the pseudo-fractal network. Moreover we will compare 
numerically the spectral properties of these deterministic network models with the 
spectral properties of the simplicial complexes generated by the model NGF [7] which 
include some relevant randomness. Our results reveal that the spectral dimension of the 
deterministic networks can be higher than the topological dimension. Specifically we 
see that planar Apollonian networks (in d  =  3) have a spectral dimension dS  =  3.73.... 
Additionally we found that the spectral dimension dS grows asymptotically for large 
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d as dS � 2d ln d for both the Apollonian and the pseudo-fractal network. Finally we 
show numerically that topological randomness can diminish significantly the spectral 
dimension of the networks.

The paper is organized as follows: in section 2 we define simplicial complexes and 
introduce the simplicial complex models investigated in this work. In section  3 we 
define the spectral dimension and the relation between the spectral dimension and 
the Gaussian model. In section 4 we introduce the real space renormalization group 
approach used in this work. In section 5 we derive the RG equations for the Gaussian 
model on the Apollonian network, we theoretically predict the spectral dimension of 
Apollonian networks of any dimension d � 2 and we compare the spectral properties of 
Apollonian networks with the spectral properties of NGFs with flavor s  =  −1. In sec-
tion 6 we use the RG approach to predict the spectral dimension of pseudo-fractal net-
works of any topological dimension d � 2 and we compare the results with numerical 
result of both pseudo-fractal networks and NGFs with flavor s  =  0 and s  =  1. Finally 
in section 7 we provide the conclusions.

2. Simplicial complexes under study

2.1. Simplicial complexes

A simplicial complex of N nodes can be used to describe complex interacting systems 
including higher order interactions. A simplicial complex is formed by simplices glued 
along their faces. A δ-dimensional simplex is a set of δ + 1 nodes characterizing a single 
many body interaction. A 0-simplex is a node, a 1-simplex is a link, a 2-simplex is a 
triangle, and so on. For instance a 2-simplex in a collaboration network can indicate 
that three authors have co-authored a paper, or a 3-simplex in a face-to-face interac-
tion indicates a group of four people in a conversation. A δ′-dimensional face α′ of a 
δ-simplex α, is a simplex formed by a subset of δ′ + 1 nodes of α, i.e. α′ ⊂ α.

A d-dimensional simplicial complex K is formed by a set of simplices of dimensions 
0 � δ � d (including at least a d-dimensional simplex) that satisfy the two conditions:

	 (a)	� if a simplex α belongs to the simplicial complex, i.e. α ∈ K then also all its faces 
α′ ⊂ α belong to the simplicial complex, i.e. α′ ∈ K; 

	 (b)	� if two simplices α and α′ belong to the simplicial complex, i.e. α ∈ K and α′ ∈ K, 
then either the two simplices do not intercept α ∩ α′ = ∅ or their intersection is 
a face of the simplicial complex, i.e. α ∩ α′ ∈ K.

A pure d-dimensional simplicial complex is only formed by d-dimensional simplices 
and their faces.

The 1-skeleton of a simplicial complex is the network formed exclusively by the 
nodes and the links or the simplicial complex.

Here we will focus exclusively on the skeleton of pure d-dimensional simplicial 
complexes. The simplicial complexes that we will consider are the Apollonian, the 
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pseudo-fractal simplicial complexes and the NGF. In the following paragraphs we will 
introduce each one of these models.

2.2. Apollonian network

A d-dimensional Apollonian network [13, 14] (with d � 2) is the skeleton of a simplicial 
complex that is generated iteratively by starting from a single d-simplex at iteration 
n  =  0 and at each iterations n  >  0 adding a d-simplex to every (d− 1)-dimensional face 
introduced at the previous generation. Therefore in these Apollonian networks, at gen-
eration n  >  0 there are Nn nodes, and Nn nodes added at iteration n with

Nn = (d+ 1)
dn + d− 2

d− 1
,

Nn = (d+ 1)dn−1.
� (1)

The Apollonian networks are small-world, i.e. their Hausdor dimension is infinity,

dH = ∞,� (2)
therefore at each iteration their diameter grows logarithmically with the total number 
of nodes of the network. Moreover, the Apollonian networks of dimension d are mani-
folds that define discrete hyperbolic lattices.

Let us add here a pair of additional combinatorial properties of Apollonian networks 
that will be useful in the future. At each iteration n we call links of type � the links 
added at generation m = n− �. At generation n, the number of d-simplices of genera-
tion n attached to links of type � is given by

w� = (d− 1)(d− 2)�−1.� (3)

The number of d-dimensional simplices of generation n incident to nodes added at gen-
eration m = n− � is given by

v� = d(d− 1)�−1
� (4)

for � > 0. Moreover it can be easily shown that the number of links of generation n 
incident to nodes added at generation m = n− � is given by v� for � > 0 and v0 = d for 
� = 0.

2.3. Pseudo-fractal network of any dimension

The pseudo-fractal network [15] is the skeleton of a simplicial complex constructed 
iteratively starting at iteration n  =  0 from a single d-simplex (here and in the following 
we take d � 2) At each time n  >  0 we attach a d-simplex to every (d− 1)-dimensional 
face introduced a time n � 0. At iteration n  >  0 the number of nodes Nn and the num-
ber of links L

(1)
n  added at iteration n is

Nn = d+
1

d
[(d+ 1)n − 1] ,

Nn = (d+ 1)n.
� (5)
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The pseudo-fractal networks are small-world, i.e. their Hausdor dimension is infinity,

dH = ∞.� (6)
As for the Apollonian network, also for the pseudo-fractal networks, at each iteration 
n we call link of type � the links added at generation m = n− �. We observe that at 
generation n the number of d-simplices of generation n attached to links of type � is 
given by

ŵ� = (d− 1)
�∑

�′=0

(d− 2)�
′−1.� (7)

It is also possible to show with straightforward combinatorial arguments that the num-
ber of d-dimensional simplices added to nodes of generation m = n− � is

v̂� = d
�∑

�′=0

(d− 1)�
′−1

� (8)

for � > 0. Finally the number of links of iteration n added to nodes of generation 
m = n− � is given by v̂� for � > 0 and v̂0 = d for � = 0.

2.4. Network Geometry with Flavor (NGF)

NGF [6, 7] generates growing d-dimensional simplicial complexes as Apollonian and 
pseudo-fractal simplicial complexes. However the dynamics of the NGF is not deter-
ministic but random.

