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Abstract: In this paper, a novel idea is developed to construct energy spectrum of inorganic
scintillator detector (e.g.NaI(Tl)) using energy spectrumof organic scintillator detector (e.g.NE102)
by means of a model-free method. For this purpose, support vector machine (SVM) accompanied
with different kernel functions (i.e. linear, polynomial, and Gaussian) is applied. The spectra of
NE102 and NaI(Tl) detectors of the single radioisotopes (i.e. Co60, Cs137, Na22, and Am241) are
utilized for training of SVM. In other words, data of NE102 detector are input spectrums of training
patterns and data of NaI(Tl) detector are target spectrums of training patterns. To construct an
appropriate mapping function between spectrums of detectors, a kind of cross-correlation technique
namely mapping of totality of channels to single channel (TSC) is utilized. In the test process,
spectrums of different combinations of the target radioisotopes are constructed and the results are
compared with the measured spectrums. Polynomial kernel function gives good results. Linear and
Gaussian kernel functions do not give so appropriate results. Themajor advantages of the developed
method are: 1- The NaI(Tl) spectrums of different combinations of the target radioisotopes are
constructed only by training of single radioisotopes spectrums. 2- Energy spectrums of high
price/ high resolution detectors (i.e. inorganic scintillator detectors) can be constructed using low
price/ low resolution detectors (i.e. plastic scintillator detectors). 3- This method can be used to
construct energy spectrum of any type of inorganic scintillator (e.g. BGO detector) using either
plastic or liquid scintillators. Liquid scintillator detectors (e.g. NE213) are more appropriate for
detection/identification of radioactive sources which emit both gamma and neutron radiations.
However, these detectors give low resolution gamma spectrums. The developed method can be
appropriate for construction of higher resolution gamma spectrums for this type of sources. This
application of the developed method is discussed in the manuscript.
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1 Introduction

Four mechanisms including photoelectric absorption, Compton scattering, pair production, and
photonuclear reaction are significant interactions of gamma radiation with material [1]. Photoelec-
tric interaction is proportional to Z4/E3. Compton mechanism is approximately proportional to the
electron density of the target, and pair production is proportional to Z2+Z reaction. Gamma energy
must exceed a certain minimum value for photonuclear. Where, Z is atomic number of attenuating
medium and E is energy of gamma ray.

One of the best instruments for spectrometry of gamma radiation is scintillator detector. A
scintillator detector converts the interactions of gamma radiation to light pulses and photomultiplier
tube (PMT) converts the generated light pulses to electric pulses for detection/identification of
radiation. The photocathode of PMT, a focusing electrode, and dynodes (e.g. 10 or more) multiply
the number of electrons which strike at each dynode [2]. Inorganic scintillators with high density
and high-Z are appropriate choices for gamma-ray spectroscopy while plastic/liquid scintillators
(e.g. NE102 and NE213) with low density and low-Z are not so suitable for this purpose. Even
though, inorganic scintillators are available with a large variety of forms, constituent materials,
and sizes, however, NaI(Tl) crystals are the most widely used for gamma spectroscopy. High light
output and very good match to the sensitivity of PMT provide good energy resolution by NaI(Tl).

The motivation of this study is development of a method to construct energy spectrum of
inorganic scintillator (e.g. NaI(Tl)) using energy spectrum of organic scintillator (e.g. NE102)
by means of supervised learning methods. Up to now, supervised learning methods have been
extensively used for prediction, estimation, and regression [3]. In this study, support vector machine
(SVM) as a supervised learning method accompanied with different kernel functions is used for
construction of energy spectrum of NaI(Tl) detector [4]. SVM acts good in cases when there is
no/little information about data structure (i.e. unstructured or semi-structured data). In addition,
SVM can escape local minima and overfitting as well as it can balance between training data and
test data (i.e. balance between memorization and generalization) [5]. Moreover, SVM in most cases
gives better results compared with artificial neural networks (ANN) [6].
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Estimation/Regression/construction of data series is usually done using either autocorrelation
or cross-correlation techniques [7]. Autocorrelation technique estimates current/future value of
data series by past/current value of that data. Cross-correlation technique maps input patterns to
the targets. In figure 1, a schematic view of autocorrelation finding/cross-correlation detection by
SVM learning algorithm is illustrated. In this study, for construction of energy spectrums of NaI(Tl)
detector, the energy spectrums of organic detector are utilized. Therefore, autocorrelation finding
cannot be used and cross-correlation detection is more appropriate for spectrum construction.

