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Abstract

The Zeeman effect has been the only method to directly probe the magnetic field strength in molecular clouds. The
Bayesian analysis of Zeeman measurements carried out by Crutcher et al. is the only reference for cloud magnetic
field strength. Here we extended their model and Bayesian analysis of the relation between field strength (B) and
volume density (n) in the following three directions based on the recent observational and theoretical development.
First, we take R, the observational uncertainty of n, as a parameter to be estimated from data. Second, the restriction of
α, the index of the B–n relationship, is relieved from [0, 0.75] to [0, 1]. Third, we allow f, the minimum-to-maximum
B ratio, to vary with n. Our results show that taking R as a parameter provides a better fitting to the B–n relationship
and much more reliable estimates on R, f, and the changing point of α. Arguably our most important finding is that α
cannot be reliably estimated by any of the models studied here, either from us or Crutcher et al., if R>2, which is
indeed the case from our estimate. This is the so-called errors-in-variables bias, a well known problem for statisticians.

Unified Astronomy Thesaurus concepts: Star formation (1569); Magnetic field (994); Molecular clouds (1072);
Bayesian statistics (1900)

1. Introduction

It is increasingly clear that gravity, turbulence, and magnetic
fields (B-fields) are indispensable in understanding the observed
phenomena of star formation (McKee & Ostriker 2007;
Crutcher 2012; Li et al. 2014). However, the details are still far
from clear. For example, the interpretation of the Zeeman
measurements is highly controversial (Crutcher et al. 2009, 2010;
Mouschovias & Tassis 2010).

The scatter plot of line-of-sight B-field (Bz) against the
number density (n) in Figure 1 includes most, if not all, of the
Zeeman measurements ever made. Crutcher et al. (2010)
concluded that a dynamically relevant B-field during core
formation is inconsistent with Figure 1 because the upper limit
of the Bz–n logarithmic plot has a slope α of 2/3 (however, see
the discussion in Section 4.2). Many criticisms focus on the
data itself. For example, the OH measurements are from dark
clouds while the CN data is mostly from massive cluster
forming clumps in giant molecular clouds (GMCs). Since it is
unlikely for dense cores of nearby dark clouds to evolve into
massive cluster-forming clumps, using the slope to infer an
isotropic collapse is questionable. Others are concerned by
either the B-field morphologies (Mouschovias & Tassis 2010)
or clump shapes (Tritsis et al. 2015). There has been no attempt
to examine the Bayesian analysis that leads to the 2/3-slope.

By observing Figure 1, here we introduce important
parameters of the B–n model from Crutcher et al. (2010), and
why we believe that the model can be improved. The first thing
to notice in Figure 1 is the large vertical error bars, which show
how difficult Zeeman measurements are. How about the
horizontal error bars? In the analysis of Crutcher et al. (2010),
the uncertainty, R, of n is fixed as a factor of two, while they

stated that “the actual degree of uncertainty is not precisely
known.” However, the reliability of the statistical results can be
very sensitive to R due to the errors-in-variables problem (see
Section 4.1). Thus, instead of setting R=2 as in Crutcher et al.
(2010), we take it as an unknown parameter to be estimated from
the Zeeman data in the Bayesian way, especially when there are
good reasons to expect R>2. Estimates of n in Figure 1 largely
depend on the critical densities of the tracers, e.g., CN and CS
(1–0), whose effective densities can be off from the critical
densities by more than an order of magnitude (Shirley 2015); see
more reasons given in Tritsis et al. (2015).
Another characteristic of Figure 1 is an increasing upper

envelope for n above some threshold, n0. The slope, α, of the
upper envelope is limited to [0, 0.75] in Crutcher et al. (2010).
This excludes the possibility of super-Alfvenic shocks, which
can result in an α as high as 1. Our models accept all the
physically possible α, which ranges within [0, 1].
Finally, three apparent factors contribute to the vertical

scattering in Figure 1: projections, measurement uncertainties,
and the intrinsic distribution of B. For a given n, Crutcher et al.
(2010) assumed B uniformly distributed between a maximum
and a minimum, which is a fraction, f, of the maximum. For
simplicity, they set f as a constant over all n. We try to free f a
little based on the following reason. The threshold n0 may be
related to the magnetic critical density (e.g., Li et al.
2013, 2014). Below this critical density, gas can only accrete
along the field and move horizontally toward the right in
Figure 1. Accretion happens in all directions above the critical
density, which can compresses field lines and result in
a positive slope in Figure 1. The lower the B, the lower the
critical density and thus the accretion track in Figure 1 can turn
upwards at lower density. The above fact will reduce f
for densities beyond n0, which is indeed also observed in
simulations (see, for example, Mocz et al. 2017).
The remainder of the paper is organized as follows. In

Section 2, we detail the model in Crutcher et al. (2010) and
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generalize it from aspects discussed above. Numerical results
from simulation studies and Zeeman measurements based on
different models are presented in Section 3 and discussed in
Section 4. Finally, Section 5 concludes the paper. Technical
details and extra results are presented in the Appendix.

2. Model and Inference

2.1. Extended Models

We adopt the same Zeeman data set as in Crutcher et al.
(2010). The 137 observations of the line-of-sight component
(denoted by Bz in Crutcher et al. 2010), the corresponding 1σ
uncertainty, and number density are denoted by Bi, σi, and n̂i,
i=1, L, 137, respectively. For the ease of presentation, we
define the following frequently used symbols: P(x) denotes
the probability density function (PDF) of the continuous
random variable x (or ( ∣ )P x Q if emphasizing the parameter

Q); ( ∣ )
( )

l t º
pt

- l

t

-

G x e, 1

2

x 2

2 2 denotes the Gaussian PDF;

( ∣ ) ( )º
-
 U x a b, I a x b

b a
denotes the uniform distribution PDF;

I(A) denotes the indicator function that equals 1 if the statement
A is true and 0 otherwise.

