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Abstract

We present a weak-lensing analysis of X-ray galaxy groups and clusters selected from the XMM-XXL survey
using the first-year data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program. Our joint weak-lensing
and X-ray analysis focuses on 136 spectroscopically confirmed X-ray-selected systems at 0.031�z�1.033
detected in the 25 deg2 XXL-N region, which largely overlaps with the HSC-XMM field. With high-quality
HSC weak-lensing data, we characterize the mass distributions of individual clusters and establish the
concentration–mass (c–M) relation for the XXL sample, by accounting for selection bias and statistical effects
and marginalizing over the remaining mass calibration uncertainty. We find the mass-trend parameter of the
c–M relation to be b = - 0.07 0.28 and the normalization to be =  c 4.8 1.0 stat 0.8 syst200 ( ) ( ) at

= -M h M10200
14 1

 and z=0.3. We find no statistical evidence for redshift evolution. Our weak-lensing
results are in excellent agreement with dark-matter-only c–M relations calibrated for recent ΛCDM
cosmologies. The level of intrinsic scatter in c200 is constrained as s <cln 24%200( ) (99.7% CL), which is
smaller than predicted for the full population of ΛCDM halos. This is likely caused in part by the X-ray
selection bias in terms of the cool-core or relaxation state. We determine the temperature–mass (TX–M500)
relation for a subset of 105 XXL clusters that have both measured HSC lensing masses and X-ray temperatures.
The resulting TX–M500 relation is consistent with the self-similar prediction. Our TX–M500 relation agrees with
the XXL DR1 results at group scales but has a slightly steeper mass trend, implying a smaller mass scale in the
cluster regime. The overall offset in the TX–M500 relation is at the ∼1.5σ level, corresponding to a mean mass
offset of 34% 20%. We also provide bias-corrected, weak-lensing-calibrated M200 and M500 mass estimates
of individual XXL clusters based on their measured X-ray temperatures.

Unified Astronomy Thesaurus concepts: Weak gravitational lensing (1797); Observational cosmology (1146);
Gravitational lensing shear (671); Dark matter distribution (356); Cold dark matter (265)
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1. Introduction

Galaxy clusters represent the largest bound objects formed in
the universe. Since galaxy clusters are highly massive and
dominated by dark matter (DM), they offer fundamental tests
on the assumed properties of DM. For example, the standard
cold dark matter (CDM) paradigm assumes that DM is
effectively cold and collisionless on astrophysical scales
(Bertone & Tait 2018). In this context, the standard CDM
model and its variants can provide a series of observationally
testable predictions. A prime example is the “Bullet Cluster,” a
merging pair of galaxy clusters exhibiting a significant offset
between the centers of the gravitational lensing mass and the
peaks of the collisional intracluster gas (Clowe et al. 2004,
2006). The data support that DM is effectively collisionless,
like galaxies, placing a robust upper limit on the self-interacting
DM cross section of s <m 1.25DM cm2 g−1 (Randall et al.
2008).

The evolution of the abundance of clusters across cosmic
time is sensitive to the amplitude and growth rate of primordial
density fluctuations, as well as to the cosmic volume–redshift
relation. This cosmological sensitivity mainly comes from the
fact that cluster halos populate the exponential tail of the
cosmic mass function (Haiman et al. 2001; Watson et al. 2014).
Hence, large samples of galaxy clusters spanning a wide range
of masses and redshifts provide an independent means of
examining any viable cosmological model (Allen et al. 2004;
Vikhlinin et al. 2009b; Mantz et al. 2010; Pratt et al. 2019). In
principle, galaxy clusters can thus complement other cosmo-
logical probes, such as cosmic microwave background (CMB)
anisotropy, large-scale galaxy clustering, distant supernovae,
and cosmic shear observations.

Significant progress has been made in recent years in
constructing large statistical samples of clusters thanks to
dedicated wide-field surveys (e.g., Planck Collaboration et al.
2014, 2016; Bleem et al. 2015; Rykoff et al. 2016; Miyazaki
et al. 2018b; Oguri et al. 2018). Cluster samples are often
defined by X-ray, Sunyaev–Zel’dovich effect (SZE), or optical
imaging observables, so that the cluster masses are statistically
inferred from mass scaling relations. Since the level of mass
bias is likely cluster mass dependent (Sereno et al. 2015a;
Sereno & Ettori 2017) and sensitive to calibration systematics
of the instruments (Donahue et al. 2014; Israel et al. 2015), a
concerted effort is required to enable an accurate calibration of
mass–observable relations using direct weak-lensing mass
measurements (e.g., Applegate et al. 2014; Umetsu et al.
2014; von der Linden et al. 2014; Hoekstra et al. 2015;
Melchior et al. 2015; Okabe & Smith 2016; Sereno et al. 2017;
Schrabback et al. 2018) and well-defined selection functions
(e.g., Benitez et al. 2014).

The distribution and concentration of DM in quasi-
equilibrium objects depend fundamentally on the properties
of DM. Hierarchical CDM models predict that the structure of
halos characterized in terms of the spherically averaged density
profile ρ(r) is approximately self-similar with a characteristic
density cusp in their centers, ρ(r)∝1/r, albeit with large
variance associated with the assembly histories of individual
halos (Jing & Suto 2000). They also predict that the density
gradient rd r d rln ln( ) of DM halos continuously steepens
from the center out to diffuse outskirts (Navarro et al.
1996, 1997; hereafter NFW). Clusters are predicted to have
lower central concentrations, in contrast to individual galaxies
that have denser central regions (Diemer & Kravtsov 2015).

The shape of clusters is predicted to be not spherical but
triaxial, reflecting the collisionless nature of DM (Jing &
Suto 2002).
Gravitational lensing offers a direct probe of the cosmic

matter distribution dominated by DM. While strong lensing
leads to highly distorted and/or multiple images in the densest
regions of the universe (e.g., Hattori et al. 1999), namely, the
central regions of massive halos, weak lensing provides a direct
measure of the mass distribution on larger scales (e.g.,
Bartelmann & Schneider 2001). Galaxy clusters act as
powerful gravitational lenses, producing both strong- and
weak-lensing features in the images of background source
galaxies. The unique advantage of weak gravitational lensing is
its ability to constrain the mass distribution of individual
systems independently of assumptions about their physical or
dynamical state.
Weak-lensing observations in the cluster regime have

established that the total matter distribution within clusters in
projection can be well described by cuspy, outward steepening
density profiles (Umetsu et al. 2011b, 2014, 2016; Newman
et al. 2013; Okabe et al. 2013), with a near-universal shape
(Niikura et al. 2015; Umetsu & Diemer 2017), as predicted for
collisionless halos in quasi-gravitational equilibrium (e.g.,
Navarro et al. 1996, 1997; Taylor & Navarro 2001; Hjorth &
Williams 2010; Williams & Hjorth 2010). Subsequent cluster
lensing studies targeting lensing-unbiased samples (e.g., Du
et al. 2015; Merten et al. 2015; Umetsu et al. 2016; Okabe &
Smith 2016; Cibirka et al. 2017; Sereno et al. 2017; Klein et al.
2019) have found that the degree of mass concentration derived
for these clusters agrees well with theoretical models calibrated
for recent ΛCDM cosmologies (e.g., Bhattacharya et al. 2013;
Dutton & Macciò 2014; Meneghetti et al. 2014; Diemer &
Kravtsov 2015). The three-dimensional shapes of galaxy
clusters as constrained by weak-lensing and multiwavelength
data sets are found to be in agreement with ΛCDM predictions
(e.g., Oguri et al. 2005; Morandi et al. 2012; Sereno et al.
2013, 2018; Umetsu et al. 2015). These results are all in
support of the standard explanation for DM as effectively
collisionless and nonrelativistic on sub-Mpc scales and beyond,
with an excellent match with standard ΛCDM predictions.
The XXL program (Pierre et al. 2016, hereafter XXL

Paper I) represents one of the largest XMM-Newton programs
to date. The ultimate science goal of the XXL survey is to
provide independent and self-sufficient cosmological con-
straints using X-ray-selected galaxy clusters (Pacaud et al.
2016, hereafter XXL Paper II). The XXL survey covers two
sky regions of 25 deg2 each at high galactic latitudes, namely,
the XXL-N and XXL-S fields. With the aid of multiwavelength
follow-up observations, the survey has uncovered nearly 400
galaxy groups and clusters out to a redshift of z∼2 (Adami
et al. 2018, hereafter XXL Paper XX), spanning approximately
two decades in mass (XXL Paper I). This XXL 365 galaxy
cluster catalog was made public as part of the XXL second-year
data release (DR2).
Hyper Suprime-Cam is an optical wide-field imager with a

1.77 deg2 field of view mounted on the prime focus of the
8.2 m Subaru telescope (Furusawa et al. 2018; Kawanomoto
et al. 2018; Komiyama et al. 2018; Miyazaki et al. 2018a). The
Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP;
Aihara et al. 2018a, 2018b) has been conducting an optical
imaging survey in five broad bands (grizy) in three layers of
survey depths and areas (Wide, Deep, and Ultradeep), aiming
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at observing 1400 deg2 on the sky in its Wide layer (Aihara
et al. 2018a). The HSC survey is optimized for weak-lensing
studies (Mandelbaum et al. 2018b; Miyaoka et al. 2018;
Medezinski et al. 2018b; Hamana et al. 2019; Hikage et al.
2019) and overlaps with the XXL survey in its HSC-XMM
field. It is therefore possible to directly estimate the masses of
XXL clusters using well-calibrated weak-lensing data available
from the HSC survey.

In this paper, we carry out a weak-lensing analysis on a
statistical sample of X-ray groups and clusters drawn from the
XXL DR2 cluster catalog (XXL Paper XX). Our analysis uses
wide-field multiband imaging from the HSC survey to measure
the weak-lensing signal for our XXL sample. The main goal of
this paper is to obtain cluster mass estimates for individual
XXL clusters and to achieve ensemble mass calibration with
sufficient accuracy for scaling relation analyses. With direct
mass measurements from weak lensing, we aim to characterize
observable–mass scaling relations of the XXL sample. We
focus on the concentration–mass (c–M) and temperature–mass
(TX–M) relations in this work. In our companion paper (Sereno
et al. 2020), we examine joint multivariate X-ray observable–
mass scaling relations for the XXL sample using the cluster
mass measurements presented in this paper.

This paper is organized as follows. Section 2 describes the
XXL cluster catalog and the HSC-SSP data. Section 3
describes the weak-lensing measurements, the selection of
background galaxies, and their associated uncertainties (see
also Appendix A). In Section 4, after describing the
methodology used to infer the mass and concentration
parameters from the lensing signal, we present the results of
weak-lensing mass measurements of the XXL sample. In
Section 5 we examine observable–mass scaling relations of the
XXL sample through Bayesian population modeling. Finally, a
summary is given in Section 6.

Throughout this paper, we assume a spatially flat ΛCDM
cosmology with W = 0.28m , W =L 0.72, and a Hubble constant
of H0=100h km s−1Mpc−1 with h=0.7. We adopt σ8=0.817
(Hinshaw et al. 2013) for the fiducial normalization of the matter
power spectrum, with σ8 the rms amplitude of linear mass
fluctuations in a sphere of comoving radius -h8 Mpc1 . We
denote the critical density of the universe at a particular redshift
z as r p=z H z G3 8c

2( ) ( ) ( ), with H(z) the redshift-dependent
Hubble parameter. We also define the dimensionless expansion
function as E(z)=H(z)/H0. We adopt the standard notation MΔ

to denote the mass enclosed within a sphere of radius rΔ within
which the mean overdensity equals Δ×ρc(z). We denote three-
dimensional cluster radii as r and reserve the symbol R for
projected cluster-centric distances.

We use “log” to denote the base-10 logarithm and “ln” to
denote the natural logarithm. The fractional scatter in natural
logarithm is quoted as a percent. All quoted errors are 1σ
confidence limits unless otherwise stated.

2. Cluster Sample and Data

2.1. XXL Cluster Sample

In the present study, we focus on spectroscopically
confirmed X-ray-selected systems of class C1 and C2 drawn
from the XXL DR2 catalog presented in XXL Paper XX. The
C1 population is designed to be free of contamination by
spurious detections or blended point sources, while the C2
population is deeper but its initial selection is about 50%

contaminated (XXL Paper I). Both populations of XXL clusters
have been cleaned up a posteriori by optical spectroscopic
observations and from a detailed comparison of X-ray and
optical observations.
For our joint HSC-XXL analysis, we select XXL clusters

that overlap with the HSC survey footprint within a comoving
transverse separation of = -R h0.3 Mpcmin

1 , which is the
minimum cluster-centric radius adopted in our HSC weak-
lensing studies (Section 3.2; see also Medezinski et al.
2018a, 2018b; Miyatake et al. 2019). These selection criteria
leave us with 83 C1 clusters (0.044� z� 1.002) and 53 C2
clusters (0.031� z� 1.033), a total of 136 XXL clusters with
spectroscopic confirmation. Of these, a subset of 105 clusters
(76 C1 and 29 C2 clusters) have X-ray temperatures =TX
T300 kpc measured in a fixed, core-included aperture of 300 kpc,
spanning the range  T0.6 keV 6.0300 kpc ( ) . Here the X-ray
temperatures T300 kpc were measured with a spectral analysis of
the cluster single best pointing (XXL Paper XX). Spectra were
extracted for each of the XMM-Newton cameras from the
region within a 300 kpc aperture and fitted in the 0.4–11.0 keV
band with the absorbed Astrophysical Plasma Emission Code
model (v2.0.2) in XSPEC (Dorman et al. 2003), with a fixed
metal abundance of Z=0.3 Ze. The background was modeled
following Eckert et al. (2014). X-ray temperatures could not be
measured for all clusters, because several cluster observations
were at very low redshift with poor spatial coverage, were
affected by flaring, were contaminated by point sources, or had
very low X-ray counts.
In Table 1 we summarize basic characteristics of the C1

+C2, C1, and C2 samples selected for our study. Figure 1
shows the distribution of the full (C1+C2) sample of 136 XXL
clusters in the HSC-XMM field (see Section 2.2). Figure 2
shows the distribution of our 136 XXL clusters in the X-ray
flux ( f60) versus redshift (z) plane. We summarize in Table 2
the properties of individual clusters in our sample.

2.2. Subaru HSC Survey

We use the HSC first-year shear catalog for our weak-lensing
analysis. Full details of the creation of the catalog are described
in Mandelbaum et al. (2018a, 2018b). We thus refer the reader
to those papers and give a basic summary here.
The first-year shear catalog was produced using about 90

nights of HSC-Wide data taken from 2014 March to 2016
April. This shear catalog consists of six distinct patches of the
sky covering a total of 137 deg2, which is larger than the area
covered by the public Data Release 1 (DR1). In this study, we
use the shear catalog updated with a star mask called
“Arcturus” (Coupon et al. 2018; Miyatake et al. 2019).
HSC-Wide consists of observations made with the grizy

filters, reaching a typical limiting magnitude of i∼26 ABmag
(5σ for point sources; Aihara et al. 2018b). The i-band imaging
was performed under exceptional seeing conditions for weak-
lensing shape measurements, resulting in a median seeing
FWHM of ;0 6. The galaxy shapes were measured on the co-
added i-band images using the re-Gaussianization method
(Hirata & Seljak 2003). Basic cuts were applied to select
galaxies with robust photometry and shape measurements
(Mandelbaum et al. 2018b). The HSC-XMM field covers an
effective area of 29.5 deg2 once the star mask region is
removed (Figure 1). The area of the overlap region between the
HSC and XXL surveys is 21.4 deg2. The weighted number
density of source galaxies in the HSC-XMM field is n 22.1gal 
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galaxies arcmin−2, and their mean redshift is 0.82 (see
Miyatake et al. 2019).

We use the HSC multiband photometry to select background
source galaxies for a given cluster in the XXL sample. Several
different codes were used to estimate photometric redshifts
(photo-zʼs) for individual galaxies from the multiband imaging
data (Tanaka et al. 2018). In this work, we employ the point-
spread function (PSF) matched aperture (afterburner) photo-
metry (Ephor_AB) code (Tanaka et al. 2018; Hikage et al.
2019). Additional cuts needed to select background source
galaxies are described in Section 3.4.

3. HSC Weak-lensing Analysis

3.1. Weak-lensing Basics

The effects of weak gravitational lensing are described by
the convergence κ and the complex shear γ. The convergence
causes an isotropic magnification, while the shear induces a
quadrupole anisotropy that can be estimated from the
ellipticities of background galaxies (e.g., Umetsu 2010). These

effects depend on the projected matter overdensity field, as well
as on the redshifts of the lens, zl, and the source galaxy, zs,
through the critical surface mass density for lensing,S z z,l scr( ),
as defined below. In general, the observable quantity for weak
lensing is not γ but the reduced shear,

g
k

=
-

g
1

. 1( )

The complex shear γ can be decomposed into the tangential
component γ+ and the 45°-rotated component γ×. The
tangential shear component γ+ averaged around a circle of
projected radius R is related to the excess surface mass density
ΔΣ(R) through the following identity (Kaiser 1995):

g =
S < - S

S
º

DS
S

+ R
R R

z z

R

z z, ,
, 2

l s l scr cr
( ) ( ) ( )

( )
( )

( )
( )

where Σ(R) is the azimuthally averaged surface mass density at
R, S <R( ) denotes the average surface mass density interior to

Table 1
Characteristics of the XXL Samples

Sample Ncl
a NT

b TX
c á ñTX wl zd á ñz wl c200 M200 á ñM200 wl á ñM200 g S/N (S/N q)

(keV) (keV) ( -h M1013 1
) ( -h M1013 1

) ( -h M1013 1
)

C1+C2 136 105 1.9 2.0 0.30 0.25 3.5±0.9 8.7±0.8 8.0±0.8 9.8±0.8 15.6 20.5
C1 83 76 2.1 2.1 0.29 0.23 3.6±1.1 9.7±1.0 9.0±1.0 11.6±1.2 14.0 18.4
C2 53 29 1.7 1.6 0.43 0.29 3.4±1.8 6.4±1.2 6.1±1.1 6.5±1.0 7.2 9.5

Notes. Quantities in brackets with subscript “wl” denote lensing-weighted sample means (Equation (27)), and those in brackets with subscript “g” denote error-
weighted geometric means (Equation (24)). The effective mass and concentration parameters (M200, c200) of each subsample are obtained from a single-mass-bin fit to
the respective stacked ΔΣ profile assuming an NFW density profile. For each sample, the effective M200 mass is consistent with the respective weighted sample
averages from individual cluster weak-lensing measurements. We provide two different estimates of the weak-lensing signal-to-nose ratio integrated over the
comoving radial range Î -R h0.3, 3 Mpc1[ ] , one based on the linear estimator, S/N (Equation (13)), and the other based on the quadratic estimator, (S/N)q
(Equation (15)).
a Number of clusters.
b Number of clusters with measured X-ray temperatures.
c Median X-ray temperature.
d Median cluster redshift.

Figure 1. Distribution of spectroscopically confirmed XXL-N C1+C2 groups and clusters (filled circles) in the HSC-XMM field. There are a total of 136 XXL systems
selected for our HSC weak-lensing analysis. The circles marked with red edges represent C2 clusters. The gray shaded area shows the HSC survey footprint. The blue
line shows the boundary of the combined exposure map of all XMM pointings in the XXL-N field. The area of the overlap region between the two surveys is 21.4 deg2.
The cluster redshift is color-coded according to the color bar on the right side.
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R, and

p
S =

+
z z

c D

G z D D
,

4 1
, 3l s

s

l l ls
cr

2

2
( )

( )
( )

with c the speed of light, G the gravitational constant, and Dl,
Ds, and Dls the observer–lens, observer–source, and lens–
source angular diameter distances, respectively. The extra
factor of + z1 l

2( ) is due to our use of comoving surface mass
densities. The quantity S- z z,l scr

1( ) describes the geometric
lensing strength, where we set S =- z z, 0l scr

1( ) for zs�zl.

