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Abstract

The timing properties of the millisecond pulsar PSR J1939+2134—very high rotation frequency, very low time
derivative of rotation frequency, no timing glitches, and relatively low timing noise—are responsible for its
exceptional timing stability over decades. It has been timed by various groups since its discovery, at diverse radio
frequencies, using different hardware and analysis methods. Most of the timing data is now available in the public
domain in two segments, which have not been combined so far. This work analyzes the combined data by deriving
uniform methods of data selection, derivation of Dispersion Measure (DM), accounting for correlation due to “red”
noise, etc. The timing noise of this pulsar is very close to a sinusoid, with a period of approximately 31 yr. The
main results of this work are: (1) the clock of PSR J1939+2134 is stable at the level of almost one part in 1015 over
about 31 yr; (2) the power-law index of the spectrum of electron density fluctuations in the direction of PSR J1939
+2134 is 3.86±0.04; (3) a Moon-sized planetary companion, in an orbit of semimajor axis about 11 astronomical
units and eccentricity ≈0.2, can explain the timing noise of PSR J1939+2134; (4) precession under
electromagnetic torque with very small values of oblateness and wobble angle can also be the explanation but
with reduced confidence; and (5) there is an excess timing noise of about 8 μs amplitude during the epochs of
steepest DM gradient, of unknown cause.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Pulsar timing method (1305); Millisecond pulsars
(1062); Interstellar medium (847)

1. Introduction

Long-term timing of the millisecond (ms) pulsar J1939
+2134 (henceforth J1939) was started by Kaspi et al. (1994,
henceforth KTR). They describe the method of measuring
pulse arrival times, estimation of the Dispersion Measure
(DM), and estimating the timing model used to derive timing
residuals, which are the final quantity of interest. See
Manchester & Taylor (1977), Backer & Hellings (1986), and
Lyne & Graham Smith (2006) for pedagogical reviews of
pulsar timing.

1.1. Summary of Pulsar Timing

The periodic pulses from a pulsar have a polarization that
varies through the pulse. So they have to be observed using a
dual polarization receiver, called the front-end. This signal
travels to Earth through the ionized interstellar medium (ISM),
which causes a frequency-dependent delay, which depends
upon the DM. So a spectrometer is required to divide the total
radio frequency band into smaller sub-bands, such that the
pulse smearing within each sub-band is tolerable. Such an
instrument is known as the back-end. When possible, the total
time delay across the total band is used to estimate the DM,
which is then used to align the total intensity profiles of the
sub-bands, with respect to that of a reference sub-band. Folding
the aligned data at the period of the pulsar yields the so called
integrated profile. The several integrated profiles obtained
during a day’s observation are compared with a template-
integrated profile, which is specific to each pulsar, to derive the
average pulse arrival time at the site of the observatory for each
day; this is known as the site arrival time (SAT).

Often, the traditionally used bandwidths do not provide
sufficient radio frequency separation to estimate the DM
accurately. This is particularly true for J1939, whose very low
period of about 1.56 ms requires that the SAT be measured

with accuracies better than ≈1 μs. Therefore, one needs to
observe the pulsar at another well separated radio frequency,
ideally simultaneously, but often in practice contempora-
neously. The popular radio frequencies of front-end for pulsar
timing are 800 MHz, 1400 MHz, and 2300 MHz, which fall in
the microwave frequency bands UHF, L-band, and S-band,
respectively.
Next, the SATs have to be corrected for the delay in the ISM

at the frequency of the reference sub-band. They also have to
be corrected for solar system effects such as the “Roemer”,
“Einstein”, and “Shapiro” delays (see KTR and references
therein). If the pulsar is in a binary system, then additional
corrections are required. This results in the SAT being
transformed into arrival times at the co-moving pulsar frame.
If one ignores constant time offsets, this can be considered to
be the pulse arrival time at the barycenter of the solar
system (BAT).
Finally, the BAT are modeled using the following

parameters: (1) the position of the pulsar in the sky (R.A., α
and decl., δ); (2) its proper motion (μα and μδ); (3) its parallax
(π); (4) fine correction to the DM, if the data permits their
modeling; and (5) the pulsar’s rotation frequency and its
derivative with respect to time (ν and n n=d dt ; for J1939 the
second frequency derivative n ̈ is not used as explained later).
The time difference between the observed and modeled BAT
are known as timing residuals. In J1939, these residuals
represent what is known as timing noise (also known as “red”
noise, implying low-frequency variation of timing residuals).
The main effort of this work is to obtain the timing noise of
J1939. After removal of timing noise, the timing residuals
should ideally reflect random and uncorrelated noise (mainly
instrumental), also known as “white” noise. This is shown in
Figure 1, where the rms of the residuals is ≈0.5 μs. Even if the
operative value is three times larger, a variation of ≈1.5 μs
over 31 yr implies that J1939ʼs clock is stable at the level of
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almost one part in 1015. This is consistent with the value of one
part in 1014 obtained by KTR over about 8 yr of observation.

This brief summary of the technique of pulsar timing ignores
several details.

First, the total data consists of about 22 yr of data obtained
by European and Australian radio observatories, and about
19 yr of data obtained by North American radio observatories.
The former are known as European Pulsar Timing Array
(EPTA) data and the Parkes Pulsar Timing Array (PPTA) data.
Due to instrumentation and methodology differences, the
earlier ≈8 yr of the data from the North American radio
observatories are combined with the EPTA and PPTA data to
form what is known as the International Pulsar Timing Array
(IPTA1) data. The remaining about 11 yr of the data are known
as the NANOGrav2 data. Further, the IPTA (Verbiest et al.
2016) and NANOGrav (Arzoumanian et al. 2018) data of
J1939 are obtained by four European and one Australian, and
two North American, radio telescopes, respectively. Each of
these observed J1939 for different durations over the last
≈31 yr, with different front-end/back-end combinations
known as sub-systems, that changed as better sub-systems
were installed over time. Now, data of any two sub-systems
will have a relative instrumental delay, usually in the range of
μs to ms, which has to be estimated and corrected before the
two data can be combined. There are, in total, 36 sub-systems
in the J1939 data, so 35 instrumental delays have to be
estimated to align the whole data set. This is not easy as data of
different sub-systems often either do not overlap in epoch or
overlap minimally.

Next, reliable estimation of DM of J1939 requires nearly
simultaneous observations at two or more radio frequency
bands, since the DM changes with epoch; this is often not
achieved. The best data in this regard was obtained by KTR in
which the dual-frequency observations were typically separated
by about 1 hour. Often this can be as large as days or even
weeks in the rest of the data. Therefore, for some duration, the
DM has to be modeled (like the other seven pulsar parameters)
as a function of epoch, instead of being directly estimated
(which is done using Equation (4) of KTR).

