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Abstract

There are indications that the perpendicular transport of energetic particles is sometimes subdiffusive for
intermediate timescales. This corresponds to a scenario where particles follow diffusive magnetic field lines while
they also move diffusively in the parallel direction. This type of transport should occur at times after the ballistic
regime but before the particles experience the transverse complexity of the turbulence. In this article we present a
detailed analytical investigation of distribution functions of particles experiencing compound subdiffusion. Simple
approximations of particle distributions are derived which can easily be used in applications. We also compare our
findings with test-particle simulations performed for slab turbulence corresponding to the case of vanishing

transverse turbulence structure.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491); Galactic cosmic rays (567); Interplanetary

turbulence (830)

1. Introduction

The understanding of the motion of electrically charged and
energetic particles propagating through a magnetized plasma is
a fundamental problem of theoretical astrophysics and space
science. Examples are the propagation of cosmic rays through
interplanetary and interstellar spaces. Due to turbulent electric
and magnetic fields, particles experience different scattering
mechanisms such as diffusion along and across the mean
magnetic field, adiabatic focusing, and stochastic acceleration
(see, e.g., Schlickeiser 2002 and Zank 2014 for reviews). In
particular diffusion across the mean magnetic field, also simply
called perpendicular diffusion, is difficult to understand (see,
e.g., Shalchi 2009 for a review). The famous work of Rechester
& Rosenbluth (1978) explained the basic mechanisms of
perpendicular transport but this was done in the context of
laboratory plasmas where Coulomb collisions play a signifi-
cant role.

In astrophysics collisions are assumed to be less relevant but
particles experience strong pitch-angle scattering leading to a
diffusive parallel motion. Quantitative theories to solve this
problem have been developed. Noticeable steps in the
development of such theories are the nonlinear guiding center
theory (see Matthaeus et al. 2003), the unified nonlinear
transport theory (see Shalchi 2010, 2015), and its time-
dependent version (see Shalchi 2017 and Lasuik & Shalchi
2017). In particular the latter theory provides some important
insight into the mechanisms of perpendicular transport. The
time-dependent theory predicts that subdiffusive perpendicular
transport persists in some cases for a long time before normal
diffusion is restored. The recovery of diffusion is entirely
caused by transverse complexity of magnetic turbulence
becoming important. These ideas lead to a heuristic description
of perpendicular transport (see Shalchi 2019) similar to the
paper by Rechester & Rosenbluth (1978) but for the
collisionless case important in astrophysics.

In the subdiffusive regime described above, transverse
complexity is not yet important and the particle follows a
single magnetic field line. While the particles are tied to
diffusive field lines, they experience parallel diffusion due
to pitch-angle scattering. As a consequence perpendicular

transport is suppressed to a subdiffusive level. This type of
transport, which is usually called compound subdiffusion, and
the recovery of diffusion due to transverse complexity, was
also found numerically via test-particle simulations (see, e.g.,
Qin et al. 2002a, 2002b).

A discussion of compound subdiffusion was presented in
several papers such as Kéta & Jokipii (2000) or later in Shalchi
& Kourakis (2007). A more general exploration of subdiffu-
sion, mostly based on numerical work, was performed in
Pommois et al. (1999, 2005, 2007) and Zimbardo et al.
(2006, 2012). The most comprehensive analytical description
of compound subdiffusion was presented in Webb et al. (2006)
where not just mean square displacements of particle orbits
were determined but also the entire perpendicular distribution
function. The work of Webb et al. (2006), which is based on
the so-called Chapman-Kolmogorov equation, provides the
basis for the work presented in the current paper.

There are several aims we would like to achieve with the
current article. The most important are:

1. We perform an evaluation of distribution functions and
the associated moments entirely based on Fourier trans-
forms. This allows for a very systematic computation of
fundamental quantities such as characteristic functions.

2. Exact results for the distribution function contain
complicated special functions. We present simple
analytical approximations which will be useful for
applications.

3. We provide a comparison of analytical results with test-
particle simulations to check the validity of the Chap-
man—Kolmogorov approach.

The organization of the reminder of this article is as follows.
In Section 2 we discuss the Chapman—Kolmogorov equation
and some fundamental properties of perpendicular distribution
functions of particles experiencing compound subdiffusion. In
Section 3 we present some exact results and in Section 4 we
employ approximations leading to simplified analytical forms
which will be useful for applications. In Section 5 we compare
our findings with test-particle simulations and in Section 6 we
summarize and conclude.
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2. Fundamental Relations
2.1. The Chapman—Kolmogorov Equation

A comprehensive description of compound subdiffusion was
presented in Webb et al. (2006). The latter authors employed
an approach based on the so-called Chapman—Kolmogorov
equation (see, e.g., Gardiner 1985)

+00
fteyin= [ dif oy afy @, (1)
where the particle distribution in the perpendicular direction
f. (x, y; 1) is given as the convolution integral of the parallel
distribution function f H(z; t) and the field line distribution
function fi; (x, y; z). This means that particles are assumed to
follow field lines and their statistics in the perpendicular
direction 1is entirely controlled by parallel transport and the
random walk of magnetic field lines.

All three distribution functions used in Equation (1) can be
expressed by a Fourier representation so that

fH(Z; )= f_
S (031 2) = [d%k fiy (ko Kys 2)e™,
.fL (-x’ y7 t) - deka (k)h ky’ [)gikaL’ (2)

oo . 4\ ik
. dkaH(kH’ t)e™z,

where the last two integrals cover the whole wave number
space in x- and y-directions. Based on Equation (1), we find for
the Fourier transform of the perpendicular distribution function

fL (kx, k), t) — \/;+OO deFL (kx, ky, Z)f”(Z, t)
= [ diy ks oy
f dz fy (kys ky; 2)eiz, 3)

This is evaluated for certain parallel transport and field line
random walk models below.