Outline of the remainder of the presentwork is as follows. In section 2. SVM learning algorithm

is studied. In section 3, a kind of cross-correlation technique which maps spectrum of organic
scintillator to spectrum of NaI(Tl) by means of SVM is utilized. In section 4, NaI(Tl) spectrums
of the different combinations of the radioisotopes are constructed and the results are discussed.
Section 5 attends the conclusion.

2 Support vector machine

In this section a brief review of SVM learning algorithm is given. The more detailed descriptions
can be found in the references. SVM is a supervised learning algorithm used for classification,
regression, and outlier detection of the target data [8, 9]. SVM utilizes a function either linear
or nonlinear to convert multi- classes into multi binary classes. Nonlinear function (i.e. kernel
function) maps patterns to higher dimensional space and then a separating hyperplane classifies
patterns. In other words, instead of forming a boundary in the original space, where the two classes
are not separable, a new higher dimensional space, where the samples are projected by means of
kernel function is defined. The back-projection of the separating boundary from this new feature
space to the original space will then result in a non-linear boundary for given data [10]. A schematic
view of SVM classifier is presented in figure 2. Linear and nonlinear SVM are presented in eq. (2.1)
and eq. (2.2), respectively.

Figure 1. A schematic view of (a) cross-correlation detection (b) autocorrelation finding utilized for
construction of NaI(Tl) spectrum using either organic scintillator spectrum or NaI(Tl) spectrum.

– 2 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
1
0
2
8

Figure 2. A schematic view of SVM for (a) classification of multi-classes to multi binary classes. (b)
nonlinear separating.

minimize : f(op∗1, op∗1, . . . , op∗n,w, c) =
1
2
|w|2 (2.1)

Subject to : ∀m
i=1 : {ti ∈ {−1,+1}} (w.X + c) ≥ 1

minimize : f(op∗1, op∗1, . . . , op∗n,w, c) =
1
2
|w|2 (2.2)

Subject to : ∀m
i=1 : ti(w.Kf(X) + c) ≥ 1

Where, op∗ is output of unlabeled inputs, w is a weight vector that is normal to the hyperplane,
X is vector of inputs, t is target value of each class, c is an offset, m is number of classes, and n is
number of inputs. Kf is kernel function.

Different types of Kernel function can be utilized. Linear, polynomial, Gaussian, hyperbolic
tangent, sigmoid, and Bessel are conventional forms of kernel functions. Gaussian kernel is used
when there is no prior knowledge about the data. In this study the general purpose kernel function
(i.e. Gaussian) with linear and polynomial kernel functions are employed. These kernel functions
are given by eq. (2.3). Kernel scale for Gaussian function is determined using standard deviation
of input data, automatically.

K (x1, x2) =


exp

(
−γ ‖x1 − x2‖

2
)
Gaussian kernel functioin; Kernel scale = 1

γ2

x′1x2Linear Kernel function(
1 + x′1x2

)p Polynomial Kernel function; p = Polynomial order

(2.3)
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There is a minor difference between regression and classification by SVM [11]. In the regression
by SVM, a model is formed between input data and targets. As an example, eq. (2.4) gives a linear
model. Where, y is target. This model is similar to a linear boundary which is utilized by SVM for
classification. Therefore, regression by SVM is converted to SVM classification.

y = wx + c (2.4)

3 Construction of mapping function between spectrums of organic and NaI(Tl)
detectors by means of SVM and TSC data mapping