Finally, while modeling the BAT to estimate the various
pulsar parameters, the presence of “red” timing noise

introduces correlations between adjacent timing residuals; the
correlation length depends upon the “redness” of the timing
noise. This has to be accounted for in the linear-weighted least-
squares parameter estimation algorithm (Coles et al. 2011;
Caballero et al. 2016).
The IPTA (Verbiest et al. 2016) and NANOGrav

(Arzoumanian et al. 2015, 2018) groups analyzed the J1939
data separately, since the two data contain a fundamental
difference, using different methods of DM estimation, correc-
tion for “red” noise correlation, etc.

1.2. Incompatibility of IPTA and NANOGrav Data

The left panel of Figure 2 shows the exact observational
radio frequency used to obtain each SAT, as a function of
epoch, for three observatories of IPTA, viz., the Parkes, Jodrell
Bank and Nancay observatories; the observations were done at
around 1600 MHz in the L-band. The Parkes data lies at
frequency ≈1650MHz, below MJD 51000; the Jodrell data is
clustered almost exactly at frequency 1520 MHz, at MJD
between 55000 and 56000; the rest of the data in the left panel
is from Nancay. The Jodrell and Nancay data are obtained
within a relatively narrow band of frequencies around the
central frequency. The central frequency of the Nancay data
changes slightly between the earlier and later epochs, ignoring
two points that appear to be outliers. The Parkes data is more
spread out in frequency but is still within a band of ±30MHz
around the central frequency. Moreover, the IPTA data consists
of just one SAT at each epoch of observation.
In contrast, the NANOGrav data from Green Bank

Observatory in the right panel is spread over a band of about
160 MHz. Moreover, the NANOGrav data consists of several
tens of SAT (sometimes as large as 50) at each epoch of
observation. This is because of the extremely wide (radio) band
sub-systems used at the Green Bank Observatory. Since the
IPTA and NANOGrav data overlap in epoch, they have been
plotted in separate panels in Figure 2 for clarity. The situation
depicted in this figure holds true for the data in other radio
frequency bands as well.
Now, it is well known that the integrated profile of pulsars is

radio frequency dependent, and usually becomes narrow at
higher frequencies (Manchester & Taylor 1977). This would
cause an additional frequency-dependent delay in the SAT,
which is not DM related. This aspect can be ignored when the
observing bandwidth is narrow (IPTA data) but cannot be for

Figure 1. 31 yr of timing residuals of J1939 along with error bars, after removal of timing noise, which is estimated by TEMPO2 using 100 noise harmonics, as
explained later in the text.

1 http://ipta4gw.org//data-release/
2 https://data.nanograv.org/
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wide-band sub-systems (NANOGrav data). The NANOGrav
group has dealt with this issue by introducing what are known
as “FD” parameters into their analysis; see Section 4.2 of
Arzoumanian et al. (2015). Now, using the FD parameters for
the IPTA data would distort the timing residuals. Therefore,
there is a fundamental issue involved in combining the IPTA
and NANOGrav data for analysis.

Verbiest et al. (2016) combine such data for other pulsars
and discuss the problems involved, but not in the manner
described here; see particularly their Sections 1.4, 2.2 and 3.1.

1.3. Current Work

This work combines the two data sets by selecting only a few
SAT per epoch of the NANOGrav data, such that they lie
within a narrow radio bandwidth and also such that their spread
in the time domain is less than 1 μs. This eliminates the need

for the FD parameters. Tests show that this number can be as
low as one SAT per epoch, mainly on account of the excellent
quality of the NANOGrav data.
Section 2 describes the observations and the procedure of

analysis, including data selection and estimation of the DM.
Section 3 presents the results of analyzing the data in four
independent ways, while Section 4 discusses the results.

2. Observations and Analysis

Figure 3 summarizes the available data of J1939. Each point
represents an observation of either single or multiple SAT at
that epoch. Each horizontal track represents data of one sub-
system, indicating both the total duration of observation, as
well as the cadence of observation in that duration. The bottom
seven tracks belong to the UHF band, the middle 20 belong to
the L-band, and the top nine belong to the S-band; space is

Figure 2. Illustration of incompatibility between IPTA and NANOGrav data, using the 1600 MHz L-band data. The left panel plots the radio frequency of observation
of the IPTA data from Parkes (dots), Jodrell Bank (*), and Nancay (+) Observatories. The right panel displays the NANOGrav data from the Green Bank Observatory
that corresponds to the same frequency range as that in the left panel, although the actual frequency range of this data is from 1100 to 1900 MHz.

Figure 3. Summary of IPTA and NANOGrav observations of J1939 that are available in the public domain. The first column of labels of the left ordinate shows: (1)
AR=Arecibo Telescope, (2) EFF=Effelsberg Telescope, (3) GBT=Green Bank Telescope, (4) JBO=Jodrell Bank Observatory, (5) NRT=Nancay Radio
Telescope, (6) PKS=Parkes Telescope, and (7) WSRT=Westerbork Synthesis Radio Telescope. The second column of labels shows the average error on the SAT
in μs. The first column of labels of the right ordinate shows the instrumental offsets (in μs) for each sub-system, with respect to that of “kaspi23”; the error in the last
digit is given in parenthesis. The second column of labels of the right ordinate represents sub-systems. Some important references for this table are: Arzoumanian et al.
(2015, 2018), Backer et al. (1982), Cordes et al. (1990), Hotan et al. (2006), Kaspi et al. (1994), Manchester et al. (2013), Ramachandran et al. (2006), Shannon &
Cordes (2010), Verbiest et al. (2009, 2016), and references therein.
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provided between bands for clarity. For further clarity, the 16
tracks at frequency ≈1400MHz in the L-band are separated by
space from the four tracks at frequency ≈1600MHz in the
same band. The left ordinate is labeled by the observatory or
radio telescope concerned and the average statistical error of
the SAT of that track (in μs). The right ordinate is labeled by
the symbol used for the observing sub-system by the original
observers, and their relative instrumental offsets in μs.

The four L-band tracks at 1600 MHz are expanded in
frequency in Figure 2, except for that of the Parkes Telescope
(PKS) sub-system “fptm.20cm-legacy”, which consists of both
1400 and 1600MHz data; so only the latter part has been used
in Figure 2.