2.2. Initial Conditions

It is also crucial to think about initial conditions. First we
derive from the third line of Equation (2)

[, y;t=0) = fdzka_ (ky, ky; t = 0) ek 4)

and assume
1
fL (ky, ky; = 0) = W )
so that
[0y =0) = o = [ak e =55 ©)

where we have used (see, e.g., Zwillinger 2012)
+00 .
f dx e = 276 (k) %)

twice. This means that any obtained distribution function needs
to satisfy the constraint given by Equation (5). Only then the
correct initial condition given by Equation (6) is satisfied.
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2.3. Moments and Normalization

The nth moment of a distribution is defined via
+00 400
((Ax)")y = f dx f dy x"f, (x, y; 1). (8)

Due to symmetry we find ((Ax)") = 0 if n is odd. Thus, we
focus on the case of even n. In order to rewrite this we follow
Shalchi & Gammon (2019) and perform the following steps
starting by combining Equation (8) with the third line of
Equation (2)

(A7) = [ f ke by 1) [ ax [ it ik,
= (=i)" [d* f, ks, ky; )
d” +00o
dx
= (2w>2<—z)" Jd%k £ (s, ky; 1)6(ky ) 6(kx)

_ (2@2,-”[61% (ko by t>]
dk)lfl k=ky,=0

dy x"e

dy eikxx+ ikyy

©)

where we have used Equation (7) and integration by parts n
times. Equation (9) can be used for n = 0 to obtain the
normalization condition

1 = @n)*f, (ky = ky = 0; 1). (10)

Any type of distribution function considered in the current
article needs to satisfy this condition as well as the initial
condition (5).

2.4. Fourier Transforms and Characteristic Functions

It is important to understand the relation between character-
istic functions and Fourier transforms of distribution functions.
First we note that the characteristic function is defined via

zkx = fd"xf(x t)ezkx (11)

where the integer number n denotes the dimensionality of the
problem. Comparing this with the inverse Fourier transform

flk; 1) = —(Zl)n d™x f(x; t)e (12)
yields
(e®x) = m)"f (k; 1). (13)

Please note that here we assumed that all distribution functions
are symmetric in the spectrum

flest)y =f(—k; ) =f*k; 1). (14)

According to Equation (13), characteristic functions and
Fourier transforms are directly proportional. The knowledge
of characteristic functions is essential for the development of
analytical theories for perpendicular diffusion (see, e.g., Lasuik
& Shalchi 2017, 2018; Shalchi 2017).
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2.5. The Axisymmetric Case

For the axisymmetric case the perpendicular particle
distribution function in configuration space can be written as

filps 1) = fdzk £ (ks 1)ex
o 27 .
= f() dk ki f, (ks 1) j; 4 ek (15)

where we switched from Cartesian to polar coordinates by
using

$ = arctan (l),

p=x>+y%, -
k.,
k = kaz + k_V s U = arctan(k—)). (16)

X

In order to evaluate this further, we can employ

ek — pivki cos(U—®) a7

However, the resulting distribution function in Equation (15)
must not depend on the angle ® due to symmetry. Therefore,
we can set & = 0 so that

eixi-kL — eiﬂ/q cos(¥) eiﬂ/& sin(W+7/2)

+00

= 3 hpk)en T, ()

n=—0o0

where we have used Bessel functions of first kind J,, and the so-
called Jacobi-Anger expansion (see, e.g., Cuyt et al. 2008). If
we integrate the exponential factor given by Equation (18) over
U, we can employ

27
d¥ ™ = 276, (19)
0

so that
j; AW et — 2ndo(pky). (20)
Using this in Equation (15) yields
filpst) = 27?]()00 dky ki f\ (kis 0)Jo(pky), 2D

which will be used later in this article when specific forms of
the function f| (k;; t) are considered. Furthermore, we can also
compute the distribution function projected onto the x-axis
defined via

fln= f Ty £y 1), (22)

Using the third line of Equation (2) therein yields
FLs 0= [dk £, (ke kys el [T dy e
=2 [d% f, (ky, ky; 1)e™5(ky)
+0o0 .
=2 [ dko fy (ke ky = 05 et
= 47rf0OO dk; f, (ki t)cos(k x). (23)

The same result can be obtained if the projection on the y-axis
is considered due to symmetry. So far we discussed some
general relations. In order to obtain concrete results, we have to
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specify field line and parallel distribution functions. This is
done in the next section.

3. Exact Results

In the following we present some exact results. The
corresponding calculations are entirely based on Fourier
transforms.