There are no extracted features for spectrum of organic detector (e.g. NE102 detector). Therefore,
the cross-correlation detection technique presented in figure 1 cannot be applied for construction
of mapping function between spectrums of detectors. Moreover, mapping of any energy channel
of NE102 detector to similar channels of NaI(Tl) detector is not appropriate. Mapping of single
channel to single channel (SCSC) will cause degradation of balance between memorization and
generalization of SVM. As an example, NaI(Tl) spectrum of Co-60 with SCSC technique is learned.
Figure 3 shows very good agreement of the constructed spectrum of Co-60 in comparison with
experimental spectrum (i.e. very good memorization in training process). However, in test process,
constructed spectrum of Cs137 which is presented in figure 4 is spectrum of Co60. In other
words, the constructed mapping function has no generalization. For construction of an appropriate
mapping function between spectrums of NE102 and NaI(Tl) detectors a kind of cross-correlation
technique is utilized which creates a correlation between all energy channels of NE102 and any
energy channel of NaI(Tl). Totality of channels to single channel (TSC) mapping

Figure 3. The constructed NaI(Tl) spectrum of Co60 by means of SCSC technique in comparison with the
experimental spectrum is illustrated in figure 5. Where, ODi and IDi are i-th energy channel of organic
detector and inorganic detector, respectively.
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Figure 4. The constructed NaI(Tl) spectrum of Cs137 by means of SCSC technique in comparison with the
experimental spectrum.

4 Construction of NaI(Tl) spectrums of different combinations of the radioisotopes

In this section, the TSC technique accompanied with SVM learning algorithm is applied for
construction of NaI (Tl) spectrums of different combinations of the target radioisotopes using
NE102 spectrums. Moreover, construction of higher resolution gamma spectrum by the developed
method for radioactive sources which emit both gamma and neutron radiations is discussed.

Different kernel functions of SVM (i.e. linear, polynomial, and Gaussian) are employed.
Training of SVM is done using spectrums of the single target radioisotopes. The training patterns
and the test patterns are presented in table 1. As seen form table 1, ratio of the training patterns to
all of the patterns is 4/15. This means, according to eq. (4.1), for m target radioisotopes, ratio of
training patterns to all of patterns is m/(2m − 1). Where,

(m
i

)
represents the different combinations

of i number of radioisotopes from m number of radioisotopes. Therefore, 0.267 of the patterns
are for training and 0.733 of the patterns are for test. It is important to mention, for training of
supervised learning algorithms, conventionally, ratio of training patterns to all patterns is 0.7. In
other words, the developed method utilizes smaller fraction of patterns for training and this may
increase the chance of method for better generalization.

Training spectrums (i.e. experimental spectrums of the targets radioisotopes) are presented in
figure 6. Results of construction of the target spectrums of the training patterns using different
kernel functions of SVM are presented in figure 7 up to figure 9. In comparison with experimental
spectrums, polynomial kernel function gives more accurate results. Linear and Gaussian kernel
functions do not give so appropriate results. Therefore, polynomial kernel function is utilized
for construction of the target spectrums of the test patterns. The results show that the developed
method is able to distinguish and to learn very similar spectrums (e.g. NE102 spectrums of Na22
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Figure 5. A schematic view of TSC technique.

and Cs137). The spectrometry settings of this study are given in table 2.(
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The constructed NaI(Tl) spectrums for the input spectrums of the test patterns by polynomial
kernel function of SVM are given in figure 10 up to figure 14. Results show that, in some
cases, photo-peaks of the constructed spectrum are relocated in comparison with the experimental
spectrum. Displacement of photo-peaks can be occurred as a function of different settings of
spectrometry instruments. For example, different settings of amplifier (i.e. fine gain, coarse gain,
shaping time, etc.) have effect on the position of photo-peaks. This issue is illustrated in figure 15.
Therefore, the constructed spectrum is appropriate even if its photo-peaks are not exactly identical
with the experimental ones. In other words, the shape of the constructed spectrum is more important

– 6 –
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Table 1. Training patterns and test patterns.

Training patterns Test patterns
Inputs Targets Inputs Targets

(spectrums of NE102) (spectrums of NaI(Tl)) (new spectrums of NE102) (new spectrums of NaI(Tl))
Co60 Co60 Co60, Cs137 Co60, Cs137
Cs137 Cs137 Co60, Na22 Co60, Na22
Na22 Na22 Co60, Am241 Co60, Am241
Am241 Am241 Cs137, Na22 Cs137, Na22

Cs137, Am241 Cs137, Am241
Na22, Am241 Na22, Am241

Co60, Cs137, Na22 Co60, Cs137, Na22
Co60, Cs137, Am241 Co60, Cs137, Am241
Co60, Na22, Am241 Co60, Na22, Am241
Cs137, Na22, Am241 Cs137, Na22, Am241

Co60, Cs37, Na-22, Am241 Co60, Cs37, Na-22, Am241

Table 2. The spectrometry settings of the current study.