3.2. Tangential Shear Profile

The X-ray-emitting gas provides an excellent tracer of the
total gravitational potential of the cluster (e.g., Donahue et al.
2014; Okabe et al. 2018; Umetsu et al. 2018), except for
massive cluster collisions caught in an ongoing phase of
dissociative mergers (e.g., Clowe et al. 2006; Okabe &
Umetsu 2008). In this study, we measure the weak-lensing
signal around the X-ray peak location of each cluster (Table 2)
as a function of comoving cluster-centric radius, R. We
computeDS in N=8 radial bins of equal logarithmic spacing
D =R R R Nln ln 0.29max min( )  from = -R h0.3 Mpcmin

1

to = -R h3 Mpcmax
1 (e.g., Medezinski et al. 2018a; Miyatake

et al. 2019). The chosen inner limit Rmin is sufficiently large
that our photo-z and shape measurements are not expected to be
affected significantly by masking or imperfect deblending by
bright cluster galaxies (see discussion in Medezinski et al.
2018b). Moreover, Rmin is much larger than the typical offsets
between the brightest cluster galaxy (BCG) and the X-ray
peak for XXL clusters (Lavoie et al. 2016, hereafter XXL
Paper XV). Hence, smoothing of the weak-lensing signal due
to miscentering effects (e.g., Johnston et al. 2007; Umetsu et al.
2011a) is expected to be not important for our analysis based
on X-ray centering information. However, it should be noted
that there is a possibility that a merger has boosted the
luminosity and made the X-ray peak off-centered during the
compression phase. Although the timescale on which this

happens is expected to be short (∼1 Gyr; see Ricker &
Sarazin 2001; Zhang et al. 2016), it could possibly induce a
selection effect and contribute to the scatter in scaling relations.
We estimate ΔΣ in each radial bin for either an individual

cluster or a stacked ensemble of multiple clusters using the
following estimator (Mandelbaum et al. 2018b):

DS =
å áS ñ

+ å
+

Î +
- -

Î
R

R

w e

K R w

1

2 1
, 4i

i

l s i ls ls ls

i l s i ls

, , cr,
1 1

,

( )
( )

[ ]
[ ( )]

( )

where the double summation is taken over all clusters of
interest (l) and over all source galaxies (s) that lie within the
cluster-centric radial bin (i), and

f f= - -+e e ecos 2 sin 2 51 2( ) ( ) ( )

is the tangential ellipticity of the source galaxy, f is the angle
measured in sky coordinates from the R.A. direction to the
line connecting the lens and the source galaxy, and (e1, e2) are
the ellipticity components in sky coordinates obtained from the
HSC data analysis pipeline (Bosch et al. 2018; Mandelbaum
et al. 2018b). The critical surface mass density for each lens–
source pair, áS ñ- -

lscr,
1 1, is averaged with the photo-z probability

distribution function (PDF) of the source galaxy (see
Section 3.4), Ps(z), as

ò

ò
áS ñ =

S
-

¥ -

¥

P z z z dz

P z dz

,
. 6ls

s l

s
cr,

1 0 cr
1

0

( ) ( )

( )
( )

The statistical weight factor wls in Equation (4) is given by

s
= áS ñ

+
-w

e

1
, 7ls ls

e s s
cr,

1 2

,
2

rms,
2

( ) ( )

where σe,s is the shape measurement uncertainty per ellipticity
component (i.e., s s s= ºe s e s e s, , ,1 2 ) and e srms, is the rms
ellipticity estimate per component. The + K R1 i[ ( )] factor
statistically corrects for multiplicative residual shear bias as
determined from simulations (Mandelbaum et al. 2018a,
2018b),

+ =
å +

å
Î

Î

K R
w m

w
1

1
, 8i

l s i ls s

l s i ls

,

,

( )
( )

( )

where ms denotes the multiplicative bias factor of individual
source galaxies. In our ensemble analysis of the XXL sample,
we will include a 1% systematic uncertainty on the residual
multiplicative bias (see Section 4.2; Mandelbaum et al. 2018a;
Hikage et al. 2019). We also conservatively correct for additive
residual shear bias by subtracting off the weighted mean offset
from Equation (4) (see Mandelbaum et al. 2018b; Miyaoka
et al. 2018; Okabe et al. 2019). The shear responsivity Ri( ) is
calculated as (see also Mandelbaum et al. 2005a)

= -
å

å
Î

Î

 R
w e

w
1 . 9i

l s i ls s

l s i ls

, rms,
2

,

( ) ( )

The typical value of  is ≈0.84 (erms≈ 0.4; Medezinski et al.
2018b). A full description and clarification of the procedure are
given in Mandelbaum et al. (2018b).
Similarly, we define the ×-component surface mass density,

ΔΣ×, by replacing e+ in Equation (4) with the 45°-rotated

Figure 2. Distribution of our cluster sample in the X-ray flux ( f60) vs. redshift
(z) plane. The gray circles and red crosses represent the C1 and C2 subsamples,
respectively.
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Table 2
Cluster Properties and Weak-lensing Measurements

IDa R.A.b Decl.b z Class T300 kpc c200 M200 M500 M200,MT M500,MT S/N (S/N)q
(deg) (deg) (keV) (1014M) (1014M) (1014M) (1014M)

002 36.384 −3.920 0.771 1 -
+2.50 0.19

0.18 5.1±4.9 (4.0) 0.19±0.36 (0.36) 0.13±0.25 (0.24) -
+1.07 0.53

0.90
-
+0.72 0.36

0.65 0.3 1.7

003 36.909 −3.300 0.836 1 -
+3.48 0.25

0.24 4.9±4.8 (4.0) 0.43±0.92 (0.87) 0.29±0.62 (0.59) -
+1.64 0.81

1.39
-
+1.11 0.56

1.02 0.7 2.5

006 35.439 −3.772 0.429 1 -
+4.24 0.45

0.61 2.1±1.2 (2.0) 9.64±4.38 (9.45) 5.59±2.09 (5.53) -
+6.79 2.20

3.38
-
+4.72 1.35

1.92 5.7 6.6

008 36.336 −3.801 0.299 1 -
+1.56 0.10

0.12 2.4±2.0 (2.4) 1.65±1.67 (1.46) 1.01±0.95 (0.91) -
+1.07 0.46

0.81
-
+0.74 0.32

0.56 3.2 3.5

009 36.685 −3.684 0.328 2 L 5.8±5.1 (4.7) 0.42±0.53 (0.33) 0.29±0.37 (0.23) L L 1.0 3.3
010 36.843 −3.362 0.330 1 -

+2.36 0.24
0.35 4.2±4.2 (3.7) 1.13±1.14 (1.01) 0.76±0.74 (0.68) -

+1.36 0.59
0.99

-
+0.92 0.41

0.70 2.1 4.1

011 36.540 −4.969 0.054 1 -
+1.57 0.11

0.29 3.0±3.0 (2.9) 1.15±1.38 (1.00) 0.76±0.84 (0.65) -
+0.90 0.41

0.72
-
+0.63 0.29

0.51 5.0 5.5

013 36.858 −4.538 0.308 1 -
+1.30 0.11

0.22 2.8±2.7 (2.7) 1.51±1.43 (1.40) 0.97±0.83 (0.90) -
+0.95 0.40

0.71
-
+0.67 0.28

0.50 3.4 3.8

018 36.008 −5.091 0.324 1 -
+1.68 0.16

0.24 5.9±5.1 (4.7) 0.29±0.40 (0.24) 0.20±0.27 (0.17) -
+0.77 0.37

0.63
-
+0.52 0.26

0.46 −0.4 2.8

020 36.635 −5.001 0.494 2 -
+1.65 0.23

0.30 2.1±1.6 (2.2) 4.36±3.39 (4.14) 2.60±1.80 (2.52) -
+1.89 0.76

1.39
-
+1.39 0.55

0.95 3.6 3.9

021 36.233 −5.134 0.085 1 -
+0.79 0.06

0.06 5.1±4.8 (4.0) 0.10±0.13 (0.10) 0.07±0.09 (0.07) -
+0.29 0.14

0.23
-
+0.19 0.09

0.17 3.2 4.5

022 36.917 −4.858 0.293 1 -
+1.98 0.12

0.13 4.9±4.5 (4.2) 2.15±1.34 (2.11) 1.48±0.87 (1.46) -
+1.67 0.60

0.98
-
+1.20 0.43

0.69 2.6 3.9

025 36.353 −4.680 0.265 1 -
+2.23 0.18

0.24 4.6±4.5 (3.9) 0.96±0.93 (0.86) 0.65±0.61 (0.58) -
+1.24 0.54

0.88
-
+0.84 0.37

0.62 1.6 3.5

027 37.012 −4.851 0.295 1 -
+2.72 0.40

0.41 2.8±2.7 (2.7) 0.91±1.04 (0.77) 0.58±0.63 (0.49) -
+1.45 0.67

1.13
-
+0.95 0.44

0.77 2.6 3.5

028 35.984 −3.098 0.297 1 -
+1.53 0.17

0.27 5.2±4.9 (4.1) 0.24±0.35 (0.21) 0.16±0.24 (0.14) -
+0.71 0.34

0.59
-
+0.48 0.24

0.43 0.2 2.6

030 35.778 −4.216 0.631 2 L 5.5±5.0 (4.3) 0.09±0.12 (0.10) 0.06±0.08 (0.07) L L −1.2 2.3
032 36.002 −3.424 0.803 2 -

+2.16 0.42
0.49 5.2±4.9 (4.1) 0.24±0.47 (0.48) 0.16±0.32 (0.32) -

+1.01 0.51
0.93

-
+0.69 0.35

0.67 0.3 1.5

035 35.949 −2.858 0.174 1 -
+1.26 0.08

0.08 5.5±5.0 (4.3) 0.11±0.14 (0.10) 0.07±0.10 (0.07) -
+0.47 0.23

0.38
-
+0.32 0.15

0.27 −0.0 3.4

036 35.527 −3.054 0.492 1 -
+3.53 0.43

0.53 6.4±5.3 (5.3) 0.52±0.70 (0.41) 0.36±0.50 (0.28) -
+1.63 0.79

1.33
-
+1.10 0.54

0.98 0.5 3.9

038 36.856 −4.190 0.584 2 -
+1.67 0.28

0.30 5.5±5.0 (4.3) 0.09±0.12 (0.09) 0.06±0.08 (0.06) -
+0.60 0.30

0.52
-
+0.39 0.20

0.36 −0.3 2.0

040 35.523 −4.547 0.320 1 -
+1.95 0.24

0.26 5.4±5.1 (4.2) 0.78±0.85 (0.66) 0.54±0.58 (0.45) -
+1.06 0.47

0.80
-
+0.72 0.33

0.57 2.1 3.9

041 36.378 −4.239 0.142 1 -
+1.68 0.08

0.22 7.3±5.1 (6.5) 2.47±1.11 (2.45) 1.82±0.76 (1.82) -
+1.94 0.60

0.92
-
+1.49 0.45

0.66 2.9 5.9

044 36.141 −4.236 0.263 1 -
+1.21 0.14

0.11 2.9±2.6 (2.8) 2.07±1.40 (2.00) 1.32±0.81 (1.30) -
+1.20 0.45

0.79
-
+0.87 0.32

0.54 3.6 4.8

048 35.722 −3.473 1.005 2 -
+2.72 0.16

0.18 5.7±5.1 (4.6) 1.04±2.61 (2.52) 0.71±1.78 (1.71) -
+1.28 0.63

1.12
-
+0.88 0.44

0.83 1.1 1.1

049 35.988 −4.588 0.494 1 -
+2.13 0.14

0.12 6.0±5.1 (4.9) 1.90±1.84 (1.73) 1.35±1.29 (1.21) -
+1.42 0.60

1.03
-
+1.00 0.43

0.76 1.3 3.2

050 36.421 −3.189 0.140 1 -
+3.07 0.25

0.26 6.3±5.3 (5.1) 1.10±0.96 (1.04) 0.78±0.68 (0.72) -
+1.65 0.71

1.14
-
+1.13 0.49

0.82 1.0 3.9

051 36.498 −2.825 0.279 1 -
+1.34 0.09

0.09 6.1±5.2 (4.9) 0.22±0.32 (0.19) 0.15±0.22 (0.13) -
+0.60 0.29

0.49
-
+0.40 0.20

0.35 −0.3 3.2

052 36.567 −2.666 0.056 1 -
+0.63 0.03

0.04 5.1±4.9 (4.0) 0.12±0.17 (0.12) 0.08±0.11 (0.08) -
+0.23 0.11

0.19
-
+0.16 0.08

0.14 0.8 2.5

054 36.319 −5.887 0.054 1 -
+1.54 0.08

0.09 5.9±5.2 (4.7) 0.60±0.76 (0.48) 0.42±0.54 (0.33) -
+0.77 0.35

0.60
-
+0.53 0.25

0.44 −0.3 3.6

055 36.454 −5.896 0.232 1 -
+3.15 0.51

0.32 8.2±5.4 (7.5) 3.19±1.49 (3.20) 2.39±1.07 (2.39) -
+2.92 0.92

1.37
-
+2.19 0.69

1.01 3.1 4.8

056 33.871 −4.682 0.348 1 -
+2.99 0.39

0.50 4.0±4.0 (3.5) 0.93±1.04 (0.79) 0.62±0.68 (0.52) -
+1.56 0.72

1.21
-
+1.04 0.48

0.84 1.6 3.1

057 34.051 −4.242 0.153 1 -
+2.05 0.18

0.26 4.6±4.6 (3.8) 0.41±0.53 (0.34) 0.28±0.36 (0.22) -
+0.97 0.46

0.78
-
+0.65 0.31

0.55 1.8 2.4

058 34.935 −4.889 0.332 1 -
+2.19 0.26

0.27 4.6±4.6 (3.7) 0.19±0.29 (0.18) 0.13±0.19 (0.12) -
+0.95 0.47

0.79
-
+0.63 0.32

0.56 1.4 3.6

059 34.397 −5.223 0.645 1 -
+2.92 0.37

0.49 6.3±5.4 (5.0) 0.33±0.61 (0.40) 0.22±0.40 (0.27) -
+1.37 0.68

1.19
-
+0.92 0.47

0.86 0.2 4.2

060 33.668 −4.553 0.139 1 -
+4.70 0.26

0.26 5.1±4.3 (4.5) 3.45±1.67 (3.38) 2.39±1.04 (2.38) -
+3.66 1.21

1.76
-
+2.56 0.80

1.15 3.8 6.0

061 35.485 −5.758 0.259 1 -
+1.93 0.22

0.29 4.4±4.5 (3.6) 0.29±0.41 (0.25) 0.20±0.28 (0.16) -
+0.90 0.43

0.74
-
+0.60 0.29

0.52 1.4 2.2

062 36.061 −2.721 0.059 1 -
+0.77 0.08

0.12 5.6±5.1 (4.5) 0.24±0.36 (0.22) 0.16±0.24 (0.15) -
+0.34 0.16

0.29
-
+0.23 0.11

0.21 1.3 4.1

064 34.632 −5.017 0.874 1 L 4.6±4.7 (3.7) 0.34±0.72 (0.71) 0.23±0.48 (0.48) L L 1.1 2.1
065 34.245 −4.819 0.435 2 L 5.9±5.2 (4.7) 0.09±0.12 (0.09) 0.06±0.08 (0.06) L L −1.3 2.8
067 34.681 −5.549 0.382 1 -

+1.22 0.17
0.13 6.7±5.4 (5.5) 0.43±0.59 (0.34) 0.29±0.42 (0.23) -

+0.63 0.30
0.53

-
+0.43 0.21

0.39 −0.1 3.7

071 35.640 −4.967 0.833 2 -
+2.18 0.15

0.13 5.6±5.1 (4.4) 0.25±0.51 (0.51) 0.17±0.35 (0.35) -
+0.95 0.47

0.82
-
+0.64 0.32

0.59 −0.2 2.2

072 33.850 −3.726 1.002 1 -
+2.00 0.31

0.27 5.7±5.1 (4.6) 1.32±3.44 (3.26) 0.88±2.31 (2.18) -
+1.01 0.50

0.94
-
+0.69 0.35

0.69 1.4 1.4

073 33.744 −3.506 1.033 2 -
+1.72 0.33

0.41 5.7±5.1 (4.4) 1.08±2.77 (2.70) 0.72±1.84 (1.79) -
+0.94 0.48

0.91
-
+0.64 0.34

0.67 1.4 1.4
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Table 2
(Continued)

IDa R.A.b Decl.b z Class T300 kpc c200 M200 M500 M200,MT M500,MT S/N (S/N)q
(deg) (deg) (keV) (1014M) (1014M) (1014M) (1014M)

075 35.834 −5.454 0.211 1 L 5.8±5.1 (4.6) 0.08±0.10 (0.08) 0.06±0.07 (0.05) L L −1.2 2.4
076 33.682 −3.823 0.750 1 L 4.1±4.2 (3.5) 3.26±5.68 (2.90) 2.47±4.11 (1.93) L L 1.3 3.4
077 34.527 −3.656 0.202 2 -