Following Crutcher et al. (2010), we assume the unobserved
true number density (ni) and the upper limit of cloud field
(Mi) of a cloud satisfy the equation ( )= < +M B I n ni i0 0

( ) ( )
a

B I n nn

n i0 0
i

0
. That is, the maximum magnetic field

strength is some constant B0 for clouds with density lower
than some threshold n0 and increases with density beyond
n0 as µ aM ni i .

For the low density part (ni<n0), the observed line-of-sight
field Bi is modeled as a Gaussian random variable centered at the
true line-of-sight field Ai and with known variance σi

2; Ai equals
the total magnetic field Ci times the cosine of the unknown angle
between Ci and the observed line of sight to the cloud, thus

( ∣ ) ( ∣ )= -P A C U A C C, ;i i i i i the total magnetic field Ci is
assumed to be uniformly distributed in the interval ( )f M M,i i1 ,
where 0<f1�1 and Mi=B0. Thus, the observed line-of-sight
field Bi is given by the convolution ( ∣ aP B n B, ,i 0 0 , ) =n f,i 1

( ∣òG B Ai i, ) ( ∣ ) ( ∣s -U A C C U C f B,i i i i i 1 0, )B dA dCi i0 . For the high
density part (ni�n0), the total magnetic field Ci is modeled as
uniformly distributed between f2Mi and

Mi, i.e., ( ∣ )U C f M M,i i i2 , where ( )=
a

M Bi
n

n0
i

0
. The observed

line-of-sight field Bi in this case is given by the
convolution ( ∣ aP B n B, ,i 0 0 , ) ( ∣ò=n f G B A,i i i2 , ) ( ∣s -U A Ci i i,

) ( ∣ )C U C f M M dA dC,i i i i i i2 . Finally, the observed number density

n̂i is modeled as ( )( ˆ ∣ ) ˆ
ˆ=  P n R n I R,i i n R R

n

n

1

2 ln

1

i

i

i
, where R

is the uncertainty of the observed number density n̂i and ni is the
corresponding unknown real density. Thus,
the likelihood function of the observed data point ( ˆ )B n,i i

is given by ( ˆ ∣ ) ( ∣ ) ( ˆ ∣ )q q q=P B n n P B n P n n, , , ,i i i i i i i with q =
( )af f B n R, , , , ,1 2 0 0 .

In summary, we extended the model in Crutcher et al. (2010)
from the following three aspects: (1) The distribution of the total
magnetic field Ci is assumed to follow different uniform
distributions for the lower density part and the higher density
part. That is, the field minimum-to-maximum ratio f for the lower
and higher density parts is assumed to be different. Specifically,
we assume ( ∣ )~C U C f M M,i i i i1 for the lower density part, and

( ∣ )~C U C f M M,i i i i2 for the higher density part. (2) The
uncertainty of observed number density R is taken as a parameter
to be estimated from the Zeeman data under a prior distribution
rather than fixing at 2 as in Crutcher et al. (2010). (3) The
constraint on α is relaxed from [0, 0.75] to
[0, 1]. We refer to this extended model as Model A. For
comparison, we also study its reduced versions. Fixing =f1

ºf f2 in Model A, we arrive at Model B. If we further fix
R=2, we reach at exactly the model in Crutcher et al. (2010),

Figure 1. The Zeeman measurements of interstellar clouds from Crutcher et al. (2010) and all model fitting. The vertical axis represents the magnitude of the line-of-
sight component ∣ ∣Bz (i.e., ignoring the direction of the line-of-sight component). The horizontal axis represents the number density nH. Corresponding to our symbols,
the coordinate of a bullet point is ( ˆ ∣ ∣)n B,i i and the location of the error bar represents the 1σ uncertainty (i.e., si). The red point in the left panel is the GMC Sgr-B2-
North. The colored solid lines are the fitted maximum magnetic field strength (Mi) from different models. Among them, the green solid line (labeled as “Crutcher”) in
both panels is the result of Crutcher et al. (2010). All model fitting in the left panel used the data set with the red point (Dataset1), while the model fitting of Model A,
B, and C in the right panel did not use the red point (Dataset2). The vertical dashed line marks the threshold n0 of the corresponding fitting.
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which we call Model C. We summarized these models in the
following with the dependency graph given in Figure 2.

Model A

Model for Bi: ( ∣ )
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i

2
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a
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Model for n̂i: ( )( ˆ ∣ ) ˆ
ˆ=   P n R n I R R, , 1i i n R R

n

n

1

2 ln

1

i

i

i
.

Parameters: ( )q a= f f B n R, , , , ,1 2 0 0 .

Model B
Take = ºf f f1 2 .
Parameters: ( )q a= f B n R, , , ,0 0 .

Model C(the model in Crutcher et al. 2010)
Take = ºf f f1 2 and R=2.
Parameters: ( )q a= f B n, , ,0 0 .

2.2. Bayesian Inference

In this section, we present necessary elements of Bayesian
inference for the above models to make them accessible for
readers unfamiliar with Bayesian inference. Prior distribution,
likelihood function, and posterior distribution are three key
elements in Bayesian inference. The prior distribution models
the prior knowledge about the parameter, the likelihood
function summarizes the knowledge from the data, while the
posterior distribution summarizes the knowledge about the
parameter from the prior distribution and the data.

Likelihood function. The likelihood function summarizes the
evidence from the data. Let D be the observed data set{ ˆ }=B n,i i i

m
1

with m=137. For Models A, B, and C, the likelihood function
is ( ∣ ) { }q =  +=P D I Ii

m
i i1 1 2 , with Ii1 and Ii2 given in the A.1.