The earliest observations of J1939 are those of KTR using
the Arecibo Telescope (AR) (sub-systems kaspi14 and kaspi23
in the L and S bands; see the caption of Figure 3 for
observatory abbreviations). Then Nancay Radio Telescope
(NRT) started observing in just the L-band using an older sub-
system (DDS.1400). This provided relatively lower-quality
data, but it was their first sub-system and provided a crucial
overlap with the data of KTR; their later sub-systems provided
data as good as any other sub-system. Then, the Effelsberg
Telescope (EFF) started observations with overlap with the
data of NRT. Their duration of observation was one of the
longest, although there were gaps in the observations; and their
data quality is one of the best. Unfortunately, theirs was also a
single-frequency observation (L-band). Since after the year
2011, it appears that data of J1939 is being provided by only
the North American telescopes.

Figure 3 shows the inhomogeneity of the data of J1939, in
terms of duration of observation, the cadence of observation
within any duration, and the quality of the data. It also shows
that for about 7 yr after MJD 49000, there were no multi-
frequency observations available in the public domain that
could be used to estimate the DM.

2.1. Data Selection

The rationale of data selection can be understood using
Figure 4. The narrowband sub-system Rcvr1_2_GASP of
Green Bank Telescope (GBT), of bandwidth of about 50 MHz,
was replaced by the broadband sub-system Rcvr1_2_GUPPI,

of bandwidth of about 740 MHz, toward the end of the year
2010. Because of frequency evolution, the pulse of J1939
arrives at different times at different frequencies within the
band of observation, even after removing the effects of DM.
Ideally, one should have a unique template-integrated profile at
each frequency for obtaining the SAT at that frequency, but this
is too humongous a task. Therefore, the integrated profile at a
reference frequency within the band of observation is used as
the template for the entire band. Now it turns out that the
frequency evolution of the pulse profile is negligible for the
narrowband sub-system, while it is significant for the broad-
band sub-system.
If the broadband sub-system was not installed, and the

narrowband sub-system had continued observing J1939, then
the problem of frequency evolution would not have arisen. In
this work, such a hypothetical scenario is created, by using
from the broadband sub-system, only that data that corresponds
to the range of frequencies of the narrowband sub-system.
There are several ways of doing this, and this work adopts one
of those.
This implies that one would be excising most of the

broadband data. This is justified because an observation using a
wider band improves the signal-to-noise ratio (S/N) of the
integrated profile only if the pulses arrive at the same time all
over the band, which is not the case here. This work
demonstrates that the large collecting areas of the GBT and
AR telescopes ensure that there is sufficient S/N of the
integrated profile within the retained narrow band to obtain a
statistically significant SAT. This scheme will probably not
work with wide-band data from smaller radio telescopes.
The data selected for analysis in this work consists of the

entire IPTA data, and part of the NANOGrav data, which was
selected as follows. The NANOGrav data itself consists of two
relatively narrowband sub-systems labeled ASP and GASP,
and two very broadband sub-systems labeled PUPPI and
GUPPI. ASP and PUPPI are the back-ends used at the AR
telescope, while GASP and GUPPI are identical back-ends
used at the GBT. The mean radio frequency of the data of ASP
and GASP systems in the UHF, L-band, and S-band are 844,
1410, and 2352 MHz, respectively. At each epoch of
observation, n SATs were selected from the multiple SATs

Figure 4. Probability distribution of frequency of observation for the Rcvr1_2_GASP (top panel) and Rcvr1_2_GUPPI (bottom panel) sub-systems, respectively.
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available, which were closest in frequency to any of the above
three values. For small values of n, the selected SAT would
have very narrow spread in frequency and would have very
small systematic spread in time due to frequency evolution of
the pulse of J1939; for large n, the opposite would be true. In
either case, the n SAT would have a mean frequency very close
to one of the above three values. Several values of n were tried,
and values between 1 and 10 were found to be useful. Even
n=1 served the essential purpose, presumably because of the
excellent quality of NANOGrav data. However, n=7–10
were found to be better for DM estimation; therefore, n=10
was finally chosen. Larger n caused the systematic spread in
time of the SAT to be larger than 1 μs. This selection reduced
the total data from 18122 to 6994 SAT.

In summary, frequency evolution of the pulse essentially
converts a broadband observation of J1939 into several
narrowband observations that are each observing, in effect, a
slightly different pulsar, of which one has been chosen in
this work.

2.2. Estimation of DM

The DM of J1939 has to be estimated as a function of epoch
to proceed further. The best DM estimate has been done
by KTR from MJD about 46000 to MJD 49000. From then on
until MJD 51650, only single-frequency observations are
available in the public domain. However, Ramachandran
et al. (2006) used additional data, obtained at several
frequencies using the NRAO 85 and 140 foot telescopes at
the Green Bank Observatory, to extend the DM measurements
to slightly beyond calendar year 2004. While this additional
data of J1939 are not available in the public domain, the DM
results are available in Figure 6 of Ramachandran et al. (2006)
and also in Figure 6.6 of Demorest (2007), from which they
were digitized. Next one has to estimate the DM of J1939 for
the rest of the data and align it with the above digitized curve.

The ideal method of estimating the DM at any epoch is to
measure the SAT at two well separated frequencies simulta-
neously and then to apply Equation (4) of KTR. Such a SAT
would measure the arrival of exactly the same pulse but at
different frequencies. However, this is rarely possible, since
changing the front-end of a radio telescope takes time.
Therefore, the method of KTR is the next best, where the
dual-frequency observations are separated by about 1 hour.
Since the maximum rate of change of DM of J1939 is about
10−5 pc cm−3 per day (as will become evident later), and since
the error on the estimated DM is typically larger than 10−4 pc
cm−3, one can assume that a gap of even 10 days between
multifrequency observations is tolerable for DM estimation of
J1939. The IPTA group appears to have used some variation of
the KTR method, and have additionally modeled the first and
second derivative of DM with respect to epoch. The data gap
between NANOGrav observations is much longer, typically
10 to 14 days. Therefore, they have modeled the DM along
with other pulsar parameters (as a function of epoch) using the
so called “DMX” parameters.

The approach of this work is to apply the KTR method,
allowing for a maximum gap of about 1 day between multi-
frequency observations (see Lam et al. 2015 for justification).
This reduces the number of epochs at which the DM can be
estimated, but linear interpolation for the intermediate epochs
gives satisfactory results. Equation (4) of KTR can be rewritten
as consisting of a term that varies linearly with DM and

inversely with the square of the observing frequency, plus a
constant term that represents instrumental and other constant
delays. Thus, for dual-frequency data, one has to model for two
parameters—the DM and one constant relative delay between
the two frequencies. For three-frequency data, one has to model
for the DM and two constant relative delays. In this manner, the
DM as a function of epoch was derived separately for each
radio telescope, along with the relative instrumental offsets for
the corresponding frequencies. These curves were aligned in
the DM space, and the result was then aligned with the
digitized DM curve from Demorest (2007).
The TEMPO2 software (Edwards et al. 2006; Hobbs et al.