+1.53 0.21
0.28 5.1±4.8 (4.1) 0.36±0.45 (0.29) 0.25±0.31 (0.20) -

+0.73 0.34
0.59

-
+0.49 0.24

0.42 1.4 3.5

078 33.948 −4.842 0.953 2 -
+2.63 0.45

0.41 5.5±5.1 (4.3) 0.21±0.40 (0.41) 0.14±0.27 (0.28) -
+1.11 0.56

0.97
-
+0.74 0.38

0.70 −1.4 1.8

079 34.494 −4.868 0.194 2 L 5.5±5.0 (4.4) 0.44±0.54 (0.35) 0.30±0.37 (0.24) L L 1.1 2.6
080 34.597 −5.413 0.646 2 -

+1.65 0.25
0.32 4.7±4.7 (3.7) 0.14±0.22 (0.18) 0.09±0.15 (0.12) -

+0.71 0.35
0.63

-
+0.47 0.24

0.45 0.5 3.4

082 32.714 −6.173 0.427 1 -
+3.58 0.50

0.61 4.6±4.7 (3.7) 0.39±0.69 (0.40) 0.27±0.47(0.26) -
+1.74 0.87

1.54
-
+1.17 0.60

1.10 1.7 3.1

085 32.870 −6.196 0.428 1 -
+4.09 0.69

0.76 5.5±5.0 (4.4) 0.12±0.19 (0.15) 0.08±0.13 (0.10) -
+1.51 0.78

1.38
-
+0.99 0.52

0.95 −1.4 2.6

086 32.809 −6.162 0.424 1 -
+2.81 0.49

0.56 5.2±4.9 (4.1) 0.15±0.23 (0.18) 0.10±0.16 (0.12) -
+1.15 0.58

1.02
-
+0.76 0.39

0.72 0.4 3.3

087 37.720 −4.348 0.141 1 -
+1.61 0.11

0.12 4.5±4.5 (3.8) 0.45±0.55 (0.37) 0.30±0.37 (0.25) -
+0.78 0.36

0.60
-
+0.53 0.25

0.43 1.5 3.7

088 37.611 −4.581 0.295 1 -
+1.91 0.24

0.27 4.6±4.5 (3.7) 0.74±0.81 (0.63) 0.50±0.54 (0.42) -
+1.03 0.46

0.78
-
+0.69 0.32

0.55 2.1 3.7

089 37.127 −4.733 0.609 1 -
+2.11 0.39

0.40 6.2±5.3 (5.0) 1.68±2.06 (1.37) 1.22±1.47 (0.97) -
+1.35 0.61

1.10
-
+0.95 0.44

0.81 1.1 2.7

090 37.121 −4.857 0.141 1 -
+1.09 0.07

0.12 5.5±5.1 (4.4) 0.12±0.17 (0.12) 0.08±0.11 (0.08) -
+0.42 0.20

0.34
-
+0.28 0.14

0.25 −0.1 2.3

091 37.926 −4.881 0.186 1 -
+5.15 0.31

0.31 8.9±4.7 (8.3) 5.77±1.66 (5.72) 4.44±1.11 (4.42) -
+5.87 1.37

1.79
-
+4.60 0.97

1.22 6.0 9.1

095 31.962 −5.206 0.138 1 -
+0.90 0.08

0.09 6.9±5.4 (5.8) 0.91±0.83 (0.82) 0.66±0.60 (0.59) -
+0.59 0.25

0.44
-
+0.42 0.18

0.33 −0.0 3.9

096 30.973 −5.027 0.520 1 -
+4.98 0.86

0.50 5.3±5.0 (4.2) 0.17±0.28 (0.19) 0.11±0.18 (0.13) -
+1.97 1.02

1.77
-
+1.30 0.68

1.24 0.1 1.1

097 33.342 −6.098 0.697 1 -
+5.04 0.95

1.14 5.7±5.1 (4.4) 0.19±0.34 (0.31) 0.12±0.23 (0.21) -
+1.96 1.01

1.83
-
+1.31 0.69

1.30 −1.7 3.4

098 33.115 −6.076 0.297 1 -
+2.96 0.59

0.57 4.4±4.6 (3.6) 0.14±0.21 (0.15) 0.10±0.14 (0.10) -
+1.15 0.58

1.03
-
+0.76 0.39

0.71 1.2 3.4

099 33.220 −6.202 0.391 1 -
+3.72 0.54

0.87 5.6±5.1 (4.4) 0.30±0.56 (0.39) 0.20±0.37 (0.27) -
+1.75 0.89

1.59
-
+1.18 0.61

1.14 0.4 1.9

100 31.549 −6.193 0.915 1 -
+5.60 0.43

0.51 5.5±5.0 (4.4) 0.48±1.08 (1.07) 0.32±0.73 (0.72) -
+2.64 1.34

2.37
-
+1.78 0.92

1.73 −0.8 0.8

101 32.193 −4.436 0.756 1 -
+2.95 0.39

0.47 4.4±4.4 (3.7) 5.33±7.94 (4.44) 3.90±5.50 (3.02) -
+1.99 0.91

1.71
-
+1.44 0.68

1.29 1.6 3.0

102 31.322 −4.652 0.969 1 -
+3.87 0.76

0.81 5.4±5.0 (4.3) 0.45±1.01 (1.00) 0.30±0.68 (0.67) -
+1.73 0.87

1.59
-
+1.17 0.60

1.16 0.1 1.6

103 36.886 −5.961 0.233 1 -
+2.53 0.34

0.40 6.2±5.2 (5.0) 1.96±1.44 (1.92) 1.39±0.99 (1.36) -
+1.79 0.70

1.15
-
+1.27 0.50

0.83 2.3 4.6

104 37.324 −5.895 0.294 1 L 6.4±5.2 (5.3) 1.03±1.04 (0.89) 0.74±0.75 (0.62) L L 0.5 3.0
105 38.411 −5.506 0.432 1 -

+6.01 0.91
0.79 3.2±3.4 (3.0) 1.29±1.55 (1.07) 0.85±0.94 (0.69) -

+2.99 1.45
2.50

-
+1.94 0.94

1.66 2.5 4.0

106 31.351 −5.732 0.300 1 -
+2.78 0.17

0.20 2.1±1.4 (2.1) 3.70±2.31 (3.60) 2.19±1.24 (2.15) -
+2.69 0.97

1.58
-
+1.81 0.64

1.01 3.9 5.4

108 31.832 −4.827 0.254 1 -
+2.34 0.24

0.31 4.7±4.7 (3.8) 0.14±0.20 (0.14) 0.10±0.14 (0.09) -
+0.94 0.47

0.79
-
+0.62 0.31

0.56 1.2 2.3

110 33.537 −5.585 0.445 1 -
+1.74 0.22

0.28 3.2±3.1 (3.0) 3.43±2.55 (3.32) 2.23±1.51 (2.20) -
+1.81 0.71

1.26
-
+1.33 0.52

0.88 3.1 4.6

111 33.111 −5.627 0.300 1 -
+3.70 0.50

0.52 2.0±1.2 (1.9) 5.89±3.02 (5.73) 3.40±1.48 (3.36) -
+4.43 1.49

2.33
-
+2.98 0.92

1.36 5.6 6.5

112 32.514 −5.462 0.139 1 -
+1.02 0.05

0.06 3.6±3.9 (3.2) 0.74±0.84 (0.63) 0.49±0.52 (0.41) -
+0.57 0.25

0.45
-
+0.40 0.18

0.32 3.8 4.4

114 30.425 −5.031 0.234 2 L 4.8±3.8 (4.5) 3.47±1.61 (3.42) 2.42±1.03 (2.41) L L 3.2 6.2
116 32.664 −5.945 0.534 2 -

+6.03 0.48
0.29 5.4±5.0 (4.3) 0.23±0.38 (0.24) 0.15±0.25 (0.16) -

+2.68 1.41
2.45

-
+1.78 0.94

1.72 −0.0 2.9

117 33.121 −5.528 0.298 1 -
+3.42 0.57

0.47 3.6±3.6 (3.3) 2.37±1.63 (2.32) 1.56±0.97 (1.55) -
+2.35 0.90

1.45
-
+1.60 0.60

0.95 3.9 4.9

121 37.015 −5.297 0.317 2 -
+2.18 0.33

0.34 4.1±4.2 (3.6) 1.30±1.34 (1.13) 0.87±0.87 (0.76) -
+1.34 0.59

1.00
-
+0.91 0.41

0.71 1.9 2.9

123 36.487 −5.643 0.194 1 L 5.8±5.2 (4.6) 0.17±0.24 (0.15) 0.11±0.16 (0.10) L L −0.1 3.4
124 34.425 −4.863 0.516 1 -

+2.13 0.38
0.41 5.3±4.9 (4.2) 0.36±0.59 (0.34) 0.24±0.40 (0.23) -

+1.05 0.52
0.92

-
+0.71 0.36

0.66 0.9 3.3

127 36.850 −3.566 0.315 2 -
+0.91 0.15

0.14 6.0±5.2 (4.9) 0.35±0.46 (0.28) 0.24±0.32 (0.19) -
+0.48 0.23

0.41
-
+0.33 0.16

0.30 −0.4 2.9

130 35.176 −5.430 0.546 2 -
+1.53 0.30

0.25 4.4±4.5 (3.7) 0.72±1.16 (0.63) 0.51±0.80 (0.42) -
+0.88 0.43

0.77
-
+0.60 0.30

0.56 1.5 2.8

135 33.868 −4.049 0.371 2 -
+1.30 0.20

0.26 5.1±4.9 (4.0) 0.58±0.79 (0.47) 0.39±0.54 (0.31) -
+0.74 0.35

0.63
-
+0.50 0.24

0.45 1.5 3.5

137 34.416 −3.807 0.290 2 -
+1.66 0.15

0.22 4.8±4.7 (3.9) 0.26±0.37 (0.22) 0.17±0.25 (0.15) -
+0.76 0.37

0.62
-
+0.51 0.25

0.45 1.1 2.3

138 33.750 −3.905 0.140 2 L 3.1±3.1 (3.0) 1.01±1.00 (0.92) 0.66±0.61 (0.60) L L 3.2 4.9
139 34.267 −3.536 0.216 2 L 4.9±4.8 (3.8) 0.17±0.24 (0.16) 0.11±0.17 (0.11) L L 1.8 3.7
140 36.303 −5.524 0.294 2 -

+1.44 0.17
0.21 4.8±4.8 (3.8) 0.14±0.20 (0.14) 0.09±0.14 (0.09) -

+0.60 0.30
0.51

-
+0.40 0.20

0.36 1.8 3.0
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Table 2
(Continued)

IDa R.A.b Decl.b z Class T300 kpc c200 M200 M500 M200,MT M500,MT S/N (S/N)q
(deg) (deg) (keV) (1014M) (1014M) (1014M) (1014M)

141 34.357 −4.659 0.196 2 L 6.0±5.2 (4.8) 0.25±0.33 (0.21) 0.17±0.23 (0.14) L L −0.4 3.3
142 34.729 −5.469 0.451 2 -

+2.10 0.37
0.54 6.0±5.2 (4.8) 0.11±0.16 (0.12) 0.08±0.11 (0.08) -

+0.81 0.41
0.71

-
+0.53 0.27

0.49 −1.7 2.6

144 34.152 −4.450 0.447 2 -
+1.72 0.23

0.28 2.4±1.9 (2.4) 5.26±3.26 (5.09) 3.22±1.75 (3.18) -
+2.56 0.96

1.67
-
+1.93 0.69

1.12 3.8 4.3

145 37.388 −4.666 0.627 2 L 4.8±4.8 (3.9) 0.13±0.20 (0.15) 0.09±0.13 (0.10) L L 0.6 1.7
146 37.462 −4.150 0.254 1 -

+1.84 0.28
0.26 5.2±4.9 (4.0) 0.11±0.15 (0.11) 0.07±0.10 (0.07) -

+0.69 0.34
0.59

-
+0.46 0.23

0.41 −0.1 2.9

147 37.641 −4.625 0.031 2 L 5.4±5.0 (4.3) 0.21±0.32 (0.20) 0.14±0.22 (0.14) L L 0.2 3.0
148 37.719 −4.859 0.294 2 -

+1.19 0.08
0.06 5.2±4.8 (4.3) 0.80±0.79 (0.73) 0.56±0.54 (0.49) -

+0.69 0.30
0.51

-
+0.48 0.21

0.37 0.8 4.3

149 37.634 −4.989 0.292 2 L 3.6±3.4 (3.4) 2.92±1.70 (2.85) 1.92±1.00 (1.90) L L 3.8 5.0
150 37.661 −4.992 0.292 1 -

+2.02 0.29
0.40 2.7±2.3 (2.7) 2.01±1.49 (1.94) 1.27±0.88 (1.24) -

+1.59 0.62
1.04

-
+1.09 0.42

0.70 3.0 4.0

151 38.122 −4.788 0.189 1 -
+1.86 0.30

0.27 3.3±2.8 (3.2) 2.92±1.56 (2.87) 1.91±0.93 (1.89) -
+2.12 0.72

1.15
-
+1.51 0.50

0.77 3.1 6.7

152 38.082 −4.817 0.205 2 -
+0.81 0.15

0.16 2.7±2.5 (2.6) 0.83±0.95 (0.71) 0.53±0.56 (0.46) -
+0.56 0.25

0.47
-
+0.39 0.18

0.33 3.3 3.6

153 38.490 −5.139 0.880 2 L 5.5±5.0 (4.3) 0.16±0.29 (0.27) 0.11±0.19 (0.18) L L −1.2 2.6
154 38.502 −4.826 0.179 1 -

+1.17 0.08
0.06 5.9±5.2 (4.7) 0.16±0.23 (0.15) 0.11±0.15 (0.10) -

+0.49 0.23
0.39

-
+0.33 0.16

0.28 0.4 3.8

158 32.793 −4.349 0.442 2 -
+1.72 0.27

0.31 5.8±4.5 (5.2) 6.81±3.16 (6.70) 4.86±1.98 (4.82) -
+3.94 1.35

2.11
-
+3.25 1.01

1.50 3.5 5.3

159 32.268 −5.305 0.614 2 -
+2.44 0.48

0.67 6.1±5.2 (4.9) 0.22±0.37 (0.25) 0.14±0.25 (0.17) -
+1.10 0.55

0.99
-
+0.74 0.38

0.71 −0.4 2.6

160 31.521 −5.194 0.817 2 L 5.3±4.9 (4.2) 0.32±0.67 (0.66) 0.21±0.45 (0.45) L L 0.5 1.9
161 33.915 −5.980 0.306 1 -

+2.41 0.34
0.41 5.5±5.0 (4.4) 0.74±0.81 (0.63) 0.52±0.56 (0.42) -

+1.23 0.56
0.94

-
+0.84 0.39

0.68 1.2 3.3

162 32.524 −6.093 0.138 2 L 4.6±4.6 (3.7) 0.21±0.31 (0.20) 0.14±0.21 (0.13) L L 2.1 2.4
163 32.463 −6.117 0.283 1 L 5.0±4.8 (4.0) 0.16±0.24 (0.16) 0.11±0.16 (0.11) L L 0.7 2.1
165 33.356 −4.516 0.180 2 -

+0.97 0.15
0.12 6.1±5.1 (5.0) 0.71±0.72 (0.62) 0.50±0.51 (0.43) -

+0.60 0.26
0.46

-
+0.41 0.19

0.33 0.2 3.5

166 33.211 −4.600 0.158 1 -
+1.54 0.17

0.14 5.9±5.2 (4.7) 0.33±0.42 (0.27) 0.23±0.29 (0.18) -
+0.71 0.33

0.56
-
+0.48 0.23

0.41 0.7 3.7

167 32.479 −4.630 0.298 1 -
+1.84 0.23

0.25 4.6±4.6 (3.8) 0.36±0.49 (0.29) 0.24±0.33(0.19) -
+0.88 0.42

0.72
-
+0.59 0.29

0.51 0.8 3.0

168 37.387 −5.880 0.295 1 -
+2.16 0.31

0.36 5.7±5.1 (4.5) 0.09±0.11 (0.09) 0.06±0.07 (0.06) -
+0.72 0.36

0.62
-
+0.47 0.24

0.42 −0.6 3.0

169 37.538 −5.679 0.498 1 -
+4.70 1.05

0.97 3.7±3.6 (3.4) 3.16±2.43 (3.04) 2.10±1.48 (2.06) -
+3.01 1.23

2.04
-
+2.08 0.83

1.37 2.6 3.5

170 37.998 −5.737 0.403 2 -
+1.74 0.22

0.30 3.6±3.8 (3.2) 0.94±1.14 (0.78) 0.63±0.72 (0.51) -
+1.01 0.46

0.80
-
+0.69 0.32

0.57 2.1 3.6

171 31.986 −5.871 0.044 1 L 5.7±5.2 (4.6) 0.10±0.14 (0.10) 0.07±0.10 (0.07) L L −2.1 3.3
172 31.571 −5.893 0.426 2 L 5.3±4.9 (4.1) 0.12±0.17 (0.12) 0.08±0.11 (0.08) L L 0.5 2.0
173 31.251 −5.931 0.413 1 -

+4.29 0.22
0.27 9.6±5.6 (9.3) 2.90±1.67 (2.91) 2.24±1.30 (2.24) -

+3.04 1.08
1.63

-
+2.24 0.81

1.26 1.4 4.5

174 30.592 −5.899 0.235 1 -
+1.50 0.09

0.09 5.9±5.2 (4.8) 0.31±0.43 (0.25) 0.21±0.30 (0.17) -
+0.70 0.33

0.56
-
+0.47 0.23

0.41 0.3 2.2

176 32.490 −4.980 0.141 1 -
+1.42 0.15

0.18 4.9±4.8 (3.9) 0.14±0.20 (0.13) 0.10±0.13 (0.09) -
+0.57 0.28

0.47
-
+0.38 0.19

0.34 0.8 2.3

177 31.290 −4.918 0.211 2 L 5.6±5.0 (4.5) 0.55±0.62 (0.46) 0.38±0.43 (0.31) L L 1.1 2.8
180 33.863 −5.556 0.289 1 -

+2.74 0.19
0.18 3.3±3.3 (3.0) 2.27±1.86 (2.18) 1.47±1.12 (1.41) -

+1.97 0.79
1.31

-
+1.35 0.54

0.90 3.1 4.1

181 36.376 −3.817 0.371 2 -
+1.09 0.08

0.08 3.7±3.9 (3.4) 0.59±0.79 (0.49) 0.41±0.52 (0.32) -
+0.58 0.27

0.48
-
+0.40 0.19

0.35 1.6 2.6

182 36.227 −3.478 0.174 2 -
+0.97 0.15

0.13 5.8±5.2 (4.6) 0.08±0.09 (0.07) 0.05±0.06 (0.05) -
+0.34 0.16

0.28
-
+0.22 0.11

0.20 −1.6 2.7

183 35.065 −4.917 0.511 2 -
+4.42 0.69

0.89 4.4±4.4 (3.8) 1.99±2.07 (1.80) 1.36±1.35 (1.21) -
+2.47 1.11

1.90
-
+1.68 0.76

1.33 1.9 3.8

184 35.311 −4.204 0.811 2 L 5.1±4.9 (4.0) 0.14±0.23 (0.19) 0.09±0.15 (0.13) L L −0.5 2.9
185 36.387 −5.539 0.566 2 L 5.3±5.0 (4.2) 0.16±0.26 (0.19) 0.11±0.18 (0.13) L L 0.0 1.7
186 36.003 −5.864 0.515 2 -

+1.04 0.06
0.08 5.4±5.0 (4.2) 0.19±0.31 (0.21) 0.13±0.21 (0.14) -

+0.45 0.22
0.41

-
+0.30 0.15

0.30 0.3 2.4

187 34.136 −4.509 0.447 2 -
+3.24 0.59

0.60 2.4±2.1 (2.4) 1.70±2.00 (1.44) 1.05±1.14 (0.90) -
+1.91 0.87

1.53
-
+1.27 0.58

1.04 2.9 3.4

188 33.812 −4.223 0.570 2 L 6.3±5.3 (5.0) 0.13±0.20 (0.15) 0.09±0.14 (0.10) L L −1.7 3.1
189 34.908 −4.007 0.204 1 -

+1.28 0.14
0.18 5.5±5.0 (4.3) 0.16±0.22 (0.15) 0.11±0.15 (0.10) -

+0.54 0.26
0.44

-
+0.36 0.18

0.32 0.2 2.1

190 36.748 −4.589 0.070 1 -
+1.07 0.07

0.07 5.7±5.1 (4.6) 0.17±0.24 (0.15) 0.11±0.16 (0.10) -
+0.43 0.21

0.35
-
+0.29 0.14

0.25 −0.3 3.1

191 36.574 −5.078 0.054 1 -
+0.94 0.06

0.05 3.1±2.6 (3.0) 3.58±2.27 (3.45) 2.30±1.28 (2.27) -
+1.36 0.54

0.95
-
+1.10 0.41

0.68 4.4 6.6
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Table 2
(Continued)

IDa R.A.b Decl.b z Class T300 kpc c200 M200 M500 M200,MT M500,MT S/N (S/N)q
(deg) (deg) (keV) (1014M) (1014M) (1014M) (1014M)

192 34.509 −5.029 0.341 2 L 5.0±4.8 (4.0) 0.14±0.20 (0.13) 0.09±0.13 (0.09) L L 1.0 3.7
193 34.876 −5.058 0.203 2 L 5.5±5.1 (4.4) 0.07±0.08 (0.07) 0.05±0.05 (0.05) L L −0.4 3.6
194 34.200 −4.555 0.411 2 L 6.1±5.3 (4.8) 0.18±0.27 (0.17) 0.12±0.18 (0.12) L L 0.3 3.9
195 34.266 −4.478 0.661 2 L 4.3±4.4 (3.6) 1.95±2.82 (1.62) 1.39±1.91 (1.09) L L 1.6 2.5
198 33.496 −5.186 0.356 1 -

+1.32 0.09
0.14 4.8±4.7 (3.9) 0.23±0.34 (0.21) 0.15±0.23 (0.14) -

+0.60 0.29
0.50

-
+0.40 0.20

0.36 0.4 3.1

201 32.767 −4.893 0.138 1 -
+1.60 0.16

0.24 5.3±4.9 (4.2) 0.22±0.31 (0.19) 0.15±0.21 (0.13) -
+0.69 0.34

0.57
-
+0.47 0.23

0.41 0.1 3.0

202 34.160 −4.617 0.292 2 L 5.6±5.1 (4.4) 0.13±0.19 (0.13) 0.09±0.13 (0.09) L L 0.5 2.7

Notes. We list for each cluster posterior summary statistics ( C SBI BI) of the NFW halo parameters, c200, M200, and M500. Numbers in parentheses represent the median of the posterior probability distribution of each
parameter. These parameters have been constrained by fitting a spherical NFW model to the weak-lensing DS R( ) profile of each individual cluster over the comoving radial range Î -R h0.3, 3 Mpc1[ ] . These cluster
mass and concentration measurements are not corrected for mass modeling bias, statistical bias, or selection effects. We provide bias-corrected, weak-lensing-calibrated mass estimates M200,MT and M500,MT (median and
68% confidence intervals of the posterior distribution) for each individual cluster based on the measured X-ray temperature, T300 kpc, where available (Section 5.5; see Figure 10). We recommend using these statistically
corrected DM ,MT as a weak-lensing mass estimate for a given individual cluster. All these mass estimates are subject to a systematic uncertainty of 5%. Our concentration estimates have a systematic uncertainty of
16%.
a XLSSC cluster identifier (between 1 and 499 or between 500 and 999, for XXL-N or XXL-S, respectively).
b X-ray cluster coordinates in R.A. and decl. (J2000.0).
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ellipticity component e×, defined by

f f= - +é e ecos 2 sin 2 . 102 1 ( )

The azimuthally averaged×component, or the B-mode signal,
is expected to be statistically consistent with zero if the signal is
due to weak lensing.

When interpreting the binned tangential shear profile
º DS+ =d Ri i

N
1{ ( )} , it is important to define and determine

the corresponding bin radii =Ri i
N

1{ } accurately so as to minimize
systematic bias in cluster mass measurements. Following
Okabe & Smith (2016), we define the effective bin radius Ri

using the weighted harmonic mean of lens–source transverse
separations Rls as

º
å

å
Î

Î
-R

w

w R
, 11i

l s i ls

l s i ls ls

,

,
1

( )

which allows for an unbiased determination of the underlying
cluster lensing profile (Okabe & Smith 2016; Sereno et al.
2017). Similarly, when stacking multiple clusters together, we
assume that all the clusters are at a single effective redshift,
which is defined as a weighted average over the lens–source
pairs used in the stacked analysis,

á ñ =
å å

å å
Î

Î

z
w z

w
. 12i l s i ls l

i l s i ls
wl

,

,

( )

Finally, to quantify the significance of the shear profile
measurement = DS+ =d Ri i

N
1{ ( )} around each individual or

stacked cluster, we define a linear signal-to-noise ratio (S/N)
estimator (Sereno et al. 2017) by s= á ñ á ñdS N d with

s

s

s
s

á ñ =
å DS

å

=
å

= +

=

á ñ

=

d
R R

R

R

1
,

1

1
, 13

i
N

i i

i
N

i

d

i
N

i

1 shape
2

1 shape
2

1 shape
2

( ) ( )
( )

( )
( )

and s Rishape ( ) the statistical uncertainty in Equation (4) due to
the shape noise (e.g., Miyaoka et al. 2018),

s =
+ å Î

R
R K R w

1

4 1
. 14i

i i l s i ls
shape
2

2 2
,

( )
( )[ ( )]

( )

This estimator gives a weak-lensing S/N integrated in the fixed
comoving radial range Î -R h0.3, 3 Mpc1[ ] . We note that we
use the full covariance matrix for our cluster mass measure-
ments (Section 3.3).

This S/N estimator is different from the conventional
quadratic estimator,

å sº DS >
= +S N 0 15

i

N
i iq 1 ,

2
shape,
2 1 2⎡⎣ ⎤⎦( ) ( ) ( )

(e.g., Umetsu & Broadhurst 2008; Okabe & Smith 2016; Lieu
et al. 2016, hereafter XXL Paper IV). As noted by Umetsu et al.
(2016), this quadratic definition breaks down and leads to
overestimation of significance in the noise-dominated regime,
in which the actual per-bin S/N is less than unity (see Table 2).