We assign to every (d− 1)-dimensional face of a simplex an incidence number n̂α 
equal to the number of d-dimensional simplices incident to it minus one. Therefore we 
note that the incidence number can change with time.

The evolution of the NGF is dictated by a parameter called flavor s ∈ {−1, 0, 1}.  
The algorithm that determines the NGF evolution assumes that at time t  =  1 the sim-
plicial complex is formed by a single d-simplex. At each time t  >  1 a (d− 1)-face α is 
chosen with probability

Πd,d−1(α) =
(1 + snα)

Z [s]
,� (9)

where Z[s] is called the partition function of the NGF and is given by

Z [s](t) =
∑

α′∈Sd,d−1

(1 + snα′).
� (10)

We note here that the Hausdor dimension of NGFs defined above is always

dH = ∞,� (11)
as these networks are small-world for any value of the flavor s ∈ {−1, 0, 1}. In the case 
s  =  −1 the NGF evolves as a subgraph of the Apollonian network connected to the 
initial d-dimensional simplex. In this case we obtain a random Apollonian network [14]. 
Therefore it is interesting to compare the spectral properties of the NGF with s  =  −1 
to the spectral properties of the Apollonian network. The NGF with flavor s  =  −1 
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describe emergent hyperbolic geometries [6]. In fact they are hyperbolic networks 
emerging from a fully stochastic dynamics that makes no reference to their underlying 
geometry. Indeed NGF with flavor s  =  −1 form a subset of the Apollonian networks of 
the same dimension d. In the case s  =  0 and s  =  1 every (d− 1)-dimensional face can 
be incident to an arbitrary number of d-dimensional simplices. Therefore it is interest-
ing to compare the spectral properties of the NGF with s  =  0 and s  =  1 to the spectral 
properties of the pseudo-fractal network. Note that the NGF [7] was originally defined 
with an additional dependence to another parameter called inverse temperature β . Here 
we focus only on the case β = 0, therefore we do not need to introduce this additional 
parameter in this work.

3. Laplacian spectrum and the Gaussian model

3.1. Spectral dimension

For a network it is possible to defined both a normalized and a un-normalized Laplacian. 
The un-normalized Laplacian L̂ has elements

Lrq = krδr,q − arq,� (12)
where arq is the generic element of their adjacency matrix and kr is the degree of node 
r ∈ {1, 2, . . . ,N}. The normalized Laplacian L of a network has instead elements

Lrq = δr,q −
arq√
krkq

.� (13)

Their spectrum is in general distinct for non-regular networks having nodes of dierent 
degree. However as we will observe later, their spectral dimension is the same in the 
large network limit.

Here we start from the normalized Laplacian and we predict the spectral dimension 
analytically. This analytical calculation will be done using the renormalization group 
which acts on a more general class of graphs in which the links can be weighted, so in 
general we are interested to study the fixed-point properties of spectrum of weighted 
normalized Laplacian matrices L of elements

Lrs = δr,q −
wrq√
srsq

,� (14)

where wrq indicates the weight of link (r, q) and sr indicates the strength of node r, i.e. 

sr =
∑N

q=1 wrq.
The spectral dimension dS determines the scaling of the density of eigenvalues ρ(µ) 

of the normalized Laplacian of networks with distinct geometrical properties. In par
ticular, in presence of the spectral dimension for µ � 1 we observe the asymptotic 
behavior

ρ(µ) ∼= CµdS/2−1,� (15)

where C is independent of µ.

https://doi.org/10.1088/1742-5468/ab5d0e
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In d-dimensional Euclidean lattices the spectral dimension coincides with the 
Hausdor dimension dS = dH = d. More generally, it can be shown that dS is related to 
the Hausdor dimension dH of the network by the inequalities [42, 43]

dH � dS � 2
dH

dH + 1
.� (16)

It follows that for small-world networks, having infinite Hausdor dimension dH = ∞, 
it is only possible to have finite spectral dimension greater or equal than two, i.e.

dS � 2.� (17)
Additionally we mention here that in presence of a finite spectral dimension, the 

cumulative distribution ρc(µ) evaluating the density of eigenvalues µ′ � µ follows the 
scaling

ρc(µ) ∼= C̃µdS/2,� (18)

for µ � 1. This relation it is useful to evaluate the spectral dimension numerically, as 
we will do in order to compare our analytical results with numerical results.

3.2. Gaussian model

In order to predict the spectral dimension of a network it is useful to consider [37] the 
corresponding Gaussian model whose partition function reads

Z(µ) =

∫
Dψ exp

[
iµ

∑
r

ψ2
r − i

∑
rq

Lrqψrψq

]
=

(iπ)Nn/2

√∏
r(µ− µr)

,� (19)

where µr are the eigenvalue of the normalized Laplacian matrix L and

Dψ =
Nn∏
r=1

(
dψr√
2π

)
.� (20)

By changing variables and putting φ = ψ/
√
sr the partition function can be rewritten 

as

Z(µ) =
∏
r

√
sr

∫
Dφ exp


 ∑

(r,q)∈E

−i(1− µ)wrq(φ
2
r + φ2

q)− iwrqφrφq


 ,� (21)

where E indicates the set of links of the network. The spectral density ρ(µ) of the nor
malized Laplacian matrix can be found using the relation

ρ(µ) = − 2

π
Im

∂f

∂µ
,� (22)

where f  is the free-energy density defined as

f = − lim
n→∞

1

Nn

lnZ(µ).� (23)

https://doi.org/10.1088/1742-5468/ab5d0e
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In fact we can use equation (19) to show that

f = − lim
n→∞

1

Nn

Nn∑
r=1

[
1

2
ln(µ− µr) +

1

2
ln(iπ)

]
.� (24)

Using equation (23) we get

ρ(µ) = − 2

π
Im

∂f

∂µ
=

1

π
lim
n→∞

1

Nn

Im
Nn∑
r=1

1

µ− µr

= lim
n→∞

1

Nn

Nn∑
r=1

δ(µ− µr).� (25)

4. Renormalization group approach

Under the renormalization flow, p  and µ are renormalized. A closer look to the problem 
reveals that the parameters p  and µ are renormalized dierently for links of dierent 
type �. Therefore we parametrize the partition function Zn(ω) describing the partition 
function of the Gaussian model over a network grown up to iteration n with the param
eters ω = ({µ�}, { p�}), i.e.