2006) has been used for most of the analysis of this work.
The DM in this work was estimated by first pruning the

data of each telescope, such that only those SATs were
retained that had at least one other SAT at another frequency
band, which was separated in epoch by less than one day. The
reference epoch for the fit (PEPOCH in TEMPO2) was taken
to be mid-way between the total duration of the pruned data.
Now, TEMPO2 provides for inserting time offsets between
data sets using the “JUMP” parameter. So JUMP values were
inserted for each sub-system within the UHF, S-band, and
1600 MHz data of the L-band, with respect to the 1400 MHz
data of the L-band data. A constant value of = 71.0270 pc
cm−3 was used for the DM parameter of TEMPO2.
Correlation due to “red” noise was taken into account but
was required only for the WSRT telescope, whose data
duration was quite long. For the rest of the telescopes,
“whitening” of the data was achieved by using the n ̈
parameter in TEMPO2. Note that this n ̈ represents the local
curvature of the timing data for each telescope—it is not
related to the intrinsic n ̈ of J1939, which is too small to be
estimated in our data. Then, the residuals of the fit were
extracted using the “general2” plugin of TEMPO2. These
were then analyzed outside TEMPO2 to estimate the residual
DM as a function of epoch, using Equation (4) of KTR. The
sum of the residual DM and 71.0270 results in the final DM as
a function of epoch, for each telescope. Note that TEMPO2
has the ability to estimate the instrumental offset of data that
do not overlap in epoch, as long as the lack of overlap is not
of very long duration, and as long as the data is sufficiently
“whitened.”

2.3. Analysis of SAT

A uniform set of TEMPO2 parameters was used for the
selected data; the IPTA and NANOGrav groups used different
values for these parameters (see the Appendix).
The DM for each SAT was estimated using linear

interpolation on the final DM curve obtained in the
previous section; this was tagged to each SAT using the
TEMPO2 flag “-dmo,” after removing the original DM tag
inserted by the IPTA group. No further DM modeling was
done in TEMPO2.
Next, the L-band 1400 MHz data of each telescope was

aligned, by estimating the instrumental delays between them,
using the method described in the previous section. The
instrumental delays of the UHF and S-band data of each
telescope, relative to their 1400 MHz L-band data, which were
estimated in the previous section, were then used to align the
rest of the data. Only minor changes were required in these
delay values for final data alignment. Similarly, the L-band
1600 MHz data were also aligned. The IPTA and NANOGrav
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groups started with initial JUMP values, and then varied them
as any other parameter to be fit. This was tried in this work, but
better results were obtained by keeping them fixed; so the
JUMP values in this work were first estimated as well as
possible, and then were held fixed in TEMPO2 (see Appendix
A of Arzoumanian et al. 2015). Some observatories have fixed
instrumental delays for some SATs, that were included without
modification in this work.

Next, TEMPO2 is used to derive the values of the parameters
of the timing model—α, δ, μα, μδ, π, ν, and n . For J1939, the n ̈
is expected to be so small (based on the average braking index
of a pulsar) that it cannot be reliably estimated in this analysis.
If the timing residuals after accounting for this model represent
“white” noise, then the above parameters would have been
estimated in a reliable manner. However, it is known for J1939
that the residuals are slowly varying and sinusoidal (see Figure
5 of Verbiest et al. 2016). Therefore, the correlation of this
“red” noise has to be taken into account for parameter
estimation in TEMPO2. This has been done differently by
the IPTA and NANOGrav groups.

The IPTA group models this correlation as a specific
function and estimates the three parameters of this function
from the data and inputs these three parameters to TEMPO2
(see Lentati et al. (2015) for some details). The NANOGrav
group models this correlation as arising from a power-law
spectrum, and inputs the amplitude and slope of this spectrum
to TEMPO2, which then derives 100 harmonics whose
spectrum is (or at least should be) the above power law, and
which estimate the timing noise. See Section 5.1 of
Arzoumanian et al. (2015) for details. In this work, both
methods are used.

The TEMPONEST software (Lentati et al. 2014) was
installed but could not be used on account of a prohibitively
long runtime on my personal computer for 6994 SAT with
“red” noise covariance included. However, the MULTINEST3

software (Feroz & Hobson 2008; Feroz et al. 2009; Buchner
et al. 2014) for Markov Chain Monte Carlo (MCMC)
estimation of parameters has been used (Hogg et al. 2010;
Hogg 2012; Hogg & Foreman-Mackey 2017).

Further details of analysis are given in the following section.

3. Results

3.1. DM of J1939

Figure 5 shows the DM derived for J1939 from the
combined IPTA and NANOGrav data. It is almost identical
to that of KTR for the first 8 yr, and correlates very well with
that of NANOGrav (Arzoumanian et al. 2018) for the last 11 yr.
The dashed curve is a smooth representation of the DM data,
obtained using the “splinefit” tool of the open source software
“octave.” The rms of the residuals between the DM data and
the spline curve is ´ -3 10 4 pc cm−3, which is similar to the
uncertainty in aligning the DM data of different telescopes.
The spline curve was used to obtain the phase structure

function tfD ( ) of DM variations, which is defined in Equation
(11) of KTR, using equations A2 and A3 of You et al. (2007).
The actual DM data cannot be used for this purpose because the
earlier half of the DM data have no error bars available; these
are required to subtract a bias in the function tfD ( ). The
power-law index of the spectrum of electron density fluctua-
tions β is 3.86±0.04 using 31 yr of data. This is consistent
with the value of 3.874±0.011 obtained by KTR, who used
the first 8 yr of data. Ramachandran et al. (2006) obtained a
slightly smaller value of 3.66±0.04 using the first 20 yr of
data. It is therefore concluded that the phase structure function

tfD ( ) of DM variations of J1939 is not evolving over the
decades.