To ensure a statistical ensemble analysis based on weak-
lensing measurements of individual clusters, we require the
per-cluster S/N to be of the order of unity. Figure 3 shows the
histogram distributions of the weak-lensing S/N for the C1 and
C2 subsamples. The median per-cluster S/N values for the C1

and C2 subsamples are 1.2 and 0.8, respectively. The median
per-cluster S/N of the full (C1+C2) sample is 1.1, so that the
above requirement is satisfied.

3.3. Error Covariance Matrix

To obtain robust constraints on the mass scaling relation and
its intrinsic scatter, we need to ensure that the mass likelihood
from a weak-lensing analysis includes all sources of uncer-
tainty (Gruen et al. 2015). Following Umetsu et al. (2016), we
decompose the error covariance matrix for the binned
tangential shear profile d as

= + +C C C C , 16shape lss int ( )

where s d=C Rij i ij
shape

shape
2 ( ) is the diagonal statistical uncer-

tainty due to the shape noise (see Equation (14)), with δij
Kronecker’s delta; Cij

lss is the cosmic noise covariance matrix
due to uncorrelated large-scale structures projected along the
line of sight (Hoekstra 2003); andCij

int accounts for the intrinsic
variations of the projected cluster lensing signal at fixed mass
due to variations in halo concentration, cluster asphericity, and
the presence of correlated halos (Gruen et al. 2015).30

We compute the elements of the Clss matrix by closely
following the procedure outlined in Miyaoka et al. (2018; see
also Medezinski et al. 2018a; Miyatake et al. 2019). To this
end, we employ the nonlinear matter power spectrum of Smith
et al. (2003) for the Wilkinson Microwave Anisotropy Probe
(WMAP) 9 yr cosmology (Hinshaw et al. 2013), with a source
plane at zs=1.2, which closely matches the mean redshift of
the selected background galaxies (Medezinski et al. 2018b).
When stacking multiple clusters together, we simply scale the
Clss matrix according to the number of independent clusters Ncl
as C C Nlss lss

cl (e.g., Medezinski et al. 2018a).
We estimate the Cint matrix for the tangential shear profile by

following Miyatake et al. (2019, see their Appendix), who

Figure 3. Histogram distribution of the weak-lensing S/N, shown separately
for the C1 (gray) and C2 (red) subsamples. The median S/N values of the C1
and C2 subsamples are marked by a gray dashed and a red solid line,
respectively. For the full C1+C2 sample, the observed values of weak-lensing
S/N span the range from −2.1 to 6.0, with a standard deviation of 1.6.

30 Strictly speaking, when simultaneously determining the mass and
concentration for a given individual cluster, the contribution from the intrinsic
scatter in the c–M relation should be excluded from Cint. However, for our
cluster sample, the contribution from the intrinsic c–M variance becomes
important only at -R h0.3 Mpc1 (Gruen et al. 2015), which is below the
radial range used for our analysis.

10

The Astrophysical Journal, 890:148 (36pp), 2020 February 20 Umetsu et al.



developed a useful procedure to translate the intrinsic
covariance matrix for the convergence (or Σ) profile (Gruen
et al. 2015; Umetsu et al. 2016) to that for the tangential shear
(orDS) profile. In the stacked analysis of multiple independent
clusters, we scale the Cint matrix as C C Nint int

cl.
As found by Miyatake et al. (2019), the total uncertainty

per cluster is dominated by the shape noise (Cshape) at
-R h3 Mpc1 (see their Figure 4), beyond which the

contribution from the cosmic noise (Clss) becomes important.
The relative contribution from intrinsic variance (Cint) increases
toward the cluster center but remains subdominant at all radii
for our weak-lensing measurements.

3.4. Source Galaxy Selection

A secure selection of background galaxies is key for
obtaining accurate cluster mass measurements from weak
lensing (e.g., Broadhurst et al. 2005; Umetsu & Broadhurst
2008; Medezinski et al. 2010; Gruen et al. 2014; Okabe &
Smith 2016; Medezinski et al. 2018b). We follow the
methodology outlined in Medezinski et al. (2018b) to select
background galaxies for our cluster weak-lensing analysis.
Two source-selection methods have been tested and established
in Medezinski et al. (2018b) using the CAMIRA catalog of
optically selected clusters from the HSC survey (Oguri et al.
2018): one based on selection in color–color space (the CC-
cut), and another that employs constraints on the cumulative
photo-z PDF (the P-cut). Both methods are optimized to
minimize dilution of the lensing signal and perform compara-
tively well in removing most of the contamination from
foreground and cluster galaxies (Medezinski et al. 2018b). The
level of contamination by cluster members depends on and
increases with the cluster mass or richness (Medezinski et al.
2018b). For our sample that is dominated by low-mass clusters
and groups, we thus expect a less significant degree of dilution
of the weak-lensing signal compared to previous HSC cluster
weak-lensing studies (e.g., Medezinski et al. 2018a, 2018b;
Miyaoka et al. 2018; Miyatake et al. 2019; Okabe et al. 2019).

In the present work, we use the P-cut method for our fiducial
analysis because it gives higher S/N values (i.e., higher
number densities of background galaxies) than the CC-cut
method. We use full P(z) data obtained with the Ephor_AB
code (Tanaka et al. 2018; Hikage et al. 2019) to define the
P-cut and to compute the lensing signal (Section 3.2). With this
method, for each cluster (l), we define a sample of background
galaxies (s= 1, 2, K) that satisfy the following conditions
(Oguri 2014; Medezinski et al. 2018b):

ò< <
¥

p P z dz z zand , 17
z

s scut p, max
lmin,

( ) ( )

where pcut is a constant probability set to 0.98, = + Dz z zl lmin,

with a constant offset Δz, z sp, is a photo-z point estimate for the
source galaxy, and zmax is the maximum redshift parameter (see
Medezinski et al. 2018b). Following Medezinski et al. (2018b),
we set zmax=2.5 and adopt Δz=0.2 for a stringent rejection
of cluster and foreground galaxies, and we use as zp a randomly
sampled point estimate that is drawn from P(z) (photoz_mc;
see Tanaka et al. 2018; Miyatake et al. 2019).

The top panel of Figure 4 shows the stacked tangential shear
profiles ΔΣ+(R) obtained for the full sample using the P-cut
and CC-cut methods, both with the Ephor_AB code. For
comparison, we also show the P-cut results obtained with

MLZ, an unsupervised machine-learning method based on self-
organizing maps (SOMs) (Tanaka et al. 2018). The comparison
shows no significant difference between these profiles within
errors in all bins.
In the bottom panel of Figure 4, we show the corresponding

stacked B-model profiles ΔΣ×(R) (Section 3.2) obtained with
these three selection methods. Here we use a χ2 test to assess
the significance of the measured B-model signal against the
null hypothesis. For our fiducial measurement (P-cut with
Ephor_AB), we find χ2=4.73 per 8 degrees of freedom (dof).
Similarly, we find χ2/dof=5.30/8 and χ2/dof=4.88/8
using the P-cut method with MLZ and the CC-cut method with
Ephor_AB, respectively. In all cases, the B-mode signal is
statistically consistent with zero.
In what follows, we focus on the results obtained with the

Ephor_AB code. In terms of the best-fit NFW mass model (see
Section 4), we find a logarithmic mass offset between the
P-cut and CC-cut methods of º =b M Mlncont 500,Pcut 500,CC( )
+ 3.1 5.1 %( ) , where the error accounts for the covariance
between the overlapping source samples. This is consistent
with the level of foreground contamination found by
Medezinski et al. (2018b). Although we do not find statistical
evidence that our P-cut method gives a diluted signal compared
to the CC-cut method, we conservatively assume a systematic
mass uncertainty of 3.1% associated with residual contamina-
tion by foreground and cluster galaxies.

3.5. Photometric Redshift Bias

An accurate estimation of photometric redshifts for source
galaxies is crucial for weak lensing because biased photo-z

Figure 4. Stacked surface mass density of the full C1+C2 sample (top panel)
as a function of cluster-centric comoving radius R. The results are shown for
three different source-selection methods. The black squares with error bars
show our fiducial results obtained using the P-cut method with the Ephor_AB
photo-z code. The results obtained using the P-cut method with the MLZ code
(blue squares) and those using the CC-cut method with the Ephor_AB code
(red circles) are shown for comparison. The data points with different selection
methods are horizontally shifted with each other for visual clarity. The solid
line and the dashed line represent the best-fit NFW model and the halo model
(BMO + 2-halo term) derived from the fiducial P-cut measurements. The
dotted line shows the 2-halo term contribution of the best-fit halo model. The
bottom panel shows the 45°-rotated shear component ΔΣ×, expected to be
consistent with zero.
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estimates can lead to a systematic bias in mass estimates
through the calculation of the critical surface density (see
Equation (6)). Here we follow the procedure of Miyatake et al.
(2019) to quantify the level of this bias. For details of the
procedure, we refer to Miyatake et al. (2019, see their
Section 3.4).

The photo-z bias in the tangential shear signal of each cluster
at redshift zl can be estimated as (Mandelbaum et al. 2008;
Nakajima et al. 2012; Miyatake et al. 2019)

DS
DS

= + =
å áS ñ S

å

- - -

z b z
w

w
1 , 18l z l

s ls ls ls

s ls
true

cr,
1 1

cr,
true 1

( ) ( )
[ ]

( )

where the quantities with the superscript “true” denote those
that would be measured with an unbiased spectroscopic
sample, and the sum over s runs over all source galaxies.
Ideally, such a photo-z bias should be examined using a
spectroscopic-redshift (spec-z) sample that is independent from
those used to calibrate the photo-zʼs and that matches the
population properties (i.e., magnitude and color distribution) of
our source galaxy sample. In practice, however, it is difficult to
obtain such a representative spec-z sample matching the depth
of our source sample, i<24.5 ABmag (Miyatake et al. 2019).

Following Miyatake et al. (2019), we use the 2016 version of
the 30-band photo-z catalog of the 2 deg2 COSMOS field
(Ilbert et al. 2009; Laigle et al. 2016) as a representative
redshift sample and compute the photo-z bias bz for a given
cluster redshift, zl. As discussed in Hikage et al. (2019, see their
Section 5.2), there are some caveats associated with this
assumption. We thus use a reweighting method to match the
populations between COSMOS galaxies and our background
source galaxies (for details, see Hikage et al. 2019; Miyatake
et al. 2019). The procedure is summarized as follows. For a
given cluster redshift zl, we define a sample of background
source galaxies from the entire shear catalog using the P-cut
method described in Section 3.4.

We then decompose source galaxies in the weak-lensing
sample using their i-band magnitude and four colors into cells
of an SOM (S. More et al. 2019, in preparation; see Masters
et al. 2015). We use a subsample of COSMOS galaxies
(Hikage et al. 2019)31 and classify them into SOM cells defined
by the weak-lensing sample and compute their new weights,
wSOM, such that the weighted distributions of the photometric
observables match those of the corresponding distributions of
the weak-lensing sample. We compute the photo-z bias (see
Equation (18)) by including wSOM in the definition of wls.

For our full sample of 136 XXL clusters, we find a weighted
average of á ñb 0.68%z  . We find that our estimate for the
average level of photo-z bias is insensitive to the chosen weighting
scheme (e.g., a sample median of 0.87% ). The photo-z bias of
á ñb 0.68%z  is translated into the cluster mass uncertainty as
á ñ Gb 0.9%z 200  with G º DSd d Mln ln 0.75200 200  , the
typical value of the logarithmic derivative of the weak-lensing
signal with respect to cluster mass for our cluster weak-lensing
analysis (Melchior et al. 2017; Sereno et al. 2017). Hence, the
mass calibration uncertainty due to photo-z calibration errors is
estimated to be 0.9% (Section 5). Miyatake et al. (2019) found a
similar level of photo-z bias (2%) for a sample of eight ACTPol-
selected SZE clusters with a median redshift of ~z 0.5.

4. Weighing XXL Clusters

In this section, we use the HSC weak-lensing data to infer
the mass and concentration parameters for our XXL cluster
sample. In Section 4.1, our procedure for weak-lensing mass
modeling is outlined, and the systematic effects in ensemble
mass calibration are discussed on the basis of simulations
(Appendix A). In Section 4.2, we discuss and summarize
systematic errors in ensemble modeling of the XXL sample
with weak lensing. Section 4.3 presents our weak-lensing mass
estimates of individual clusters in the XXL sample. Section 4.4
presents the results of stacked weak-lensing measurements.

4.1. Mass Modeling

We model the radial mass distribution of galaxy clusters with
a spherical NFW profile, which has been motivated by
cosmological N-body simulations (e.g., Navarro et al.
1996, 1997; Oguri & Hamana 2011), as well as by direct
lensing measurements (e.g., Oguri et al. 2012; Umetsu et al.
2012, 2014, 2016; Newman et al. 2013; Niikura et al. 2015;
Okabe & Smith 2016; Umetsu & Diemer 2017). The radial
dependence of the NFW density profile is given by Navarro
et al. (1996):

r
r

=
+

r
r r r r1

, 19s

s s
2

( )
( )( )

( )

with rs the characteristic density parameter and rs the
characteristic scale radius at which the logarithmic density
slope equals −2. The overdensity mass MΔ is given by
integrating Equation (19) out to the corresponding overdensity
radius rΔ at which the mean interior density is rD ´ zlc( )
(Section 1), and given as p r= DD DM z r4 3 lc

3( ) ( ) . We specify
the NFW model by the mass, M200, and the concentration
parameter, c200=r200/rs. The characteristic density ρs is then
given by

r r=
D

+ - +
D

D D D

c

c c c
z

3 ln 1 1
. 20s

3

c( ) ( )
( ) ( )

We use a Markov Chain Monte Carlo (MCMC) method to
obtain well-characterized inference of the mass and concentra-
tion parameters from our weak-lensing data (Umetsu et al.
2014, 2016). We adopt log-uniform priors for M200 and c200 (or
uniform priors for Mlog 200 and clog 200) in the range 1012

- M h M 10200
1 16( ) and 1�c200�20.

We note that it is appropriate to assume a log-uniform prior,
instead of a uniform prior, for a positive-definite quantity,
especially when the quantity spans a wide dynamic range (e.g.,
Sereno & Covone 2013; Umetsu et al. 2014, 2016, 2018;
Okabe et al. 2019). Such a treatment is also self-consistent with
our scaling relation analysis, where we work with logarithmic
quantities, DMlog and clog 200 (Section 5). Since the corresp-
onding prior distributions in M200 and c200 scale as 1/M200 and
1/c200, the choice of their lower bounds is relatively important.
The chosen priors allow for a sufficiently wide range of mass
and concentration relevant for group-cluster-scale halos with

- - h M M h M10 1013 1
200

15 1
 . If the lower prior bound-

ary of M200 is increased toward the mass limit of the sample
( -M h M10200

13 1˜ ), this will lead us to overestimate M200 for
low-mass groups and to underestimate the uncertainty of their
mass estimates, owing to the edge effect.

31 This subsample composes 20% of galaxies in the COSMOS 30-band
catalog, which were not used for training the HSC photo-z codes. We use this
subsample for our testing purposes.
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The log-likelihood function for our observations =d
DS+ =Ri i

N
1{ ( )} is written as

å- = DS -
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where -C 1 is the inverse covariance matrix and pf Rimod ( ∣ )
denotes the theoretical prediction of the model given a set of
parameters =p M c,200 200( ). We use analytic expressions given
by Wright & Brainerd (2000) for the radial dependence of the
projected NFW profiles S pRNFW( ∣ ) and DS pRNFW( ∣ ), which
provide a good approximation for the projected matter distribution
around clusters (Oguri & Hamana 2011). The contribution from
the 2-halo term toDS becomes significant at about several virial
radii (Oguri & Hamana 2011), which is larger than the outer radial
limit, = -R h3 Mpcmax

1 (see also Section 4.4). We thus fit the
tangential shear profile = DS+ =d Ri i

N
1{ ( )} over the full radial

range Î -R h0.3, 3 Mpc1[ ] in comoving length units.
Since the relation between the observable image distortion

and the lensing fields is nonlinear (see Equation (1)), the
observed ΔΣ profile is nonlinearly related to the averaged
lensing fields. Here we use the following approximation to
include next-to-leading-order corrections (Umetsu et al. 2014):

=
DS

- S ´ S-p
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p
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R
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, 22i
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where S-
icr,

1⟪ ⟫ is the sensitivity-weighted, inverse critical
surface mass density evaluated in each radial bin, defined by
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As summary statistics, we employ the biweight estimator of
Beers et al. (1990) to represent the center location (CBI) and the
scale or spread (SBI) of marginalized one-dimensional posterior
distributions (e.g., Stanford et al. 1998; Sereno & Umetsu 2011;
Biviano et al. 2013; Umetsu et al. 2014, 2016, 2018). Biweight
statistics are insensitive to and stable (robust) against noisy
outliers because they assign higher weights to data points that
are closer to the center of the distribution (Beers et al. 1990).
For a lognormally distributed quantity, CBI approximates the
median of the distribution. From the posterior samples, we
derive marginalized constraints on the total mass MΔ and the
concentration cΔ at several characteristic interior overdensi-
ties Δ.

Our modeling procedure and assumptions have been tested and
validated with simulations. In Appendix A, we describe the details
of tests of our “shear-to-mass” procedure and pipeline. There are
two possible main sources of systematics in an ensemble weak-
lensing analysis of the XXL sample that includes low-mass
groups: modeling of those groups/clusters detected with low
values of weak-lensing S/N (Figure 3), and the modeling
uncertainty due to systematic deviations from the assumed
NFW form in projection. To this end, we use two different sets
of simulations to assess the impact of these systematic effects. To
examine the first possibility (Appendix A.1), we analyze synthetic
weak-lensing data based on simulations of analytical NFW lenses.
These simulations closely match our weak-lensing observations in
terms of the noise level and the S/N distribution. To address the
second possibility (Appendix A.2), we analyze a set of synthetic

data created from a DM-only realization of BAHAMAS
simulations (McCarthy et al. 2017).
Our simulations show that the overall mass scale of a sample of

XXL-like clusters can be recovered within 3.3% accuracy from
individual cluster weak-lensing measurements (Appendix A).
Specifically, we find the level of mass bias (see Equation (44)) to
be = b 2.1 1.5 %Msim, 200 ( ) and = b 0.9 1.3 %Msim, 500 ( ) in
M200 and M500, respectively, with the BAHAMAS simulation
(Appendix A.2). With synthetic data from simulations of NFW
lenses (Appendix A.1), we find = b 0.1 2.4 %Msim, 200 ( ) and

= b 3.3 2.3 %Msim, 500 ( ) , with no systematic dependence on
cluster mass over the full range in true cluster mass (Figure 13).
However, the results from the BAHAMAS simulation

suggest a significant level of mass bias of ~-20% for
low-mass group systems with ´ -M h M4 10200,true

13 1


(Appendix A.2; see Table 6). Since we do not find any mass-
dependent behavior when using the true density profile
assumed in our simulations of NFW lenses, it is likely that
this negative bias is caused by systematic deviations of
“projected” halos from the NFW profile shape. In fact, we
find such a systematic trend in the outskirts (  R r1 3200 )
of projected DS R( ) profiles around low-mass group-scale
halos selected from DM-only BAHAMAS simulations,
whereas their spherically averaged density profiles r r( ) in
three dimensions are well described by the NFW form (M. Lieu
et al. 2020, in preparation). However, we note that the typical
mass measurement uncertainty for such low-mass groups is
s ~M M 140%( ) per cluster (see Appendix A.1), and that
even when averaging over all such clusters, the statistical
uncertainty on the mean mass is of the order of 20%
(Section 4.3). This level of systematic bias ( s1 ) is not
expected to significantly affect our ensemble weak-lensing
analysis of the XXL sample.
On the other hand, we find a significant systematic offset

in the mean concentration recovered from weak lensing:
= - b 18 2 %csim, 200 ( ) from the BAHAMAS simulation and
= b 13 3 %csim, 200 ( ) from our simulations of NFW lenses.

This is because the typical scale radius for our sample,
~ -r h0.25 Mpcs

1 , lies slightly below the radial range for fitting,
Î -R h0.3, 3 Mpc1[ ] (comoving), and the characteristic profile

curvature around rs is poorly constrained by our data.

4.2. Systematic Uncertainties in Ensemble Modeling

We have accounted for various sources of statistical errors
associated with cluster weak-lensing measurements (Section 3.3).
All of these errors are encoded in the total covariance matrix
= + +C C C Cshape lss int (see Equation (16)) of the binned

tangential shear profile, = DS+ =d Ri i
N

1{ ( )} (Section 3.2). We
have statistically corrected our tangential shear measurements for
multiplicative and additive residual shear bias estimated from the
dedicated image simulations (Section 3.2; see Mandelbaum et al.
2018a, 2018b).
We have also quantified unaccounted-for sources of

systematic errors in cluster mass calibration by considering
the following effects: (i) the residual systematic uncertainty in
the overall shear calibration (Section 3.2), 1%; (ii) dilution of
the weak-lensing signal by residual contamination from
foreground and cluster members (Section 3.4), b 3.1%cont  ;
(iii) photo-z bias in the áS ñ-

cr
1 estimates (Section 3.5),

á ñ Gb 0.9%z  ; and (iv) the systematic uncertainty in the
overall mass modeling (Section 4.1), b 3.3%sim  . These
systematic errors add up in quadrature to a total systematic
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uncertainty of 5% in the ensemble mass calibration of the
XXL sample. This level of systematic uncertainty is below the
statistical precision of the current full sample, 9% at

~ ´ -M h M9 10200
13 1

 (Table 1). We account for these
systematics and marginalize over the mass calibration uncer-
tainty of 5% in our scaling relation analyses (Section 5).