3.1. Characteristic Functions

If the field line random walk is diffusive and assuming a
Gaussian distribution of field lines, the field line distribution
function is given by

fa @y 0) = o@D/ GRRLzD, (24)
4mkpLlz]
In this case the Fourier transform of the field line distribution

function is

Jen (ks 2) = e—HFkaIZI. (25)

(2m)?
The characteristic function, on the other hand, is given by
<eieri>FL — e*HFLk3|Z|_ (26)

Thus we find for the perpendicular particle distribution function
given by Equation (3)

1 o0
fi ks 1) = 2—7T2f_; dkf (ks 1)

X fooc dz cos (kHZ)e*’*'FL"f'“. (27)
Using
foo dz cos(az)e ™ = b (28)
0 a’ + b?
yields
2
fitain == [ dify e t)(ngﬁ. (29)

If we also assume that parallel transport is diffusive and if we
employ a Gaussian particle distribution function

fi@n = o</ (30)

dmr)t
we obtain
(ki ) = 5 e e G
yielding the characteristic function
(i) = Rkt (32)
Thus, Equation (29) turns into

2
KJFLkJ_

— R sk (33)
(krLkD)? + ki

1 [e'e]
Stk = — fo dk,
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The occurring integral can be solved by (see, e.g., Gradshteyn
& Ryzhik 2000)

f dxa—|—x_

where we have used the complementary error function. Finally
we obtain

e’ erfc(ab), (34)

1 2
filks ) = Py et erfe(§) (35)

where we have used

¢ = rpLk? [R)T. (36)

Equation (35) is in agreement with Equation (B5) of Webb
et al. (2006). Furthermore, we can easily understand that the
characteristic function in the perpendicular direction is now
given by

(elx) = o€ erfe(€). ©7

Typically, if particle transport is diffusive, we would expect a
Gaussian distribution such as the characteristic functions given
by Equations (26) and (32). Clearly this is not obtained
for compound subdiffusive transport. Note that the scaled
complementary error function is defined via

erfex(x) = erfe(x)e*. (38)

Thus, we can simply write

fllks ) = 1) erfex(€) (39)

as well as
<eiki-n> = erfCX(f)- (40)

These forms are in particular useful for a numerical evaluation
in order to avoid arithmetic underflow.

3.2. Distribution Functions in Configuration Space

In order to determine the distribution function in configura-
tion space we can use different approaches. One way of
performing this task is to assume Gaussian distributions of
field lines and particles in the parallel direction. Using
Equations (24) and (30) in (1) yields

2 x2+)’2
fGyin) = ¢ dmmlzl, (41)

1 +oo 1
YL P
J47TI£HZ‘ —00 4dmreLlz]

After the integral transformation A = z/,/ 4rt, this becomes

2 1
(ps )= Arr (At
fl Ps w372 4HFL\/W
" foo @ e~ N0 OdrpL [ar)0) (42)
U

Apart from the variable p itself, the distribution function
depends only on one single parameter and this is 4rpp \/45K)t.
The remaining integral can be expressed via the Meijer
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G-function (see, e.g., Gradshteyn & Ryzhik 2000)

dx 1 - a®
D prtars = LG B
fo e - 0,3(0, 0,1/2 4) (43)

X

so that
1

45FL«/4’€H

X Goa[o 0, 1/2‘

1
filp; )= —2

4
A (44)

For the projected function we can use

+oo
fiasn=[_"dyfixyn
— ;I“’O dz _
J47TI€HI - AmreLlz]
+0o0 2
X f dy e~ wrLl

+oc
J47m‘t f ,/47T/<;FL|z|

After using again the integral transformation A\ = z / 4kt this
becomes

2 2
e M|t 4wpLlzl

72 2

¢ WA, (45)

1 1
[l ) =———m—
0 KFL«M’RHZ‘
x [ AN o [ D), (46)

NBY

The remaining integral can be expressed via generalized
hypergeometric functions (see, e.g., Gradshteyn & Ryzhik
2000)

2
foo d_x e aly = ZF(E) o> ;l, 3; L
0 Ux 4 247 4

Using this in Equation (46) allows us to write

flonn =21

Q 1[I<LFL1/4I€HI‘
4
X F(é) of2 ;l, 3; _x_z
4 24 256kg Kyt

X 35 x*
R,
ARkpL 4Rt 4 4 256Kkg K|t

x? (3) 53 x*
+ ——T| = ol2|;> =5 ————|| 49
drpJamr \4) U427 256k Kyt

Problematic here is that we found solutions depending on more
complicated special functions such as the Meijer G-function
and generalized hypergeometric functions.
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Alternatively, the perpendicular particle distribution function
in configuration space is given by Equation (21). With
Equation (35) this becomes

fn = o= [T dk kdpk)eS erte©),  @9)
2w Jo

which is in agreement with Equation (3.26) of Webb et al.
(2006). The projected distribution function is given by
Equation (23). For our case this becomes

fleen =+ f " dk, cos(ky x)e erfe(S). (50)
T J0

However, Equations (49) and (50) are difficult to evaluate
without employing approximations. Besides a numerical
evaluation one can employ different approximations which is
done in Section 3. At this point we only compute the values of
these two functions at the origin. For x = 0, Equation (50)
simplifies to (see, e.g., Gradshteyn & Ryzhik 2000)

1 , 2
flx=0;0)= ;fo dk, e€ erfe(§)

2 (5)
=——T|~| 51
T KFL /K| T 4 e

Employing (see, e.g., Abramowitz & Stegun 1974)
I'z+1)=27I() (52)

allows us to write this as

1 1
flae=050= —r(—). 53)
* . 8KEL K|t 4
According to Abramowitz & Stegun (1974) we have I'(1/4) ~
3.62561 so that
0.408

=01~ ——. (54)
KFL A/ K|t

Although this formula only provides the value at the origin, it is
useful because it is exact. For p = 0, on the other hand,
Equation (49) turns into

Flp=0:i1) = % [ ke erteo). (55)

which does not converge due to the behavior of the integrand at
large k, . Therefore, f, (p — 0; ) — oo.

