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Abstract

We present version X of the hammurabi package, the HEALPix-based numeric simulator for Galactic polarized
emission. Improving on its earlier design, we have fully renewed the framework with modern C++ standards and
features. Multithreading support has been built in to meet the growing computational workload in future research.
For the first time, we present precision profiles of the hammurabi line-of-sight integral kernel with multilayer
HEALPix shells. In addition to fundamental improvements, this report focuses on simulating polarized
synchrotron emission with Gaussian random magnetic fields. Two fast methods are proposed for realizing
divergence-free random magnetic fields either on the Galactic scale where field alignment and strength modulation
are imposed, or on a local scale where more physically motivated models like a parameterized
magnetohydrodynamic (MHD) turbulence can be applied. As an example application, we discuss the
phenomenological implications of Gaussian random magnetic fields for high Galactic latitude synchrotron
foregrounds. In this, we numerically find B/E polarization-mode ratios lower than unity based on Gaussian
realizations of either MHD turbulent spectra or in spatially aligned magnetic fields.

Unified Astronomy Thesaurus concepts: Interstellar synchrotron emission (856); Interstellar magnetic fields (845)

1. Introduction

The Galactic synchrotron emission from the diffuse
distribution of relativistic electrons and positrons in the
magnetized interstellar medium (ISM)10 is the dominant signal
in the polarized sky observed at frequencies ranging from MHz
to GHz; therefore, it is one of the best friends of scientists who
study multiphase ISM structure and cosmic-ray (CR) transport
properties. To those who study the cosmic microwave back-
ground radiation, 21 cm cosmology, and the early universe,
however, it is one of their worst enemies. Despite the difference
between their scientific purposes, both fields recognize the
importance of physically modeling the mechanisms and
environments associated with polarized synchrotron emission,
absorption, and Faraday rotation, which in the end provide a
realistic description of the foreground observables. The
fundamental physical principles of radiative transfer processes
have been fully understood for around half a century (Rybicki
& Lightman 1979), but with the growing precision and range of
observations, we are challenged by various local structures and
nonlinear phenomena within the Galaxy. This is slowing down
conceptual and theoretical advancements in related research
fields as the observables are no longer analytically calculable in
a high-resolution and nonperturbative regime. To overcome the
challenge, hammurabi (Waelkens et al. 2009) was developed
to help us in simulating complicated observables with 3D
modeling of the physical components of the Galaxy.

Over the last decade, we have witnessed wide scientific
applications of hammurabi, for example, in estimating and
removing Galactic synchrotron foreground contamination
(Switzer & Liu 2014; Dolag et al. 2015), and in understanding
magnetic fields of astrophysical objects varying from super-
nova remnants (West et al. 2017) to the Galaxy (Jaffe et al.
2013; Planck Collaboration et al. 2016b) and even to the local
universe (Hutschenreuter et al. 2018). Despite the successful
applications of hammurabi, we have noticed that after years
of modifications and accumulation of modules and functions
with outdated programming standards, the package might have
been compromised by numeric issues and the lack of a properly
maintained testing suite. Given the trend toward high-
resolution and computation-dominated studies, it is the right
time to provide a precision-guaranteed high-performance
pipeline for simulating polarized synchrotron emission, absorp-
tion, and Faraday rotation. Thus, a thorough upgrading project
has been performed, where we mainly focus on redesigning the
code structure and workflow, calibrating the numeric algo-
rithms and methods, improving the user experience, and setting
up new conventions for future maintenance and development.
In addition to the technical improvements, we also keep up

with recent progress in the physical modeling of Galactic
foreground emission with the turbulent Galactic magnetic field
(GMF), e.g., phenomenological research carried out by Beck
et al. (2016), analytic estimations calculated by Cho & Lazarian
(2002), Caldwell et al. (2016), Kandel et al. (2017, 2018), and
heavy simulations analyzed by Akahori et al. (2013), Kritsuk
et al. (2018), and Brandenburg et al. (2019). For future work
about inferring the GMF configuration from observational data
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10 Acronyms used in the text: CR (cosmic ray), CMBR (cosmic microwave
background radiation), FFT (fast Fourier transform), GMF (Galactic magnetic
field), ISM (interstellar medium), LoS (line of sight), MHD (magnetohydro-
dynamics), TE (thermal electron).
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(e.g., Galactic synchrotron and dust emission, dispersion
measure, and Faraday rotation measure), we need physically
motivated and numerically fast magnetic field simulators,
instead of setting up trivial random fields or directly adopting
expensive magnetohydrodynamics (MHD) simulators. The
balance has to be made between the computational cost and
the modeling complexity. Low computational cost is required
by any analysis that infers model parameters directly from data
in a Bayesian fashion, where GMF models have to be evaluated
repeatedly while the Bayesian inference algorithms sample
through the often very high-dimensional parameter space. Full
MHD simulations are currently prohibitively expensive to be
used within such algorithms; there, fast emulators for the main
statistical properties of typical MHD simulations are needed
instead.

In this report, we propose two fast (in contrast to MHD
simulation) random GMF generators which satisfy certain
criteria. A project for studying the GMF configuration with
numeric simulation has been proposed (Boulanger et al. 2018)
by using a computational inference engine. Though the main
motivation for hammurabi X is the construction of a Bayesian
magnetic field inference engine, we herein present an analysis
of the angular power spectrum, focusing on the synchrotron
B/E ratio as a possible guide for future studies.

This report is arranged as follows. In Section 2, we present a
brief technical description of the hammurabi X package with
precision and performance profiles. Section 3 presents
mathematical details of the random GMF generators and the
properties of their products. In Section 4, we illustrate and
discuss the influence of random GMF models on simulated
synchrotron foreground angular power spectra. A summary is
provided as Section 5 with prospects for future work.

Furthermore, in Appendix A we present the detailed
numerical implementation of calculating the synchrotron
emissivity and Faraday rotation. In Appendix B, we provide
our method for vector-field fast Fourier transform (FFT) in
generating magnetic fields and its precision profile. The
precision related to pseudo-Cℓ estimation is addressed in
Appendix C, and finally, in Appendix D, we briefly discuss
divergence cleaning in generating random magnetic fields.

2. hammurabi X

2.1. Overview

The hammurabi code (Waelkens et al. 2009) is an
astrophysical simulator based on 3D models of the components
of the magnetized ISM such as magnetic fields, thermal
electrons, relativistic electrons, and dust grains. It performs an
efficient LoS integral through the simulated Galaxy model
using a HEALPix-based11 (Górski et al. 2005) nested grid to
produce observables such as the Faraday rotation measure and
diffuse synchrotron and thermal dust emission12 in full Stokes
I, Q, and U, while taking into account beam and depth
depolarization as well as Faraday effects. The updated version,
hammurabi X (Wang et al. 2019),13 has been developed to
achieve higher computing performance and precision. Version

2.3.0 is available at doi:10.5281/zenodo.3522599. Specific
effort has been devoted to the parallel computation of the LoS
integral and vector-field FFT.
hammurabi X currently uses the HEALPix library (Górski

et al. 2005) for observable production, where the LoS integral
accumulates through several layers of spherical shells with
adaptable HEALPix resolutions. We provide two modes of
integral shell arrangements. In the auto-shell mode, given R as
the maximum simulation radius, the nth shell out of N total
shells covers the radial distance from 2(n−N−1)R to 2(n−N)R,
except for the first shell which starts at the observer. The nth
shell is by default set up with the HEALPix resolution-
controlling parameter Nside=2(n−1)Nmin,

14 where Nmin repre-
sents the lowest simulation resolution at the first shell.
Alternatively in the manual-shell mode, shells are defined
explicitly by a series of dividing radii and HEALPix Nsideʼs.
The radial resolution along the LoS integral is uniformly set by
the minimal radial distance for each shell. The auto-shell mode
follows the idea that the integral domain is discretized with
elemental bins of the same volume, while the manual-shell
mode allows users to refine specific regions to meet special
realization requirements.
The LoS integral is carried out hierarchically: at the top

level, the integral is divided into multiple shells with given
spherical resolution settings, while at the bottom level inside
each shell (where the spherical resolution is fixed), the radial
integral is carried out with the midpoint rule for each radial bin.
The accumulation of observable information from the inner to
outer shells is applied at the top level. We emphasize that in
hammurabi X, the simulation spherical resolution for each
shell can be independent of that in the outputs, which means
that we can simulate with an arbitrary number of shells and
assign each shell a unique Nside value. During each step of the
shell-accumulating process, we interpolate (with the linear
interpolation provided by HEALPix library) the current result
into the output resolution. Consequently, such interpolation
between different angular resolutions will inevitably create a
certain level of precision loss.
Previously in hammurabi, the generation of the anisotropic

component of the random field as well as the modulation of the
field strength following various parametric forms led to artificial
magnetic field divergence. Now we propose two improved
solutions for simulating the random magnetic field. On Galactic
scales, a triple Fourier transform scheme is proposed to restore
the divergence-free condition via a cleaning process. This
imposes the divergence-free property in the random magnetic
field (unlike in Planck Collaboration et al. 2016b), which will be
discussed in detail in Section 3.3, with its observational
implication in Section 4. Alternatively, in a given local region15,
a vector-field decomposition scheme is capable of simulating
more detailed random-field power spectra.
FFTs are necessary for translating the power spectra of random

fields into discrete magnetic field realizations on 3D spatial grids.
Random-field generators in hammurabi X currently use
the FFTW library.16 The detailed implementation will be

11 https://healpix.jpl.nasa.gov
12 This report focuses on the Galactic synchrotron emission, while the report
for simulating thermal dust emission with hammurabi X is under preparation.
13 hammurabi X is available in the repository https://bitbucket.org/
hammurabicode/hamx, with detailed documentation. Recently, hammurabi X
was used to generate extra-Galactic Faraday rotation maps from primordial
magnetic fields in Hutschenreuter et al. (2018).