Regarding the concentration parameter, since we find
systematic errors of opposite signs from the two sets of
simulations (Section 4.1), we include a systematic uncertainty
of  + 0.18 0.13 2 16%2 2( )  (Appendix A) on the
normalization of the c–M relation (Section 5.2). Possible
sources of bias are the mass-dependent deviations from the
NFW form, the effect of correlated structure, and noise. All
these are functions of the projected cluster-centric radius, and
the net effect is sensitive to the radial fitting range. We note that
the level of systematic errors in c200 is below the statistical
uncertainty, even for our ensemble measurements of the XXL
sample (see Equation (40) and Table 1).

4.3. Individual Cluster Weak-lensing Analysis

In Table 2 we list posterior summary statistics ( C SBI BI

and median values) of the mass and concentration parameters
(c200, M200, M500) for all individual clusters in the full C1+C2
sample.

There are 31 clusters whose weak-lensing S/N values are
negative as dominated by statistical noise fluctuations (Table 2;
see also Sereno et al. 2017). These clusters span a wide range
of redshift (0.044� z� 0.953) with a median of 0.324. The
typical mass uncertainty for these clusters is ~S C 140%BI BI ,
so that their mass estimates are consistent with zero. According
to our simulations based on analytical NFW lenses, such low-
S/N clusters are distributed over a fairly representative range in
true mass (Appendix A.1; see Figures 11 and 12). At a given
true mass, it is expected that there is a statistical counterpart of
up-scattered clusters with apparently boosted S/N values and
thus overestimated weak-lensing masses. In fact, the simula-
tions show that the inclusion of low-S/N clusters does not
significantly bias our ensemble mass measurements at
particular mass scales (see Figure 13). It must be stressed that
if one selects a subsample of clusters according to their weak-
lensing S/N values, they are no more representative of the
parent population, and such a selection will bias high the weak-
lensing mass estimates at a given X-ray cut, an effect known as
the Malmquist bias (e.g., Sereno & Ettori 2017; see also
Appendix A.1).

As a robust estimator for the averageMΔ over a given cluster
sample ( = ¼n N1, 2, , cl), we use geometric means, instead of
arithmetic means. An advantage of using this geometric
estimator is that error-weighted geometric means of cluster
properties, such as M200 and c200, are relevant to our scaling
relation analysis, where we work with logarithmic quantities
(Section 5). Specifically, we employ an error-weighted,
geometric mean estimator for the sample average (Umetsu
et al. 2014, 2016; Okabe & Smith 2016), defined by

á ñ =
å

å
D

á ñ = D
DM e

u M

u
exp

ln
, 24M n

N
n n

n n
g

ln 1 ,
cl⎛

⎝⎜
⎞
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and its uncertainty,
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where un is the inverse variance weight for the nth cluster,
s=-

D Du M Mn n n
1 2

, ,
2( ) , with DM n, and s DM n,( ) being CBI and

SBI (Section 4.1), respectively, of the marginalized posterior
distribution of MΔ for the nth cluster. The geometric means are
symmetric with respect to an exchange of the numerator and
denominator (i.e., á ñ = á ñ-A B B Ag g

1), so that this weighted
geometric estimator is also suitable for use in estimating mean
mass ratios between two cluster samples (Donahue et al. 2014;
Umetsu et al. 2014, 2016).
Using this estimator, we find weighted geometric means

of =  ´ -M h M9.8 0.8 10200 g
13 1( ) , = M 11.6200 g

(
´ -h M1.2 1013 1) , and =  ´ -M h M6.5 1.0 10200 g

13 1( ) 

for the C1+C2, C1, and C2 samples, respectively (Table 1).

4.4. Stacked Weak-lensing Analysis

Stacking an ensemble of clusters helps average out large
statistical fluctuations inherent in noisy weak-lensing measure-
ments of individual clusters (Section 3.3). The statistical
precision can be greatly improved by stacking together a large
number of clusters, allowing for tighter and more robust
constraints on the cluster mass distribution. A stacked analysis
is complementary to our primary approach based on individual
weak-lensing mass measurements. A comparison of the two
approaches thus provides a useful consistency check in
different S/N regimes. It is noteworthy, however, that
interpreting the effective mass from stacked lensing requires
caution because the amplitude of the lensing signal is weighted
by the redshift-dependent sensitivity (Umetsu et al. 2016) and
is not linearly proportional to the cluster mass (Mandelbaum
et al. 2005b; Melchior et al. 2017; Sereno et al. 2017; Miyatake
et al. 2019).
First, we examine the effective mass and concentration

parameters of the full C1+C2 sample of 136 XXL clusters from
the stackedDS profile shown in Figure 4 (fiducial). The lensing-
weighted mean redshift of the full sample is á ñz 0.25wl  , which
is smaller than the sample median redshift, =z 0.30. From a
single-mass-bin NFW fit to the stacked ΔΣ profile (see
Section 4), we obtain =  ´ -M h M8.7 0.8 10200

13 1( )  and
c200=3.5±0.9 for the C1+C2 sample. This is in agreement
with the degree of concentration expected for DM halos in
the standard ΛCDM cosmology, c200 ; 4.1 at = ´M 8.7200

-h M1013 1
 and z=0.25 (Diemer & Kravtsov 2015; Diemer &

Joyce 2019). The effective mass and concentration parameters for
the C1+C2, C1, and C2 samples are summarized in Table 1.
In Figure 4, we also show the best-fit two-parameter halo

model including the effects of surrounding large-scale structure
as a 2-halo term. Here we follow the standard halo model
prescription of Oguri & Hamana (2011) using the linear halo
bias b M z;h 200( ) of Tinker et al. (2010) in a WMAP 9 yr based
ΛCDM cosmology (Hinshaw et al. 2013). The 2-halo term
contribution to the DS R( ) profile in comoving length units is
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expressed as
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r
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qDS =
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m h 200
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where r zm ( ) is the mean matter density of the universe at the
cluster redshift z, d zA ( ) is the comoving angular diameter
distance, P k z;( ) is the linear matter power spectrum,

ºk l d zl A ( ), q º R d zA ( ), and Jn is the Bessel function of
the first kind and nth order. The 2-halo term is proportional to
the product sbh 8

2.
As demonstrated in Figure 4, the 2-halo term DS R2h( ) in the

radial range Î -R h0.3, 3 Mpc1[ ] is negligibly small, even in
low-mass groups (see Leauthaud et al. 2010; Covone et al. 2014;
Sereno et al. 2015b, 2017). This is because the tangential shear, or
the excess surface mass density DS = S < - SR R R( ) ( ) ( ), is
insensitive to flattened sheet-like structures (Schneider & Seitz
1995). When the 2-halo term is neglected, the standard halo
model reduces to the Baltz–Marshall–Oguri (Baltz et al. 2009;
BMO) model that describes a smoothly truncated NFW profile
(Umetsu et al. 2016, see their Section 5.2.2). Using synthetic
weak-lensing data based on the DM-only BAHAMAS simulation
(Appendix A.2), we find that the standard halo modeling does not
significantly improve the accuracy of weak-lensing mass estimates
for a sample of XXL-like objects (see Table 6).

As a consistency check of our ensemble weak-lensing
analysis, we compare the stacked lensing constraints on M200

with those from individual cluster measurements (see
Section 4.3). It is reassuring that the effective M200 masses
extracted from the stacked DS profiles are in good agreement
with the respective weighted geometric means á ñM200 g obtained
from individual cluster mass estimates (see Table 1).
Alternatively, we can estimate the average mass by using the
lensing weight to be consistent with the stacked weak-lensing
analysis (see Equation (4); Umetsu et al. 2016; Medezinski
et al. 2018a; Miyatake et al. 2019) as

å å åá ñ =D

-

DM w M w . 27
l s

ls
l

l
s

lswl
,

1

,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

Incorporating the lens weighting, we find = M 8.0200 wl (
´ -h M0.8 1013 1) ,  ´ -h M9.0 1.0 1013 1( ) , and 6.1(
´ -h M1.1 1013 1)  for the C1+C2, C1, and C2 samples,

respectively, all consistent with the results from the stacked
analysis within the errors (see Table 1). This agreement suggests
that those clusters detected with low values of weak-lensing S/N
are not biasing the ensemble-averaged mass with respect to the
stacked weak-lensing analysis.

Next, we perform a stacked analysis by dividing the full sample
into six subsamples with roughly equal numbers (except for the
highest temperature bin) according to the X-ray temperature,
T300 kpc. This analysis is limited to 105 clusters with measured
X-ray temperatures T300 kpc from the XXL survey (Section 2.1).
This subsample has a weighted average mass of =M200 g

 ´ -h M8.6 0.9 1013 1( )  and a weighted average concentration
of á ñ =  c 4.8 0.4 stat. 0.8 syst.200 g ( ) ( ) (Figure 5).

The results of stacked weak-lensing measurements are
summarized in Table 3. These subsamples have similar S/N
values, ranging from 5.3 to 8.7, with a median of 6.7. For each
subsample, we derive (M200, c200) from a single-mass-bin fit to
the stacked ΔΣ profile. The mass extracted from the stacked

lensing signal ranges from =  ´ -M h M4.5 0.9 10200
13 1( ) 

at T 1.0300 kpc  keV to =  ´ -M h M4.5 0.9 10200
13 1( )  at

T 5.2 keV300 kpc  . The effective M200 mass extracted from the
stacked analysis and the corresponding lensing-weighted mass
á ñM200 wl from individual cluster measurements are consistent
within the errors in all T300 kpc bins (Table 3). Overall, these
lensing-weighted mass estimates are in agreement with the
error-weighted geometric means á ñM200 g from individual cluster
mass estimates (Tables 1 and 3).
In Figure 5 we show the distribution of (M200, c200) for the

six subsamples along with with theoretical predictions for the
full population of ΛCDM halos (Bhattacharya et al. 2013;
Child et al. 2018; Diemer & Joyce 2019). All these models are
evaluated at a reference redshift of =z 0.3ref and designed for a
qualitative comparison and a consistency check only (see
Table 3). The average X-ray temperature of each subsample is
color-coded according to the color bar on the right side.
Figure 5 shows that M200 correlates well with T300 kpc and that
c200 is scattered around the theoretical c–M relations, with no
hint of significant overconcentration for the XXL sample. A
complete regression analysis of the c–M relation, accounting
for various statistical effects, is given in Section 5.2.

5. XXL Mass Scaling Relations

In this section we examine and characterize the concentra-
tion–mass (c200–M200) and temperature–mass (T300 kpc–M500)
scaling relations separately for the XXL sample using our HSC
and XXL data products presented in the previous sections.

5.1. Bayesian Regression Scheme

Here we outline the Bayesian regression scheme of Sereno
(2016b) used in our scaling relation analysis. Our regression
approach allows for a self-consistent treatment of redshift

Figure 5. Stacked weak-lensing constraints on the NFW concentration and
mass parameters (circles with error bars) for six subsamples of our XXL
clusters (see Table 3) binned in X-ray temperature. This analysis is limited to
105 C1+C2 clusters with measured X-ray temperatures T300 kpc from the XXL
survey. The X-ray temperature of the data points is color-coded according to
the color bar on the right side. The black square with error bars shows the
weighted average of individual weak-lensing measurements over the sample of
105 XXL clusters. The results are compared to theoretical c–M relations
evaluated at z=0.3 for the full population of DM halos from numerical
simulations of ΛCDM cosmologies (Bhattacharya et al. 2013; Child et al. 2018;
Diemer & Joyce 2019). The gray shaded region represents the lognormal
intrinsic dispersion s =cln 1 3200( ) around the c–M relation of Bhattacharya
et al. (2013).
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evolution, intrinsic scatter, and selection effects through
Bayesian population modeling of the cluster sample. For full
details of the formalism, we refer the reader to Sereno (2016b)
and the companion paper by Sereno et al. (2019).

In this analysis, we use the publicly available LIRA package
(Sereno 2016a, 2016b). We have tested and validated our
analysis procedure and its LIRA implementation by performing
a regression analysis of the c200–M200 relation using realistic
synthetic data based on the DM-only BAHAMAS simulation
(see Appendix A.2). We find that we can accurately recover the
true (input) parameters of the c200–M200 relation except for the
normalization, which is subject to a systematic offset (see
Section 4.2 and Appendix A).

5.1.1. Mass Scaling Relations

We consider a power-law function of the following form that
describes the average mass scaling relation of a given cluster
observable :

µ a b g
D M F z10 , 28z ( ) ( )

where α, β, and γ denote the normalization, mass trend,
and redshift trend, respectively; Fz(z) describes the redshift
evolution of the scaling relation and is normalized to unity at
a reference redshift, zref . In this work, we consider =F zz ( )

+ +z z1 1 ref( ) ( ) for the c200–M200 relation (e.g., Duffy et al.
2008; Dutton & Macciò 2014) and =F z E z E zz ref( ) ( ) ( ) for
the T300 kpc–M500 relation (e.g., Vikhlinin et al. 2009a; Ettori
2015; Mantz et al. 2016). In what follows, we set =z 0.3ref .

We focus on the logarithms of quantities that describe global
cluster properties of interest. These logarithmic quantities are
then linearly related to each other. We consider the cluster mass
MΔ as the most fundamental property of galaxy clusters and
define the corresponding logarithmic quantity as

= D
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,pivot

⎛
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with DM ,pivot the pivot in the MΔ mass. We use the weak-
lensing mass DM ,wl as a mass proxy and introduce the
logarithmic weak-lensing mass,
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For a regression analysis of the c200–M200 relation, we
choose the pivot in M200 to be = -M h M10200,pivot

14 1
 and

define the logarithmic observable,

=Y clog . 31200 ( )

For the T300 kpc–M500 relation, we set = ´M 7500,pivot

=-h M M10 1013 1 14
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For any observable cluster property, we distinguish the
following three quantities: (i) YZ, the quantity that is exactly
linked to Z through a deterministic functional relation YZ(Z)
(Maughan 2014); (ii) Y, a scattered version of YZ; and (iii) y, a
measured realization of Y that includes observational noise. As
defined, Y is intrinsically scattered with respect to YZ, which we
may express as s= Y Y ZZ Y Z( ) ∣ , with sY Z∣ the intrinsic
dispersion of Y at fixed cluster mass or Z.
To proceed, we assume that the weak-lensing mass (X) is an

unbiased but scattered proxy of the true cluster mass (Z). The
mass scaling relations YZ(Z) and XZ(Z) are then expressed as

a b g= + +Y Z F zlog , 33Z Y Z Y Z Y Z z ( ) ( )∣ ∣ ∣

=X Z, 34Z ( )

where aY Z∣ , bY Z∣ , and gY Z∣ are the intercept, mass-trend, and
redshift-trend parameters, respectively. We may rewrite
Equation (34) as s= X Z X Z∣ , with sX Z∣ the intrinsic
dispersion of X at fixed Z.

5.1.2. Mass Calibration Uncertainty

Any mass calibration bias (i.e., a= +Z XZ XX ∣ with
a ¹ 0X Z∣ ) can lead to a biased estimate of the normalization of
the scaling relation, aY Z∣ . We assume a zero-centered Gaussian
prior on aX Z∣ of a = 5% ln 10X Z∣ to marginalize over the
remaining mass calibration uncertainty of5% (see Section 4.2).

5.1.3. Measurement Errors

The measured quantities x and y are noisy realizations of the
latent variables X and Y, respectively. We assume that the
measurement errors for the two cluster observables (X, Y)
follow a bivariate Gaussian distribution (Sereno 2016b).
In the XXL survey, the X-ray temperature T300 kpc was

measured in a fixed aperture of 300 kpc (XXL Paper II). The
errors in the X-ray temperature T300 kpc and the weak-lensing
mass DM ,WL are thus independent of each other.
On the other hand, for a given cluster, the measurement errors

between the NFW parameters are correlated (Section 4.1). For
the regression of the c200–M200 relation, we thus compute the

Table 3
Characteristics of the TX-binned Subsamples

Bin Ncl TX á ñTX wl z á ñz wl c200 M200 á ñM200 wl á ñM200 g S/N (S/N q)
(keV) (keV) ( -h M1013 1

) ( -h M1013 1
) ( -h M1013 1

)

T1 22 1.1 1.0 0.18 0.18 5.7±4.6 4.5±1.2 4.8±1.4 4.1±1.0 5.3 7.9
T2 21 1.6 1.5 0.29 0.22 3.2±1.9 8.3±1.9 6.5±1.7 7.9±1.8 6.9 9.1
T3 17 1.9 1.9 0.30 0.29 3.0±1.4 12.6±2.7 9.5±2.2 13.6±3.0 6.6 9.5
T4 19 2.4 2.4 0.33 0.31 2.0±1.0 11.3±3.0 8.0±2.4 6.7±1.8 6.2 7.9
T5 17 3.5 3.4 0.43 0.33 4.3±2.4 19.8±4.1 19.6±4.4 20.2±4.1 8.7 10.4
T6 9 5.0 5.1 0.51 0.31 5.9±3.0 25.8±5.3 22.6±5.2 25.8±5.7 7.3 10.2

Note. The definitions of the columns are the same as in Table 1.
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error covariance matrix of the M clog , log200,WL 200( ) parameters
using the MCMC posterior samples (see Section 4.1) and
account for the covariance between the two parameters (e.g.,
Umetsu et al. 2014, 2016; Okabe & Smith 2016). We note that
the correlation coefficient r M clog , logCC 200,WL 200( ) between
the two NFW parameters is close to zero on average
á ñ ~ -r 0.03CC( ) for clusters with noisy weak-lensing measure-
ments ( <S N 1), so that the two parameters are nearly
independent in the low-S/N regime. The correlation coefficient
becomes more negative with increasing weak-lensing S/N (and
with increasing M ;200,WL see the right panel of Figure 12),
reaching ~ -r 0.6CC at ~S N 5.

5.1.4. Intrinsic Scatter

The true cluster properties (X, Y), which one would measure
in a hypothetical noiseless experiment, are intrinsically
scattered with respect to (XZ, YZ) (Sereno 2016b). We assume
that the intrinsic scatter of the true quantity (X or Y) around its
model prediction (XZ or YZ) at fixed Z follows a Gaussian
distribution. For a given observable–mass relation (i.e.,
c200–M200 or T300 kpc–M500), we have two intrinsic dispersion
parameters, sY Z∣ and sX Z∣ , which are assumed to be constant
with mass and redshift.

5.1.5. Intrinsic Distribution and Selection Effects

A proper modeling of the mass probability distribution P(Z)
is crucial. Cluster samples are usually biased with respect to the
underlying parent population (i.e., the mass function) because
clusters are selected according to their observable properties.
Moreover, even in absence of selection effects, the parent
population is not uniformly distributed in logarithmic mass Z,
which can cause tail effects (e.g., Kelly 2007).

The intrinsic distribution of the selected clusters is mainly
shaped by the following two effects: first, as predicted by the
mass function, more massive objects are rarer; second, less
massive objects are typically fainter and more difficult to
detect. Accordingly, the resulting mass probability distribution
tends to be unimodal, and it evolves with redshift (Sereno &
Ettori 2015b).

The combined evolution of the completeness and the mass
function can be modeled through the evolution of the mean and
dispersion of the effective mass probability distribution. In
general, the intrinsic mass probability distribution P(Z) of the
selected clusters can be approximated with a mixture of time-
evolving Gaussian functions (Kelly 2007; Sereno et al. 2015a;
Sereno & Ettori 2015b).

We properly account for these effects and Eddington bias in
Bayesian regression. In this work, we model the intrinsic
probability distribution P(Z) of the selected sample with a time-
evolving single Gaussian function characterized by the mean
μZ(z) and the dispersion σZ(z). In general, this treatment
provides a good approximation for a regular unimodal
distribution (Kelly 2007; Andreon & Bergé 2012; Sereno &
Ettori 2015b; Sereno 2016b). It should be stressed that
modeling of P(Z) as a Gaussian is to account for the effect of
the XXL selection that depends primarily on the flux and the
extent of the X-ray emission. Such a statistical treatment is
needed even though the parameters involved in the regression,
( Dc T M, ,200 300 kpc ), are not directly influencing the XXL
selection.

We parameterize the time-evolving mean and dispersion of
P(Z) as (Sereno 2016b)

m m g
s s
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where = z D z D zL L ref( ) ( ) ( ), with DL the luminosity dis-
tance at redshift z; mZ,0 is the local mean at the reference
redshift zref ; gm ,Z

describes the redshift trend of the mean
function; sZ,0 is the local dispersion at the reference redshift
zref ; and gs ,Z

describes the redshift trend of the dispersion
function. In this modeling, we might expect m zz ( ) to exhibit
some positive evolution (g >m  0,Z

), reflecting the fact that the
characteristic cluster mass will increase as the X-ray selection
excludes less massive clusters at higher redshifts.