Prior distribution. In Bayesian analysis, the prior P(θ)
should be set such that the resultant posterior distribution is
proper. That is, the integral ( ∣ ) ( )ò q q qP D P d should be finite
for any D. No valid inference or summary can be made based
on an improper posterior distribution. For Models A, B, and C,
the prior distribution of the number density ni is set as

( ) µP n n1i i, following that given in Crutcher et al. (2010).
The prior distributions of f1 and f2 in Model A are set as a
uniform distribution on [0, 1]. The prior distribution of α, is set
as P(α)∝I(0<α<1)/α, more noninformative than that
given in Crutcher et al. (2010; P(α)∝I(0<α<0.75)/α).
Instead of following Crutcher et al. (2010) to set the prior
distribution of n0 as P(n0)∝1/n0, which has an infinite
integral, we set it as ( ) µP n n10 0

2, which has a finite integral.
Our prior penalizes more heavily the bigger n0 values and
improves the Markov chain Monte Carlo (MCMC) algorithm.
The prior of B0 is the same as that in Crutcher et al. (2010), i.e.,
P(B0)∝constant. The prior distribution of the uncertainty R is
set as ( ) ( )µ P R I R R1 2 since a larger uncertainty is
usually less probable. Note that the prior expectation of R and
n0 is infinity, which means the prior is pretty noninformative
and their posterior estimates will be determined by data.
Posterior distribution. The posterior distribution of para-

meters is given by ( ∣ ) ( ∣ ) ( )q q qµP D P D P , where P(θ) is the
joint prior distribution.
Sampling from posterior distribution. In the Bayesian

framework, all of the statistical inference are based on the
posterior distribution. However, as shown in Appendix A.1, the
posterior distribution in our problem is too complex to
summarize analytically, thus an MCMC algorithm (Robert &
Casella 2004) is designed to sample from this complex joint
posterior distribution. The converged samples are used for
statistical inference. Generally speaking, MCMC algorithms
achieve the posterior sampling of a target density function g(θ)
by evolving a Markov chain over the parameter space of θ
iteratively. In the (t+1)-th iteration, we propose a candidate
parameter y given the previous sample θt from a proposal
distribution ( ∣ )qq y t , then set q =+ yt 1 with probability

( )( ) ( ∣ )
( ) ( ∣ )

= q
q q

r min 1, g y q y

g q y
t

t t
and q q=+t t1 with the remaining

probability. In our case, g(θ) is the posterior distribution of
parameters ( ∣ )qP D as calculated in Equation (1) in
Appendix A.1. An MCMC algorithm, more specifically, a
Metropolis-within-Gibbs algorithm (Robert & Casella 2004), is
used to sample from the posterior distribution, where we
iteratively update each parameter by sampling from its
univariate conditional posterior distribution with other para-
meters fixed at their latest values. When a conditional posterior
distribution is difficult to sample directly, we use a Metropolis–
Hastings algorithm to sample from it. The algorithms for
Models B and C are very similar to Algorithm 1, thus we do not
describe them here.
Convergence diagnosis of MCMC. To make sure that the

Markov chain from an algorithm is converged, we run multiple
Markov chains of the same algorithm independently starting
from random initial values and compute the potential scale
reduction factor (PSRF; Brooks & Gelman 1998) to diagnose
the convergence. Usually PSRF�1.1 indicates that the
Markov chains are converged.
In our analysis, we run the Metropolis-within-Gibbs

sampling algorithm for 20,000 iterations in each of three

Figure 2. Dependency graph of Models A, B, and C. Among all the variables,
the red ones are model parameters to be estimated, the bold ones are latent
variables that are unobservable but of no direct interest, and the others are
observed. Note that Mi is a deterministic function of other variables, thus not a
new variable.
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independent chains. The PSRF of the second half iterations
shows that the Markov chains have converged. We thin the
second half of each chain by taking every tenth observation as
an effort to reduce autocorrelation, and then merge all selected
observations for posterior inference. The maximum a posterior
(MAP), posterior mean and median can be reported as the point
estimates of parameters in a model. If the posterior distribution
of the parameter is unimodal and symmetric, MAP is the same
as posterior mean and posterior median. In this paper,
following Crutcher et al. (2010), we report the posterior
median as the point estimate of parameters due to its
robustness.

2.3. Model Comparison

Compared with Model C, Model B has an extra parameter,
which means a better fitness of Model B to data may be due to
its higher complexity. Thus, we should compare Models A, B,
and C by taking into consideration the complexity of these
models. To this aim, the Bayesian information criteria (BIC;
Schwarz 1978) is used to compare these models, which is
defined as ( ) ( ) (ˆ )q= -M n p LBIC ln 2M M , where n is the
sample size, pM is the number of parameters in Model M, q̂M
is the estimate of parameter θ (here we use posterior median) in
Model M, and (ˆ )qL M is the log-likelihood at q̂M of Model M. A
smaller BIC value indicates a more preferable model.

3. Results

3.1. Simulation Study

Before applying the Bayesian procedure developed in
Section 2.2 to Zeeman measurements, synthesized data sets
with known underlying parameter values are used to evaluate
the effectiveness of our algorithms, and understand the
behavior of Bayesian estimator under different cases. In
the simulation study, we know the true values of parameters
in the model, and the Bayesian procedure can be evaluated
through comparing the Bayesian estimates with the true values.
However, we do not have the ground truth for the real data and
do not know to what extent we can believe the results from our
method if we apply the Bayesian procedure directly on the real
data. Thus, the simulation study is necessary and important to
evaluate the statistical method.