14 Nside means the number of full-sky pixels is N12 side
2 .

15 The local region means any small-scale spatial domain where the mean
magnetic field can be treated or approximated as a uniform distribution. This
implies that the local generator cannot be applied to realize large-scale random
magnetic fields, which are typically handled by the global generator. In
Section 4, we will present and analyze local realizations at the solar
neighborhood as an example.
16 http://www.fftw.org
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discussed in Section 3. In cases where the field is input from an
external or internal discrete grid, e.g., a random GMF, the LoS
integral at a given position does a linear interpolation (in each
phase-space dimension) from nearby grid points. The inter-
polation algorithm has been calibrated, so the high-resolution
outputs are no longer contaminated by the numerical flaws in
earlier versions of hammurabi. As illustrated in Figure 1, the
interpolation process in the earlier version of hammurabi did
not properly calculate the volume of elemental discretization,
which resulted, for example, in negative values of the simulated
dispersion measure and incorrect small-scale features in
comparison to the corrected method in hammurabi X. In this
new version, unit tests for linear interpolation can be found in
the public repository.

Generally speaking, the precision of the linear interpolation
(and the corresponding discretization) can in principle be
characterized by the goodness of the approximation. This is
explicitly affected by the discretization resolution and the
arrangement of the sampling/supporting points, and also by the
smoothness (as measured by the inverse of the second-order
derivative) of the approximation target. In hammurabi X, the
interpolation affects the precision in realizing the power
spectrum of the random magnetic field generation. This can
be improved by increasing the sampling resolution. Further-
more, linear interpolation does not preserve the divergence, but
the precision can be improved either by increasing the sampling
resolution17 or by matching the elemental discretization volume

in the LoS integral with that in the field generation (as
discussed by Waelkens et al. 2009).

2.2. Precision and Performance Profiles

Profiling18 the numerical precision in producing observables
is critical in guiding practical applications. A standard
hammurabi X simulation routine consists of two major
building blocks. The first part is the numerical implementation
of specific physical processes like synchrotron emission and
Faraday rotation, and the second part is the LoS integral that is
universal to all observables. In the following integrated
precision check, the correctness of both will be verified and
profiled together.
A given magnetic field vector B can be decomposed into

directions parallel (horizontal) and perpendicular (vertical/
poloidal) to the Galactic disk, or to be specific, the {ˆ ˆ}x y, plane
(with ŷ pointing toward Galactic longitude l=90°) in the
hammurabi X convention, i.e., BP and B⊥ at a given Galactic
longitude–latitude position { }l b, . The LoS direction n̂ from the
observer to the target field position reads

ˆ ( ) ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( )= + +n x y zb l b l bcos cos cos sin sin , 1

where x̂ is conventionally pointing from the observer to the
Galactic center. In the same observer-centric Cartesian frame,
we can explicitly write down two field components as

( ( ) ˆ ( ) ˆ) ( ) = +B x yB l lcos sin , 20 0

ˆ ( )=^ ^B zB , 3

where l0 represents the projected direction of B in the {ˆ ˆ}x y,
plane. Then, it is straightforward to calculate two key quantities
for the calculation of synchrotron emissivity and Faraday
rotation, respectively,

∣ ˆ∣ ∣ · ˆ∣ ( )´ = + -^B n B nB B , 42 2 2

· ˆ ( ) ( ) ( ) ( )= - + ^B n B b l l B bcos cos sin . 50

It is obvious that Faraday rotation is more sensitive to BP at low
Galactic latitudes, and to B⊥ at high latitudes. On the contrary,
synchrotron emissivity, which is proportional to some power of
∣ ˆ∣´B n , is more sensitive to B⊥ at low Galactic latitudes and to
BP at high latitudes.
Precision checks require a baseline model for each field, from

which analytic descriptions of the observables can be explicitly
derived. Here we assume spatially homogeneous distributions
for the CR electrons (CREs), TEs, and GMF within a given
radial distance to the observer. The spectral index of the CRE
energy distribution is assumed to be a constant, and
consequently, the CRE density N(γ) is described by

( ) ( )g g= a-N N , 60

where γ represents the CRE Lorentz factor and α represents the
constant spectral index of CRE. With the assumed homo-
geneity in all fields, we can calculate the intrinsic synchrotron
total intensity I0 and polarization Stokes parameter Q0 and U0

Figure 1. Comparison between the output from the earlier version
hammurabi (top) and hammurabi X (bottom). The sky patch in this
illustration shows the extra-Galactic dispersion measure (an observable with a
nonnegative value by definition) simulated and studied by Hutschenreuter
et al. (2018).

17 If we estimate the divergence by the finite difference in the spatial domain,
the precision exponentially improves as a function of the number of sample
points in each direction.

18 The hammurabi X wiki page https://bitbucket.org/hammurabicode/
hamx/wiki/Home presents detailed verification, performance and precision
profiles, implementation methods, and online documentation.
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(in the IAU convention19) before applying the Faraday rotation
(Rybicki & Lightman 1979):

( )=I J R , 7i0 0

( ) ( )c=Q J R cos 2 , 80 pi 0 0

( ) ( )c=U J R sin 2 , 90 pi 0 0
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where e is the electron charge, and me is the electron mass, R0

is the spherical LoS integral depth, and ν is the observational
frequency. The intrinsic polarization angle χ0 can be derived
from

( )
( ) ( ) ( )

( )
( )


c =

- -

-

B̂ b B b l l

B l l
tan

cos sin cos

sin
, 120

0

0

as illustrated in Figure 2. With the same modeling, the Faraday
depth f can be described by

( ) ( )f f=l b R, , 130 0

⎛
⎝⎜

⎞
⎠⎟( · ˆ) ( )f

p
= - B nN

e

m c2
, 140 e

3

e
2 4

where Ne represents the constant homogeneous TE density
assumed within spherical radius R0. In the end, the observed
synchrotron polarization Stokes parameters Q and U reflect the
Faraday rotation as

( ) ( )ò+ = +
f l

Q iU Q iU
e

R
dr, 15

R i r

0 0
0

2

0

0 0
2

which indicates that the polarized intensity receives a
correction factor ∣ ( ) ( )∣fl flsin 2 2 known as the Faraday
depolarization. The formulae above analytically derive calcul-
able results for reference in verifying the numerical outputs. In
real applications, the magnetic field and CRE spectral index are
not constant, and the methods used by hammurabi X for
calculating synchrotron emissivity and Faraday rotation can be
more generic, as presented in Appendix A.
Figure 3 presents the absolute and relative numeric error

distributions of the synchrotron total intensity from a single
LoS integral shell. For an observable X, the absolute error is
defined as the difference between the simulated output Xsim and
the analytic reference Xref as (Xsim−Xref), while the relative
error is defined by 2(Xsim−Xref)/(Xsim+Xref). The Faraday
depth calculator shares a similar error distribution to the
calculator of synchrotron total intensity. Meanwhile, Figure 4
presents the absolute and relative numeric error distributions of
synchrotron Stokes Q also from a single LoS integral shell,
which serves as an example for illustrating the numeric
precision in calculating tensor fields. With constant field
models in testing, the numeric errors are mainly induced by the
integration and interpolation methods and therefore indepen-
dent of the LoS resolution. Even with simple field settings, we
can observe a few percent relative error appearing in Figure 4.
Considering the future use of hammurabi X in inferring
Galactic component structures with astrophysical measure-
ments, if the magnitude of such numerical errors is larger than
the observational uncertainties, a Bayesian analysis with
hammurabi X will consequently suffer from higher uncer-
tainties and bias in parameter estimation.
In terms of the multishell arrangement in real application,

the output precision is affected by the spherical surface

Figure 2. Cartoon illustration of the projection of the magnetic field B onto the
LoS direction n̂. The definition of synchrotron intrinsic polarization angle (with
north to east as the positive angle direction) is presented on the top left, the
plane of the sky, with the red arrow presenting the magnetic field projected
onto it.