Zn(ω) =

∫
Dφ

n∏
�=1

∏

(r,q)∈E(�)
n

z(�)n (φr,φq),� (26)

where

z(�)n (φr,φq) = exp[−i(1− µ�) p�(φ
2
r + φ2

q) + 2ip�φrφq],� (27)

and where E
(�)
n  indicates the set of links of type � in a network evolved up to iteration 

n. The Gibbs measure of this Gaussian model reads

Pn({φ}) =
1

Z(ω)

n∏
�=1

∏

(r,q)∈E(�)
n

z(�)n (φr,φq) =
1

Z(ω)
e−iH({φ}),� (28)

where the Hamiltonian H({φ}) is given by

H({φ}) =
n∑

�=1

∑

(r,q)∈E(�)
n

[
−(1− µ�) p�(φ

2
r + φ2

q) + 2p�φrφq

]
.� (29)

Let us indicate with Nn the nodes added at iteration n. We consider the following real 
space renormalization group procedure to calculate the free energy of the Gaussian 
model. We start with initial conditions µ� = µ and p� = 1 for all values of � > 0. At 
each RG iteration, we integrate over the Gaussian variables φr associated to nodes 
r ∈ Nn and we rescale the remaining Gaussian variables in order to obtain the renor
malized Gibbs measure P ({φ′}) of the same type as equation (28) but with rescaled 
parameters ({µ′

�}, { p′�}), i.e.

https://doi.org/10.1088/1742-5468/ab5d0e
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Pn−1({φ′}) =
∫

Dφ(n)Pn({φ})
∣∣∣∣
φ′=F({φ})

,� (30)

where

Dφ(n) =
∏
r∈Nn

(
dφr√
2π

)
.� (31)

The rescaling of the field is done in such a way that for a d-dimensional deterministic 
simplicial complex, p 1  =  1 at each iteration of the RG flow. Then at each step of the 
RG transformation we have

H({φ}) → H ′({φ′}),� (32)
where

H ′({φ}) =
n−1∑
�=1

∑

(r,q)∈E(�)
n−1

{
−(1− µ′

�) p
′
�

[
(φ′

r)
2 + (φ′

q)
2
]
+ 2p′�φ

′
rφ

′
q

}
.� (33)

In this way we define a group transformation acting on the model parameters 
ω = ({µ�}, { p�}) so that

ω′ = Rω.� (34)
Under this renormalization flow, the partition function transforms in the following way:

Zn(ω) = e−Nng(ω)Zn−1(ω
′).� (35)

Using equations (1) and (5) for the number of nodes Nn at iteration n respectively for 
the Apollonian and the pseudo-fractal network, the free energy density

f = − lim
n→∞

1

Nn

lnZn(ω)� (36)

can be written as

f �
∞∑
τ=0

g(R(τ)ω)

dτ� (37)

for the Apollonian network and as

f �
∞∑
τ=0

g(R(τ)ω)

(d+ 1)τ� (38)

for the pseudo-fractal network.
Interestingly, we anticipate here that the RG flow will be determined by a fixed 

point having µ� = 0. This result reveals that indeed the spectral dimension here calcu-
lated for normalized Laplacian is universal, i.e. in the large network limit, the spectral 
dimension of the normalized Laplacian is the same as the spectral dimension of the 
un-normalized Laplacian as already observed in [39].

https://doi.org/10.1088/1742-5468/ab5d0e
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5. Apollonian network

5.1. General RG equations

The renormalization group equations for the Apollonian networks of arbitrary topo-
logical dimension d can be obtained using the general renormalization group approach 
described in the previous paragraph. Therefore at each renormalization group step we 
need first to integrate over the fields φr with r ∈ Nn and subsequently perform a rescal-
ing of the fields to guarantee that p 1  =  1 at the next iteration. Since any node r ∈ Nn 
added at generation n is only connected to nodes at the previous generations the inte-
gration over the corresponding field φr can be done independently for any node r ∈ Nn.

The integration over a single Gaussian variable φr with r ∈ Nn can be easily done 
and is given by

I =

∫
dφr

d∏
q=1

z(1)(φq,φr) = (−πi/d)1/2G(µ1)
−1/2 exp

[
−i(1− µ1)

d∑
q=1

φ2
q

]

× exp


i

(∑d
q=1 φq

)2

d(1− µ1)


 ,

�

(39)

where

G(µ) = 1− µ.� (40)
Of course, at each step of the RG procedure we will need to integrate over each node 
r ∈ Nn. Each of these integrations will contribute to the Hamiltonian H ′({φ′}) by a 
term

[(
2

1

d(1− µ1)

)
φqφq′

]
� (41)

for any link (q, q′) incident to the to the d-simplex added at iteration n and including 
node r. Since in the Apollonian network, there are w� simplices of iteration n incident 
to a link added at iteration m = n− �, the overall contribution to the link is

[(
2

1

d(1− µ1)

)
w�φqφq′

]
.� (42)

If we focus on the overall contribution to the Hamiltonian proportional to the product 
of the two field φq and φq′ before rescaling we get

{
2

[
p�+1 +

(
1

d(1− µ1)

)
w�

]
φqφq′

}
.� (43)

After rescaling of the fields φq → φ′
q and defining the Gibbs measure over the renor

malized network formed by n  −  1 generation, i.e. putting � → �− 1 we should have
{
2

[
p�+1 +

(
1

d(1− µ1)

)
w�

]
φqφq′

}
=

{
2p′�φ

′
qφ

′
q′

}
.� (44)
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Therefore in order to ensure that the value of the parameter p 1 remains fixed at 
p′1 = p1 = 1 after each RG iteration we need to rescale the fields by considering the 
rescaled variables

φ′ = φ

[
p2 +

d− 1

d(1− µ1)

]1/2
,� (45)

where we have used w1  =  (d  −  1). Finally by using equation (3) for w�, the RG equa-
tion for p′� reads

p′� =

[
p�+1 +

(d− 1)(d− 2)�−1

d(1− µ1)

] [
p2 +

d− 1

d(1− µ1)

]−1

.� (46)

Now we will proceed similarly to find the RG equations for µ′
�. Each integration over 

the Gaussian variable φr of a node r ∈ Nn contributes a factor
[(

−(1− µ1) +
1

d(1− µ1)

)
φ2
q

]
� (47)

to the Hamiltonian for any node q belonging to the d-simplex added at iteration 
m = n− � and including node r. Since there are v� simplicies of iteration n incident to 
a node added at iteration m = n− � the integration over the Gaussian variable at itera-
tion n provides, for each node q, a contribution to the Hamiltonian given by

[(
−(1− µ1) +

1

d(1− µ1)

)
v�φ

2
q

]
.� (48)

By identifying the overall term of the Hamiltonian that is proportional to φ2
q before and 

after the rescaling of the fields we obtain the equation
{
−

�∑
�′=1

(1− µ�′+1) p�′+1v�−�′ +

(
−(1− µ1) +

1

d(1− µ1)

)
v�(φ

′
q)

2

}

=

{
−

�∑
�′=1

(1− µ′
�′) p

′
�′v�−�′(φ

′
q)

2

}
.