5.1.6. Priors

Bayesian statistical inference requires an explicit declaration
of the chosen prior distributions. In our regression analysis, we
have a total of nine regression parameters,

a b g s s m g s gm s , , , , , , , , , 36Y Z Y Z Y Z Y Z X Z Z Z,0 , ,0 ,Z Z( ) ( )∣ ∣ ∣ ∣ ∣

and one calibration nuisance parameter, aX Z∣ , for which we
assume a zero-centered Gaussian prior (Section 5.1.2). In the
LIRA approach, we choose to assume sufficiently noninfor-
mative priors for all regression parameters (for details, see
Sereno & Ettori 2015a; Sereno 2016b).
First, the priors on the intercepts aY Z∣ and on the mean mZ,0

are uniform,

a m ~ - + , 1 , 1 , 37Y Z Z ,0 ( ) ( )∣

where ò is a small number, which is set to = - 10 4.
Next, for the mass-trend and redshift-trend parameters

(b g, ), we consider uniformly distributed direction angles,
barctan and garctan , and model the prior probabilities as a

Student’s t1 distribution with one degree of freedom,

b g g g ~m s  t, , , . 38Y Z Y Z , , 1Z Z ( )∣ ∣

Finally, a noninformative prior on the dispersion s >0( )
should have a very long tail to large values. This can be
achieved with the nearly scale-invariant Gamma distribution Γ
for the inverse of the variance,

s ~ G  1 , . 39Z ,0
2 ( ) ( )

For the analysis of the c200–M200 relation, we choose to fix
the value of gs D,Z

to zero (i.e., s =z const.Z ( ) ) because it is
poorly constrained by the weak-lensing data alone and is highly
degenerate with other regression parameters. We checked that
this simplification does not significantly affect our regression
results.

5.2. Concentration–Mass Relation

5.2.1. Regression Results

The main results of Bayesian inference for the c200–M200

relation are summarized in Table 4 and Figure 20. In addition
to the regression of the C1+C2 sample, we have also analyzed
the C1 subsample separately. Posterior summary statistics
( C S ;BI BI see Section 4.1) for all regression parameters (see
Section 5.1.6) are listed in Table 4. Figure 20 shows the
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Table 4
Summary Statistics of Regression Parameters for the XXL Concentration–Mass Relation

Sample Ncl aY Z∣ bY Z∣ gY Z∣ sY Z∣ aX Z∣ sX Z∣ mZ,0 gm D,Z sZ,0

C1+C2 136 0.68±0.10 −0.07±0.28 −0.03±0.47 0.023±0.015 0.00±0.02 0.37±0.14 −0.29±0.07 0.20±0.29 0.09±0.17
C1 83 0.69±0.08 −0.06±0.33 −0.05±0.60 0.027±0.019 0.00±0.02 0.33±0.14 −0.18±0.08 0.23±0.29 0.09±0.14

Note. The gs D,Z
parameter is set to zero in the regression. The intercept aX Z∣ is a nuisance parameter to marginalize over the residual mass calibration uncertainty of 5%.
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marginalized one- and two-dimensional posterior PDFs for the
C1+C2 sample.

In Figure 6, we show the resulting c200–M200 relation at a
reference redshift of =z 0.3ref for the C1+C2 sample, along
with the theoretical c200–M200 relations for the full population
of DM halos predicted by Duffy et al. (2008), Bhattacharya
et al. (2013), Child et al. (2018), and Diemer & Joyce (2019)
(see also Diemer & Kravtsov 2015; see Section 5.2.2). In
Figure 6, we overplot the measured values of (M c,200 200) and
their 1σ uncertainties for individual clusters.

Our inference of the c200–M200 relation for the C1+C2
sample is summarized as follows (Table 4):

=  

´
+
+-

-  - 

c

M

h M

z

z

4.8 1.0 stat 0.8 syst

10

1

1
, 40

200

200
14 1

0.07 0.28

ref

0.03 0.47⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

[ ( ) ( )]

( )


with a lognormal intrinsic dispersion at fixed M200 of
s s= = cln ln 10 5.3 3.4 %Y Z200( ) ( )∣ and an upper limit of
<24% at the 99.7% CL. Here we have included a systematic
uncertainty of 16% in the normalization of the concentration
parameter (Section 4.2 and Appendix A). We find no statistical
evidence for redshift evolution of the c200–M200 relation for the
XXL sample: g = - 0.03 0.47Y Z∣ .

The c200–M200 relation inferred for the C1 subsample is
highly consistent with that obtained for the full C1+C2 sample
(Table 4), indicating that the underlying mass distribution of

the XXL cluster population is not sensitive to the details of the
X-ray selection function.
The M200,WL–M200 relation is found to be poorly constrained

given the large statistical uncertainties in our weak-lensing
mass estimates. The posterior distribution of sX Z∣ is bimodal
(Figure 20), and there is a distinct lower-scatter solution of
s  0.1X Z∣ with a tail extending toward the higher-scatter
solution. The lower-scatter solution is associated with
s ~ 0.4Z,0 , which is reasonable for the XXL sample (XXL
Paper II; XXL Paper XX). On the other hand, the higher-scatter
solution is considerably larger than the theoretically expected
level of intrinsic scatter in the weak-lensing mass, ~20%
(Becker & Kravtsov 2011; Gruen et al. 2015). The higher-
scatter solution associated with sln 10 1Z,0  (see Table 4) is
unlikely for the XXL sample (XXL Paper II; XXL Paper XX).
To assess the impact of this higher-scatter solution on our

results, we repeated our regression analysis assuming an
informed prior of s ~  0.05, 0.15X Z ( )∣ centered at s = 0.1X Z∣ ,
which is approximately the theoretically expected level of
intrinsic scatter (Becker & Kravtsov 2011). With this informed
prior, we find = c 4.9 0.5200 at = -M h M10200

14 1
 and

z=0.3, with b = - 0.05 0.08Y Z∣ , g = - 0.03 0.43Y Z∣ ,
and s = cln 5.4 3.5 %200( ) ( ) , which is fully consistent with
our baseline results (see Equation (40)). This comparison
shows that the higher-scatter solution has negligible impact on
the central values of the regression parameters, whereas the size
of errors for the normalization and mass slope has been largely
decreased, as the parameter space is reduced substantially. On

Figure 6. The c–M relation for the XXL sample of 136 spectroscopically confirmed X-ray-selected systems obtained from our weak-lensing analysis of the HSC-SSP
data. The gray circles with error bars represent the measured parameters (CBI) and their 1σ uncertainties (SBI) for individual XXL clusters. The red shaded region
shows the 1σ confidence range of the mean c–M relation at a reference redshift of =z 0.3ref obtained from our Bayesian regression using the LIRA package. The
black squares with error bars show our stacked weak-lensing constraints on M200 and c200 obtained for six subsamples of C1+C2 XXL clusters binned in X-ray
temperature (see Table 3 and Figure 5). The stacked weak-lensing results of high-mass X-ray-selected clusters (CLASH, Umetsu et al. 2016; LoCuSS, Okabe &
Smith 2016; CODEX, Cibirka et al. 2017), SZE-selected clusters (PSZ2Lens, Sereno et al. 2017), and weak-lensing-selected clusters (SSP-WL, Miyazaki et al. 2018b)
are also shown for comparison. These weak-lensing observations are compared to theoretical c–M relations evaluated at =z 0.3ref for the full population of DM halos
in ΛCDM cosmologies (Duffy et al. 2008; Bhattacharya et al. 2013; Child et al. 2018; Diemer & Joyce 2019).
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the other hand, we find that the higher-scatter solution has little
influence on the central value and uncertainty of s cln 200( ).

Another source of systematic errors is the choice of the
concentration prior in the NFW profile fitting (Section 4.1).
Posterior constraints on the NFW parameters for noisy objects,
especially on c200, are poor and dominated by the priors. We thus
tested the sensitivity of our results to the prior chosen for c200.
We have repeated our NFW fits and regression using an even less
informative prior uniform in the range Îclog 0, log 30200 [ ],
obtaining a slightly higher normalization of = c z 5.6200 ref( )
1.6 at = -M h M10200

14 1
, b = - 0.05 0.33Y Z∣ , g =Y Z∣

0.03 0.52, and s = cln 5.8 3.9 %200( ) ( ) . The changes in
the slopes and the intrinsic dispersion are thus negligibly small
compared to their respective uncertainties. Hence, the choice of
the concentration prior does influence the normalization to some
degree, but it does not significantly alter our main results and
conclusions even with priors that include unrealistically large
concentrations.

5.2.2. Comparison with the Literature

Overall, our regression results are in good agreement with
the theoretical predictions from DM-only numerical simula-
tions calibrated for recent ΛCDM cosmologies (see Figure 6;
Bhattacharya et al. 2013; Diemer & Kravtsov 2015; Klypin
et al. 2016; Child et al. 2018; Diemer & Joyce 2019). In
particular, the inferred normalization and mass slope are in
good agreement with these DM-only ΛCDM predictions,
which yield mean concentrations in the range =c z 0.3200 ( ) 
3.9–4.2 at = -M h M10200

14 1
, with a shallow negative slope

of b -0.09 (e.g., Child et al. 2018). The inferred intrinsic
dispersion s cln 200( ), however, is significantly smaller than
predicted for the full population of ΛCDM halos, s cln 200( ) 
33% (Bhattacharya et al. 2013; Child et al. 2018). We note that
our test using simulated weak-lensing observations shows that
we can accurately recover the true value of s cln 200( )
(Figure 14; see Appendix A.2.3).32 This discrepancy could
be due to the X-ray selection bias in terms of the cool-core or
relaxation state as found by previous studies (e.g., Buote et al.
2007; Ettori et al. 2010; Eckert et al. 2011; Rasia et al. 2013;
Meneghetti et al. 2014; Rossetti et al. 2017). Another possibility
is that the statistical errors on c200 are overestimated as a
consequence of the conservative prior, so that the intrinsic
dispersion s cln 200( ) of the c200–M200 relation is underestimated.

Although no evidence of redshift evolution for the XXL
c200–M200 relation is found, the average level of concentration
for ΛCDM halos is predicted to decrease with increasing
redshift, where the predicted values of the redshift slope range
from -0.47 (Duffy et al. 2008), to −0.42 (Child et al. 2018),
to −0.29 (Meneghetti et al. 2014), to −0.16 (Ragagnin et al.
2019). Our results are broadly consistent with these predictions
within the large statistical uncertainty. We note that the redshift
evolution of the concentration parameter is sensitive to the
relaxation state of clusters (e.g., De Boni et al. 2013;
Meneghetti et al. 2014).

Numerical simulations suggest that relaxed subsamples have
concentrations that are on average ∼10% higher than for the full
population of halos (Duffy et al. 2008; Bhattacharya et al. 2013;
Meneghetti et al. 2014; Child et al. 2018; Ragagnin et al. 2019).

This indicates that mean concentrations for relaxed halos
are =c z 0.3 4.3200 ( )  –4.6 at = -M h M10200

14 1
, which are

consistent with the observational constraint (see Equation (40)).
At face value, the c200–M200 relation obtained for the XXL
sample is in better agreement with those predicted for relaxed
systems. Another important effect of the relaxation state is that
relaxed halos are predicted to have a smaller intrinsic dispersion
in the c200–M200 relation, s ~cln 25%200( ) (e.g., Neto et al.
2007; Duffy et al. 2008; Bhattacharya et al. 2013), which is
again in better agreement with our observational constraint on the
XXL sample.
Meneghetti et al. (2014) characterized a sample of halos that

closely matches the selection function of the CLASH X-ray-
selected subsample with ~ -M h M10200

15 1
 (Donahue et al.

2014; Umetsu et al. 2014, 2016, 2018; Merten et al. 2015).
These clusters were selected to have a high degree of regularity
in their X-ray morphology (Postman et al. 2012). Cosmological
hydrodynamical simulations suggest that this subsample is
prevalently composed of relaxed clusters (~70%) and largely
free of orientation bias (Meneghetti et al. 2014). Another
important effect of the selection function based on X-ray
regularity is to reduce the scatter in concentration down to
s ~cln 16%200( ) (see also Rasia et al. 2013). Although the
XXL sample was not selected explicitly according to their
X-ray morphology, the X-ray selection in favor of relaxed
systems is likely to considerably affect the level of scatter in the
c200–M200 relation (Rasia et al. 2013).
In Figure 6, we also compare our results with previously

published weak-lensing constraints on X-ray-selected high-
mass clusters from the CLASH (Umetsu et al. 2016; z=0.34),
LoCuSS (Okabe & Smith 2016, z=0.23), and CODEX
(Cibirka et al. 2017; z=0.50) surveys; PSZ2 clusters detected
by the Planck mission (Sereno et al. 2017; z=0.20); and
weak-lensing-selected clusters from the HSC survey (Miyazaki
et al. 2018b; z=0.27). Their stacked weak-lensing constraints
are in excellent agreement with the DM-only predictions
calibrated for recent ΛCDM cosmologies (e.g., Bhattacharya
et al. 2013; Diemer & Kravtsov 2015; Child et al. 2018;
Diemer & Joyce 2019) and agree with our results. We note that
the effect of the redshift evolution is not accounted for in the
comparison given in Figure 6.
Biviano et al. (2017) performed a Jeans dynamical analysis

of 49 nearby clusters (  z0.04 0.07) with the projected
phase-space distribution of cluster members available from the
WINGS and OmegaWINGS survey (Fasano et al. 2006;
Gullieuszik et al. 2015). From their dynamical analysis,
Biviano et al. (2017) determined total mass density profiles
for individual clusters in their sample and derived the
c200–M200 relation over a wide range of cluster mass
( ´ M M10 2 1014

200
15

 ). They found a flat c200–M200

relation, µ - c M200 200
0.03 0.09, normalized to c 3.8200  at

=M M10200
14

, which is in excellent agreement with our
results.

5.3. Temperature–Mass Relation

Models of self-similar gravitational collapse in an expanding
universe predict scale-free, power-law relations between cluster
properties (Kaiser 1986; Ettori 2015). Deviations from self-
similar behavior are often interpreted as evidence of feedback
into the intracluster gas associated with star formation and
AGN activities, as well as with radiative cooling in the cluster
cores (e.g., Czakon et al. 2015). The self-similar prediction for

32 The intrinsic scatter is defined at fixed M200,true, not at fixed M200,WL. Since
M200,true is a latent variable that cannot be directly observed, we statistically
constrain the intrinsic scatter by forward-modeling the weak-lensing data.
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the TX–M relation is µ DT E z MX
2 3 2 3( ) , in which the virial

condition ~D DGM r TX with rµD Dr M zc
1 3[ ( )] is assumed.

On the other hand, secondary infall and continuous accretion
from the surrounding large-scale structure can lead to a
departure from virial equilibrium (Bertschinger 1985), while
scaling relations of clusters preserve the power-law structure
(Fujita et al. 2018a, 2018b). The large scatter in growth
histories of clusters translates into a significant diversity in their
density profiles (Diemer & Kravtsov 2014), thus contributing
to the scatter of the TX–M relation (Fujita et al. 2018a). The
mass dependence of the c–M relation and the halo fundamental-
plane (FP) relation (Fujita et al. 2018b) make the mass trend of
the TX–M relation on cluster scales steeper than the self-similar
prediction ( µT E z M ;X

0.75
500
0.75( ) Fujita et al. 2018a). However,

the mass trend of the TX–M relation is predicted to become
shallower and closer to the self-similar expectation toward
group scales ( µT E z M ;X

0.65
500
0.65( ) Fujita et al. 2018a).

Now we turn to results of Bayesian inference for the
T300 kpc–M500 relation. Posterior summary statistics ( C S ;BI BI
see Section 4.1) for all regression parameters (Section 5.1.6)
are listed in Table 5. Figure 21 shows the marginalized
one- and two-dimensional posterior PDFs for the regression
parameters of the T300 kpc–M500 relation.

Figure 7 shows the resulting T300 kpc–M500 relation for the
XXL sample at a reference redshift of =z 0.3ref . Our inference
of the T300 kpc–M500 relation is summarized as follows:

= 

´
 

T

M

M

E z

E z

2.78 0.54 keV

10
, 41

300 kpc

500
14

0.85 0.31

ref

0.18 0.66⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( )

( )
( )

( )


with a lognormal intrinsic dispersion of s = Tln 14300 kpc( ) (
11 %) at fixed M500. A tighter statistical constraint on the
normalization can be obtained around the log-mean mass of
clusters inferred for the sample, m = - 0.17 0.07Z,0 at =zref

0.3. The inferred mean mass of the population is =M500

 ´ M7.6 1.4 1013( )  at =z 0.3ref . For = ´M M8 10500
13


and z = 0.3, we find = T 2.29 0.36 keV300 kpc .
We find no statistical evidence for redshift evolution of the

T300 kpc–M500 relation for the XXL sample: g = 0.18 0.66Y Z∣ ,
which is also consistent with the self-similar expectation,
g = 2 3Y Z∣ . A slightly shallower mass slope of b = 0.75Y Z∣
0.27 is found when performing the regression by setting the
E(z)-trend parameter to the self-similar expectation, g = 2 3Y Z∣
(see Table 5). The resulting constraints on the T300 kpc–M500

Figure 7. TX–M500 relation for the XXL sample obtained using a subsample of 105 clusters having both XXL temperature and HSC weak-lensing measurements. The
gray circles with error bars represent the measured parameters and their 1σ uncertainties for individual XXL clusters. The red shaded region shows the 1σ confidence
region of the mean TX–M500 relation at a reference redshift of =z 0.3ref obtained from our Bayesian regression using the LIRA package. The thick black dashed line
shows the XXL DR1 results of XXL Paper IV. Our results are also compared with previously published results for massive clusters obtained by Kettula et al. (2015)
and Mantz et al. (2016).

Table 5
Summary Statistics of Regression Parameters for the XXL Temperature–Mass Relation

aY Z∣ bY Z∣ gY Z∣ sY Z∣ aX Z∣ sX Z∣ mZ,0 gm D,Z sZ,0 gs D,Z

0.44±0.09 0.85±0.31 0.18±0.66 0.061±0.049 0.00±0.02 0.31±0.08 −0.17±0.07 0.34±0.14 0.20±0.07 −0.05±0.14
0.42±0.07 0.75±0.27 2/3 0.070±0.050 −0.00±0.02 0.29±0.08 −0.17±0.07 0.29±0.11 0.22±0.06 −0.05±0.15
0.41±0.05 2/3 2/3 0.070±0.043 −0.00±0.02 0.29±0.06 −0.18±0.07 0.34±0.09 0.25±0.04 −0.04±0.14

Note. The T–M relation is derived for a subset of 105 clusters that have both measured HSC M500 masses and X-ray temperatures T300 kpc. The intercept aX Z∣ is a
nuisance parameter to marginalize over the residual mass calibration uncertainty of 5%.
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relation are shown in Figure 8. When we fix the slope parameters
to b g= = 2 3Y Z Y Z∣ ∣ expected from the self-similar model,

we find = T 2.58 0.27 keV300 kpc ( ) × M M10500
14 2 3( )

E z E zref
2 3[ ( ) ( )] , with a lognormal intrinsic dispersion

of s = Tln 16 10 %300 kpc( ) ( ) .
Overall, our regression results are in agreement within the

errors with the theoretical predictions (Table 5). We find the
mass slope parameter bY Z∣ to be slightly steeper but consistent
with the self-similar expectation, b = 2 3Y Z∣ , as well as with
the range b 0.65Y Z∣  –0.75 predicted by the halo FP relation of
Fujita et al. (2018a). The E(z)-trend parameter gY Z∣ is still
consistent with the self-similar expectation g = 2 3Y Z∣ within
the large uncertainty. It should be stressed that we measure the
X-ray temperatures =T TX 300 kpc in a core-included aperture of
300 kpc (physical), whereas the r500 aperture for the XXL
sample is typically ∼500–600 kpc (physical). Hence, a
quantitative interpretation of the observed T300 kpc–M500 relation
is not straightforward. For the M500,WL–M500 relation, we
observe a similar trend of the intrinsic dispersion s =X Z∣
s Mln ln 10500,WL( ) to that in the c200–M200 relation
(Section 5.2).

Recently, Bulbul et al. (2019) studied mass scaling relations
of X-ray observables for a sample of 59 SZE-selected
high-mass clusters ( ´ ´ M M M3 10 1.8 1014

500
15

 ,
< <z0.20 1.5) from the South Pole Telescope (SPT) survey.