3.2. Timing Noise of J1939

Both IPTA and NANOGrav groups use what are known as
the T2EFAC and T2EQUAD parameters (henceforth T2
parameters), one pair for each sub-system. The former is used
to scale the measured uncertainties on the SAT, while the latter
is added to them in quadrature. These are used to ensure that
the final reduced χ2 obtained by TEMPO2 is close to the
expected value of 1; see Section 3.1.2 of Verbiest et al. (2016).
In addition, the NANOGrav group uses the ECORR (or jitter)
parameter, also one for each sub-system, which acts like the
T2EQUAD for data spread in frequency (see Section 4.2 of
Arzoumanian et al. 2014, and Section 3B of van Haasteren &
Vallisneri 2014). In this work, first the ECORR parameter is
not used, on account of the data selection discussed above.
Next, the analysis was done using both the original values of
the T2 parameters (derived by the IPTA and NANOGrav
groups), as well as those that were re-estimated here using the

Figure 5. DM of J1939 as a function of epoch for the combined IPTA and NANOGrav data. The earlier DMs have a fixed error of 3×10−4 pc cm−3, which is
explained in the text; the later DMs have estimated errors. The dashed line is a spline curve that best fits the data. The maximum gradient is 10−5 pc cm−3 per day.

3 https://github.com/JohannesBuchner/MultiNest.git
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“fixData” plugin of TEMPO2. The latter were consistent with
the former, although for some sub-systems, the values differed
significantly.

In the following sections, the timing noise is modeled
as dependent on: (1) a planetary companion to J1939, and
(2) precession of J1939. In principle, the former model can be
explored using the binary parameters of TEMPO2. However,
this attempt failed due to either (a) converging to negative
values of eccentricity of the elliptical orbit, or (b) resulting in
very large errors on the binary parameters, both presumably
because the data has only one cycle of the orbit. Therefore, the
results in the following sections are derived by using
independent software.

In principle, one cannot rule out a third model, viz., in which
the timing noise could be due to random variations in the
frequency, ν, which have a steep power-law spectrum. It is
argued in later sections that this may not be the case.

3.2.1. Planetary Companion Model

Table 1 summarizes the results of this section, while Figure 6
illustrates two of them (columns 3 and 5) as plots. In the top
panel of Figure 6, the noise model was determined from the
data using the “autoSpectralFit” plugin, and input to TEMPO2
using the “-dcf” switch; the parameters of the model (slope α,
cutoff frequency fc, and amplitude a) are given in the last three
rows of column 3 of Table 1. In the bottom panel, the
NANOGrav noise model was used— RNAMP = 0.15726 and
RNIDX = −2.75890 (see Table 3 and Figure 3 of
Arzoumanian et al. 2015).

In Figure 6, there is an excess timing noise between MJD
51200 and 53200; this coincides with the duration of maximum
gradient of DM in Figure 5. These data have been ignored
during the curve fit and will be discussed later.

Table 1 show the results of four different analysis—using the
IPTA and the NANOGrav methods of correction for “red”
noise correlation, and in each of these, using original T2
parameters as well as re-estimated ones. The timing noise in
columns 2–5 of Table 1 are fit to a planetary companion model.
The parameters of the elliptical orbit are: the projected
semimajor axis of the orbit A, its eccentricity e and period of
orbit P, epoch T0 and longitude ω of periastron; only the
important first three parameters are listed in the first three rows
of Table 1. The formula for the BAT in this case is well known
(for example, see Equation (9) of Malhotra 1993). No

approximation has been made in fitting the planetary model
—the full Kepler equation has been solved. The results of
Table 1 were obtained using the “curve_fit” tool of the Python
module “scipy”. Then they were verified, particularly regarding
the distribution of errors and their correlations, using the
“solve” tool of the Python implementation of MULTINEST
(pymultinest4). To speed up this algorithm, the critical code
was written in C and called as a library in Python using its C
interface.
The parameters of the top and bottom panels of Figure 6 are

given in columns 3 and 5 of Table 1. rms is the standard

Table 1
Results of Fitting the Planetary Companion Model to the Timing Noise, Which Was Obtained Using Both the IPTA (Columns 2, 3) and the NANOGrav (Columns 4,

5) Methods of Correction for “Red” Noise Correlation

Method IPTA NANOGrav

T2param orig local orig local

A (μs) 129.9±0.1 197.6±0.1 140.6±0.1 141.1±0.1
e 0.219±0.001 0.158±0.001 0.211±0.001 0.215±0.001
P (days) 11105±2 13068±3 11403±2 11381±2
rms (μs) 1.5 1.0 1.2 1.2
cd

2 35.0 30.2 24.0 39.2

α 3.016 5.098 L L
fc 0.0322 0.0322 L L
a 6.4×10−23 9.8×10−20 L L

Note. In each case, both the original T2 parameters (orig), as well as those re-estimated here (local), were used. A is the projected semimajor axis of the orbit, e is its
eccentricity, and P is the period of orbit. The last three rows of IPTA contain the derived parameters of the noise model—α and a are the exponent and amplitude,
while fc is the cutoff frequency. For the NANOGrav noise model, the original RNAMP = 0.15726 and RNIDX = −2.7589 were used.

Figure 6. The data in the two panels were obtained using the IPTA (top panel)
and the NANOGrav (bottom panel) methods of correction for “red” noise
correlation; in both cases, re-estimated T2 parameters were used. The dashed
line in each panel represents the best-fit planetary companion model. The IPTA
group models the “red” noise correlation as a specific function with three
parameters; these are given in the last three rows of Table 1. The NANOGrav
group models the power spectrum of this correlation as a power law, with
amplitude and slope of 0.15726 and −2.7589, respectively. TEMPO2 uses
these to derive 100 harmonics, which represent the timing noise.

4 https://github.com/JohannesBuchner/PyMultiNest
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deviation of the timing noise after subtraction of the planetary
companion model, while cd

2 is the χ2 per degree of freedom
(dof) of the fit. In all four cases, the cd

2 is much higher than 1,
indicating that the formal uncertainties are underestimated even
after implementing the T2 parameters. However, the rms is less
than 1.5 μs, which is a small fraction of the total amplitude A of
the fit.

The timing residuals in Figure 1 are the difference between
the timing noise in column 4 of Table 1 and the curve
represented by the 100 noise harmonics. This is not the same as
subtracting the planetary companion model. The 100 noise
harmonics model fits almost every twist and turn of the timing
noise, including the excess timing noise between MJD 51200
and 53200.

The NANOGrav analysis yields consistent values of
A≈140 μs, »e 0.21 and P≈11,400 days. The IPTA
analysis using original T2 parameters is also consistent with
the above values (column 2 of Table 1); only the results in
column 3 are divergent. In the rest of this section, the average
of the above three values will be adopted, viz., A=137.2 μs,
e=0.215, and P=11,296 days.