�

(49)

We now make a useful combinatorial observation and we note that the coecient v� 
can be written as

v� =
�∑

�′=1

v�−�′c�′� (50)

where c� is given by

c� = (d− 2)�−1.� (51)

In fact, by substituting the explicit expression for v� equation (50) follows directly from 
the expression

d(d− 1)r =
r−1∑
k=0

d(d− 1)r−1−k(d− 2)k + d(d− 2)r.� (52)
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Using equation (50) and the expression for the rescaled field, equation (45), in equa-
tion (49) we get the RG equation for µ� given by

(1− µ′
�) p

′
� =

(
(1− µ1)(d− 2)�−1 + (1− µ�+1) p�+1 −

(d− 2)�−1

d(1− µ1)

)

×
[
p2 +

d− 1

d(1− µ1)

]−1

.

�

(53)

In summary, in this paragraph we have derived the RG equation for any d-dimensional 
Apollonian networks which we rewrite here for completeness,

(1− µ′
�) p

′
� =

[
(1− µ1)(d− 2)�−1 + (1− µ�+1) p�+1 −

(d− 2)�−1

d(1− µ1)

]

×
[
p2 +

d− 1

d(1− µ1)

]−1

,

p′� =

[
p�+1 +

(d− 1)(d− 2)�−1

d(1− µ1)

] [
p2 +

d− 1

d(1− µ1)

]−1

.

�

(54)

Under the renormalization group the partition function follows equation (35) with

g(ω) =
Nn

2Nn

lnG(µ1) +
Nn−1

2Nn

ln

[
p2 +

1

d(1− µ1)

]
+ c,� (55)

where c is a constant. The first term comes directly from each integration over the 
variables φr with r ∈ Nn given by equation (39) and the second term comes from the 
rescaling of the fields. In the following paragraphs we will first study the RG flows in 
the cases d  =  2 and d  =  3 and afterwards we investigate the RG flow in any arbitrary 
dimension d.

5.2. d  =  2 Farey graph

For d  =  2 the Apollonian network reduces to a Farey graphs and the RG equations (54) 
simplify greatly. In fact we have

µ� = µ2,

p� = p� (56)

for all � � 2. The renormalization group transformations read then

(1− µ′
1) =

(
(1− µ1) + (1− µ2) p−

1

2(1− µ1)

)[
p+

1

2(1− µ1)

]−1

,

µ′
2 = µ2,

p′ = p

[
p+

1

2(1− µ1)

]−1

.

�

(57)

Under the renormalization group the partition function follows equation (35) with g(ω) 
given by equation (55).
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By putting in the zero order approximation µ2 = µ′
2 = 0 the renormalization group 

equations (57) have three fixed points:

(µ�, p�) = (0, 0),

(µ�, p�) = (0, 1/2),

(µ�, p�) = (3/2, 0).
�

(58)

Since we are interested in the RG flow starting from an initial condition µ � 1 we focus 
on the fixed points with µ� = 0. The fixed point (µ, p) = (0, 0) is unstable as it has two 
eigenvalues given by λ̂′ = 4 and λ̂ = 2. The fixed point (µ, p) = (0, 1/2) is associated to 
the eigenvalues λ1 = λ = 2 and λ2 = 1/2. If we have initial condition µ1 = µ2 = µ with 
0 < µ � 1 and p   =  1 the renormalization flow will first move toward the fixed point 
(µ, p) = (0, 1/2) and then will move away from it along its repulsive direction. Close to 
the (µ�, p�) = (0, 1/2) fixed point, putting µ2 = µ � 1, the linearized RG equations read

(
µ′
1

p′ − 1/2

)
=

(
2 0

−1/4 1/2

)(
µ1

p− 1/2

)
+

µ

2

(
1

0

)
.� (59)

At iteration τ  of the RG flow we have

µ(τ) = (λτ − 1)
µ

2
,

� (60)

p(τ) =
1

2
− 1

4

τ∑
τ ′=1

2−(τ−τ ′)µ(τ ′) + 2−(τ+1).� (61)

Therefore for τ  large the RG flow runs away from the RG fixed point (0, 1/2) and we 
can approximate

µ(τ) � λτ µ

2
,

� (62)

p(τ) � 1

2
− 1

6
λτµ.� (63)

The RG flow is shown in figure 1 where we have set initially µ1 = µ2 = µ = 10−4. Using 
equation (36) free-energy density can be therefore written as

f =
∞∑
τ=0

g(R(τ)ω)

dτ

�
∞∑
τ=0

1

dτ

{
(d− 1)

2d
ln(1− µ

(τ)
1 ) +

1

2d
ln

[
p(τ) +

1

d(1− µ
(τ)
1 )

]}
.

�

(64)

Therefore we have the spectral density ρ(µ) given by

ρ(µ) � 2

π
Im

∞∑
τ=0

1

dτ
∂g(µτ

1, 1)

∂µ

� 2

π
Im

∞∑
τ=0

λτ

dτ



(d− 1)

2d

1

1− µ
(τ)
1

+
1

2d

1

p(τ) + 1/
[
d
(
1− µ

(τ)
1

)]

−1

3
+

1

d
(
1− µ

(τ)
1

)2







.
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By approximating the sum over τ  with an integral and changing the variable of inte-
gration to z = λτ  upon using the theorem of residues to solve the integral, we can 
derive the asymptotic scaling of the density of eigenvalues ρ(µ). This asymptotic scal-
ing for µ � 1 is given by

ρ(µ) � CµdS/2−1,� (65)

where the spectral dimension dS is given by

dS = 2
ln d

lnλ
= 2.� (66)

5.3. d  =  3 Apollonian graph

For d  =  3 the RG equations (54) simplify significantly. In fact we have

µ� = µ1� (67)
for all � � 1 and

p� = p� (68)
for all � � 2. The RG equations dier from the ones derived in the case d  =  2, and they 
read

(1− µ′
1) =

(
(1− µ1) + (1− µ2) p−

1

d(1− µ1)

)[
p+

d− 1

2(1− µ1)

]−1

,

p′ = 1.