If a Bayesian algorithm is effective, the true parameter value
underlying the data set shall be covered well by the posterior
distribution inferred from the data, preferably in the high
density area. More specifically, the empirical coverage rate of
95% highest posterior density interval (HPDI) of each
parameter in the model shall be around 95% if the algorithm
is effective in estimating the parameter (Cook et al. 2006),
where the 95% HPDI is defined as the shortest interval in
which the posterior samples located with probability 95%.
Thus, the coverage rate of 95% HPDI of each parameter,
estimated from 200 independent replicates for each combina-
tion of a model and an uncertainty level R, is used to evaluate
the performance of Bayesian estimator.

To mimic the Zeeman data set, the true number density
values (ni) are set as the observed number density of the
Zeeman data set and the uncertainty of observed line-of-sight
field (σi) are set as corresponding values in the Zeeman data
set. The uncertainty of observed number density R is set at 2r
with r=1, 2, L, 19 to represent different levels of uncertainty
for observations of the number density. Other parameter values

are sampled from their prior distributions. Observed line-of-
sight field and number density are then generated according to
Models A, B, or C.
Our algorithm yields accurate estimates if number density

has little observation uncertainty. The results shown in Figure 3
indicate that our algorithm produced satisfied coverage rates
when data is generated from Model A/B/C with R=2, i.e.,
with small observation uncertainty on number density. This
suggests that our Bayesian algorithm is correct and can
effectively recover parameter values if the uncertainty of
number density is small.
Model B is preferred in terms of coverage rate when the

uncertainty of number density is unknown. As shown in
Figure 3, the coverage rate of f, α, and n0 based on Model C
decreases faster when the uncertainty of number density R
increases but one estimates them by fixing R=2. By
comparison, Model B enjoys a much higher coverage rate for
these parameters, which suggests that one should not fix R at
some value when little is known about it.
Estimates on α and n0 are unreliable when the

uncertainty of number density is high. Although our
Bayesian algorithm can recover true parameter values well
when the uncertainty on number density observation is small,
i.e., R�2, the same Bayesian algorithm performed less
accurately for α and n0 when the uncertainty is cannot be
neglected. As shown in Figure 3, for all three models, when the
true uncertainty of observed number density (R) is 2, the
coverage rates of 95% HPDI of all parameters are around 95%.
However, the coverage rate of 95% HPDI of α decrease below
60% when R gets larger, and that of n0 drops to around 80%,
which is undesirable. These facts suggest that the Bayesian
algorithm, although correct, can no longer effectively recover
the true values for α and n0 when the number density has a
significant amount of observation uncertainty.

3.2. Zeeman Measurement

In this section, we apply our Bayesian procedure to Zeeman
measurement. Since the red point in Figure 1, which is for the
GMC Sgr-B2-North, might be an influential point as pointed
out by Crutcher et al. (2010), we work on both the full data set
(labeled Dataset1) and the data set without the red point
(labeled Dataset2). We fit both Dataset1 and Dataset2 to
Models A, B, and C using our MCMC algorithm, each with
three independent runs starting from different initial parameter
values. The three Markov chains are converged with
PSRF < 1.1. The posterior median (with 95% HPDI) of each
parameter in each model is summarized in Table 1.
Furthermore, we show in Figure 1 the fitted lines based on
Models A, B, and C. Crutcher et al. (2010) reported the
posterior median as ( f, α, B0, n0)=(0.03, 0.65, 10,300). To
compare with it, we first set the prior of α as that in Crutcher
et al. (2010), i.e., P(α)∝I(0<α<0.75)/α, and obtain
posterior distributions of parameters similar to those presented
in Figure 4 in Crutcher et al. (2010). Next, we set the prior of α
as P(α)∝I(0<α<1)/α, and the posterior distributions
of parameters are shown in Figure 4. Comparing results from
P(α)∝I(0<α<0.75)/α and P(α)∝I(0<α<1)/α (see
Table 1), we see that the constraint α<0.75 results in a
smaller estimate on α and a shorter 95% HPDI due to the fact
that it is more informative than α ä [0,1]. As discussed before,
the true value of α possibly locates in [0.75, 1], but the
restriction α<0.75 will definitely lead to an estimate of α less
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than 0.75 regardless of the data, thus using P(α)∝I
(0<α<0.75)/α as the prior may underestimate α. However,
there is no harm to allow α to take any value from [0, 1] in the
weak prior, even if it actually locates in [0, 0.75].

The GMC Sgr-B2-North has a different impact on results
from Model C and Model A/B. Both Model A and Model B
give a significantly larger estimate of R from Dataset1 than that
from Dataset2. This is consistent with the claim that the GMC
Sgr-B2-North behaves much like an outlier with a larger
uncertainty on number density than others (Tritsis et al. 2015).
However, the GMC Sgr-B2-North shows no significant impact
on the results from Model C, which is consistent with the claim
made in Crutcher et al. (2010). This is caused by fixing R at an
overly optimistic value and ignoring the larger uncertainty on
the number density of GMC Sgr-B2-North. In other words, the
estimated value of R is very sensitive to one or a small number
of data points. Thus, it does not necessarily reflect the actual
mean uncertainty. Furthermore, we evaluated the effect of each
data point in Dataset2 on estimating R and concluded that each
of them has little impact on R since removing each of them
gives an estimate of R still around 9.3. This further confirms
that GMC Sgr-B2-North is a special point with larger
uncertainty on number density.