Using the above A and P values in Equation (2) of
Vivekanand (2017), the mass of the planetary companion is
about 3.5×10−8 times the solar mass, which is approximately
the mass of the Moon. Using Kepler’s third law, the semimajor
axis of the relative orbit is about 11 au (Starovoit &
Rodin 2017).

3.2.2. Precession Model

The model of a freely precessing pulsar can be understood
using Figure 3 of Link & Epstein (2001). The angular
momentum and dipole moment vectors of J1939 make the
angles θ and χ with its symmetry axis, respectively. However,
since pulsars slow down due to electromagnetic torque, J1939
must be precessing under the influence of a torque. In this
scenario, the timing residuals are given by

w w= + - - -f t k a t t a t tsin sin 2 , 1p p1 0 2 0( ) ( ( )) ( ( )) ( )

where for small wobble angle θ

kq c
q

kq c
q

=
+

=
+

a a
sin 2

1
;

sin

4 1
. 21 2 2

2 2

2( )
( )

(Equation C46 of Akgun et al. 2006; see also Equation (13) of
Link & Epstein 2001, and also Jones & Andersson 2001.) k is
an arbitrary offset, a1 and a2 are the amplitudes of the first and

second harmonics, respectively, of the precession frequency
w pn p= = P2 2p p . κ is proportional to the strength of the
spin down torque of J1939.
Table 2 summarizes the results of this section, while Figure 7

illustrates two of them (columns 3 and 5) as plots. Figure 7 is
the same as Figure 6 except that the curve fitted to the timing
noise is given in Equation (1). Only the important last three
parameters of Equation (1) are listed in the first three rows of
Table 2.
The cd

2 in Table 2 are ≈5 times larger than those in Table 1,
while the rms are ≈2.5 times larger. Clearly, the data fits the
planetary companion model better than the precession model.
This is also obvious when comparing the solid curves in
Figures 6 and 7. As before, the average of the values in
columns 2, 4, and 5 of Table 2 will be used for further analysis,
viz., a1=131.5 μs, a2=10.7 μs, P=11,493 days.
The oblateness of J1939 ò=(I3−I1)/I1, where Ii are the

three components of the moment of inertia (for a bi-axial
rotator > =I I I3 2 1). Within the approximations used to
derive Equation (1), the oblateness is ò≈ ωp/ω=νp/ν=
1/(11493× 86400)/641.928≈ 1.57× 10−12; see also
Equation (67) of Jones & Andersson (2001).
Using Equation (2) above, q c = ´ =a atan 8 0.652 1

radians. Integration of Equation (19) of Link & Epstein
(2001) gives q c = ´ =a atan 2 0.162 1 radians, which is
similar to the above result correct to within a factor of four.
However, using Equation (65) of Jones & Andersson (2001),
q c» ´ -3 10 tan6 radians, giving an altogether different
functional form. Therefore, there is some discrepancy in the
values of θ obtained by the three groups (Jones &
Andersson 2001; Link & Epstein 2001; Akgun et al. 2006);
although, all three formulae are derived under similar
approximations. For this work, q c »tan 0.4 radians will be
assumed. Since χ in J1939 is supposed to be very close to 90°
(it has an inter pulse), θ is expected to be a very small value.

Table 2
Results of Fitting the Precession Model to the Timing Noise

Method IPTA NANOGrav

T2param orig local orig local

a1 (μs) 124.4±0.1 193.2±0.1 135.0±0.1 135.2±0.1
a2 (μs) 9.9±0.1 10.2±0.1 11.0±0.1 11.2±0.1
P (days) 11277±3 13475±3 11594±3 11609±4
rms (μs) 3.4 2.5 2.9 2.9
cd

2 174.8 104.1 141.2 225.9

Note. a1 and a2 are the amplitudes of the first and second harmonics of period
P (see Equation (1)). The rest is the same as in Table 1, except that the last
three rows of Table 1 are not repeated here.

Figure 7. The data is the same as in Figure 6. The dashed line in each panel
represents the best-fit precession model.
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3.3. Excess Timing Noise

In Figure 6, the excess timing noise between MJD 51200 and
53200 coincides with the duration of maximum gradient of DM
of J1939. This manifests as a noisy bump when the fitted curve
is subtracted from the data in the two panels in Figure 6. This is
an achromatic excess timing noise, so it is independent of the
DM. Further, the DM in this duration is very well estimated
due to excellent overlap of the digitized DM values and those
estimated in this work. Currently, the origin of this excess
timing noise is unknown.

4. Discussion

Shannon et al. (2013) studied the timing noise of J1939
using 26 yr of timing data. They have excluded the possibility
of a single object causing these timing results because of “the
lack of an obvious periodicity” in their timing residuals; see the
first line of the first paragraph after their Equation (2) in their
Section 2. This situation does not apply to this work, which
has5 more years of data and has a clear periodicity. Moreover,
Shannon et al. (2013) have themselves flagged the most serious
drawback of their asteroid belt model, viz., “that it is difficult,
though not impossible, to test”; see the first line of their
Section 7.

Before discussing the planetary companion/precession
models, a few technical issues will be highlighted.

In this work, only one cycle of either planetary orbit or
precession is available for analysis. This would limit the
confidence with which the corresponding parameters can be
estimated. Unfortunately, even the second cycle of data is
unlikely to be obtained any time soon.

Assuming a braking index of 3, the n ̈ expected for J1939 is
8.8×10−30 Hz s−2. The total duration of observation of 11324
days would cause ´ ´ * =-8.8 10 11324 86400 6.030 3( )
0.0014 of additional phase across the entire duration, which
is about 2.2 μs. This is negligible compared to the ≈130 μs
amplitude of the sinusoidal timing noise. So the sinusoids in
Figures 6 and 7 are not an artifact of the cubic term.

The fact that the period of the timing noise lies very close to
the total duration of observation could cause some concern.
However, there appear to be no known artifacts in TEMPO2 (or
in any other software/algorithm that is used here) that might
mimic a periodicity of the order of the length of the data used.
This issue is discussed in greater detail in the Appendix.

Why does the MCMC algorithm produce much smaller
errors than TEMPO2? I believe it is because the MCMC
planetary companion modeling involves a nonlinear fit to an
exact ellipse, while the TEMPO2 binary fit involves a linear fit
to an approximate ellipse (an ellipse that has been linearized
with respect to its parameters). Two binary models (BT and
DD) were tried within TEMPO2, and both failed to converge
most of the time. Convergence occurred when the initial values
were almost the converged values, but the errors on the
parameters were larger. Here, many more cycles of the sinusoid
in the data would have helped. This issue is discussed in greater
detail in the Appendix.