� (69)

Under the renormalization group the partition function follows equation (35) with 
g(ω) given by equation (55). The renormalization group equations (69) give p   =  1 and 
reduce to a single non trivial RG equation for µ̂ = µ1,

Figure 1.  Stream plot of the RG flow for the d  =  2 Apollonian network given by 
equations (57) with µ2 = 10−4.
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(1− µ̂′) =

(
(1− µ̂) + (1− µ̂)− 1

d(1− µ̂)

)[
1 +

d− 1

d(1− µ̂)

]−1

,� (70)

which has two fixed points:

µ� = 0

µ� = 4/3.
� (71)

For µ � 1 the relevant fixed point is µ� = 0 which has a non-trivial associated eigen-
value given by λ = 9/5. Therefore under the RG flow we have that at iteration τ  of 
the RG flow

(µ
(τ)
1 , p(τ)) = (λτµ, 1)� (72)

with µ indicating the initial condition µ = µ
(1)
1 . Using equation (36) free-energy density 

can be therefore written as

f =
∞∑
τ=0

g(R(τ)ω)

dτ

�
∞∑
τ=0

1

dτ

{
(d− 1)

2d
ln(1− µ

(τ)
1 ) +

1

2d
ln

[
1 +

d− 1

d(1− µ
(τ)
1 )

]}
.

�

(73)

Therefore we have the spectral density ρ(µ) given by

ρ(µ) � 2

π
Im

∞∑
τ=0

1

dτ
∂g(µτ

1, 1)

∂µ

� 2

π
Im

∞∑
τ=0

λτ

dτ



(d− 1)

2d

1

1− µ
(τ)
1

+
1

2d

1[
d
(
1− µ

(τ)
1

)
+ d− 1

] d− 1(
1− µ

(τ
1

)

 .

By proceeding similarly to the case d  =  2 and approximating the sum over τ  with an 
integral, we obtain the asymptotics

ρ(µ) ∼= Cµds/2−1
� (74)

valid for µ � 1 with the spectral dimension ds given by

ds = 2
ln d

lnλ
= 2

ln d

ln 9/5
= 3.738 13 . . . .� (75)

Interestingly, Apollonian networks in d  =  3 are planar. As we will see when comparing 
the spectral dimension of Apollonian network with the spectral dimension of NGFs, the 
randomness introduced by the NGF constructions always lower the spectral dimension 
of the network.

5.4. d  >  3 dimensional apollonian graph

Let us now determine the RG flow in the general case of a d-dimensional Apollonian 
network. By putting
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x� = (1− µ�) p�,� (76)

the RG equations (54) relating the parameters ({x(τ)
� }, { p(τ)� }) at iteration τ  of the RG 

flow with the parameters ({x(τ+1)
� }, { p(τ+1)

� }) at iteration τ + 1 of the RG flow read

x
(τ+1)
� =

[
x
(τ)
� +

(
x
(τ)
1 − 1

dx
(τ)
1

)
(d− 2)�−1

][
p
(τ)
2 +

d− 1

dx
(τ)
1

]−1

,

p
(τ+1)
� =

[
p
(τ)
�+1 +

(d− 1)(d− 2)�−1

dx
(τ)
1

][
p
(τ)
2 +

d− 1

dx
(τ)
1

]−1

.

�

(77)

In order to solve these equations we use the auxiliary variable y
(τ)
1  defined as

y
(τ+1)
1 = p

(τ+1)
2 +

d− 1

dx
(τ+1)
1

.� (78)

The explicit solution of the RG equations (77) equations read

p
(τ+1)
2 =

τ∏
m=1

1

y
(m)
1

+
d− 1

d

τ∑
m=1

(d− 2)τ−m+1

x(m)

τ∏
m′=m

1

y
(m′)
1

,

y
(τ+1)
1 = p

(τ+1)
2 +

(d− 1)

dx
(τ+1)
1

=
τ∏

m=1

1

y
(m)
1

+
d− 1

d

τ∑
m=1

(d− 2)τ−m+1

x(m)

τ∏
m′=m

1

y
(m′)
1

+
(d− 1)

dx
(τ+1)
1

,

x
(τ+1)
1 = x

(1)
1

τ∏
m=1

1

y
(m)
1

+
τ∑

m=1

(
x
(m)
1 − 1

dx
(m)
1

)
(d− 2)τ−m

τ∏
m′=m

1

y
(m′)
1

.

This explicit solution reveals that p
(τ+1)
2 , y

(τ+1)
1  and x

(τ+1)
1  depend on the dimension d 

and on all the values that the parameters p
(τ ′)
2 , y

(τ ′)
1  and x

(τ ′)
1  take for τ ′ � τ . However 

if we introduce a set of of additional auxiliary variables called A(τ),B(τ) and C(τ) we 

can express the variables p
(τ+1)
2 , y

(τ+1)
1  and x

(τ+1)
1  only as functions of the value of the 

additional auxiliary variable at time τ . In fact we have

y
(τ+1)
1 = A(τ) + B(τ),

x
(τ+1)
1 = (1− µ)A(τ) + C(τ),

� (79)

where A(τ),B(τ) and C(τ) are defined as

A(τ) =
τ∏

m=1

1

y
(m)
1

,

B(τ) =
d− 1

d

τ∑
m=1

(d− 2)τ−m+1

x(m)

τ∏
m′=m

1

y
(m′)
1

+
(d− 1)

dx
(τ+1)
1

,

C(τ) =
τ∑

m=1

(
x
(m)
1 − 1

dx
(m)
1

)
(d− 2)τ−m

τ∏
m′=m

1

y
(m′)
1

.

�

(80)
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The RG equations can be then solved by writing the recursive equations for A(τ),B(τ) 
and C(τ) that read

A(τ+1) =
1

y
(τ+1)
1

A(τ),

B(τ+1) =
d− 2

y
(τ+1)
1

B(τ) +
d− 1

d

1

x
(τ+2)
1

,

C(τ+1) =
(d− 2)

y
(τ+1)
1

C(τ) +
1

y
(τ+1)
1

(
x
(τ+1)
1 − 1

dx
(τ+1)
1

)
.