Model B is the best model among the three models. We
compare the three models based on BIC using their posterior
median estimates shown in Table 1. On Dataset2, we have BIC
(C)−BIC(B)=4.993 and ( ) ( )- = -B ABIC BIC 5.77, which
indicates strong evidence that Model B fits the data better than
Model A and strong evidence that Model B is more preferable

than Model C (consistent with our conclusion based on the
coverage rate from the simulation study). Thus, Model B is the
best model. On Dataset1, we have ( ) ( )- =C BBIC BIC 47.703
and ( ) ( )-B ABIC BIC = −4.889, thus Model B is also the best.
Therefore, our final estimate should be the estimate from Model
B on Dataset2, which is ( f, α, B0, n0, R)=(0.26, 0.72, 8.3,
1125, 9.3; see Figure 5). Comparing with the results presented in
Figure 4 of Crutcher et al. (2010), our estimates on f, n0, and R
from Model B are significantly different.
Estimates on α and n0 are unreliable. According to results

reported in Table 1, the estimated uncertainty of number
density (posterior median of R) from Dataset2 is 9.3 for Model
B and 7.7 for Model A, respectively. These estimates are
consistent with the literature survey of R by Tritsis et al. (2015),
who compared volume densities adopted in Crutcher et al.
(2009) with those appeared in the literature and found
differences by factors between 2 and 60 with a mean at 15, if
the potential outlier with »R 400 (the red point in Figure 1) is
excluded. Figure 3 shows that the coverage rate of 95% HPDI
for R is around 95% for R ranging from 2 to 38, thus our
Bayesian algorithms for Models A and B can recover R
accurately. On the other hand, the coverage rate of 95% HPDI
for α and n0 when R=9.3 is only about 60% and 80%,
respectively. Thus, the estimates on α and n0 are unreliable,
especially for the estimate of α.
In summary, we obtained a better fitting of Zeeman

measurements by extending the model in Crutcher et al.
(2010). It seems that our estimate of α, 0.72 with the 95%
HPDI given by [0.58, 0.86], is significantly larger than 0.5.

Figure 3. Coverage rate of the 95% HPDI of each parameter under different uncertainty of number density. The red dashed–dotted line corresponds to the target
coverage rate 95%, and the blue dashed–dotted line marks R=2. Note that f1=f2=f in Model C and Model B.
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However, we should keep in mind that, due to the errors-in-
variables problem (see Section 4.1), such 95% HPDIs only
cover the true value of α with a probability around 60%. More
efforts are needed to improve this result (see the discussion in
Section 4.1).

On the other hand, since our simulation results in Section 3.1
show that our estimates on ( f1, f2, B0, R) are reliable and our
estimate on n0 is not too bad, one may ask whether the
estimated α is underestimated or overestimated if the estimated
values of ( f1, f2, B0, n0, R) from Model B under Dataset2 are
indeed the reality. We conducted another simulation study to
check this. Datasets mimicking the Zeeman data set (Dataset2;
see Section 3.1 for the mimicking procedure) are synthesized
from Model B with ( f1, f2, B0, n0, R)=(0.26, 0.26, 8.3, 1125,
9.3) and α=0.05+0.05t, t=1, ..., 18. For each α, 200 data
sets are synthesized. For each data set, our Bayesian method is
used to fit Model B to the data. Figure 6 compares the posterior
median estimates of α with corresponding true α values. It
shows that, when ( f1, f2, B0, n0, R)=(0.26, 0.26, 8.3, 1125,
9.3), the Bayesian method tends to underestimate α and a true
α�0.6 can rarely lead to an estimate â = 0.72. That is, if the
truth underlying Zeeman measurements is Model B with ( f1, f2,
B0, n0, R)=(0.26, 0.26, 8.3, 1125, 9.3), the real α is most
likely larger than 0.6.

4. Discussion

4.1. Errors-in-variables Model

We studied through simulation the accuracy of the Bayesian
approach for estimating parameters in Models A, B, and C, and
found that the results for α and n0 are unreliable, especially for
α, when the uncertainty of observed number density is large,
i.e., R>2 (see Figure 3). We discuss in the following how to
further improve the estimates. The discussion goes in three
directions: (1) statistical inference on errors-in-variables
models; (2) uncertainty of observations; and (3) sample size
of the observations.

Statistically, it is difficult to estimate accurately para-
meters in Models A, B, and C when the uncertainty of
number density is large. When the uncertainty of number
density is large, Models A, B, and C are essentially errors-in-
variables models. The incapability to recover true parameters as
suggested by the low coverage rates of 95% HPDIs of α and n0
(see Figure 3) is not strange to statisticians when dealing with
such errors-in-variables models. The estimators of parameters

in errors-in-variables models tend to be biased no matter
whether Bayesian or frequentist approach is used and no matter
how much data are collected. That is, these models lead to
inconsistent estimates and may be intrinsically non-identifiable.
A theoretical analysis of a simple linear errors-in-variables
model is given to illustrate such biasedness problem in the A.2.
For the Zeeman measurement, we show the bias of ( f1, f2, α,
B0, n0, R) in Models A, B, and C in Figure 7 obtained through
200 independent simulations under different R values when the
true value of ( f1, f2, α, B0, n0) is (0.03, 0.03, 0.65, 10, 300; i.e.,
the estimates reported by Crutcher et al. 2010). From the
results, we see that the bias of parameters in these models is
very small and the coverage rate of 95% HPDI is satisfied (see
Figure 3), when R=2. When R gets larger, the bias of α and
n0 tends to be larger, which leads to a lower coverage rate of
95% HPDIs. Interestingly, combining with results in Figures 3
and 7, we find that the uncertainty of number density has little
impact on the accuracy of f and B0 in Model B. Since the bias
may depend on the true value of parameters, the trend of the
bias shown in Figure 7 may be only true around the particular
parameter setting, i.e., ( f1, f2, α, B0, n0)=(0.03, 0.03, 0.65, 10,
300). It should not be considered as a general trend for all
parameter settings, which is too complicated to obtain for
models with so many parameters. The bias of parameter
estimates in other errors-in-variables models can be found in
many fields, such as survival analysis (Kong & Gu 1999),
economics (Hsiao 1989; Li 2002), and epidemiological study
(Frost & Thompson 2002). Some researchers proposed to
correct the bias for some simple models based on a corrected
version of the log-likelihood function, see Kong & Gu (1999)
for an example. However, it is still an open problem to correct
complex nonlinear errors-in-variables models.
Reducing the uncertainty of observations is helpful to

improve the accuracy. One way to improve the reliability of
results from these models is to reduce the uncertainty of
observed number density, which, however, is very challenging.
Another way is to reduce the uncertainty of observed Bz (Li &
Pan 2016; Li et al. 2019; the Five-hundred-meter Aperture
Spherical radio Telescope gives us hope). However, this
method can not exclude the estimation bias but may only
reduce the bias, which can be concluded from the simple linear
errors-in-variables model (see Equation (2) in the A.2).
More data will be helpful to improve the results. One

motivation of using Bayesian analysis is the possibility of
including the “none detections” (data with signal to noise