Detector Size
High

Amplifier gain
Shaping Live Distance

voltage time(µs) time(µs) to detector
Fine Coarse

NaI(Tl) 3 inches 700 0.7 30 3 180 0 cm

NE102 3 inches -1900 0.7 30 1 180 0 cm

for identification of the radioisotopes. Therefore, the developed method is more appropriate for
generation of NaI(Tl) spectrum and is not so useful for exact construction of experimental spectrum
(ECES). One of the techniques for ECES is training of supervised learning method by generated
pulses of detectors. Pulses have features (i.e. rise time, fall time, shaping time, amplitude, etc.)
which are more suitable for cross-correlation detection. This method is under development and will
be reported as the subsequent results.

To examine the sensitivity of the developed method to the different settings of spectrometry,
the NE102 spectrum of Co60 is given by new setting. This setting and the constructed NaI(Tl)
spectrum are given in table 3 and figure 16, respectively. The results show that the new setting does
not have significant side-effect on the accuracy of the constructed spectrum.

Construction of higher resolution gamma spectrum for radioactive sources which emit both
gamma and neutron radiations can be an application of the developed method. These sources are
more detectable/identifiable using liquid scintillator detectors (e.g. NE213). In other words, high
concentration of hydrogen of liquid scintillator detectors increases macroscopic cross section of
elastic scattering of this type of detectors andmakes possible detection/identification of fast neutrons
in addition to gamma ray. However, NE213 gives low resolution spectrum for gamma radiation. The
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Figure 6. The training spectrums.

Figure 7. The constructed spectrums by linear kernel function of SVM and TSC technique for the input
spectrums of training patterns in comparison with the experimental spectrums.

developedmethodmay be utilized to construct higher resolution spectrum for gamma radiation. First
of all, gamma/neutron interactions with detector (i.e. neutron/gamma pulses) must be separated.
Pulse shape discrimination (PSD) based on constant fraction discriminator (CFD) is one of the
techniques used for separation of neutrons/gammas. A schematic view of equipments arrangement
for separation of neutron/gamma radiations is given in figure 17 [12]. Time to amplitude convertor
(TAC), analogue to digital convertor (ADC), and multi-parameter analyzer (MPA) are specified in
figure 17.
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Figure 8. The constructed spectrums by polynomial kernel function of SVM and TSC technique for the
input spectrums of training patterns in comparison with the experimental spectrums
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Figure 9. The constructed spectrums by Gaussian kernel function of SVM and TSC technique for the input
spectrums of training patterns in comparison with the experimental spectrums.

The gamma spectrum of Am241-Be (i.e. the source with neutron and gamma radiations) by
NE213 is presented in figure 18. The constructed spectrum by the developed method for Am241-Be
is illustrated in figure 19. Calibration of NaI(Tl) detector indicates that the photo-peaks region of
the constructed spectrum (i.e. the highlighted region in the figure 19) show good agreement with
the experimental photo-peaks of Am241-Be (i.e. 3.5MeV up to 4.4MeV) [13].
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Figure 10. The constructed spectrum by polynomial kernel function of SVM and TSC technique for the
Co60-Cs137 in comparison with the experimental spectrum.

Figure 11. The constructed spectrum by polynomial kernel function of SVM and TSC technique for the
Co60-Na22 in comparison with the experimental spectrum.

The major advantages of the developed method are: 1- Construction of NaI(Tl) spectrums
of 2m − 1 combinations of m radioisotopes are possible only by training of spectrums of single
radioisotopes. In this study only 0.267 of data are used for training while seventy to eighty percent
of data were used conventionally for training of supervised learning algorithms. 2- The developed
method converts the low price/low resolution detectors to high price/ high resolution detectors
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Figure 12. The constructed spectrum by polynomial kernel function of SVM and TSC technique for the
Cs137-Na22 in comparison with the experimental spectrum.