Figure 3. Synchrotron Stokes I (top) at 2.4 GHz. Absolute error (middle) and
relative error (bottom) are presented according to the analytic reference with
B⊥=0 and l0=0. The histogram (middle left) presents the relative error
distribution. The single-shell LoS integral is carried out with radial resolution
set to 1% of the total radius.

19 Detailed description for IAU and CMB polarization conventions can be
found at https://lambda.gsfc.nasa.gov/product/about/pol_convention.cfm.
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interpolation provided by the HEALPix library. The motiv-
ation of allowing different resolution settings along with the
divided LoS integral shells is to save computing resources as
mentioned in Planck Collaboration et al. (2016b). It is worth
noticing that in the simulation, the pixel values are calculated
along their central spherical coordinates. This is different from
the actual astrophysical measurements where each pixel value
is estimated based on many observational hits. And thus, for
quickly comparing low-resolution simulation results with high-
resolution data, we recommend interpolating data on the sky,
accounting for simulations’ sample directions, instead of
downgrading data by averaging over high-resolution pixels.
In this way, we avoid comparing exactly predicted values of
simulation to region-averaged values of measurements. Alter-
natively, a very stringent simulation should be designed to
mimic the true observation beams, which is computationally
heavy without hammurabi’s method. But even with our
method, no simulation can capture reality perfectly, and the
user must always be careful to test that the simulation
resolution is sufficient for probing the observational property
in question.

The testing cases displayed above are prepared by assuming
a constant magnetic field and TE field distributions. The
numerical errors would inevitably grow larger when the input
Galactic components have small-scale features near or below
the discretization resolution. This issue can be handled
efficiently in the future by an adaptively refined mesh/
pixelization.

The computationally heavy processes in hammurabi X are
the LoS integration for HEALPix map pixels, the random-field
generation with FFTs, and the linear interpolation for fields
prepared in grids (e.g., internal random fields and other external
fields). Massive observable production, HEALPix map
distribution, and recycling of physical fields require MPI20

parallelization and therefore are beyond our scope in this

report. In this work, multithreading is always essential at the
bottom level of parallelism. Figure 5 presents the strong
scaling21 in observable production with various GMF and TE
field combinations. The strong scaling with either computa-
tionally heavy (with random-field generation) or light (without
random-field generation) pipelines follows the Amdahl law
(Amdahl 1967) with around 2% serial remnants. Note that the
speedup properties are not very sensitive to the resolution
setting in various simulation routines, because the workload of
pure numerical operations is proportional to the discretization
resolution.

3. Gaussian Random GMF

3.1. General Discussion

The realization of turbulent magnetic field is a major module
in hammurabi X, as the correctness of most simulations relies
on a physically motivated and accurate description of the
turbulent fields in the multiphase ISM. In this section, we present
two Gaussian random GMF generators that are by definition
divergence-free and capable of realizing field alignment and/or
strength modulation on Galactic scales or an anisotropic22 power
spectrum on small scales.
There are several criteria that a random GMF generator

should satisfy. That it be divergence-free (or solenoidal) is
always the prime feature of any magnetic field. Absolute zero
divergence is hard to define under discretization, but in
principle either a vector-field decomposition or a Gram–

Figure 4. Synchrotron Stokes Q (top) at 2.4 GHz, where the influence of
Faraday rotation is clearly imprinted. Absolute error (middle) and relative error
(bottom) are presented according to the analytic reference with B⊥=0 and
l0=0. The histogram (middle left) presents the relative error distribution. The
single-shell LoS integral is carried out with radial resolution set as 1% of the
total radius.

Figure 5. hammurabi X strong-scaling speedups in various tasks, where the
subscript “reg” stands for regular fields while “rnd” stands for random fields.
No bottleneck from memory access has been observed. The simulation routines
are set by default to calculate synchrotron emission with Faraday rotation.

20 Message Passing Interface (MPI) is a standardized and portable message-
passing standard designed by a group of researchers from academia and
industry to function on a wide variety of parallel computing architectures.

21 Strong scaling is defined as how the solution time varies with the number of
processors for a fixed total problem size.
22 In this work, spatially anisotropic random GMF means it is locally aligned
either parallel or perpendicular to a preferred direction (e.g., by alignment
parameter ρ in the global random GMF generator), while spectral anisotropy
means the anisotropy in the frequency domain (usually due to an anisotropic
power spectrum, e.g., the MHD turbulent magnetic field). We emphasize that in
a local MHD turbulent magnetic field realization, the spectral anisotropy results
in a spatially anisotropic distribution.
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Schmidt process in the frequency domain is capable of cleaning
field divergence. In realistic cases when a large-scale spatial
domain is expected to be filled with random magnetic fields,
the field strength and alignment need to be correlated with the
large-scale structures in the Galaxy. This requirement compli-
cates the generating process, because the divergence-free
property should also be satisfied simultaneously. It is
straightforward to generate a divergence-free Gaussian random
field, and equally simple to then rescale or stretch it, as done in
Jaffe et al. (2010). But the reprofiling process destroys the
divergence-free property if it is applied naively.

A triple Fourier transform scheme is thus proposed mainly to
reconcile these two requirements. At Galactic scales, the new
scheme allows modification of the Gaussian random realization
by a given inhomogeneous spatial profile for the field strength.
Note that aligning the magnetic field to a given direction is easy
to implement in the spatial domain, but locally varying
anisotropy in the energy power spectra is not feasible by a
single FFT. In studies of Galactic emission from MHD plasma,
the dependence of local structure on a varying direction profile
breaks the symmetry required for using the FFT. To perform
more detailed modeling of the turbulent GMF power spectrum,
we provide a local generator (“local” in the sense that the mean
field can be approximated in a uniform distribution) with
explicit or implicit vector decomposition.

3.2. Power Spectrum

Consider a magnetic field distribution ( )B x = B0(x)+ ( )b x
and its counterpart ˜ ( )B k in the frequency domain, where B0

and b represent the regular and turbulent fields, respectively.
The simplest turbulent power spectrum is represented by the
trace of the isotropic magnetic field spectrum tensor in scalar
form, ( ) ˜ ( ) · ˜ ( )µ á ñB k BP k k B* .23 This kind of spectrum is
widely used as a first approach to the turbulent field realization
where the spectral shape is important. In general, we could
parameterize the basic scalar spectrum as
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where  represents the Heaviside step function. The last term
in Equation (16) represents the forward magnetic cascading
of MHD turbulence from the injection scale k0 to small scales
(k>k0), while the first two terms describe the inverse
cascading (Pouquet et al. 1976) in MHD turbulence from k0
to scale k L11 , which corresponds to the physical size L of
the MHD system. According to the simulation results from
Brandenburg et al. (2019), we set = -k 0.1 kpc1

1 and α1=0.0
by default in this work if not specified. Note that although
not explicitly mentioned here, the Nyquist frequency cutoff
kmax requires an extra Heaviside factor ( )- k kmax in
Equation (16).

In terms of more physical parameterization, we are interested
in realizing theoretical descriptions of turbulence in the
compressible plasma recently discussed by Cho & Lazarian
(2002), Caldwell et al. (2016), and Kandel et al. (2017). In a
compressible plasma, turbulence can be decomposed into
Alfvén, fast, and slow modes. Two critical plasma status
parameters are the ratio β and the Alfvén Mach number MA.
The plasma β is the ratio of gas pressure to magnetic pressure,
which represents compressibility of the plasma, with b  ¥
indicating the incompressible regime. The Alfvén Mach
number is the ratio of the injection velocity to the Alfvén
velocity, with MA>1.0 representing the super-Alfvénic
regime while MA<1.0 means sub-Alfvénic turbulence. The
general form of the compressible MHD magnetic field
spectrum tensor trace reads

( ) ( ) ( ) ( ) ( )åa a b a=P k P k F M h, , , , 17
i

i i iA

where i={A, f, s} denotes one of the three MHD modes as
described in detail in Section 4.1. In hammurabi X,
compressible MHD is only realized by the local generator,
thus ( ) ˆ · ˆa = k Bcos 0 is adopted, with B0 taken as the regular
field near the observer. A detailed application example of Fi

and hi is presented in Section 4. Some additional information
can be found in Appendix B for readers who are interested in
the technical shortcuts in random-field generation and the
sampling precision.