Now, the important question concerning the planetary
companion of J1939 is—how did it form around a millisecond
pulsar (MSP)? Phillips & Thorsett (1994) summarize the
various possibilities. In a few of these, the planet is formed
before the neutron star (NS) is formed, and somehow survives

the supernova explosion (SNE); but in most of them, the planet
is formed after the NS.
In the former scenarios, a planet that is formed around a

normal star and survives the passage through the expanding
Red-giant envelope of the star, would still become unbound
after the SNE since more than half the mass of the system
might be lost to the ISM. This can be avoided only if the SNE
is asymmetric and preferentially oriented with respect to the
velocity of the planet, or alternately, if the planet’s orbit is
highly eccentric. In either case, this scenario may work for a
slow pulsar but not for an MSP, which has to be spun up to ms
periods by accretion from a companion star. Another
possibility is that the planet formed around a system of normal
binary stars, one of which underwent an SNE, which did not
disrupt the binary because less than half the mass of the system
got expelled into the ISM, and later, the NS spiraled into the
companion star. Finally, the simplest scenario, but statistically
the least probable, would be the capture of a planet around a
normal star by an MSP in a chance exchange interaction (see
references in Phillips & Thorsett 1994).
In the latter scenarios, the planet is formed from the disk

material around the MSP. But to spin an NS to ms periods, one
requires mass accretion from a companion star, which must
somehow be discarded later, leaving just the disk material. One
mechanism of doing this is through evaporation of the star by
the pulsar wind; some of the evaporated material forms the disk
from which the planet can form. This mechanism is expected to
form planets that are approximately Moon-sized, so this
scenario appears to be a possibility in J1939. Yet another
scenario is that the companion of the NS is a white dwarf
(WD), and the mass losing WD is reduced to a disk (see
references in Phillips & Thorsett 1994).
While it is not clear which of these various possibilities (and

the several more summarized by Phillips & Thorsett 1994)
explain the case of J1939, this work places the following
constraints: (1) the planet around MSP J1939 is at a distance of
11 au, which is similar to the distance of 10.26 au of the planet
around the slow pulsar B0329+54 (Starovoit & Rodin 2017),
and much larger than the distances of 0.36 and 0.47 au of the
two planets around the MSP B1257+12 (Wolszczan &
Frail 1992); (2) its eccentricity e=0.21 is similar to that of
the planet around B0329+54 (0.24), while the eccentricities of
the two planets of B1257+12 are almost negligible (≈0.02);
and (3) the masses of the three planets mentioned above are 2,
3.4, and 2.8 Earth masses, respectively, while the planet around
J1939 is about 100 times less massive. Thus, while J1939
shares an evolutionary scenario with the ms PSR B1257+12 in
terms of mass accretion, its planetary distance and eccentricity
appear to be similar to that of the slow PSR B0329+54, whose
evolution is entirely different. As an illustration of the
constraints, theories of planet formation around B1257+12
have to invoke mechanisms to circularize the planets’ orbits,
either during their formation or later, while theories of planet
formation around J1939 must suppress the very same
mechanisms, while starting off with the common scenario of
mass accretion that is mandatory for MSPs.
Now coming to the precession model of J1939, in this work,

precession under the influence of the electromagnetic torque of
the pulsar is considered, not free precession. The main
difference between the two cases is: (1) the timing noise
would be strictly a sine wave in the latter case, while it will
have a second harmonic in the former case; and (2) the
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amplitude of the sine wave will be significantly enhanced when
torque drives the precession, even if the oblateness ò is very
small (Jones & Andersson 2001; Link & Epstein 2001; Akgun
et al. 2006).

Next, the shape of J1939 is assumed to be bi-axial for which
two of the moments of inertia are equal. However, given the
very small value of ò estimated in this work, one should also
explore the tri-axial case ( > >I I I3 2 1). Akgun et al. (2006)
have derived formulae for the timing noise in this case, which
are very complicated, and whose application is beyond the
scope of this work.

The oblateness J1939 is » ´ - 1.57 10 ;12 in comparison,
the value for the Crab pulsar is (assuming that it precesses)
» ´ - 6.27 10 10, and for PSR B1642-03, it is » ´ 4.48
-10 9 Jones & Andersson (2001). The latter two pulsars are not

MSPs, so it is interesting to speculate if the very low oblateness
of J1939 has something to do with its being recycled due to
accretion. Could this process have kept the surface of J1939
very hot for so long that the NS adjusted to a new equilibrium
shape having very low oblateness? Here, it should be noted that
there are two contributions to the oblateness—a centrifugal
deformation due to the very high rotation of J1939, and
Coulomb deformation due to the rigidity of its crust. Precession
depends only upon the latter (see Section 3 of Link &
Epstein 2001). Thus, the very low ò of J1939 would imply that
its Coulomb crust is not at all strained (see Section 6 of Link &
Epstein 2001).

Precession in J1939 can be damped if its crust couples to the
interior super fluid, on timescales of pt n2 f precession periods,
where τf is the coupling timescale and ν is the rotation
frequency of J1939 (see Section 3 of Link & Epstein (2001)).
Since it is not damped in J1939 for 31 yr, it implies that the
crust of J1939 is essentially decoupled from its super-fluid
interior. This would imply that either super-fluid vortices do
not pin to the crust of J1939, or its precession is strong enough
to break the pinning. Either way, one would not expect to see
timing glitches in J1939, since that involves the sudden
unpinning of pinned vortices (Alpar et al. 1984).

That J1939 has displayed no glitches so far is consistent with
the belief that the pinning of super-fluid vortices suppresses
precession in pulsars (Shaham 1977).

Finally, the method of combining the IPTA and NANOGrav
data adopted here might prove useful to PTAs in extending
their search to lower spatial frequencies.

The treatment of red noise in this paper can probably be done
in an alternate way using modern statistical techniques such as

ARMA, ARIMA, ARFIMA, and GARCH (Feigelson et al.
2018).

I thank M. T. Lam and J. P. W. Verbiest for tips regarding
the analysis of NANOGrav and IPTA data, respectively, and
discussion. I thank M. T. Lam for detailed discussion regarding
several technical aspects of this manuscript. I thank the
Statistics Editor for bringing to my attention the work of
Feigelson et al. (2018). I thank the referee for useful discussion
and suggestions.
Software: TEMPO2 (Edwards et al. 2006; Hobbs et al.