They used SPT SZE-based cluster mass estimates. Since
Bulbul et al. (2019) examined the scaling relations with both
core-included and core-excised quantities measured from
XMM-Newtondata (albeit in the high-mass regime), their
results are of critical relevance to our study (see Figures 7 and
8). Overall, they found that the mass trends of the X-ray
observables are steeper than self-similar behavior in all cases
(e.g., µ T MX 500

0.80 0.10 including the core region), while the
redshift trends are consistent with the self-similar expectation.
Their mass and E(z) trends of the TX–M500 relation with and
without the core region are both consistent with our results (see
Table 4 of Bulbul et al. 2019, their fitting results of Form I).
According to the findings of Bulbul et al. (2019), the mass and
redshift trends, as well as the normalization of the core-included
TX–M500 relation, are consistent within the errors with those for

their core-excised case. The most noticeable difference between
the two cases comes from the intrinsic scatter. They found
a lognormal intrinsic dispersion of s = Tln 13 5 %X( ) ( )
for the core-excised case and s = Tln 18 4 %X( ) ( ) for the
core-included case. When the core region is included, the
intrinsic lognormal dispersion in the TX–M500 relation is
increased by 40% , although the difference is not statistically
significant.
Our TX–M500 relation is in good agreement with that of Mantz

et al. (2016) obtained for a sample of 40 dynamically relaxed,
X-ray hot (5 keV) clusters based on Chandra X-ray
observations (see Figures 7 and 8). We note that Mantz et al.
(2016) used cluster mass estimates obtained from X-ray data
assuming hydrostatic equilibrium. They found no significant bias
in their X-ray hydrostatic mass estimates relative to weak lensing.
At group scales of ´M M5 10500

13
, our regression

results agree with the XXL DR1 results of XXL Paper IV based
on weak-lensing mass estimates for a subsample of 38 XXL-N
clusters at <z 0.6. Their analysis used the weak-lensing shear
catalog from the Canada–France–Hawaii Telescope Lensing
Survey (CFHTLenS; Heymans et al. 2012; Erben et al. 2013) to
obtain the mass–temperature relation for the XXL sample. Our
T300 kpc–M500 relation has a slightly steeper mass trend than the
XXL DR1 results, implying a smaller mass scale in the cluster
regime. The overall offset from the XXL DR1 relation of XXL
Paper IV is at the s~1.5 level (Figure 7). When the E(z)-trend
parameter is fixed to 2/3, our results are in closer agreement
with the XXL DR1 results (Figure 8). In Section 5.4, we
provide a detailed comparison of weak-lensing mass estimates
between the XXL DR1 and XXL DR2 (this work) results.
Kettula et al. (2015) presented a weak-lensing and X-ray

analysis of 12 low-mass clusters selected from the CFHTLenS
and XMM-CFHTLS surveys, in combination with high-mass
systems from the Canadian Cluster Comparison Project and
low-mass systems from the COSMOS survey. Their combined
sample comprises 70 systems, spanning more than two orders
of magnitude in mass. After correcting for Malmquist and
Eddington bias, they found a mass slope of b = 0.48 0.06 in
the TX–M500 relation with a lognormal intrinsic dispersion of
s = Tln 14 5 %X( ) ( ) . The TX–M500 relation of Kettula et al.
(2015) is in agreement with our results (see Figures 7 and 8).

Figure 8. Same as Figure 7, but with the E(z)-trend parameter fixed to the self-similar model expectation of g = 2 3Y Z∣ .
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5.4. Comparison with the XXL DR1 Mass Calibration

XXL Paper IV derived the mass–temperature (M500–T300 kpc)
relation for 38 XXL-N clusters at <z 0.6 selected from the 100
brightest galaxy cluster (XXL-100-GC) sample (XXL Paper II)
by using weak-lensing mass estimates based on the CFHTLenS
shear catalog (Heymans et al. 2012; Erben et al. 2013). The
CFHTLenS survey covers a total survey area of 154 deg2,
which overlaps with the XXL-N field. Their shear catalog
comprises galaxy shape measurements with an unweighted
(weighted) source density of n 17gal  (14) galaxies arcmin−2,
compared to n 25gal  (22) galaxies arcmin−2 for the HSC
survey (see Section 2.2).

Eckert et al. (2016, hereafter XXL Paper XIII) studied the
baryon fractions of XXL-100-GC clusters using X-ray gas
mass measurements and the weak-lensing-calibrated M500–

T300 kpc relation of XXL Paper IV. They found a low gas mass
fraction ( f 0.048gas,500  at = ´M M5 10500

13
) that requires

a relative mass bias of º - = -
+b M M1 0.28HE 500,X 500,WL 0.08

0.07

to match the gas fractions obtained with weak-lensing and
X-ray hydrostatic-equilibrium mass estimates, M500,WL and
M X500, , respectively.
As summarized below, the shear-to-mass procedure imple-

mented by XXL Paper IV is somewhat different from ours.
XXL Paper IV used the same fitting function as in this study
(i.e., the projected NFW functional of Wright & Brainerd 2000),
with a similar mass prior that is uniform in the logarithm of
M200 in the range ÎM Mlog 13, 16200( ) [ ] . The concentration
parameter was fixed to the mean c200–M200 relation of Duffy
et al. (2008), which is calibrated for a WMAP 5 yr cosmology
(Komatsu et al. 2009). At = -M h M10200

14 1
 and z = 0.3, this

model predicts c 3.6200  , which is 14% lower than predicted
by the Bhattacharya et al. (2013) relation, c 4.2200  (see
Figure 6). Because of the c200–M200 degeneracy (see Section
5.4.1 of Umetsu et al. 2014), assuming a lower concentration
will result in an overestimation of the total mass, M200. By
repeating the analysis assuming the fixed c200–M200 relation of
Duffy et al. (2008), we find that the geometric mean mass scale
á ñM200 g of the C1+C2 sample is overestimated by 22% with
respect to our fiducial analysis (Table 1).

The fitting radial range chosen by XXL Paper IV is ÎR 0.15,[
3] Mpc (physical), corresponding to Î -R h0.1365, 2.73 Mpc1[ ]
(comoving) at z = 0.3. Their fitting range is comparable to our
choice Î -R h0.3, 3 Mpc1[ ] (comoving), but their fits are more
sensitive to the inner region. XXL Paper IV only accounted for the
shape noise (see Equation (16)) in their error analysis.

Another possible cause of the mass discrepancy is the choice
of posterior summary statistics for the mass scale of each
individual cluster (Sereno et al. 2017). XXL Paper IV employed
the mode and asymmetric confidence limits of M200 as posterior
summary statistics. In contrast, we use symmetrized biweight
statistics, C SBI BI. For a lognormally distributed quantity, the
biweight center locationCBI typically approximates the median of
the distribution. By analyzing simulations of NFW lenses, Sereno
et al. (2017) found that the mode estimator is less stable and
noisier than the biweight estimator for low-S/N objects (see their
Appendix C). For their NFW lenses with > -M h M10200

14 1
,

Sereno et al. (2017) found that the mode estimator overestimates
M200 by 4% relative to the biweight estimator, where the actual
level of bias depends on the mass range of the sample and the
quality of data (Sereno et al. 2017).

It should be emphasized again that XXL Paper IV adopted
the quadratic weak-lensing S/N estimator (Equation (15)),

which is positive by construction (Section 3.2) and can lead to
overestimation of the true significance if the actual S/N per
radial bin is less than unity (see Table 2). It is also sensitive to
the choice of the number of radial bins (or the number of
degrees of freedom).
We have identified 23 XXL clusters in common between the

XXL DR1 (XXL Paper IV) and XXL DR2 (this work) mass
calibrations, excluding seven clusters for which only upper
bounds were obtained by XXL Paper IV. We characterize the
discrepancy between the two sets of weak-lensing mass
estimates by accounting for the respective scatters with respect
to the true mass. To this end, we solve the following coupled,
scattered relations in the LIRA framework (Section 5.1):

a s
s

= + 
= 

X Z

X Z

,

, 42
X Z

X Z

1

2

1

2 ( )
∣

∣

where Z denotes the true logarithmic mass, X1 and X2 are the
logarithmic weak-lensing masses from the XXL DR1 and XXL
DR2 mass calibrations, respectively, sX Z1∣ and sX Z2∣ are the
respective intrinsic dispersions at fixed logarithmic mass Z, and
α describes the logarithmic mass offset. We simultaneously
model the underlying P(Z) characterized by the mean mZ,0 and
the dispersion sZ,0 (see Section 5.1). For each cluster, we
account for correlations between X1 and X2 assuming a cross-
correlation coefficient of 0.7 (approximately the ratio of the
number densities of source galaxies between the CFHTLenS
and HSC shear catalogs).
The results are shown in Figure 9. We find a mean mass

offset of a = ln 10 34 20 %( ) in M500 and 41 20 %( ) in
M200. If we exclude the most discrepant cluster with an XXL
DR1 estimate of -M h M10200,WL

15 1
, the mass discrepancy

is reduced to 28 18 %( ) in M500 and 35 18 %( ) in M200.
This is consistent with the level of mass bias found by XXL
Paper XIII.
This level of mass discrepancy with respect to DR1 is also

comparable to that found by Lieu et al. (2017), who reanalyzed
the same CFHT weak-lensing data for the DR1 sample of XXL
Paper IV. By fitting M200 and c200 together in Bayesian
hierarchical modeling, Lieu et al. (2017) found weak-lensing
M200 masses that are on average~28% smaller (in terms of the
weighted geometric mean) than those of XXL Paper IV. This
discrepancy is reduced to ~14% when c200 is treated as a free
parameter in the DR1 analysis of XXL Paper IV (Lieu et al.
2017; see also Section 4.1 of XXL Paper IV).
We thus conclude that the discrepancy between the XXL

DR1 and XXL DR2 mass calibrations is likely due to the
combination of the fixed c–M relation assumed in XXL
Paper IV and the different fitting procedures for extracting
cluster masses from weak-lensing data.

5.5. Mass Forecasting

Mass forecasting given a low-scatter mass proxy can be
performed in the framework of Bayesian hierarchical modeling
(e.g., Sereno 2016a; Sereno & Ettori 2017). Here we obtain
bias-corrected, weak-lensing-calibrated estimates of M200 and
M500 for individual XXL clusters from their X-ray temperatures
by using the LIRA package. To this end, we use the subset of
105 C1+C2 clusters with measured T300 kpc values as a
calibration sample. In this backward forecasting analysis, we
simultaneously model the proxy distribution and determine the
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DM –T300 kpc scaling relation (Sereno & Ettori 2017) for each
overdensity Δ.

Figure 10 shows the resulting distribution of weak-lensing-
calibrated M500 as a function of T300 kpc for the calibration
sample along with the M500–T300 kpc relation. Here we
considered the scaling relation with the slopes fixed to the
self-similar expectation, i.e., µDE z M TX

3 2( ) . In Table 2,
we provide cluster mass estimates M200,MT and M500,MT, where
available, based on the DM –T300 kpc relation. These cluster mass
estimates are corrected for statistical bias and selection effects,
and the errors of forecasted masses include uncertainties
associated with the X-ray temperature measurements, the
determination of the scaling relation with the calibration
sample, and the intrinsic scatter (Sereno & Ettori 2017).

Additionally, we have included a constant bias correction factor
of + Db1 1 1.1M( )  to account for mass modeling bias as

 +D D DM M b1 M,MT ,MT ( ). Here we adopted -Db 11%M 
evaluated at =M M10500,true

14
, the typical mass scale of the

XXL sample (see Appendix A.2.2).
The bias-corrected DM –T300 kpc relation is summarized as

=  ´ ´

=  ´ ´ 43

E z M M

E z M M

3.15 0.48 10 ,

4.58 0.70 10 .

T

T

500
13

1 keV

3 2

200
13

1 keV

3 2

300 kpc

300 kpc

( )
( ) ( )

( ) ( )

( ) ( )





It should be noted that these weak-lensing-calibrated
mass estimates are subject to an overall systematic uncertainty of

Figure 9. Comparison of weak-lensing mass estimates for a subset of 23 XXL clusters in common between this work (XXL DR2) and the XXL DR1 results (XXL
Paper IV). We characterize the discrepancy between these two sets of weak-lensing mass estimates in the LIRA framework, finding a mean mass offset of 34 20 %( )
in M500,WL and 41 20 %( ) in M200,WL.

Figure 10. Mass forecasting based on X-ray temperature measurements. The red shaded region shows the 1σ confidence range of the mean M500–TX relation
calibrated with a subsample of 105 XXL clusters having both XXL temperature and HSC weak-lensing measurements (gray circles). The M500–TX relation is obtained
by fixing the slopes to the self-similar values. The red circles with error bars show bias-corrected, weak-lensing-calibrated estimates ofM500 based on T300 kpc (Table 2).
The black squares with error bars show the stacked weak-lensing constraints obtained for six subsamples of C1+C2 XXL clusters binned in X-ray temperature (see
Table 3 and Figure 5). The M500–TX relation from the XXL DR1 results (XXL Paper IV) is shown with the thick black dashed line.
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5% (Section 4.2).33 Our results are in good agreement with
those of Farahi et al. (2018, hereafter XXL Paper XXIII), who
constrained the characteristic mass scale of the XXL sample to
be ´E z M M1.3 10200

14( )   at =T 2 keV300 kpc and z=0.3
from an ensemble spectroscopic analysis of 132 spectro-
scopically confirmed C1 and C2 clusters in the XXL-N field.

6. Summary and Conclusions

In this paper, we have presented an ensemble weak-lensing
analysis of X-ray galaxy groups and clusters selected from the
XXL DR2 catalog (XXL Paper XX) using the HSC survey data
(Aihara et al. 2018b; Mandelbaum et al. 2018b). Our joint
weak-lensing and X-ray analysis focused on 136 spectro-
scopically confirmed X-ray-selected systems of class C1 and
C2 (  z0.031 1.033) detected in the 25 deg2 XXL-N
region, which largely overlaps with the HSC-XMM field
(Figure 1). The area of the overlap region between the two
surveys is 21.4 deg2.

With the HSC weak-lensing data, we have measured the
tangential shear signal around each individual XXL cluster. We
constrained the mass and concentration parameters individually
for each cluster by fitting an NFW profile to the DS profile
over the comoving radial range Î -R h0.3, 3 Mpc1[ ] . In the
fitting, we used the covariance matrix = + +C C Cshape lss

C int that accounts for various sources of statistical errors
(Section 3.3). We find an excellent internal consistency
between individual and stacked weak-lensing measurements
in terms of the weighted average mass of each sample (Table 1;
see Equations (24) and (27)). In this consistency check, we find
no systematic trend with respect to the X-ray temperature
T300 kpc (Table 3).

We have characterized the systematic uncertainties in the
mass and concentration measurements using both empirical
approaches and simulations (Section 4.2). There are two
possible main sources of systematics in our weak-lensing
analysis of the XXL sample: (i) modeling of systems detected
with low values of weak-lensing S/N (Figure 3), and (ii) the
modeling uncertainty due to systematic deviations from the
assumed NFW form in projection. We used two complemen-
tary sets of simulations to assess the impact of these systematic
effects (Appendix A).

To examine the first possibility, we analyzed synthetic weak-
lensing data based on simulations of analytical NFW lenses
(Appendix A.1), which closely match our observations in terms
of the weak-lensing S/N distribution (Figures 11 and 12).
Simulations show that the overall mass scale of an XXL-like
sample can be recovered within 3.3% accuracy from individual
cluster mass estimates, with no systematic dependence on
cluster massMtrue. This level of systematic uncertainty is below
the statistical precision of the current full sample, 9% at

~ ´ -M h M9 10200
13 1

 (Table 1). Our shear-to-mass proce-
dure is also stable and unbiased against the presence of low-S/
N clusters (Figure 13).

On the other hand, the results from the DM-only
BAHAMAS simulation suggest a significant level of mass
bias of ~-20% for low-mass group systems with M200,true

´ -h M4 1013 1
 (Appendix A.2; see Table 6). Since we do not

find such a mass-dependent behavior when using the correct

mass profile shape (Appendix A.1), this negative bias is likely
caused by systematic deviations from the assumed NFW profile
shape in projection (Section 4.1). With the present data, the
typical mass measurement uncertainty for such low-mass
groups is s ~M M 140%( ) per cluster. Even when averaging
over all such clusters, the statistical uncertainty on the
mean mass is of the order of 20% (Section 4.3). Therefore,
this level of systematic bias ( s1 ) is not expected to
significantly affect the present analysis. In principle, one
can correct for such mass-dependent calibration bias using
a Bayesian regression approach to forward-modeling such
systematic effects.
We have established the c200–M200 relation for the full C1+C2

sample of 136 XXL clusters, by accounting for selection bias and
statistical effects and marginalizing over the overall mass
calibration uncertainty of 5% (Section 5.2). We find the mass
slope of the c200–M200 relation to be b = - 0.07 0.28Y Z∣ and
the normalization to be =  c 4.8 1.0 stat 0.8 syst200 ( ) ( ) at

= -M h M10200
14 1

 and z = 0.3 (Table 4 and Figure 20).
As shown in Figure 6, our weak-lensing results on the

c200–M200 relation are in good agreement with those found for
X-ray, SZE, and weak-lensing-selected high-mass clusters
(Okabe & Smith 2016; Umetsu et al. 2016; Cibirka et al.
2017; Sereno et al. 2017; Miyazaki et al. 2018b), as well as
with DM-only predictions calibrated for recent ΛCDM
cosmologies (e.g., Bhattacharya et al. 2013; Diemer &
Kravtsov 2015; Child et al. 2018; Diemer & Joyce 2019).
Our results are also in excellent agreement with the c200–M200

relation obtained by Biviano et al. (2017) for a sample of 49
nearby clusters from a dynamical analysis of the projected
phase-space distribution of cluster members.
The lognormal intrinsic dispersion in the c200–M200 relation

for the XXL sample is constrained as s <cln 24%200( ) (99.7%
CL), which is smaller than predicted for the full population of
ΛCDM halos, s ~cln 33%200( ) (Bhattacharya et al. 2013;
Child et al. 2018). This discrepancy is likely caused in part by
the X-ray selection bias in terms of the cool-core or relaxation
state (e.g., Buote et al. 2007; Ettori et al. 2010; Rasia et al.
2013). Alternatively, the intrinsic dispersion s cln 200( ) can be
underestimated if the statistical errors on c200 for individual
clusters are overestimated.
We have also determined the TX–M500 relation for a subset

of 105 XXL clusters that have both measured HSC lensing
masses, M500, and X-ray temperatures, T300 kpc (Section 5.3; see
Table 5 and Figure 21). Again, we have accounted for selection
bias and statistical effects, marginalizing over the mass
calibration uncertainty of 5%. We find the mass slope of the
TX–M500 relation to be b = 0.85 0.31Y Z∣ and the normal-
ization to be = T 2.78 0.54300 kpc keV at =M M10500

14


and z=0.3, with a lognormal intrinsic dispersion of
s = Tln 14 11 %300 kpc( ) ( ) .

The resulting TX–M500 relation is consistent within the errors
with the secondary-infall prediction based on the halo FP
relation (Fujita et al. 2018a, 2018b), as well as with the self-
similar expectation. Our TX–M500 relation is also in agreement
with those obtained by Kettula et al. (2015) and Mantz et al.
(2016) (Figures 7 and 8). At group scales, our results agree
with the XXL DR1 results of XXL Paper IV based on the
CFHTLenS shear catalog (Figure 7). However, our TX–M500

relation has a slightly steeper mass trend, implying a smaller
mass scale in the cluster regime. The overall offset in the
TX–M500 relation is at the s~1.5 level (Figures 7 and 8),

33 Unlike the analysis of observable–mass scaling relations, the overall mass
calibration uncertainty is not marginalized over in this backward forecasting
analysis.
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corresponding to a mean mass offset of 34 20 %( )
(Section 5.4; see Figure 9). This discrepancy is likely due to
the different fitting procedures for extracting cluster masses
from weak-lensing data (Section 5.4; see also Lieu et al. 2017).

The change of the mass scale has important implications for
cluster astrophysics probed with the XXL sample. Compared to
the XXL DR1 results (XXL Paper IV), our HSC mass calibration
leads to a higher gas mass fraction, = f 0.053 0.015gas,500

at = ´M M5 10500
13

 and z=0.3, and a lower level of
hydrostatic mass bias, = b 9 17 %HE ( ) (Sereno et al. 2020).
Our HSC weak-lensing analysis thus alleviates the tension
reported by XXL Paper XIII. On the other hand, this slight
decrease of the mass scale has a direct impact on the
cosmological interpretation of the abundance (Pacaud et al.
2018, hereafter XXL Paper XXV) and clustering properties
(Marulli et al. 2018, hereafter XXL Paper XVI) of the XXL
sample across cosmic time.

Finally, we have produced bias-corrected, weak-lensing-
calibrated mass estimates, M200,MT and M500,MT, for individual
XXL clusters based on their X-ray temperatures (Section 5.5;
see Table 2). We recommend using these statistically corrected

DM ,MT as a mass estimate for a given individual cluster. It is
important to note that the weak-lensing-calibrated DM –TX
relation (Equation (43)) allows us to estimate M200 and M500

for all XXL clusters with measured X-ray temperatures,
including those in the XXL-S region. Such lensing-calibrated
mass estimates corrected for statistical and selection effects will
be particularly useful for a statistical characterization of cluster
properties through multiwavelength follow-up observations.
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Appendix A
Mass Measurement Tests

A.1. Simulations of Analytical NFW Lenses

First, we test and quantify the accuracy of our cluster mass
measurements using synthetic weak-lensing data that closely
match the HSC survey in terms of the weak-lensing S/N
distribution. Specifically, the aim of this test is to assess the
impact of low weak-lensing S/N objects on ensemble mass
measurements for a sample of XXL-like clusters. To this end,
we create synthetic weak-lensing data from simulations of
analytical NFW lenses at a redshift of z=0.3, the median
redshift of the full C1+C2 sample (Table 1). We model the
weak-lensing signal of each cluster using the “true” profile
shape (i.e., NFW), with M200 and c200 as fitting parameters. We
use the same analysis pipeline as done for the real observations.
In this way, we can separate possible sources of systematic
effects. Hence, any significant level of mass bias, especially in
the low-mass regime, would indicate systematics effects caused
by noisy mass estimates for low-S/N objects.
A synthetic sample of 1000 NFW lenses was drawn from a

Gaussian intrinsic PDF in = -Z M h Mlog 200
1( ) with a mean

m = á ñ =Z 14Z and a dispersion s = 0.5 ln 10Z , which closely
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resembles the XXL cluster sample (XXL Paper II; XXL
Paper XX). Concentrations were drawn from the scattered
c200–M200 relation of Bhattacharya et al. (2013) with a lognormal
intrinsic dispersion of s =cln 0.15 ln 10 35%200( )  . The range
of true M200 masses for the simulated sample is ´ 1.0 1013

´- M h M 7.2 10200
1 14( ) (see the right panel of Figure 11).