3.3. Exact Moments

One can easily show that solution (35) satisfies the
normalization condition (10). Furthermore, by combining
Equation (35) with (9) for n = 2, we can compute the second
moment. The second derivative can be written as

Of _ O, (ﬁ) L oo
ok> o2 \ Ok, ¢ Ak

Since 9¢/0k, o< ki and we set k, = k, = 0 in Equation (9),
the first term goes to zero. In the second term we can use

(56)
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Equation (36) to obtain

6_25 = 2HFLW (57)
ok?
so that
(Ax)?) = (2ﬂ)22HFLJH_ﬂ[M:| . (58)
d¢ =0
Using (see, e.g., Abramowitz & Stegun 1974)
d 2 2
- = = ¢
7 erfc(§) N e (59)
and Equation (35) yields
df, (&) 1 2 I i
e = o7 [2§e erfc(§) + e dgerfc(ﬁ)]
1 2 2
= ¢ I
) [256 erfc(&) 7 ] (60)

Using this in Equation (58) provides us with

((Ax)?) = 4m@ . 61)

The latter formula is well-known and was derived in several
previous papers (see, e.g., Kéta & Jokipii 2000). A time-
dependent or running diffusion coefficient can be defined via

1d
= ——((A 2 2
d (1) 2dt<( X)%), (62)

which becomes for the mean square displacement given by

Equation (61)
K
d (1) = R |~ (63)
Tt

Very clearly we find a declining diffusion coefficient corresp-
onding to subdiffusion. This type of behavior can also be
observed in simulations (see, e.g., Qin et al. 2002a). We can
also compute the fourth moment. In order to do this we need
the following derivatives

0% = o, (%)3 + it 8_25% %8_35 (64)
ok 063 \ Ok, o2 ok Ok, O€ Ok}
and
O ST e o)
okt et \ ok, o063 \ ok, ) ok?
62fL a%g (95 82fL 625 2
4L 55 13 ==
& Ok} Ok, €2 \ ok?
of, 9*¢
SLZs 65
o¢ okt (6)

In the limit X, — O the only nonvanishing derivative of & with
respect to k is the one given by Equation (57). This means that
all terms except the fourth one on the right-hand side of
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Equation (65) vanish. Thus, we find

d*, 5 d*f, (& t)]
-2 LeURSITEZN I 66
[dk;* ] - [ e |,

Furthermore, we find with the help of Equation (59)

dzfﬂf)_i[ 2,8 _L]
& = (1 4 2&%) et erfe(€) ﬁﬁ (67)
and, thus,

a’f (& 1) _

[ dg? ]5—0 s o

where we have used erfc(0) = 1. Combining these findings
with Equation (9) yields

((Ax)*) = (27r)2i4[ d¥f, (ks kys f)]
o=k, =0

dic
= 24KEL Kyt. (69)

Note that this result is in perfect agreement with Equation (2.24)
of Webb et al. (2006). A general formula for the nth moment is
derived in Appendix A. By using two different methods, it is
shown that

((Axy") =

ll_,(n -2i- 1) (I’l + 2)(SHFL\/_)n/2 (70)

™

for even n. For odd n we have ((Ax)") = 0 as mentioned
before.

3.4. Transport Equations

The exact relations derived so far were based on the
Chapman—Kolmogorov approach as given by Equation (1).
Naturally, the following question arises: what is the corresp-
onding transport equation? In the Fourier space a usual
diffusion equation for the axisymmetric case has the form

A
ot
where we have used the perpendicular diffusion coefficient «; .

The corresponding transport equation in configuration space
can easily be obtained via the formal replacement

= —rklf, = —ri (k] + kDS, (71

k, — —i 72
ox, (72)
so that
2li
6—? = KkIALS (73)
where we have used the Laplace operator
0? 0?
Al =—+ —. 74
L= o2 T o (714)

However, in the case considered in the current paper, the
transport is subdiffusive and, therefore, the transport equation
needs to have a different form. One way of approaching this
problem is to assume that the transport equation still contains
only a first order time-derivative. This can be justified because
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the distribution function has to be determined in the sense that
if the initial distribution is known, one has to be able to
compute the distribution for all later times. Considering the first
time-derivative of Equation (35) yields

o _orof _ 1 \/E [ e _ L]
or € Ot ) FL]& p 28et erfe(§) =
(75)

where we have also used Equation (60). Using the distribution

function therein allows us to derive

0
% = wRB kS, + gk, D), (76)

where we have used the inhomogeneity

gl 1) = ——— k2 |51 77)
’ (2m)? o

Transport Equation (76) is clearly in disagreement with
Equation (71). The next step is to determine the function
g(x, y, t) in configuration space. We derive

g, y, )= [d% g(ky, )etx
== (21 ¥ KFL\/Efdzk (k2 + k2)ekrm
d ) ..
(2 )2 RFL\/if (dx dy )
d2 2 ik, x|
~GF F\r(dx )f‘“‘e
— HFL\/:[(S(X) 6(y) + 6(y)—5(x)] (78)

where we have used relation (7) several times.

Using the operator replacement given by Equation (72) in
Equation (76), yields
o 2 (9L . Y.
o, [IFFL

_ +2 +
ot ox* Ox20y? Oy*

) + 80, y, 1)

(79)
where the function g(x, y, #) is given by the last line of
Equation (78). In Appendix C a more detailed discussion of
this differential equation and its solution can be found.