�

(81)

By using equation  (79) this set of equations can be written as a closed set of equa-
tions for A(τ),B(τ) and C(τ) only, i.e.

A(τ+1) =
1

A(τ) + B(τ)
A(τ),

B(τ+1) =
d− 2

A(τ) + B(τ)
B(τ) +

d− 1

d
(A(τ) + B(τ))

×
[
2(1− µ)A(τ) + (d− 1)C(τ) − 1

d

1

(1− µ)A(τ) + C(τ)

]−1

,

C(τ+1) =
1

A(τ) + B(τ)

(
(d− 1)C(τ) + (1− µ)A(τ) − 1

d[(1− µ)A(τ) + C(τ)]

)

with initial conditions A(0) = 1,B(0) = (d− 1)/(d[1− µ)]),C(0) = 0.
The relevant fixed point of these RG equations for µ = 0 is

A� = 0,

B� =
d2 − d− 1

d
,

C� = 1.

�

(82)

If we consider the Jacobian matrix of the RG tranformation we get the three eigenval-
ues λ1 > λ2 > λ3 given by

λ1 =
d2

d2 − d− 1
,

λ2 =
d

d2 − d− 1
,

λ3 = 0

�

(83)

with λ1 > 1 and λ2 < 1. The right eigenvectors corresponding to these eigenvalues are

u1 =
1

c1

(
d+ 1,−d, d2 − d+ 1

)
,

u2 = (1, 0, 0) ,

u3 =
1

c3

(
d2 − d− 1, d, d− 1

)
,

�

(84)
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where c1 and c3 are normalization constants. The left eigenvectors corresponding to 
these eigenvalues are

v1 =
1

d1
(0, d+ 1,−d) ,

v2 =
1

d2
(−1, d− 2, 1) ,

v3 =
1

d3

(
0, d2 − d+ 1, d

)
,

�

(85)

where d1, d2, d3 are normalization constants. We call X(τ) the column vector

X(τ) =
(
A(τ),B(τ),C(τ)

)
.� (86)

Then near the fixed point X� given by

X� = (A�,B�,C�) ,� (87)
we have

X(τ) = X� +
3∑

m=1

λτ
mvm〈um,X

(0) −X�〉.� (88)

To the leading term, we have

X(τ) = X� + λτ
1v1〈u1,X

(0) −X�〉,� (89)

where the scalar product

〈u1,X
(0) −X�〉 ∝ (d− 1)

µ

(1− µ)
.� (90)

Under the renormalization group transformations the partition function follows equa-
tion (35) with g(ω) given by equation (55). We calculate the leading terms of the den-
sity of eigenvalues ρ(µ) following similar steps used in the case d  =  2 and d  =  3, and 
find

ρ(µ) � CµdS/2−1
� (91)

for µ � 1 with the spectral dimension dS given by

ds = 2
ln d

lnλ
= −2

ln d

ln[1− 1/d− 1/d2)]
.� (92)

For large d, the spectral dimension dS scales as

ds � 2 ln(d)

[
d− 3

2
+O(1/d)

]
.� (93)

Therefore the spectral dimension grows with the topological dimension faster than 
linearly.
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5.5. Comparison to NGF with s  =  −1

In this paragraph we conduct the numerical check of our analytical predictions for the 
spectral dimension of Apollonian networks and we compare the spectral dimension of 
the Apollonian network with the numerically observed spectral dimension in NGF with 
flavor s  =  −1 which are also called random Apollonian networks. In figure 2 we compare 
the spectrum of the Apollonian network of dimension d = 2, d = 3 and d  =  4 to the ana-
lytical predictions for the spectral dimension finding very good agreement. Additionally 
we compare the spectrum of the Apollonian network of dimension d = 2, d = 3 and 
d  =  4 to the spectrum of NGFs with flavor s  =  −1 and dimensions d = 2, 3 and d  =  4. 
From our numerical study of the spectrum of the Apollonian networks and the NGF 
with s  =  −1 we draw a series of observations.

	•	 �Apollonian networks are highly symmetrical structures which implies that the 
spectrum has many degeneracies that complies with a finite spectral dimension.
The randomness present in NGFs reduces the relevance of these degeneracies of 
eigenvalues as the symmetries are not exact any more for these random structures.

	•	 �Any randomness in the generation of the manifolds present in the NGFs can 
significantly change the spectral dimension. In particular it seems always to lower 
the spectral dimension. This is in agreement with the intuition that a random 
walker moving on a hyperbolic manifold like the Apollonian network will ‘experi-
ence’ a higher spectral dimension than a random walker moving on a subgraph of 
this manifold, such as the NGFs s  =  −1.

It would be interesting to have also a RG approach to predict the spectral dimension 
of NGF. However the extension of the RG approach to random and disordered systems 
is challenging and it has been so far addressed in the literature only in rare cases (see 
for instance [53]).

6. Pseudo-fractal networks

6.1. RG equations

In a pseudo-fractal network evolved until generation n, we indicate as type � all links 
added at iteration m = n− �. At each iteration n we add a new d-dimensional simplex 
to every (d− 1)-dimensional face present at the previous iteration, i.e. we attach a new 
d-dimensional simplex to every face added at any iteration m  <  n. Therefore the RG 
equation can be written directly starting from the equations valid for the Apollonian 
graphs by taking into account that each link of type � receives the sum of the contrib
utions coming from the integration of the Gaussian variables associated to nodes added 
at the last generation. This considerations lead immediately to the RG equations
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x�+1 +

(
x1 −

1

dx1

) �−1∑
�′=0

(d− 2)�
′

] [
p2 +

d− 1

dx1

]−1

,

p′� =

[
p�+1 +

(d− 1)
∑�−1

�′=0(d− 2)�
′

dx1

] [
p2 +

d− 1

dx1

]−1

,

�

(94)

where x� are defined in equation (76), x� = (1− µ�) p�. The free energy is given by equa-
tion (38) where by using a procedure similar to the one used to derive the corresponding 
expression for the Apollonian network we easily find

g(ω) =
Nn

2Nn

lnG(µ1) +
Nn−1

2Nn

ln

[
p2 +

1

d(1− µ1)

]
+ c,� (95)
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Figure 2.  Cumulative distribution of the eigenvalues ρc(µ) for the Apollonian 
network in d  =  2 (panel a), d  =  3 (panel b) and d  =  4 (panel c) (shown in blue) are 
compared with the theoretical predictions of the spectral dimension (black dashed 
line) and with the cumulative distribution of the eigenvalues for the NGF with 
flavor s  =  −1 (red lines).
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where c is a constant. In the following paragraphs we will study the RG flow and pre-
dict the spectral dimension for pseudo-fractal networks for dimension d = 2, d = 3 and 
d  >  3.