3.3. Global Random GMF Generator

One major task of hammurabi X is to generate a random
GMF that can cover a specific scale in the spatial domain.
However, an inhomogeneous correlation structure is not
diagonal in the frequency domain. In this case, we try to
impose an energy density and alignment profile in the spatial
domain after the random realization is generated in the
frequency domain with an isotropic spectrum. Then, the field
divergence can be cleaned back in the frequency domain with
the Gram–Schmidt process. The whole procedure of this
scheme requires two backward and one forward FFTs.
After a Gaussian random magnetic field is realized in the

frequency domain, each grid point holds a vector b drawn from
an isotropic field dispersion. The key to the triple transform is
the large-scale alignment and energy density modulation
process. The alignment direction Ĥ at different Galactic
positions should be predefined, like the energy density profile.
We introduce the alignment parameter ρ for imposing the
alignment profile as

( )
( )

( )r r

r r


+

+

^

-
b x

b b
, 18

1

3
2 2

3
2

( · ˆ )
∣ ˆ ∣

ˆ ( ) =b
b H

H
H , 19

2

ˆ ( ˆ )
∣ ˆ ∣

( )=
´ ´

b̂
H b H

H
. 20

2

ρ=1.0 means no preferred alignment direction, while r  0
(r  ¥) indicates extremely perpendicular (parallel) align-
ment with respect to Ĥ. (Previously, the alignment operation
in hammurabi was carried out by regulating bP only23 á ñ... B means an ensemble average over all B-field realizations.
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(Jaffe et al. 2010), which is phenomenologically equivalent to
our approach presented here.) Note that ρ and Ĥ can either be
defined as a global constant or as a function of other physical
quantities such as the regular magnetic field and the Galactic
ISM structure (a detailed description can be found in the
hammurabi X wiki page).

For regulating the field energy density, a simple example
with an exponential scaling profile (which can be customized in
future studies) is proposed as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ∣ ∣ ∣ ( ) =

- -
xS

R r

h

z z

h
exp exp , 21

r z

where (r, z) is the coordinate in the Galactic cylindrical frame,
and (Re, ze) represents the solar position in the Galactic
cylindrical frame. The energy density modulation acts on the
vector-field amplitude through

( ) ( ) ( ) ( )b x b x xS . 22

The above operations of reorienting, stretching, and squeez-
ing magnetic field vectors in the spatial domain do not promise
a divergence-free result. To clean the divergence, we transform
the reprofiled field forward into the frequency domain and
apply the Gram–Schmidt process:

⎛
⎝⎜

⎞
⎠⎟

˜ ˜ ( · ˜)
∣ ∣

( ) -b b
k b k

k
3 , 23

2

where b̃ indicates the frequency-domain complex vector. The
coefficient 3 is for preserving the spectral power statistically.
A second backward Fourier transform is then carried out to
provide the final random GMF vector distribution in the spatial
domain.

Note that separating the divergence-cleaning process from
spatial reprofiling comes with a cost. Strong alignment with
ρ=1 or ρ?1 are not realizable because the Gram–Schmidt
process reestablishes some extra spatial isotropy according to
Equation (23). Figure 6 presents typical results of the global
random generator in the form of magnetic field probability
density distributions, where we assume a Kolmogorov power
spectrum. The distributions of by and bz are expected to be
identical, with the imposed alignment direction being ˆ ˆ=H x.
Note that the global generator is designed to realize the
inhomogeneity and anisotropy in both spatial and frequency
domains, which we then have to process with divergence
cleaning to provide conceptually acceptable realizations.

3.4. Local Random GMF Generator

A local generator is proposed to realize random GMFs in
small-scale regions, like the solar neighborhood, where the
regular field can be approximated as homogeneous with a
uniform direction, or more precisely speaking, where the
random magnetic field two-point correlation tensor can be
approximated to be independent of the spatial position. With
this assumption, random fields can be realized with a single
FFT. Here we describe the vector decomposition method for
realizing a Gaussian random magnetic field with a generic
anisotropic power spectrum tensor Pij(k, α), where α represents
extra parameters in addition to the wave vector. By assuming

Figure 6. Global random GMF probability distribution. ρ=1.0 provides an
symmetric distribution between · ˆ= b xbx and · ˆ= b yby . ρ=10 corresponds
to the parallel-aligned case where by is suppressed with respect to bx. ρ=0.1
represents the perpendicular-aligned case where bx is suppressed with respect to
by. sx y, represents the rms of bx y, .
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Gaussianity, the power spectrum tensor reads

( ) ( ) ˜ ( ) ˜ ( ) ( )˜a d - ¢ = á ¢ ñk k k k kP b b, , 24bij i j
3 *

where b̃ represents the complex magnetic field vectors in the
frequency domain. Depending on the specific form of the given
power spectrum tensor, the vector-field decomposition can be
either explicit or implicit.

The implicit vector decomposition sets up two modes (vector
bases) for a complex Fourier vector b̃, which means

˜ ( ) ˜ ( ) ˆ ( )=  b k k eb , 25

ˆ ˆ ˆ ( )=
e

e ei

2
, 261 2

where the two orthogonal basis vectors ˆe bind with the
complex scalar ˜b respectively. The vectors {ˆ ˆ ˆ }e e e, ,1 2 3 form a
Cartesian frame, and to ensure the divergence-free property of
the resulting fields, we choose ˆ ˆ=e k3 . During the Fourier
transform of ˜( )b k into the spatial domain, we have to consider
an orthogonal base aligned with the Cartesian grid of ( )b x , and
here we adopt one convenient base representation as
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where = + +k k k kx y z
2 2 2 . Then, we can proceed by project-

ing the complex field amplitude into this spatial frame:

˜ · ˆ ˜ (ˆ · ˆ ) ˜ (ˆ · ˆ ) ( )= ++ + - -b x e x e xb b , 30

where x̂ represents the spatial Cartesian coordinate. Implicit
decomposition is irrelevant to the choice of { }+ -e e, base and
useful in the case where only the spectrum trace Tr[Pij(k)]
(over the i, j indices) is given. The amplitude of ˜b can be
drawn from Gaussian distributions with zero mean and
variances s

2 , which satisfy

[ ( )] ( )s s+ =+ - kP d kTr , 31ij
2 2 3

with d k3 representing the frequency-domain discretization
resolution. Equation (31) indicates that the field amplitudes
˜b should have a joint power spectrum equal to the trace of the
total power spectrum.

The explicit decomposition should be used when the power
spectrum tensor is available along with the explicitly defined
base { }+ -e e, , where

( ) ( )s =
 kP d k. 322 3

A practical example is realizing the Alfvén, fast, and slow
modes of an MHD turbulent magnetic field in a compressible
plasma. Given a local regular GMF field B0, an Alfvén wave
propagates along B̂0 with magnetic turbulence in direction

ˆ ˆ= ´+e k B0, while slow and fast waves generate magnetic
turbulence in the direction ˆ= ´- +e e k. A detailed para-
meterization of compressible MHD turbulent power spectra
will be introduced in Section 4 following the corresponding
references therein. Note that when the wave vector k is aligned
with B0, the amplitudes of the Alfvén and slow modes vanish,
and the fast-mode realization requires an implicit decomposi-
tion as the base { }+ -e e, is undefined.
Figure 7 presents typical examples of the distribution of the

random GMF from the local generator. In comparison to
the magnetic field distribution from the global generator where
the spatial anisotropy is defined by the orientation alignment, the
local generator is capable of realizing more subtle field
properties, e.g., the spectral anisotropic MHD wave types
described in Section 4. At the phenomenological level, the
global generator can mimic the random magnetic field
orientation alignment of the local realizations as illustrated by
Figure 6 and Figure 7, but the spectral anisotropy is uniquely
realizable by the local generator.

4. Application Example

To demonstrate the usefulness of hammurabi X, we
investigate the properties of simulated synchrotron emission
at high Galactic latitudes according to different random
magnetic field configurations. By focusing on the high-latitude
sky, we concentrate on the properties of physical fields near the
solar neighborhood where both global and local random
generators can be applied.
Alves et al. (2016) reported a synchrotron B/E ratio24 around

0.35 at angular modes ( )Îl 30, 300 (a similar result has also
been reported at high Galactic latitudes by Krachmalnicoff
et al. 2018), which a successful modeling of the GMF should
be able to explain. Besides, a low polarization fraction at high
Galactic latitudes is observed (Planck Collaboration et al.
2016a). According to recent theoretical work by Kandel et al.
(2018), it may be possible to achieve a synchrotron B/E ratio
lower than 1.0 at high Galactic latitudes with compressible
MHD turbulence, especially with slow and/or Alfvén modes at
low Mach number MA<0.5. An analytic calculation of the
angular power spectrum observed in polarized synchrotron
emission is not a trivial task. As presented in theoretical
estimations carried out by Caldwell et al. (2016) and Kandel
et al. (2017, 2018), it is impossible to avoid a certain level of
simplification, e.g., the flat-sky assumption, the Limber
approximation, and the limitation of the perturbative regime.
Now with the help of hammurabi X, we can approach this
topic numerically without being confined by the limits in
analytic work.
To avoid distractions from other Galactic components or

local structure models, in the following analyses, we assume a
uniform distribution for the regular GMF parallel to the
Galactic disk and a homogeneous CR electron density with a
fixed spectral index. No spatial modulation of the field strength
is performed, but we use the ability to model the field
orientation alignment described in Section 3.3. The detailed
modeling of MHD turbulence is briefly presented in the
following.