Figure 13. The constructed spectrum by polynomial kernel function of SVM and TSC technique for the
Co60-Cs137-Na22 in comparison with the experimental spectrum.

making possible more quality experiments for laboratories/persons which have limited financial
resources. 3- This method can be employed for spectrum construction of any type of inorganic
scintillator (e.g. BGO scintillator) using either plastic or liquid scintillators.
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Figure 14. The constructed spectrum by polynomial kernel function of SVM and TSC technique for the
Co60-Cs137-Na22-Am241 in comparison with the experimental spectrum.
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Figure 15. Displacement of Co60 photo-peaks as a function of different settings of amplifier.

It is important to mention, even though theMonte Carlo codes (such asMCNP, Geant, etc.) can
be used to construct spectrum of scintillator detectors [14], however, the Monte Carlo codes have
some disadvantages: 1- These codes are very time consuming and cannot be utilized for real-time
spectrometry in laboratories or in industrial applications while the proposed method constructs
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Table 3. A new setting and training setting of NE102 detector.

Detector Size
High

Amplifier gain
Shaping Live Distance

voltage time(µs) time(µs) to detector
Fine Coarse

NE102

Training
3 inches -1900 0.7 30 1 180 0 cm

setting
New

2 inches -2020 0.3 100 0.25 720 2.5 cm
setting

Figure 16. Sensitivity of the developed method to the new settings of NE102 spectrometry.

spectrums immediately. 2- Monte Carlo codes need the trained person to model the target detector
while the developed method converts automatically the plastic detector spectrums to the inorganic
detector spectrum. 3- Monte Carlo code gives simulated data which may not reflect the complete
features of real data while the proposed method is based on the experimental data which is more
valuable from the scientific view point. 4- Monte Carlo codes probably needs new modelling with
new spectrometry settings (e.g. size of scintillator, electronic settings, distance to detector, etc.)
while the proposed method gives acceptable results against new settings.

5 Conclusion

In this paper, a novel idea is developed to construct spectrum of inorganic scintillator detector (e.g.
NaI(Tl)) using organic scintillator (e.g. NE102 detector) by means of SVM learning algorithm and
TSC technique. Different kernel functions (i.e. linear, polynomial, Gaussian) of SVM are employed
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Figure 17. A schematic view of equipments arrangement for separation of neutron/gamma radiations using
NE213 detector.
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Figure 18. The gamma spectrum of Am241-Be by NE213.

Figure 19. The constructed gamma spectrum for Am241-Be by the developed method.

to show the more appropriate one for spectrum construction. NE102 and NaI(Tl) spectrums of
single radioisotopes (i.e. Co60, Cs137, Na22, and Am241) are utilized for training of SVM. In the
test process, NaI(Tl) spectrums of different combinations of the target radioisotopes are constructed
and the results are compared with the measured spectrums. Results show good agreement of
polynomial kernel function. Linear and Gaussian kernel functions do not give so appropriate
results. The major advantages of the developed method are: 1- Construction of NaI(Tl) spectrums
of 2m − 1 combinations of m radioisotopes are possible only by training of spectrums of single

– 15 –
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radioisotopes. 2- The developed method converts the low price/low resolution detectors to high
price/ high resolution detectors making possible more quality experiments for laboratories/persons
which have limited financial resources. 3- This method can be employed for spectrum construction
of any type of inorganic scintillator (e.g. BGO scintillator) using either plastic or liquid scintillators.

Construction of higher resolution gamma spectrum for radioactive sources which emit both
gamma and neutron radiations is one of the applications of the developed method. These type of
sources are more detectable/identifiable using liquid scintillator detectors (e.g. NE213). However,
these detectors give low resolution gamma spectrums. The results show that the constructed
spectrum is in good agreement with the experimental spectrum by NaI(Tl).

It is important to mention the developed method is more appropriate for generation of NaI(Tl)
spectrum and is not so useful for ECES. One of the techniques for ECES is training of supervised
learning method by generated pulses of detectors. Pulses have features (i.e. rise time, fall time,
shaping time, amplitude, etc.) which are more suitable for cross-correlation detection. This method
is under development and will be reported as the subsequent results.
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