Table 1
Posterior Median (and 95% HPDI in Brackets) of Parameters in Models A, B, and C

f1 f2 α B0 n0 R

Model A DS1a 0.59 [0.10, 1.00] 0.05 [0.00, 0.16] 0.71 [0.55, 0.90] 7.1 [4.2, 10.1] 506 [46, 1440] 40.3 [14.1, 88.8]
DS2a 0.53 [0.08, 0.99] 0.11 [0.00, 0.35] 0.72 [0.58, 0.83] 7.7 [5.7, 10.7] 732 [73, 1620] 7.7 [2.7, 16.1]

Model B DS1a 0.08 [0.00, 0.31] 0.08 [0.00, 0.31] 0.73 [0.57, 0.94] 9.1 [6.1, 12.3] 852 [106, 2476] 44.1 [13.3, 117.7]
DS2a 0.26 [0.00, 0.83] 0.26 [0.00, 0.83] 0.72 [0.58, 0.86] 8.3 [5.6, 11.4] 1125 [366, 2616] 9.3 [2.4, 19.0]

Model C2 DS1a 0.02 [0.00, 0.09] 0.02 [0.00, 0.09] 0.71 [0.59, 0.84] 9.7 [7.3, 12.7] 346 [99, 765] 2
DS2a 0.03 [0.00, 0.13] 0.03 [0.00, 0.13] 0.76 [0.63, 0.87] 9.6 [7.2, 12.3] 605 [202, 1091] 2

Model C1 DS1a 0.02 [0.00, 0.08] 0.02 [0.00, 0.08] 0.68 [0.59, 0.75] 9.7 [7.2, 12.7] 286 [89, 573] 2
DS2a 0.03 [0.00, 0.11] 0.03 [0.00, 0.11] 0.71 [0.63, 0.75] 9.8 [7.3, 12.9] 462 [184, 805] 2

Notes. For Models B and C, we have f1=f2=f.
The prior of α is ( ) ( )a a aµ < <P I 0 0.75 in Model C1 and ( ) ( )a a aµ < <P I 0 1 in Model C2.
a DS1 and DS2 are abbreviations for Dataset1 and Dataset2, respectively.
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ratio less than three), which are almost twice as much as the
detections of the Zeeman measurements (Figure 1), into the
analysis (Crutcher et al. 2010). However, we have already
seen that larger uncertainties from observations can result in
larger uncertainties in the estimate. Extra data will be helpful
only if its uncertainty is under a certain limit, which may also
be related to the amount of such extra data. To better
understand this point, we show theoretically in the A.3 the
effect of extra noisy data in estimating parameters for a simple
linear model. The exact criterion for an acceptable noise level
for Models A, B, or C is more difficult to acquire and is out of
the focus of this work, but should be something kept in mind
for future analyses.

4.2. Comparing with Numerical Simulations

The role of statistics in data analysis is to objectively infer in
face of the uncertainty in data and give a full uncertainty
quantification of the results such that we know to what extent the
results we obtained should be believed. The significant
uncertainty (the low HPDI coverage rate) we showed here can
explain the discrepancy between the results from Bayesian
analysis and from magnetohydrodynamic simulations of mole-
cular clouds. All the simulations we can find from the literature
(e.g., Li et al. 2015; Mocz et al. 2017 and Zhang et al. 2019), no
matter super- or sub-Alfvenic, predict n0>104, yet the n0
estimated by Crutcher et al. (2010) is 300. As shown in Figure 3,
our Model B improves the coverage rate of HPDI of n0 from
Model C, which is equivalent to the model in Crutcher et al.
(2010), by more than 200% for R>8 and bring the estimated n0
one order of magnitude closer toward the value predicted by the
physical simulations.

Another thing worthy of emphasis is f, for which Models A
and B estimate significantly higher values compared to Model
C with much higher coverage rates of HPDIs. Simulations,
however, result in even higher f values, especially f2 (see for

example Figure 4 of Mocz et al. 2017). This can be explained
by the bias of Zeeman measurements due to Blos reversals
within a telescope beam. Field reversals are considered minor
in Crutcher et al. (2010), so is the bias of f. However, recent
interferometer polarimetry shows that field morphologies can
be quite complicated in cloud cores (Hull et al. 2014; Zhang
et al. 2014) even when the mean core fields are aligned with the
cloud fields (Li et al. 2009). To explain this, Zhang et al. (2019)
performed numerical simulations to show that cloud cores are
always super-Alfvenic, which explains Zhang et al. (2014)
and Hull et al. (2014), even when the cloud as a whole is
sub-Alfvenic, which explains Li et al. (2009). The fact that
cores are super-Alfvenic may explain the difference between
the observed and simulated f, especially f2 as none of the
Bayesian models assumes the possibility of Bz reversal within a
telescope beam.
Also note that all the simulations mentioned above achieve

α≈2/3 at high densities, even for a sub-Alfvenic cloud with a
magnetic criticality of merely two (Zhang et al. 2019). This
means that α≈2/3 is not necessarily a signature of “weak
field,” which is only true when the total mass is fixed. The
cores formed in these simulations kept on accreting from
the envelopes, which allows the core mass to grow with the
increasing magnetic critical density due to the change of the
field morphology after gravitational compression.