24 The ratio between the Bmode and the E mode of the synchrotron angular
power spectrum, i.e., C Cℓ

BB
ℓ
EE .
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4.1. Parameterized MHD Turbulence

A realistic formulation of the local turbulent GMF is
essential in this work, where simple random-field generators
usually cannot take into account the anisotropy imprinted on
the wave-vector phases of the power spectrum. The local
generator we have designed in hammurabi X is capable of
carrying out a theoretical parameterization of MHD turbulent
modes, which have been discussed by Cho & Lazarian (2002),
Caldwell et al. (2016), and Kandel et al. (2017, 2018). As
described in these references, the turbulent field power spectra
for Alfvén, fast, and slow modes can be formulated as

( ) ( ) ( ) ( ) ( )a a b a=P k P k F M h, , , , 33i i i iA
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where { }Îi f sA, , representing Alfvén, fast, and slow modes,
respectively.25 The two critical MHD parameters are the Alfvén
Mach number MA and the plasma β which is the ratio of gas
pressure to magnetic pressure. In the sub-Alfvénic (MA<1)
low-β (β<1) regime, the spectral indices in Equation (34) can
be approximated as δA=δs=5/3 and δf=3/2 (Cho &
Lazarian 2002). The Alfvén speed vA, which should appear in
hi(α), is absorbed by the normalization factor pi for simplicity.

4.2. High-latitude Synchrotron Emission

With the improved precision in hammurabi X, we present
high-resolution Galactic synchrotron emission simulations with
analytic models as described above. Presented in Figure 8 are
the examples of synchrotron polarization at high Galactic
latitudes predicted by a uniform regular GMF parallel to the
Galactic disk and a random component from the global
generator with a Kolmogorov power spectrum. Maps of
synchrotron polarization from the same regular GMF but the
local generator using a compressible MHD model are presented
in Figure 9. Because we are presenting only illustrative models,
the absolute strength of regular and random GMF is not
essential here.

Figure 7. Local random-field probability distribution with ˆ ˆ=B x0 , Mach
number MA=0.5, and plasma parameter β=0.1. PA represents the Alfvén-
mode power at the injection scale, while for fast and slow modes,
we set equal power Pf=Ps at the injection scale. sx y, represents the rms
of bx y, .

25 In this work, the subscript A represents Alfvén, f represents fast, and s
represents slow.
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Figure 8. 30 GHz synchrotron Stokes Q at the Galactic north pole in a 40°
patch. The GMF simulation consists of a uniform regular (with orientation
displayed on the bottom-left corner of each panel) and global random
component with injection scale k0=10 kpc−1 but different alignment
parameters ρ=10 (top), ρ=1 (middle), and ρ=0.1 (bottom). The strength
ratio between the random and regular GMF is b/B0=3.0.

Figure 9. 30 GHz synchrotron Stokes Q at the Galactic north pole in a 40°
patch. The GMF simulation consists of a uniform regular (with orientation
displayed on the bottom-left corner of each panel) and a local random
component with total spectral power =k P B 75.00 0 0

2 at injection scale
k0=10 kpc−1. The Alfvén Mach number MA=0.5 and plasma parameter
β=0.1 are set to match the parameterization in Figure 7.
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The most prominent feature of the high-latitude synchrotron
polarization is the quadrupolar structure that results from the
GMF orientation at the solar neighborhood. As in the examples
displayed in Figure 8, the quadrupole direction is largely
determined by the regular field, but on top of which we can
observe a flip in the polarization between the regimes when
ρ>1.0 versus ρ<1.0. When the random GMF has no
preferred alignment, i.e., the ρ=1.0 case, the quadrupole
pattern is undermined by the isotropic random-field contrib-
ution. This is visually clear because the random-field strength
dominates. In Figure 9, the quadrupole pattern is well preserved
with MHD turbulence injection scale k0=10 kpc−1, and also a
flip in the polarization can be observed with the pure Alfvén
mode when the random field dominates. When the spatial
distribution or random GMF is close to spatially isotropic26

with PA/Pf,s=3.0 (and Alfvén Mach number MA=0.5,
plasma parameter β=0.1) as displayed by the top panel in
Figure 7, we observe a similar trend of weakening quadrupole
pattern as demonstrated by Figure 9.

The synchrotron polarization fraction (or the degree of linear
polarization) is mainly determined by the CRE spectral shape
when a uniformly distributed regular GMF dominates. Assum-
ing a constant CRE spectral index α=3.0, the synchrotron
polarization fraction Π=(3α+3)/(3α+7) is much higher
than that observed from Planck data (Planck Collaboration
et al. 2016b). Figures 10 and 11 demonstrate that the
synchrotron polarization fraction can be suppressed by a
Gaussian random field as long as the random field is not
strongly anisotropic in the spatial domain. The suppression in
polarization fraction grows with increasing random-field
strength but depends on the specific field modeling. Recall
that the addition of a random component to the magnetic field
direction functions as a random walk in the polarization plane,

which means that even for a purely turbulent field, the
polarized intensity continues to increase with the number of
turbulent cells added along the LoS. In principle, the increase
goes as the square root of the number of cells, while the total
intensity increases linearly, so the fraction should decrease
accordingly. In practice, the precise trend is complicated by the
effect of the observational beam and the locally varying
anisotropy. The shape of the polarization fraction for the
ρ=0.5 model in Figure 10, for example, is due to the
anisotropic random field canceling with the regular field before
beginning to dominate. An inhomogeneous distribution (by
field strength modulation) of the random field can change the
efficiency of suppression differently depending on the field
alignment, but the common features described above are
preserved.
The above analyses imply that interpreting the synchrotron

polarization toward the poles as due to the local field direction
ignores the possible effects of anisotropic turbulence, which
can mimic or flip the morphology. Though the physical process
is different, the geometry of the field and its effect on the
observables is the same for polarized dust emission. This work
illustrates the opportunity for retrieving useful information on
the local magnetic turbulence structure with high-latitude
Galactic polarized emission and also shows the challenge from
the degeneracy between random and regular magnetic field
orientations when using emission data alone. It suggests that
we need to be careful about realizing the local GMF structure to
avoid misleading conclusions. For example, it has been
proposed recently by Alves et al. (2018) that according to
observations, the regular magnetic field structure may play a
dominant role in Galactic dust emission near the solar
neighborhood. We also emphasize that the Galactic synchro-
tron emission is also affected by the warm ISM in the Galactic
thick disk and even the halo. The random-field generators in
hammurabi X can be used to bridge the gap between simple

Figure 10. Distribution of synchrotron polarization fraction Π at high Galactic
latitudes produced by a uniform regular and global random GMF. In the top
panel, the distribution (16th–68th percentile) characterized by the mean and
standard deviation as a function of random-field strength is displayed, where
the alignment ratio is fixed. In the bottom panel, we show a histogram of the
polarization fraction, where b/B0=3.0 and the alignment parameter ρ varies.
Recall that ρ=1 is isotropic while ρ<1 and ρ>1 are anisotropic.

Figure 11. Distribution of the synchrotron polarization fraction Π at high
Galactic latitudes produced by uniform regular and local random GMF. In the
top panel, the distribution (16th–68th percentile) characterized by the mean and
standard deviation as a function of random-field strength is displayed, where
the anisotropy ratio P Pf sA , is fixed at the injection scale = -k 10 kpc0

1 while
the ratio between the total spectral power P0=Pf+Ps+PA at the injection
scale and the regular field energy P B0 0

2 varies. In the bottom panel,
=k P B 75.00 0 0

2 , while the anisotropy ratio P Pf sA , varies.

26 The local generator has no field alignment parameter like ρ=1.0 that can
ensure an absolutely spatially isotropic distribution with respect to B0.
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large-scale field models and computationally intensive MHD
simulations, and push toward more realistic analysis and
modeling than previous methods.

4.3. Angular Power Spectrum

The large angular scale Galactic synchrotron polarization
pattern driven mainly by the GMF orientation at the solar
neighborhood is quite evident as illustrated in Figures 8 and 9.
However, the small angular structures can be analyzed with the
angular power spectrum, which can be decomposed by
rotation-invariant components, i.e., the T, E, and B modes
(Hu & White 1997a). With the two random-field generators
proposed in this work, we intend to figure out which properties
of the random GMF are imprinted on the synchrotron B/E
ratio. Specifically, we are interested in verifying whether MHD
turbulence modes are capable of producing B/E<1.0 in both
the perturbative and the nonperturbative regimes. Because we
are focusing on high-latitude polarization, pixels at Galactic
latitude within ±60° are masked out. We also set a lower limit
to the radius in the LoS integral according to the random-field
grid resolution and the spherical mode range. Technical details
of the precision checks for the pseudo-Cℓ estimation are
discussed in Appendix C.