Alternatively, we can use the relation
1
ic?(yc) = —=46(x) (80)
dx X
to derive

d? 2
EMX) = ;6()6). (1)

Therewith we can derive the following transport equation

of, N i i %,
=L = +2 +
ot “'”FL( oxt | Toxtoy: | oyt

+ 2kp | [iz + iz]é(x)é(y) (82)
wt | x y
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where f| = f (x, y; 1).

We note that transport Equation (79) corresponds to the one
obtained in Urch (1977) if we did not have the additional
function g(x, y, t). However, it is questionable whether
Equation (79) corresponds to the correct transport equation.
Usually one assumes that compound subdiffusion incorporates
a memory of past history but there is no obvious hint of
past history in Equation (82). Therefore, Webb et al. (2006)
discussed using fractional Fokker—Planck equations which
retain memory of the diffusive flux at earlier times due to the
convolution term therein. To work with fractional transport
equations became more popular during recent years (see, e.g.,
Strauss & Effenberger 2017 and Zimbardo et al. 2017).

4. Approximations

For applications it could be problematic to work with the
complementary error function derived above. This is in
particular the case if one needs to work with distributions in
the configuration space where solutions are very special
functions (see, e.g., Section 3.2 of the current article). In the
following we explore two different approximations in order to
achieve a significant simplification of distribution functions.

4.1. Approximations Based on Asymptotic Properties

First we consider an approximation based on asymptotic
properties. According to Abramowitz & Stegun (1974) we have

erfc(§) ~ 1 for k1 (83)

and

erfc(¢) ~ J;geffz for &> 1. (84)

Thus, one can use the following approximation for the Fourier
transform of the distribution function as given by Equation (35)
1 1

Q@m)?1 + C¢
_ 1 1
©@mE 1+ Crplk? [r)t
where we find the correct asymptotic limits for C =

J7 &~ 1.77. Based on approximation (85), the characteristic
function becomes

Sk 1)

(85)

<eikr-ll> ~ 1 = 1 _ . (86)
1+ Cf 1+ CHFLkJ_ K|t

The characteristic function found here is visualized together
with the exact result and another approximation in Figures 1
and 2.

The particle distribution function in configuration space can
be derived by combining Equations (85) and (21) to obtain

1 o0
£ (p: r>=§j;

Jo(pkr).  (87)

ki
* 1+ CEFka [K|t

This last integral can be solved via (see, e.g., Gradshteyn &
Ryzhik 2000)

f dk. -

Jo(pku —Ko( fa) (88)
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Figure 1. Characteristic function obtained for compound subdiffusion. Shown
is the exact function as given by Equation (37) represented by the black solid
line. Furthermore, we have shown the approximation of Equation (86) for
C = 7 represented by the dotted line and C = 2//7 represented by the
dashed line. The gray solid line corresponds to the Karagiannidis & Lioumpas
approximation as given by Equation (105).

1

0.8r

0.2

O Il
1072 107" 10° 10’
3

Figure 2. Same as Figure 1 but the results are shown as a semilogarithmic plot.

where we have used the modified Bessel function of the second
kind Ky(x). Thus, we finally find for the distribution function
the following approximation

1 p
filpit) = Ko : 89)
+ 27TCI£FL \/W CHFL KZHI

The latter function is visualized in Figure 3 where we can
clearly see that the function is sharply peaked at the origin. We
can explore the properties of this function at the origin by using
(see, e.g., Abramowitz & Stegun 1974)

Ko(2) = *111(%) —7 for |z =0, (90)

where we have used the Euler—Mascheroni constant +. Clearly
we find f, (p — 0; 1) — oo. One can show by using the
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Figure 3. Distribution function f| (p; t) as given by Equation (89). This
distribution is based on approximation (85).

integral (see, e.g., Gradshteyn & Ryzhik 2000)
o0 1
[ dp oKotap) = — o1
0 a

that the distribution function given by Equation (89) is
correctly normalized. This can also be obtained simply by
showing that approximation (85) satisfies condition (10). It is a
strength of this approximation that normalization and initial
conditions are satisfied exactly.

Furthermore, we can compute the distribution function
projected on the x-axis. In order to do this we combine
Equations (85) and (23) to obtain

1 oo cos(k x)
X, t) = — dk . 92
URERY 2w ‘»/;oc - 1+ CHFka [K)|t ©2)

The k,-integral can be evaluated by employing Cauchy’s
residue theorem. After some algebra we find

+o0
[ D - T, 07
—00 1 + akj_ \/E

where we have used

a = CKpL . JK|t. 94)

Therewith we derive for the projected distribution function

S N YA (e (95)

2. /CKpL K|t

The latter function is shown in Figure 4 for different times.
Again the distribution is sharply peaked but now we find a
finite result at the origin, namely

1

2JC/{FLW .

Below it will be shown that we find the exact second moment
as given by Equation (61) if we set C = 2/ . For this value
we obtain

fix=050) = (96)

fikx=051) ~ &, 97)

KFL /K|t

which is close to the exact result given by Equation (54).

Shalchi & Arendt

1 r T T T m

Figure 4. Projected distribution function as given by Equation (95) for
different times 7' = n”t/nle and C = 2/ . This distribution is also based on
approximation (85). Shown are the results for 7= 0.1 (solid line), T = 1
(dashed line), and T = 10 (dotted line). Also shown is the exact value of the
distribution at the origin (crosses). Those are given by Equation (54).