6.2. Case d  =  2

For d  =  2 the RG equations (94) for the pseudo-fractal network simplify significantly. 
We have

µ� = µ1� (96)
for � � 1 and

p� = p� (97)
for all � � 2. In particular, the RG equations reduce to the same equations found for 
the Apollonian network in dimension d  =  3 but with the dierence in the value of d. 
The resulting equations are

(1− µ′
1) =

(
(1− µ1) + (1− µ2) p−

1

d(1− µ1)

)[
p+

d− 1

2(1− µ1)

]−1

,

p′ = 1.

� (98)

The fixed point is µ�
1 = 0 and p� = 1 with eigenvalue λ = 2. A straightforward calcul

ation of the leading term of the density of eigenvalues for µ � 1 leads to the spectral 
dimension

ds = 2
ln(d+ 1)

lnλ
= 2

ln 3

ln 2
= 3.169 93 . . . .� (99)

We note here that the pseudo-fractal networks of dimension d  =  2 are planar. However 
here they are found to have a smaller spectral dimension of the planar Apollonian 
networks in dimension d  =  3. One might naively think that the spectral dimension 
of the d  =  3 Apollonian network is the largest spectral dimension of planar networks. 
However a slight modification of the d  =  2 pseudo-fractal network in which at each 
iteration every link is attached to k new triangles gives a spectral dimension that that 
diverges for k → ∞. So planar networks can have unbounded spectral dimension.

6.3. Case d  =  3

In the case d  =  3 the RG equations (94) relating the parameter values at iteration τ + 1 
with the parameter values at iteration τ  are given by

x
(τ+1)
� =

[
x
(τ)
�+1 +

(
x
(τ)
1 − 1

dx
(τ)
1

)
�

][
p
(τ)
2 +

d− 1

dx
(τ)
1

]−1

,

p
(τ+1)
� =

[
p
(τ)
�+1 +

(d− 1)�

dx
(τ)
1

][
p
(τ)
2 +

d− 1

dx
(τ)
1

]−1

,

�

(100)
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where x� is defined in equation  (76). In fact these equations can be directly derived 
from equations (94) by performing the sum over �′ in the case d  =  3. By defining the 
auxiliary variable

y
(τ+1)
1 = p

(τ+1)
2 +

d− 1

d

1

x
(τ+1)
1

,� (101)

we can express the explicit solution of the RG equations (100) as

x
(τ+1)
1 = (1− µ)

τ∏
m=1

1

y
(m)
1

+
τ∑

m=1

(
x
(m)
1 − 1

dx
(m)
1

)
(τ + 1−m)
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m′=m

1

y(m′)
,

p
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2 =
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m=1

1

y
(m)
1

+
d− 1

d

τ∑
m=1

1

x
(m)
1

(τ + 2−m)
τ∏

m′=m

1

y(m′)
.

�

(102)

We now write this expression in terms of the auxiliary variables A(τ),B(τ),C(τ) as

y
(τ+1)
1 = A(τ) + B(τ) +

d− 1

d

1

x
(τ+1)
1

,

x
(τ+1)
1 = (1− µ)A(τ) + C(τ),

� (103)

where we have put

A(τ) =
τ∏

m=1

1

y
(m)
1

,

B(τ) =
d− 1

d

τ∑
m=1

1

x
(m)
1

(τ + 2−m)
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1

y(m′)
,

C(τ) =
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(
x
(m)
1 − 1

dx
(m)
1

)
(τ + 1−m)

τ∏
m′=m

1

y(m′)
.

�

(104)

In this case it is impossible to write a recursive equation  for A(τ+1),B(τ+1),C(τ+1) 
depending only on the variables A(τ),B(τ),C(τ). It is possible however to circumvent 
this diculty by defining a further pair of auxiliary variables D(τ) and E(τ) given by

D(τ) = +
τ∑

m=1

(
x
(m)
1 − 1

dx
(m)
1

)
τ∏

m′=m

1

y(m′)
,

E(τ) =
d− 1

d

τ∑
m=1

1

x
(m)
1

τ∏
m′=m

1

y(m′)
.

�

(105)

In this way we can study the RG flow by studying the behavior of the following set of 
recursive equations close to their relevant fixed point. These equations read
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x
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(106)

with initial conditions A(1),B(1),C(1),D(1),E(1) which can be found by inserting in 

equations (104) and (105) x(1)
1 = 1− µ and y

(1)
1 = [1 + d+1

d(1−µ)
]. The relevant fixed point 

of these equations is

A� = 0,

B� =
1

6

(
1 + 3 +

√
28
)
,

C� = 1,

D� = 1/2

(
−1 +

1

3
+

√
28

3

)
,

E� = 1/2

(
−1 +

1

3
+

√
28

3

)
.

�

(107)

Close to this fixed point, the RG equations (106) have the relevant eigenvalue

λ = 1.684 71.� (108)
All other eigenvalues are real non-negative and smaller than one. Therefore they are 
negligible. By performing the study of the density of eigenvalues ρ(µ) for µ � 1 we can 
derive the value of the spectral dimension ds given by

ds = 2
ln(d+ 1)

lnλ
= 5.315 62 . . . .� (109)
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6.4. Case d  >  3

For the pseudo-fractal network of dimension d  >  3, the RG equations (94) relating the 
parameter values at the iteration τ + 1 of the RG flow to the parameter values at itera-
tion τ , are given by

x
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� =

[
x
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�+1 +

(
x
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1 − 1

dx
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dx
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dx
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1
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d− 3
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(τ)
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(τ)
1

]−1

,

�

(110)

where x� is defined in equation (76). In order to solve these equations we put

y
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2 +
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1

.� (111)