We present in Figure 12 the B/E ratio distribution (by
collecting results from an ensemble of realizations with each
given parameter set) for varying random-field strengths and
alignments of the global random GMF. Figure 12 implies that
to reproduce B/E<1.0, we either need random GMF in the
nonperturbative regime (b/B0>1.0) or parallel alignment
(ρ>1.0). We also note that the divergence-cleaning step is
what leads to ¹B E 1.0. As illustrated in the same figure, all
realizations end up with B/E=1.0 regardless of random-field
alignment, when the Gram–Schmidt process is switched off.
This is expected given that a simple Gaussian random field
should have E=B on average, whereas a magnetic field must

be divergence-free and therefore the difference between the naive
random vector field and the magnetic field, which has been
ignored in many previous analyses, is crucial in studying Galactic
emissions. Now we conclude that the divergence-free random
magnetic field can provide synchrotron ¹B E 1.0. The Gram–

Schmidt cleaning method is computationally useful and correct
for reproducing the divergence-free random magnetic field
(which in the simplest case can alternatively be obtained from
a Gaussian random vector potential as shown in Appendix D,
where synchrotron B/E<1 arises naturally out of either method
in the nonperturbative regime) and has the added benefit that we
can spatially modulate its strength and orientation.
By contrast, the Cℓ estimated from the local MHD

realizations have a clear analytic representation, to which
simulations can be directly compared. To look for the low B/E
ratio according to Kandel et al. (2018), we keep the random
GMF strength at the perturbative level and tune the MHD
Mach number MA=0.2 and plasma parameter β=0.1. As
illustrated in Figure 13, we find clear evidence that a Gaussian
realization of MHD turbulence can provide a synchrotron B/E
ratio smaller than 1.0, in both perturbative and nonperturbative
regimes. The fast mode in a sub-Alfvénic low-β plasma has a
unique power spectrum shape and is less affected by the
anisotropy function h(α) than the slow mode. By assuming
equal power in the turbulence modes at the injection scale, the
observed angular power spectra are mainly influenced by
the fast mode and so the B/E ratio has a different behavior for
the case where slow and Alfvén modes dominate. With the
given MHD Mach number and plasma parameter, slow-mode
turbulence results in a much lower B/E ratio than that from the
Alfvén mode, while fast mode prefers B/E;0.8 in the
perturbative regime. These features are conceptually consistent
with analytic predictions by Kandel et al. (2018) as demon-
strated in the top panel of Figure 13, where the differences
between two estimations are likely because of the simplifica-
tion in analytic derivation, e.g., the Limber and flat-sky
approximations. Beyond the perturbative regime, we observe
that the B/E ratio evolves with the growth of the random-field
strength and suggests an upper limit for the random-field
strength to achieve the observed B/E ratio with solely MHD
turbulence.
The observational implications of the Galactic synchrotron

emission from the above two types of random-field realizations
are that both the divergence-free and MHD turbulent nature of
the field are important for producing synchrotron B/E<1.0
(aside from the fact that the divergence-free condition is
physically required). It is possible to use directly the angular
power spectra estimated in the way presented here for studying
Galactic components like the work by Vansyngel et al. (2018),
but we should be aware of the numeric uncertainty if the
simulation resolution is lower than that of astrophysical
measurements, in addition to the fundamental difference
between simulation and observation mentioned in Section 2.

5. Summary

In this report, we have presented hammurabi X, the
improved version of hammurabi. We have redesigned the
package properly with calibrated precision and multithreading
support. This report focuses on the implementation of the
synchrotron emission simulation in hammurabi X and its
relation to the random magnetic field realization. The technical

Figure 12. Distribution (16th–68th percentile) of the 30 GHz synchrotron
emission B/E ratio for ℓ>100 according to global random GMF with various
field strengths and alignments. The ensemble size is set as 10 independent
realizations at each sampling position, beyond which we found no significant
improvement in the B/E estimation. The results marked by “GS off” come
from random GMF without divergence cleaning. The contribution to the
angular power spectrum from the regular GMF has been subtracted, which
would otherwise dominate the B/E ratio in the perturbative regime (b= B0).
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features and profiles associated with Galactic synchrotron
emission have been, for the first time, reported in detail.

Two fast methods for generating divergence-free Gaussian
random magnetic fields covering either Galactic scales or a local
region have been proposed. This is a crucial improvement (in
computing accuracy and the capability of realizing physical
features) over not only the previous versions of hammurabi but
also previous fast methods of simulating the GMF and the
resulting diffuse Galactic polarized emission from the ISM. It is
increasingly clear that simplistic treatments of the turbulent
component of the ISM do not produce simulated observables of
sufficient complexity to be useful in comparison to the data.
Though full MHD turbulence realizations are computationally too
expensive for the use in large-scale GMF model fitting, using the

statistical properties of these MHD simulations is an important
intermediate step pursued here. The new hammurabi X provides
the ability, for the first time, to generate Gaussian simulations that
capture some of the properties of the fast, slow, and Alvén modes
of MHD turbulence in a computationally efficient approximation.
Using these more realistic numerical methods for simulating the
magnetized ISM will lead to results that can be more directly
linked to physical theory.
We have further demonstrated the importance of these

improvements by studying two properties of the GMF that have
been discussed in the literature. First, we have shown the
importance of including a treatment of the anisotropic
turbulence in the local ISM when attempting to interpret
high-latitude synchrotron polarization as an indication of the
local magnetic field direction. Any such modeling of the local
field can use hammurabi X to quantify how much this affects
the results, particularly with the addition of Faraday depth to
break the degeneracy of using only polarized diffuse emission.
Second, using our new numerical methods, we have found that
a Gaussian random realization with either the global field
orientation alignment or the local MHD parameterization can
produce B/E;0.35 in synchrotron emission at high Galactic
latitudes. Comparing the B/E ratio predicted by the global
random GMF realizations with and without invoking the
Gram–Schmidt process, we have realized that the divergence-
free property is essential for such detailed statistical studies of
GMFs. Our results conceptually confirm the prediction made
by Kandel et al. (2018) for Galactic synchrotron emission,
which says the MHD magnetic turbulence has the ability to
predict B/E<1.0, while the prediction for dust emission B/E
ratio has been conceptually confirmed by Kritsuk et al. (2018).
We have also succeeded in demonstrating the computing power
that hammurabi X can provide to go beyond analytic studies
of Galactic foreground observables with nonperturbative
random GMF realizations.
In the near future, we would like to focus on improving the

random GMF generators with more physical features. The
alignment of the random GMF around local filaments
(including helicity) and non-Gaussianity will be interesting
extensions, through which we can study the joint effect of the
magnetic field alignment and its spectral anisotropy. In
hammurabi X, both the global and local generators are
designed to allow in the future the addition of non-Gaussianity,
e.g., with the method introduced by Vio et al. (2001); helicity,
e.g., with the method instructed by Kitaura & Enßlin (2008);
and more realistic modeling, e.g., with local filaments studied
by Bracco et al. (2018). We intend to extend hammurabi X
for further studies of Galactic Faraday rotation, dust emission,
and free–free absorption by including (where possible) the
coupling between the random GMF and the TE and dust
distributions implemented in similarly calibrated numeric
implementations.

We thank Theo Steininger and Joe Taylor for their
contribution in the software development; Sebastian Hutschen-
reuter for his feedback in using hammurabi X; Christopher
J.Anderson for his instructions in using NaMaster; and
Dinesh Kandel, Alexandre Lazarian, and Dmitri Pogosian for
sharing their numerical results. J.W. appreciates the pleasant
and inspiring discussions with Davide Poletti, Yang Liu,
François Boulanger, and Anvar Shukurov. We also thank the
anonymous referee for constructive comments.

Figure 13. Distribution (16th–68th percentile) of the 30 GHz synchrotron
emission B/E ratio for ℓ>100 according to the local GMF realizations with
various field strengths, Alfvén Mach numbers, and plasma parameters. The
ensemble size is set as 10 independent realizations at each sampling position,
beyond which we found no significant improvement in the B/E estimation.
Solid lines in the top panel are predictions from Kandel et al. (2018). The fast
+slow+Alfvén case sets equal magnetic field power at the injection scale for
the three modes (i.e., =P P 1.0f sA , ), while the fast mode is excluded from the
slow+Alfvén case (i.e., =P Ps A). The contribution to the angular power
spectrum from the regular GMF has been subtracted, which would otherwise
dominate the B/E ratio in the perturbative regime ( k P B0 0 0

2).
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Appendix A
Synchrotron Emission

In this section, we present the basic mathematical formulae
adopted in calculating polarized synchrotron emission and
Faraday rotation. The method is defined not only for analytic
modeling of the CRE flux but also for an input grid of
dimension 3+1 imported from external binary files, where the
spectral dimension is defined by a logarithmic sampling of
electron energy. This matches the output convention in CR
transport simulators like Galprop (Strong & Moskalenko 1998)
and DRAGON (Evoli et al. 2017).