The synthetic data include the cosmic noise contribution due to
the projected uncorrelated large-scale structure, as well as the
random shape noise, with a net intrinsic shear dispersion of
σg=0.4 per shear component. Source galaxies are distributed
over the redshift range 0.3<zs<1.2 with a mean number
density of =n 17gal galaxies arcmin−2. Finally, the DS R( )
profiles were simulated in eight equally spaced logarithmic bins
of comoving cluster radius (R) from = -R h0.3 Mpcmin

1 to
= -R h3 Mpcmax

1 , to be consistent with the observations
(Section 3.2).

The left panel of Figure 11 shows the distribution of weak-
lensing S/N measured in a fixed comoving aperture of

Î -R h0.3, 3 Mpc1[ ] for 1000 simulated NFW lenses. The
values of weak-lensing S/N span the range from −1.9 to 5.7,
with a median of 1.7 and a standard deviation of 1.3, closely
mimicking the observed S/N distribution (Figure 3). About
30% (9%) of simulated NFW lenses are detected with weak-
lensing <S N 1 (0), as shown in the right panel of Figure 11).
The left (middle) panel of Figure 12 compares the weak-lensing
S/N and M200,true (M200,WL) for all NFW lenses in the sample.
The resulting distribution of simulated NFW lenses in the
S/N–M200,WL plane reproduces the observations of the XXL
sample fairly well (see the right panel of Figure 12).

The weighted average weak-lensing mass =M200,WL g

 ´ -h M1.28 0.03 1014 1( )  over the full sample (in terms of
the error-weighted geometric mean; see Equation (24)) is

30% higher than the true log-mean (or the true median) mass,
= -M h M10200,true

14 1
, and the true mean mass of the

population, ´ -M h M1.13 10200,true
14 1 . Qualitatively, this

is because the weighted geometric mean estimator assigns
higher weights to those objects with smaller measurement
errors, which are likely to be more massive objects. The degree
to which á ñM200,WL g is different from the true population mean

should depend on both the shape of the intrinsic mass PDF and
the level of observational noise.
We introduce the following quantity to characterize the level

of bias in the average cluster mass estimated from weak
lensing:

+ = á ñD DDb M M1 , 44Msim, ,WL ,true g ( )

where DM ,true represents the true MΔ mass from simulations
and DM ,WL represents the MΔ mass estimated from weak
lensing. Similarly, we define the bias parameter b csim, 200 for the
concentration parameter, c200.
Figure 13 shows that b Msim, 500 and b Msim, 200 are consistent with

zero to better than 2σ in all mass bins, with no significant mass
dependence over the full range of DM ,true. On the other hand,
c200,WL is biased high at a mean level of = b 13 3 %csim, 200 ( ) ,
with no evidence of systematic mass dependence. This
systematic offset is likely because the typical scale radius for
this sample ( -r h0.21 Mpcs

1 in comoving length units) lies
below the radial range for fitting, Î -R h0.3, 3 Mpc1[ ]
(comoving).
In this realization, there are a total of 86 clusters with negative

values of weak-lensing S/N. Their weak-lensing mass estimates
span the range Î ´ -M h M0.4, 11 10200,WL

13 1[ ] , with a
median value of ´ -h M1.0 1013 1

, which is comparable to our
observations (Section 4.3). The median mass uncertainty of these
clusters is ~S M C M 140%BI 200,WL BI 200,WL( ) ( ) . This indicates
that such noisy objects can reach ~M M 4200,WL 200,true (i.e., the
boundary of the 99.7% confidence region; see Figure 13). As
shown in the right panel of Figure 11 (see also the left panel of
Figure 12), these clusters span a fairly representative range in “true”
mass: Î ´ -M h M2.7, 19 10200

13 1[ ] , with a median value of
´ -h M7.0 1013 1

 and a mean value of ´ -h M7.5 1013 1
. At a

given true mass, it is expected that there is a statistical counterpart
of positively scattered clusters with apparently boosted S/N and
thus overestimated DM ,WL. In fact, we do not find any significant
bias in ensemble weak-lensing mass measurements even at low-
mass scales (Figure 13). In contrast, if one selects a subsample of
clusters according to their weak-lensing S/N values or mass
estimates, they are no more representative of the parent population.

Figure 11. Synthetic weak-lensing observations from simulations of 1000 NFW lenses at z=0.3. Left panel: histogram distribution of the weak-lensing S/N derived
from synthetic weak-lensing data. Right panel: histogram distribution of the true cluster mass M200,true. The histograms are shown separately for subsamples of weak-
lensing <S N 0 (red shaded) and <S N 1 (gray shaded), as well as for the full sample (blue).
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In particular, such an S/N-limited selection will bias high the
weak-lensing mass estimates at a given X-ray cut, an effect known
as the Malmquist bias (e.g., Sereno et al. 2015a; Sereno &
Ettori 2017; Sereno et al. 2017).

A.2. BAHAMAS Simulation

A.2.1. Simulated Halos and Synthetic Weak-lensing Data

Next, we test and characterize the accuracy of our weak-
lensing mass measurements using synthetic observations of
realistic ΛCDM halos, selected from a DM-only run from the
BAHAMAS simulations (McCarthy et al. 2017, 2018). The
aim of this test is to assess the impact of modeling uncertainties
in the projected cluster profile shape down to low-mass group
scales. The specific simulation we use adopts a flat ΛCDM
cosmology with WMAP 9 yr cosmological parameters in a box
of -h400 Mpc1 (comoving) on a side with 10243 particles. The
particle mass is ´ -h M3.85 109 1

, and the softening length is
-h4 kpc1 (physical).

To efficiently survey any mass-dependent bias in our
methodology, we randomly select 100 halos per logarithmic mass
bin D =Mlog 0.25500 over the mass range ÎM Mlog 500( )
13, 15[ ] from the simulation (i.e., a total of eight logarithmic mass
bins), at a redshift of z=0.25. We note that given the finite size of
the simulation volume, the two highest-mass bins have fewer than
100 unique halos (they have 32 and 7, respectively). For these
bins, we select all halos for analysis, yielding a total sample of 639
halos.
Figure 14 shows the distribution of selected halos in the

c200–M200 plane. The c200–M200 relation of the selected
sample is described by a power law of the form = ´c 4.5200

- -M h M10200
14 1 0.15( ) with a lognormal intrinsic dispersion

of s =cln 30%200( ) . The right panel of Figure 15 shows the
distribution of the selected halos in M500,true (blue solid
histogram), along with an XXL-weighted distribution (blue
dashed histogram) where the counts are weighted by the mass
PDF expected for the XXL sample (Appendix A.1).
Around each selected halo, we extract all particles in a cube

of length 30Mpc (physical) centered on the most bound

Figure 12. Left panel: comparison of the weak-lensing S/N and the true mass M200,true (gray circles) for a synthetic sample of 1000 NFW lenses (see Figure 11). The
red solid and red dashed horizontal lines represent =S N 1 and =S N 0, respectively. Middle panel: weak-lensing S/N vs. weak-lensing mass M200,WL estimated
from the synthetic weak-lensing data using the same analysis pipeline as for the real observations. The blue squares represent weighted geometric means in six
logarithmicM200 bins, where the vertical bars show the standard deviation of the weak-lensing S/N and the horizontal bars show the full width of each mass bin. Right
panel: same as the middle panel, but for the real observations of the XXL sample. The gray circles and red crosses represent the C1 and C2 subsamples, respectively.

Figure 13. Comparison of the true and estimated values of the mass and concentration parameters M500 (left), M200 (middle), and c200 (right) from synthetic weak-
lensing observations of 1000 NFW lenses at z = 0.3 (see Figure 12). In each panel, the error-weighted geometric mean ratio of the simulated sample, á ñD DM M,WL ,true g

or á ñc c200,WL 200,true g, is marked with a solid line. Similarly, the shaded blue boxes represent weighted geometric mean ratios and their errors in four equally log-spaced
Mtrue bins. The weighted average mass ratio á ñD DM M,WL ,true g is consistent with unity to better than 2σ in all mass bins. Overall, c200,WL is biased high at a mean level
of 13 3 %( ) , with no evidence of systematic mass dependence.
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particle of each selected halo. The particle distribution is then
projected along the z-axis and interpolated to a regular two-
dimensional grid using a triangular-shaped cloud algorithm to
produce an image of surface mass density. We compute
convergence and reduced shear maps from the surface mass
density map following the methods described in McCarthy
et al. (2018, see their Section 3.4.3), assuming a single source
redshift plane at zs = 0.829. We randomly sample the reduced
shear maps to obtain a mean background source density of

=n 20gal galaxies arcmin−2. We then add shape noise to the

selected shear values, drawing from a normal distribution with
a dispersion of s = 0.28 2 0.20g  per shear component.

A.2.2. NFW Modeling

We analyze the synthetic weak-lensing data using the same
analysis pipeline as for the real observations (Section 3). We
compute for each cluster halo the synthetic DS+ profile
(Equation (4)) and model the weak-lensing signal assuming a
spherical NFW profile with M200 and c200 as fitting parameters,
following the procedures laid down in Section 4.

Figure 14. Halo mass and concentration of 639 ΛCDM halos (gray circles) selected from a DM-only realization of BAHAMAS simulations at z=0.25. The thick
black line shows the c200–M200 relation of the selected sample. The lognormal intrinsic scatter (1σ) around this relation is indicated by a pair of black dashed lines. The
red shaded region shows the 1σ range of the mean c200–M200 relation recovered from a regression analysis of the synthetic weak-lensing measurements
M c,200,WL 200,WL( ) shown in Figure 17. Here an upward correction of 16% is applied to the normalization inferred from the regression analysis. The inferred intrinsic
scatter (1σ) is indicated by a pair of red dashed lines.

Figure 15. Synthetic weak-lensing observations from a DM-only realization of BAHAMAS simulations at z=0.25. Left panel: histogram distribution of the weak-
lensing S/N derived from synthetic weak-lensing data. The black dashed histogram shows an XXL-weighted distribution of the sample. Right panel: histogram
distribution of the true cluster mass M500,true. The histograms are shown for subsamples of weak-lensing <S N 1 (gray shaded) and <S N 0 (red shaded), as well as
for the full sample (blue solid). The blue dashed histogram shows an XXL-weighted distribution of the sample.
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The left panel of Figure 15 shows the distribution of weak-
lensing S/N measured in a fixed comoving aperture of

Î -R h0.3, 3 Mpc1[ ] for our sample of 639 halos. The values
of weak-lensing S/N span the range from −2.1 to 17, with a
median of 2.5 and a standard deviation of 2.9. About 20% (5%) of
simulated halos are detected with weak-lensing <S N 1 (0), as
shown in the right panel of Figure 15. The left (right) panel of
Figure 16 compares the weak-lensing S/N and M200,true (M200,WL)
for all halos in the BAHAMAS sample. The shape noise level
assumed in this set of synthetic data is about a factor of 2 smaller
than that in the NFW-based simulations (Appendix A.1).

In Figure 17, we compare the true and estimated values of
(M M c, ,500 200 200) for our simulated sample of 639 halos. For
each quantity, we compute the weighted geometric mean ratio
between the estimated and true values over the full sample,
finding = b 0.9 1.3 %Msim, 500 ( ) , = b 2.1 1.5 %Msim, 200 ( ) , and

= - b 18 2 %csim, 200 ( ) .

We also quantify the levels of bias in the average weak-lensing
mass and concentration as a function of Mtrue. Table 6 lists the
values of bias in our weak-lensing measurements of (M M, ,500 200
c200) estimated in eight equally log-spaced M500 bins (see
Figure 15). We find a significant level of mass bias of ~-20%
for low-mass group halos with ´ -M h M4 10200,true

13 1
, or

´ -M h M3 10500,true
13 1

. However, such a low-mass popu-
lation is expected to be subdominant in the XXL sample
(Figures 10 and 15). At the typical mass scale ´M 7500 

=-h M M10 1013 1 14
  of the XXL sample, we find the level of

bias in M200, WL and M500, WL to be -11% .

A.2.3. Recovery of the c–M Relation

Here we test how well the parameters describing the c200–M200

relation can be recovered from cluster weak-lensing observations.
To this end, we perform a LIRA regression analysis of our
synthetic weak-lensing measurements M c,200,WL 200,WL( ) for the

Figure 16. Left panel: comparison of the weak-lensing S/N and the true mass M200,true (gray circles) for a sample of 639 ΛCDM halos selected from a DM-only
realization of BAHAMAS simulations. The red solid and red dashed horizontal lines represent =S N 1 and =S N 0, respectively. Right panel: weak-lensing S/N
vs. total mass M200,WL (gray circles) estimated from synthetic weak-lensing using the same analysis pipeline as done for the real observations (see Figure 12). The blue
squares represent weighted geometric means in nine logarithmic M200 bins, where the vertical bars show the standard deviation of the weak-lensing S/N and the
horizontal bars show the full width of each mass bin.

Figure 17. Comparison of the true and estimated values ofM500 (left),M200 (middle), and c200 (right) from synthetic weak-lensing observations of 639 ΛCDM halos at
z=0.25 selected from a DM-only realization of BAHAMAS simulations. We model the weak-lensing signal of each individual cluster assuming an NFW profile. In
each panel, the weighted geometric mean ratio of the simulated sample, á ñD DM M,WL ,true g or á ñc c200,WL 200,true g, is marked with a solid line. Similarly, the shaded blue
boxes represent weighted geometric mean ratios and their errors in eight equally log-spaced Mtrue bins.
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BAHAMAS sample. We adopt slightly different priors to model
the BAHAMAS sample in the LIRA framework (Section 5.1).
First, we set g g g= = =m s  0Y Z , ,Z Z∣ because all halos are
sampled at a single redshift of z = 0.25. Next, we need s  1Z,0
to approximate P(Z) of the BAHAMAS sample (see Figure 15)
with a lognormal distribution in = -Z M h Mlog 10200

14 1( ) .
Since such a solution is strongly disfavored by the assumed prior
for sZ,0 (see Equation (39)), we fix the center and width of the
lognormal mass PDF to m = 0Z,0 and s = 1Z,0 , respectively. We
thus have a total of four regression parameters, (a b, ,Y Z Y Z∣ ∣
s s,Y Z X Z∣ ∣ ).

The results are shown in Figures 14 and 19. The c200–M200

relation recovered from the synthetic data is summarized as
=  ´ - - c M h M3.7 0.1 10200 200

14 1 0.14 0.02( ) ( ) with a
logarithmic intrinsic dispersion of s s= =cln ln 10 Y Z200( ) ∣

27 3 %( ) . We thus accurately recover the true input values
of b = 0.15Y Z∣ and s =cln 30%200( ) (see Appendix A.2.1)
within the statistical uncertainties. On the other hand, we
underestimate the normalization of the c200–M200 relation by

18 2 %( ) , as found in Appendix A.2.2. The intrinsic
dispersion of the M200,WL–M200 relation is found to be
s s= = Mln ln 10 6.5 4.8 %X Z200,WL( ) ( )∣ , with an upper
limit of<23% (33%) at the 95% (99.7%) CL (see Figure 19). In
Figure 14, we have applied an upward correction of 16% to the
normalization inferred from the regression analysis.

As a sanity check, we perform a similar test for lower fiducial
values of the intrinsic dispersion s cln 200( ) in the c200–M200

relation. To this end, we select a subsample of BAHAMAS
halos that lie within 1σ scatter from the mean c200–M200 relation,
which leaves us with 459 halos. This subsample virtually
has a lower dispersion of s =cln 16%200( ) , which matches
the level expected for X-ray regular clusters (Meneghetti et al.
2014). For this subsample, we obtain =  ´c 3.7 0.1200 ( )

- - M h M10200
14 1 0.14 0.02( ) with s = cln 21 4 %200( ) ( )

from the synthetic data (Figure 19). We thus recover the true
input values of b = 0.15Y Z∣ and s =cln 16%200( ) within the
statistical uncertainties. We checked that even lower fiducial
values of s ~cln 10%200( ) can be accurately recovered.

A.2.4. Halo Modeling

Furthermore, we have tested our shear fitting procedures
and pipeline using the standard halo model including the
effects of surrounding large-scale structure as a 2-halo term
(Equation (26)). We describe the projected halo model with
M200 and c200 as fitting parameters and use the same priors as
for the NFW model. As demonstrated in Figure 4, the 2-halo
termDS R2h( ) is negligibly small in the comoving radial range

Î -R h0.3, 3 Mpc1[ ] . When the 2-halo term is neglected, the
halo model reduces to the BMO model that describes a
smoothly truncated NFW profile (Section 4.4).
The results are summarized in Figure 18 and Table 6.

Overall, the two-parameter halo modeling of each individual
cluster does not significantly improve the accuracy of weak-
lensing measurements of cluster mass and concentration,

Figure 18. Same as in Figure 17, but fitting each individual cluster with the two-parameter halo model.

Table 6
Systematic Bias in Weak-lensing Mass Modeling

NFW Model Halo Model

M500,true
a M200,true

a c200,true
a Ncl b Msim, 500 b Msim, 200 b csim, 200 b Msim, 500 b Msim, 200 b csim, 200

( -h M1013 1
) ( -h M1013 1

) (%) (%) (%) (%) (%) (%)

0.8 1.2 6.1 100 −19±8 −15±8 −14±8 −15±8 −12±9 −13±8
1.5 2.2 5.7 100 −24±7 −22±7 −18±7 −20±7 −19±7 −16±8
2.8 3.9 5.6 100 −21±6 −18±6 −13±8 −16±6 −14±6 −10±8
4.9 7.4 5.0 100 −11±5 −9±5 −24±6 −7±5 −5±5 −24±6
8.8 12.4 4.6 100 −5±3 −2±3 −28±4 −2±3 2±3 −30±4
15.8 23.1 4.1 100 8±2 8±2 −13±4 10±2 11±3 −16±4
25.5 37.0 4.0 32 3±3 6±3 −24±5 4±3 8±4 −26±5
55.5 74.5 3.2 7 1±4 9±6 −2±8 2±4 10±5 −3±8

Notes. We characterize the accuracy of our weak-lensing mass measurements using synthetic observations of 639 ΛCDM halos at z=0.25 selected from a DM-only
realization of BAHAMAS simulations. We quantify the level of bias in the average cluster mass from weak lensing as + = á ñD D DDb M M M1 Msim, ,true ,WL ,true g( ) , where

DM ,true is the true MΔ mass, DM ,WL is the MΔ mass estimated from weak lensing, and those quantities in brackets with subscript “g” denote error-weighted geometric
means (Equation (24)). Similarly, we define the bias parameter b csim, 200 for the concentration parameter.
a True median value in each logarithmic mass bin.
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although it yields slightly ( s<1 ) improved levels of accuracy in
the determination of M500 and M200.

Appendix B
Marginalized Posterior Constraints on Regression

Parameters

In Figure 19, we show marginalized one- and two-
dimensional posterior probability distributions of the regression

parameters a b s s, , ,Y Z Y Z Y Z X Z( )∣ ∣ ∣ ∣ for the c200–M200 relation of
the BAHAMAS sample (Figure 14) recovered from the
synthetic weak-lensing measurements shown in Figure 17
(for details, see Appendix A.2).
In Figures 20 and 21, we show marginalized posterior

probability distributions of the regression parameters for the
c200–M200 relation (Section 5.2) and the T300 kpc–M500 relation
(Section 5.3), respectively, derived for the XXL cluster
population.

Figure 19. Marginalized one-dimensional (histograms) and two-dimensional (68% and 95% confidence level contour plots) posterior distributions of the regression
parameters for the c200–M200 relation of the BAHAMAS sample at z=0.25, recovered from synthetic weak-lensing measurements (see Figure 17). For each
parameter, the blue solid line shows the biweight central location (CBI) of the marginalized one-dimensional distribution. The left panel is for the full BAHAMAS
sample of 639 halos (Figure 15), and the right panel is for a subsample of 459 halos that lie within 1σ scatter from the mean c200–M200 relation.
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Figure 20. Constraints on the regression parameters for the c200–M200 relation of the XXL sample, showing marginalized one-dimensional (histograms) and two-
dimensional (68% and 95% confidence level contour plots) posterior distributions. For each parameter, the blue solid line shows the biweight central location (CBI) of
the marginalized one-dimensional distribution.
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