5. Conclusion and Future Work

In this paper, we revisited the Zeeman data set for revealing
the relationship between the total field strength and the
volume density of interstellar clouds with uncertain quanti-
fication. We extended the model presented in Crutcher et al.
(2010) from three aspects, and showed that the extended
model (Model B) is much better for fitting the Zeeman data
set, when the uncertainty of number density is unknown to us.
Our estimate (posterior median) of ( f, α, B0, n0, R), (0.26,

Figure 4. The histogram of converged posterior samples of parameters in Model C taking prior of α as ( )a a< <I 0 1 based on Dataset1 (the first row) and
Dataset2 (the second row). The blue dashed line in each subplot denotes the estimated value of the corresponding parameter from Crutcher et al. (2010), and the red
solid line corresponds to the posterior median from our algorithm.
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0.72, 8.3, 1125, 9.3), is significantly different from that given
in Crutcher et al. (2010), (0.03, 0.65, 10, 300, 2), as shown in
Figure 5.

Comparing with Model C, the model in Crutcher et al.
(2010), our Model B, as shown in Figure 3, provides much
more reliable estimates on f, α, and n0 by taking R as a
parameter to be estimated from the data, instead of fixed at two
as in Model C. The improvement of Model B on estimating α
is not enough, since the coverage rate of the 95% HPDI is only
around 60%. The difficulty of estimating α raises from the
errors-in-variables model. Note that this problem of errors-in-
variables models does not originate from the Bayesian
approach. Rather, it is an essential difficulty for inferring from
such models that the frequentist approaches also have. In
summary, we should be more careful on drawing a conclusion
from data sets with errors in both variables.
In Models A, B, and C, the total magnetic field Ci, following

Crutcher et al. (2010), is modeled as uniformly distributed in
the interval ( )fM M,i i , where Mi is the maximum magnetic field.
As pointed out in Section 4.2, the turbulence Alfvén Mach
number grows with densities (Zhang et al. 2019), so should be
the chance for “Bz reversal” within a telescope beam. Ignoring
this effect will bias f toward lower values. Moreover, the model
for Ci can be more informative than the currently used uniform
distribution if more knowledge on the relationship between the
total magnetic filed and maximum magnetic field strength is
available. In addition, the model for the observed number
density can also be tuned if certain observation process
demands.
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Figure 5. The histogram of posterior samples of parameters in Model B based on Dataset2. The blue dashed line in each sub-plot denotes the estimated value of the
corresponding parameter from Crutcher et al. (2010), and the red solid line corresponds to the posterior median from our algorithm.

Figure 6. Posterior median estimates vs. the true underlying value of α. For
each true α value on the horizontal axis, 200 data sets are synthesized and used
to fit Model B. The 200 posterior median estimates â for the same underlying
true α are presented in a boxplot. The red dotted line is the diagonal line, and
the red solid line marks the mean value of the posterior estimates for each true
α. The blue horizontal dotted line corresponds to â = 0.72 from Model B.
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Appendix

A.1. Posterior Distribution

The essence of Bayesian inference is to estimate parameters by
combining the knowledge built in prior distributions and the
evidence from the data incorporated in the likelihood function. In
this section, we present mathematical derivation of the posterior
distribution ( ∣ )qP H D, and ( ∣ )qP D for Model A, since the
formula for Models B and C is a special case of that for Model A.
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Since H is unobservable, we integrate it out from the
posterior distribution. Hence, the posterior distribution of θ
becomes
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Figure 7. Bias analysis of parameters in Models A, B, and C under different uncertainty of number density when the true value of ( )af f B n, , , ,1 2 0 0 is (0.03, 0.03,
0.65, 10, 300). Bias is defined as q̂ q-E 0, where q̂ is the estimated value, θ0 is the true value, and the expectation is taken over the data. Note that in Model C and
Model B, f1=f2=f. For clear presentation, we only show the error bar (mean ± sd) of the estimated bias of parameters in Model B, since the error bar for Models A
and C is similar to that for Model B.
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Let { ∣ ∣ }=f f A Bmax ,i i1 1 0 , we have
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Furthermore, if R=1, we have

A.2. Analysis of the Linear Errors-in-variables Model

In this section, we explain theoretically the difficulty in
estimating parameters for errors-in-variables models through a
similar but much simpler, thus analytically approachable,
errors-in-variables model. The notations in this section are
independent from those in the other sections.
Assume that we have observations ( ) =x y i n, , 1, ,i i ,

from the following model:
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where zi is unobservable, σ0 and σ1 are known constants. In this
model, xi is the measurement of zi with a Gaussian error ηi, and yi
follows a linear regression model with regard to the unobserved
zi. The goal here is to estimate the unknown parameter β based
on the observations ( ) =x y i n, , 1, ,i i . We shall demonstrate
that, as long as there is error in the measurement xi, i.e., σ0>0,

the parameter β cannot be estimated consistently. For this
purpose, we need an assumption that the observations (xi, yi) and
unobserved zi (i=1,L, n) are bounded. There are basically two
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approaches to obtain the estimate: the frequentist approach and
Bayesian approach.