We can use Equation (95) to compute the nth moment via
+00
{((Ax)") = LDO dx x"f| (x; 1)
= Lfoc dx x"e™/~@
Ja o
=nla"? =T(n + 1)C"?(kpL Jr)1)"?, (98)

where we assumed that n is even. For odd n the moments are,
of course, zero due to symmetry. For the second moment we
have n = 2 and Equation (98) becomes

<(AX)2> = 2CHFL\/W (99)

and the running diffusion coefficient turns into

d(t) = 2crp |21 (100)
2 it

If we want to ensure that approximation (85) provides the
correct second moment, we need to set C = 2/J7 ~ 1.13.
The 4th moment can also easily be obtained from Equation (98)
by setting n = 4 therein. We derive

((Ax)*) = 24C2k3 Kyt (101)
With C = 2/J7 this becomes

(Ax)*) = 24%/€12:LI€HI. (102)

Since 4/7 ~ 1.2732 this is very close to the exact result given
by Equation (69). Problematic in Equation (98) is that the result
sensitively depends on C. Therefore, for higher moments, the
used approximation will be less accurate. Figure 5 shows a
comparison of the moments up to n = 10 based on the exact
formula given by Equation (70) and different approximations.
Clearly we can observe a discrepancy for larger values of n.

4.2. The Karagiannidis & Lioumpas Approximation

In the current subsection we employ an alternative approx-
imation. Karagiannidis & Lioumpas (2007) have stated that the
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Figure 5. Exact moments as given by Equation (70) are represented by the
black dots. All the odd moments are zero due to symmetry. Also shown are the
moments based on Equation (98) for C = 2/ . Those results are represented
by the gray dots. The crosses represent Equation (117) which is based on the
Karagiannidis & Lioumpas approximation.

complementary error function can be well approximated by

1 2
erfc(x) & ———(1 — e 4%)e ¥, (103
(x) Z ﬁx( ) )
where A = 1.98 and B = 1.135. Therewith the function given
by Equation (35) can be approximated by
1 1

(1 — e 104
or )234_5( e %) (104)

fj_ (ks 1) =~

and the characteristic function can be written as

<eikL'xL> ~

—AS 105
BJ‘& ). (105)

Problematic here is that the initial condition (5) is not exactly
satisfied. According to Equation (36) we have £ = 0 for r = 0.
In this case Equation (104) becomes

1 A
=0~ ————. 1
Lkt =0% G b (106)

However, A/(BJ7) = 0.9842 which yields a condition very
close to Equation (5). The same can be said about the

normalization condition (10). Using Equation (104) in (21)
yields

e*Aak

f iy Jy(pk) =" (107)
Oékj_

filp; ) = ) B«/_

where we have used

= KpL /K|t (108)

and Equation (36). Employing approximation (104) in the
fourth line of Equation (23), on the other hand, yields

e*AMﬂ

3/2f dklcos(ka)T. (109)

O‘L

fien =
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Using (see, e.g., Gradshteyn & Ryzhik 2000)

00 1 — eankf
fo dk, cos ()ckL)Ozikf
_ 2JaAme /oA _ qix| erfe(lx|/(2VaA) (110)
2a ’

the projected distribution function can be written as

2JaAT e /@) _ x| erfe(|x| /(2 aA )

fi = 2B 0

(111)

We can compute the value of this distribution function at the
origin. We can easily derive

JA JA 0.3946
fix=051) = = ~ ,
mBJa WB\/HFL [ K|t \/KFL‘/'%H[
(112)

which is similar but not identical compared to the exact value
given by Equation (54) and the previous approximation given
by Equation (97).

Calculation of the nth moment requires us to solve the
integral

(Ax)) = 2f0°0 dx Xf, (x; 1) (113)

with the distribution function given by Equation (111).
Therefore, in order to obtain the moments we need to evaluate
the following two integrals (see, e.g., Gradshteyn &
Ryzhik 2000)

f‘ dx x"e=* = lc*(’”rl)/zl"(n—+l) (114)
0 2 2

and

f dx x"erfc(cx) = ;C*("H)F(n_ﬁ),
0

(n+2)Jw 2
(115)

where, of course, n is assumed to be an even integer number.
Using these integrals in Equation (113) yields after some
straightforward calculations

((Ax)")

_ 1 [F(n+l)_ 2 (n+3)](2\/—)n+2
2waB 2 n+2
(116)

We can further simplify this by employing Equation (52). We
derive

2
Ax)") = A(n+2)/2
((Ax)") T+ B
e N (117)

The moments obtained here are visualized in Figure 5. We
observe that the moments computed based on the approximated
distribution function (111) yields a result that is too small.
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Whereas the lower moments still agree well with the exact
values, for higher moments there is clearly disagreement.

5. Results for Slab Turbulence and Comparison with
Simulations

Usually it is assumed that subdiffusion occurs in the
intermediate regime before normal diffusion is restored. The
recovery of diffusion is related to the transverse complexity of
the turbulence (see, e.g., Shalchi 2019 for a detailed discussion
of the physics of perpendicular diffusion). However, if the
latter effect is absent, compound subdiffusion is obtained as
the final and stable result. Turbulence without transverse
structure is also called slab turbulence. In this case the
components of the spectral tensor are given by

Path) = Ry = gl 252,
ki
All other components of this tensor are zero. For the spectrum
g(k)) we use the Bieber et al. (1994) model

(118)

1
gk = gC(S)(SBZf’H[l + (12, (119)
where we have used the normalization function
()
C(s) = (120)

2ﬁr(“1)

2

with the inertial range spectral index s. For the latter parameter
we use s =5/3 as motivated by the famous work of
Kolmogorov (1941). The parameter £ is the bendover scale
in the parallel direction separating the inertial range from the
energy range. For the model spectrum of Equation (119) the
field line diffusion coefficient becomes (see, e.g., Shalchi 2009)
2
KpL = WC(S)(H(S%.