A.1. Radiative Transfer

With the CRE differential flux distribution Φ(E, r),
synchrotron total and polarized emissivities at a given
observational frequency ν and spatial position r read
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p
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where ( )wPtot pol , which represents the emission power from
one electron at frequency ν=ω/2π, is calculated (Rybicki
& Lightman 1979) through synchrotron functions ( ) =F x
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where e is the electron charge, me the electron mass, and Bper

(defined as ∣ ˆ∣´B n in Section 2) represents the strength of the
magnetic field projected in the direction perpendicular to the
LoS direction. Statistically, we assume that the synchrotron
emission at a given position is isotropic, and so an observer
only receives 1/4π of the emission power, which explains
the 1/4π coefficient in front of the right-hand-side in
Equation (42). In addition, we place an extra 2πbefore

( )wPtot pol , due to the relation P(ν)=2πP(ω). The term

( )Fp
b

rE,
c

4 , with β representing the relativistic speed, is actually

N(E, r), the CRE differential density.
In practice, the CRE spectral integral can be achieved in two

technically different approaches with the same theoretical

origin. If given a numerical CRE flux information Φ(E)
prepared on a discrete grid, the integral Equation (42) can be
directly evaluated by the numerical integral. Alternatively, we
can start with an analytic differential density distribution

( ) ( )g p b= Fr rN E m c, 4 , e , and by doing so, Equation (42)
reads
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The reason for keeping Equation (45) as an alternative method
is to calculate the integral analytically once the CRE spectral
index is constant at any given position as illustrated in
Section 2. The detailed derivation follows the auxiliary
definition of
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Then, by assuming ( )g g= a-N N0 , Equation (45) ends up in
the form of
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where the spectral integrals can be analytically calculated by
using
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Figure 14 illustrates the dependence of the synchrotron total
emissivity Ttot and polarized emissivity Tpol on the CRE
energy, with varying magnetic field strengths, observational
frequencies, and CRE spectral shapes. The peaks in emissiv-
ities are inherited from F(x) and G(x), where the dimensionless
parameter x is the ratio of the observational frequency to the
CRE gyrofrequency.
In this work, we focus on simulating synchrotron emission at

the GHz level, for which the Galactic environment is optically
thin (Rybicki & Lightman 1979; Schlickeiser 2002), and so we
ignore both synchrotron self-absorption and free–free absorp-
tion. For readers who might be confused with the synchrotron
emissivity calculation formulae presented above, please turn to
the hammurabi X wiki page for more technical details.

A.2. Faraday Rotation

Faraday rotation describes the phenomenological manifesta-
tion of the refractive index difference in the polarization
directions for photons that propagate through a plasma with an
external magnetic field. For a linearly polarized photon emitted
with wavelength λ and intrinsic polarization angle χ0, the

27 Homepage of the IMAGINE consortium: https://www.astro.ru.nl/imagine/
index.html.
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observed polarization angle after traversing distance s0 is

( ) ( )c c f l= + s , 520 0
2

where f, the Faraday depth, reads
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where p̂ represents the photon propagation direction and Ne

represents the distribution of TE density. Note that the IAU
convention28 for polarization is adopted in hammurabi X,
which means that the intrinsic synchrotron polarization angle is
determined by the polarization ellipse semimajor axis perpend-
icular to magnetic field orientation. Under Faraday rotation at a
given observational frequency ν, the observed emission
accumulates Stokes parameters dQ and dU over a distance s0
by

{ } ( )c+ = ndQ idU dI iexp 2 , 54p

where ndI p represents the polarized intensity in the radial bin
[ ]+s s ds,0 0 . Though Faraday rotation brings in extra informa-
tion about the TE distribution, a relatively high observational
frequency is sometimes preferred for studying synchrotron
emission, e.g., 30 GHz in this report, to suppress the
complicated effects of TE turbulence, which will be addressed
in our future studies with hammurabi X.

Appendix B
Precision of Random GMF Generation

In the random GMF generators described in Section 3, we
are not using three independent FFTs for 3D vector fields. A
straightforward approach to vector-field FFT would be carrying

out three independent transformations separately. However,
that is expensive in general where the operations are only
limited to transforms between real and complex values. A
special speedup design that provides computational efficiency
is to compress the three real scalar fields into two complex
scalar fields.
Suppose that in the ξ domain we have two complex scalar

fields ( )xc0 and ( )xc1 , which are compressed from three real
scalar fields ( )xbx , ( )xby , and ( )xbz by defining

( ) ( ) ( ) ( )x x x= +c b ib , 55x y0

( ) ( ) ( ) ( )x x x= +c b ib . 56y z1

Then, mathematically, we know their reciprocal-domain
counterparts should be

˜ ( ) ˜ ( ) ˜ ( ) ( )h h h= +c b ib , 57x y0

˜ ( ) ˜ ( ) ˜ ( ) ( )h h h= +c b ib . 58y z1

Because the transform is done between real and complex fields,
complex conjugate symmetry gives a useful property:

˜ ( ) ˜ ( ) ˜ ( ) ( )h h h- = -c b ib , 59x y0*

˜ ( ) ˜ ( ) ˜ ( ) ( )h h h- = -c b ib , 60y z1*

from which we can recover vector fields ˜ ( )hbx , ˜ ( )hby , and
˜ ( )hbz in the reciprocal domain. This method is applied in both
the global and local turbulent GMF generators to reduce the
computational cost.
In the FFTs of both the global and local generators, the

numeric field ( )b x is calculated according to its frequency-

Figure 14. Differential synchrotron total and polarized emissivities (djtot/dE
and djpol/dE converted into brightness temperature) of CRE, which follows the
simple power-law spectrum ∝γ−α. The magnetic field strength and observa-
tional frequency are given.

Figure 15. Examples of the relative difference between the theoretical and
numerical energy densities in random GMF realizations. The numerical energy
density of each parameter set is evaluated from an ensemble of field samples. A
higher precision is achieved with better spatial resolution represented by N
(with the simulation box size L=N/2kmax), the number of sample points in
each grid dimension.

28 Detailed descriptions for the different IAU and CMB polarization
conventions can be found at https://lambda.gsfc.nasa.gov/product/about/
pol_convention.cfm.
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domain counterpart as
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Dimensional analysis requires the variance of ˜( )b k in the form
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which in turn satisfies the definition of energy density:
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where kmax represents the Nyquist frequency. The precision of
the power spectrum as represented on the spatial grid can be
visualized by comparing the theoretical and numerical energy
densities from field realizations. As illustrated with examples in
Figure 15, the convergence toward higher grid resolution
demonstrates the correctness of the numeric implementations.

Appendix C
Precision of Pseudo-Cℓ Estimation

In this work, the Cℓ are estimated from an ensemble of
simulations with the NaMaster 29 toolkit (Alonso et al. 2019).
Figure 16 provides some extra information about the pseudo-Cℓ

estimation we used. The isolatitude masks used here include
the one applied in Section 4.3, which corresponds to the 60°
masking limit in the right panel of Figure 16. To analyze
partial-sky observables with the isolatitude masks with
masking limit lower than 70° and Gaussian-smoothed apodiza-
tion, we empirically choose the band-power binning width
Δ ℓ=16 according to the width of the window function. The
regular magnetic field assumed in this work induces a strong
large angular synchrotron polarization. The symmetry of this
synchrotron polarization results in the suppression of the odd
angular modes in the power spectrum. In the left and middle
panels of Figure 16, the even and odd modes are joined, and the
light- and dark-gray shaded regions represent the E- and B-
mode Cℓ due to the symmetric synchrotron polarization without
any masking. In the presence of a random magnetic field, this
suppression of odd harmonics persists at low and intermediate
ℓvalues but goes away at high ℓ.

In case of a partial-sky coverage with a small sky fraction,
like the case considered here, pseudo-Cℓ estimation cannot be
done without binning. However, the suppression of odd
harmonics is a complication for pseudo-Cℓ estimators like
NaMaster. A pseudo-Cℓ estimate of the symmetric polariza-
tion due to the regular magnetic field alone is shown in the gray
dashed and dashed–dotted curves in the first two panels of
Figure 16. These do not agree with the full-sky power
spectrum.