2006), PyMultiNest (Buchner et al. 2014), Scipy (Jones et al.
2001), MULTINEST (Feroz & Hobson 2008; Feroz et al. 2009;
Buchner et al. 2014).

Appendix

A.1. TEMPO2 Usage

Table 3 shows some important parameters of the TEMPO2
runtime environment that differ for the IPTA and the
NANOGrav groups. The NANOGrav group uses a more
modern planetary ephemeris (EPHEM) and a more modern
realization of the Terrestrial Time (CLK). However, the
NANOGrav group uses an older method of transforming the
observatory coordinates to the celestial frame for “Roemer”
delay (T2CMETHOD), an older method of conversion from
SAT to BAT (UNITS), and also an older method of estimating
the “Einstein” delay (TIMEEPH). They also do not apply
gravitational redshift and time dilation to observing frequency
(DILATEFREQ), do not apply tropospheric delay corrections
(CORRECT_TROPOSPHERE), and do not compute Shapiro
delay due to the planets in the solar system (PLANET_SHA-
PIRO). Finally, they do not compute the dispersion delay in the
solar system due to the solar wind; they set the solar electron
density (at 1 au) to zero (NE_SW).

A.2. Timing Noise

Figure 6 shows the timing residuals fit to a planetary
companion model using the IPTA (top panel) and the
NANOGrav (bottom panel) methods of correction for red-
noise correlation. The green curves are the data, while the red
dashed curves represent the planetary model. Figure 8 shows
the corresponding plots after subtracting the model from the
data; the excess timing noise between MJD 51200 and 53200
has been ignored. The standard deviations of the difference

Table 3
Some TEMPO2 Parameters Used by IPTA, NANOGrav, and This Work

PARAMETER IPTA NANOGrav THIS WORK

NE_SW 4.0 0.0a 4.0
EPHVER 5 L 5
EPHEM DE421 DE436 DE436
CLK TT(BIPM2013) TT(BIPM2015) TT(BIPM2015)
UNITS TCB TDB TCB
TIMEEPH IF99 FB90 IF99
T2CMETHOD IAU2000B TEMPO IAU2000B
DILATEFREQ Y N Y
PLANET_SHAPIRO Y N Y
CORRECT_TROPOSPHERE Y N Y

Note.
a SOLARN0 is used to set the zero value.
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timing residuals in the top and bottom panels of Figure 8 are
1.0 μs and 1.2 μs, respectively, both of which are comparable
to the value 0.5 μs estimated in Figure 1. In both panels of
Figure 8, the fit appears to be poor only in the initial 1000 days
of the data; for the rest of the data, the differences are flat
within errors. Therefore, one concludes that the planetary
companion model is a genuine representation of the timing
residuals of J1939.

Figure 9 shows difference timing residuals of the data in
Figure 7, in which a precession model has been fit. The
standard deviations of the difference timing residuals in the
top and bottom panels of this figure are 2.5 μs and 2.9 μs,
respectively. These are significantly higher than those in
Figure 8; the fit is poor over the first half of the data. This
supports the contention in the paper that the planetary model
is a better fit to the timing residuals of J1939 than the
precession model. However, the latter cannot be ruled out
entirely, since it does fit the later half of the data in the top
panel of Figure 7, the standard deviation of the fit for this
data being 1.2 μs.

An important issue concerns the spread in period (P) values
in Tables 1 and 2. The mean value of the periods of the four

planetary orbits in Table 1 is 11,739 days, while their standard
deviation is 2.1 yr, which is significantly larger than the formal
errors on the periods, which are of the order of a few days.
These are clearly due to uncertainties in the red-noise models as
well as the choice of the T2 parameters. From a practical point
of view, the larger uncertainty should be used in understanding
the period of the planetary orbits. Similarly, the mean and
standard deviation of the periods of the four precession models
in Table 2 are 11,989 days and 2.4 yr, respectively.
As mentioned in the text, the large values of reduced χ2 in

Tables 1 and 2 reflect the fact that the use of the T2 parameters
is of limited utility for the data of J1939. In any case, such large
values of reduced χ2 should not be a surprise when combining
highly disparate data from 36 different sub-systems.
Finally, it is relevant to ask if there are correlations between

the length of data used and the periodicities derived, in
Figure 6. This might be the case if the timing residuals were
due to random variations in the frequency ν, the variations
having a steep power-law spectrum. The top panel of Figure 10
is exactly the same as the top panel of Figure 8; this is for better
comparison with the rest of the panels of Figure 10. The second
panel (from the top) in Figure 10 is the same, but with the first

Figure 8. Difference between the data and the modeled curves of Figure 6. Figure 9. Difference between the data and the modeled curves of Figure 7.

Table 4
Results of Fitting the Planetary Companion Model to the Timing Noise, Using the IPTA Methods of Correction for “Red” Noise Correlation, and Using Local T2

Parameters

Method=IPTA T2param=local

(0 yr) (2 yr) (4 yr) (6 yr) (8 yr)

A (μs) 197.6±0.1 197.8±0.1 198.8±0.1 199.3±0.2 200.0±0.7
e 0.158±0.001 0.152±0.001 0.147±0.001 0.145±0.001 0.145±0.01
P (days) 13068±3 13139±6 13276±13 13337±21 13370±51
rms (μs) 1.0 1.0 1.0 1.0 1.0
χ2
d 30.2 29.5 29.1 29.8 32.5

Note. The second column of this table is identical to the third column of Table 1. Columns three onwards display the parameters obtained when decreasing amount of
data are used for the fit; the number of years of data excised from the starting epoch is displayed at the head of each column.
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two years of data excised. The next panel has the first four
years of data excised, and the last two panels have the first six
and eight years of data excised, respectively. The planetary
model fits the smaller amount of data equally well. The
corresponding derived parameters are given in Table 4.

Columns two to six of Table 4 correspond to the best-fit
parameters of panels one to five of Figure 10, respectively.
Column two of this table is identical to column three of Table 1.
Columns three to six of Table 4 have two, four, six, and eight
years of initial data excised before fitting the planetary
companion model. It is clear that the excised data produces
results that are consistent with the complete data. The rms in
columns three to six are almost the same (up to the first decimal
place) as the rms in column 2. So are the χ2 per dof. The
parameters A, e, and P in columns three to six of Table 4 are also
relatively similar to those in column two, with a tendency to have
larger formal errors when more data is excised. Therefore, there
appears to be no correlation of the derived periods P with the
length of the data used for the planetary model. This is reflected
in the relatively similar difference in the timing residuals in the
panels of Figure 10 for the data that is common across panels.
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