B;

(121)

This formula can be used to determine the field line diffusion
coefficient which can then be combined with Equation (95) to
obtain the particle distribution function in the perpendicular
direction. This distribution function can now be compared to
the simulations of Arendt & Shalchi (2018). In the latter article
the following dimensionless quantities were used

K
R:L, and KH:_H

T = Qt, b}
& o

(122)

where R is the dimensionless rigidity and Q = (|g|By) /(mc7y)
is the unperturbed gyro frequency with the electric charge of
the particle ¢, the rest mass m, the speed of light ¢, and the
Lorentz factor +. The simulations are shown in Figures 6-8 for
different parameter sets. In all those cases we set 6B/By = 1 for
the magnetic field ratio. Since the simulations were performed
for different rigidities R, different parallel diffusion coefficients
K| were obtained. The values for R and K are given in the
respective captions of Figures 6-8.

As shown in Figures 6-8 we find indeed a sharply peaked
distribution function. Problematic here is that in order to obtain
a high resolution a huge amount of particles is required in the
simulations. Close to the origin it is sometimes difficult to
obtain the peak itself. However, apart from this problem, we
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Figure 6. Distribution functions for pure slab turbulence and a magnetic
rigidity of R = 0.1. Shown are the distribution functions for the different times
T =500 (gray lines) and 7 = 5000 (black lines). The solid lines are the
simulations whereas the dotted lines represent the approximation obtained from
Equation (95). The crosses are the values of the distribution function at the
origin as obtained from Equation (54). The parallel diffusion coefficient is
obtained from simulations and has the value K| = 0.043. The simulations are
from Arendt & Shalchi (2018).
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0.14 |
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Figure 7. Distribution functions for pure slab turbulence and a magnetic
rigidity of R = 1. Shown are the distribution functions for the different times
T =500 (gray lines) and 7 = 5000 (black lines). The solid lines are the
simulations whereas the dotted lines represent the approximation obtained from
Equation (95). The crosses are the values of the distribution function at the
origin as obtained from Equation (54). The parallel diffusion coefficient is
obtained from simulations and has the value K| = 1.3.

find nice agreement between simulations and the results based
on the Chapman—Kolmogorov approach.

Whereas using test-particle simulations to obtain distribution
functions is a valid approach, it is also computationally
expensive. An alternative is provided by using coupled
stochastic differential equations as explained in Webb et al.
(2006). One would expect that this approach might be more
accurate than the simulations of Arendt & Shalchi (2018).

6. Summary and Conclusion

There are indications that perpendicular transport is sub-
diffusive after the ballistic regime. This subdiffusive behavior
can be found until particles start to experience the transverse
complexity of the turbulence. As soon as this happens, normal
diffusion is restored. However, the subdiffusive behavior can
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0.045 - T T T |
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Figure 8. Distribution functions for pure slab turbulence and a magnetic
rigidity of R = 10. Shown are the distribution functions for the different times
T =500 (gray lines) and T = 5000 (black lines). The solid lines are the
simulations whereas the dotted lines represent the approximation obtained from
Equation (95). The crosses are the values of the distribution function at the
origin as obtained from Equation (54). The parallel diffusion coefficient is
obtained from simulations and has the value K| = 230. The simulations are
from Arendt & Shalchi (2018).

persist for a long time in particular in turbulence with small
Kubo numbers. Therefore, the theoretical exploration of particle
distribution functions for the subdiffusive case is important.

The current work supplements the comprehensive work of
Webb et al. (2006). We provided a very systematic calculation
of all fundamental quantities based on Fourier transforms. This
allows for an exact calculation of characteristic functions
and moments. More problematic, however, is the analytical
derivation of particle distributions in configuration space. In
principle such distributions can be obtained but the results
depend on complicated functions such as Meijer G-functions
and generalized hypergeometric functions.

Due to the complications arising if particle distribution
functions are calculated, we proposed two different approx-
imations. In one case the distribution function can even be
approximated by a simple exponential function. However, one
has to be careful because for higher moments such approxima-
tions no longer provide a good approximation compared to the
exact result (see Figure 5).

We have also compared our analytical findings with test-
particle simulations (see Figures 6-8). For two of the
considered parameter sets the simulations were performed in
Arendt & Shalchi (2018) and for one set we performed the
simulations anew by using the same test-particle code. Such a
comparison is not without problems. The theory of compound
subdiffusion predicts a sharply peaked function around the
center of the distribution. In order to reproduce this peak via
simulations, a very high number of particles is needed which
makes such computations expensive. Despite these problems,
we were still able to find agreement with analytical results and
the simulations confirming our understanding of compound
subdiffusion and the validity of the Chapman-Kolmogorov
approach originally proposed by Webb et al. (2006).