1. Frequentist approach—We first consider the frequentist
approach to perform a simple linear regression of yi on xi. The
resulting estimator is

ˆ ( )
( )

b
b bh h

h h
º
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å + + +

å + +
=

=

=

=
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By the law of large numbers, h så =n i
n

i
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0
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n i
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i i
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1 ,
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n i
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1
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n i
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i i
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1 as  +¥n , Thus, the

estimator b̂  b
s s+1 z0

2 2 , where s = å+¥ = z nlimz n i
n

i
2

1
2 , and

we assume the limitation s < +¥z
2 . Thus, the linear regression

estimate is biased by a multiplicative factor of ( )s s+1 1 z0
2 2

when s > 00 .
2. Bayesian approach–The second estimation method is the

Bayesian approach. We now illustrate that the Bayesian
analysis also produces a biased estimate asymptotically. First,
we assume a typical prior distribution for zi and β as follows.

1. ( ) ( ∣ )m s=P z G z ,i i i , where μi and σ are given constants,
i=1, L, n;

2. ( ) ( ∣ )b b m s= b bP G , , where μβ and σβ are given
constants.

Then, the posterior density of β can be derived as:
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where s s b=2 1 , b=v yi i .
To simplify the above equation, we introduce the following

lemma, whose proof shall be straightforward.
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By Lemma 1, we have:
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The final line of the above equation shows that the Bayesian
method is essentially estimating β by regressing yi on si based
on the linear regression model b= + =y s w i n, 1, 2, ,i i i ,

where ( ) ( ∣ )s b s= +P w G w 0,i i 1
2 2

12
2 , ( )m= + -s tx t1i i i,

= s
s s+

t
2

2
0
2 , and s = s s

s s+
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0

0
2 2

. Asymptotically, as  +¥n ,

the posterior distribution of β will converge to the same point
as the following estimator:
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Thus, we just need to show that b̂MLE will not converge to the
true β value.
Denote the derivative of ( ( ))bFlog as T(β). b̂MLE shall

satisfy ( ˆ )b =T 0MLE . We can derive that ( )b =T
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Assume that the true value of β is ( )b ¹00 , thus
b= + y zi i i0 according to the model assumption. We have,
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As we can see, the equation T(β)=0 is too complicated to have
an analytic solution. Thus, we consider instead T(β0). If T(β0) is
zero, we have b b=MLE 0. By the law of large numbers,
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where op(1) denotes a term that will converge in probability to
zero as  +¥n .
First, we note that ( ) ( )b s= + + >s s

s b s+
T o 1 0p0 12

21
2

12
2

1
2

0
2

12
2 , if

we have the best guess of mi such that si=zi. In other words,
bMLE is a biased estimate of β0 under this best guess. In addition,
if there is no measurement error (s s = =s z0 and i i0 12 ),
T(β0)=op(1), that is, b̂MLE is unbiased. Second, one may
specify μi=xi, which gives si=xi. In this case, ( ) ( )b =T o 1p0

only if [ ]b = - -s
s

s
s s

10
11
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2 . Thus,

bMLE is a biased estimate of β0 for this case, since (b =P 0
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2 . Third, note that ( )bT 0 is a function

of ( )m m m= Î R, , n
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1 , we rewrite ( )bT 0 as ( ∣ )m bT 0 . Let
{ ( ∣ ) ( )}m m b= Î =bA R T o: 1n

p00 be the set of μ on which
b b»MLE 0, i.e., bMLE is an unbiased estimate of β0. The
number of points belonging to set bA 0 depends on unknown

( )=z z z, , n1 and unknown β0, and it can be finite or infinite.
However, we specify μ at random, and for any point Î ba A 0,
we have P(μ=a)=0 when μ is viewed as a random vector. In
other words, we cannot guess exactly what value of μ such that

( ∣ ) ( )m b =T o 1p0 . In summary, bMLE is usually a biased estimate
of β0. We cannot recover the true parameter value even if we
have infinite number of observations.
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A.3. The Effect of Extra Noisy Data

In this section, we analyze the effect of extra noisy samples
on estimating the parameter in a linear model, and show the
condition under which these extra noisy samples are helpful.
The following analysis is based on the frequentist approach for
the ease of presentation, but a similar conclusion can be drawn
from the Bayesian approach.

Assume that the original data set {( ) }=x y i n, : 1, 2, ,i i
are from b= + y xi i i for i=1,2, L,n, and the extra
data set {( ) }= + + +x y i n n n m, : 1, 2, ,i i are from
=yi b h+xi i for = + +i n n m1, , , where ( ) =P i
( ∣ )sG 0,i 1 , ( ) ( ∣ )h h s=P G 0,i i 2 .
Similar to the simple linear regression, β based on the whole

data set {( ) }= +x y i n m, : 1, 2, ,i i can be estimated by
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where β0 is the true value of β, = å =S xi
n

i1 1
2,

and = å = +
+S xi n

n m
i2 1
2.

Setting m=0, we get the estimate of β based on the original
data set,
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Both estimator are unbiased regardless of adding the extra
noisy data or not. The extra data is helpful for estimating β only
if the estimate based on the whole data set has a smaller
uncertainty than that based on the original data set. That is, the
following relationship holds:

( ˆ )
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Thus, if and only if the number of extra observations m and the
corresponding uncertainty s2

2 satisfy

( )s
s

< +
S

S
2, 32

2

1
2

2

1

the extra observations are helpful for estimating β.

Note that ( ¯) ¯= å - +=S n x x x
n i

n
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1
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2 2, and similarly,

( ¯) ¯= å - +=S m x x x
m i

m
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1
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2 2. Since { }x x, , n1 and { +x ,n 1

} +x, n m are usually from the same distribution,
S n S m1 2 when n and m are large enough. Thus the

inequality (2) implies that if the uncertainty of the extra data
satisfies ( )s s< +m n 22

2
1
2, the extra data is helpful. Thus, if m

is much smaller than n such that  0S

S
2

1
, the extra data will be

helpful if s s< 22
2

1
2. On the other hand, if m is quite large as

compared with n, the additional data will always be helpful even
if they are noisy.
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