The solution of the equations (110) reads
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Let us now put
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(112)
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The RG flow can be cast in a set of recursive equations for A(τ),B(τ),C(τ),D(τ),E(τ). In 
fact we have

y
(τ+1)
1 = A(τ) + B(τ) −D(τ) +

d− 1
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,
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(113)

with initial conditions A(1),B(1),C(1),D(1),E(1) which can be found by inserting 

x
(1)
1 = 1− µ and y

(1)
1 = [1 + d+1

d(1−µ)
] in equation (112). The RG flow resulting from these 

equations can be studied numerically for any finite dimension d. In particular we can 
find the relevant fixed point and the maximum eigenvalue λ of the Jacobian of the RG 
equation at the relevant fixed point. Finally by studying the density of eigenvalues ρ(µ) 
for µ � 1 we can derive the spectral dimension

ds = 2
ln(d+ 1)

lnλ
.� (114)

The spectral dimension ds of d-dimensional pseudo-fractal networks with 2 � d � 20 is 
reported in table 1 together with the spectral dimension of the Apollonian networks of 
the same topological dimension d. Finally we observe that in the large d limit the RG 
equations (110) for the pseudo-fractal network have the same leading term as the RG 
equations (77) for the Apollonian networks. Therefore for d � 1, the largest eigenvalue 
λ close to the non-trivial fixed point will have the same leading behavior. Indeed we can 
check numerically (see figure 3) that the largest eigenvalue λ satisfy

λ =
d2

d2 − d− 1
+O(d−2),� (115)

where d2/(d2 − d− 1) is the leading eigenvalue of the RG flow for the Apollonian net-
work. It follows that for the pseudo-fractal network the leading term for the spectral 
dimension is

dS � 2d ln(d+ 1).� (116)
This is confirmed by numerical results shown in figure 4.

https://doi.org/10.1088/1742-5468/ab5d0e


The spectral dimension of simplicial complexes: a renormalization group theory

27https://doi.org/10.1088/1742-5468/ab5d0e

J. S
tat. M

ech. (2020) 014005

6.5. Comparison to NGF with s = 0, 1

In this paragraph we compare the results obtained numerically for the pseudo-fractal 
networks with the theoretical predictions for d = 2, d = 3 and d  =  4. The numerical 
calculation of the cumulative distribution ρc(µ) clearly show that the pseudo-fractal 
networks of topological dimension d = 2, 3 and d  =  4 display the predicted spectral 
dimension (see figure 5). Moreover, in figure 5 we also compare the results for the cumu-
lative distribution of the eigenvalues ρc(µ) of the pseudo-fractal network to the one 
obtained for NGFs with flavor s  =  0 and s  =  1. We found that the randomness present 
in the NGF significantly lowers the spectral dimension of the NGF. At the same time 

Table 1.  Numerical values for the spectral dimension ds of the d-dimensional 
Apollonian network and of the d-dimensional pseudo-fractal network.

d ds Apollonian network ds pseudo-fractal network

2 2 3.169 93
3 3.738 13 5.315 62
4 7.399 62 8.3761
5 11.729 12.7543
6 16.5732 17.8447
7 21.8337 23.421
8 27.4423 29.3665
9 33.3496 35.610
10 39.5179 42.104
11 45.9179 48.8146
12 52.5262 55.7169
13 59.3233 62.7913
14 66.2933 70.0226
15 73.4226 77.3979
16 80.6995 84.9067
17 88.1141 92.5401
18 95.6574 100.29
19 103.322 108.150
20 111.100 116.114

Figure 3.  The dierence between the leading eigenvalue λ of the RG flow of 
the pseudo-fractal network and the leading eigenvalue λApollonian = d2/(d2 − d− 1) 
is plotted versus the topological dimension d (solid line). The dashed line with 
slope  −2 is a guide to the eye.
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Figure 4.  The spectral dimension ds of the d-dimensional pseudo-fractal network 
calculated numerically from the RG equations is plotted versus d (solid line) and 
compared with the spectral dimension of the d-dimensional Apollonian networks 
(dashed line).

Figure 5.  Cumulative distribution of the eigenvalues ρc(µ) for the pseudo-fractal 
network in (a) d  =  2, (b) d  =  3 and (c) d  =  4 (shown in blue) are compared with 
the theoretical predictions of the spectral dimension (black dashed line) and with 
the cumulative distribution of the eigenvalues for the NGF with flavor s  =  0 (red 
lines) and s  =  1 (green lines).
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we observe that the degeneracies of eigenvalues present in the pseudo-fractal network 
are less pronounced for the NGFs.

7. Conclusions

In this work we have studied the spectral dimension of the skeleton of simplicial com-
plexes with distinct geometrical properties: the Apollonian networks, the pseudo-fractal 
networks and the Network Geometry with Flavor (NGF). The Apollonian networks 
are non-amenable hyperbolic manifolds, the pseudo-fractal networks are non-amenable 
branching networks, and the NGF are non-amenable network structures that can be either 
be hyperbolic manifolds (for s  =  −1) or branching (for s = 0, s = 1) simplicial complexes. 
However while Apollonian networks and pseudo-fractal networks are deterministic the 
NGF describes a stochastic model. We used the RG approach to predict the spectral 
dimension of Apollonian and pseudo-fractal networks. We have obtained the func-
tional dependence of the spectral dimension dS on the topological dimension d of their 
underlying simplicial complex structure and have found that for large value of d, the 
spectral dimension dS scales like dS � 2d ln d for both the Apollonian and the pseudo-
fractal networks. We have shown that the spectral dimension of the planar Apollonian 
network of dimension d  =  3 is dS = 2 ln 3/ ln(9/5). Finally we have studied the eect 
of randomness on the spectral properties of the networks by comparing the spectrum 
of the Apollonian network to the spectrum of the NGF with s  =  −1 and the spectrum 
of the speudo-fractal network to the spectrum of the NGF with s  =  0 and s  =  1. We 
have found numerically the intuitively reasonable result that randomness can only 
reduce the spectral dimension of the underlying lattice where some nodes and links 
are removed. We hope that this work will stimulate further interest in the relations 
between network geometry and spectral dimension.

Finally we observe that this work can be extended in dierent directions. On one 
side, an extension of the RG technique to address the spectral dimension of random 
topologies might be challenging but would be very much welcome, as real networks are 
typically driven by a stochastic evolution. On the other side it would be very interest-
ing to investigate further the spectrum of highly symmetrical network structures like 
the one considered in this paper and predict the degeneracies of eigenvalues.
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