Support by the Natural Sciences and Engineering Research
Council (NSERC) of Canada is acknowledged.
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Appendix A
Moments with Derivatives

The nth derivative of a Gaussian function can be written as
(see, e.g., Abramowitz & Stegun 1974)

dl’l
dx"

where we have used the Hermite polynomials H, (x). Useful for
later calculations is the relation

Hy(0) = (=2)"*(n — D) !! (124)

for even n and H,(0) = 0 for odd n. The numbers H, (0) are
also called the Hermite numbers. Here we have used

m—1D!" =1-3-.c(n—1).

e = (= 1)'H,(x)e ", (123)

(125)

The Fourier transform of the perpendicular distribution
function can be obtained from the first line of Equation (3).
With the Fourier transform of the field line distribution function
(25) this can be written as

1 o0 .
frllo ks ) = 5 fo dz f|(z: e ke, (126)
Using
g = W/IQFLZkL (127)
allows us to write
l [e’¢}
fille ki) = o= [ dz fy e, (128)
™

The nth moment, given by Equation (9), can then be written as
. 00 dn
((Axyr) = 2" f dz f (@ Ok ——e €| . (129)
0 a¢r =0
Using Equation (123) therein yields
oo
(Axy) = 2=y H O [ de 3y o. (130)

Now we can substitute the function f(z; #) therein by using
the Gaussian function as given by Equation (30) to derive

1

((An) = iy HyOrif? [ de e/,
s 0
(131)
With (see, e.g., Gradshteyn & Ryzhik 2000)
" /2paz — %a*%*'ﬂ“(n I 2) (132)

and Equation (124) we finally obtain

n 2" n+ 2 "
((Ax)") = ﬁ(n -1 !!F( 1 )(HFL [kit)"/2. (133)
Using the relation (see, e.g., Abramowitz & Stegun 1974)
P(g) = %(n —n (134)
we find
" 1 (n+1 n+2 /2
((Ax)")y = ;F 5 r 1 (8rpLJryt)" . (135)
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As examples we can consider the cases n = 2 and n = 4. After
employing I'(3/2) = v7 /2,1'(5/2) = 3J7 /4, and T'(2) = 1
we obtain

KHI

™

(Ax)?) = 4rpL and ((Ax)*) = 24rf Kyt

(136)

in agreement with Equations (61) and (69).
Alternatively we can employ Legendre’s duplication formula
(see, e.g., Abramowitz & Stegun 1974)

F(z)F(z + %) =21"%2 /7T (22) (137)
to derive
P(n+1): T T'(m+ 1) (138)
2 2" I'(n/2 + 1)
and
F(n+2): NG ]."(n/2)’ (139)
4 2271 T (n/4)
Using the latter two relations in Equation (135) yields
I'n+ DHI'(n/2)
Ax)") =2 KEL JR)E)Y 2. 140
((Ax)™) F(n/2+1)1_‘(n/4)(FL«/ 1) (140)
Employing Equation (52) allows us to write this as
(Axyy = L0 D (141)

n/2
T(n/4 + 1)(HFLW)

in agreement with Equation (2.23) of Webb et al. (2006). Using
Equation (52) two more times yields

I ]
T/ AR

As pointed out before, all these relations are valid only for
even n.

((Ax)") = 4

(142)

Appendix B
Moments from Gaussian Distributions

An alternative for computing the moments was provided by
Shalchi & Kourakis (2007) where one uses Equation (1)
directly to find

+00
(o = [ defy@ 0@, (143)
where we have used the nth moment of the field line distribution
((Ax)")pL. For a Gaussian distribution of field lines this moment
can be computed by employing Equation (24). We obtain

) x2+v2
((Ax)")pL = é‘ff; dx fj:c dy |x|"e” wrr

ArkeL|z|

1 n—+1
=—7T A |z])"?
~T ( 2 )( k<D

(144)
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where n is again even. Using this and Equation (30) in
Equation (143) yields

n+1

1 1 o0 _2
n\ — _ n/2 n/2 g, ant
(Ax)) 7rP( )(4m) = j; dz 7"/,

(145)
With Equation (132) we find

_ lF(I’l —2|— I)F(I’l + 2)(8HFLW)H/2 (146)
i

((Ax)") 1

in agreement with Equation (135).

Appendix C
Transport Equation and Its Solution

In the main part of the text we derived the transport
Equation (79) with the function g(x,y,f) given by
Equation (78). Combining the latter two equations yields

of, » (9. 0%, %,
_— = HH REL 2
Ot ox* ox20y*  Oy*

LR Py a2
+ fm\/; [5(X) dyzf?(y) +0(y) dxzé(X)], (147)

where f| =f (x,y; 1). In order to solve this equation we
reverse the steps performed in the main part of the text. First we
multiply our transport equation by [exp(—ik, - x.)]/(27)? and
integrate over the whole two-dimensional space in order to
derive

Ly L

@2m)?
2
R|KFL ptoo +00
N ' W
Ox* ox*0y*  Oy*

1 K| +00 +o00
+ ——KpL,— dx d
(2m)? TN f’w f’oo Y
d? d? .k
X |6(x)—=6(y) + 6(y)—=0(x|e "o, 148
[()dy2 0) + 600 () (148)
Using integration by parts in the second and third lines yields

1 fjozo dxf::: dy %e‘”‘f"i

@r)?
_ KJHW%L
@)
1 K| o0 o0
_ _(27-‘-)2 K/FL\/gf—tx: dxf_; dy
x (k4 k)6 ()6 (y)e i,

7 [T dy (ki 2k ke en

(149)
Using Equation (7) several times allows us to derive
of, 2 4 1 2 [F
— = K|kpLk — ——KpLk{ =, 150
ot IKFLKLS L e L\/; (150)
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where now f, =f, (ky, ky; t). This is in agreement with
Equation (76). Via the relation (75) we can show that the
solution is indeed

1 2 14
erELk Rt erfc(kpL ki N, K|t)-

o (151)

fL(kJJ 1) =

This is the solution for sharp initial conditions as given by
Equations (5) and (6).
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