The presence of large-scale symmetry in the polarization
presents a critical problem for the pseudo-Cℓ estimation by
NaMaster, for the total polarization signal produced by
the regular and random fields together. This may be seen from
the solid red/orange and blue/green curves for the E- and
B-mode pseudo-Cℓ estimates in the first two panels of
Figure 16. These show the identical problem to the plots
without a random magnetic field on the partial sky. To avoid
this problem, in pixel space we subtract the polarization signal

produced by the regular magnetic field alone from the total
polarization signal. Fortunately, in the illustrative examples, the
regular fields are homogeneously defined and so it is feasible
and safe to subtract the contribution from the regular magnetic
field in the pixel domain. We then proceed to use NaMaster
on these “corrected” polarization maps. (This is also performed
for Figures 12, 13, and 17 as mentioned in the caption.) The
pseudo-Cℓ estimates for this “corrected” case are shown in the
first two panels of Figure 16 with red/orange and blue/green
data points for the E- and B-mode pseudo-Cℓ estimates
respectively. We also show the error bars of the reconstruction
from 10 independent simulations. We restrict our analysis to
ℓ>100 modes. Note that this correction process only removes
the contribution that comes from the regular GMF on its own,
i.e., it preserves the polarization signal produced by the cross
term between the regular and random fields.
We also tried the masking with various latitude limits, as

demonstrated in the right panel of Figure 16 (where the random
magnetic field is generated by the global generator with
alignment ratio ρ=10), and the B/E ratio estimations are
consistent (with larger uncertainty according to smaller sky
fraction).
Now we have verified the methods in calculating the

synchrotron polarization in Section 2, the random-field
realization in Section 3, and the Cℓ in Figure 16. To further
confirm the correctness of the simulated results obtained in
Section 4, a conceptual verification is necessary. An analytic
approach toward generating the angular power spectrum of
tensor fields is not easy and is also beyond our scope.
Alternatively, the shape of the Faraday depth angular power
spectrum can be inferred from simplified settings of the fields,
which serves as a proper check of the random-field realization
and the angular mode accumulation in the LoS integral.
To begin with, we adopt the total angular momentum

method introduced by Hu & White (1997b) and Hu (2000).
Synchrotron polarization ( ˆ) = nP r Q iU, from a given
geocentric position ˆ= -r nr can be expanded in a polarization
basis as
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where for the spin-2 tensor field the basis reads
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where ( ˆ)nYs ℓ
m is the spherical harmonic function for a spin-s

field. The standard path toward the angular power spectrum E-
mode Cℓ

EE and B-mode Cℓ
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29 https://github.com/LSSTDESC/NaMaster
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In the simplest case, we consider only emission sources while
ignoring absorption and Faraday rotation, i.e., for a synchrotron
polarization tensor ( ˆ)n nP r, at observational frequency ν,

( )- = =n c
dP

dr
j e , 67i
pol

2 0

where the basic formulae for polarized emissivity jpol and
intrinsic polarization angle χ0 have been discussed in
Appendix A. We would thus expect the integral solution to
become
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It is however not trivial (and thus is commonly avoided without
further simplification) to analytically bridge the random GMF
and its contribution to synchrotron emissivity expanded in a
spherical harmonic basis. Fortunately, Faraday depth is a
different story, as the LoS projection of a divergence-free
vector field b ( )k can be represented as

( ) · ˆ ( ˆ) ( )( )åp
= ´b k n ni b Y
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where the wave vector k differs from that in the random-field
realization by a factor of 2π. (Instead of using the total angular
momentum method, a similar approximation to the rotation
measure structure function has been carried out by Xu &
Zhang 2016, which leads to the same conclusion.) The procedure
we take for Faraday depth follows the same method for the
Doppler effect handled by Hu (2000), where the linear perturbation
and Limber approximations (LoVerde & Afshordi 2008) are key

assumptions. By assuming a uniformly distributed TE field, we
isolate the perturbation source of Faraday depth in the vector mode
(m=±1), which results in the angular power spectrum
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where Pb is the power spectrum of random GMF. By applying
the Limber approximation (which assumes that the typical scale
of LoS variation of a perturbed field is much larger than that in
the angular direction), we have
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which suggests the shape of Cℓ
FF is mainly determined by Pb.

Figure 17 presents a comparison of the simulation precision
with respect to the analytic prediction. For the highest spherical
mode ℓmax in analysis and for a random-field grid bin of length
h, the lower radial limit is roughly set as pR hℓmin max .
Regions closer than Rmin or modes above ℓmax are greatly
affected by the grid interpolation and may affect the pseudo-Cℓ

estimation. The upper radial limit is defined by the simulation
size L within which the random GMF is generated, and

pR Lℓmax min should be satisfied. The LoS radius limits
discussed here do not influence the conclusions about the B/E
ratio but only affect the precision in estimating Cℓ. To achieve
the highest precision without being distracted by the effects
of a multishell arrangement, the simulations are done with
single-shell integrals. The default simulation and output
resolutions are identically set as Nside=128 unless specified.
The random-field grid by default is built large enough to host a
radial integral with LoS depth Rmax;4 kpc from the observer
with field sampling resolution h;3 pc (which means
kmax;300 kpc−1) and radial resolution r;5 pc, except that
in this appendix we use thin shells with 0.1 kpc thickness and
much lower sampling resolution (kmax<100 kpc−1). With a
sharp cutoff at an injection scale k0 in the random GMF models
(by ignoring the inverse cascading), we expect a corresponding
break in the angular power spectrum at ℓc∼2πRmaxk0.

Figure 16. Left and middle: Cℓ estimated according to global random magnetic fields with ρ=10.0 but different strengths. The thick gray spectra (dashed and dotted–
dashed) correspond to the uniform regular magnetic field as defined in Section 4. The light- and dark-gray shadow solid spectra are from a uniform regular magnetic
field but estimated from a full-sky map. The shadow areas are actually effects of vanished odd angular modes from the full-sky power spectrum estimation. The solid
colored curves are the estimated pseudo-Cℓ from simulated (partial-sky) outputs, while the square markers with error bars are the estimated pseudo-Cℓ after the regular
field contribution is subtracted in the pixel domain. Note that overlap between spectra happens at relative high angular modes. Right: one realization of Stokes Q and U
maps (according only to the global random magnetic field with ρ=10.0) and the corresponding B/E ratio estimated by NaMaster with various isolatitude masks.
During testing, we find out that setting 10 independent realizations in each simulation ensemble is sufficient for getting unbiased estimations.
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The break position is well recovered independently of the
simulation resolution on each thin LoS shell. The power in
angular modes below and above the break ℓc is affected
differently by the spherical and sampling resolution. For ℓ<ℓc,
the angular resolution (characterized by HEALPix Nside) has a
dominant influence, suggesting that a larger angular resolution
is necessary for more distant shells to suppress the angular
power excess, while for ℓ>ℓc, the missing angular power
(particularly for shells closer to the observer) results from
insufficient sampling resolution (characterized by the Nyquist
frequency kmax) in the random-field realization, especially near
the observer. Although the illustrations are prepared with the
global random GMF generator, the resolution effects discussed
above are generic. Insufficient angular or Galactic component
sampling resolution will result in missing power in the angular
power spectra from simulation outputs. This issue can in
principle be handled by using an inhomogeneous grid or
adaptively refined mesh with non-equispaced FFT (Keiner
et al. 2009) for sampling Galactic components (especially the
turbulent fields), and also adaptively refined spherical pixeliza-
tion. An alternative solution can be nesting sampling grids with
different resolutions, but the precision loss on the boundary
should be carefully estimated and controlled. Now with our
theoretically verified Faraday depth anisotropy, we can
conclude that our numeric realizations of Gaussian random
fields are accurate, and thus that the results regarding the B/E
ratio obtained from synchrotron emission simulations should be
free from numeric defects.

Appendix D
Divergence-cleaning Verification

In Section 3.3, we introduced a fast algorithm for generating
global random GMFs with divergence cleaning independent of
a random sampling of magnetic field vectors in the frequency
domain. To verify the influence of the divergence cleaning on
the default global random generator, here we propose an
alternative algorithm for generating a global Gaussian random

GMF by starting with the Gaussian random realizations of the
magnetic potential field ( )A x . Knowing that a random
magnetic field ( )b x can be defined by its potential ( )A x , in
the frequency domain, we have

˜( ) ˜ ( ) ( )p= ´b k k A ki2 , 74

which ensures ( ) ´ =b x 0 and so alternatively provides
divergence-free random magnetic fields which we can compare

Figure 17. Angular power spectra of Faraday depth estimated on thin shells with central radial distance R and widthΔR=0.1 kpc. Dotted lines represent estimations
made with the Limber approximation (Equation (73)) while dashed lines represent predictions according to the numeric integral of the spherical Bessel function
(Equation (72)). The angular power contributed by regular fields has been subtracted.

Figure 18. Distribution (16th–68th percentile) of the 30 GHz synchrotron
emission B/E ratio for ℓ>100 according to the global random GMF with
various random-field strengths. The ensemble size is set as 10 independent
realizations at each sampling position, beyond which we found no significant
improvement in the B/E estimation. The results marked by “default” come
from the default algorithm discussed in Section 3.3, while “alternative”
indicates random GMF generated from the magnetic potential field realizations.
The contribution to the angular power spectrum from the regular GMF has
been subtracted, which would otherwise dominate the B/E ratio in the
perturbative regime (b = B0).
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to our divergence cleaning using a Gram–Schmidt process.
Note that in this verification, we impose neither spatial field
strength modulation nor orientation alignment, which corre-
sponds to the ρ=1.0 case in the default global generator.
Figure 18 illustrates that the two methods of generating
divergence-free random magnetic fields produce equivalent
statistical properties of the resulting polarized synchrotron
emission. We have noticed that B/E depends on the ratio
between the strength of the random and regular magnetic fields
(independent of the simulation resolution), as illustrated not
only by Figure 18 here but also by Figures 12 and 13. This is
not predictable by analytic calculations when the random-field
strength is gradually moving out of the perturbative regime,
and it is one of the major advantages and motivations of using
hammurabi X for the future studies.
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